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Abstract

This thesis is divided into two parts. The subject of the first part is the structure of

centralizers in associative algebras. We prove that over an algebraically closed field of

characteristic zero, the centralizer of a nonconstant element in the second Weyl algebra

has Gelfand-Kirillov (GK for short) dimension one, two or three. Those centralizers of GK

dimension one or two are commutative and those of GK dimension three contain a finitely

generated subalgebra which does not satisfy a polynomial identity. We show that for each

n ∈ {1, 2, 3} there exists a centralizer of GK dimension n. We also give explicit forms of

centralizers for some elements of the second Weyl algebra and a connection between the

problem of finite generation of centralizers in the second Weyl algebra and Dixmier’s Fourth

Problem.

Some algebras such as the first Weyl algebra, quantum planes and finitely generated graded

algebras of GK dimension two can be viewed as subalgebras of some skew Laurent polynomial

algebra over a field. We prove that if K is a field, σ ∈ Aut(K) and the fixed field of σ

is algebraically closed, then the centralizer of a nonconstant element of a subalgebra of

K[x, x−1;σ] is commutative and a free module of finite rank over some polynomial algebra

in one variable.

In the last chapter, which is the second part of this thesis, we first prove a new version of

Shirshov’s theorem. We then use this theorem to prove an analogue of Kaplansky’s theorem,

i.e. if D is a central division k-algebra which is left algebraic of bounded degree d over some

subfield, which is not necessarily central, then [D : k] ≤ d2.
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Introduction

This thesis is divided into two parts. The subject of the first part is the structure of

centralizers in associative algebras. In the second part, which is chapter 4, division algebras

that are left algebraic over a subfield are studied.

Centralizers in Associative Algebras

Except for Chapter 1 which gives the background needed throughout the thesis, every chap-

ter of this thesis begins with an introductory section. For a ring R and an element a ∈ R,

let C(a;R) denote the centralizer of a in R.

Chapter 2 is divided into two parts. The first part consists of sections 2 to 5. This part

reviews some of well-known results on centralizers in associative algebras. In the second

part of this chapter, which is section 6, we give our results on centralizers in semiprime PI-

rings. Let C be a commutative ring. A C-algebra A is said to satisfy a polynomial identity

(PI for short) if there exists an integer n and a monic polynomial f ∈ C〈x1, . . . , xn〉 such

that f(r1, r2, · · · , rn) = 0 for all r1, . . . , rn ∈ R. If every finitely generated subalgebra of an

algebra is PI, then the algebra is called locally PI.

In section 2 of chapter 2, centralizers in the first Weyl algebra are studied. The first

notable appearance of centralizers is probably in Schur’s 1905 paper [57]. He considered

the C-algebra R consisting of ordinary differential operators over complex-valued functions

which are infinitely differentiable. He proved that if P is an element of degree at least one

in R, then C(P ;R) is a commutative C-algebra.

Another result regarding the centralizer of an ordinary differential operator is due to

Burchnall and Chaundy [20]. They proved that two ordinary differential operators P and

Q of coprime degrees m and n commute if and only if there exists a polynomial f ∈ C[u, v]

of the form f = un − vm + · · · such that f(P,Q) = 0.

1
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Schur’s result was rediscovered and generalized by Flanders [27] and Amitsur [1] a few

decades later. Let R be a field of characteristic zero and suppose that there exists a linear

map δ : R −→ R such that δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R. This map is called a

derivation of R. Now let k = {r ∈ R : δ(r) = 0}. Consider the ring S := R[y; δ] of

differential polynomials f =
∑n

i=0 riy
i, where multiplication is defined by yr = ry + δ(r)

for all r ∈ R. Amitsur proved that if n ≥ 1, then C(f ;S) is a commutative k-algebra and

also a free module of finite rank over k[f ]. In fact, Amitsur’s proof of this result works for a

more general setting. Suppose that R is a commutative domain of characteristic zero. We

extend δ to Q(R), the quotient field of R. If k := {q ∈ Q(R) : δ(q) = 0} is a subfield

of R, then centralizers are again commutative and free modules of finite rank over some

polynomial ring in one variable. We give a proof of this result in this section. If we choose

R = k[x], then S ∼= A1(k), the first Weyl algebra over k. Now let k := C and R := C(x). Let

E := EndC(R) and let L ∈ E be the left multiplication by x. Let A be the C-subalgebra of

E generated by L and d/dx. Then R[y; d/dx] ∼= A and we recover Schur’s result.

In section 3 of chapter 2, we look at centralizers in the algebras of formal series and

polynomials over a field. Let k be a field and let X be a set of noncommuting variables,

which may or may not be finite. We denote by k〈〈X〉〉 the k-algebra of formal series. Cohn

proved that if f ∈ k〈〈X〉〉 is not a constant, then C(f ; k〈〈X〉〉) = k[[g]], for some formal

series g. Here k[[g]] is the ring of formal power series in g. This is known as Cohn’s centralizer

theorem and we give a proof of this result in this section. By Cohn’s centralizer theorem, the

centralizer of every nonconstant element in k〈〈X〉〉 is commutative. Thus, since k〈X〉 is a k-

subalgebra of k〈〈X〉〉, the centralizer of a nonconstant element of k〈X〉 is also commutative.

Bergman proved that if f ∈ k〈X〉 is not constant, then C(f ; k〈X〉) is integrally closed. He

used this result to prove that C(f ; k〈X〉) = k[g] for some g ∈ k〈X〉. This is called Bergman’s

centralizer theorem. We do not prove this theorem but we give a nice application of it.

In section 4 of chapter 2, we take a different approach to study centralizers. We use the

GK dimension theory to obtain some information about centralizers. The GK dimension

of an algebra over a field was first introduced by Gelfand and Kirillov in 1966 [29]. The

GK dimension measures the rate of the growth of an algebra in terms of any generating

set of the algebra. Let k be a field and let A be a finitely generated k-algebra. Let V

be a generating subspace of A which contains k. The GK dimension of A is defined by

GKdim(A) := lim sup
n→∞

logn(dimV n). The definition does not depend on V .

The results in this section are due to Bell and Small. The first result that we prove is this:
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if A is a finitely generated domain of GK dimension two over some algebraically closed field

k and if A is not PI and a ∈ A \ k, then C(a;A) is a commutative domain of GK dimension

one. We also prove that if a ∈ A is not algebraic over the center of the quotient division

algebra of A, then C(a;A) is PI. This result is a consequence of a lemma which is very useful

for studying centralizers in algebras of low GK dimension. The lemma states that if k is a

field and A is a finitely generated k-algebra which is a domain of finite GK dimension, then

GKdim(C(a;A)) ≤ GKdim(A) − 1 provided that a is not algebraic over the center of the

quotient division algebra of A.

In section 5 of chapter 2, we give Makar-Limanov’s result on centralizers in quantum

planes. Let q ∈ C. The quantum plane A := kq[x, y] is the C-algebra generated by x and y

subject to the relation yx = qxy. Using a pretty argument, Makar-Limanov proved that if

q is not a root of unity and a ∈ A \ C, then C(a;A) ⊆ C[b], for some b ∈ A. In particular,

C(a;A) is commutative.

Section 6 of chapter 2 presents our results on centralizers in semiprime PI-rings. Let k be

a field and let R be a finite dimensional central simple k-algebra. Let a ∈ R \ k. By a result

of Werner [65], the center of C(a;R) is k[a]. Now let R be any semiprime PI-ring. One of the

properties of the maximal left quotient ring Q := Qmax(R) of R is that the localization QM

at any central maximal ideal M of Q is a finite dimensional central simple algebra. Then

using Werner’s result and some other properties of Q, we find the center of the centralizer

of a noncentral element of R (Theorem 2.6.6). We also characterize semiprime PI-rings

in which the centralizer of every noncentral element is commutative. The characterization

is in terms of finite dimensional central division algebras in which the centralizer of every

noncentral element is commutative (Theorem 2.6.12).

In chapter 3, we give our results on centralizers in two algebras both of which contain

the first Weyl algebra as a subalgebra, i.e. the second Weyl algebra and the algebra of skew

Laurent polynomials.

If k is an algebraically closed field, then Amitsur’s result on centralizers in A1(k) becomes

a trivial result of two facts. The first one is that, by a result of Bell (Theorem 2.4.6),

centralizers must have GK dimension one. The second fact is that a domain of GK dimension

one over an algebraically closed field is both commutative and a free module of finite rank

over some polynomial algebra in one variable. Of course, these facts were not known to

Amitsur when he was writing his paper in the 1950s.

It is natural now to ask about centralizers in the second Weyl algebras. By the first fact
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that we just mentioned, the GK dimension of centralizers is at most 3. The second fact gives

the form of centralizers of GK dimension one. There is no algebra of GK dimension strictly

between one and two, by Bergman’s gap theorem. So we only need to study centralizers of

GK dimension between 2 and 3 and the following theorem is the result of our study.

Theorem 3.2.11. Let k be an algebraically closed field of characteristic zero. Let C denote

the centralizer of a nonscalar element a in A2(k), the second Weyl algebra over k. Then

GKdim(C) ∈ {1, 2, 3}. If GKdim(C) ∈ {1, 2}, then C is commutative and if GKdim(C) = 3,

then C is not locally PI. Furthermore, for each n ∈ {1, 2, 3} there exists an element of A2(k)

whose centralizer has GK dimension n.

In the second subsection of section 2 of chapter 3, we find explicit form of centralizers

of some elements of the second Weyl algebra (Theorem 3.2.12) and we use it to show that

it is not always the case that centralizers of GK dimension three contain a copy of the first

Weyl algebra. However, our counter-example contains a subalgebra of GK dimension two

which is isomorphic to some subalgebra of the first Weyl algebra. In the third subsection

of this section, we give a necessary condition for a centralizer in the second Weyl algebra to

contain a nontrivial simple subalgebra.

In section 3 of chapter 3, we consider the algebra of skew Laurent polynomials over fields

of characteristic zero. Some of important algebras such as the first Weyl algebra, quantum

planes and finitely generated graded algebras of GK dimension two can be embedded into

certain skew Laurent polynomial algebras over fields. The main result of this section is the

following.

Theorem 3.3.7. Let K be a field and let σ ∈ Aut(K). Let k be the fixed field of σ and

suppose that k is algebraically closed. Let A be a subalgebra of K[x, x−1;σ]. Let f ∈ A \ k
and let C denote the centralizer of f in A. If f ∈ K, then C = A ∩K. If f /∈ K, then C is

commutative and a free module of finite rank over k[u] for some u ∈ C.

A few problems are posed in section 4 of chapter 3 and a connection between the problem

of finite generation of centralizers in the second Weyl algebra and Dixmier’s Fourth Problem

is given.
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Left Algebraic Division Algebras of Bounded Degree

Chapter 4 is not directly related to centralizers and so we can look at this chapter as the

second part of this thesis. The subject of this chapter is division algebras that are (left)

algebraic over a subfield which may or may not be central. Bell and Rogalski [15] proved

that if D is a division algebra over an uncountable field of characteristic zero and if D is

not left or right algebraic over the centralizer of a nonzero element, then D contains a free

subalgebra on two generators. This may be considered as a link between centralizers and

the (left and right) algebraic property in division algebras.

Let C be a commutative ring. It is one of Jacobson’s results that a C-algebra which

is integral of bounded degree over C is PI. By Kaplansky’s theorem, a (left) primitive PI-

algebra is a finite dimensional central simple algebra. So a division algebra which is algebraic

of bounded degree over its center is a finite dimensional central division algebra. It is natural

now to ask whether or not we have the same result if a division algebra D is algebraic of

bounded degree over a subfield K which is not inside the center. But first, since K is not

central, we need to explain what we mean by algebraic.

We say that an element x ∈ D is left algebraic over K if xn+α1x
n−1+· · ·+αn−1x+αn = 0

for some integer n and αi ∈ K. If the coefficients are on the right-hand side of powers of

x, then we say that x is right algebraic over K. We prove the following result which is an

analogue of Kaplansky’s theorem. This is joint work with Bell and Drensky [17].

Theorem 4.1.2. Let d be a natural number, let D be a division ring with center Z(D)

and let K be any subfield of D. If D is left algebraic of bounded degree d over K, then

[D : Z(D)] ≤ d2.

The crucial step in the proof of the above theorem is to show that every finitely generated

subalgebra of D satisfies some standard polynomial identity Sn where n depends only on

the number of generators of the subalgebra. It turns out that in order to prove this, we

need to strengthen the well-known Shirshov’s theorem.

Let m, p and q be natural numbers and let M be a free monoid generated by m elements

x1, . . . , xm. For w ∈M , let |w| be the length of w. We say that w is q-decomposable if there

exist w1, . . . , wq ∈ M such that w = w1w2 · · ·wq and for all permutations σ ∈ Sym(q) with

σ 6= id we have w1w2 · · ·wq � wσ(1)wσ(2) · · ·wσ(q), where � is degree lexicographic order. If

in addition, we can choose w1, . . . , wq such that (q − 1)|wi| < |w| for all i ∈ {1, . . . , q}, then

we say that w is strongly q-decomposable. Shirshov [58] proved that there exists a positive
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integer N(m, p, q), depending on m, p, and q, such that every word on x1, . . . , xm of length

greater than N(m, p, q) has either a q-decomposable subword or has a nontrivial subword

of the form wp. We prove the following stronger result.

Theorem 4.2.4. Let m, p, and q be natural numbers and let M be a free monoid generated

by m elements x1, . . . , xm. Then there exists a positive integer N(m, p, q), depending on m,

p, and q, such that every word on x1, . . . , xm of length greater than N(m, p, q) has either a

strongly q-decomposable subword or has a nontrivial subword of the form tp.



Chapter 1

Preliminaries

This chapter provides the reader with necessary background to follow the thesis easily. All

rings throughout this thesis are associative with multiplicative identity. If R is a ring, the

center of R is Z(R) := {r ∈ R : rx = xr, for all x ∈ R}. We denote by Mn(R) the ring of

n×n matrices with entries in R. All R-modules, if not specified, are left R-modules. Let M

be an R-module and let X be a subset of M. We denote by r.annR(X) and l.annR(X) the

right and the left annihilator of X in R, respectively. So r.annR(X) := {r ∈ R : Xr = 0}
and l.annR(X) := {r ∈ R : rX = 0}.

1.1 The Jacobson Radical

We begin this section with a quick review of the definition of the Jacobson radical of a ring.

Definition 1.1.1. The Jacobson radical J(R) of a ring R is the intersection of the left

maximal ideals of R.

Before giving some of characterizations of J(R), let us recall some definitions.

Definition 1.1.2. An R-module M is called simple if M has no nonzero proper submodule.

A nonzero ring R is called simple if R has no nonzero proper ideal.

Definition 1.1.3. An ideal P of R is called left primitive if P = l.annR(M) for some simple

left R-module M. If the zero ideal is left primitive, then R is called a left primitive ring.

Right primitive ideals and rings are defined analogously.

The following proposition gives two characterizations of J(R).

7
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Proposition 1.1.4 ([39], Lemma 4.1). Let R be a ring and let U(R) be the set of invertible

elements of R.

(1) The Jacobson radical J(R) is the intersection of the left primitive ideals of R.

(2) We have J(R) = {x ∈ R : 1− rx ∈ U(R),∀r ∈ R}.

Definition 1.1.5. A ring R is called semiprimitive if J(R) = (0).

Let S = R[x] be the ring of polynomials in the central variable x. Amitsur [39, Theorem

5.10] proved that J(S) = (R∩ J(S))[x]. In fact, Amitsur’s result holds for polynomial rings

in any number of variables, finite or infinite. We will not need this theorem in this thesis

and so we will not prove it. What we prove is that the leading coefficient of every element

of J(S) is nilpotent.

Proposition 1.1.6. Let S = R[x] be the ring of polynomials in the central variable x with

coefficients in R. The leading coefficient of every element of J(S) is nilpotent. In particular,

R∩ J(S) is a nil ideal of R and so if R has no nonzero nil ideals, then S is semiprimitive.

Proof. Let f =
∑n

i=0 aix
i be a nonzero element of J(S). Then xf ∈ J(S) and thus, by

Proposition 1.1.4, there exists some unit g =
∑m

i=0 bix
i ∈ S such that (1− xf)g = 1. Thus

g = 1 + xfg and then an easy induction shows that for all positive integers k

g = xkfkg +
k−1∑
i=0

xif i. (1.1)

So, choosing k large enough, for every 0 ≤ i ≤ m the coefficient of x(n+1)k+i on the left

hand-side of (1.1) is zero. Thus aknbi = 0 for all i and hence akng = 0. Therefore akn = 0

because g is a unit of S.

Lemma 1.1.7 ([39], Theorem 4.12). If R is left artinian, then J(R) is nilpotent.

Theorem 1.1.8. (Amitsur, [39, Theorem 4.20]) Let k be a field and let A be a k-algebra.

If dimk A < |k|, as cardinal numbers, then J(A) is nil.

Proof. If k is finite, then dimk A < ∞ and so A is artinian. Thus J(A) is nilpotent, by

Lemma 1.1.7, and hence nil. Suppose now that k is infinite. Let a ∈ J(A). Then, by

Proposition 1.1.4, a− γ is invertible for all 0 6= γ ∈ k.
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Now consider the set S = {(a − γ)−1 : 0 6= γ ∈ k}. Since k is infinite, we have

|S| = |k| > dimk A. Thus the elements of S cannot be k-linearly independent. So there exist

an integer n ≥ 1 and nonzero elements βi, γi ∈ k such that

n∑
i=1

βi(a− γi)−1 = 0. (1.2)

Obviously all a − γi commute with each other and with all βi. Multiplying (1.2) through

by
∏n
i=1(a − γi) clears denominators and gives

∑n
i=1 βi

∏
j 6=i(a − γj) = 0 and so if we let

p(x) =
∑n

i=1 βi
∏
j 6=i(x−γj) ∈ k[x], then p(a) = 0. Also, p(x) is not identically zero because,

for example, p(γ1) 6= 0. So a is algebraic over k and thus

am + α1a
m−1 + · · ·+ αm = 0,

for some integer m ≥ 1 and αi ∈ k. We have αm = 0 because a is not invertible. If αi = 0

for all 1 ≤ i ≤ m, then am = 0 and we are done. Thus we may assume that there exists

1 ≤ ` < m such that α` 6= 0 and

am + α1a
m−1 + · · ·+ α`a

m−` = 0.

Let c = −α−1` (a`−1 + α1a
`−2 + · · ·+ α`−1). Then α`(1− ca)am−` = 0 and hence am−` = 0,

by Proposition 1.1.4.

Remark 1.1.9. If A is finitely generated and k is uncountable, then dimk A is countable,

because A is finitely generated, and thus dimk A < |k|. So, by the theorem, J(A) is nil.

1.2 Ore Localization

Throughout this section R is a ring and S is a multiplicatively closed subset of R such that

1 ∈ S and 0 /∈ S. We know from commutative algebra that if R is commutative, then we can

always localize R at S and find the quotient ring S−1R. An element q ∈ S−1R is in the form

s−1r, where s ∈ S and r ∈ R. This quotient ring contains R if S consists of elements which

are not zero-divisors in R. Also, every element of S is a unit in S−1R. Suppose now that

R is not commutative and we want to construct a left quotient ring S−1R with the same

properties as the commutative case. Let r ∈ R and s ∈ S. Then rs−1 would be an element

of S−1R and so rs−1 = s′−1r′ for some s′ ∈ S and r′ ∈ R. Thus s′r = r′s, i.e. Rs ∩ Sr 6= ∅.
So Rs∩Sr 6= ∅ for all r ∈ R, s ∈ S. This property is called the Ore condition and S is called
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a left Ore set. So we have shown that a necessary condition for a left quotient ring S−1R to

exist is that S is left Ore and we will prove later in this section that this is also a sufficient

condition in many important cases, e.g. when S is central.

1.2.1 Definitions and Basic Results

We begin with giving the definition of a left (resp. right) quotient ring with respect to a

multiplicatively closed subset. Then we investigate the existence and uniqueness and also

the common denominator property in a quotient ring.

Definition 1.2.1. A ring Q is called a left quotient ring of R (with respect to S) if there

exists a ring homomorphism f : R −→ Q such that the following conditions are satisfied.

(1) f(s) is a unit in Q for all s ∈ S.

(2) Every element of Q is in the form (f(s))−1f(r) for some r ∈ R and s ∈ S.

(3) ker f = {r ∈ R : sr = 0 for some s ∈ S}.

A right quotient ring of R is defined symmetrically.

We now show that if a left or right quotient ring exists, then up to isomorphism it is

unique. This is an immediate result of the following lemma.

Lemma 1.2.2. Suppose that g : R −→ R1 is a ring homomorphism and Q is a left or right

quotient ring of R with respect to S. If g(s) is a unit in R1 for every s ∈ S, then there exists

a unique homomorphism h : Q −→ R1 which extends g.

Proof. Assuming that f is the map in Definition 1.2.1 we define h by

h(f(s)−1f(r)) = (g(s))−1g(r)

for all r ∈ R and s ∈ S. We only prove that h is well-defined. Suppose that (f(s))−1f(r) =

(f(s′))−1f(r′), for some r, r′ ∈ R and s, s′ ∈ S. Then f(s′)(f(s))−1f(r) = f(r′). We also

have (f(t))−1f(r′′) = f(s′)(f(s))−1 for some t ∈ S and r′′ ∈ R. Hence f(r′′r) = f(tr′)

and f(r′′s) = f(ts′). Thus r′′r − tr′, ts′ − r′′s ∈ ker f and so ur′′r = utr′, vts′ = vr′′s, for

some u, v ∈ S. Therefore g(r′′)g(r) = g(t)g(r′) and g(t)g(s′) = g(r′′)g(s). It follows that

g(t)g(r′) = g(r′′)g(r) = g(t)g(s′)(g(s))−1g(r) and so (g(s))−1g(r) = (g(s′))−1g(r′) because

g(t) is a unit in R1.
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Theorem 1.2.3. If a left (resp. right) quotient ring R exists, then it is unique up to

isomorphism. If R has a left quotient ring Q and a right quotient ring Q′ with respect to S,

then Q ∼= Q′.

Proof. An easy result of the lemma.

Definition 1.2.4. The left (resp. right) quotient ring of R with respect to S, if it exists, is

also called the left (resp. right) localization of R at S and is denoted by S−1R (resp. RS−1).

The question now is that under what conditions the left (resp. right) quotient ring of R

exists. Our next goal is to find an answer for this question.

Definition 1.2.5. A multiplicatively closed subset S of R is called left Ore if it satisfies

the Ore condition, i.e. Rs ∩ Sr 6= ∅ for all r ∈ R and s ∈ S. Similarly, if sR ∩ rS 6= ∅ for all

r ∈ R, s ∈ S, then S is called right Ore. We call S Ore if S is both left and right Ore.

Definition 1.2.6. A left Ore set S is called a left denominator set if for every r ∈ R and

s ∈ S with rs = 0, there exists s′ ∈ S such that s′r = 0. Similarly, A right Ore set S is

called a right denominator set if for every r ∈ R and s ∈ S with sr = 0, there exists s′ ∈ S
such that rs′ = 0. An Ore set S is called a denominator set if S is both left and right

denominator.

Theorem 1.2.7 ([55], Proposition 3.1.3 and Theorem 3.1.4). The left (resp. right) quotient

ring of R with respect to S exists if and only if S is a left (resp. right) denominator set.

Proof. Suppose that the left quotient ring of R with respect to S exists and let Q = S−1R.

Let f be the homomorphism in Definition 1.2.1. Let r ∈ R and s ∈ S. Then, since

f(r)(f(s))−1 ∈ Q, there exist r′ ∈ R and s′ ∈ S such that f(r)(f(s))−1 = (f(s′))−1f(r′).

Thus f(s′r) = f(r′s) and hence s′r− r′s ∈ ker f. So s′′(s′r− r′s) = 0 for some s′′ ∈ S giving

us s′′s′r = s′′r′s ∈ Rs ∩ Sr. So S is left Ore. Also, if rs = 0 for some r ∈ R and s ∈ S, then

f(r)f(s) = f(rs) = 0 and hence f(r) = 0 because f(s) is a unit in Q. Thus r ∈ ker f and

hence s′r = 0 for some s′ ∈ S. This proves that S is a denominator set.

Conversely, assuming that S is a left denominator set, we construct the left quotient

ring of R by first defining a relation on S ×R. We say (s1, r1) ∼ (s2, r2) if and only if there

exist r′1, r
′
2 ∈ R such that r′1r1 = r′2r2 and r′1s1 = r′2s2 ∈ S. It turns out that the relation ∼

is an equivalence relation. The equivalence class of (s, r) ∈ S × R is then denoted by s−1r

and we let Q be the set of all s−1r.
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We are going to put a ring structure on Q. Let α = s−11 r1, β = s−12 r2 be two elements

of Q. By the left Ore condition, Rs1 ∩ Ss2 6= ∅ and thus there exist r ∈ R and s ∈ S such

that rs1 = ss2 = t ∈ S. Now define α + β = t−1(rr1 + sr2). Also, since Rs2 ∩ Sr1 6= ∅,
there exist some r′ ∈ R and s′ ∈ S such that r′s2 = s′r1. Let s′s1 = t′ ∈ S and define

αβ = t′−1r′r2. It is straightforward to show that the addition and the multiplication that

we have defined are well-defined and satisfy all the conditions needed to make Q a ring.

Let 1 = 1R. Then 1−10 = 0Q and 1−11 = 1Q. Finally define f : R −→ Q by f(r) = 1−1r.

We see that f is a ring homomorphism. Now r ∈ ker f if and only if (1, r) ∼ (1, 0) if

and only if there exist some r1, r2 ∈ R such that r1r = 0 and r1 = r2 = s ∈ S. Thus

ker f = {r ∈ R : sr = 0, for some s ∈ S}. Therefore Q = S−1R is the left quotient ring of

R with respect to S.

We also have the common denominator property in quotient rings as the next result

shows.

Proposition 1.2.8 ([55], Lemma 3.1.10). Every finite subset of S−1R can be written as

{s−1x1, · · · , s−1xn}.

Proof. We first show that if s1, · · · , sn ∈ S, then there exist r1, . . . , rn ∈ R such that

r1s1 = · · · = rnsn ∈ S. The proof is by induction on n. We choose r1 = 1 if n = 1.

Suppose that n > 1 and that the claim is true for n − 1. Choose r′1, . . . , r
′
n−1 so that

r′1s1 = · · · = r′n−1sn−1 = s ∈ S. Also there exist rn ∈ R and t ∈ S such that rnsn = ts,

since Rsn ∩ Ss 6= ∅. Let rj := tr′j for j = 1, . . . , n − 1. Then for all 1 ≤ j ≤ n − 1 we have

rjsj = tr′jsj = ts = rnsn and ts ∈ S.
Now, let {s−11 y1, . . . , s

−1
n yn} ⊂ S−1R. As we just proved, there exist r1, . . . , rn ∈ R such

that r1s1 = · · · = rnsn = s ∈ S. Let xj = rjyj , 1 ≤ j ≤ n. Then s−1j yj = s−1xj for all j.

1.2.2 Localization at Regular Submonoids

The left or right quotient ring of a ring is more useful if it contains the ring, i.e. ker f = (0)

where f is the map defined in Definition 1.2.1. This leads us to the following definition.

Definition 1.2.9. An element s ∈ R is called left regular if l.annR(s) = (0) and it is called

right regular if r.annR(s) = (0). If s is both left and right regular, then we say that s is

regular. A subset S of R is called a regular submonoid if it is multiplicatively closed, 1 ∈ S
and every element of S is regular.
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Clearly a regular submonoid is a left (resp. right) denominator set if and only if it is left

(resp. right) Ore. Thus if S is a regular submonoid, then S−1R exists if and only if S is left

(resp. right) Ore. In this case, the map f : R −→ S−1R (resp. f : R −→ RS−1) defined by

f(r) = 1−1r (resp. f(r) = r1−1) would be injective because if r ∈ ker f, then sr = 0 (resp.

rs = 0) for some s ∈ S and hence r = 0. That means R can be viewed as a subring of S−1R

(resp. RS−1). Note that if S is a regular submonoid of R contained in the center of R, then

S is Ore.

Definition 1.2.10. Let S be the set of all regular elements of R. If S is left Ore, then

Q(R) := S−1R is called the classical left quotient ring of R. Similarly, if S is right Ore, then

Q(R) := RS−1 is called the classical right quotient ring of R. If Q(R) is the left or right

classical quotient ring of R, then R is called an order in Q(R).

Note that localization at a regular submonoid S does not always give us a larger ring.

For example if R is left artinian, then S−1R = R. This is easy to see: for any s ∈ S the

chain Rs ⊇ Rs2 ⊇ · · · must terminate, i.e. there exists some integer n ≥ 1 such that

Rsn = Rsn+1. Then sn = rsn+1 for some r ∈ R and thus (1 − rs)sn = 0 which implies

rs = 1. That means Rs = R and hence Rs∩Sr′ = Sr′ 6= ∅ for all s ∈ S, r′ ∈ R. So S is left

Ore and S−1R = R.

The following easy proposition gives a relationship between the ideals of R and Q(R).

This result will be used in the proof of Goldie’s theorem in section 3 of this chapter. We

assume that S, the regular submonoid of R, is left Ore and so Q(R) = S−1R exists.

Proposition 1.2.11. Let I, J be left ideals of Q(R). Then I = Q(R)(I∩R) and I∩R = J∩R
if and only if I = J.

Proof. Straightforward.

An important case of localization at regular submonoids is when R is a domain.

Definition 1.2.12. Let R be a domain and let S = R\{0}. If S is left Ore, then R is called

a left Ore domain. Similarly, if S is right Ore, then R is called a right Ore domain. If S is

Ore, then R is called an Ore domain.

Clearly a domain R is a left (resp. right) Ore domain if and only if Rr1 ∩ Rr2 6= (0)

(resp. r1R ∩ r2R 6= (0)) for all nonzero elements r1, r2 ∈ R. It is also obvious that if R is a

left (resp. right) Ore domain, then Q(R) is a division ring. Every division ring is an Ore

domain. The following result gives an important class of Ore domains.
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Proposition 1.2.13 ([48], Theorem 2.1.15). A left (resp. right) noetherian domain R is a

left (resp. right) Ore domain.

Proof. Let r1, r2 ∈ R be nonzero. We need to show that Rr1 ∩ Rr2 6= (0). So suppose,

to the contrary, that Rr1 ∩ Rr2 = (0). We show that the sum
∑∞

n=0Rr1r
n
2 is direct and

thus R cannot be noetherian. Suppose that the sum is not direct and choose n to be the

smallest positive integer for which there exist aj ∈ R, j = 0, · · · , n, not all zero, such that∑n
j=0 ajr1r

j
2 = 0. Then n ≥ 1 because R is a domain and thus

−a0r1 =

n−1∑
j=0

aj+1r1r
j
2

 r2 ∈ Rr1 ∩Rr2 = (0).

Hence a0 = 0 and
∑n−1

j=0 aj+1r1r
j
2 = 0, contradicting the minimality of n.

Let X be a set of noncommuting variables and let C be a commutative ring. We denote

by C〈X〉 the C-algebra of polynomials in variables from X. If X = {x1, . . . , xn} is finite, then

we write C〈x1, . . . , xn〉 for C〈X〉. Note that if C is a domain and |X| ≥ 2, then R := C〈X〉
is not Ore because then Rx1 ∩Rx2 = (0) for any two distinct elements x1, x2 ∈ X.

We are now going to prove that those domains which are not Ore have one thing in

common: all of them contain a polynomial ring in two noncommuting variables.

Lemma 1.2.14. (Jategaonkar, [40, Lemma 9.21]) Let R be a ring and suppose that a, b ∈ R
are left or right linearly independent over R. Let C be a central subring of R. Then the

C-subalgebra of R generated by a and b is isomorphic to C〈x, y〉 for some noncommuting

variables x and y.

Proof. We assume that a, b are left linearly independent over R. We need to prove that the

set of all monomials in a and b is a C-basis for the algebra generated by a and b over C. So

suppose that the claim is false. Then there exists a nonzero f ∈ C〈x, y〉 of minimum total

degree such that f(a, b) = 0. Write

f(x, y) = u+ g(x, y)x+ h(x, y)y,

where u ∈ C and g, h ∈ C〈x, y〉 with g 6= 0. Now

0 = bf(a, b) = ub+ bg(a, b)a+ bh(a, b)b = bg(a, b)a+ (u+ bh(a, b))b.
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Thus bg(a, b) = 0 because a and b are left linearly independent over R. Again, we can write

g(x, y) = u′ + g′(x, y)x+ h′(x, y)y,

where u′ ∈ C and g′, h′ ∈ C〈x, y〉. Then

0 = bg(a, b) = bg′(a, b)a+ (u′ + bh′(a, b))b

and so bg′(a, b) = 0. But that contradicts the minimality of deg f because deg yg′(x, y) ≤
deg g(x, y) < deg f(x, y).

The converse of Lemma 1.2.14 is also true because clearly Rx ∩Ry = (0).

Proposition 1.2.15. Let R be a C-algebra which is a domain. Then R is Ore if and only

if it does not contain a polynomial C-algebra in two noncommuting variables.

Proof. Choose r1, r2 6= 0 such that Rr1∩Rr2 = (0). Then r1, r2 are left linearly independent

over R and thus Lemma 1.2.14 can be applied. A similar argument shows that r1R∩ r2R 6=
(0) for all nonzero elements r1, r2 of R.

Definition 1.2.16. Let S be the set of regular elements of R contained in Z := Z(R).

Then S is clearly Ore and thus QZ(R) := S−1R exists. The ring QZ(R) is called the central

localization of R.

Definition 1.2.17. A ring R is called prime if IJ 6= (0) for any nonzero ideals I, J of R. If

R has no nonzero nilpotent ideal, then R is called semiprime.

Clearly every prime ring is semiprime and it is easy to see that R is prime (resp.

semiprime) if and only if aRb = {0} (resp. aRa = {0}) implies a = 0 or b = 0 (resp.

a = 0) for all a, b ∈ R.

Proposition 1.2.18 ([54], Propositions 1.7.4 and 1.7.5). Let Z := Z(R) be the center of R

and let S be the set of regular elements of R contained in Z.

(1) Z(QZ(R)) = S−1Z.

(2) If R is prime (resp. semiprime), then QZ(R) is prime (resp. semiprime).

Proof. Clearly S−1Z ⊆ Z(QZ(R)). Now let q = s−1a ∈ Z(QZ(R)) and r ∈ R. Then

s−1(ra− ar) = r(s−1a)− (s−1a)r = rq − qr = 0

and hence ra = ar, i.e. a ∈ Z. Thus Z(QZ(R)) ⊆ S−1Z. The proof of the second part is

straightforward.
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1.3 Goldie’s Theorem

The idea of localization is to embed a ring into a larger ring with a nicer structure. If the

larger ring has a more complicated structure, then there is no point of localizing it. So it is

important to find rings which have nice classical quotient rings. During the 1950s, Alfred

Goldie, an English mathematician, proved that the classical quotient ring of a semiprime

Noetherian ring is a semisimple ring. A semisimple ring is a nice ring because, by the Artin-

Wedderburn theorem, it is a finite direct product of matrix rings over division rings. Goldie

proved his theorem for a larger class of rings. To state his theorem we need the following

definition.

Definition 1.3.1. A ring R is called left Goldie if R satisfies the ascending chain condition

on left annihilators and R does not contain an infinite direct sum of left ideals.

Theorem 1.3.2. (Goldie, [48, Theorem 2.3.6]) Let R be a ring and let Q(R) be the left

classical quotient ring of R. Then Q(R) is semisimple (resp. simple artinian) if and only if

R is semiprime left Goldie (resp. prime left Goldie).

Every left noetherian ring is clearly left Goldie. Also, every commutative domain is

left Goldie because the intersection of any two nonzero ideals of a commutative domain is

nonzero. So if C is a commutative domain and {xi : i ∈ N} is a set of commuting variables

over C, then the polynomial ring C[x1, x2, . . .] is a nonnoetherian Goldie ring.

In this section, the goal is to prove one side of Goldie’s theorem, i.e. if R is semiprime

left Goldie, then Q(R) is semisimple. The other side of the theorem is much easier and

not useful for our purpose. Note that we also need to prove that Q(R) basically exists.

We first recall the definition of semisimple rings. Let R be a ring. A left R-module M

is called semisimple if every submodule of M is a direct summand of M. The ring R is

called semisimple if it is semisimple as a left R-module, i.e. every left ideal of R is a direct

summand of R. We now have the following result.

Proposition 1.3.3 ([39], Theorem 4.14). A ring is semisimple if and only if it is left

artinian and semiprimitive.

Semisimple rings are characterized by the celebrated Artin-Wedderburn theorem.

Theorem 1.3.4. (Artin-Wedderburn, [39, Theorem 3.5]) A ring R is simple and Artinian

if and only if R ∼= Mn(D) for a unique integer n ≥ 1 and, up to isomorphism, a unique
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division ring D. More generally, R is semisimple if and only if

R ∼= Mn1(D1)× · · · ×Mnk(Dk)

for a unique integer k ≥ 1, some division rings Di and some integers ni ≥ 1. The pairs

(ni, Di), up to permutation and isomorphism of Di, are uniquely determined.

Assumption. For the rest of this section, R is a semiprime left Goldie ring and S is the

submonoid of regular elements of R. Also, by ann(a) we mean the left annihilator of a in R.

We now begin the proof of Goldie’s theorem with a definition.

Definition 1.3.5. A left ideal I of R is called essential if I ∩ J 6= (0) for every nonzero left

ideal J of R.

It is clear that a left ideal I is essential if and only if I ∩ Ra 6= (0) for all 0 6= a ∈ R.
Also, if I1 ⊆ I2 are left ideals of R and I1 is essential, then I2 is essential too.

Lemma 1.3.6. If I is a left ideal of R and I ∩ S 6= ∅, then I is essential.

Proof. Let a ∈ I ∩ S. So a ∈ I and ann(a) = 0. If we show that Ra is essential, then we are

done because Ra ⊆ I. So suppose, to the contrary, that J is a nonzero left ideal of R and

Ra ∩ J = (0). Let 0 6= b ∈ J. Then Ra ∩Rb = (0) and so the sum
∑∞

n=0Rab
n is direct (see

the proof of Proposition 1.2.13). Thus R is not left Goldie, contradiction!

The converse of Lemma 1.3.6 is also true and it is the key to the proof of Goldie’s

theorem. In order to prove the converse, we need a few lemmas.

Lemma 1.3.7. If a ∈ R is left regular, then a is right regular too and hence a ∈ S.

Proof. We need to show that if ann(a) = 0, then {b ∈ R : ab = 0} = (0). So suppose, to

the contrary, that ab = 0 for some 0 6= b ∈ R. Then ann(b) is a proper left ideal of R and

a ∈ ann(b) ∩ S. Thus, by Lemma 1.3.6, ann(b) is essential. Since R is left Goldie, the set

A = {ann(c) : 0 6= c ∈ R, ann(b) ⊆ ann(c)}

has a maximal element, say ann(u). Hence uRu 6= (0) because R is semiprime. Thus uvu 6= 0

for some v ∈ R. Since ann(u) ⊆ ann(uvu), we have

ann(u) = ann(uvu),

by the maximality of ann(u) in A. It follows that ann(u) ∩ Ruv = (0) and, since ann(b) ⊆
ann(u), we have ann(b) ∩Ruv = (0). Therefore ann(b) is not essential, contradiction!
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Lemma 1.3.8. Every nil left ideal of R is zero.

Proof. Suppose, to the contrary, that I is a nonzero nil left ideal of R and 0 6= a ∈ I. Let

A = {ann(ar) : r ∈ R, ar 6= 0}.

Since R is left Goldie, A has a maximal element, say ann(au). Let b = au. Since R is

semiprime, bRb 6= 0 and so bvb 6= 0 for some v ∈ R. Since I is nil, uva ∈ I is nilpotent. Thus

bv = auv is nilpotent too. Let n be the smallest integer such that (bv)n = 0. Note that since

bv 6= 0, we have n ≥ 2. Thus (bv)n−1 6= 0.We also have (bv)n−1 ∈ aR because bv = auv ∈ aR.
Hence ann((bv)n−1) ∈ A. Now, ann(b) ⊆ ann((bv)n−1) and so ann(b) = ann((bv)n−1), by

the maximality of ann(b) in A. But bv ∈ ann((bv)n−1) and hence bv ∈ ann(b), i.e. bvb = 0,

contradiction!

Lemma 1.3.9. If I is a nonzero ideal of R, then Ra ∩ ann(a) = (0) for some 0 6= a ∈ I.

Proof. Since I is nonzero, I has an element b which is not nilpotent, by Lemma 1.3.8. Since

R is left Goldie, the ascending chain

ann(b) ⊆ ann(b2) ⊆ ann(b3) ⊆ · · · ,

stops at some point. So ann(bn) = ann(b2n), for some n, and hence Rbn∩ann(bn) = (0).

We are now ready to prove the converse of Lemma 1.3.6, which is the heart of the proof

of Goldie’s theorem.

Lemma 1.3.10. If a left ideal I of R is essential, then I ∩ S 6= ∅.

Proof. Suppose, to the contrary, that I ∩ S = ∅. We claim that there exists a sequence

a1, a2, . . . of nonzero elements of I such that an+1 ∈ ann(a1, . . . , an) and Ran∩ann(an) = (0)

for all n. If we prove this claim, then the sum
∑∞

n=1Ran will be direct and so R will not be

Goldie.

Now, by Lemma 1.3.9, there exists 0 6= a1 ∈ I such that Ra1 ∩ ann(a1) = (0). Let

n ≥ 1 and suppose that we have found nonzero elements a1, . . . , an in I such that ak+1 ∈
ann(a1, . . . , ak) for all 1 ≤ k ≤ n − 1 and Rak ∩ ann(ak) = (0) for all 1 ≤ k ≤ n. Let

In := ann(a1, . . . , an). Clearly In ⊆ ann(a1 + · · ·+ an). Now, if r ∈ ann(a1 + · · ·+ an), then∑n
i=1 rai = 0 and so ra21 = 0 because a2, . . . , an ∈ ann(a1). But then ra1 ∈ Ra1 ∩ ann(a1)

and so ra1 = 0. Similarly ra2 = · · · = ran = 0 and so r ∈ ann(a1, . . . , an). Thus In =
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ann(a1 + · · ·+an) and hence In 6= (0) because if In = (0), then a1 + · · ·+an ∈ S, by Lemma

1.3.7, contradicting I ∩S = ∅. So In ∩ I 6= (0), because I is essential, and hence there exists

0 6= an+1 ∈ In ∩ I such that Ran+1 ∩ ann(an+1) = (0) by Lemma 1.3.9.

Proposition 1.3.11. The classical left quotient ring Q(R) exists.

Proof. We only need to prove that S is left Ore. Let s ∈ S, r ∈ R and define the left ideal

K := {a ∈ R : ar ∈ Rs}. Note that Rs is essential, by Lemma 1.3.6, because s ∈ Rs ∩ S.
We now show that K is also essential. So suppose that J is a nonzero left ideal of R. If

Jr = (0), then J ⊆ K and thus J ∩K = J 6= (0). If Jr 6= (0), then Rs ∩ Jr 6= (0), because

Rs is essential. So we can choose as = br 6= 0, for some a ∈ R and b ∈ J. But then br ∈ Rs
and hence 0 6= b ∈ J ∩K. So K is essential and hence K ∩ S 6= ∅, by Lemma 1.3.10. Thus

there exists a ∈ S such that ar ∈ Rs. That means ar ∈ Sr ∩Rs and so Sr ∩Rs 6= ∅, i.e. S

is left Ore.

The last step of the proof of Goldie’s theorem is to prove that Q(R) is semisimple.

Theorem 1.3.12. The classical left quotient ring Q(R) is semisimple.

Proof. By Proposition 1.3.3, we need to prove that Q(R) is semiprimitive and left artinian.

We first prove that Q(R) is left artinian. So suppose, to the contrary, that I1 ⊃ I2 ⊃ I3 ⊃ · · ·
is a strictly descending chain of left ideals of Q(R). Let Ji = Ii ∩R, i ≥ 1. Then

J1 ⊃ J2 ⊃ J3 ⊃ · · ·

is a strictly descending chain of left ideals of R, by Proposition 1.2.11. Fix an integer i ≥ 1.

Since Ji ⊃ Ji+1, there exists ai ∈ Ji \ Ji+1. Let

Ki = {r ∈ R : rai ∈ Ji+1},

which is a left ideal of R. Suppose that s ∈ Ki ∩ S. Then sai ∈ Ji+1 and so, by Proposition

1.2.11, ai ∈ s−1Ji+1 ⊆ Q(R)Ji+1 = Q(R)(Ii+1 ∩ R) = Ii+1. Hence ai ∈ Ii+1 ∩ R = Ji+1,

which is false. So we have proved that Ki ∩S = ∅. Therefore Ki is not essential, by Lemma

1.3.10. So there exists a nonzero left ideal Li of R such that Ki ∩ Li = (0). Since ai ∈ Ji,
we have Liai ⊆ Ji. We also have Liai ∩ Ji+1 = 0 because if bai ∈ Ji+1 for some b ∈ Li, then

b ∈ Ki ∩Li = (0). Let Ti = Liai. So we have proved that Ti ⊆ Ji and Ti ∩ Ji+1 = (0). Hence

the sum
∑∞

i=1 Ti is direct, which is impossible because R is left Goldie. This contradiction

proves that Q(R) is left artinian.
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We now prove that Q(R) is semiprimitive, i.e. J(Q(R)) = (0). Since Q(R) is artinian,

J(Q(R)) is nilpotent by Lemma 1.1.7. Hence J(Q(R)) ∩R is a nilpotent ideal of R. But R

is semiprime and so J(Q(R)) ∩ R = (0). Therefore J(Q(R)) = Q(R)(J(Q(R)) ∩ R) = (0),

by Proposition 1.2.11.

1.4 Polynomial Identity Rings

In section 2 of this chapter, we used the concept of localization in commutative rings

to define localization in noncommutative rings. In this section, we generalize another

side of commutative rings to noncommutative rings. Let Z〈x1, . . . , xn〉 denote the ring

of polynomials in noncommuting variables x1, x2, . . . xn with coefficients in Z. If R1 is

a commutative ring and f1(x1, x2) := x1x2 − x2x1 ∈ Z〈x1, x2〉, then f1(a, b) = 0 for

all elements a, b ∈ R1. Now let C be a commutative ring and let R2 := M2(C). Let

f2(x1, x2, x3) := (x1x2 − x2x1)2x3 − x3(x1x2 − x2x1)2 ∈ Z〈x1, x2, x3〉. Then f2(a, b, c) = 0

for all a, b, c ∈ R2 (see Example 1.4.3). Both R1 and R2 satisfy some polynomial in

Z〈x1, . . . , xn〉. We say that R1 and R2 are PI. Here, PI stands for Polynomial Identity.

So the class of PI-rings contains the class of commutative rings properly.

In this section, we look at primitive and prime rings which are PI. The goal is to prove

two theorems. First, a theorem due to Kaplansky and Amitsur. The theorem states that

a primitive ring is PI if and only if it is a finite-dimensional central simple algebra. There

is another central theorem in the theory of PI-rings which is due to Posner. By Posner’s

theorem, a prime ring is PI if and only if it is an order in a finite-dimensional central simple

algebra. To be more precise, Posner’s theorem says that a prime ring is PI if and only if its

central localization is a finite-dimensional central simple algebra.

Throughout this section, C is a commutative ring with 1 and C〈x1, . . . , xn〉 is the C-

algebra of polynomials in noncommuting variables x1, . . . , xn with coefficients in C.

1.4.1 Definitions and Basic Results

This subsection is an introduction to subsections 4 and 5. We first give the definition and

some examples and properties of PI-algebras. Then we prove that the polynomial ring in

one variable over a semiprime PI-ring is a semiprimitive PI-ring. This result will be used in

subsection 5 of this section to prove the celebrated Posner’s theorem.
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Definition 1.4.1. Let R be a C-algebra. We say that R satisfies a polynomial identity if

there exists an integer n ≥ 1 and a monic polynomial f ∈ C〈x1, . . . , xn〉, i.e. the coefficient

of at least one of the monomials of the highest degree in f is 1, such that f(r1, r2, · · · , rn) = 0

for all r1, . . . , rn ∈ R. The algebra R is also called a PI-algebra. A PI-ring is a PI-algebra

over C = Z. An algebra R is called locally PI if every finitely generated subalgebra of R is

PI.

Example 1.4.2. Commutative algebras are PI because they satisfy x1x2 − x2x1.

Example 1.4.3. Consider the C-algebra R := M2(C) and let Tr(r) be the trace of r ∈ R.
Then for any r1, r2 ∈ R we have Tr(r1r2−r2r1) = 0. Thus, by the Cayley-Hamilton theorem,

(r1r2 − r2r1)2 is a scalar multiple of the identity element of R and so it commutes with all

elements of R. Thus R satisfies the polynomial f = (x1x2 − x2x1)2x3 − x3(x1x2 − x2x1)2.
The identity f is called Wagner’s identity.

Remark 1.4.4. If R satisfies a polynomial f, then subalgebras and homomorphic images

of R satisfy f too.

Definition 1.4.5. A polynomial f ∈ C〈x1, . . . , xn〉 is called multilinear if for every i the de-

gree of xi in every monomial occurring in f is one, i.e. f =
∑

σ∈Sym(n) cσxσ(1)xσ(2) · · ·xσ(n),
where Sym(n) is the set of all permutations of 1, 2, . . . , n and cσ ∈ C. The multilinear

polynomial Sn = Sn(x1, . . . , xn) =
∑

σ∈Sym(n) sgn(σ)xσ(1)xσ(2) · · ·xσ(n), where sgn(σ) is the

signature of σ, is called the standard polynomial of degree n.

Remark 1.4.6. If a C-algebra R satisfies a multilinear polynomial of degree one, then

R = (0). To see this, let f =
∑n

i=1 cixi, ci ∈ C be an identity for R. We may assume that

c1 = 1. If in f we let xi = 0 for all i 6= 1, then we see that the polynomial g = x1 is also an

identity for R and hence R = (0).

Proposition 1.4.7 ([48], Corollary 13.1.13 (i)). A C-algebra R which is finitely generated

as C-module, is PI.

Proof. It is easy to see that if R is generated by n elements, then R satisfies the standard

polynomial Sn+1. The point here is that Sn(a1, . . . , an) = 0 if ai = aj for some i 6= j.

Example 1.4.8. By Proposition 1.4.7, R = Mn(C) satisfies Sn2+1, because R, as C-module,

is generated by n2 elements.
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Proposition 1.4.7 is also a result of the following important theorem.

Theorem 1.4.9. (Jacobson, [35, page 14]) Let R be a C-algebra which is integral of bounded

degree over C, i.e. there exists an integer n ≥ 1 such that for every r ∈ R there exists a

monic polynomial g ∈ C[x] of degree n with g(r) = 0. Then R is a PI-algebra.

Proof. Choose two elements r1, r2 ∈ R and a polynomial g1(x) = xn + c1x
n−1 + · · ·+ cn in

C[x] with g1(r1) = 0. For every a, b ∈ R let [a, b] = ab− ba. We have

0 = [g1(r1), r2] = [rn1 , r2] + c1[r
n−1
1 , r2] + · · ·+ cn−1[r1, r2].

Now let g2(x) = [g1(x), r2]. Then

0 = [g2(r1), [r1, r2]] = [[rn1 , r2], [r1, r2]] + c1[[r
n−1
1 , r2], [r1, r2]] + · · ·+ cn−2[[r

2
1, r2], [r1, r2]]

Then we let g3(x) = [g2(x), [r1, r2] and consider [g3(r1), [[r
2
1, r2], [r1, r2]]] to get rid of cn−2.

If we continue in this manner until all the coefficients ci are gone, we will end up with a

polynomial f ∈ C〈x1, x2〉 such that f(r1, r2) = 0. Then f has a monomial of highest degree

with coefficient 1.

We will use the following obvious fact later in this section.

Remark 1.4.10. Let R be a C-algebra and let K be a commutative C-algebra. If R satisfies

a multilinear polynomial f, then R⊗C K satisfies f too.

The above is not necessarily true if f is not multilinear. For example, let Fq denote the

field of order q. Let f(x) = x2 − x and R = C = F2. Then f is an identity for R. Now

let K = F4. Clearly K is a C-algebra, R ⊗C K ∼= K and f is not an identity for K. The

following proposition considers this situation.

Proposition 1.4.11 ([24], Part B, Theorem 1.9). Let k be an infinite field, K a commutative

k-algebra and R a k-algebra satisfying a polynomial f ∈ k〈x1, . . . , xn〉. Then R⊗kK satisfies

f too.

Proof. Let A = {rj : j ∈ J} be a basis for R over k and let B = {yij : 1 ≤ i ≤ n, j ∈ J} be

a set of commuting variables over K. For each 1 ≤ i ≤ n, let zi = yiα1rαi1 + · · · + yiαsrαis ,

where s can be any integer for each i. Then f(z1, . . . , zn) = u1v1 + · · · + utvt, where each

ui is a monomial in k[B] and each vi is a monomial in k〈A〉 ⊆ R. So we can write each vi
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as a finite k-linear combination of elements of A because A is a basis for R over k. Thus

f(z1, . . . , zn) = wj1rj1 + · · ·+ wjmrjm , where each wjp is an element of k[B]. Let B1 be the

set of all elements of B which appear in f(z1, . . . , zn). We give to each element of B1 a

value in k. Then zi ∈ R for all i and thus f(z1, . . . , zn) = 0. Hence if the variables in each

polynomial wjp have values in k, then wjp = 0. But k is infinite and therefore each wjp must

be identically zero and so f(z1, . . . , zn) = 0 if elements of B1 have values in K.

Proposition 1.4.12 ([48], Proposition 13.1.9). If a C-algebra R satisfies a polynomial f of

degree n, then R satisfies a multilinear polynomial of degree at most n.

Proof. Suppose that f ∈ C〈x1, · · · , xn〉. First note that for any variable, say x1 for the

sake of simplicity, we can write f = g(x1, . . . , xn) + h(x2, . . . , xn), where h consists of those

monomials of f in which x1 does not occur. Now if we let x1 = 0 and let x2, · · · , xn be any

elements of R, then h, and hence g = f − h, is an identity of R. So we may assume that

x1 occurs in every monomial of f. Continuing this process, eventually we may assume that

every xi occurs in every monomial of f.

Now, if f is not multilinear itself, then the monomials of highest degree occurring in f

cannot be multilinear. Thus, say x1, occurs in those monomials with maximal degree k ≥ 2.

Let

g(x1, . . . , xn, xn+1) = f(x1 + xn+1, x2, . . . , xn)− f(x1, x2, . . . , xn)− f(xn+1, x2, . . . , xn).

Clearly R satisfies g and g is monic of degree at most n and the degree of x1 in each monomial

of g is at most k − 1. An induction now completes the proof.

Corollary 1.4.13 ([24], Part B, Corollary 1.15). Let R be a C-algebra. If R is PI and x is

a central variable, then the polynomial algebra R[x] is PI too.

Proof. By Proposition 1.4.12, R satisfies some multilinear polynomial f(x1, · · · , xm). Now

if gj(x) ∈ R[x], j = 1, 2, . . . ,m, then there exist an integer n and some elements rij ∈ R
such that

f(g1, . . . , gm) =
∑
i≤k

f(ri1, . . . , rim)xi

and thus f(g1, . . . , gm) = 0.

Lemma 1.4.14 ([48], Proposition 13.3.2). If R is a prime PI-ring, then R does not contain

any nonzero nil ideal.
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Proof. The proof is by induction on n, the degree of the multilinear polynomial satisfied by

R. By Remark 1.4.6, there is nothing to prove if n = 1. Suppose that R is a prime PI-ring

which satisfies a multilinear polynomial f(x1, . . . , xn) of degree n ≥ 2 and any prime ring,

which may or may not have an identity element, which satisfies a multilinear polynomial of

degree less than n has no nonzero nil ideal.

Now, to get a contradiction, suppose that I is a nonzero nil ideal of R and choose

0 6= a ∈ I such that a2 = 0. Let J = Ra and S := J/(J ∩ l.annR(J)). Then S is a prime

ring. Now, after permuting the indices of x1, . . . , xn if necessary, we can write

f(x1, . . . , xn) = x1g(x2, . . . , xn) + h(x1, . . . , xn),

where both g, h are multilinear, no monomial in h begins with x1 and g is not identically

zero. Let w be a monomial in h. Since no monomial in h begins with x1, there exists some

i 6= 1 such that the term xix1 appears in w. So if r, r′ are any elements of R, then the value

of w at xi = ra, x1 = ar′ is zero because xix1 = ra2r′ = 0. Thus if r1, r2, . . . , rn ∈ R, then

h(ar1, r2a, . . . , rna) = 0 and hence ar1g(r2a, . . . , rna) = 0. Therefore aRg(r2a, . . . , rna) = 0

and so g(r2a, . . . , rna) = 0 because R is prime and a 6= 0. Thus J , and hence S, satisfies g.

But the degree of g is less than n and so, by the induction hypothesis, S has no nonzero nil

ideal. On the other hand, J ⊆ I and so J is nil because I is nil. Thus S is a nil ideal of

itself and so S = (0). Therefore J2 = (0), contradicting the hypothesis that R is prime.

Corollary 1.4.15 ([24], Part B, Lemma 6.1). If R is a semiprime PI-ring and x is a central

variable, then R[x] is a semiprimitive PI-ring.

Proof. By Corollary 1.4.13, R[x] is a PI-ring. Let {Pi : i ∈ I} be the set of prime ideals

of R. Then
⋂
i∈I Pi = (0), because R is semiprime. Let Ri = R/Pi, i ∈ I, and define

the map ν : R[x] −→
∏
i∈I Ri[x] by ν(

∑
rjx

j) = (
∑

(rj + Pi)x
j). Then ν is an injective

ring homomorphism. Now, Ri is a prime PI-ring for every i ∈ I and hence Ri[x] is a

semiprimitive ring, by Lemma 1.4.14 and Proposition 1.1.6. If p(x) =
∑
rjx

j ∈ J(R[x]),

then
∑

(rj + Pi)x
j ∈ J(Ri[x]) = 0 for all i ∈ I. Thus rj ∈ Pi for all j and i ∈ I and hence

rj = 0 for all j.

For the next result we refer the reader to Definition 1.2.16.

Corollary 1.4.16. Let R be a C-algebra. If R is PI, then QZ(R) is PI too.
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Proof. By Proposition 1.4.12, R satisfies some multilinear polynomial f(x1, . . . , xm). Now if

qi = s−1i ri ∈ QZ(R), then, since f is multilinear and si are central, we have f(q1, . . . , qm) =

(s1 . . . sm)−1f(r1, . . . , rm) = 0.

Corollary 1.4.17 ([48], Proposition 13.3.2). The C-algebra R = Mn(C) does not satisfy

any polynomial of degree less than 2n.

Proof. Suppose, to the contrary, that R satisfies a polynomial of degree at most 2n − 1.

Then, by Proposition 1.4.12, R satisfies a multilinear polynomial

g(x1, . . . , xk) =
∑
σ∈Sk

cσxσ(1) · · ·xσ(k),

for some k ≤ 2n− 1 and cσ ∈ C. Renaming the variables, if necessary, we may assume that

c = cid 6= 0. Let {eij} be the standard basis of R over C. Then g(e11, e12, e22, e23, · · · ) =

ce1` = 0, for some `. Therefore ceij = ei1(ce1`)e`j = 0 for all i, j. Thus c = 0, which is a

contradiction.

Theorem 1.4.18. (Amitsur-Levitzki, [51]) The C-algebra Mn(C) satisfies S2n.

1.4.2 Kaplansky’s Theorem

It is easy to show that a primitive ring is commutative if and only if it is a field. Now, which

primitive rings are PI? The answer is that a primitive ring R is PI if and only if R = Mn(D)

for some division ring which is finite-dimensional over its center. The goal in this subsection

is to prove this important result. This result is due to Kaplansky and Amitsur and it is

often called the Kaplansky’s theorem. We begin with recalling a few facts about primitive

rings. Given a left R-module M, let EndR(M) denote the ring of R-homomorphisms from

M into M .

Lemma 1.4.19. (Schur’s Lemma, [54, Lemma 1.5.1]) If M is a simple R-module, then

EndR(M) is a division ring.

Proof. For any nonzero element f ∈ EndR(M), the kernel and the image of f are R-

submodules of M. Therefore, since M is simple and f 6= 0, we have ker f = 0 and f(M) = M,

i.e. f is an isomorphism and so it is an invertible element of EndR(M).

We have already defined primitive rings in Definition 1.1.3. We now rephrase the defi-

nition.
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Definition 1.4.20. A ring R is called left primitive if there exists a simple left R-module

M which is faithful, i.e. l.annR(M) = {r ∈ R : rM = (0)} = (0).

Example 1.4.21. Every simple ring R is left primitive because if I is a maximal left ideal

of ring R, then M = R/I is a faithful simple left R-module.

Theorem 1.4.22. Let D be a division ring with the center Z and let K be a subfield of D.

Let A = D ⊗Z K.

(1) A is a simple ring and thus left primitive.

(2) D is a faithful simple left A-module and if K is a maximal subfield, then EndA(D) ∼= K.

Proof. Let {kj : j ∈ J} be a Z-basis for K. Suppose that A is not simple. Let I be a

nonzero ideal of A. Choose n to be the smallest integer for which there exists 0 6= x =∑n
j=1 dj ⊗ ktj ∈ I. Then d1 6= 0 and so, by replacing x with (d−11 ⊗ 1)x if necessary, we may

assume that d1 = 1. Now, for any d ∈ D we have

n∑
j=2

(ddj − djd)⊗ ktj = (d⊗ 1)x− x(d⊗ 1) ∈ I,

which gives ddj = djd, by the minimality of n. So dj ∈ Z for all j. Thus x = 1⊗ k, for some

0 6= k ∈ K. But then 1A = 1⊗ 1 = (1⊗ k−1)x ∈ I and so I = A.

For the second part of the theorem, define (d1 ⊗ k)d2 = d1d2k for all d1, d2 ∈ D, k ∈ K
and extend it linearly. Then D becomes a faithful left A-module because l.annA(D) 6= A is

an ideal of A and A is a simple ring by the first part of the theorem. To prove that D is

a simple A-module, let d1 6= 0 and d2 ∈ D. Then (d2d
−1
1 ⊗ 1)d1 = d2 and hence Ad1 = D.

To prove that EndA(D) ∼= K we define the map ϕ : EndA(D) −→ K by ϕ(f) = f(1). It

follows that if K is a maximal subfield, then ϕ is a ring isomorphism. The reason is that

the centralizer of K in D is K itself.

The following theorem gives a structure theorem for left primitive rings.

Theorem 1.4.23 ([39], Theorem 11.19). Let R be a left primitive ring with a faithful simple

left R-module M. Let D = EndR(M).

(1) If dimDM = n <∞, then R ∼= Mn(D).
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(2) If dimDM =∞, then for any integer n ≥ 1, Mn(D) is the homomorphic image of some

subring of R.

Lemma 1.4.24. Let R be a left primitive C-algebra. Let M be a faithful simple left R-module

and let D = EndR(M). If R satisfies a polynomial f of degree d, then dimDM = n ≤ bd/2c
and R ∼= Mn(D).

Proof. Suppose dimDM > bd/2c. Then, by Theorem 1.4.23, there exists some k > [d/2]

such that either R ∼= Mk(D) or Mk(D) is a homomorphic image of some subring of R. In

either case, Mk(D), and hence Mk(Z(D)), satisfies f by Remark 1.4.4. Thus by Lemma

1.4.17

d ≥ 2k ≥ 2(bd/2c+ 1) > d,

which is absurd.

Theorem 1.4.25. (Kaplansky’s theorem, [54, Theorem 1.5.16]) Let R be a left primitive

C-algebra and let M be a faithful simple left R-module. Let D = EndR(M). Suppose that R

satisfies a polynomial of degree d.

(1) R ∼= Mn(D), where n = dimDM ≤ bd/2c and so k = Z(R) ∼= Z(D) is a field.

(2) dimkD = dimk R ≤ (bd/2c)2.

Proof. We have already proved the first part in Lemma 1.4.24. So we only need to prove the

second part of the theorem. By Proposition 1.4.12, R satisfies some multilinear polynomial

f of degree at most d. Clearly D satisfies f too because it is a subring of Mn(D) ∼= R. Let

K be a maximal subfield of the division ring D and let A := D ⊗k K. By the first part of

Theorem 1.4.22, A is simple and thus left primitive. By Remark 1.4.10, A satisfies f. Now,

if in Lemma 1.4.24 we let R = D ⊗k K and M = D and apply the second part of Theorem

1.4.22, then we get A ∼= Mm(K), for some integer m ≥ 1. Therefore

R⊗k K ∼= Mn(D)⊗k K ∼= Mn(A) ∼= Mmn(K)

and hence

dimk R = dimK R⊗k K = (mn)2.

On the other hand R⊗kK satisfies f and thus d ≥ deg f ≥ 2mn. So mn ≤ d/2 and therefore

mn ≤ bd/2c. Finally we have dimk R ≤ dimk R⊗k K = (mn)2 ≤ (bd/2c)2.
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If R is simple (resp. division) ring, then we say R is a central simple (resp. division)

k-algebra if Z(R) = k.

Corollary 1.4.26. Let D be a finite-dimensional central division k-algebra and R = Mm(D).

Let K be a maximal subfield of D. Then R is PI, R ⊗k K ∼= Ms(K) and dimk R = s2 for

some integer s ≥ 1.

Proof. By Proposition 1.4.7, R is PI. Clearly R is left primitive because it is simple. Thus,

as we showed in the proof of Theorem 1.4.25, R ⊗k K ∼= Ms(K) for some integer s and

dimk R = s2.

Definition 1.4.27. If R is a finite-dimensional central simple k-algebra, then the integer
√

dimk R is called the degree of R.

So, by Kaplansky’s theorem, a primitive ring R satisfies a polynomial identity if and

only if R is a finite-dimensional central division algebra. What can we say about a prime

ring that satisfies a polynomial identity? We will answer this question in the next section.

1.5 Posner’s Theorem

A prime ring is commutative if and only if it is a commutative domain. Now, which prime

rings are PI? The answer is that a prime ring R is PI if and only if QZ(R) = Mn(D), where

QZ(R) is the central localization of R and D is a division ring which is finite-dimensional

over its center. The goal in this subsection is to prove this result which is due to Posner.

Let R be a prime ring. Since Z(R), the center of R, is a domain, the set of nonzero

elements of Z(R) is a regular submonoid which is obviously Ore. Thus QZ(R), the localiza-

tion of R at S = Z(R) \ {0}, exists and contains R as a subring (see Definition 1.2.16). By

Proposition 1.2.18, the center of QZ(R) is the localization of Z(R) at S, i.e. the quotient

field of Z(R).

Before proving Posner’s theorem we need some preparation.

Definition 1.5.1. Let R be a C-algebra. A polynomial f(x1, . . . , xn) ∈ C〈x1, . . . , xn〉 is

called a central polynomial for R if the constant term of f is zero, f is not an identity for R

and f(r1, . . . , rn) ∈ Z(R) for all r1, . . . , rn ∈ R.

Example 1.5.2. Let k be a field. By Example 1.4.3, f(x1, x2) = (x1x2−x2x1)2 is a central

polynomial for M2(C).



CHAPTER 1. PRELIMINARIES 29

Next, We prove that central polynomials always exist for Mn(k) if k is a field. But first

we give a definition.

Definition 1.5.3. Let n ≥ 2 be an integer, k a field and k[z1, . . . , zn+1] the polynomial

algebra in n+ 1 commuting variables zi. Define the map

µ : k[z1, . . . , zn+1] −→ k〈x, y1, . . . , yn〉

on monomials by

µ(zm1
1 zm2

2 · · · z
mn+1

n+1 ) = xm1y1x
m2y2 · · ·xmnynxmn+1

and extend the definition k-linearly. Now let

g(z1, . . . , zn+1) =
∏

2≤i≤n
(z1 − zi)(zn+1 − zi)

∏
2≤i<j≤n

(zi − zj)2 ∈ k[z1, . . . , zn+1]

and define g(x, y1, . . . , yn) = µ(g(z1, . . . , zn+1)). Finally, define

F (x, y1, . . . , yn) = g(x, y1, . . . , yn) + g(x, y2, . . . , yn, y1) + · · ·+ g(x, yn, y1, . . . , yn−1).

The polynomial F (x, y1, . . . , yn) is called the Formanek polynomial.

For example, if n = 2, then g(z1, z2, z3) = (z1 − z2)(z3 − z2) = z1z3 − z1z2 − z2z3 + z22 .

Thus g(x, y1, y2) = xy1y2x − xy1xy2 − y1xy2x + y1x
2y2 and the Formanek polynomial is

F (x, y1, y2) = g(x, y1, y2) + g(x, y2, y1).

Theorem 1.5.4. (Formanek, [24, Part B, Theorem 3.4]) Let k be a field and let n ≥ 2 be

an integer. The Formanek polynomial F (x, y1, . . . , yn) is a central polynomial for Mn(k).

We are now going to prove Formanek’s theorem for n = 3. The proof for the general

case is similar. We begin with a useful lemma.

Lemma 1.5.5. Let k be a field and let n ≥ 2 be an integer. Let F (x, y1, . . . , yn) be the

Formanek polynomial. If F (X,Y1, . . . , Yn) is a scalar matrix for all diagonal matrices X ∈
Mn(k) and all matrix units Y1, . . . , Yn ∈ Mn(k), then all valuations of F (x, y1, . . . , yn) on

Mn(k) are scalar matrices.

Proof. The Formanek polynomial is multilinear in y1, . . . , yn and the matrix units eij span

Mn(k). Thus if F (a, b1, . . . , bn) is a scalar matrix for all elements X ∈ Mn(k) and all
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matrix units Y1, . . . , Yn ∈Mn(k), then all valuations of F (x, y1, . . . , yn) on Mn(k) are scalar

matrices.

Now, Let xij , 1 ≤ i, j ≤ n be n2 commuting independent variables over k and let K be

the field generated by k and these variables. Let K denote the algebraic closure of K. Let

X0 be the element of Mn(K) whose (i, j)-entry is xij . In order to show that all valuations

of F on Mn(k) are scalar matrices, we only need to show that F (X0, Y1, . . . , Yn) ∈ Mn(K)

is a scalar matrix for all Y1, . . . , Yn ∈ Mn(k). Note that X0 has n distinct eigenvalues

because the diagonal matrix
∑n

i=1 xiieij has n distinct eigenvalues. Thus X0 is diag-

onalizable, i.e. there exist invertible matrix P ∈ Mn(K) such that PX0P
−1 is diago-

nal. Now, PF (X0, Y1, . . . , Yn)P−1 = F (PX0P
−1, PY1P

−1, . . . , PYnP
−1) and the fact that

F (X0, Y1, . . . , Yn) is a scalar matrix if and only if PF (X0, Y1, . . . , Yn)P−1 is a scalar matrix,

completes the proof.

Proof of Theorem 1.5.4 for n = 3. . Let X = a1e11 + a2e22 + a3e33, ai ∈ k be a diagonal

matrix and let Yi = epiqi , i = 1, 2, 3 be any matrix units of M3(k). By Lemma 1.5.5, we

only need to show that F (X,Y1, Y2, Y3) is a scalar matrix and also F is not identically zero

on M3(k).

Let g and g be the functions as defined in Definition 1.5.3. We have

g(z1, z2, z3, z4) = (z1 − z2)(z4 − z2)(z1 − z3)(z4 − z3)(z2 − z3)2. (1.3)

Let r, s, t be any permutation of 1, 2, 3. Since Xeij = aieij and eijX = ajeij for all i, j, we

have Xmeij = ami eij and eijX
m = amj eij . Thus

Xm1YrX
m2YsX

m3YtX
m4 = am1

pr a
m2
ps a

m3
pt a

m4
qt eprqrepsqseptqt

. Hence

g(X,Yr, Ys, Yt) = g(apr , aps , apt , aqt)eprqrepsqseptqt . (1.4)

By (1.3), we also have

g(apr , aps , apt , aqt) = (apr − aps)(aqt − aps)(apr − apt)(aqt − apt)(aps − apt)2. (1.5)

By (1.4), if eprqrepsqseptqt = 0 or g(apr , aps , apt , aqt) = 0, then g(X,Y1, Y2, Y3) = 0. Now,

eprqrepsqseptqt = 0 unless qr = ps and qs = pt. Also, by (1.5), g(apr , aps , apt , aqt) = 0 unless

pr, ps, pt is a permutation of 1, 2, 3 and qt = pr. Note that if qt = pr, then by (1.5),

g(apr , aps , apt , aqt) = (apr − aps)2(apr − apt)2(aps − apt)2.
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Let

∆(a1, a2, a3) := (apr − aps)2(apr − apt)2(aps − apt)2.

Note that since pr, ps, pt is a permutation of 1, 2, 3, we have

∆(a1, a2, a3) = (a1 − a2)2(a2 − a3)2(a1 − a3)2.

So g(X,Yr, Ys, Yt) = 0 unless pr, ps, pt is a permutation of 1, 2, 3 and qr = ps, qs = pt, qt =

pr and in this case g(X,Y1, Y2, Y3) = ∆(a1, a2, a3)eprpr . Thus F (X,Yr, Ys, Yt) = 0 unless

pr, ps, pt is a permutation of 1, 2, 3 and qr = ps, qs = pt, qt = pr and in this case

F (X,Yr, Ys, Yt) = g(X,Y1, Y2, Y3) + g(X,Y2, Y3, Y1) + g(X,Y3, Y1, Y2)

= ∆(a1, a2, a3)(eprpr + epsps + eptpt) = ∆(a1, a2, a3)I.
(1.6)

To complete the proof of the theorem, we show that F is not identically zero on M3(k).

This is clear if k is infinite because then we can choose three distinct elements a1, a2, a3 ∈ k.

Then ∆(a1, a2, a3) 6= 0 and the result follows from (1.6).

If k is finite, let k be the algebraic closure of k. Let z be a variable over k and let f ∈ k[z]

be an irreducible polynomial of degree three. Let X ∈M3(k) be its companion matrix. Then

X has distinct eigenvalues in k and so it is diagonalizable. Hence there exist an invertible

element P ∈ M3(k) such that PXP−1 is diagonal and its diagonal entries are distinct. So,

by (1.6), there exist matrix units E1, E2, E3 ∈ M3(k) such that F (PXP−1, Y1, Y2, Y3) 6= 0.

Let P−1EiP = Ui, i = 1, 2, 3. Then Ui ∈M3(k) and

PF (X,U1, U2, U3)P
−1 = F (PXP−1, E1, E2, E3).

Thus F (X,U1, U2, U3) 6= 0. Finally, since F is multilinear in yi and each Ui is a linear

combination of matrix units and F (X,U1, U2, U3) 6= 0, it follows that there exist matrix

units Y1, Y2, Y3 ∈M3(k) such that F (X,Y1, Y2, Y3) 6= 0 and the proof is complete.

The following lemma extends Formanek’s theorem to finite-dimensional central simple

algebras.

Lemma 1.5.6 ([24], Part B, Lemma 4.14 (d)). Let R be a finite-dimensional central simple

k-algebra of degree n.

(1) The standard polynomial S2n is an identity for R and R does not satisfy any polynomial

of degree less than 2n.
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(2) The Formanek polynomial F (x, y1, . . . , yn) is a central polynomial for R.

Proof. So R ∼= Mm(D) for some finite-dimensional central division k-algebra. Let K be a

maximal subfield of D. Then, by Corollary 1.4.26, R⊗kK ∼= Mn(K). By Remark 1.4.10, R

and Mn(K) satisfy the same multilinear polynomials. Thus the standard polynomial S2n is

an identity for R and no polynomial of degree less than 2n is an identity for R, by Corollary

1.4.17 and Theorem 1.4.18.

To prove the second part of the lemma, we consider two cases. If k is finite, then D is

a field and we are done by Theorem 1.5.4. So we may assume that k is infinite. Let z be a

variable and consider the polynomial h = [F, z]. Clearly h is an identity for Mn(K) ∼= R⊗kK
because F is a central polynomial for Mn(K). Therefore h is an identity for R too. Also,

by Proposition 1.4.11, F is not an identity for R because it is not an identity for Mn(K).

Thus F is a central polynomial for R.

Lemma 1.5.7. Let R be a finite-dimensional central simple k-algebra of degree m. The

Formanek polynomial F (x, y1, . . . , yn), n > m, is an identity for R.

Proof. By Corollary 1.4.26, there exists a field extension K/k such that R⊗kK ∼= Mm(K).

So we only need to prove that F is an identity for Mm(K). Now, there is an embedding

Mm(K) −→Mn(K) defined by

a 7→

(
a 0

0 0

)
.

Let a, b1, . . . , bn ∈ Mm(K). Then c = F (a, b1, . . . , bn) ∈ Mm(K) is in the center of Mn(K),

i.e. c = αI, where α ∈ K and I is the identity matrix of Mn(K). But the only scalar

multiple of I which is in Mm(K) is the zero matrix. Thus c = 0.

Theorem 1.5.8. (Rowen, [53]) Let R be a semiprime PI-ring. If J 6= (0) is an ideal of R,

then J ∩ Z(R) 6= (0).

Proof. Suppose first that we have proved the theorem for semiprimitive PI-rings and let J be

a nonzero ideal of R. Let S = R[x], the polynomial ring in the variable x. By Corollary 1.4.15,

S is a semiprimitive PI-ring and clearly J [x] is a nonzero ideal of S. Thus, since the center

of S is Z(R)[x], we have (J ∩ Z(R))[x] = J [x] ∩ Z(R)[x] 6= (0) and hence J ∩ Z(R) 6= (0).

So we may assume that R is a semiprimitive PI-ring. Let J be a nonzero ideal of R

and suppose that R satisfies a polynomial identity of degree d. Let {Pi : i ∈ I} be the
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set of left primitive ideals of R. Then
⋂
i∈I Pi = (0) and Ri = R/Pi is a primitive PI-

ring for all i ∈ I. Thus, by Theorem 1.4.25, each Ri is a finite-dimensional central simple

algebra of degree, say, ni. Let πi : R −→ Ri, i ∈ I be the natural projection defined by

πi(r) = r + Pi, r ∈ R. We also have an injective ring homomorphism ν : R −→
∏
i∈I Ri

defined by ν(r) = (πi(r))i∈I .

Clearly every polynomial identity for R is also an identity for each Ri. Also, by Lemma

1.5.6, Ri does not satisfy any polynomial of degree less than 2ni. Thus d ≥ 2ni for all i.

Therefore the set {ni : i ∈ I} is bounded above by d/2. Now, πi(J) = Ji, i ∈ I, is an ideal

of Ri. Since Ri is a simple ring, we have Ji = (0) or Ji = Ri for each i. We cannot have

Ji = (0) for all i because then J = (0). So there exists some s ∈ I such that Js = Rs. Let

n = max{ns : Js = Rs}. Let F (x, y1, . . . , yn) be the Formanek polynomial and let

A = {F (a, b1, . . . , bn) : a, b1, . . . , bn ∈ J} ⊆ J.

For each i let πi(A) = Ai ⊆ Ji. If ni > n, then Ai = (0) ⊆ Z(Ri) because Ji = (0). If

ni < n, then again Ai = (0) ⊆ Z(Ri) because F is an identity for Ri, by Lemma 1.5.7. If

ni = n, then F is a central polynomial for Ri, by the second part of Lemma 1.5.6, and thus

Ai ⊆ Z(Ri). So each Ai is central in Ri and hence ν(A) is central in
∏
i∈I Ri. Therefore A

is central in R because ν is injective. Thus A ⊆ J ∩ Z(R).

The only thing left is to show that A 6= (0). To prove this, choose an i ∈ I such that

ni = n. Then, Ji = Ri and F is a central polynomial for Ri and so it is not an identity for

Ri. Hence there exist u, v1, . . . , vn ∈ Ri such that F (u1, v1, . . . , vn) 6= 0. Now, since πi(J) =

Ji = Ri, there exist a, b1, . . . , bn ∈ J such that πi(a) = u and πt(bt) = vt, t = 1, . . . , n.

Therefore πi(F (a, b1, . . . , bn)) = F (u, v1, . . . , vn) 6= 0 and so 0 6= F (a, b1, . . . , bn) ∈ A.

Corollary 1.5.9 ([24], Part B, Corollary 6.3). If the center of a semiprime PI-ring R is a

field, then R is a finite-dimensional central simple algebra.

Proof. Let J be an ideal of R. If J 6= (0), then there exists a nonzero element a ∈ J ∩Z(R),

by Theorem 1.5.8. Since Z(R) is a field, a is invertible and thus 1 ∈ J, i.e. J = R. So R is

a simple ring and we are done by Theorem 1.4.25.

Theorem 1.5.10. (Posner, [50]) Let R be a prime ring and let QZ(R) be the central local-

ization of R.

(1) The ring QZ(R) is prime and Z(QZ(R)) is the quotient field of Z(R).



CHAPTER 1. PRELIMINARIES 34

(2) The ring R is PI if and only if QZ(R) is a finite-dimensional central simple algebra.

Proof. The first part follows from Proposition 1.2.18 and the fact that the center of a prime

ring is a domain. We now prove the second part of the theorem. If QZ(R) is a finite-

dimensional central simple algebra, then it is PI and so R is PI too because R ⊆ QZ(R).

Conversely, if R is PI, then QZ(R) is PI by Corollary 1.4.16. Thus, by the first part of the

theorem, QZ(R) is a prime PI-ring whose center is a field and so it is a finite-dimensional

central simple algebra by Corollary 1.5.9.

Corollary 1.5.11. If R is a PI-domain, then Q(R) = QZ(R) and thus Q(R) is PI too.

Proof. If R is a PI-domain, then R is Ore and hence Q(R) exists and it is a division ring.

On the other hand, QZ(R) is a domain and thus, by Theorem 1.5.10, QZ(R) is a division

ring too. The result now follows from R ⊆ QZ(R) ⊆ Q(R) and the fact that Q(R) is the

smallest division ring containing R. Now Corollary 1.4.16 completes the proof.

1.6 Gelfand-Kirillov Dimension

Throughout this section, k is a field. Let A be a finitely generated k-algebra. The Gelfand

Kirillov dimension, or GK dimension, of A measures the rate of the growth of A in terms of

any generating set of A. The smallest possible value of the GK dimension of A is zero and

this happens if and only if dimk A <∞. On the other hand, if A contains a free algebra on

two variables, then the GK dimension of A is infinity. If A is commutative, then the GK

dimension of A is just the Krull dimension of A. We begin with the definition and some

basic facts about the GK dimension of algebras.

1.6.1 Definitions and Basic Results

Let A be a k-algebra. Let V be a k-vector subspace of A spanned by the set {a1, . . . , am}. For

any integer n ≥ 1 we denote by V n the k-subspace of A spanned by all monomials of length

n in a1, . . . , am. We also define V 0 = k. If A, as a k-algebra, is generated by a1, · · · , an,

then V is called a generating subspace of A. We denote by Vn the union
⋃n
i=0 V

i. Note that

A =
⋃∞
n=0 V

n =
⋃∞
n=0 Vn, for any generating subspace of A. A generating subspace of A

which contains 1 is called a frame of A. If V is a frame of A, then clearly Vn = V n for all n.
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For example, letA = k[x1, · · · , xn], the polynomial algebra over k in n variables x1, · · · , xn.

Then V = kx1 + · · ·+ kxn is a generating subspace but not a frame of A. The vector space

k + V is a frame of A.

Lemma 1.6.1. Let A be a finitely generated k-algebra and let V and W be two generating

subspaces of A. Then lim sup
n→∞

logn(dimVn) = lim sup
n→∞

logn(dimWn).

Proof. We have A =
⋃∞
n=0 Vn =

⋃∞
n=0Wn. Since both V and W are finite-dimensional,

there exist integers r ≥ 1 and s ≥ 1 such that V ⊆ Wr and W ⊆ Vs. Thus Vn ⊆ Wrn and

Wn ⊆ Vsn for all integers n ≥ 0. Now, dimVn ≤ dimWrn implies that

logn(dimVn) ≤ logn(dimWrn) = (1 + logn r) logrn(dimWrn).

Taking limsup of both sides of the above inequality gives

lim sup
n→∞

logn(dimVn) ≤ lim sup
n→∞

logn(dimWn),

because lim
n→∞

(1 + logn r) = 1 and

lim sup
n→∞

logrn(dimWrn) ≤ lim sup
n→∞

logn(dimWn).

Similarly dimWn ≤ dimVsn implies

lim sup
n→∞

logn(dimWn) ≤ lim sup
n→∞

logn(dimVn),

which completes the proof.

By the above lemma, lim sup
n→∞

logn(dimVn) does not depend on the generating subspace

V. So the following definition makes sense.

Definition 1.6.2. Let A be a finitely generated k-algebra and let V be a generating subspace

of A. The Gelfand-Kirillov dimension, or GK dimension, of A is defined by GKdim(A) :=

lim sup
n→∞

logn(dimVn). If V is a frame of A, then

GKdim(A) = lim sup
n→∞

logn(dimV n).

We will see later in this section that if A is commutative, then the GK dimension of A

and the Krull dimension of A are equal.

The following simple result allows us to extend the definition of GK dimension to arbi-

trary algebras, as given in Definition 1.6.4.
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Proposition 1.6.3. Let A be a finitely generated k-algebra and let B be a finitely generated

subalgebra of A. Then GKdim(B) ≥ GKdim(A).

Proof. Let W be a frame of B and extend W to a frame V of A. Then Wn ⊆ V n for all n.

Thus dimWn ≤ dimV n for all n and the result follows.

So by the above Proposition, if A is a finitely generated k-algebra, then sup
B

GKdim(B) =

GKdim(A), where sup runs over all finitely generated k-subalgebras B of A. Now we can

define the GK dimension of an arbitrary algebra.

Definition 1.6.4. Let A be a k-algebra. We define GKdim(A) := sup
B

GKdim(B), where

sup runs over all finitely generated k-subalgebras B of A.

Proposition 1.6.5 ([48], Proposition 8.2.2). Let A be a k-algebra, B a subalgebra of A and

I an ideal of A. Then GKdim(A) ≥ max{GKdim(B),GKdim(A/I)}.

Proof. The inequality GKdim(A) ≥ GKdim(B) is obvious by Definition 1.6.4 and the fact

that every finitely generated subalgebra of B is a finitely generated subalgebra of A.

Now let A1 be a finitely generated subalgebra of A/I. Let π : A −→ A/I be the natural

homomorphism. Then A0 = π−1(A1) is a finitely generated subalgebra of A. Let W be a

frame of A1. Then V = π−1(W ) is a frame of A0 and clearly dimk V
n ≥ dimkW

n for all n.

Thus GKdim(A) ≥ GKdim(A0) ≥ GKdim(A1). Taking supremum over all finitely generated

subalgebras A1 gives GKdim(A) ≥ GKdim(A/I).

If I in Proposition 1.6.5 contains a left or right regular element, e.g. if A is a domain,

then we have a stronger upper bound for the GK dimension of A/I, as the next result shows.

Proposition 1.6.6 ([56], Proposition 6.2.24). Let A be a k-algebra and let I be an ideal of

A. If l.annA(a) = (0) for some a ∈ I, then GKdim(A/I) ≤ GKdim(A)− 1.

Proof. Let B be any finitely generated subalgebra of A and let V be a frame of B′ := B[a]

which contains a. Let V = (V + I)/I. Clearly V is a frame of B′ = (B′+ I)/I = (B + I)/I.

If n is an integer, then, as k-vector spaces, V n = (V n ∩ I)⊕Wn for some finite-dimensional

k-vector space Wn. Note that Wn
∼= V n/(V n∩I) ∼= (V n+I)/I = V

n
. Also, since Aa∩Wn ⊆

I∩V n and Aa∩Wn ⊆Wn, we have Aa∩Wn = (0) for all n. Therefore, since l.annA(a) = (0),

the sum
∑n

i=0Wna
i is direct for all n. Clearly

∑n
i=0Wna

i ⊆ V 2n for all n because both a
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and Wn are in V n. Thus

dimk V
n ≥ dimk

n∑
i=0

Wna
i =

n∑
i=0

dimkWna
i = (n+ 1) dimkWn > ndimkWn = n dimk V

n
.

Hence

GKdim(A) ≥ GKdim(B′) ≥ 1 + GKdim(B′).

Since every finitely generated subalgebra of A/I is in the form (B + I)/I for some finitely

generated subalgebra B of A, the above inequality holds for any finitely generated subalgebra

of A/I. Thus GKdim(A) ≥ 1 + GKdim(A/I).

And here is a nice little application of the proposition.

Corollary 1.6.7. Let A be k-algebra which is a domain. Let B be a simple subalgebra of

A. If GKdim(A) < GKdim(B) + 1, then A is simple too.

Proof. Let I be a nonzero ideal of A. If I ∩B 6= (0), then I ∩B = B, because B is simple,

and so I = A. Suppose now that I ∩B = (0). Then the natural homomorphism B −→ A/I

would be injective and so GKdim(B) ≤ GKdim(A/I) ≤ GKdim(A) − 1, by Proposition

1.6.6, which is a contradiction.

Now, we are going to look at algebras with the smallest and the largest possible GK di-

mension, i.e. zero and infinity. First, we show that free algebras have infinite GK dimension

and then we characterize algebras of GK dimension zero.

Proposition 1.6.8 ([48], Proposition 8.1.15 (iv)). If X is a set of noncommuting variables

with |X| ≥ 2 and A := k〈X〉, then GKdim(A) =∞.

Proof. Let x, y ∈ X and put B = k〈x, y〉. Let V = k + kx + ky. Then V is a frame of B

and dimV n = 1 + 2 + · · · + 2n ≥ 2n. Thus logn(dimV n) ≥ n logn 2. Hence GKdim(A) =

lim sup
n→∞

logn(dimV n) ≥ lim
n→∞

n logn 2 =∞ and so GKdim(A) =∞, by Definition 1.6.4.

Corollary 1.6.9 ([48], Corollary 8.1.21). Let A be a k-algebra which is a domain. If

GKdim(A) <∞, then A is Ore.

Proof. If A contains a copy of k〈x, y〉, where x and y are noncommuting variables, then

GKdim(A) = ∞, by Proposition 1.6.8. Thus A does not contain such a subalgebra and

hence A is Ore by Proposition 1.2.15.
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Proposition 1.6.10 ([48], Proposition 8.1.17 (i)). Let A be a k-algebra. Then GKdim(A) =

0 if and only if A is locally finite, i.e. every finitely generated subalgebra of A is finite-

dimensional over k.

Proof. Suppose first that A is locally finite and let B be a finitely generated subalgebra of A.

Then B is finite-dimensional over k and so V = A is a frame of B. Clearly V n = B and thus

GKdim(B) = lim sup
n→∞

logn(dimB) = 0, because dimB does not depend on n. Conversely,

suppose that GKdim(A) = 0 and let B be a finitely generated subalgebra of A. Let V be a

frame of B and suppose for now that V n ⊂ V n+1 for all n. Then k ⊂ V ⊂ V 2 ⊂ · · · and

thus 1 < dimV < dimV 2 < · · · . Hence dimV > 1, dimV 2 > 2 and in general dimV n > n.

Therefore

0 = GKdim(B) = lim sup
n→∞

logn(dimV n) ≥ lim
n→∞

logn n = 1,

which is absurd. So our assumption that V n ⊂ V n+1 for all n, is false. Hence V n = V n+1,

for some integer n ≥ 0 and so B =
⋃∞
i=0 V

i = V n. Thus B is finite-dimensional and so A is

locally finite.

Remark 1.6.11. If A is a domain of GK dimension zero, then A is a division ring. To

see this, let a ∈ A. Then, by Proposition 1.6.10, the k-subalgebra generated by a is finite-

dimensional and hence a is algebraic over k. Thus A is algebraic over k and we know that

an algebraic k-algebra which is a domain is a division ring.

Assumption. For the rest of this section, all algebras have finite GK dimension.

There is no algebra whose GK dimension is strictly between zero and one, as the next

result shows.

Proposition 1.6.12 ([48], Proposition 8.1.17 (ii)). Let A be a k-algebra. If GKdim(A) 6= 0,

then GKdim(A) ≥ 1.

Proof. Since GKdim(A) 6= 0, there exists a finitely generated k-subalgebra B of A such

that GKdim(B) 6= 0. Let V be a frame of B. If V n = V n+1, for some integer n ≥ 0, then

B =
⋃∞
i=0 V

i = V n and so B is finite-dimensional. But then GKdim(B) = 0, by Proposition

1.6.10, which is false. Thus k ⊂ V ⊂ V 2 ⊂ · · · and hence dimV n > n for all n ≥ 0. Therefore

GKdim(B) = lim sup
n→∞

logn(dimV n) ≥ 1 and so GKdim(A) ≥ GKdim(B) ≥ 1.

So if 0 < α < 1, then there is no algebra A with GKdim(A) = α. We will see in the next

subsection that for any integer m ≥ 1 there exists an algebra A such that GKdim(A) = m.
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1.6.2 GK Dimension of Polynomial and Weyl Algebras

In this subsection, we find the GK dimension of a commutative polynomial k-algebra in n

variables and the n-th Weyl algebra over k. We begin by evaluating the GK dimension of

polynomial algebras.

Proposition 1.6.13 ([48], Proposition 8.2.7 (iii)). Let A be a k-algebra. Then GKdim(A[x]) =

1 + GKdim(A).

Proof. Let B0 be a finitely generated subalgebra of A[x] generated by f1, . . . , fm ∈ A[x].

Let B be the subalgebra of A generated by the coefficients of fi, i = 1, . . . ,m. Then clearly

B is a finitely generated subalgebra of A and B0 ⊆ B[x]. Now, let W be a frame of B. Let

V = W + kx. Then V is a frame of B[x] and clearly V n = (W + kx)n ⊆
⊕n

i=0W
nxi for all

integers n ≥ 0. Hence dimV n ≤ (n+ 1) dimWn and so

GKdim(B0) ≤ GKdim(B[x]) ≤ lim
n→∞

logn(n+1)+GKdim(B) = 1+GKdim(B) ≤ 1+GKdim(A).

Therefore GKdim(A[x]) ≤ 1 + GKdim(A). It is also clear that V 2n = (W + kx)2n ⊇⊕n
i=0W

nxi for all integers n ≥ 0. Thus dimV 2n ≥ (n+ 1) dimWn and so

GKdim(A[x]) ≥ GKdim(B[x]) ≥ lim
n→∞

logn(n+ 1) + GKdim(B) = 1 + GKdim(B).

Hence GKdim(A[x]) ≥ 1 + GKdim(A) and the result follows.

Corollary 1.6.14. Let A be a k-algebra. Then GKdim(A[x1, . . . , xm]) = m + GKdim(A).

In particular, GKdim(k[x1, . . . , xm]) = m.

So, by the above corollary, for any integer m ≥ 1 there exists a finitely generated algebra

A such that GKdim(A) = m. Thus, by Definition 1.6.4, if X is an infinite set of commuting

variables, then GKdim(k[X]) =∞. The following theorems together give the possible values

of the GK dimension of an algebra.

Theorem 1.6.15. (Bergman’s gap theorem, [37, Theorem 2.5]) There is no algebra A with

1 < GKdim(A) < 2.

Theorem 1.6.16. (Warfield, [48, Proposition 8.1.18]) For any real number α ≥ 2 there

exists a finitely generated k-algebra of GK dimension α.
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Proof. We only need to show that for every 2 ≤ q < 3 there exists a finitely generated

k-algebra of GK dimension q. The reason is that if r ≥ 3 is any real number, then r = q+m

for some 2 ≤ q < 3 and some positive integer m. So if A is a finitely generated k-algebra

of GK dimension q, then, by Corollarty 1.6.14, the polynomial algebra A[x1, . . . , xm] is a

finitely generated algebra of GK dimension q +m = r.

Now, fix a real number 2 ≤ q < 3 and let R := k〈X,Y 〉. Let I be the two-sided ideal of

R generated by Y . It is easy to see that GKdim(R/I2) = 2 and GKdim(R/I3) = 3. Now,

consider the algebras of the form R/J where I3 ⊂ J ⊂ I2. It turns out that we can choose

J somehow that GKdim(R/J) = q. We define J as follows. First, for every positive integer

n let αn := bn(q−1)/2c. Let

J := I3 + L,

where L is the two-sided ideal of R generated by all monomials XrY XsY Xt of length n,

where n is any positive integer and s < n−αn. The claim is that GKdim(R/J) = q. To prove

the claim, let x, y be the images of X,Y in R/J , respectively, and consider the generating

subspace V = kx + ky of R/J . Let n be a positive integer. By the definition of J , every

monomial in V n whose degree in y is ≥ 3 is zero. Also, every monomial xryxsyxt ∈ V n,

where s < n− αn, is zero. So the set

{xn, xuyxv, xryxsyxt : u+ v + 1 = r + s+ t+ 2 = n, s ≥ n− αn}

is a k-basis for V n and hence

dimV n = 1 + n+
αn(αn − 1)

2
.

The rest of the proof is just simple calculus: using the fact that n(q−1)/2−1 < αn ≤ n(q−1)/2,
we see that there exists an integer N and positive constants β, γ such that

βnq−1 ≤ dimV n ≤ γnq−1

for all n ≥ N . Thus if we estimate dim
⋃n
i=0 V

i =
∑n

i=0 dimV i with a definite integral, we

get GKdim(R/J) = lim
n→∞

logn

n∑
i=0

dimV i = q.

We now give the definition of the Weyl algebras and then we find their GK dimension.

Definition 1.6.17. Let R be a ring and let n ≥ 0 be an integer. The n-th Weyl algebra

over R is defined as follows. First we define A0(R) = R and for n ≥ 1, An(R) is defined
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to be the ring of polynomials in 2n variables xi, yi, 1 ≤ i ≤ n, with coefficients in R and

subject to the relations xixj = xjxi, yiyj = yjyi, and yixj = xjyi + δij for all i, j, where

δij is the Kronecker delta. We will assume that every element of R commutes with all 2n

variables xi and yi.

So, for example, A1(R) is the ring of polynomials generated by x, y with coefficients in R

and subject to the relation yx = xy+1. An element of A1(R) is in the form
∑
rijx

iyj , rij ∈
R. It is not hard to prove that the set of monomials in the form xα1

1 · · ·xαnn yβ11 · · · y
βn
n is an

R-basis for An(R). We also note that An(R) = A1(An−1(R)). If R is a domain, then An(R)

is a domain too. It is well-known that if char(k) = 0, then An(k) is a simple noetherian

domain [48, Theorem 1.3.5].

We are now going to prove that if R is a k-algebra, then GKdim(An(R)) = 2n +

GKdim(R), a result similar to Corollary 1.6.14.

Proposition 1.6.18 ([48], Proposition 8.1.15 (ii)). If R is a k-algebra, then GKdim(A1(R)) =

2 + GKdim(R).

Proof. Suppose first that R is finitely generated and let V be a frame of R. Let U =

k + kx+ ky. Since yx = xy + 1, we have

dimk U
n =

(n+ 1)(n+ 2)

2
. (1.7)

Let W = U + V. Clearly W is a frame of A1(R). We have Wn =
∑

i+j=n U
iV j for all n,

because every element of V commutes with every element of U. Therefore, since V j ⊆ V n and

U i ⊆ Un for all i, j ≤ n, we have Wn ⊆ UnV n and W 2n ⊇ UnV n. Thus Wn ⊆ UnV n ⊆W 2n.

Hence logn dimkW
n ≤ logn dimk U

n + logn dimk V
n ≤ logn dimkW

2n and so

GKdim(A1(R)) ≤ 2 + GKdim(R) ≤ GKdim(A1(R)),

by (1.7), and we are done.

For the general case, let R0 be any finitely generated k- subalgebra of R. Then, by what

we just proved, 2 + GKdim(R0) = GKdim(A1(R0)) ≤ GKdim(A1(R)) and hence

2 + GKdim(R) ≤ GKdim(A1(R)).

Now, let A0 be a k-subalgebra of A1(R) generated by a finite set {f1, . . . , fm}. Let R0 be the

k-subalgebra of R generated by all the coefficients of f1, . . . , fm. Then A0 ⊆ A1(R0) and so

GKdim(A0) ≤ GKdim(A1(R0)) = 2+GKdim(R0) ≤ 2+GKdim(R). Thus GKdim(A1(R)) ≤
2 + GKdim(R) and the proof is complete.
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Corollary 1.6.19. If R is a k-algebra, then GKdim(An(R)) = 2n + GKdim(R) for all n.

In particular, GKdim(An(k)) = 2n.

Proof. It follows from Proposition 1.6.18 and the identity An(R) = A1(An−1(R)).

1.6.3 GK Dimension of Extensions of Algebras

Let A be a k-algebra. In this subsection, we study the behavior of the GK dimension under

some extensions of A. We first show that the GK dimension of any algebra which is a finite

module over A is equal to the GK dimension of A. This extends Proposition 1.6.10. We also

prove that the GK dimension of a central localization of A is equal to the GK dimension

of A. These fundamental results have two important consequences. The first one is that

the GK dimension and the Krull dimension of a finitely generated commutative algebra are

equal. The second consequence is that, over an algebraically closed field k, every finitely

generated k-algebra which is a domain of GK dimension at most 1 is commutative. We

begin with a lemma.

Lemma 1.6.20 ([48], Proposition 8.2.3). If A and B are k-algebras and GKdim(B) = 0,

then GKdim(A⊗k B) = GKdim(A).

Proof. Since A ∼= A ⊗k 1 ⊆ A ⊗k B, we have GKdim(A) ≤ GKdim(A ⊗k B). Now, let C

be a finitely generated subalgebra of A ⊗k B with a frame W. Since dimkW < ∞, there

exist finite-dimensional subspaces U, V of A,B, respectively, such that 1A ∈ U, 1B ∈ V

and W ⊆ U ⊗k V. Let A0, B0 be the algebras generated by U, V respectively. Now, Wn ⊆
Un ⊗k V n for all n, and hence dimkW

n ≤ (dimk U
n)(dimk V

n). Therefore logn dimkW
n ≤

logn dimk U
n + logn dimk V

n and hence, taking limsup, gives

GKdim(C) ≤ GKdim(A0) + GKdim(B0) = GKdim(A0) ≤ GKdim(A).

Since the above holds for any finitely generated subalgebra C of A⊗kB, we have GKdim(A⊗k
B) ≤ GKdim(A).

Corollary 1.6.21 ([48], Proposition 8.2.17 (i)). If B is a k-algebra, then GKdim(Mn(B)) =

GKdim(B).

Proof. We have Mn(B) ∼= B ⊗k Mn(k) and GKdim(Mn(k)) = 0, by Proposition 1.6.10.

Thus GKdim(Mn(B)) = GKdim(B), by Lemma 1.6.20.
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Let A be a k-algebra and let B be a subalgebra of A. If A, as a B-module, is both finitely

generated and free over B, then GKdim(EndB(A)) = GKdim(B), by Corollary 1.6.21. If A

is finitely generated but not necessarily free over B, then we have the following result.

Lemma 1.6.22 ([48], Proposition 8.2.9 (i)). Let B be a subalgebra of a k-algebra A. Suppose

that, as a left module, A is finitely generated over B. Then GKdim(EndB(A)) ≤ GKdim(B).

Proof. So A =
∑n

i=1Bai for some ai ∈ A. Define ϕ : Bn −→ A by ϕ(b1, . . . , bn) =
∑n

i=1 biai

and let I = kerϕ. Let C = {f ∈ EndB(Bn) : f(I) ⊆ I}. Clearly C is a subalgebra of

EndB(Bn) ∼= Mn(B). Now, given f ∈ C define f : A −→ A by f(a) = ϕf(u), where u is any

element of Bn with ϕ(u) = a. Note that f is well-defined because if ϕ(v) = a for some other

v ∈ Bn, then u− v ∈ I and thus f(u− v) ∈ I. Hence 0 = ϕf(u− v) = ϕf(u)− ϕf(v) and

so ϕf(u) = ϕf(v). It is easy to see that f ∈ EndB(A). Finally, define ψ : C −→ EndB(A)

by ψ(f) = f. Then ψ is a k-algebra onto homomorphism and hence

GKdim(EndB(A)) ≤ GKdim(C) ≤ GKdim(Mn(B)) = GKdim(B),

by Proposition 1.6.5 and Corollary 1.6.21.

Proposition 1.6.23 ([48], Proposition 8.2.9 (ii)). Let B be a subalgebra of a k-algebra A.

If, as a left module, A is finitely generated over B, then GKdim(A) = GKdim(B).

Proof. The algebra A has a natural embedding into EndB(A) and so

GKdim(A) ≤ GKdim(EndB(A)).

Thus GKdim(A) ≤ GKdim(B), by Lemma 1.6.22.

We recall that Kdim(A), the Krull dimension of a commutative algera A, is the largest

integer n ≥ 0 for which there exist prime ideals Pi, 0 ≤ i ≤ n, of A such that P0 ⊂ P1 ⊂
. . . ⊂ Pn. If there is no such integer, then we define Kdim(A) = ∞. A consequence of

Proposition 1.6.23 is that GKdim(A) = Kdim(A) for any finitely generated commutative

k-algebras A. This is a simple consequence of the following well-known result.

Theorem 1.6.24. (Noether normalization theorem, [25, Theorem A1, p. 221]) Let A be a

finitely generated commutative k-algebra of Krull dimension m. There exists a k-subalgebra

B of A such that B ∼= k[x1, . . . , xm], the polynomial algebra in m variables x1, . . . , xm, and

A is a finitely generated B-module.
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Corollary 1.6.25 ([48], Theorem 8.2.14 (i)). If A is a finitely generated commutative k-

algebra, then GKdim(A) = Kdim(A).

Proof. Let m = Kdim(A). Then A contains a polynomial k-algebra B = k[x1, . . . , xm] and

A is a finitely generated B-module, by Theorem 1.6.24. Thus, by Corollary 1.6.14 and

Proposition 1.6.23, GKdim(A) = GKdim(B) = m.

The GK dimension is also well-behaved under central localization, as the next result

shows.

Proposition 1.6.26 ([48], Proposition 8.2.13). Let A be a k-algebra. Suppose that S is a

regular submonoid of A contained in the center of A. Then GKdim(S−1A) = GKdim(A).

Proof. Let T be a finitely generated k-subalgebra of S−1A and suppose that

W = {w1 = 1, . . . , wm}

is a frame of T. Then, by Proposition 1.2.8, there exit s ∈ S and a1, . . . , am ∈ A such that

wi = s−1ai for all i. Let B be the k-subalgebra of A generated by ai and let V be the

k-subspace generated by 1 and ai. Now, since S is in the center of A, we have snWn ⊆ V n.

Thus dimWn = dim snWn ≤ dimV n. Therefore

GKdim(T ) ≤ GKdim(B) ≤ GKdim(A),

for every finitely generated k-subalgebra of T of S−1A, and so GKdim(S−1A) ≤ GKdim(A).

On the other hand, A ⊆ S−1A, because S is regular, and thus GKdim(A) ≤ GKdim(S−1A).

As an application of the above proposition, we can find the GK dimension of a Laurent

polynomial ring.

Corollary 1.6.27 ([48], Corollary 8.2.15). Let A be a k-algebra. Then GKdim(A[x, x−1]) =

1 + GKdim(A).

Proof. Since A[x, x−1] is the localization of A[x] at the central regular submonoid S =

{1, x, x2, . . .}, we have GKdim(A[x, x−1]) = GKdim(A[x]). The result now follows from

Proposition 1.6.13.
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We are now able to prove an important result, i.e. Proposition 1.6.32, that will be used

frequently in chapters two and three. We have already seen that GKdim(A) = 0 if and only

if A is locally finite and that there is no algebra of GK dimension strictly between 0 and one.

What can we say about the case GKdim(A) = 1? The answer is that in many important

cases they are finitely generated modules over some polynomial algebra in one variable. In

order to prove this result, we need the following two theorems.

Theorem 1.6.28. (Artin-Tate, [25, p. 143]) Let A ⊆ B ⊆ C be commutative k-algebras.

Suppose that A is Noetherian and C is a finitely generated A-algebra. If C is a finitely

generated B-module, then B is a finitely generated A-algebra.

Theorem 1.6.29. (Small, Stafford and Warfield, [59, Theorem 1.6]) Let A be a finitely

generated semiprime k-algebra. If GKdim(A) = 1, then A is finitely generated over its

center Z(A).

Proposition 1.6.30 ([56], Recapitulation 6.2.34). If A is a finitely generated semiprime

k-algebra, then GKdim(A) = 1 if and only if A is finitely generated as a module over some

polynomial algebra k[x].

Proof. If A is finitely generated as a module over some polynomial algebra k[x], then

GKdim(A) = GKdim(k[x]) = 1, by Proposition 1.6.23 and Corollary 1.6.14. Conversely, if

GKdim(A) = 1, then by Theorem 1.6.29, A is finitely generated Z(A) and thus GKdim(Z(A)) =

1, by Proposition 1.6.23. We also have k ⊆ Z(A) ⊆ A and we know that A is both a finitely

generated k-algebra and a finitely generated Z(A)-module. Thus, by Theorem 1.6.28, Z(A)

is a finitely generated k-algebra. Therefore Kdim(Z(A)) = 1, by Corollary 1.6.25, and so

Z(A) is a finitely generated module over some polynomial algebra k[x], by Theorem 1.6.24.

The result now follows because A is a finitely generated Z(A)-module.

An important consequence of Proposition 1.6.30 together with Tsen’s theorem is that

domains of GK dimension one over algebraically closed fields are commutative. We first

state Tsen’s theorem.

Theorem 1.6.31. (Tsen, [64], see also [41]) Let D be a finite-dimensional division K-

algebra and suppose that K is a finitely generated extension of a field k of transcendence

degree one. If k is algebraically closed, then D is commutative.
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Proposition 1.6.32. Let A be a k-algebra which is a domain and GKdim(A) ≤ 1. If k is

algebraically closed, then A is commutative.

Proof. First note that if a, b ∈ A, then the k-subalgebra generated by a, b has GK dimension

at most one too and so we may assume that A is finitely generated. The case GKdim(A) = 0

easily follows because then A would be finite-dimensional, and hence algebraic, over k and

therefore A = k because k is algebraically closed. Now, suppose that GKdim(A) = 1. The

algebra A is PI, by Proposition 1.6.30 and Proposition 1.4.7, and thus QZ(A), the central

localization of A, is a finite-dimensional central simple algebra by Theorem 1.5.10. Since A is

a domain, QZ(A) is a domain and hence QZ(A) = D is a finite-dimensional division algebra

over its center F, which is the quotient field of Z(A). Thus Kdim(F ) = Kdim(Z(A)) = 1,

by Corollary 1.6.25. Hence, by Theorem 1.6.31, QZ(A) = F. Thus QZ(A), and so A itself,

is commutative.

We close this section with two fundamental theorems in GK dimension theory. The first

one gives a lower bound for the GK dimension of an algebra which is not locally PI. This

result is due to Smith and Zhang. A special case of the second theorem, which is due to W.

Borho and H. Kraft, gives some information about any subalgebra of a finitely generated

algebra whose GK dimension is equal to the GK dimension of the algebra. We begin with

a lemma.

Lemma 1.6.33. If A is a k-algebra which is a domain, then either A is locally PI or

GKdim(A) ≥ 2.

Proof. Let B be a finitely generated k-subalgebra of A. If GKdim(B) = 0, then B is finite-

dimensional over its center and hence PI. If GKdim(B) = 1, then B is again PI by [59].

Thus if B is not PI, then we must have GKdim(B) ≥ 2.

Theorem 1.6.34. (S. Smith and J. Zhang, [60]) Let A a k-algebra and let B ⊆ Z(A) be

a k-subalgebra such that S = B \ {0} is a regular subset of A. If A is not locally PI, then

GKdim(A) ≥ 2 + GKdim(B).

Proof. We know from Lemma 1.6.33 that GKdim(A) ≥ 2. So there is nothing to prove if

GKdim(B) = 0. Thus we may assume that GKdim(B) ≥ 1. Let B0 be any finitely generated

k-subalgebra of B. By Corollary 1.6.25, B0 contains a polynomial k-algebra B1 in d variables

B1 such that GKdim(B1) = GKdim(B0) and by Corollary 1.6.14, GKdim(B1) = d. We only
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need to prove that GKdim(A) ≥ 2 + GKdim(B1). Let S1 be the set of nonzero elements of

B1 and let Q := S−11 A. Let F := S−11 B1. Since B1 is a domain, F is the quotient field of B1.

By Proposition 1.6.26, GKdim(Q) = GKdim(A) ≥ 2 and GKdim(F ) = GKdim(B1) ≥ 1.

Let 0 ≤ d < GKdim(F ) and 0 ≤ e < GKdimF (Q). Then there exist a finite-dimensional

k-vector subspace V of F which contains 1 and

dimk V
n ≥ nd

for all large enough integers n. Also, there exists a finite-dimensional F -vector subspace W

of Q which contains 1 and

dimF W
n ≥ ne

for all large enough integers n. Clearly V ⊂ W and hence, for large enough integers n we

have

dimkW
2n ≥ dimk(W

nV n) ≥ (dimF W
n)(dimk V

n) ≥ ne+d.

Thus

GKdim(Q) ≥ e+ d.

Since the above inequality holds for all real numbers 0 ≤ d < GKdim(F ) and 0 ≤ e <

GKdimF (Q), we have

GKdim(A) = GKdim(Q) ≥ GKdimF (Q) + GKdim(F ) = GKdimF (Q) + GKdim(B1).

Now, Q is not locally PI over F because A is not locally PI over k. Thus GKdimF (Q) ≥ 2,

by Lemma 1.6.33, and the proof is complete.

Theorem 1.6.35. (Borho and Kraft, [19]) Let A be a finitely generated k-algebra which is

a domain. Let B be a k-subalgebra of A and suppose that GKdim(A) < GKdim(B) + 1.

Let S := B \ {0}. Then S is an Ore subset of A and S−1A = Q(A). Also, Q(A) is finite-

dimensional as a (left or right) vector space over Q(B).

Proof. First note that, by Corollary 1.6.9, A is an Ore domain and hence both Q(A) and

Q(B) exist and they are division algebras. Now, suppose, to the contrary, that S is not left

Ore. Then there exist x ∈ S and y ∈ A such that Sy ∩ Ax = ∅. This implies that the sum

By+Byx+ · · ·+Byxm is direct for any integer m. Let W be a frame of a finitely generated

subalgebra of B. Let V = W + kx+ ky. Then for any positive n we have

V 2n ⊇Wn(kx+ ky)n ⊇Wny +Wnyx+ · · ·+Wnyxn−1
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and thus dimk V
2n ≥ n dimkW

n because the sum is direct. Therefore logn dimk V
2n ≥ 1 +

logn dimkW
n and hence GKdim(A) ≥ 1 + GKdim(B), a contradiction. A similar argument

shows that S is right Ore. So we have proved that S is an Ore subset of A.

Before we show that S−1(A) = Q(A), we prove that Q(B)A = S−1A is finite-dimensional

as a left vector space over Q(B). So let V be a frame of A. For any positive integer n, let

r(n) = dimQ(B)Q(B)V n.

Clearly Q(B)V n ⊆ Q(B)V n+1 for all n and
⋃∞
n=0Q(B)V n = Q(B)A because

⋃∞
n=0 V

n = A.

So we have two possibilities: either Q(B)V n = Q(B)A for some n or the sequence {r(n)} is

strictly increasing. If Q(B)V n = Q(B)A, then we are done because V n is finite-dimensional

over k and hence Q(B)V n is finite-dimensional over Q(B). Now suppose that the sequence

{r(n)} is strictly increasing. Then r(n) > n because r(0) = dimQ(B)Q(B) = 1. Fix an

integer n and let e1, . . . , er(n) be a Q(B)-basis for Q(B)V n. Clearly we may assume that

ei ∈ V n for all i. Let W be a frame of a finitely generated subalgebra of B. Then

(V +W )2n ⊇WnV n ⊇Wne1 + · · ·+Wner(n),

which gives

dimk(V +W )2n ≥ r(n) dimkW
n > ndimkW

n,

because the sum Wne1 + · · · + Wner(n) is direct. Therefore GKdim(A) ≥ 1 + GKdim(B),

which is a contradiction. So we have proved that the second possibility is in fact impossible

and hence Q(B)A is finite-dimensional over Q(B).

Finally, since, as we just proved, dimQ(B)Q(B)A < ∞, the algebra Q(B)A is algebraic

over Q(B) and thus it is a division algebra. Hence Q(B)A = Q(A) because A ⊆ Q(B)A ⊆
Q(A) and Q(A) is the smallest division algebra containing A.



Chapter 2

Centralizers

2.1 Introduction

Except for the last section, which gives our results on centralizers in semiprime PI-rings,

the rest of this chapter reviews some of well-known results on the structure of centralizers

in associative algebras. For a ring R and a subset X ⊆ R, we denote by C(X;R) the set

of all elements of R which commute with every element of X. We say that C(X;R) is the

centralizer of X in R. That is,

C(X;R) = {r ∈ R : rx = xr, ∀x ∈ X}.

If X = {a}, then we simply write C(a;R) instead of C({a};R). Clearly C(X;R) is a

subring of R and it contains the center Z(R). It is also clear that C(X;R) = R if and only

if X ⊆ Z(R). We are only interested in C(a;R) where a /∈ Z(R).

2.2 Centralizers in Differential Polynomial Rings

In this section, we give Amitsur’s results on centralizers in differential polynomial rings [1].

Let k be a field and let L be a k-vector space. Suppose that [−,−] : L × L −→ L is a

k-bilinear map such that [a, a] = 0 and

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

for all a, b, c ∈ L. Then L is called a Lie algebra. For example, R3 with the vector cross

product is a Lie algebra over R. Any associative algebra is a Lie algebra because we can

49
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define [a, b] = ab− ba for all a, b ∈ A. Now, let L be a Lie k-algebra and define U(L) to be

the associative k-algebra generated by the elements of L with the relation

ab− ba = [a, b]

for all a, b ∈ L. The algebra U(L) is called the universal enveloping algebra of L.

For example, let L be a two-dimensional k-vector space with a basis {a, b}. Define [−,−]

by [a, a] = [b, b] = 0, [a, b] = b and extend the definition to L by linearity. It is easy to see

that L is a Lie algebra. So U(L) is the algebra k[a, b] with the relation ab − ba = b. Thus

ab = ba+ b and an easy induction shows that af = fa+ bf ′ for all f ∈ k[b], where f ′ is the

derivation of f with respect to b. The map δ := b ddb : k[b] −→ k[b] is a derivation of k[b], i.e.

δ is k-linear and δ(fg) = δ(f)g + fδ(g) for all f, g ∈ k[b]. So an element of U(L) is in the

form
∑n

i=0 fia
i, fi ∈ k[b], and when we multiply two elements of U(L) we need to apply the

rule

af = fa+ δ(f), f ∈ k[b].

We say that U(L) is a differential polynomial ring and we write U(L) = R[a; δ] where

R = k[b].

Definition 2.2.1. Let R be a ring and let σ be an endomorphism of R. A σ-derivation of

R is a linear map δ : R −→ R such that

δ(r1r2) = σ(r1)δ(r2) + δ(r1)r2

for all r1, r2 ∈ R. If σ is the identity map, then δ is called a derivation of R.

Definition 2.2.2. Let R be a ring and let σ be an endomorphism of R. Let δ be a σ-

derivation of R. A ring S is called a skew polynomial ring over R if S satisfies the following

conditions.

(1) S contains R as a subring.

(2) There exists x ∈ S such that S is a free left R-module with basis {1, x, x2, . . .}.

(3) xr = σ(r)x+ δ(r) for all r ∈ R.

In this case, we write S = R[x;σ, δ]. If δ = 0 (resp. σ is the identity map), we write

S = R[x;σ] (resp. S = R[x; δ].).
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So an element of S is in the form
∑n

i=0 rix
i and elements of S are added and multiplied

just like ordinary polynomials with this exception that if r ∈ R, then we have the rule

xr = σ(r)x+ δ(r). To show that the ring S exists, let t be an independent variable over R

and let E be the endomorphism ring of the polynomial ring R[t]. Clearly E contains a copy

of R. Define x ∈ E by

x(rtn) = σ(r)tn+1 + δ(r)tn

for all r ∈ R and n ≥ 0. It follows that xr = σ(r)x + δ(r) and that
∑∞

n=0Rx
n is a ring.

Hence S =
∑∞

n=0Rx
n. Note that if R is a domain and σ is injective, then S is a domain

too.

In this section, we will only deal with skew polynomial rings in the form R[x; δ], i.e. we

assume that σ is the identity map. The ring R[x; δ] is called a differential polynomial ring.

We note that if δ is a derivation of R, then the set {r ∈ R : δ(r) = 0} is a subring of R

which contains the identity element of R. Also, if R is a field, then {r ∈ R : δ(r) = 0} is

a subfield of R. To see this, let 0 6= r ∈ R, then 0 = δ(1) = δ(rr−1) = δ(r)r−1 + rδ(r−1) =

rδ(r−1). Thus δ(r−1) = 0.

Remark 2.2.3. Let δ be a derivation of a commutative domain R and let Q(R) be the field

of fractions of R. Let p = a/b ∈ Q(R) where a, b ∈ R and b 6= 0. We define δ̃ : Q(R)→ Q(R)

by

δ̃(p) =
δ(a)b− aδ(b)

b2
.

It is straightforward to see that δ̃ is a derivation of Q(R). For the sake of simplicity, we

write δ for δ̃.

Assumption. For the rest of this section, we assume that R is a commutative domain, δ

is a derivation of R and k := {p ∈ Q(R) : δ(p) = 0} is a subfield of characteristic zero of R.

If f = rny
n + rn−1y

n−1 + · · · + r0 ∈ R[y; δ], rn 6= 0, then we call n the degree of f and we

write deg f = n.

Remark 2.2.4. An easy induction on n shows that in R[y; δ] we have

ynr =
n∑
i=0

(
n

i

)
δi(r)yn−i (2.1)

for all r ∈ R and integer n ≥ 1. In particular, since R is a domain, deg fg = deg f + deg g

for all 0 6= f, g ∈ R[y; δ] and so R[y; δ] is a domain too.
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Remark 2.2.5. Let S := R[y; δ]. If r ∈ R \ k, then C(r;S) = R. This is easy to see: clearly

R ⊆ C(r;S) because R is commutative. Conversely, if g = rny
n + · · · + r0 ∈ S, rn 6= 0,

commutes with r and n ≥ 1, then comparing the coefficients yn−1 in both sides of rg = gr

gives nrnδ(r) = 0. This is a contradiction because R is a domain and the characteristic of k

is zero. Thus n = 0 and hence g ∈ R.

Lemma 2.2.6. Let S := R[y; δ] and suppose that f = any
n + · · ·+ a0 ∈ S, n ≥ 1, an 6= 0.

Let g = bmy
m + · · · + b0, bm 6= 0, and h = cmy

m + · · · + c0, cm 6= 0, be two elements of

C(f ;S). Then bm = αcm, for some α ∈ k.

Proof. By (2.1) y`r = ry` + `δ(r)y`−1 + · · · , for any integer ` ≥ 1 and r ∈ R. Therefore

the coefficient of yn+m−1 in fg and gf are nanδ(bm) + anbm−1 + an−1bm and mbmδ(an) +

bman−1 + bm−1an, respectively. Thus, since fg = gf, we must have

nanδ(bm) + anbm−1 + an−1bm = mbmδ(an) + bman−1 + bm−1an.

Hence, since R is commutative, we have

nanδ(bm) = mδ(an)bm. (2.2)

A similar argument shows that fh = hf implies

nanδ(cm) = mδ(an)cm. (2.3)

Now, multiplying both sides of (2.2) by cm and both sides of (2.3) by bm and then subtracting

the resulting identities gives nan(cmδ(bm)− bmδ(cm)) = 0. Thus

cmδ(bm)− bmδ(cm) = 0, (2.4)

because R is a domain, an 6= 0 and the characteristic of k is zero. So, in Q(R), we have

δ(bm/cm) = 0, by (2.4), and hence bm/cm ∈ k.

Theorem 2.2.7. Let S := R[y; δ] and let f ∈ S with deg f = n ≥ 1. Then C := C(f ;S) is

a free k[f ]-module of rank d, where d is a divisor of deg f.

Proof. Suppose that N is the set of all integers m ≥ 0 for which there exists some g ∈ C
such that deg g = m. Clearly N is a submonoid of Z: 0 ∈ N because k ⊂ C and N is closed

under addition because C is a subring of S. For any m ∈ N let m be the image of m in
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Z/nZ and put N = {m : m ∈ N}. Since N is a submonoid of a finite cyclic group, it is a

(cyclic) subgroup and hence d = |N | divides |Z/nZ| = n. Let m1 = 0 and, in general, for

every 1 ≤ i ≤ d, choose mi ∈ N to be the smallest member of its class mi. That means

if m ≡ mi mod n and m ∈ N, then m ≥ mi. For any 1 ≤ i ≤ d, choose gi ∈ C with

deg gi = mi. So g1 can be any nonzero constant (degree zero) in C. We choose g1 = 1. To

complete the proof of the theorem, we are going to show that, as a k[f ]-module, g1, . . . , gd

generate C and g1, . . . , gd are linearly independent over k[f ].

We first show that C =
∑d

i=1 gik[f ]. Clearly
∑d

i=1 gik[f ] ⊆ C because f, gi ∈ C for all

1 ≤ i ≤ d. Now let g ∈ C and suppose that deg g = `. If ` = 0, then deg g = deg g1 and

hence, by Lemma 2.2.6, g ∈ k ⊂ g1k[f ] ⊆
∑d

i=1 gik[f ]. If ` ≥ 1, then ` = mj , for some j. We

also have ` ≥ mj by the minimality of mj . Thus

` = mj + nu

for some integer u ≥ 0. Therefore deg g = ` = mj + nu = deg gjf
u. Both g and gjf

u are

obviously in C. So if b and c are the leading coefficients of g and gjf
u, respectively, then

by Lemma 2.2.6, b = αc for some α ∈ k. Therefore deg(g − αgif
u) ≤ ` − 1 and, since

g − αgif
u ∈ C, we can apply induction on deg g to get g − αgjf

u ∈
∑d

i=1 gik[f ]. Thus

g ∈
∑d

i=1 gik[f ].

It remains to show that g1, . . . , gd are linearly independent over k[f ]. Suppose, to the

contrary, that

g1µ1(f) + · · ·+ gdµd(f) = 0, (2.5)

for some µi(f) ∈ k[f ] and not all µi(f) are zero. Note that if i 6= j and µi(f), µj(f) 6= 0,

then deg(giµi(f)) ≡ mi mod n and deg(gjµj(f)) ≡ mj mod n. Since i 6= j, we have

mi 6≡ mj mod n and hence deg(giµi(f)) 6= deg(gjµj(f)). Thus the left hand side of (2.5) is

a polynomial of degree max{deg(giµi(f)) : giµi(f) 6= 0} and so it cannot be equal to zero.

This completes the proof of the theorem.

Now, we are going to prove that C(f ;R[y; δ]) is commutative if f ∈ R[y; δ] and deg f ≥ 1.

Lemma 2.2.8. Let S := R[y; δ] and let f ∈ S with deg f ≥ 1. If m ≥ 0 is an integer, then

the set Vm consisting of all elements of C(f ;S) of degree at most m is a finite-dimensional

k-vector space.

Proof. It is clear that Vm is a k-vector space. The proof of finite dimensionality of Vm is by

induction on m. If m = 0, then Vm = k and there is nothing to prove. So suppose that m ≥ 1
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and fix an element g ∈ Vm with deg g = m. If there is no such g, then Vm = Vm−1 and we are

done by induction. Now, let h ∈ Vm. If deg h < m, then h ∈ Vm−1 and if deg h = m, then

there exists some α ∈ k such that h− αg ∈ Vm−1, by Lemma 2.2.6. Thus Vm = kg + Vm−1

and hence dimk Vm = degk Vm−1 + 1 and we are done again by induction.

Theorem 2.2.9. Let S := R[y; δ] and let f ∈ S with deg f = n ≥ 1. Then C := C(f ;S) is

commutative.

Proof. Let N and N be the sets defined in the proof of Theorem 2.2.7. As we mentioned in

there, N is a cyclic subgroup of Z/nZ of order d, for some divisor d of n. Let m, m > 0, be

a generator of N and choose g ∈ C such that deg g = m. Now let

A = k[f ] + gk[f ] + · · ·+ gd−1k[f ].

Clearly A ⊆ C. Let

M = {mi+ nj : 0 ≤ i ≤ d− 1, j ≥ 0, i, j ∈ Z}.

So basically M is the set of all nonnegative integers which appear as the degree of some

element of A. Let p ∈ N. Then p ≡ mi mod n, for some integer 0 ≤ i ≤ d− 1 because m is

a generator of N. Hence p = mi+ nj, for some integer j. If j ≥ 0, then p ∈M and if j < 0,

then 0 ≤ p ≤ mi ≤ m(d− 1). Thus if h ∈ C and deg h > m(d− 1), then deg h ∈ M. Let V

be the set of all elements of C of degree at most m(d− 1). By Lemma 2.2.8, V is k-vector

space and

dimk V = v <∞.

The claim is that

C = A+ V. (2.6)

Clearly A+V ⊆ C because both A and V are in C. To prove that C ⊆ A+V, let h ∈ C. We

use induction on deg h. If deg h = 0, then h ∈ k, by Lemma 2.2.6. If deg h ≤ m(d− 1), then

h ∈ V and we are done. Otherwise, deg h ∈M and hence there exists some h1 ∈ A such that

deg h = deg h1. Thus, by Lemma 2.2.6, there exists some α ∈ k such that deg(h − αh1) <
deg h. Therefore by induction h−αh1 ∈ A+V and hence h ∈ A+V because αh1 ∈ A. This

completes the proof of (2.6).

Now let h ∈ C and let 0 ≤ i ≤ v = dimk V. Clearly f ih ∈ C and so

f ih− hi ∈ A, (2.7)
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for some hi ∈ V. Since dimk V = v, the elements h0, . . . , hv are k-linearly dependent and so∑v
i=0 αihi = 0 for some αi ∈ k which are not all zero. It now follows from (2.7) that µ(f)h ∈

A, where 0 6= µ(f) =
∑v

i=0 αif
i ∈ k[f ]. So we have proved that for every h ∈ C there exists

some 0 6= µ(f) ∈ k[f ] such that µ(f)h ∈ B. Let h1, h2 ∈ C and let 0 6= µ1(f), µ2(f) ∈ k[f ]

be such that µ1(f)h1 ∈ A and µ2(f)h2 ∈ A. Then, since A is clearly commutative, we

have µ1(f)h1µ2(f)h2 = µ2(f)h2µ1(f)h1. Therefore, since k[f ] is commutative and h1 and

h2 commute with f, we have

µ1(f)µ2(f)h1h2 = µ1(f)µ2(f)h2h1.

Thus, since S is a domain and µ1(f), µ2(f) 6= 0, we have h1h2 = h2h1. Hence C is commu-

tative.

So we have proved that if k is a field of characteristic zero and f ∈ R[y; δ] with deg f ≥ 1,

then C(f ;R[y; δ]) is a commutative domain and a free module of finite rank over k[f ]. What

can we say about the field of fractions Q of C(f ;R[y; δ])? The next theorem shows that Q

has a very simple form.

Theorem 2.2.10. Let S := R[y; δ] and let f ∈ S with deg f ≥ 1. Let Q and k(f) be the

field of fractions of C := C(f ;S) and k[f ] respectively. Then Q is an algebraic extension of

k(f) and Q = k(f)[g], for some g ∈ C.

Proof. Let g, d and A be as defined in the proof of Theorem 2.2.9. We proved that for every

h ∈ C there exists some 0 6= µ(f) ∈ k[f ] such that

µ(f)h ∈ A = k[f ] + gk[f ] + · · ·+ gd−1k[f ]. (2.8)

If in (2.8) we choose h = gd, then gd ∈ k(f) + gk(f) + · · ·+ gd−1k(f). So g is algebraic over

k(f) and thus k(f)[g] is a subfield of Q. Also (2.8) shows that h ∈ k(f)[g] for all h ∈ C and

thus C ⊆ k(f)[g]. Therefore C ⊆ k(f)[g] ⊆ Q and hence Q = k(f)[g].

Now let R = k[x], the polynomial ring in the variable x. Clearly δ = d/dx is a derivation

of R and {p ∈ Q(R) : δ(p) = 0} = {p ∈ k(x) : dp/dx = 0} = k. Let S := R[y; δ]. In S we

have yx = xy + δ(x) = xy + 1. So the generators of S and A1(k) satisfy the same relation.

Thus there exists an onto k-algebra homomorphism ϕ : A1(k) −→ S. Since A1(k) is simple,

because char(k) = 0, we have kerϕ = (0) and thus S ∼= A1(k).
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Corollary 2.2.11. Let f ∈ A1(k)\k. Then C := C(f ;A1(k)) is commutative and a free k[f ]-

module of rank d, where d is a divisor of deg f. Also, if Q and k(f) are the field of fractions

of C and k[f ], respectively, then Q is an algebraic extension of k(f) and Q = k(f)[g], for

some g ∈ C.

Proof. Write f =
∑n

i=0 riy
i, ri ∈ k[x], rn 6= 0. If deg f ≥ 1, then the result follows from

Theorems 2.2.7, 2.2.9 and 2.2.10. If n = 0, then f ∈ k[x] and thus C = k[x], as we proved

in Remark 2.2.5. Now, Theorems 2.2.7, 2.2.9 and 2.2.10 with R = k and δ = 0 complete the

proof of the corollary in this case because k[y] ∼= k[x].

We close this section by giving another form of A1(k), the first Weyl algebra over k. Let

E := Endk(k[x]). Define D,L ∈ E by D(u) = du/dx and L(u) = xu for all u ∈ k[x]. Now,

DL(u) = D(xu) = D(x)u+ xD(u) = u+ LD(u)

and hence DL − LD = 1, where 1 is the identity element of E. Let A be the k-subalgebra

of E generated by D and L. An element of A is called a differential operator. Since the

generators of A and A1(k) satisfy the same relation, there exists a k-algebra homomorphism

from A1(k) onto A and that is in fact an isomorphism because A1(k) is simple. Note that

if char(k) = p > 0, then A and A1(k) are not isomorphic. The reason is that in this case

Dp = 0 and so A is not a domain but A1(k) is a domain. To prove Dp = 0, we only need to

show that Dp(xm) = 0 for all integers m ≥ 0, because D is k-linear. Now, if m < p, then the

p-th derivative of xm is zero and if m ≥ p, then Dp(xm) = m(m− 1) · · · (m− p+ 1)xm−p =

p!
(
m
p

)
xm−p = 0.

2.3 Centralizers in Free Associative Algebras

In this section, we look at two well-known results on centralizers in free associative algebras,

i.e. Cohn’s centralizer theorem and Bergman’s centralizer theorem. A nice application of

Bergman’s centralizer theorem is given at the end of this section.

Throughout this section, X is a set of noncommuting variables, which may or may not

be finite, and k is a field. Let X∗ denote the free monoid generated by X. An element of

X (resp. X∗) is also called a letter (resp. word) and X is called an alphabet. Let k〈〈X〉〉
and k〈X〉 denote the k-algebra of formal series and polynomials in X, respectively. So an

element of k〈〈X〉〉 is in the form a =
∑

w∈X∗ aww, where aw ∈ k is the coefficient of the
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word w in a. The length |w| of w ∈ X∗ is the number of letters appearing in w. For example,

if X = {xi} and w = x1x
2
2x1x3, then |w| = 5. Now, we define the valuation

ν : k〈〈X〉〉 −→ Z≥0 ∪ {∞}

as follows: ν(0) = ∞ and if a =
∑

w∈X∗ aww 6= 0, then ν(a) = min{|w| : aw 6= 0}. Note

that if w is constant, then ν(w) = 0 and ν(ab) = ν(a) + ν(b) for all a, b ∈ k〈〈X〉〉. The

following fact is easy to prove.

Lemma 2.3.1. (Levi’s Lemma) Let w1, w2, w3, w4 ∈ X∗ be nonzero with |w2| ≥ |w4|. If

w1w2 = w3w4, then w2 = ww4 for some w ∈ X∗.

Proof. The proof is by induction on |w2|. Let x be the last letter of w2 and w4. Then

w2 = w′2x and w4 = w′4x and thus w1w
′
2 = w3w

′
4. The result now follows by induction.

Next lemma extends Levi’s lemma to k〈〈X〉〉.

Lemma 2.3.2 ([46], Lemma 9.1.2). Let a, b, c, d ∈ k〈〈X〉〉 be nonzero. If ν(a) ≥ ν(c) and

ab = cd, then a = cq for some q ∈ k〈〈X〉〉.

Proof. Fix a word u that appears in b and |u| = ν(b). So if v is any (nonzero) word appearing

in d, then

|v| ≥ ν(d) = ν(b) + ν(a)− ν(c) ≥ ν(b) = |u|. (2.9)

Let w be any element of X∗. The coefficient of wu in ab is
∑

rs=wu arbs, where ar and bs are

the coefficients of the words r, s which appear in a, b respectively. Similarly, the coefficient

of wu in cd is
∑

yz=wu cydz. Since ab = cd, we have∑
rs=wu

arbs =
∑
yz=wu

cydz, (2.10)

where the sums are over r, s and y, z. So |z| ≥ |u|, by (2.9), and |s| ≥ |u| by the definition

of u. Thus rs = wu and yz = wu imply s = s1u and z = z1u for some s1, z1 ∈ X∗, by Levi’s

lemma. Hence rs1 = yz1 = w. Therefore (2.10) can be written as∑
rs1=w

arbs1u =
∑
yz1=w

cydz1u, (2.11)

where the sums are over r, s1 and y, z1. Let b′ =
∑

s1∈X∗ bs1us1 and d′ =
∑

z1∈X∗ dz1uz1.

Then (2.11) gives ab′ = cd′. The constant term of b′ is bu 6= 0 and hence b′ is invertible in

k〈〈X〉〉. Hence if we let q = d′b′−1, then a = cq.
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An interesting consequence of Lemma 2.3.2 is the following result that will be used at

the end of this section.

Corollary 2.3.3. Let a ∈ k〈〈X〉〉. Then b ∈ C(a; k〈〈X〉〉) if and only if a, b are not free,

i.e. f(a, b) = 0 for some nonzero series f ∈ k〈〈x, y〉〉.

Proof. If ab = ba, then f(a, b) = 0 for f = xy − yx. Conversely, suppose that there exists

a nonzero series f ∈ k〈〈x, y〉〉 such that f(a, b) = 0. Let n = ν(ab − ba). The proof is by

induction on n. First note that the constant term of ab − ba is zero and thus n = 0 if and

only if ab = ba. Clearly we may assume that the constant terms of a and b are zero because

if a = α + a1 and b = β + b1, where α, β are the constant terms of a, b respectively, then

ab− ba = a1b1 − b1a1. So we may assume that ν(a) ≥ ν(b) ≥ 1. We have f = xg + yh+ γ,

for some g, h ∈ k〈〈x, y〉〉 and γ ∈ k. Now, since 0 = f(a, b) = ag(a, b) + bh(a, b) + γ and

the constant terms of a, b are zero, we must have γ = 0. Thus ag(a, b) = −bh(a, b) = 0.

Lemma 2.3.2 now gives some q ∈ k〈〈x, y〉〉 such that a = bq. So ab − ba = b(qb − bq) and

thus ν(qb− bq) < ν(ab− ba) = n. We also have that b, q are not free because a = bq and b

are not free. Thus, by induction, bq = qb and therefore ab = ba.

Lemma 2.3.4. Suppose that the constant term of an element a ∈ k〈〈X〉〉 is zero and

b, c ∈ C(a; k〈〈X〉〉) \ {0}. If ν(c) ≥ ν(b), then c = bd for some d ∈ C(a; k〈〈X〉〉).

Proof. Since the constant term of a is zero, we have ν(a) ≥ 1. Thus, for n large enough, we

have ν(an) = nν(a) ≥ ν(c). We also have anc = can because c ∈ C(a; k〈〈X〉〉). Thus, by

Lemma 2.3.2, an = cq for some q ∈ k〈〈X〉〉). Hence cqb = anb = ban and since ν(c) ≥ ν(b),

we have c = bd, for some d ∈ k〈〈X〉〉), by Lemma 2.3.2. Finally,

bad = abd = ac = ca = bda,

which gives ad = da, i.e. d ∈ C(a; k〈〈X〉〉).

Theorem 2.3.5. (Cohn’s centralizer theorem, [46, Theorem 9.1.1]) If a ∈ k〈〈X〉〉 is not

constant, then

C(a; k〈〈X〉〉) ∼= k[[x]],

where k[[x]] is the algebra of formal power series in the variable x.
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Proof. Let C := C(a; k〈〈X〉〉). If α0 ∈ k is the constant term of a, then clearly C =

C(a− α0; k〈〈X〉〉) and so we may assume that the constant term of a is zero. Thus the set

A = {c ∈ C : ν(c) > 0}

is not empty because a ∈ C and so there exists b ∈ A such that ν(b) is minimal. To show

that k[[b]] ∼= k[[x]], suppose that
∑

i≥m βib
i = 0, βi ∈ k, βm 6= 0. Then we must have

∞ = ν(
∑

i≥m βib
i) = ν(bm) = mν(b), which is absurd. So, to complete the proof of the

theorem, we now need to prove that C = k[[b]]. Let c ∈ C. If c is constant, then obviously

c ∈ k[[b]]. So we assume that c is not constant. The claim is that there exist βi ∈ k such

that

ν(c−
n∑
i=0

βib
i) ≥ (n+ 1)ν(b). (2.12)

If we prove that, then we are done because then ν(c−
∑

i≥0 βib
i) =∞ and so c =

∑
i≥0 βib

i ∈
k[[b]]. The proof is by induction on n. Let β0 be the constant term of c. Then c−β ∈ A and

thus ν(c − β0) ≥ ν(b), by the minimality of b. This proves (2.12) for n = 0. Suppose now

that we have found β0, . . . , βn ∈ k such that ν(c −
∑n

i=0 βib
i) ≥ (n + 1)ν(b). Then, since

(n+ 1)ν(b) = ν(bn+1), we have

c−
n∑
i=0

βib
i = bn+1d

for some d ∈ C, by Lemma 2.3.4. If d is constant, we are done because then c ∈ k[b] ⊂ k[[b]].

Otherwise, let βn+1 be the constant term of d. Then d− βn+1 ∈ A and hence ν(d− βn+1) ≥
ν(b), by the minimality of b. Therefore, by Lemma 2.3.4, d − βn+1 = bd′ for some d′ ∈ C.
Hence

c−
n∑
i=0

βib
i = bn+1d = bn+1(bd′ + βn+1) = bn+2d′ + βn+1b

n+1,

which gives c−
∑n+1

i=0 βib
i = bn+2d′. Hence

ν

(
c−

n+1∑
i=0

βib
i

)
= ν(bn+2d′) = ν(bn+2) + ν(d′) = (n+ 2)ν(b) + ν(d′) ≥ (n+ 2)ν(b),

which completes the induction and the proof of the theorem.

Now, since k〈X〉 ⊂ k〈〈X〉〉, it follows from the above theorem that if a ∈ k〈X〉 is not

constant, then C(a; k〈X〉) is commutative because C(a; k〈〈X〉〉) is commutative. The next

theorem shows that a result similar to Theorem 2.3.5 holds for C(a; k〈X〉).
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Theorem 2.3.6. (Bergman’s Centralizer Theorem, [18] or [46, Theorem 9.5.1]) If a ∈ k〈X〉
is not constant, then C(a; k〈X〉) ∼= k[x], the polynomial algebra in one variable x.

We close this section by an application of Theorem 2.3.6. We first recall the structure

of the free product R ∗ k[t], where R is a k-algebra and k[t] is the polynomial algebra in

the variable t. If B is a k-basis for R, then the set {b1tb2t · · · tbn : n ≥ 1, bi ∈ B} is a

k-basis for R ∗ k[t]. The multiplication in R ∗ k[t] is done just like multiplication in the free

associative algebra k〈X〉. There is one point here. If b, b′ ∈ B, then bb′ ∈ R and so we can

write bb′ =
∑
βibi, bi ∈ B, βi ∈ k. So in the product of two elements of R ∗ k[t], we must

replace bb′ with
∑

i βibi.

Example 2.3.7. If x, y are two variables, then k[x] ∗ k[y] ∼= k〈x, y〉.

Proposition 2.3.8. (Drensky, [23]) Let R be a k-algebra. If R∗k[t] ∼= k〈x, y〉, as k-algebras,

then R ∼= k[z], as k-algebras. Here we are assuming that x, y, z, t are variables.

Proof. Since R ∗ k[t] ∼= k〈x, y〉, as k-algebras, R ∗ k[t] is generated by two elements as a

k-algebra. Let 〈t〉 be the two-sided ideal of R ∗ k[t] generated by t. Then (R ∗ k[t])/〈t〉 ∼= R

and hence R is also generated by two elements, say u, v, as a k-algebra. If u, v are free,

then R ∼= k〈u, v〉 and thus k〈x, y〉 ∼= R ∗ k[t] ∼= k〈u, v, t〉, which is absurd. Thus u, v are

not free and hence uv = vu, by Corollary 2.3.3, and R is commutative because, as a k-

algebra, R is generated by u, v. On the other hand, since R ⊂ R ∗ k[t] ∼= k〈x, y〉, we have

R ⊆ C(u;R ∗ k[t]) = k[w], for some w ∈ R ∗ k[t], by Theorem 2.3.6. From the structure of

R ∗ k[t], we know that w = w0 + w1, where w0 ∈ R and t appears in each term of w1. Let

f ∈ R. Then f = g(w) ∈ k[w] and thus f = g(w0 + w1). Since f is independent of t, we

may let t = 0 to get f = g(w0). So we have proved that R ⊆ k[w0], which gives R = k[w0]

because w0 ∈ R.

2.4 Centralizers in Domains of Finite GK Dimension

In this section, we give Bell and Small’s results on centralizers in domains of finite GK

dimension. Let k be a field and let A be a finitely generated k-algebra which is also a

domain. Let a ∈ A. If GKdim(A) = 0, then A is finite-dimensional over k, by Proposition

1.6.10, and hence PI, by Proposition 1.4.7. So C(a;A) is PI too. If GKdim(A) = 1, then A

is PI, by [59, Theorem 1.6]. Thus C(a;A) is PI too. Also, in this case, if k is algebraically
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closed, then A is commutative, by Proposition 1.6.32, and so C(a;A) is commutative. There

are no algebras of GK dimension between 1 and 2 by Bergman’s gap theorem (Theorem

1.6.15).

In this section, we consider the cases GKdim(A) = 2 and GKdim(A) = 3. We first prove

that if GKdim(A) = 2 and k is algebraically closed, then C(a;A) is PI. Also, in this case, if A

is not PI, then C(a;A) is commutative. We prove that if k is uncountable and algebraically

closed, A is noetherian with GKdim(A) = 3 and a is not algebraic over Z(Q(A)), the center

of the quotient division algebra of A, then C(a;A) is PI again and GKdim(C(a;A)) ≤ 2.

Now suppose that A is a finitely generated simple noetherian domain of GK dimension

larger than 3. Suppose also that a ∈ A is not algebraic over Z(Q(A)). Would C(a;A) be

PI? The answer is no and here is an example.

Example 2.4.1. [See Definition 1.6.17] Consider the n-th Weyl algebra An(k), n ≥ 2,

where k is a field of characteristic zero. It is easy to see that C(x1;An(k)) is the subalgebra

generated by x1, . . . , xn, y2, . . . , yn. So C(a;An(k)) contains the subalgebra generated by

x2, y2 which is isomorphic to A1(k). Thus if C(a;An(k)) is PI, then A1(k) must be PI too.

But A1(k) is simple and hence, by Theorem 1.4.25, A1(k) has to be finite-dimensional over

k, which is false.

Theorem 2.4.2. (Bell and Small, [14]) Let k be an algebraically closed field. Let A be

a finitely generated k-algebra which is a domain and GKdim(A) = 2. If A is not PI and

a /∈ Z(A), then C(a;A) is a commutative domain and GKdim(C(a;A)) = 1.

Proof. First note that, since k is algebraically closed and a is noncentral, a is transcendental

over k and hence GKdim(k[a]) = 1. Now let B be any finitely generated k-subalgebra of

C(a;A) which contains a. Then k[a] ⊆ B and thus

GKdim(B) ≥ 1. (2.13)

In fact, k[a] ⊆ Z(B) and hence

GKdim(Z(B)) ≥ 1. (2.14)

If B is not PI, then by (2.14) and Theorem 1.6.34, GKdim(B) ≥ 3, which is absurd because

B is a subalgebra of A and hence GKdim(B) ≤ 2. Thus B is PI. Now, let Q(A) and Q(B)

be the quotient division algebras of A and B respectively. Suppose that

GKdim(B) > 1 = GKdim(A)− 1.
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Then, by Theorem 1.6.35, Q(A) is a finite-dimensional vector space over Q(B). It follows

that Q(A) is PI because Q(B) is PI. But then A would be PI too, which is a contradiction.

Thus GKdim(B) ≤ 1 and so, by (2.13), GKdim(B) = 1. So we have proved that every

finitely generated k-subalgebra of C(a;A) which contains a has GK dimension one. Hence

GKdim(C(a;A)) = 1 and every finitely generated k-subalgebra of C(a;A) is commutative,

by Proposition 1.6.32. Thus C(a;A) is a commutative domain.

Now let A be a finitely generated k-algebra of finite GK dimension. How large could

GKdim(C(a;A)) be if a /∈ Z(A)? Bell [13] has proved that if A is a domain and a is not alge-

braic over Z(Q(A)), the center of the quotient division algebra of A, then GKdim(C(a;A)) is

≤ GKdim(A)−1. He then uses this result to show that if k is uncountable and algebraically

closed, A is a finitely generated noetherian domain over k and GKdim(A) = 3, then C(a;A)

is a PI-domain of GK dimension at most 2 for every a ∈ A which is not algebraic over

Z(Q(A)). We need a few lemmas before proving these two results.

Lemma 2.4.3. Let R and S be noetherian rings and suppose that, as a left and right

R-module, S is finitely generated and free. If S is a simple ring, then R is simple too.

Proof. Suppose that R is not simple. Then R has a proper nonzero two-sided ideal I. Let

J := IS. Then J is a right ideal of S and, since S is a free left R-module, J ∩ R = I.

Let M := S/J. Clearly M is an (R,S)-bimodule and, since S is a finitely generated left

R-module, M is a finitely generated left R-module too. Since M is also a torsion right

S-module, M has a nonzero annihilator [43, Theorem 2.1], which is a two-sided ideal of S,

a contradiction.

Lemma 2.4.4. Let k be a field and let C be a commutative domain over k. Let k(x) be the

field of rational functions in one variable x. If C is not algebraic over k, then R := C⊗kk(x)

is not a field.

Proof. Clearly R, as a k-algebra, is isomorphic to the k-algebra T := {p(t)/q(t) : p(t) ∈
C[t], 0 6= q(t) ∈ k[t]}, the localization of C[t] at k[t]. So we only need to prove that T is not

a field. Let a be an element of C which is not algebraic over k. We claim that a− t ∈ T is

not invertible and hence T is not a field. So suppose, to the contrary, that a− t is invertible.

Then (a− t)p(t) = q(t) for some p(t) ∈ C[t], 0 6= q(t) ∈ k[t]. But then if we choose t = a, we

get q(a) = 0 and so a is algebraic over k, contradiction.
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Lemma 2.4.5. Let A be a noetherian ring and let J be an ideal of A. If J is nil, then J is

nilpotent.

Proof. The proof still works if A is left or right noetherian and J is a one-sided ideal.

Since A is noetherian, the set of nilpotent ideals of A has a maximal element, say M. Let

R := A/M. Then R is a semiprime noetherian ring and (I +M)/M is a nil ideal of R. Thus

(I +M)/M = 0, by Lemma 1.3.8, and hence I ⊆M proving that I is nilpotent.

Next result is especially useful for studying centralizers in algebras of low GK dimension.

Theorem 2.4.6. (Bell, [13]) Let k be a field and let A be a finitely generated k-algebra of

finite GK dimension. If A is a domain and a ∈ A is not algebraic over Z(Q(A)), the center

of the quotient division algebra of A, then GKdim(C(a;A)) ≤ GKdim(A)− 1.

Proof. Let B := C(a;A). First note that Q(A) and Q(B) exist by Corollary 1.6.9. Now, we

may replace A by Z(Q(A))A if necessary and so we may assume that k = Z(Q(A)). Suppose,

to the contrary, that GKdim(B) > GKdim(A)−1. Then, by Theorem 1.6.35, Q(A) is finite-

dimensional as both a left and a right vector space over Q(B). Let R = Q(B)⊗k k(x) and

S = Q(A)⊗k k(x), where k(x) is the field of rational functions in one variable x. Clearly S

is free and finitely generated as a left R-module because Q(A) is a finite-dimensional vector

space over Q(B). Also, S is simple because Z(Q(A)) = k. Finally, R is noetherian because

R is isomorphic to the localization of Q(B)[x] at k[x]. Similarly, S is noetherian. So by

Lemma 2.4.3, R is simple too. In particular, Z(R) is a field. But Z(R) = Z(Q(B))⊗k k(x)

and a ∈ Z(Q(B)). Thus Z(Q(B)) is not algebraic over k because a is not algebraic over k.

Hence Z(R) is not a field by Lemma 2.4.4, contradiction.

We mentioned in Example 2.4.1 that C(x1, An(k)) is the subalgebra generated by

x1, . . . xn, y2, . . . , yn.

It is easy to see that this subalgebra has GK dimension 2n − 1. So it is possible to have

equality in the above theorem.

Theorem 2.4.7. (Bell, [13]) Let k be an uncountable algebraically closed field and let A

be a finitely generated noetherian k-algebra of GK dimension three. If A is a domain and

a ∈ A is not algebraic over Z(Q(A)), then C(a;A) is PI.
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Proof. Let B := C(a;A). We have GKdim(B) ≤ 2, by Theorem 2.4.6. Since k[a] ⊆ B and a

is not algebraic over k, we have GKdim(B) ≥ 1 and thus GKdim(B) = 1 or 2, by Theorem

1.6.15. If GKdim(B) = 1, then B is PI, by [59, Theorem 1.6]. In fact, in this case B is

commutative, by Proposition 1.6.32. So we may assume that GKdim(B) = 2.

We now show that B is locally PI. Let B′ be any finitely generated k-subalgebra of B.

Then B′[a] ⊆ B is also finitely generated and k[a] ⊆ Z(B′[a]). Thus GKdim(Z(B′[a])) ≥ 1.

So if B′[a] is not PI, then

GKdim(B′[a]) ≥ GKdim(Z(B′[a])) + 2 ≥ 3,

by Theorem 1.6.34, which is false because GKdim(B′[a]) ≤ GKdim(B) = 2. Therefore B′[a],

and hence B′, is PI. Now let B0 be any finitely generated subalgebra of Q(B). Suppose that

B0 is generated by ci = s−1i bi, i = 1, . . . , r. Let B′ be the subalgebra of B generated by

si, bi, i = 1, . . . , r. Clearly

B0 ⊆ Q(B′). (2.15)

Since B is locally PI, B′ is PI and hence, by Corollary 1.5.11, Q(B′) is PI too. Thus B0 is

PI, by (2.15), and so Q(B) is locally PI. Also, (2.15) implies that GKdim(Q(B)) = 2 and

hence GKdimk(a)(Q(B)) = 1.

Let K be an algebraically closed field extension of k(a) with

|K| > dimk(a)Q(B), (2.16)

as cardinal numbers, and let R := Q(B)⊗k(a)K. Since A is noetherian, A⊗kK is noetherian

too by [16, Theorem 1.2]. Therefore Q(A)⊗k K is noetherian because it is a localization of

A⊗k K. Thus Q(B)⊗k K is noetherian because Q(A)⊗k K is free over Q(B)⊗k K. Hence

R is noetherian because R is a factor of Q(B)⊗kK. Also, (2.15) implies that R is locally PI

and GKdimK(R) = GKdimk(a)(Q(B)) = 1. Let J := J(R), the Jacobson radical of R. Then,

by (2.16) and Theorem 1.1.8, J is nil and thus nilpotent by Lemma 2.4.5. Therefore R/J

is a semiprime noetherian ring and so, by Theorem 1.3.12, Q(R/J) is semisimple. Thus, by

Theorem 1.3.4,

Q(R/J) =

s∏
i=1

Mni(Di),

for some division K-algebras Di. Each Di is locally PI and has GK dimension at most

1 as a K-algebras because R has this property. Since K is algebraically closed, each Di

is commutative by Proposition 1.6.32. Thus Q(R/J), and hence R/J, is PI. Let f be a
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polynomial identity of R/J. Since J is nilpotent, Jn = (0) for some n and thus fn is an

identity of R. So R is PI and hence B is PI too because B is a subalgebra of R.

2.5 Centralizers in Quantum Planes

This section gives Makar-Limanov’s result on centralizers in quantum planes. Let k be an

algebraically closed field and let q be a nonzero element of k. The quantum plane kq[x, y] is

a k-algebra generated by x and y and with the relation yx = qxy. Clearly the set {xiyj :

i, j ≥ 0} is a basis for kq[x, y] as a k-vector space. It is easily seen that kq[x, y] is a domain.

If we choose V = k + kx+ ky, then the relation yx = qxy gives

dimk V
n =

(n+ 2)(n+ 1)

2

and thus

GKdim(kq[x, y]) = 2.

If q is a root of unity, i.e. qn = 1 for some n, then it follows from yx = qxy that xn and

yn are central. Thus, in this case, kq[x, y] is a finite module over the commutative algebra

k[xn, yn] and therefore it is PI, by Proposition 1.4.7.

Now suppose that q is not a root of unity. Then the center of kq[x, y] is just k. To see

this, let f =
∑
aijx

iyj be a central element. Then, since yjx = qjxyj and xf = fx, we have∑
aijx

i+1yj =
∑

qjaijx
i+1yj .

Therefore aij(q
j − 1) = 0 for all i, j. Hence, since q is not a root of unity, we have aij = 0

for all i and j ≥ 1. Similarly yf = fy gives aij = 0 for all i ≥ 1 and j. That means aij = 0

for all (i, j) 6= (0, 0) and so f ∈ k. We now show that if q is not a root of unity, then kq[x, y]

is not PI. To prove this, suppose, to the contrary, that kq[x, y] is PI. Let Q be the central

localization of kq[x, y]. Then, by Theorem 1.5.10, the center of Q is the quotient field of the

center of kq[x, y], which is k, and Q is finite-dimensional over k. Therefore kq[x, y], which is

a subalgebra of Q, is also finite-dimensional over k. This is of course absurd. Thus kq[x, y]

is PI if and only if q is a root of unity.

So if q is not a root of unity, kq[x, y] satisfies all the conditions in Theorem 2.4.2 and

thus C(f ; kq[x, y]) is a commutative domain of GK dimension one for every f ∈ kq[x, y] \ k.
Makar-Limanov [44] used a different approach to prove a stronger result. He proved that
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centralizers are in fact a subalgebra of a polynomial k-algebra in one variable. We are now

going to give his proof of this result. We begin with a simple lemma.

Lemma 2.5.1. If q ∈ k is not a root of unity and f(x, y) ∈ kq[x, y]\k such that f(x, 0) /∈ k,
then there exists a k-algebra injective homomorphism from C(f, kq[x, y]) into k[x]. Similarly,

if f(0, y) /∈ k, then there exists a k-algebra injective homomorphism from C(f, kq[x, y]) into

k[y].

Proof. We prove the lemma for the case f(x, 0) /∈ k. The proof for the case f(0, y) /∈ k is

similar. We have f(x, y) =
∑n

i=0 fi(x)yi and we are given that f0(x) = f(x, 0) /∈ k. Let

0 6= g(x, y) =

m∑
i=0

gi(x)yi ∈ C(f, kq[x, y]).

We claim that g(x, 0) = g0(x) 6= 0. So suppose, to the contrary, that g0(x) = 0. Then

g(x, y) =
∑m

i=r gi(x)yi, r ≥ 1, gr(x) 6= 0. Let f0(x) =
∑p

i=0 αix
i, αi ∈ k. Note that

ysxt = qstxtys for all integers s, t ≥ 0. Thus equating the coefficients of yr in both sides of

fg = gf gives

gr(x)

p∑
i=0

αix
i = gr(x)

p∑
i=0

αiq
rixi.

Thus, since kq[x, y] is a domain and gr(x) 6= 0, we have αi(q
ri − 1) = 0 for all 0 ≤ i ≤ p.

Therefore, since q is not a root of unity and r ≥ 1, we have αi = 0 for all i ≥ 1. Hence

f0(x) = α0 ∈ k, which is a contradiction. This completes the proof of the claim.

Now define the map ϕ : C(f ; kq[x, y]) −→ k[x] by ϕ(g(x, y)) = g(x, 0). Obviously ϕ is

a well-defined k-algebra homomorphism. If g(x, 0) = 0, then, by the claim we just proved,

g(x, y) = 0. Thus kerϕ = 0 and so ϕ is injective.

Theorem 2.5.2. (Makar-Limanov, [44]) If q ∈ k is not a root of unity and f ∈ kq[x, y] \ k,
then C(f ; kq[x, y]) ⊆ k[u], for some u ∈ kq[x, y].

Proof. Let A be the set of all ordered pairs (i, j) ∈ Z2 such that αxiyj , α ∈ k× is a term of

f. By Lemma 2.5.1 we may assume that if (i, j) ∈ A, then i ≥ 1 and j ≥ 1. Now look at the

elements of A as a finite set of points on the plane. Clearly there exists a line L which goes

through both the origin and at least one of the points in A, say (p, q), such that each point

in A lies either on L or on the left side of L. The equation of L is obviously qx − py = 0.

Dividing by gcd(p, q), we can write the equation of L as λx − µy = 0, where λ, µ ≥ 1 are
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some positive integers with gcd(λ, µ) = 1. The fact that each point in A lies either on L or

on the left side of L is equivalent to saying that λi− µj ≥ 0 for all (i, j) ∈ A.
Now, define the weight of αxiyj ∈ kq[x, y], α ∈ k×, by

w(αxiyj) = λi− µj.

So every monomial of f has a nonnegative weight and at least one monomial of f has

weight zero (those that lie on L). Let u = xµyλ. Then w(u) = 0 and if v = αxiyj with

w(v) = 0, then λi = µj and thus, since gcd(λ, µ) = 1, we must have i = µc and j = λc.

Then v = αxµcyλc = αq−(c2)uc. So {αuc : α ∈ k×, c ≥ 0} is the set of all monomials

of weight zero. A similar argument shows that if r ≥ 0 is an integer and w(v) = r, then

{αucv : α ∈ k×, c ≥ 0} is the set of all monomials of weight r. So if g ∈ kq[x, y], then we

can group all terms of g which have the same weight and find a unique presentation

g =
s∑

i=−r
gi(u)Gi,

where Gi is a monomial of weight i.

We next show that C(g(u); kq[x, y]) = k[u] for any nonconstant polynomial g(u) ∈
k[u]. So suppose that h ∈ C(g(u); kq[x, y]). By what we just showed we can write h =∑s

i=−r hi(u)Hi, where r, s ≥ 0 and Hi is a monomial of weight i. Now g(u)h = hg(u) gives

s∑
i=−r

hi(u)g(u)Hi =

s∑
i=−r

hi(u)Hig(u).

Since the weight of each monomial in g(u)Hi is i, the above identity holds if and only if

g(u)Hi = Hig(u)

for all i. It is easy to see that only monomials of weight zero commute with a nonconstant

element of k[u]. Thus r = s = 0 and hence h ∈ k[u]. This proves that

C(g(u); kq[x, y]) = k[u], (2.17)

for all nonconstant g(u) ∈ k[u].

Finally, let g ∈ C(f ; kq[x, y]) and write g =
∑s

i=−r gi(u)Gi, where r, s ≥ 0 and Gi is

a monomial of weight zero. We also have f =
∑n

i=0 fi(u)Fi because, as we mentioned at

the beginning of the proof, every monomial of f has a nonnegative weight and at least
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one of the monomials has wight zero. We also mentioned that in each monomial of f

both x and y occur. So, if we choose F0 = 1, then f0(u) cannot be a constant. Now

looking at the monomials of minimum weight in both sides of fg = gf we see that G−r

and h0(u) must commute, i.e. G−r ∈ C(h0(u); kq[x, y]). Thus G−r ∈ k[u], by (2.17), and

so −r = w(G−r) = 0. Hence r = 0 and so every element of C(f ; kq[x, y]) is in the form∑s
i=0 gi(u)Gi. Therefore the map

ϕ : C(f ; kq[x, y]) −→ k[u]

defined by ϕ(g) = g0(u) is an injective k-algebra homomorphism.

Makar-Limanov then extended his idea to prove a similar result for quantum spaces. Let

k be an algebraically closed field and let n ≥ 1 be an integer. Let {qij : 1 ≤ i, j ≤ n} ⊂ k×

be such that qii = 1, qji = q−1ij and the set {qij : i < j} is a free basis for some abelian

group. The quantum n-space kq[x1, . . . , xn] is the algebra generated by x1, . . . , xn subject to

the relations xjxi = qijxixj for all i, j. Makar-Limanov [44] proved that the centralizer of a

noncentral element of kq[x1, . . . , xn] is again contained in k[u], for some u ∈ kq[x1, . . . , xn].

2.6 Centralizers in Semiprime PI-Rings

In this section, we give our results on centralizers in a semiprime PI-ring R. We first find

the center of a centralizer in R and then we characterize those semiprime PI-rings in which

the centralizer of every noncentral element is commutative.

We have already seen a few examples of rings in which the centralizer of every noncentral

element is commutative, e.g. the first Weyl algebra and quantum planes. A ring R is called

CT if the centralizer of every noncentral element of R is commutative. In the definition,

CT is short for commutative transitive. The reason that we call such rings CT is this simple

fact that the centralizer of every noncentral element of a ring R is commutative if and only

if the property x commutes with y is transitive over noncentral elements. There are many

examples of rings which are not CT. For example, the matrix algebra Mn(C), n ≥ 3 or the

Weyl algebra An(C), n ≥ 2. In fact, it is easy to see that Mn(R), n ≥ 2, is CT if and only

if n = 2 and R is a commutative domain. Therefore, by Theorem 1.5.10, a prime PI-ring

R is CT if and only if QZ(R) = Mn(D), where QZ(R) is the central localization of R and

n = 1 or 2. If n = 1, then D is a finite-dimensional central division algebra which is CT

and if n = 2, then D is a field.
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In this section, we characterize semiprime PI-rings which are CT. We show that a

semiprime PI-ring R is CT if and only if Qmax(R) = C ⊕Mn(D), where Qmax(R) is the

largest left quotient ring of R, C is a commutative ring (or the zero ring) and n = 1 or 2. If

n = 1, then D is a finite-dimensional central division algebra which is CT and D is a field

if n = 2. But what is this largest left quotient ring of R?

2.6.1 Maximal Left Quotient Rings

The proof of results mentioned in this paragraph can be found in [40, section 13B]. Fix a

ring R. Let M be a left R-module. We say that a submodule N of M is dense and we write

N ⊆d M if for every x, y ∈M, with x 6= 0, there exists r ∈ R such that rx 6= 0 and ry ∈ N.
Clearly every dense submodule is essential. A ring S is called a general left quotient ring of

R if R ⊆d S. For example, if R has a classical left quotient ring Q(R), then Q(R) is a general

left quotient of R. The reason is that if x, y ∈ Q(R), with x 6= 0, then we can write y = t−1u

for some t, u ∈ R. So tx 6= 0, because x 6= 0 and t is a unit in Q(R), and ty = u ∈ R. Now,

consider R as a left R-module and let E := E(R) be the injective hull of R, i.e. the smallest

injective R-module containing R. Let H := EndR(E) and Q := EndH(E). Then Q is a

general left quotient ring of R and every general left quotient ring of R can be embedded

into Q. The ring Q is called the maximal left quotient ring of R and we write Qmax(R). If R

is commutative, then Qmax(R) ∼= Z(H), the center of H, and hence Qmax(R) is commutative

too. Also, if the classical left quotient ring Q(R) of R exists and if every dense left ideal of

R contains a regular element, then Qmax(R) = Q(R). In particular, if R is a semiprime left

Goldie ring, then Qmax(R) = Q(R). So if D is a division ring, then Qmax(Mn(D)) = Mn(D).

If R is the subring of Mn(D) consisting of upper triangular matrices, then Q(R) = R but

Qmax(R) = Mn(D).

There is a useful characterization of the maximal left quotient ring of a semiprime PI-ring

given in the following theorem.

Theorem 2.6.1. (Rowen, [52]) If R is a semiprime PI-ring, then Q := Qmax(R) is char-

acterized by the following properties.

(1) There is a canonical injection R ↪→ Q.

(2) For any essential ideal J of Z(R), the center of R, and any f ∈ HomZ(R)(J,R), there

exists q ∈ Q such that xq = f(x) for all x ∈ J.
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(3) For any q ∈ Q, Jq ⊆ R for some essential ideal J of Z(R).

(4) q = 0 if and only if Jq = (0) for some essential ideal J of Z(R).

Note that parts three and four of the theorem show that Qmax(R) is both an essential

extension of R and a semiprime PI-ring.

We recall that R is called left nonsingular if {r ∈ R : l.annR(r) ⊆e R} = (0). Also, R

is called von Neumann regular or just regular if for every r ∈ R there exists s ∈ R such

that r = rsr. A regular ring is called strongly regular if it is reduced, i.e. it has no nonzero

nilpotent element. It is known that Qmax(R) is regular if and only if R is nonsingular [40,

Theorem 13.36] and in this case Qmax(R) ∼= E(R). It is an easy consequence of Theorem

1.5.8 that semiprime PI-rings are nonsingular. So if R is a semiprime PI-ring, then Qmax(R)

is regular and Qmax(R) ∼= E(R). The following proposition gives more properties of Qmax(R)

when R is a semiprime PI-ring.

Proposition 2.6.2. Let R be a semiprime PI-ring.

(1) Z(Qmax(R)) = Qmax(Z(R)).

(2) Qmax(R) is a finite module over its center.

(3) If M is a maximal ideal of Z(Qmax(R)), then Qmax(R)M , the localization of Qmax(R)

at M, is a finite-dimensional central simple algebra.

Proof. See [52, Corollary 3] for the proof of the first part. For the proof of the second and

the third part of the theorem see [6, Theorem 3.7] and [4, Corollary 9], respectively.

By Proposition 2.6.2, Qmax(R) is finitely generated over its center for any semiprime

PI-ring R. The following example shows that even being CT does not necessarily imply that

a semiprime PI-ring is finite over its center.

Example 2.6.3. Let A = Z[x1, x2, . . .], the polynomial algebra in an infinite set of com-

muting variables {x1, x2, . . .}, and let k be the field of fractions of A. Let I =
∑

i≥1Axi

and

R :=

(
A I

A A

)
.
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We show that M2(k) = kR. It is clear that kR ⊆ M2(k). To prove M2(k) ⊆ kR, we only

need to show that kR contains the standard basis {e11, e12, e21, e22} of M2(k). This is clear

because e11, e21, e22 ∈ R and e12 = x−11 (x1e12) ∈ kR.

Now, M2(k) = kR implies that R is semiprime, PI and CT because M2(k) is so. But R

is not finitely generated over its center because I is not finitely generated over A.

2.6.2 The Double Centralizer Property in Semiprime PI-Rings

In this section we use Theorem 2.6.1 to find the center of the centralizer of an element in a

semiprime PI-ring. This, in particular, gives the form of centralizers in semiprime PI-rings

which are CT.

We know from linear algebra that if k is a field and a ∈ Mn(k), then b ∈ Mn(k)

commutes with every matrix which commutes with a if and only if b ∈ k[a]. In other words,

Z(C(a;Mn(k))) = k[a] or equivalently we have the double centralizer property

C(C(a;Mn(k));Mn(k)) = k[a].

This result has the following extension.

Lemma 2.6.4. (Werner, [65]) If A is a finite-dimensional central simple k-algebra, then

C(C(a;A);A) = k[a].

Armendariz [7] extended Werner’s result by proving that if D is any central division k-

algebra, then a ∈Mn(D) satisfies the double centralizer property if and only if a is algebraic

over k. The following example shows that in general the double centralizer property does

not hold in semiprime PI-rings even for elements which are integral over the center.

Example 2.6.5. Let R = M2(Z) and a =

(
1 0

0 −1

)
. Then C(C(a;R);R) =

(
Z 0

0 Z

)
and,

for example,

(
1 0

0 0

)
/∈ Z[a].

The next theorem shows that an element a in a semiprime PI-ring R satisfies the double

centralizer property if and only if Z(Q)[a]∩R = Z(R)[a], where Q := Qmax(R). In particular,

a semiprime PI-ring whose center is self-injective satisfies the double centralizer property.

Theorem 2.6.6. Let R be a semiprime PI-ring and let Q := Qmax(R). Then

Z(C(a;R)) = Z(Q)[a] ∩R
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for all a ∈ R.

Proof. We first show that

Z(C(a;R)) ⊆ Z(C(a;Q)). (2.18)

Let b ∈ Z(C(a;R)) and q ∈ C(a;Q). By Theorem 2.6.1, there exists an essential ideal

J ⊆ Z(R) such that Jq ⊆ R. Then Jq ⊆ C(a;R) and so xqb = bxq = xbq for all x ∈ J.
Therefore J(qb− bq) = (0) and so qb = bq.. Hence b ∈ Z(C(a;Q)), by Theorem 2.6.1.

Next, we show that Z(C(q;Q)) = Z(Q)[q] for all q ∈ Q. To see this, we suppose, to the

contrary, that there exists some p ∈ Z(C(q;Q)) \ Z(Q)[q]. Let

I := {x ∈ Z(Q) : xp ∈ Z(Q)[q]}.

Clearly I is a proper ideal of Z(Q). Let M be a maximal ideal of Z(Q) which contains I.

By Proposition 2.6.2, QM is a finite-dimensional central simple algebra. Therefore

Z(C(q/1;QM )) = Z(QM )[q/1],

by Lemma 2.6.4. Hence p/1 ∈ Z(QM )[q/1] and so p/1 =
∑n

k=0(xj/s)q
j , for some integer n

and xj/s ∈ Z(QM ). Therefore there exists u ∈ Z(Q) \M such that

sup =

n∑
j=0

uxjq
j . (2.19)

By Proposition 2.6.2, Q is finitely generated over Z(Q). Let

Q =
m∑
i=1

yiZ(Q).

Since xj/s commutes with yi/1 for all i, there exists some si ∈ Z(Q) \M such that sixj

commutes with yi. Let tj = s1s2 · · · sm. Then tjxj commutes with each yi and hence tjxj ∈
Z(Q). Let t = t1t2 · · · tn. Then txj ∈ Z(Q) for all j and hence by (2.19)

tsup =
n∑
j=0

utxjq
j ∈ Z(Q)[q].

That means tsu ∈ I ⊆M which is absurd. Thus we have proved that for all q ∈ Q

Z(C(q;Q)) = Z(Q)[q]. (2.20)

Now it is easy to prove the theorem. By (2.18) and (2.20) we have

Z(C(a;R)) ⊆ Z(C(a;Q)) = Z(Q)[a].

Therefore Z(C(a;R)) ⊆ Z(Q)[a]∩R. The inclusion Z(Q)[a]∩R ⊆ Z(C(a;R)) is trivial.
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2.6.3 Characterizing Semiprime PI-Rings which are CT

We are now going to characterize semiprime PI-rings which are CT. First let us consider

the case for division algebras. Let D be a finite-dimensional central division k-algebra and

suppose that D is CT. Let K be a subfield of D which properly contains k and let a ∈ K \k.
Let L be any subfield of D which contains K. By Theorem 2.6.6

k[a] = Z(C(a;D)) = C(a;D).

We also have k[a] ⊆ K ⊆ C(a;D) = k[a] and hence K = k[a]. Similarly, L = k[a] and thus

K = L. Therefore every subfield of D which properly contains k is maximal. Conversely,

suppose that every subfield of D which properly contains k is maximal and let a ∈ D \ k.
Let b ∈ C(a;D). Then k[a] and k[a, b] are both subfields of D and so b ∈ k[a]. Hence

C(a;R) = k[a] and so D is CT. So we have proved that D is CT if and only if every

subfield of D which properly contains k is maximal. For example, if p is a prime number

and [D : k] = p2, then D is CT. Now suppose that D is CT. We claim that [D : k] is a prime

power. To see this, we recall that D has a primary decomposition [26, Theorem 4.19], i.e.

if p1, . . . , pn are the prime divisors of [D : k], then

D = D1 ⊗k D2 ⊗k · · · ⊗k Dn

for some division algebras Di such that pi is the only prime divisor of [Di : Z(Di)]. If

n > 1, then a subfield of D1 which properly contains k would be a subfield of D which is

not maximal in D and so D would not be CT. Thus a finite-dimensional central division

k-algebra is CT if and only if D satisfies these properties: [D : Z(D)] is a prime power and

every subfield of D which properly contains k is a maximal subfield. It is clear that if D is

CT, then D cannot be a crossed product, i.e. D cannot have a maximal subfield which is

Galois over the center, unless [D : k] = p2 for some prime p. This is a trivial result of the

Galois correspondence theorem.

We see in this section that characterizing semiprime PI-rings which are CT is eventually

reduced to the same problem for finite-dimensional central division algebras which are CT.

We begin with two simple observations.

Lemma 2.6.7. Let Ri, i ∈ I, be a family of rings and let R :=
∏
i∈I Ri. Suppose that the

ring R is not commutative. Then R is CT if and only if there exists j ∈ I such that Rj is

both noncommutative and CT and Ri is commutative for all i 6= j.
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Proof. Suppose that R is CT. Since R is not commutative, there exists j ∈ I such that Rj

is not commutative. Let r := (ri)i∈I ∈ R where rj is any noncentral element of Rj and

ri = 0 for all i 6= j. Then r is a noncentral element of R and hence C(r;R) =
∏
i∈I C(ri;Ri)

has to be commutative. So C(ri;Ri) is commutative for all i ∈ I. Thus Rj is CT and Ri

is commutative for all i 6= j because C(ri;Ri) = C(0;Ri) = Ri. Conversely, suppose that

there exists j ∈ I such that Rj is both noncommutative and CT and Ri is commutative for

all i 6= j. Let a := (ai)i∈I be any noncentral element of R. Then aj is a noncentral element

of Rj and hence C(aj ;Rj) is commutative. We also have C(ai;Ri) = Ri for all i 6= j. Thus

C(a;R) is commutative.

Lemma 2.6.8. Let R be a semiprime PI-ring. Then R is CT if and only if Qmax(R) is

CT .

Proof. Let Q := Qmax(R). The if part of the lemma follows immediately from the fact that

Z(Q) ∩R = Z(R). Conversely, suppose that R is CT and let q0 be a noncentral element of

Q. Let q1, q2 ∈ C(q0;Q). We need to prove that q1q2 = q2q1. Let J be an essential ideal of

Z(R) such that Jqi ⊆ R for i = 0, 1, 2. If Jq0 ⊆ Z(R), then q0 ∈ Z(Q), which is not true.

So there exists some α ∈ J such that αq0 ∈ R \Z(R). Thus C(αq0, R) is commutative. Now

the result follows from the fact that Jqi ⊆ C(αq0;R) for i = 1, 2.

Another fact that we need is that in semiprime rings, commutative ideals are central.

This is easy to prove.

Lemma 2.6.9 ([47], Lemma 1). Let R be a semiprime ring and let J be a left or right ideal

of R. Considering J as a ring, we have Z(J) = J ∩ Z(R).

Recall that the index of a nilpotent element a in a ringR is the smallest integer n ≥ 1 such

that an = 0. Let i(a) denote the index of a. The index of a ringR is i(R) = sup{i(a) : a ∈ R}.
A ring R is said to have bounded index if i(R) <∞.

For example, matrix rings over commutative rings have bounded index. More generally,

every semiprime PI-ring has bounded index.

Lemma 2.6.10 ([48], Theorem 13.4.2). Every semiprime PI-ring can be embedded into

some matrix ring Mn(C), where C is a direct product of fields.

Regular self-injective rings of bounded index have a nice form.
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Lemma 2.6.11 ([33], Theorem 7.20). A regular self-injective ring has bounded index if and

only if it is a finite direct product of full matrix rings over strongly regular rings.

We are now ready to prove the main result of this section.

Theorem 2.6.12. A noncommutative semiprime PI-ring R is CT if and only if

Qmax(R) = C ⊕Mn(D), n ≤ 2,

where C is either zero or a commutative ring and if n = 1 (resp. n = 2), then D is a

finite-dimensional central division algebra which is CT (resp. field).

Proof. The if part follows from Lemma 2.6.8 and the fact that M2(k) is CT for any field k.

Conversely, suppose that a semiprime PI-ring R is CT. Then Qmax(R) is also CT by Lemma

2.6.8. Since Qmax(R) is a semiprime PI-ring, it has a bounded index by Lemma 2.6.10, and

so, by Lemma 2.6.11, Qmax(R) is a finite direct product of full matrix rings over strongly

regular rings. Therefore, by Lemma 2.6.7,

Qmax(R) = S ⊕Mn(T ), n ≤ 2,

where S is either zero or a commutative ring and T is both strongly regular and CT.

If n = 2, then T is a field because a commutative domain is regular if and only if it

is a field. If n = 1, then T cannot be commutative because R is not commutative. So, to

complete the proof of the theorem, we only need to show that if a noncommutative strongly

regular ring T is CT, then T is a direct product of a commutative (or zero) ring and a

division ring, which clearly has to be CT and finite-dimensional over its center by Theorem

1.4.25. We now show that if a is a noncentral element of T, then l.ann(a) is commutative.

To see this, note that T = Ta⊕ l.ann(a) because T is strongly regular. Thus, since T is CT,

either l.ann(a) or Ta must be commutative. Since a is not central, l.ann(a) is commutative

and hence central by Lemma 2.6.9. Now, let I be the sum of all commutative ideals of T.

We show that I is a maximal left ideal of T. To see this, let a /∈ I. Then l.ann(a) ⊆ I and

hence T = Ta⊕ l.ann(a) ⊆ Ta+ I ⊆ T, which proves that I is a maximal ideal.

Finally, we have

{0} 6= {xy − yx : x, y ∈ T} ⊆ l.ann(I)

because T is not commutative and I ⊆ Z(T ). It follows, by the maximality of I, that

T = I ⊕ l.ann(I) and hence l.ann(I) ∼= T/I is a division ring.
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Corollary 2.6.13. If R is a semiprime PI-ring which is CT, then Qmax(R) is the central

extension of R.

Proof. Let Z denote the center of Qmax(R). By Theorem 2.6.12 there exists a commutative

ring C, a field k and a finite-dimensional central simple k-algebra V such that Qmax(R) =

C⊕V. Thus RZ = C⊕Rk and since C⊕Rk is finitely generated over Z = C⊕k, the result

follows from [5, Theorem 5].

Let R be a semiprime PI-ring and let S be a nil multiplicatively closed subset of R. We

know from [54, Corollaries 1.6.23 and 1.6.26] that S is nilpotent. If R is CT, then S2 = {0}
by Theorem 2.6.12. We also have the following result.

Proposition 2.6.14. Let R be a ring and suppose that Z(R) is semiprime. Let S be a nil

multiplicatively closed subset of R. If C(x;R) is commutative for every noncentral element

x ∈ S, then S is commutative and hence locally nilpotent.

Proof. Since Z(R) is semiprime, noncentral elements of S are exactly nonzero elements of

S. For a, b ∈ R let [a, b] := ab − ba. Let 0 6= x, y ∈ S. Let n ≥ 2 be the smallest integer

such that xn = 0. For any z ∈ R and integer j ≥ 1 we have [xn−1, xzxj ] = [xn−1, x] = 0. So

xzxj , x ∈ C(xn−1;R) and hence x2zxj = xzxj+1. Thus if i ≥ 2 and j ≥ 1, then

xizxj = xzxi+j−1, yizyj = yzyi+j−1.

So every monomial in x, y has one of the following forms

x(yx)rysxt, y(xy)rxsyt, (xy)rxsyt, (yx)rysxt.

Hence there exists an integer N such that every monomial of degree N in x, y is zero. Let

r be the smallest integer such that every monomial of degree r in x, y is zero. Let w 6= 0

be a monomial of degree r − 1 in x, y. Then [w, x] = [w, y] = 0. Thus x, y ∈ C(w;R) and so

[x, y] = 0.



Chapter 3

Centralizers in A2(k) and K[x, x−1;σ]

3.1 Introduction

The structure of centralizers in a differential polynomial ring S := R[y; δ] has been studied

by many authors. Amitsur proved that if R is a field of characteristic zero and if k = {r ∈
R : δ(r) = 0}, then the centralizer of a nonconstant element f ∈ S is a commutative k-

algebra and also a free module of finite rank over k[f ]. In fact, Amitsur’s proof of this result

works for a more general setting. That is, let R be a commutative domain of characteristic

zero. We extend δ to Q(R), the quotient field of R. If k := {q ∈ Q(R) : δ(q) = 0} is a

subfield of R, then again the centralizer of a nonconstant element f ∈ S is commutative and

a free module of finite rank over k[f ]. We gave the proof of this result in section 2 of chapter

2. In particular, if R = k[x] and δ = d/dx, then we have Amitsur’s result for centralizers in

A1(k), the first Weyl algebra. K. Goodearl [32] proved a similar result for S when R is a

semiprime commutative ring. He proved that if k := {r ∈ R : δ(r) = 0} is a subfield of R,

then the centralizer of an element of f =
∑n

i=0 aiy
i ∈ S, where n is invertible in k and an

is invertible in R, is a commutative domain and a free module of finite rank over k[f ].

Let k be a field of characteristic zero. Dixmier [22] gave explicit form of centralizers

of some elements of A1(k). J. Guccione and others [34] proved that if [q, p] = 1 for some

elements p, q ∈ A1(k), then C(p;A1(k)) = k[p]. His proof is long and computational. V.

Bavula [11] gave a shorter and more elegant proof of this result. A derivation δ of a k-algebra

A is called locally nilpotent if for every u ∈ A there exists an integer n such that δn(u) = 0.

Bavula proved that the centralizer C of a nonconstant element of A1(k) admits a locally

nilpotent derivation δ if and only if C = k[u] for some u ∈ C and δ = d/du. He used this

77
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result to give his proof of Guccione’s result.

In section 2 of this chapter, we study centralizers in the second Weyl algebra A2(k). We

will assume that k is an algebraically closed field of characteristic zero and we prove that

the GK dimension of a centralizer in A2(k) has three possible values one, two and three.

Those of GK dimension one or two are commutative and those of GK dimension three are

not locally PI. We show that A2(k) has centralizers of GK dimension one, two or three. We

also give explicit forms of centralizers of some elements of A2(k).

In section 3, we study the structure of centralizers in subalgebras of skew Laurent poly-

nomial rings. These algebras contain A1(k) as well as some other algebras as subalgebras.

So our result in this section is a generalization of Amitsur’s result on centralizers in A1(k).

We prove that, under some conditions, centralizers in subalgebras of skew Laurent polyno-

mial rings are commutative and free modules of finite rank over some polynomial algebra

in one variable. In section 4, a few problems are posed and a connection between Dixmier’s

Fourth Problem and the problem of finite generation of centralizers in A2(k) is given.

3.2 Centralizers in the Second Weyl Algebra

Throughout this section, k is an algebraically closed field of characteristic zero andAn(k), n ≥
1, is the n-th Weyl algebra over k as defined in Definition 1.6.17. We assume that x1, . . . , xn, y1, . . . , yn

are the generators of An(k) with the relations

[xi, xj ] = [yi, yj ] = 0, [yi, xj ] = δij ,

for all i, j, where δij is the Kronecker delta.

If a ∈ A1(k) \ k, then, by Theorems 2.2.7 and 2.2.9, C(a;A1(k)) is commutative and,

as a k[f ]-module, free and finitely generated. As we saw in Example 2.4.1, if n ≥ 2, then

centralizers in An(k) may not even be PI.

In this section, we investigate the structure of centralizers in A2(k). In the first subsec-

tion, we prove that the GK dimension of a centralizer in A2(k) is one, two or three. Those

centralizers of GK dimension one or two are commutative and those of GK dimension three

are not locally PI. We also prove that for each integer n = 1, 2, 3 there exists an element of

A2(k) whose centralizer has GK dimension n.

In the second subsection, we find the centralizer of any element of A2(k) in which exactly

two of the four generators x1, x2, y1, y2 occur.
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3.2.1 GK Dimension of Centralizers

We begin this subsection with stating two important results about commutative subalgebras

of An(k).

Theorem 3.2.1. (Makar-Limanov, [45]) Let B be a commutative subalgebra of An(k). If

GKdim(B) = n, then C(B;An(k)) is commutative.

Theorem 3.2.2 ([10], Corollary 1.6). If B is a commutative subalgebra of An(k), then

GKdim(B) ≤ n.

We also need the following simple fact.

Lemma 3.2.3. Let B be a finitely generated k-algebra which is a domain of finite GK

dimension. If B is PI, then GKdim(B) = GKdim(Z(B)).

Proof. Since B is a PI-domain, the quotient division algebra Q(B) and the central localiza-

tion QZ(B) are equal, by Corollary 1.5.11. By Theorem 1.5.10, Q(B) is finite-dimensional

over its center and Z(Q(B)) = Q(Z(B)). Thus GKdim(Q(B)) = GKdim(Z(Q(B))), by

Proposition 1.6.23. Hence

GKdim(Z(B)) = GKdim(Z(Q(B))) = GKdim(Q(B)) = GKdim(B),

because, by Proposition 1.6.26, the GK dimension of the central localization of an algebra

is equal to the GK dimension of the algebra.

We are now ready to prove the first half of the main result of this subsection.

Proposition 3.2.4. Let A := A2(k), a ∈ A \ k and C := C(a;A). Then GKdim(C) ∈
{1, 2, 3}. If GKdim(C) ∈ {1, 2}, then C is commutative and if GKdim(C) = 3, then C is

not locally PI.

Proof. Since k[a] ⊆ C, we have GKdim(C) ≥ 1. We also have

GKdim(C) ≤ GKdim(A)− 1 = 3,

by Theorem 2.4.6 and Corollary 1.6.19. If GKdim(C) = 1, then C is commutative by

Proposition 1.6.32. There is no algebra whose GK dimension is strictly between 1 and 2, by

Theorem 1.6.15. Now, suppose that GKdim(C) = 2. In order to prove that C is commuta-

tive, we only need to show that every finitely generated subalgebra B of C is commutative.
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Clearly we may assume that a ∈ B and so GKdim(B) ∈ {1, 2}. If GKdim(B) = 1, then B is

commutative by Proposition 1.6.32. We claim that if GKdim(B) = 2, then B is PI. So sup-

pose, to the contrary, that B is not PI. Then Lemma 1.6.34 and the fact that k[a] ⊆ Z(B)

gives

2 = GKdim(B) ≥ 2 + GKdim(Z(B)) ≥ 2 + GKdim(k[a]) = 3,

which is nonsense. Hence B is PI and so GKdim(Z(B)) = GKdim(B) = 2, by Lemma 3.2.3.

Therefore C(Z(B);A) is commutative, by Theorem 3.2.1, and so B is commutative because

B ⊆ C(Z(B);A). We now claim that if B is a finitely generated subalgebra of C such that

a ∈ B and GKdim(B) > 2, then GKdim(B) = 3. To see this, suppose first that B is PI.

Then

GKdim(Z(B)) = GKdim(B) > 2,

by Lemma 3.2.3, contradicting Theorem 3.2.2. So B is not PI and hence GKdim(B) ≥ 3,

by Theorem 1.6.34. Since B ⊆ C, we also have GKdim(B) ≤ 3 and the claim follows.

An immediate result of the claim is that if GKdim(B) > 2, then GKdim(B) = 3. In

this case, C is not locally PI because if B is a finitely generated subalgebra of C with

GKdim(B) > 2, then, as we showed in the proof of the claim, B is not PI.

We now show that for each n ∈ {1, 2, 3} there exists some element in A2(k) whose

centralizer has GK dimension n. We begin with centralizers of GK dimension three. It

is easy to find examples of centralizers of GK dimension three, e.g. if a ∈ k[x1], then

C(a;A2(k)) = k[x1, x2, y2]. More generally, we have the following result.

Proposition 3.2.5. Let a ∈ A2(k) \ k and C := C(a;A2(k)). If at most two of the four

generators x1, y1, x2, y2 occur in a, then GKdim(C) = 3.

Proof. By Proposition 3.2.4, we only need to show that C is not commutative. If a ∈
k[x1, y1], then x2, y2 ∈ C and so C is not commutative. A similar argument holds if a ∈
k[x2, y2]. If a ∈ k[x1, x2], let

u := [y2, a]y1 − [y1, a]y2. (3.1)

Then [u, a] = 0 and thus u ∈ C. We also have [u, x1] = ∂a
∂x2

and [u, x2] = − ∂a
∂x1

. Hence, since

a is not a constant, either [u, x1] 6= 0 or [u, x2] 6= 0. Thus C is not commutative because

x1, x2 ∈ C. A similar argument holds if a is an element of k[x1, y2], k[y1, x2] or k[y1, y2].



CHAPTER 3. CENTRALIZERS IN A2(K) AND K[X,X−1;σ] 81

Corollary 3.2.6. Let a ∈ A2(k) and C := C(a;A2(k)). Let deg(a) denote the total degree

of a. If deg(a) = 1, then GKdim(C) = 3 and if deg(a) = 2, then GKdim(C) = 2 or 3.

Proof. Suppose first that deg(a) = 1 and let a = αx1 +βy1 + γx2 + δy2 where α, β, γ, δ ∈ k.
If α 6= 0, define f ∈ Aut(A2(k)) by

f(x1) = βx1 + α−1y1, f(y1) = −αx1, f(x2) = x2, f(y2) = y2.

Then f(a) = y1 + γx2 + δy2. If γ 6= 0, then we can also eliminate x2 in f(a) in a similar

way. Thus we may assume that only two of the four generators x1, y1, x2, y2 occur in a and

we are done by Proposition 3.2.5. If deg(a) = 2, then one can find an automorphism f of

A2(k) such that f(a) = α(x21+y21)+β(x22+y22)+γ, for some α, β, γ ∈ k [21, Exercise 7.6.11].

Thus k[x21 + y21, x
2
2 + y22] ⊆ C and so GKdim(C) ≥ 2. Therefore GKdim(C) = 2 or 3, by

Proposition 3.2.4.

The fact that the centralizer of every nonconstant element of A1(k) is commutative

implies that a subalgebra C of A1(k) is a maximal commutative subalgebra if and only if

C is the centralizer of some nonconstant element of A1(k). This is not true in A2(k) as the

next corollary, which is an immediate result of Proposition 3.2.5, shows.

Corollary 3.2.7. The algebra k[x1, x2] is a maximal commutative subalgebra of A2(k) and

k[x1, x2] 6= C(a;A2(k)) for all a ∈ A2(k).

Remark 3.2.8. By Proposition 3.2.5, if at most two of the four generators x1, x2, y1, y2

occur in a, then GKdim(C(a;A2(k))) = 3. Now, suppose that at most three of the four

generators x1, x2, y1, y2 occur in a ∈ A2(k) \ k and let B be the k-algebra generated by

those three generators. Let C := C(a;A2(k)) and C0 := C(a;B). Then GKdim(C) = 2 or

3 and GKdim(C) = 2 if and only if a /∈ Z(B) and C = C0. To see this, we assume that

B = k[x1, x2, y2] and so Z(B) = k[x1]. If a ∈ k[x1], then B = C and so GKdim(C) = 3.

Otherwise, k[x1, a] ⊆ C and so GKdim(C) = 2 or 3. Now, if GKdim(C) = 2, then C is

commutative, by Proposition 3.2.4, and so ∂b
∂y1

= [b, x1] = 0 for all b ∈ C. Hence b ∈ C0 and

so C = C0. Conversely, suppose that a /∈ k[x1] and C = C0. Then a is not algebraic over

k(x1), the field of fractions of k[x1], and hence

GKdim(C) = GKdim(C0) ≤ GKdim(B)− 1 = 2

by Theorem 2.4.6. Alternatively, we can argue that since B ∼= A1(k[x1]) ⊂ A1(k(x1)),

we have C0 ⊆ C(a;A1(k(x1))) and so C0 is commutative by Theorem 2.2.9. Thus C is
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commutative and hence GKdim(C) = 2. Notice that the condition C = C0 is equivalent to

this condition: if b1
∂a
∂x1

= [a, b0] for some b1 ∈ C0 and b0 ∈ B, then b1 = 0. The reason is

that C 6= C0 if and only if there exists b ∈ C whose degree with respect to y1 is at least

one. Then, since x1 ∈ C, we have ∂b
∂y1

= [b, x1] ∈ C and so we may assume that the degree

of b with respect to y1 is one. Let b = b1y1 + b0, b1, b0 ∈ B. Then [b, a] = 0 if and only if

[b1, a] = 0 and b1
∂a
∂x1

= [a, b0].

The next example gives a centralizer of GK dimension two in A2(k).

Example 3.2.9. Let a := x1y1 + αx2y2, α ∈ k. If α /∈ Q, then C(a;A2(k)) = k[x1y1, x2y2]

and so GKdim(C(a;A2(k))) = 2.

Proof. It is clear that both x1y1 and x2y2 belong to C(a;A2(k)) and so

k[x1y1, x2y2] ⊆ C(a;A2(k)).

Conversely, suppose that

b =
∑
i,j,u,v

βijuvx
i
1y
j
1x
u
2y

v
2 ∈ C(a;A2(k)).

Then, since [xi1y
j
1, x1y1] = (j − i)xi1y

j
1 and [xi2y

j
2, x2y2] = (j − i)xi2y

j
2, our hypothesis that

[b, a] = 0 gives ∑
βijuv((j − i) + α(v − u))xi1y

j
1x
u
2y

v
2 = 0.

Thus (j − i) + α(v − u) = 0 for all i, j, u, v and, since α /∈ Q, we have i = j and u = v.

Therefore

b =
∑

βiux
i
1y
i
1x
u
2y

u
2 .

An easy induction shows that for every positive integer m there exist γi ∈ k such that

xm1 y
m
1 = (x1y1)

m + γ1(x1y1)
m−1 + · · ·+ γm−1x1y1.

Thus xm1 y
m
1 ∈ k[x1y1]. Similarly, xm2 y

m
2 ∈ k[x2y2] and so b ∈ k[x1y1, x2y2].

We now give an example of a centralizer of GK dimension one. We begin with an

element of the form a = y1 + a1 where a1 ∈ k[x1, x2, y2]. The idea is to find a1 somehow

that the leading coefficient of every element of C(a;A2(k)) becomes constant. This implies

that C(a;A2(k)) = k[a] and so the GK dimension of C(a;A2(k)) is one.
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Example 3.2.10. Let a := y1 + (x1x2 + 1)y2. Then C(a;A2(k)) = k[a] and therefore

GKdim(C(a;A2(k))) = 1.

Proof. Let a1 := (x1x2 + 1)y2. So a = y1 + a1 and if b =
∑m

i=0 biy
i
1, bi ∈ k[x1, x2, y2], is an

element of C(a;A2(k)), then

ab = bmy
m+1
1 +

(
∂bm
∂x1

+ bm−1 + a1bm

)
ym1 + · · ·

and

ba = bmy
m+1
1 + (bma1 + bm−1)y

m
1 + · · · .

equating the coefficients of ym1 in both sides of ab = ba gives ∂bm
∂x1

= [bm, a1]. So

∂bm
∂x1

= [bm, (x1x2 + 1)y2]. (3.2)

We claim that bm ∈ k which, in particular, implies C(a;A2(k)) ∩ k[x1, x2, y2] = k. There is

nothing to prove if bm = 0. Let

bm =

n∑
i=0

ciy
i
2, ci ∈ k[x1, x2], cn 6= 0.

We now find the coefficients of yn2 in both sides of (3.2). Clearly the coefficient of yn2 in ∂bm
∂x1

is ∂cn
∂x1

. We also have

[bm, (x1x2+1)y2] =

n∑
i=0

[ciy
i
2, (x1x2+1)y2] =

n∑
i=0

(
(ix1ci − (x1x2 + 1)

∂ci
∂x2

)yi2 + · · ·
)
. (3.3)

So the coefficient of yn2 in [bm, (x1x2 + 1)y2] is nx1cn − (x1x2 + 1)∂cn∂x2
. Thus (3.2) gives

∂cn
∂x1

= nx1cn − (x1x2 + 1)
∂cn
∂x2

. (3.4)

Let cn =
∑s

i=0 uix
i
2, ui ∈ k[x1], us 6= 0. Then equating the coefficients of xs2 and xs−12 in

both sides of (3.4) gives
dus
dx1

= (n− s)x1us (3.5)

and
dus−1
dx1

= (n− s+ 1)x1us−1 − sus. (3.6)

Comparing the degrees in both sides of (3.5) gives n = s and us ∈ k. It then follows from

(3.6) that n = 0 and so bm = c0 = u0 ∈ k. Thus b − bmam is an element of C(a;A2(k))

whose degree with respect to y1 is smaller than m. An induction now shows that b ∈ k[a]

and so C(a;A2(k)) = k[a].
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So we have proved the following result.

Theorem 3.2.11. Let a ∈ A2(k) \ k and C := C(a;A2(k)). Then GKdim(C) ∈ {1, 2, 3}. If

GKdim(C) ∈ {1, 2}, then C is commutative and if GKdim(C) = 3, then C is not locally PI.

Furthermore, for each n ∈ {1, 2, 3} there exists an element of A2(k) whose centralizer has

GK dimension n.

3.2.2 Centralizers of Elements of k[x1, x2]

We have already seen, in Proposition 3.2.5, that if at most two of the four generators

x1, x2, y1, y2 occur in a ∈ A2(k), then GKdim(C(a;A2(k))) = 3. In this subsection, we

would like to find C(a;A2(k)). We consider two cases. First, suppose that the generators

occurring in a do not commute with each other, i.e. a ∈ k[x1, y1] or a ∈ k[x2, y2]. This case

is trivial. If a ∈ k[x1, y1], then C(a;A2(k)) = C0[x2, y2] where C0 is the centralizer of a in

k[x1, y1] ∼= A1(k). So in this case C(a;A2(k)) ∼= A1(k)⊗k C0 and the problem is reduced to

centralizers in A1(k). A similar result holds if a ∈ k[x2, y2].

The second case, which is not trivial, is when the generators occurring in a commute

with each other. Theorem 3.2.12 solves this case for a ∈ k[x1, x2]. A similar argument can

be used to find C(a;A2(k)) when a is an element of k[x1, y2], k[y1, y2] or k[y1, x2]. The key

in the proof of Theorem 3.2.12 is the element introduced in (3.1). We note that if a ∈ k[x1]

or a ∈ k[x2], then we are back to the first case and so we may assume that ∂a
∂x1

∂a
∂x2
6= 0.

We then give an example of an element of k[x1, x2] whose centralizer has no subalgebra

isomorphic to A1(k). At the end of this subsection, we prove a necessary condition for a

centralizer in A2(k) to contain a nontrivial simple subalgebra.

Theorem 3.2.12. Let a ∈ k[x1, x2] and suppose that ∂a
∂x1

∂a
∂x2
6= 0. Let d := gcd( ∂a∂x1 ,

∂a
∂x2

).

Let ∂a
∂x2

= pd, ∂a
∂x1

= qd and u := py1 − qy2. Then C(a;A2(k)) = k[x1, x2, u].

Proof. Let C := C(a;A2(k)). We have

[u, a] = p[y1, a]− q[y2, a] = p
∂a

∂x1
− q ∂a

∂x2
= 0

and so u ∈ C. We note that the set {1, u, u2, . . .} is linearly independent over k[x1, x2].

To see this, suppose to the contrary that n is the smallest integer for which there exist

v0, . . . , vn ∈ k[x1, x2] with vn 6= 0 such that
∑n

i=0 viu
i = 0. Then

0 =
n∑
i=0

vi[u
i, x1] = npvnu

n−1 + (terms of lower degree in u).
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This contradicts the minimality of n because p 6= 0.

Now, let

b :=

m∑
i=0

biy
i
1, bi ∈ k[x1, x2, y2],

be any element of C. We claim that bm = vpm for some v ∈ k[x1, x2]. To prove this claim,

we equate the coefficients of powers of y1 in both sides of ab = ba. That gives

[bm, a] = 0 (3.7)

and

[bm−i, a] +

i−1∑
j=0

(
m− j
i− j

)
bm−j

∂i−ja

∂xi−j1

= 0, i = 1, . . . ,m. (3.8)

We note that since a ∈ k[x1, x2], for every c =
∑r

i=0 ciy
i
2, ci ∈ k[x1, x2], we have [c, a] =

rcr
∂a
∂x2

yr−12 + · · · . Thus deg[c, a] = deg c − 1 if deg c ≥ 1, where deg is with respect to y2.

So (3.7) and (3.8) imply that deg bm−i = i, i = 0, . . . ,m. In particular bm ∈ k[x1, x2] and

hence

C ∩ k[x1, x2, y2] = k[x1, x2]. (3.9)

Now, let

bm−i =
i∑

r=0

βr,m−iy
r
2, i = 0, . . . ,m, βr,m−i ∈ k[x1, x2]. (3.10)

Given i = 1, . . . ,m, the coefficient of yi−12 on the left-hand side of (3.8) is the sum of the

coefficients of yi−12 in [bm−i, a] and (m− i+ 1)bm−i+1
∂a
∂x1

. Thus applying (3.10) gives

iβi,m−i
∂a

∂x2
+ (m− i+ 1)βi−1,m−i+1

∂a

∂x1
= 0, i = 1, . . . ,m. (3.11)

Multiplying both sides of (3.11) by q and applying the identity p ∂a
∂x1

= q ∂a∂x2 gives

iβi,m−ip+ (m− i+ 1)βi−1,m−i+1q = 0, i = 1, . . . ,m. (3.12)

It follows from (3.12) that

β0,mq
m = (−1)mβm,0p

m

and hence pm divides β0,m = bm because gcd(p, q) = 1. So we have proved the claim.

We are now ready to prove that b ∈ k[x1, x2, u]. Let bm = vpm, where v is some element

of k[x1, x2]. Since (py1)
m = pmym1 + w0 for some w0 ∈ A2(k) whose degree with respect to

y1 is less than m, we have

um = (py1 − qy2)m = pmym1 + u0
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for some u0 ∈ A2(k) whose degree with respect to y1 is less than m. Hence

b =

m∑
i=0

biy
i
1 = vpmym1 +

m−1∑
i=0

biy
i
1 = vum + u1

for some u1 ∈ A2(k) whose degree with respect to y1 is less than m. Since u1 = b−vum ∈ C,

an induction together with (3.9) show that b ∈ k[x1, x2, u] and so C = k[x1, x2, u].

It is not true that every centralizer of GK dimension three in A2(k) contains a subalgebra

isomorphic to A1(k). Theorem 3.2.12 gives the following counter-example.

Example 3.2.13. The algebra C := C(x1x2;A2(k)) does not contain any subalgebra iso-

morphic to A1(k) but it contains a subalgebra of GK dimension two which is isomorphic to

some subalgebra of A1(k).

Proof. By Theorem 3.2.12, C = k[x1, x2, u] where u := x1y1 − x2y2. For every v ∈ k[x1, x2]

let δ(v) := [u, v] = x1
∂v
∂x1
− x2 ∂v

∂x2
. Let b :=

∑n
i=0 biu

i and c =
∑m

j=0 cju
j , where bi, cj ∈

k[x1, x2], be two elements of C. Then the constant term of [b, c], with respect to u, is

v0 =
n∑
i=1

biδ
i(c0)−

m∑
j=1

cjδ
j(b0).

Clearly v0 6= 1 because the constant term of δr(v), with respect to x1, x2, is zero for all

v ∈ k[x1, x2] and all integers r ≥ 1.

For the second part, consider the subalgebra k[x1, u] of C. Since [u, x1] = x1, we can

embed k[x1, u] into A1(k) = k〈s,t〉
(ts−st−1) via the map x1 7→ s and u 7→ st.

We now give a necessary condition for a centralizer in A2(k) to contain a simple subal-

gebra B 6= k. We first need two lemmas.

Lemma 3.2.14. ([37, Proposition 3.12]) Let A and B be k-algebras. If GKdim(B) ≤ 2,

then GKdim(A⊗k B) = GKdim(A) + GKdim(B).

Lemma 3.2.15. Let A be a k-algebra and let B be a central simple k-subalgebra of A. If C

is a k-subalgebra of C(B;A), then B ⊗k C ∼= BC.

Proof. Define the k-algebra homomorphism ϕ : B ⊗k C −→ BC by ϕ(b ⊗k c) = bc, b ∈
B, c ∈ C, which is clearly surjective. Suppose that kerϕ 6= (0) and let n be the smallest

integer for which there exist nonzero elements bi ∈ B and k-linearly independent elements



CHAPTER 3. CENTRALIZERS IN A2(K) AND K[X,X−1;σ] 87

ci ∈ C such that
∑n

i=1 bici = 0. Since B is simple, there exist xj , yj ∈ B and integer m such

that
∑m

j=1 xjb1yj = 1. For each i let b′i :=
∑m

j=1 xjbiyj . Then

c1 +
n∑
i=2

b′ici = 0. (3.13)

Now let b ∈ B. Then (3.13) gives
∑n

i=2(bb
′
i − b′ib)ci = 0 and so bb′i = b′ib for all i, by the

minimality of n. Therefore b′i ∈ Z(B) = k for all i and hence, by (3.13), the elements

c1, . . . , cn are k-linearly dependent, contradiction!

Proposition 3.2.16. Let a ∈ A2(k) \ k and C := C(a;A2(k)). If B 6= k is a simple

subalgebra of C, then GKdim(C) = 3, GKdim(B) = 2 and J ∩ k[z] 6= (0) for all nonzero

ideals J of C and all z ∈ Z(C) \ k.

Proof. If GKdim(C) 6= 3, then C is commutative, by Proposition 3.2.4, and hence B is a

field which gives the contradiction B = k. Thus GKdim(C) = 3 and so

3 = GKdim(C) ≥ GKdim(k[a]B) = GKdim(k[a]) + GKdim(B) = 1 + GKdim(B),

by Lemma 3.2.15 and Lemma 3.2.14. Hence GKdim(B) ≤ 2. If GKdim(B) ≤ 1, then

B is a field, by Proposition 1.6.32, and so we have the contradiction B = k. Therefore

GKdim(B) > 1 and so GKdim(B) = 2 by Theorem 1.6.15.

For the second part, suppose to the contrary that J ∩ k[z] = (0) for some nonzero ideal

J of C and some z ∈ Z(C) \ k. Since B is simple, we have B ∩ J = (0) and so the natural

homomorphisms k[z] −→ C/J and B −→ C/J are injective. So we may assume that C/J

contains k[z]B. By Proposition 1.6.6,

GKdim(k[z]B) ≤ GKdim(C/J) ≤ GKdim(C)− 1 = 2

and hence, by Lemma 3.2.15 and Lemma 3.2.14,

2 ≥ GKdim(k[z]B) = GKdim(k[z]) + GKdim(B) = 3,

which is absurd.

3.3 Centralizers in Skew Laurent Polynomial Algebras

Let R be a ring and let α ∈ Aut(R). We defined the skew polynomial ring S = R[x;α] in

Definition 2.2.2. Let

X = {1, x, x2, · · · }.
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Clearly X is a multiplicatively closed subset of S. The claim is that X is a denominator set

and thus the localization of S at X exists. It is clear that all elements of X are regular. So we

only need to show that X is Ore. Let f =
∑n

i=0 rix
i ∈ S and xm ∈ X. Let g =

∑n
i=0 σ

m(ri)x
i

and h =
∑n

i=0 σ
−m(ri)x

i. Then xmf = gxm and fxm = xmh. Thus X is Ore and hence

X−1S = SX−1 exists. It is clear that an element of SX−1 is in the form
∑n

i=m rix
i where

m ≤ n are integers and ri ∈ R. Of course, we still have the right multiplication rule, i.e.

xr = σ(r)x because SX−1 contains R[x;σ]. Since σ is an automorphism, it is invertible and

so the right multiplication rule implies that xnr = σn(r)xn for all n ∈ Z. We call SX−1 a

skew Laurent polynomial ring over R and we write SX−1 = R[x, x−1;σ]. Note that if R is

a domain, then R[x, x−1;σ] is a domain too.

Now, let K be a field and σ ∈ Aut(K). An argument similar to the standard proof of

the Hilbert basis theorem shows that B := K[x, x−1;σ] is noetherian [48, Theorem 1.4.5].

Therefore B is an Ore domain, by Proposition 1.2.13, and hence it has a quotient division

algebra. In this section, the goal is to show that if the fixed field k of σ is algebraically

closed and if A is a k-subalgebra of B, then for every f ∈ A \K, the centralizer C(f ;A) is

a commutative algebra and a free module of finite rank over a polynomial algebra k[u] for

some u ∈ C(f ;A). But first we give three examples of algebras which are subalgebras of B

for some field K.

Quantum planes. Let k be a field. Recall that the quantum plane kq[x, y] is the k-algebra

generated by x, y subject to the relation yx = qxy where 0 6= q ∈ k. Let B = k(u)[v, v−1;σ]

where the automorphism σ is defined by σ(u) = qu. The algebra kq[x, y] has the obvious

embedding x 7→ u, y 7→ v, into B.

The first Weyl algebra. Let k be a field of characteristic zero. Recall that the first Weyl

algebra A1(k) is the k-algebra generated by x, y subject to the relation yx = xy + 1. Let

B = k(u)[v, v−1;σ] where the automorphism σ is defined by σ(u) = u+ 1. Define

ϕ : k〈x, y〉 −→ B

by ϕ(x) = v−1u and ϕ(y) = v and then extend ϕ homomorphically to k〈x, y〉. Then

ϕ(yx− xy − 1) = u− v−1uv − 1 = u− σ−1(u)v−1v − 1 = u− (u− 1)− 1 = 0.

Thus (yx− xy − 1) ⊆ kerϕ and so ϕ induces a k-algebra homomorphism

A1(k) ∼=
k〈x, y〉

(yx− xy − 1)
−→ B.
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The above homomorphism is injective because A1(k) is simple.

Finitely generated graded algebras of GK dimension two. Let k be a field and let A be a

k-algebra. Suppose that there exist k-vector subspaces Ai, i ≥ 0 of A such that AiAj ⊆ Ai+j
for all i, j ≥ 0, and A =

⊕
i≥0Ai, as k-vector spaces. The algebra A is called a graded k-

algebra. If A0 = k, then A is called connected. An element a ∈ A is called homogeneous if

a ∈ Ai for some i ≥ 0. If 0 6= a ∈ A, then a =
∑n

i=0 ai for some ai ∈ Ai with an 6= 0. Now

suppose that A is a domain of finite GK dimension. Then A is an Ore domain by Corollary

1.6.9. Let Q(A) be the quotient division algebra of A. There is another quotient ring related

to A that we are now going to define. Let

S =
⋃
i≥0

Ai \ {0},

which is clearly multiplicatively closed. The claim is that S is Ore. Suppose first that

a, s ∈ S. Then, since A is Ore, there exist b, c ∈ A such that ba = cs. Let b =
∑r

i=0 bi, c =∑m
j=0 cj , where bi ∈ Ai, cj ∈ Aj and brcm 6= 0. Then ba = cs implies that bra = cms and so

As ∩ Ss 6= (0). For the general case, let 0 6= a =
∑n

i=0 ai ∈ A, an 6= 0 and s ∈ S. By what

we have just proved, there exists s0 ∈ S such that s0a0 ∈ As. In general, for every 0 ≤ i ≤ n
there exists some si ∈ S such that sisi−1 · · · s1s0ai ∈ As. So if we let t = snsn−1 · · · s0 ∈ S,
then ta ∈ As and hence As ∩ Sa 6= (0).

Therefore we can localize A at S and we call S−1A the graded quotient ring of A. Let

Qgr(A) denote the graded quotient ring of A. Clearly A ⊆ Qgr(A) ⊆ Q(A). Now let

D = {a−1b : a, b ∈ An, a 6= 0, n ≥ 0}.

It is easy to see that D is a division k-subalgebra of Qgr(A) and obviously A0 ⊆ D. Choose

and fix an element 0 6= c ∈ A1 and let x = c−1. If d = a−1b ∈ D, then xdx−1 = (ac)−1bc ∈ D
and so we have σ ∈ Aut(D) defined by

σ(d) = xdx−1

and so xd = σ(d)x for all d ∈ D. Note that if α ∈ k, then σ(αd) = ασ(d) because k

is in the center of A. Now let q = a−1b, where 0 6= a ∈ Am, b ∈ An. If n ≥ m, then

cn−ma ∈ An and hence (acn−m)−1b ∈ D. Thus q ∈ Dxm−n. If m ≥ n, then a−1bcm−n ∈ D
and hence q ∈ Dxm−n. So we have proved that Qgr(A) = D[x, x−1;σ]. It is known that

if k is algebraically closed and A is a connected finitely generated graded algebra of GK

dimension two, then D is a field [8] and so Qgr(A) = K[x, x−1;σ] for some field K.
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Assumption. For the rest of this section, K is a field and σ ∈ Aut(K). We assume that

k is the fixed field of σ and that k is algebraically closed. If K = k, then K[x, x−1;σ] is

commutative and so not interesting for our purpose. So we assume that K 6= k. An element

g ∈ K[x, x−1;σ] is in the form g =
∑n

i=m aix
i, ai, m, n ∈ Z, m ≤ n. We assume that

aman 6= 0.

Definition 3.3.1. If g =
∑n

i=m aix
i ∈ K[x, x−1;σ], then the integers o(g) := m and

deg g := n are called the order and the degree of g, respectively.

We are now going to prove our main result in this section. We begin with a lemma.

Lemma 3.3.2. If σm(c) = c for some c ∈ K and some integer m 6= 0, then c ∈ k.

Proof. Clearly we may assume that m > 0. Let

p(x) =

m−1∏
i=0

(x− σi(c)) ∈ K[x].

Then p(c) = 0 and each coefficient of p(x) is invariant under σ. Thus p(x) ∈ k[x] and so c is

algebraic over k. Hence c ∈ k because k is algebraically closed.

It is easy to see that the center of K[x, x−1;σ] is k. A nontrivial result is the following.

Corollary 3.3.3. The center of the quotient division algebra of K[x, x−1;σ] is k.

Proof. Let Q be the quotient division algebra of K[x, x−1;σ] and let 0 6= q = a−1b ∈ Z(Q),

the center of Q. Let

a =
n∑

i=m

aix
i, b =

s∑
i=r

bix
i, anbs 6= 0.

Since q ∈ Z(Q), we have paq = qpa for all p ∈ Q and thus apb = bpa. Let p1 = xu, u ∈ Z
and p2 = γ ∈ K. Then equating the coefficients of monomials of highest degree in both sides

of ap1b = bp1a and ap2b = bp2a gives

anσ
n+u(bs) = bsσ

s+u(an), anσ
n(γbs) = bsσ

s(γan). (3.14)

We claim that n = s and bn = αan for some α ∈ k. So suppose that n 6= s and let u = −s.
Then the first equation in (3.14) gives σn−s(bs) = bs and, since n − s 6= 0, we have bs ∈ k
by Lemma 3.3.2. The same equation then gives σs+u(an) = an for all integers u and hence
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an ∈ k by Lemma 3.3.2. But then the second equation in (3.14) becomes σn−s(γ) = γ for

all γ ∈ K. Thus, since n− s 6= 0, Lemma 3.3.2 gives the contradiction K = k. So n = s.

Now, the first equation in (3.14), with u = 1 − n, gives σ(a−1n bn) = a−1n bn and hence

a−1n bn ∈ k. So bn = αan for some α ∈ k. We now show that q = α, which completes the

proof. Suppose, to the contrary, that q−α 6= 0. Clearly q−α ∈ Z(Q) because q, α ∈ Z(Q).

Thus a−1(b − αa) = q − α ∈ Z(Q) and so deg a = deg(b − αa). But this is not possible

because bn = αan and so deg(b− αa) < n = deg a.

Corollary 3.3.4. Let A be a k-subalgebra of K[x, x−1;σ] and let f =
∑n

i=m aix
i ∈ A \ k.

Let g =
∑s

i=r bix
i and h =

∑u
i=t cix

i be two elements of C(f ;A). If r = t and either m 6= 0

or r 6= 0, then brc
−1
r ∈ k. Similarly, if s = u and either n 6= 0 or s 6= 0, then bsc

−1
s ∈ k.

Proof. We only prove the first part because the proof of the second part is similar. Equating

The coefficients of xm+r in both sides of fg = gf and fh = hf gives

amσ
m(br) = brσ

r(am)

and

amσ
m(cr) = crσ

r(am).

Therefore brc
−1
r = σm(brc

−1
r ). Thus, by Lemma 3.3.2, either m = 0 or brc

−1
r ∈ k. But if

m = 0, then r 6= 0 and σr(a0) = a0. Hence a0 ∈ k and so we can replace f with f − a0
because C(f ;A) = C(f − a0;A).

Lemma 3.3.5. Let F be an algebraically closed field and let A be a domain and an F -algebra.

If A is a finite module over some polynomial algebra F [a], a ∈ A, then A is commutative

and a free module of finite rank over F [a].

Proof. By Proposition 1.6.23, GKdim(A) = GKdim(F [a]) = 1 and hence A is commutative

by Proposition 1.6.32. Since A is a domain, it is torsion free as F [a]-module and the result

now follows from the fundamental theorem for finitely generated modules over a principal

ideal domain.

Lemma 3.3.6. Let A be a k-subalgebra of K[x, x−1;σ] and let f ∈ A \K. Let C := C(f ;A)

and C0 := C ∩ K[x;σ]. Then C ∩ K = k and if u ∈ C0 with deg u ≥ 1, then C0 is

commutative and a free module of finite rank over k[u].
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Proof. Let c ∈ C ∩K and let f =
∑n

i=m aix
i. Then fc = cf gives σm(c) = σn(c) = c. Thus,

by Lemma 3.3.2, either m = n = 0, which is not possible because f /∈ K, or c ∈ k. Hence

C ∩K = k.

Now, for any remainder i modulo m = deg u let ui ∈ C0, if it exists, be such that

deg ui ≡ i mod m and deg ui is as small as possible. We choose u0 = 1. Now let v ∈ C0. If

deg v = 0, then v ∈ C ∩K = k. If deg v > 0, then deg v ≡ deg ui mod n for some i and so

deg v− deg ui = rm for some integer r ≥ 0. Hence we can apply Corollary 3.3.4 to get some

α ∈ k such that deg(v − αurui) < deg u. We can continue this process to eventually have

C0 =
∑
k[u]ui. The result now follows from Lemma 3.3.5.

We are now ready to prove the main result of this section. Let A be a subalgebra of

K[x, x−1;σ] and let f ∈ A \ k. Suppose that g(x) =
∑n

i=m aix
i and h(x) =

∑s
i=r bix

i are

in C(f ;A). The crucial step in the proof of Theorem 3.3.7 is to show that if m = r (resp.

n = s), then amb
−1
m ∈ k (resp. anb

−1
n ∈ k). After proving this, we look at the degree and

the order of elements of C(f ;A) modulo the degree and the order of f.

Theorem 3.3.7. Let A be a subalgebra of K[x, x−1;σ]. Let f =
∑n

i=m aix
i ∈ A \ k and

C := C(f ;A). If f ∈ K, then C = A ∩ K. If f /∈ K, then C is commutative and a free

module of finite rank over k[u] for some u ∈ C.

Proof. If f = a0 ∈ K and g =
∑s

i=r bix
i ∈ C, then fg = gf gives σr(a0) = σs(a0) = a0 and

hence, since f /∈ k, we must have r = s = 0 by Lemma 3.3.2. Thus g ∈ K and so C = A∩K.
Now, suppose that f /∈ K. We consider two cases.

Case 1. C ∩K[x;σ] = C: this case follows from Lemma 3.3.6.

Case 2. C ∩ K[x;σ] 6= C: so there exists some h ∈ C such that o(h) = p < 0. For any

remainder i modulo p let hi ∈ C, if it exists of course, be such that o(hi) ≤ 0, o(hi) ≡ i

mod p and o(hi) is as large as possible. We choose h0 = 1. We claim that

C =
∑

k[h]hj + C ∩K[x;σ]. (3.15)

To prove the claim, let w ∈ C. If o(w) = 0, then w ∈ C ∩ K[x;σ]. If o(w) < 0, then

o(w) ≡ o(hi) mod p for some i. Let o(w) − o(hj) = tp. Then t ≥ 0 and, since o(w) 6= 0,

there exists some β ∈ k such that o(w − βhthj) > o(w) by Corollary 3.3.4. Continuing in

this manner, we will eventually get (3.15). Now, if C ∩ K[x;σ] = k, then C =
∑
k[h]hj ,

because h0 = 1 and so k ⊆ k[h]h0, and we are done by Lemma 3.3.5.
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So we may assume that C ∩K[x;σ] 6= k and hence we can choose

g = b0 + · · ·+ bsx
s ∈ C ∩K[x;σ]

with s ≥ 1. Suppose that b0 6= 0. If m = o(f) < 0, then gf = fg implies that amσ
m(b0) =

amb0 and thus σm(b0) = b0. Therefore, by Lemma 3.3.2, b0 ∈ k. So g − b0 ∈ C and

o(g − b0) ≥ 1. If m = 0, then hf = fh implies a0 ∈ k. So f − a0 ∈ C and o(f − a0) ≥ 1.

Thus C ∩K[x;σ] contains an element of order at least one. So we may assume that b0 = 0.

By Lemma 3.3.6,

C ∩K[x;σ] =
∑

k[g]gi (3.16)

for some gi ∈ C ∩K[x;σ], and C ∩K[x;σ] is commutative. Now, let z ∈ C. Since o(g) ≥ 1,

there exists an integer ` ≥ 0 such that

zg` ∈ C ∩K[x;σ] =
∑

k[g]gj .

Therefore, in the quotient division algebra of K[x, x−1;σ], we have z ∈
∑
k[g, g−1]gi and

hence

C ⊆
∑

k[g, g−1]gi.

Thus C is commutative and finitely generated, as a k-algebra, by (3.15) and (3.16). Also,

GKdim(C) = 1 by Corollary 1.6.27 and Proposition 1.6.23. Thus C is a finite module over

k[u] for some u ∈ C by Theorem 1.6.24 or Proposition 1.6.30. Now, Lemma 3.3.5 completes

the proof the theorem.

Remark 3.3.8. The element u in Theorem 3.3.7 is not always f. It is easy to see that

C := C(x;K[x, x−1;σ]) = k[x, x−1]. Let f1, . . . , fn ∈ C. Clearly the set

{o(g) : g ∈
n∑
i=1

k[x]fi}

is bounded from below and thus C 6=
∑n

i=1 k[x]fi. However, if we choose u = x+ x−1, then

an induction shows that xn ∈ k[u]x+ k[u] for all n ∈ Z and hence C = k[u]x+ k[u].

In fact, in the above remark, the set {1, x} is a basis for the k[u]-module C. To see

this, suppose that 1, x are k[u]-linearly dependent. Then fx = g for some f, g ∈ k[u].

Let f =
∑n

i=0 αi(x + x−1)i and g =
∑m

i=0 βi(x + x−1)i, where αi, βi ∈ k and αnβm 6= 0.

If n ≥ m, then multiplying fx = g by xn and equating the x-degree of both sides gives
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m = n + 1, which is false. If n ≤ m, then multiplying fx = g by xm and equating the

constant coefficients of both sides gives βm = 0, which is false again. Thus the set {1, x} is

k[u]-linearly independent.

Remark 3.3.9. The result in Theorem 3.3.7 does not hold if k is not algebraically closed

even if |σ| = ∞. To see this, let pn be the n-th prime number and let ζn := exp(2πi/pn),

the pn-th primitive root of unity. Let K = Q(ζ1, ζ2, . . .). The set

{ζα1
n1
ζα2
n2
· · · ζαsns , s ≥ 1, 0 ≤ αi ≤ pni − 1}

is a Q-basis for K. Define the Q-automorphism σ ∈ Aut(K) by σ(ζn) = ζ2n, n ≥ 1. Clearly

|σ| = ∞ and the fixed field k of σ is not algebraically closed. Now, in K[x, x−1;σ], the

elements ζ2 and x do not commute with each other but they both commute with x2. So the

centralizer of x2 is not commutative. Also, note that x2 is not central because, for example,

it does not commute with ζ3.

3.4 Problems

Let k be a field of characteristic zero. By Amitsur’s theorem, the centralizer of every element

of A1(k) is a finitely generated algebra. We proved in the second section of this chapter that

if a ∈ A2(k) and if at most two generators of four generators x1, x2, y1, y2 of A2(k) appear

in a, then the centralizer of a in A2(k) is a finitely generated k-algebra. It is natural to ask

the following question.

Question 1. Is it true that the centralizer of every element of A2(k) is a finitely generated

k-algebra?

There is an interesting connection between the problem of finite generation of centralizers

in A2(k) and a weak version of Dixmier’s Fourth Problem [22], which is still open [11]. We

first recall the notions of a filtered algebra and its associated graded algebra. This is basically

a generalization of the notion of a graded algebra. Let A be a k-algebra and suppose that

there exists a sequence B0 ⊆ B1 ⊆ · · · of k-subspaces of A such that A =
⋃
i≥0Bi and

BiBj ⊆ Bi+j for all i, j. The algebra A is called a filtered algebra. Now define the k-

vector space of gr(A) :=
⊕

i≥0Ci, where Ci = Bi/Bi−1 for all i ≥ 0 and B−1 := (0). The

multiplication in gr(A) is defined by (u+Bi−1)(v+Bj−1) = uv+Bi+j−1 for all u ∈ Bi, v ∈ Bj
and all i, j. It is easy to see that this multiplication is well-defined and it gives gr(A) the
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structure of a graded algebra. The algebra gr(A) is called the associated graded algebra of

A.

Now let a ∈ A1(k) and let δ : A1(k) → A1(k) be the map defined by δ(u) = [u, a] for

every u ∈ A1(k). For any integer i ≥ 0 let N(a, i) := ker δi+1. Let N(a) :=
⋃
i≥0N(a, i). It

is easy to see that C(a;A1(k)) = N(a, 0) ⊆ N(a, 1) ⊆ · · · and N(a, i)N(a, j) ⊆ N(a, i + j)

for all i, j. So N(a) is a filtered algebra.

Dixmier’s Fourth Problem. Is gr(N(a)) a finitely generated k-algebra?

We note that if the answer to Dixmier’s Fourth Problem is positive, then N(a) would

be finitely generated too. So the problem of finite generation of N(a) is a weak version

of Dixmier’s Fourth Problem. V. Bavula [9] proved that if a is a homogeneous element of

A1(k), then N(a) is finitely generated. The general case is still open.

The connection between this problem and the problem of finite generation of centralizers

in A2(k) is given in the following proposition.

Proposition 3.4.1. Let a = y1 + a1 ∈ A2(k), where a1 ∈ k[x2, y2] ∼= A1(k). Let B =

C(a; k[x1, x2, y2]). Then C(a;A2(k)) = B[a] and B ∼= N(a1). Hence C(a;A2(k)) is finitely

generated if and only if N(a1) is finitely generated.

Proof. Let c =
∑m

i=0 ciy
i
1 ∈ A2(k) where ci ∈ k[x1, x2, y2]. Let δ be the map k[x2, y2] →

k[x2, y2] defined by δ(u) = [u, a1] for every u ∈ k[x2, y2]. Then c ∈ C(a;A2(k)) if and

only if ci ∈ B, for all i, because y1 ∈ C(a;A2(k)). Thus C(a;A2(k)) = B[y1] = B[a].

We are now going to prove that B ∼= N(a1). Let b =
∑r

j=0 βjx
j
1 ∈ k[x1, x2, y2], where

βj ∈ k[x2, y2]. Then b ∈ B if and only if [b, a] = 0 if and only if ∂b
∂x1

= [b, a1] if and only

if
∑r

j=0 jβjx
j−1
1 =

∑r
j=0 δ(βj)x

j
1 if and only if δ(βr) = 0 and δ(βj) = (j + 1)βj+1 for all

j ≤ r − 1. It now follows that b ∈ B if and only if βj = 1
j!δ

j(β0) for all j and δr+1(β0) = 0.

So b =
∑r

j=0
1
j!δ

j(β0)x
j
1 where β0 is any element of ker δr+1.

We now define the map ϕ : B → N(a1) by

ϕ

 r∑
j=0

1

j!
δj(β0)x

j
1

 = β0

and we claim that ϕ is a k-algebra isomorphism. Let

b1 =
r∑
j=0

1

j!
δj(β0)x

j
1, b2 =

s∑
j=0

1

j!
δj(γ0)x

j
1
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be two elements of B with r ≤ s. We first show that ϕ is k-linear. Since δr+1(β0) = 0,

we have δj(β0) = 0 for all j > r and hence b1 =
∑s

j=0
1
j!δ

j(β0)x
j
1. Let α ∈ k. We have

δs+1(β0 + αγ0) = 0. Thus

ϕ(b1 + αb2) = ϕ

 s∑
j=0

1

j!
δj(β0 + αγ0)x

j
1

 = β0 + αγ0 = ϕ(b1) + αϕ(b2).

Clearly ϕ is one-to-one and onto.

So we only need to show that ϕ(b1b2) = ϕ(b1)ϕ(b2). Since δ is a derivation, we have

δt(β0γ0) =
∑

i+j=t

(
t
i

)
δi(β0)δ

j(γ0). Hence δr+s+1(β0γ0) = 0 and

1

t!
δt(β0γ0) =

∑
i+j=t

1

i!j!
δi(β0)δ

j(γ0)

On the other hand,

b1b2 =

r+s∑
t=0

∑
i+j=t

1

i!j!
δi(β0)δ

j(γ0)x
t
1.

Thus b1b2 =
∑r+s

t=0
1
t!δ

t(β0γ0)x
t
1 and hence ϕ(b1b2) = β0γ0 = ϕ(b1)ϕ(b2).

Question 2. Let k be a field of characteristic zero. Is it true that GKdim(C(a;An(k))) is

an integer for all n and all a ∈ An(k)?

The last question is related to Theorem 3.2.12 and Example 3.2.13.

Question 3. Is it true that if a ∈ k[x1, x2], then C(a;A2(k)) always contains a subalgebra

of GK dimension two which is isomorphic to some subalgebra of A1(k)?



Chapter 4

Division Rings that are Left

Algebraic over a Subfield

4.1 Introduction

Kurosch [38], see also [56, Problem 6.2.6] asked whether or not an algebra that is both finitely

generated and algebraic over a field k is necessarily finite-dimensional over k. Kurosch’s

problem is a ring-theoretic analogue of Burnside’s problem for groups. Both problem were

shown to have a negative answer by Golod and Shafarevich [31]. In fact, Golod [30] used their

construction to give an example of a finitely generated infinite group G with the property

that every element in G has finite order, giving a negative answer to Burnside’s problem.

As Rowen [56, p. 116] points out, there are two special cases of Kurosch’s problem: the case

that the algebra we consider is a division ring and the case that it is a nil ring.

Many examples of finitely generated algebraic algebras that are not finite-dimensional

over their base fields now exist [12, 63, 61, 62, 42]. The strangest of these examples are due

to Smoktunowicz, who showed a simple nil algebra (without 1) exists [61] and that there

is a nil algebra (without 1) with the property that the polynomial ring over it contains a

free algebra on two generators [62]. Lenagan and Smoktunowicz [42] also showed that there

is a finitely generated nil algebra (without 1) that is infinite-dimensional over its base field

but has finite Gelfand-Kirillov dimension [42]. Despite the large number of pathological

examples of nil rings, there are no similar pathological examples of algebraic division rings.

At the moment, all known examples of algebraic division rings have the property that every

97
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finitely generated subalgebra is finite-dimensional over its center. Kaplansky considered

algebraic algebras that have the stronger property that there is a natural number d such that

every element of the algebra is algebraic of degree at most d. With this stronger property,

one avoids the pathologies that arise when one considers algebras that are algebraic. Such

algebras are PI by Theorem 1.4.9 and if they are primitive, then they are finite-dimensional

over their centers by Theorem 1.4.25. In fact, a primitive algebra that is finite-dimensional

over its center is a matrix ring over a division ring by Theorem 1.3.4.

We consider an analogue of Kaplansky’s result for division rings that are left algebraic

over some subfield.

Definition 4.1.1. Let A be a ring and let B be a subring of A such that A is a free left

B-module. We say that A is left algebraic over B if for every a ∈ A there is some natural

number n and some elements α0, . . . , αn ∈ B such that αn is regular and

n∑
j=0

αja
j = 0.

The left algebraic property has been used by Bell and Rogalski in investigating the

existence of free subalgebras of division rings [15]. In section 3, we give an analogue of

Kaplansky’s result in which we replace the algebraic property with being left algebraic over

a subfield.

Theorem 4.1.2. Let d be a natural number, let D be a division ring with center Z(D), and

let K be a (not necessarily central) subfield of D. If D is left algebraic of bounded degree d

over K then [D : Z(D)] ≤ d2.

We note that the bound of d2 in the conclusion of the statement of Theorem 4.1.2 is

the best possible. For example, let k be a field and let σ be an automorphism of k with

|σ| = d. Let F be the fixed field of σ. Let D be the ring of formal skew Laurent series in x, i.e.

D = {
∑∞

i=n αix
i, n ∈ Z, αi ∈ k}, where we define multiplication in D by xα = σ(α)x, α ∈ k.

It is easy to see that D is a division ring and Z(D) is the field of formal Laurent series in

xd over F, i.e. Z(D) = {
∑∞

i=n αix
di, n ∈ Z, αi ∈ F}. Let F1 be the field of formal Laurent

series in xd over k. Then {1, x, . . . , xd−1} is a basis for D/F1 and [F1 : Z(D)] = |σ| = d.

Thus [D : Z(D)] = d2. In particular, D is algebraic over Z(D) and since xd ∈ Z(D), every

element of D is algebraic of degree at most d over Z(D).

The fact that K in Theorem 4.1.2 is not necessarily central complicates matters and

as a result our proof is considerably different from Kaplansky’s proof. We rely heavily on



CHAPTER 4. DIVISION RINGS THATARE LEFT ALGEBRAIC OVER A SUBFIELD99

combinatorial results on semigroups due to A. Shirshov [58]. Usually Shirshov’s theorem

is applied to finitely generated PI-algebras R. It gives that the sufficiently long words on

the generators contain either a q-decomposable subword or a high power of a nontrivial

subword. The existence of a multilinear polynomial identity replaces the q-decomposable

subword with a linear combination of words which are lower in the degree lexicographic order

and the algebra R is spanned by words which behave like monomials in a finite number of

commuting variables.

In section 2, we establish a new version of Shirshov’s theorem which states that the

factors in the q-decomposition may be chosen to be of almost the same length. Using

these combinatorial results, we are able to prove that every finitely generated subalgebra

of D satisfies a polynomial identity. Then we use classical results of structure theory of

PI-algebras to complete the proof of Theorem 4.1.2.

4.2 A New Version of Shirshov’s Theorem

In this section, we recall some of the basic facts from combinatorics on words and use them

to give a strengthening of Shirshov’s theorem.

Let M be the free monoid consisting of all words over a finite alphabet {x1, . . . , xm}.
Let |w| denote the length of w ∈ M . We put a degree lexicographic order on all words in

M by declaring that

x1 � x2 � · · · � xm.

Given a word w ∈ M and a natural number q, we say that w is q-decomposable if there

exist w1, . . . , wq ∈ M such that w = w1w2 · · ·wq and for all permutations σ ∈ Sym(q) with

σ 6= id we have

w1w2 · · ·wq � wσ(1)wσ(2) · · ·wσ(q).

If in addition, we can choose w1, . . . , wq such that (q− 1)|wi| < |w| for all i ∈ {1, . . . , q}, we

say that w is strongly q-decomposable. Shirshov proved the following famous combinatorial

theorem.

Theorem 4.2.1. (Shirshov, [58], see also [54, Lemma 4.2.5]) Let m, p, and q be natural

numbers and let M be the free monoid generated by m elements x1, . . . , xm. Then there

exists a positive integer N(m, p, q), depending on m, p, and q, such that every word on
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x1, . . . , xm of length greater than N(m, p, q) has either a q-decomposable subword or has a

nontrivial subword of the form wp.

By following the proof of Pirillo [49], we are able to give a strengthened version of

Shirshov’s theorem. We first give some of the basic background from combinatorics on

words.

Let Σ = {x1, . . . , xd} be a finite alphabet. We say that w is a right infinite word over

the alphabet Σ if there is some map f : N→ Σ such that

w = f(1)f(2)f(3) · · · .

We say that v is a subword of the right infinite word w if there exist natural numbers i and

j with i < j such that

v = f(i)f(i+ 1) · · · f(j).

We say that the right infinite word w is uniformly recurrent if for each subword v of w there

exists some natural number N = N(v) such that the word f(i)f(i+ 1) · · · f(i+N) contains

v as a subword for all i ≥ 1. Given i < j, we let v[i, j] denote the subword of v that starts

at position i and ends at position j.

We recall two classical results in the theory of combinatorics of words. The first one is a

consequence of König’s infinity lemma in graph theory [36] which gives a sufficient condition

for an infinite graph to have an infinitely long path, see e.g. [3, p. 28, Exercise 41].

Theorem 4.2.2. (König) Let Σ be a finite alphabet and let S be an infinite subset of the

free monoid Σ∗ generated by Σ. Then there is a right infinite word w over Σ such that every

subword of w is a subword of some word in S.

Theorem 4.2.3. (Furstenberg, [28], see also [3, p. 337, Exercise 22]) Let Σ be a finite

alphabet and let w be a right infinite word over Σ. Then there is a right infinite uniformly

recurrent word u over Σ such that every subword of u is also a subword of w.

Using these results, we are able to prove the following result.

Theorem 4.2.4. Let m, p, and q be natural numbers and let M be a free monoid generated

by m elements x1, . . . , xm. Then there exists a positive integer N(m, p, q), depending on m,

p, and q, such that every word on x1, . . . , xm of length greater than N(m, p, q) has either a

strongly q-decomposable subword or has a nontrivial subword of the form tp.
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Proof. Suppose to the contrary that there are arbitrarily long words in M that do not have

a subword of the form tp or a strongly q-decomposable subword. Clearly q ≥ 2. Then by

König’s theorem there is a right infinite word w over {x1, . . . , xm} such that each finite

subword v of w has the property that it does not have a subword of the form tp or a strongly

q-decomposable subword. By Furstenberg’s theorem, there is a right infinite uniformly

recurrent word u such that each subword of u has the property that it does not have a

subword of the form tp or a strongly q-decomposable subword. Let ω(n) denote the number

of distinct subwords of u of length n. Then ω(n) is not O(1), since otherwise we would

have u is eventually periodic and thus it would have a subword of the form tp. Hence there

is some natural number N such that there are at least q distinct subwords of u of length

N . Let w1 � w2 � · · · � wq be q such words of length N . Since w1, . . . , wq are uniformly

recurrent in u, there is some natural number L such that w1, . . . , wq occur in the interval

u[i, i + L] for each i. Then there is an occurrence of w1 somewhere in u[1, 1 + L]. We

let j1 ∈ {1, . . . , 1 + L} denote the position of the first letter of w1 in some occurrence in

u[1, 1 + L]. Then there is an occurrence of w2 somewhere in u[2Lq + 1, 2Lq + L + 1]; we

let j2 denote its starting position. Continuing in this manner, we define natural numbers

j1, . . . , jq such that ji ∈ [2Lq(i − 1) + 1, 2Lq(i − 1) + L + 1] for 1 ≤ i ≤ q and such that

wi = u[ji, ji + N − 1]. We define ui := u[ji, ji+1 − 1] for i ∈ {1, . . . , q − 1} and we define

uq := u[jq, jq + 2Lq]. Then by construction, |ui| < L(2q + 1) for all i and wi is the initial

subword of length N of ui for all i. In particular, u1 · · ·uq � uσ(1) · · ·uσ(q) for all σ 6= id.

Finally, note that j1 ≤ L+ 1, jq ≥ 2Lq(q − 1) + 1 and hence

|u1 · · ·uq| = 2Lq + jq − j1 + 1 ≥ L(2q2 − 1) + 1 > (q − 1)L(2q + 1) > (q − 1)|ui|

for i ∈ {1, . . . , q}, which contradicts the assumption that u does not contain strongly q-

decomposable subwords.

4.3 An Analogue of Kaplansky’s Theorem

In this section we prove Theorem 4.1.2. Let D be a division ring with center k. The proof

is done by a series of reductions. We first prove that if D is left algebraic of bounded degree

over a subfield K, then every finitely generated k-subalgebra satisfies a standard polynomial

identity. We then use a theorem of Albert, i.e. Theorem 4.3.1, to prove that D must satisfy

a standard identity. From there, we prove the main theorem by embedding D in a matrix



CHAPTER 4. DIVISION RINGS THATARE LEFT ALGEBRAIC OVER A SUBFIELD102

ring and looking at degrees of minimal polynomials. We begin the proof of Theorem 4.1.2

with stating a theorem of Albert.

Theorem 4.3.1. (Albert, [2]) A finite-dimensional central division k-algebra is generated

by two elements as a k-algebra.

We now prove the first step in our reduction. For the definition of the standard polyno-

mial identity SC see Definition 1.4.5.

Lemma 4.3.2. Let the division algebra D be left algebraic of bounded degree d over a (not

necessarily central) subfield K. If m is a natural number, then there is a positive integer

C = C(m, d), depending only on d and m, such that every k-subalgebra of D that is generated

by m elements satisfies the standard polynomial identity SC .

Proof. Let x1, . . . , xm be m elements of D. Consider the k-subalgebra A of D generated by

x1, . . . , xm. We put a degree lexicographic order on all words over {x1, . . . , xm} by declaring

that

x1 � x2 � · · · � xm.

Let N = N(m, d, d) be a positive integer satisfying the conclusion of the statement of

Theorem 4.2.1 in which we take p = q = d. We claim that the left K-vector space V := KA

is spanned by all words in x1, . . . , xm of length at most N . To see this, suppose that the

claim is false and let w be the smallest degree lexicographically word with the property that

it is not in the left K-span of all words of length at most N . Then w must have length strictly

greater than N and so by Theorem 4.2.4, either w has a strongly d-decomposable subword

or w has a nontrivial subword of the form ud. If w has a nontrivial subword of the form ud

then we can write w = w1u
dw2. Notice that conjugation by w1 gives an automorphism of D

and so D must also be left algebraic of bounded degree d over the subfield F := w−11 Kw1.

Notice that the sum

Fud + Fud−1 + · · ·+ F

is not direct and thus we can find α0, . . . , αd−1 ∈ K such that

ud = w−11 αd−1w1u
d−1 + · · ·+ w−11 α0w1.
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Thus

w = w1u
dw2

= w1

(
w−11 αd−1w1u

d−1 + · · ·+ w−11 α0w1

)
w2

= αd−1w1u
d−1w2 + · · ·+ α0w1w2

∈
∑
v≺w

Kv.

By the minimality of w, we get an immediate contradiction. Similarly, if w has a strongly

d-decomposable subword, then we can write

w = w1u1 · · ·udw2

where we have

u1 · · ·ud � uσ(1) · · ·uσ(d)

for all id 6= σ ∈ Sym(d) and such that (d − 1)|ui| < |u1 · · ·ud| for each i. As before, we let

F = w−11 Kw1. Given a subset S ⊆ {1, . . . , d}, we let uS =
∑

j∈S uj . Then for each subset

S of {1, . . . , d}, we can find α0,S , . . . , αd−1,S ∈ K such that

udS = w−11 αd−1w1u
d−1
S + · · ·+ w−11 α0w1.

The condition (d− 1)|ui| < |u1 · · ·ud| implies that if k < d, then

|ui1 · · ·uik | < |u1 · · ·ud|

and hence ui1 · · ·uik ≺ u1 · · ·ud for all summands of ukS , k < d. Notice that∑
S⊆{1,...,d}

(−1)d−|S|udS = u1 · · ·ud +
∑

σ∈Sym(d)

σ 6=id

uσ(1) · · ·uσ(d),

and so

w = w1u1 · · ·udw2

= −
∑

σ∈Sym(d)

σ 6=id

w1uσ(1) · · ·uσ(d)w2 +
∑

S⊆{1,...,d}

d−1∑
j=0

(−1)d−|S|αj,Sw1u
j
Sw2

∈
∑
v≺w

Kv.
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By the minimality of w, we get a contradiction. Thus V = KA is indeed spanned by all

words over {x1, . . . , xm} of length at most N . Consequently, V is at most (1 + m + m2 +

· · · + mN )-dimensional as a left K-vector space. The right multiplication ra by a ∈ A of

the elements of V commutes with the left multiplication by elements of K. Hence ra acts

as a linear operator on the left K-vector space V and A embeds in the opposite algebra

EndK(V )op of EndK(V ). In this way A embeds in the ring of n × n matrices over K for

some n ≤ 1 +m+m2 + · · ·+mN . Thus taking C = 2(1 +m+m2 + · · ·+mN ) and invoking

the Theorem 1.4.18, we obtain the desired result.

Lemma 4.3.3. Let D be a division algebra which is left algebraic of bounded degree over a

subfield K. Then every finitely generated division k-subalgebra E of D is finite-dimensional

over its center.

Proof. Let E be generated (as a division k-algebra) by x1, . . . , xm, and let A be the k-

subalgebra of E generated by these elements, i.e., A is the k-vector space spanned by

all words over {x1, . . . , xm}. By Lemma 4.3.2 the algebra A satisfies a standard identity

SC = 0 of degree C = C(m, d). Since A is a prime PI-algebra, Q := QZ(A) is a finite-

dimensional central simple algebra by Theorem 1.5.10. Since A is a subalgebra of E, the

natural embedding ι : A→ E extends to an injection ι : Q→ E. Since ι(Q) is a subring of

the division ring E, it is a central simple algebra without zero-divisors, i.e. it is a division

algebra. As a division k-algebra ι(Q) is generated by the same elements x1 . . . , xm as the

division k-algebra E. Hence we obtain that ι(Q) = E and E is isomorphic to Q and so E

is finite-dimensional over its center.

Proposition 4.3.4. Let D be a division algebra that is left algebraic of bounded degree d

over a maximal subfield K. Then D satisfies the standard polynomial identity SC , where

C = C(2, d) is a constant satisfying the conclusion of the statement of Lemma 4.3.2.

Proof. Let k be the center of D. If D does not satisfy the standard identity SC = 0, then

there exists a finitely generated division k-subalgebra E of D such that E does not satisfy

the identity SC = 0. By Lemma 4.3.3, E is finite-dimensional over its center Z(E). By

Theorem 4.3.1, E is generated by two elements as a Z(E)-algebra. Let a and b be the

generators of the Z(E)-algebra E. By Lemma 4.3.2, the k-algebra A generated by a and b

satisfies the standard identity of degree C = C(2, d). Since the center k of D is contained

in the center Z(E) of E and a, b ∈ E, we have that Z(E)A ⊆ E. Since E is generated as
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a Z(E)-algebra by a and b we conclude that E = Z(E)A. Thus we have a surjective ring

homomorphism

Z(E)⊗k A→ E

and since A satisfies the standard identity of degree C, the same holds for Z(E)⊗k A and

E, a contradiction. Thus D satisfies the standard polynomial identity of degree C.

We are now ready to prove our main result. We have already shown that if a division

ring D is left algebraic of bounded degree over a subfield K, then D satisfies a polynomial

identity and hence is finite-dimensional over its center. The only thing that remains is to

get the upper bound that is claimed in the statement of Theorem 4.1.2. This is not difficult

if the subfield K is separable over k as one can use a theorem of Brauer and Albert [39,

Theorem 15.16]. The inseparable case presents greater difficulty.

Proof of Theorem 4.1.2. It is no loss of generality to assume that K is a maximal subfield

of D. Let k denote the center of D. By Proposition 4.3.4, D satisfies a polynomial identity

and hence it is finite-dimensional over k by Theorem 1.4.25. Let n =
√

[D : k]. Then

[D : K] = n and we must show that d ≥ n. We note that D has a separable maximal

subfield L = k(x) and D is a faithful simple left D ⊗k L-module, via the rule

(α⊗ xj)(β) 7→ αβxj

for j ≥ 0 and α, β ∈ D (see [39, Theorem 15.12]). We let T ∈ EndK(D) be defined by

T (α) = αx. If c0, . . . , cn−1 ∈ K then

(
c0id + · · ·+ cn−1T

n−1) (α) =

(
n∑
i=0

ci ⊗ xi
)

(α).

Since D is a faithful D ⊗k L-module, we see that if

c0id + · · ·+ cn−1T
n−1 = 0

then c0 = . . . = cn−1 = 0 and so the operators id, T, . . . , Tn−1 are (left) linearly independent

over K. We claim that there exists some y ∈ D such that the sum

K +KT (y) + · · ·+KTn−1(y)

is direct. To see this, we regard D as a left K[X]-module, with action given by f(X) · α 7→
f(T )(α) for f(X) ∈ K[X] and α ∈ D. Let g(X) denote the minimal polynomial of T over
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k. Then g(X) annihilates D and thus D is a finitely generated torsion K[X]-module. By

the fundamental theorem for finitely generated modules over a principal ideal domain, there

exists some y ∈ D such that

{f(X) ∈ K[X] : f(X) · y = 0} = {f(X) ∈ K[X] : f(X) · α = 0 for all α ∈ D}. (4.1)

If the sum K + KT (y) + · · · + KTn−1(y) is not direct, then we can find a polynomial

f(X) ∈ K[X] of degree at most n − 1 such that f(T ) · y = 0. Thus f(T ) · α = 0 for all

α ∈ D by Equation (4.1), which contradicts the fact that the operators id, T, . . . , Tn−1 are

(left) linearly independent over K. Hence the sum

K +KT (y) + · · ·+KTn−1(y) = K +Kyx+ · · ·+Kyxn−1

is direct. Let u = yxy−1. Then K +Ku+ · · ·+Kun−1 is direct. But by assumption, every

element of D is left algebraic over K of degree at most d and thus n ≤ d.

4.4 Problems

Unlike the algebraic property, which has been extensively studied in rings, the left algebraic

property appears to be new. Many of the important open problems for algebraic algebras

have analogues in which the algebraic property is replaced by being left algebraic. We pose

a few problems.

Question 4. Is it true that a division ring that is finitely generated over its center and left

algebraic over some subfield is finite-dimensional over its center?

Question 5. Let k be an algebraically closed field and let A be a finitely generated noetherian

k-algebra that does not satisfy a polynomial identity. Is it possible for the quotient division

algebra of A to be left algebraic over some subfield?

We note that the right algebraic property can be defined analogously.

Question 6. If a division ring D is left algebraic over a subfield K must D also be right

algebraic over K?

We believe that the last question has probably been posed before, but we are unaware

of a reference.
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