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Abstract

Motivated by an infectious disease study at the BC Centre for Disease Control, this

project is concerned with clustered event times where the observation is subject to

right-censoring, and the cluster size is random. We formulate the dependence of the

event times within each cluster with a copula model, and assume a parametric survival

model for the margins. Inference on the model parameters are made via MLE (maxi-

mum likelihood estimation). In addition, we explore patterns of the cluster sizes and

their association with the individuals who define the clusters. The motivating infectious

disease study is used throughout this project to illustrate the research.

Keywords: clustered event times, copula model, right-censoring, survival analysis
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Chapter 1

Introduction

Tuberculosis (TB), one of the leading causes of disease and death worldwide, is spread

through the air when people with an active TB infection cough, sneeze, or transmit

their saliva through the air. Most of the infections result from an asymptomatic, latent

infection, which may eventually develop to an active disease. Due to the infectivity of

TB, contact tracing is an essential step for TB control programs. Screening for TB can

be significantly improved by using e�cient standards to identify contacts who are at

risk of exposure to active TB patients[12]. To verify this perception, it is necessary to

evaluate the association of the TB development among the contacts with potential risk

factors.

The BC Centre for Disease Control (BCCDC) conducted an investigation aiming

to study the association of the time to TB and latent TB infection (LTBI) with a list

of potential risk factors based on the information from the identified individuals in the

Greater Vancouver area who had contacts with active infectious TB patients. A total

of 7921 people were identified as TB contacts from the BC provincial TB registry. The

times to TB on site of the TB contacts were collected up to October 2003. This, together

with the staggered study entries, resulted in the observation of the times to TB since

the initial contacts subject to a non-informative right-censoring[2].

Motivated by the TB investigation of BCCDC, Cook, Hu and Swartz (2011) explore

TB inference under the Cox proportional hazards model with right-censored event times,

with covariates missing not at random (MNAR). They propose an approach derived from

likelihood estimation utilizing supplementary information. Their approach is based on

1



CHAPTER 1. INTRODUCTION 2

the assumption that all the study subjects (the TB contacts) are independent. How-

ever, as mentioned in their paper, the TB contacts in the study are naturally clustered

according to their TB source cases (the active TB patients). The TB contacts of the

same TB source case are likely to be correlated.

This consideration led us to explore clustered event times with right-censoring. We

assume that the distribution of the event times within each cluster follows a copula

model, allowing the cluster size to be random. The marginal distributions of the event

times conditional on potential risk factors are specified into a parametric survival model.

The modelling accommodates dependence of individuals within each cluster, and enables

an evaluation of the dependence through estimating a parameter. At the same time,

significant factors of risk to individual TB development can be identified.

We organize the rest of the project as follows. In Chapter 2, we present some pre-

liminary analyses of the TB data from the BCCDC study. We introduce notation and

modelling, and then present an inference procedure and its implementation with the TB

data in Chapter 3. Chapter 4 provides final remarks on the analyses and future studies.

All numerical analyses in this project were conducted using R 3.0.1.



Chapter 2

Preliminary analysis of the TB

data

2.1 Description of the TB data

Information on 17 variables was collected by the TB study. A complete list of these

covariates is given in [11]. There are five variables related only to the source cases: the

smear test result of the source, ID of the TB cluster of the source, size of the TB cluster

of the source, genotype cluster-status of the source (source type) and death date of the

source. The other 12 variables are related to the contacts: the ppd convert, gender, age

at the diagnosis of the source case, HIV status, drug abuse, indicator of contact death,

country of birth, type and number of contacts to the source case, ppd status at baseline

of the contact, bcg history and treatment of Latent TB infection.

Some of the variable entries are missing, lightly or heavily. We summarize the missing

information in Table 2.1

covariate drug abuse HIV status bcg history ppd convert ppd status
No. of missing 7746 7745 3439 741 741
percentage 98% 98% 43% 9% 9%
covariate age type gender country of birth
No. of missing 63 56 40 18
percentage 0.8% 0.7% 0.5% 0.2%

Table 2.1: Summary of missing data

3



CHAPTER 2. PRELIMINARY ANALYSIS OF THE TB DATA 4

For illustrative purposes, we conduct analyses with a shorter list of covariates, which

are the source type, the smear test result of the source, gender of the contact, age of the

contact at the diagnosis of the source case and type of the contacts. Table 2.1 shows

that the missing percentages of the variables are relatively small. Thus we assume that

the covariate data are missing completely at random in the analyses.

There are 7770 TB contacts with complete covariate information in the study, asso-

ciated with 559 source cases. The contacts to the same source case are considered to be

in one cluster. Thus there are 559 clusters with 72 di↵erent cluster sizes, and 43 of the

clusters have contacts whose times to TB development are observed. There are at most

5 contacts who have developed active TB in each cluster, i.e. for whom the times to TB

development are not censored.

No. of observed event times 1 2 3 4 5 Total
No. of clusters 33 4 3 2 1 43

Table 2.2: Cluster sizes

The detailed number of contacts for each cluster is shown in Appendix A, Table B.1.

Table 2.3 presents the categorical covariates we use.

covariate category code total observed event(percentage)
source type negative 0 6685 40(0.6%)

positive 1 1085 23(2%)
contact smear test negative 0 674 8(1%)

indeterminate 1 1870 12(0.6%)
positive 2 5226 43(0.8%)

contact gender female 0 4273 29(0.7%)
male 1 3497 34(1%)

contact level casual 0 4004 11(0.3%)
non-household 1 2376 15(0.6%)
household 2 1390 37(2.7%)

Table 2.3: Categorical covariates
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2.2 Preliminary analyses

We first conduct a generalized linear regression analysis of the counts of active TB

with the covariates related to the source case. The analysis units are TB patients

(sources), the response variable is the number of TB contacts developing TB associated

with a source out of all associated contacts of the source. The independent variables

are covariates source type and smear test result associated with sources. Source type

has two levels 0 (negative) and 1 (positive). Smear test result has three levels, so we set

two dummy variables smear1 and smear2 where smear1=1, smear2=0 means that the

test result is indeterminate; smear1=0, smear2=1 means that the test result is positive;

smear1=smear2=0 means that the result is negative. The analysis is conducted using

the R function glm and the results are shown in Table 2.4

parameter estimate std.err z-value p-value odds ratio
(intercept) -4.63 0.36 -12.77 <0.0001 0.01
source type 1.36 0.27 5.10 <0.0001 3.91
smear1 -0.89 0.47 -1.92 0.05 0.41
smear2 -0.46 0.39 -1.19 0.23 0.63

Table 2.4: Summary of results under Binomial logistic regression

The small p-value (< 0.0001) of source type, indicates a significant association of the

TB development. Indeterminate smear result (p-value=0.05) seems to be negatively as-

sociated with the development of TB disease, while positive smear result (p-value=0.23)

seems not. We can see that, adjusted for smear level, contacts whose source cases have

positive source type are about four times more likely to develop an active TB disease

than the contacts whose source cases have negative source type. Given source type, con-

tacts whose source cases have a positive (or indeterminate) smear test result are about

1.60 times (or 2.40 times) less likely to develop TB than the contacts whose source cases

have negative smear test results. We conduct the wald test for smear test result and the

p-value turns out to be 0.15, which indicates that the smear test result may not have a

significant e↵ect on the TB development of the TB contacts in the presence of the type

of source.

We then explore the relationship of size of cluster with source type and smear test

result of the source case. Figure 2.1 shows the histograms and densities (the density
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estimates were produced using the R function density) of the size of cluster and logarithm

of the size of cluster.

(a)

Cluster Size

D
en

si
ty

0 50 100 150 200 250

0.
00

0.
02

0.
04

0.
06

(b)

Log of Cluster Size

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

Figure 2.1: (a) Histograms of cluster seize and (b)Histogram of log of cluster size

We start with a Poisson regression analysis of the counts of the clusters, of which the

outcome is presented in Table 2.5. We can see that all the risk factors appear significant.

To accommodate a potential over-dispersion in the counts, we then fit a quasi-Poisson

regression model for the count data, and the results are also shown in Table 2.5. The

dispersion parameter seems quite large (61.55 with s.e.=3.71), indicating a large over-

dispersion, and the Poisson model is not an appropriate choice. In the quasi-Poisson

regression model, the coe�cient estimates are all the same as the ones under the Poisson

model, but the standard errors are likely more appropriate. According to the estimated

coe�cients, when smear result is positive (or indeterminate), the mean cluster size is 3.80

(or 1.30) times of the mean cluster size with negative smear result. The mean cluster size

with positive source type is 0.77 times the mean cluster size with negative source type.

Source type(p-value=0.32) and indeterminate smear test result (p-value=0.46) seem to

lack significance in a quasi-Poisson model.

The estimated standard error of the dispersion parameter is calculated by bse =q
2n
df2 b', where n is the sample size, df is the residual degree of freedom and b' is the

estimated dispersion parameter, and assuming that the dispersion is not large. Therefore

the result may not be very accurate in our case since the dispersion is relatively large.
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(1) Poisson model parameter estimate std.err z-value p-value
(intercept) 1.87 0.04 48.49 <0.0001
source type -0.26 0.03 -7.88 <0.0001
smear1 0.26 0.04 5.75 <0.0001
smear2 1.33 0.04 32.37 <0.0001

(2) quasi-Poisson model parameter estimate std.err t-value p-value
full model (intercept) 1.87 0.30 6.18 <0.0001

source type -0.26 0.26 -1.00 0.32
smear1 0.26 0.35 0.73 0.46
smear2 1.33 0.32 4.13 <0.0001
dispersion 61.55 3.70

reduced model(1) (intercept) 2.65 0.11 25.12 <0.0001
source type -0.13 0.28 -0.45 0.65
dispersion 74.44 4.46

reduced model(2) (intercept) 1.85 0.30 6.08 <0.0001
smear1 0.25 0.35 0.69 0.49
smear2 1.30 0.32 4.04 <0.0001
dispersion 62.36 3.74

Table 2.5: Summary of results under Poisson and quasi-Poisson models

We also conduct an ordinary linear regression analysis with the logarithm of the size

of cluster. Consistent results are obtained regarding the significance of the risk factors;

see Table 2.6 for the analysis outcome.

parameter estimate std.err t-value p-value
(intercept) 1.22 0.11 10.67 <0.0001
source type -0.06 0.14 -0.43 0.67
smear1 0.09 0.14 0.68 0.50
smear2 0.95 0.14 6.91 <0.0001

Table 2.6: Summary of results of the linear regression analysis of the logarithm of the
size of cluster



Chapter 3

Statistical inference based on the

TB data

3.1 Notation and modelling

Suppose that event time T conditional on the covariates Z has the conditional hazard

function h(t|z) = h0(t)e
�0+�z, where � = (�1, ...,�m) and m is the total number of

covariates. We specify h0(t) = h0(t;↵) belonging to the Weibull family, say, h0(t;↵) =

↵t↵�1, ↵ > 0. The cumulative conditional hazard function is

H(t|z) =
Z t

0
h0(s;↵)e

�0+�zds =

Z t

0
h0(s;↵)ds

�
e�0+�z = t↵e�0+�z, (3.1)

and the survivor function is S(t|z) = e�H(t|z).

Let C(V1, ..., Vk; �), k 2 Z+ be a copula function with the dependence parameter �.

The Archimedean copula with the Clayton generator  (u) = (1+u)�
1
� and the generator

inverse  �1(u) = u�� � 1 is then

C(V1, ..., Vk; �) = (1� k +
kX

j=1

Vj
��)�

1
� . (3.2)

Consider the joint conditional survival function of event times T1, ..., Tk as

C(S(t1|z1), ..., S(tk|zk); �) = (1� k +
kX

j=1

e�t
↵
j e

�0+�zj
)�

1
� , (3.3)

denoted by G(t1, ..., tk|z1, ..., zk).

8
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Let V1 = S(t1|z1), ..., Vk = S(tk|zk) and p 2 Z, p 2 [0, k], then

@pG(t1, ..., tk|z1, ..., zk)
@t1 · · · @tp

=
@pC(V1, ..., Vk; �)

@V1 · · · @Vp

@V1

@t1
· · · @Vp

@tp
. (3.4)

We have

@Vj

@tj
= �↵e�0+�zj t↵�1

j e�t↵j e
�0+�zj

= �h(tj |zj)S(tj |zj), (3.5)

and

pY

j=1

(
@Vj

@tj
) =

pY

j=1

h
�↵t↵�1

j e�0+�zje�t↵j e
�0+�zj

i

= (�1)p
pY

j=1

h
↵t↵�1

j e�0+�zje�t↵j e
�0+�zj

i
.

(3.6)

Also, we have

@pC(V1, ..., Vk; �)

@Vp · · · @V1
= (1� k +

kX

j=1

e�t
↵
j e

�0+�zj
)�

1
��p

pY

j=1

{[1 + (j � 1)�] (e�t↵j e
�0+�zj

)���1}.

(3.7)

Hence

@pG(t1, ..., tk|z1, ..., zk)
@t1 · · · @tk

=
@pC(V1, ..., Vk; �)

@V1 · · · @Vp

pY

j=1

@Vj

@tj

= (�1)p(1� k +
kX

j=1

e�t
↵
j e

�0+�zj
)�

1
��p

pY

j=1

{[1 + (j � 1)�]↵t↵�1
j e�0+�zj (e�t

↵
j e

�0+�zj
)}.

(3.8)

Equation (3.8) will be used to calculate the likelihood function later in Section 3.2.
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3.2 Likelihood function

Let i = 1, ..., n be the indices of n independent clusters, and j = 1, ...,Ki be the indices

of the subjects in the ith cluster.

Assume Ki is a random variable related only to the ith cluster. We model Ki ⇠
Poisson (e✓0+✓0wi), where ✓ is the regression parameter vector and W i denotes the

covariate vector related to the ith cluster.

Further, let Tij be the event time of the jth subject of the ith cluster, and Cij be the

censoring time. Let Zij = (W i, Xij ,Ki), where Xij denotes the covariate components

related to the jth subject in the ith cluster. We assume that Tij is independent of the

censoring time Cij conditional on the covariates Zij . We consider that the event times

in one cluster are dependent on each other and assume that clusters are independent of

each other.

The available data from the ith cluster are

[U i, �i, Zi] , i = 1, 2, · · · , n (3.9)

where U i = (Uij , j = 1, ...,Ki), �i = (�ij , j = 1, ...,Ki), Zi = (Zij , j = 1, ...,Ki),

Uij = Tij ^ Cij =
�Tij , if Tij6Cij

Cij , if Tij>Cij
and �ij =

�1, if Tij6Cij

0, if Tij>Cij
. (3.10)

Using the generic notation for densities or mass probabilities, the information con-

tributed by the ith cluster to the likelihood function with the available data is

⇥
U i, �i|W i, Xij ,Ki

⇤
[Ki|W i]

⇥
W i, Xij

⇤
/

⇥
U i, �i|W i, Xij ,Ki

⇤
[Ki|W i] . (3.11)

Without loss of generality, suppose the event times of the first pi subjects of the ith

cluster are not censored. Then

P (Ui1 = ui1, ..., UiKi = uiKi , �i1 = ... = �ipi = 1, �ipi+1 = ... = �iKi = 0|Zi)

/ (�1)pi
@piS(ui1, ..., uiKi |Zi)

@ui1...@uipi

= (�1)pi
@piC(S(ui1|Zi1), ..., S(uiKi |ZiKi); �)

@ui1...@uipi

= (�1)pi
@piG(ui1, ..., uiKi |zi)

@ui1 · · · @uipi
, if pi > 0.

(3.12)
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When pi = 0, it means that no partial derivatives are calculated.

Let U = {Ui, i = 1, · · · , n}, � = {�i, i = 1, · · · , n}, Z = {Zi, i = 1, · · · , n}, K =

{Ki, i = 1, · · · , n} and W = {Wi, i = 1, · · · , n}. The likelihood function is

L(↵,�0,�, �, ✓0, ✓;U, �, Z) = L(↵,�0,�, �;U, �|Z)⇥ L(✓0, ✓;K|W ), (3.13)

where

L(↵,�0,�, �;U, �|Z) /
nY

i=1

@piG(ui1, ..., uiKi |zi)
@ui1 · · · @uipi

/
nY

i=1

{(1�Ki +
KiX

j=1

e�u
↵
ije

�0+�0zij
)�

1
��pi

⇥
piY

j=1

[1 + (j � 1)�]↵u↵�1
ij e�0+�0zij (e�u

↵
ije

�0+�0zij
)},

(3.14)

and

L(✓0, ✓;K|W ) /
nY

i=1

eKi(✓0+✓0wi) · e�e✓0+✓0wi . (3.15)

Then the log-likelihood function of ↵,�0,� and � is

`(↵,�0,�, �) =
nX

i=1

{�(
1

�
+ pi) log(1�Ki +

KiX

j=1

e�u
↵
ije

�0+�0zij
)+

piX

j=1

h
log(1 + (j � 1)�) + log↵+ (↵� 1) log uij + �0 + �0zij + �u↵ije

�0+�0zij
i
},

(3.16)

and the log-likelihood function of ✓0 and ✓ is

`(✓0, ✓) =
nX

i=1

h
Ki(✓0 + ✓0wi)� e✓0+✓0wi

i
. (3.17)
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Considering the variables we chose for the analysis, � = (�1,�2,�3,�4,�5,�6,�7,�8)

are the coe�cients of cluster size, source type, smear1, smear2, gender, age, type1 and

type2. Type1 and type2 are dummy variables where type1=0, type2=0 means that the

contact type is casual; Considering the non-casual levels, type1=1,type2=0 means non-

household; type1=0,type2=1 means household. And ✓ = (✓1, ✓2, ✓3)0 are the coe�cients

of source type, smear1 and smear2 in the Poisson regression model.

We estimate the parameters of the model by the maximum likelihood approach

(MLE) using the R function optim. Results are shown in Section 3.3.
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3.3 Analysis results

For the parameters ✓0, ✓1, ✓2 and ✓3, maximum likelihood estimation results are shown in

Table 3.1. The Wald tests are conducted based on the sandwich standard errors. Results

are in agreement with the ones obtained by the glm(quasi-Poisson fitting) function in R.

parameter estimate std.error sandw.std.error p-value
✓0 1.87 0.01 0.10 <0.0001
✓1 -0.26 0.03 0.21 0.21
✓2 0.26 0.02 0.18 0.14
✓3 1.33 0.01 0.12 <0.0001

Table 3.1: Summary of results of estimation of ✓0, ✓1, ✓2 and ✓3

We consider the 6 cases of the model specification in Table 3.2 (⇤ denotes the pa-

rameters to be estimated). When we set � = 0, the event times within each cluster are

assumed to be independent. When we set ↵ = 1, the hazard rate does not depend on the

event times. When � = 0, TB development is not related to the covariates. We can then

do model comparisons among these nested models. The estimation results are shown in

Table 3.3 and Table 3.4. The p-values are calculated based on sandwich standard errors.

case � ↵ �0 �

A1 0 ⇤ ⇤ 0
B1 ⇤ ⇤ ⇤ 0
A2 0 1 ⇤ ⇤
B2 ⇤ 1 ⇤ ⇤
A3 0 ⇤ ⇤ ⇤
B3 ⇤ ⇤ ⇤ ⇤

Table 3.2: 6 cases of the model specification

A1, A2 and A3 are cases in which we assume the event times are independent within

each cluster. B1, B2 and B3 are cases in which the event times in each cluster are

correlated.

From Table 3.3, we can see that excluding the risk factors, the times to TB develop-

ment show a significant positive relationship with the estimated dependence parameter

�=6.94(sandwich std.error=2.58). Plus ↵=0.28(sandwich std.error=0.03) in case A1 and
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↵=0.29(sandwich std.error=0.03) in case B1 indicate that the estimated hazard rate de-

creases while the event time increases. In addition Figure C.1 (Appendix 3) reveals that

the estimated hazard rates of the clustered case are slightly higher than the ones of the

independent case.

parameter estimate std.err sandw.std.err p-value
A1 case
log-likelihood -408.27
� ⌘ 0
↵⇤ 0.28 0.04 0.03 <0.0001
�0 -5.36 0.14 0.19 <0.0001
B1 case
log-likelihood -374.77
� 6.94 2.15 2.58 0.007
↵⇤ 0.29 0.04 0.03 <0.0001
�0 -4.87 0.21 0.23 <0.0001
⇤ The null hypothesis of the tests associated with ↵ is H0: ↵ = 1

Table 3.3: Summary of results of A1 and B1

The analysis results of cases A2, B2, A3 and B3 are presented in Table 3.4. The

outcomes of all the four cases are generally in agreement with respect to e↵ects of the

risk factors except the cluster size. They show that the source type, age at contact and

level of contact are statistically significant risk factors, however, the smear test result and

gender are not. The analysis suggests that a positive source type may result in a higher

risk of TB development, and that younger contacts are at a higher risk of developing

TB than older ones. In addition, we can see that a higher contact level foretells a higher

risk of developing TB. Considering the cluster size, in cases A2 and A3 where the event

times within each cluster are assumed to be independent, this variable has a relatively

significant e↵ect on the TB development. The contacts in one cluster with a smaller

cluster size have a higher risk of developing TB. In cases B2 and B3, where the event

times within each cluster are assumed to be correlated, this variable has less significance.

The estimates of �,↵,�0 are similar to the ones in cases A1 and A2, which indicates that

the event times within each cluster still have a strong positive relationship with each

other and the risk of developing TB decreases while the event time increases.
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Table 3.4: Summary of results of A2, B2, A3 and B3
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Since the parametric survival model we use is a special case of the Cox proportional

hazards model, we estimate the coe�cients of the covariates using the Cox proportional

hazards model with the assumption that the event times are independent of each other.

The analysis is conducted using the R package survival. Table 3.5 presents the results of

the estimation. The results are similar to the ones of A3 except that the contact types

show more significant e↵ects on the TB development in the Cox fit. Comparing the Cox

fit and A3, it shows that the parametric survival model we use is appropriate.

parameter estimate std.err sandw.std.err p-value
�1 -1.46 0.72 0.70 0.04
�2 1.52 0.27 0.25 <0.0001
�3 -0.55 0.46 0.44 0.21
�4 0.43 0.40 0.39 0.27
�5 0.17 0.26 0.26 0.51
�6 -2.89 0.82 0.89 0.001
�7 0.74 0.40 0.41 0.07
�8 2.03 0.39 0.44 <0.0001

Table 3.5: Summary of results of the Cox fit
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To present the analysis graphically, we set age and cluster size equal to the averages,

then we only need to consider combinations of the other variables. There are in total 36

combinations. We split the 36 cases into two groups according to the two source types.

When the status is positive, we have 18 combinations of the other variables; when

the status is negative, we also have the same 18 combinations of the other variables.

The combinations are shown in Table 3.6. The plots of the hazard functions of each

combination for cases A2, A3, B2 and B3 are shown in Appendix C.

combination type1 type2 smear1 smear2 gender
1 1 0 1 0 1
2 1 0 0 1 1
3 1 0 0 0 1
4 1 0 1 0 0
5 1 0 0 1 0
6 1 0 0 0 0
7 0 1 1 0 1
8 0 1 0 1 1
9 0 1 0 0 1
10 0 1 1 0 0
11 0 1 0 1 0
12 0 1 0 0 0
13 0 0 1 0 1
14 0 0 0 1 1
15 0 0 0 0 1
16 0 0 1 0 0
17 0 0 0 1 0
18 0 0 0 0 0

Table 3.6: 18 combinations of the variables
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Figure C.2, Figure C.3 and Figure C.4 show that for both independent and clustered

event times, a positive source type in a higher hazard rate, however, gender does not have

a significant e↵ect on the hazard rates. The first 6 combinations are the ones with non-

household contact type, the middle 6 combinations are the ones with household contact

type and the last 6 combinations are the ones with casual contact type. We can see

clearly that a higher contact level indicates a higher risk of developing TB. These are in

agreement with the previous analysis results. In Figure C.5, Figure C.8 and Figure C.9

show quite similar results as Figure C.2. In addition, Figure C.10 and Figure C.11 show

that the marginal survival functions of Cox fit and A3 are quite similar, which indicates

again that the parametric survival model we use is appropriate.



Chapter 4

Discussion

This project considers clustered event times with right-censoring and random cluster

size. We assume that the cluster size follows a Poisson model. The Clayton copula

model is adapted to analyze the clustered event times conditional on the cluster size.

A parametric survival model is used for the marginal distribution of the event times.

The modelling provides an alternative to address the concern about the independent

assumption on the event times in the analysis of the same TB data by Cook, Hu and

Swartz (2011). The approach potentially has a broad application.

There are a few issues to investigate further. We conducted the analysis assuming

that all the covariates are missing completely at random. However, for example, the HIV

status in the original data set is heavily missing which is likely not missing at random

(MNAR). We may adapt the approach of Cook, Hu and Swartz (2011) to address the

MNAR and include the HIV status as one of the potential risk factors. Also, we consider

a parametric survival model. It is worth extending the approach to situations with semi-

parametric models, such as the Cox proportional hazards model.

Some investigators deal with correlated event times by a frailty model, assuming the

times depend with each other through an unobservable random variable. It will be of

interest to compare the TB data analysis by our approach with this alternative.

19
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Appendix A

Partial derivatives of the

log-likelihood function

We have each partial derivative of the log-likelihood function like below:
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Suppose � = (�1,�2,�3), where �1,�2,�3 are the coe�cients of wi, zij and Ki.

22



APPENDIX A. PARTIAL DERIVATIVES OF THE LOG-LIKELIHOOD FUNCTION23

Then
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Suppose ✓ = (✓1, ✓2), where ✓1, ✓2 are the coe�cients of wi = (wi1, w2i).
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When � = 0, we have S(uij |zij) = e�u↵
ije

�0
. There is no change in the likelihood function

of ✓0, ✓, but we have the likelihood function of ↵,�0, � like below:
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Then the log-likelihood function of ↵,�0, � is
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Then the estimation equations of ↵, �,�0 are
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When ↵ = 1, S(uij |zij) = e�uije
�0+�zij

, then there is no change in the likelihood function

of ✓0, ✓, but we have the likelihood function of �,�0,� like below:
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Then the log-likelihood function of �,�0,� is
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Thus the estimation equations are
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Suppose � = (�1,�2,�3), where �1,�2,�3 are the coe�cients of wi, zij and Ki.

Then
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Appendix B

Cluster sizes

Cluster size 1 2 3 4 5 6 7 8 9 10 11 12
No. of Clusters 83 91 75 52 34 33 20 13 12 10 11 9

Cluster size 13 14 15 16 17 18 19 20 21 22 23 24
No. of Clusters 7 7 3 6 3 1 2 1 2 3 2 7
Cluster size 25 26 27 28 29 30 31 32 33 34 35 37

No. of Clusters 4 4 1 3 2 5 2 1 5 3 1 2

Cluster size 38 39 41 42 46 49 50 51 54 55 56 58
No. of Clusters 1 2 1 1 2 1 1 2 1 1 1 1

Cluster size 62 65 74 85 89 99 100 115 116 121 132 136
No. of Clusters 1 1 1 1 1 1 1 1 1 1 1 1

Cluster size 137 144 163 180 182 193 200 201 212 220 241 269
No. of Clusters 1 1 1 1 1 1 1 1 1 1 1 1

Table B.1: Number of clusters for each cluster size
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Appendix C

Plots of analysis
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Figure C.1: Marginal hazard functions of A1 and B1 with 95 % CIs
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Figure C.2: Marginal hazard functions with 95 % CIs of A2 and B2 with source type
positive and negative
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Figure C.3: Marginal hazard functions with 95 % CIs of A2 and B2 with source type
positive and three di↵erent contact types
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Figure C.4: Marginal hazard functions with 95 % CIs of A2 and B2 with source type
negative and three di↵erent contact types
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Figure C.5: Marginal hazard functions of A3 and B3 with source type positive and
negative
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Figure C.6: Marginal hazard functions with 95% CIs of A3(8,16) and B3(8,16) with
source type positive
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Figure C.7: Marginal hazard functions with 95% CIs of A3(8,16) and B3(8,16) with
source type negative
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Figure C.8: Marginal hazard functions of A3 and B3 with source type positive and
di↵erent gender
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Figure C.9: Marginal hazard functions of A3 and B3 with source type negative and
di↵erent gender
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Figure C.10: Marginal survival functions of the Cox proportional hazards model fit, A3
and B3 with source type positive and di↵erent gender
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Figure C.11: Marginal survival functions of the Cox proportional hazards model fit, A3
and B3 with source type negative and di↵erent gender


