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Abstract

This thesis is divided into two parts. The subject of the first part is the structure of
centralizers in associative algebras. We prove that over an algebraically closed field of
characteristic zero, the centralizer of a nonconstant element in the second Weyl algebra
has Gelfand-Kirillov (GK for short) dimension one, two or three. Those centralizers of GK
dimension one or two are commutative and those of GK dimension three contain a finitely
generated subalgebra which does not satisfy a polynomial identity. We show that for each
n € {1,2,3} there exists a centralizer of GK dimension n. We also give explicit forms of
centralizers for some elements of the second Weyl algebra and a connection between the
problem of finite generation of centralizers in the second Weyl algebra and Dixmier’s Fourth
Problem.

Some algebras such as the first Weyl algebra, quantum planes and finitely generated graded
algebras of GK dimension two can be viewed as subalgebras of some skew Laurent polynomial
algebra over a field. We prove that if K is a field, 0 € Aut(K) and the fixed field of &
is algebraically closed, then the centralizer of a nonconstant element of a subalgebra of
K|z,27'; 0] is commutative and a free module of finite rank over some polynomial algebra
in one variable.

In the last chapter, which is the second part of this thesis, we first prove a new version of
Shirshov’s theorem. We then use this theorem to prove an analogue of Kaplansky’s theorem,
i.e. if D is a central division k-algebra which is left algebraic of bounded degree d over some

subfield, which is not necessarily central, then [D : k] < d2.

v
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Introduction

This thesis is divided into two parts. The subject of the first part is the structure of
centralizers in associative algebras. In the second part, which is chapter 4, division algebras

that are left algebraic over a subfield are studied.

Centralizers in Associative Algebras

Except for Chapter 1 which gives the background needed throughout the thesis, every chap-
ter of this thesis begins with an introductory section. For a ring R and an element a € R,
let C(a; R) denote the centralizer of a in R.

Chapter 2 is divided into two parts. The first part consists of sections 2 to 5. This part
reviews some of well-known results on centralizers in associative algebras. In the second
part of this chapter, which is section 6, we give our results on centralizers in semiprime PI-
rings. Let C be a commutative ring. A C-algebra A is said to satisfy a polynomial identity
(PI for short) if there exists an integer n and a monic polynomial f € C(xy,...,z,) such
that f(ry,re, -+ ,ry) =0 for all r,...,7, € R. If every finitely generated subalgebra of an
algebra is PI, then the algebra is called locally PI.

In section 2 of chapter 2, centralizers in the first Weyl algebra are studied. The first
notable appearance of centralizers is probably in Schur’s 1905 paper [57]. He considered
the C-algebra R consisting of ordinary differential operators over complex-valued functions
which are infinitely differentiable. He proved that if P is an element of degree at least one
in R, then C(P; R) is a commutative C-algebra.

Another result regarding the centralizer of an ordinary differential operator is due to
Burchnall and Chaundy [20]. They proved that two ordinary differential operators P and
@ of coprime degrees m and n commute if and only if there exists a polynomial f € Clu,v]
of the form f =" —v™ + .-+ such that f(P,Q) = 0.



Schur’s result was rediscovered and generalized by Flanders [27] and Amitsur [1] a few
decades later. Let R be a field of characteristic zero and suppose that there exists a linear
map § : R — R such that §(ab) = d(a)b + ad(b) for all a,b € R. This map is called a
derivation of R. Now let k = {r € R : 4(r) = 0}. Consider the ring S := Rly;0d] of
differential polynomials f = Y"1 ;r;y’, where multiplication is defined by yr = ry + &(r)
for all » € R. Amitsur proved that if n > 1, then C(f;5) is a commutative k-algebra and
also a free module of finite rank over k[f]. In fact, Amitsur’s proof of this result works for a
more general setting. Suppose that R is a commutative domain of characteristic zero. We
extend d to Q(R), the quotient field of R. If k := {¢ € Q(R) : d(¢q) = 0} is a subfield
of R, then centralizers are again commutative and free modules of finite rank over some
polynomial ring in one variable. We give a proof of this result in this section. If we choose
R = k[z], then S = A, (k), the first Weyl algebra over k. Now let k£ := C and R := C(x). Let
E := Endc(R) and let L € E be the left multiplication by x. Let A be the C-subalgebra of
E generated by L and d/dz. Then R[y;d/dx] = A and we recover Schur’s result.

In section 3 of chapter 2, we look at centralizers in the algebras of formal series and
polynomials over a field. Let k£ be a field and let X be a set of noncommuting variables,
which may or may not be finite. We denote by k((X)) the k-algebra of formal series. Cohn
proved that if f € k((X)) is not a constant, then C(f;k((X))) = k[[g]], for some formal
series g. Here k[[g]] is the ring of formal power series in g. This is known as Cohn’s centralizer
theorem and we give a proof of this result in this section. By Cohn’s centralizer theorem, the
centralizer of every nonconstant element in k((X)) is commutative. Thus, since k(X) is a k-
subalgebra of k((X)), the centralizer of a nonconstant element of k£(X) is also commutative.
Bergman proved that if f € k(X)) is not constant, then C(f; k(X)) is integrally closed. He
used this result to prove that C(f; k(X)) = k[g] for some g € k(X). This is called Bergman’s
centralizer theorem. We do not prove this theorem but we give a nice application of it.

In section 4 of chapter 2, we take a different approach to study centralizers. We use the
GK dimension theory to obtain some information about centralizers. The GK dimension
of an algebra over a field was first introduced by Gelfand and Kirillov in 1966 [29]. The
GK dimension measures the rate of the growth of an algebra in terms of any generating
set of the algebra. Let k be a field and let A be a finitely generated k-algebra. Let V
be a generating subspace of A which contains k. The GK dimension of A is defined by
GKdim(A) := limsuplog,, (dim V™). The definition does not depend on V.

n—o0
The results in this section are due to Bell and Small. The first result that we prove is this:



if A is a finitely generated domain of GK dimension two over some algebraically closed field
k and if A is not PI and a € A\ k, then C(a; A) is a commutative domain of GK dimension
one. We also prove that if a € A is not algebraic over the center of the quotient division
algebra of A, then C'(a; A) is PI. This result is a consequence of a lemma which is very useful
for studying centralizers in algebras of low GK dimension. The lemma states that if £k is a
field and A is a finitely generated k-algebra which is a domain of finite GK dimension, then
GKdim(C(a; A)) < GKdim(A) — 1 provided that a is not algebraic over the center of the
quotient division algebra of A.

In section 5 of chapter 2, we give Makar-Limanov’s result on centralizers in quantum
planes. Let ¢ € C. The quantum plane A := kq[z,y] is the C-algebra generated by = and y
subject to the relation yr = gxy. Using a pretty argument, Makar-Limanov proved that if
q is not a root of unity and a € A\ C, then C(a; A) C C[b], for some b € A. In particular,
C(a; A) is commutative.

Section 6 of chapter 2 presents our results on centralizers in semiprime Pl-rings. Let &k be
a field and let R be a finite dimensional central simple k-algebra. Let a € R\ k. By a result
of Werner [65], the center of C(a; R) is k[a]. Now let R be any semiprime PI-ring. One of the
properties of the maximal left quotient ring @ := Qmax(R) of R is that the localization Qs
at any central maximal ideal M of () is a finite dimensional central simple algebra. Then
using Werner’s result and some other properties of ), we find the center of the centralizer
of a noncentral element of R (Theorem 2.6.6). We also characterize semiprime PI-rings
in which the centralizer of every noncentral element is commutative. The characterization
is in terms of finite dimensional central division algebras in which the centralizer of every
noncentral element is commutative (Theorem 2.6.12).

In chapter 3, we give our results on centralizers in two algebras both of which contain
the first Weyl algebra as a subalgebra, i.e. the second Weyl algebra and the algebra of skew
Laurent polynomials.

If k is an algebraically closed field, then Amitsur’s result on centralizers in A; (k) becomes
a trivial result of two facts. The first one is that, by a result of Bell (Theorem 2.4.6),
centralizers must have GK dimension one. The second fact is that a domain of GK dimension
one over an algebraically closed field is both commutative and a free module of finite rank
over some polynomial algebra in one variable. Of course, these facts were not known to
Amitsur when he was writing his paper in the 1950s.

It is natural now to ask about centralizers in the second Weyl algebras. By the first fact



that we just mentioned, the GK dimension of centralizers is at most 3. The second fact gives
the form of centralizers of GK dimension one. There is no algebra of GK dimension strictly
between one and two, by Bergman’s gap theorem. So we only need to study centralizers of

GK dimension between 2 and 3 and the following theorem is the result of our study.

Theorem 3.2.11. Let k be an algebraically closed field of characteristic zero. Let C' denote
the centralizer of a nonscalar element a in As(k), the second Weyl algebra over k. Then
GKdim(C) € {1,2,3}. If GKdim(C) € {1, 2}, then C is commutative and if GKdim(C') = 3,
then C is not locally PI. Furthermore, for each n € {1,2,3} there exists an element of As(k)

whose centralizer has GK dimension n.

In the second subsection of section 2 of chapter 3, we find explicit form of centralizers
of some elements of the second Weyl algebra (Theorem 3.2.12) and we use it to show that
it is not always the case that centralizers of GK dimension three contain a copy of the first
Weyl algebra. However, our counter-example contains a subalgebra of GK dimension two
which is isomorphic to some subalgebra of the first Weyl algebra. In the third subsection
of this section, we give a necessary condition for a centralizer in the second Weyl algebra to
contain a nontrivial simple subalgebra.

In section 3 of chapter 3, we consider the algebra of skew Laurent polynomials over fields
of characteristic zero. Some of important algebras such as the first Weyl algebra, quantum
planes and finitely generated graded algebras of GK dimension two can be embedded into
certain skew Laurent polynomial algebras over fields. The main result of this section is the

following.

Theorem 3.3.7. Let K be a field and let o € Aut(K). Let k be the fized field of o and
suppose that k is algebraically closed. Let A be a subalgebra of K[x,z ;o). Let f € A\ k
and let C denote the centralizer of f in A. If f € K, then C = ANK. If f ¢ K, then C is

commutative and a free module of finite rank over klu] for some u € C.

A few problems are posed in section 4 of chapter 3 and a connection between the problem
of finite generation of centralizers in the second Weyl algebra and Dixmier’s Fourth Problem

is given.



Left Algebraic Division Algebras of Bounded Degree

Chapter 4 is not directly related to centralizers and so we can look at this chapter as the
second part of this thesis. The subject of this chapter is division algebras that are (left)
algebraic over a subfield which may or may not be central. Bell and Rogalski [15] proved
that if D is a division algebra over an uncountable field of characteristic zero and if D is
not left or right algebraic over the centralizer of a nonzero element, then D contains a free
subalgebra on two generators. This may be considered as a link between centralizers and
the (left and right) algebraic property in division algebras.

Let C be a commutative ring. It is one of Jacobson’s results that a C-algebra which
is integral of bounded degree over C' is PI. By Kaplansky’s theorem, a (left) primitive PI-
algebra is a finite dimensional central simple algebra. So a division algebra which is algebraic
of bounded degree over its center is a finite dimensional central division algebra. It is natural
now to ask whether or not we have the same result if a division algebra D is algebraic of
bounded degree over a subfield K which is not inside the center. But first, since K is not
central, we need to explain what we mean by algebraic.

We say that an element = € D is left algebraic over K if 2" +a12" '+ - 4ap_12+a, =0
for some integer n and «; € K. If the coefficients are on the right-hand side of powers of
x, then we say that z is right algebraic over K. We prove the following result which is an

analogue of Kaplansky’s theorem. This is joint work with Bell and Drensky [17].

Theorem 4.1.2. Let d be a natural number, let D be a division ring with center Z (D)
and let K be any subfield of D. If D is left algebraic of bounded degree d over K, then
[D: Z(D)] < d?.

The crucial step in the proof of the above theorem is to show that every finitely generated
subalgebra of D satisfies some standard polynomial identity S,, where n depends only on
the number of generators of the subalgebra. It turns out that in order to prove this, we
need to strengthen the well-known Shirshov’s theorem.

Let m, p and ¢ be natural numbers and let M be a free monoid generated by m elements
X1y...,Tm. Forw € M, let |w| be the length of w. We say that w is g-decomposable if there
exist wi,...,wg € M such that w = wiws - - - wy and for all permutations o € Sym(q) with
o # id we have wiws -+ Wq = We(1)We(2) * * * We(q), Where = is degree lexicographic order. If
in addition, we can choose wy, ..., wy such that (¢ — 1)|w;| < |w| for all i € {1,..., ¢}, then

we say that w is strongly ¢g-decomposable. Shirshov [58] proved that there exists a positive



integer N(m,p, q), depending on m, p, and ¢, such that every word on z1,...,z,, of length
greater than N(m,p,q) has either a g-decomposable subword or has a nontrivial subword

of the form wP. We prove the following stronger result.

Theorem 4.2.4. Let m, p, and q be natural numbers and let M be a free monoid generated
by m elements x1,...,Ty. Then there exists a positive integer N (m,p,q), depending on m,
p, and q, such that every word on x1,...,x,, of length greater than N(m,p,q) has either a

strongly q-decomposable subword or has a nontrivial subword of the form tP.



Chapter 1

Preliminaries

This chapter provides the reader with necessary background to follow the thesis easily. All
rings throughout this thesis are associative with multiplicative identity. If R is a ring, the
center of Ris Z(R) :={r € R: rx = zr, for all x € R}. We denote by M, (R) the ring of
n X n matrices with entries in R. All R-modules, if not specified, are left R-modules. Let M
be an R-module and let X be a subset of M. We denote by r.anng(X) and lLanng(X) the
right and the left annihilator of X in R, respectively. So r.anng(X) :={re€ R: Xr =0}
and Lanngp(X) :={re R: rX = 0}.

1.1 The Jacobson Radical

We begin this section with a quick review of the definition of the Jacobson radical of a ring.

Definition 1.1.1. The Jacobson radical J(R) of a ring R is the intersection of the left

maximal ideals of R.
Before giving some of characterizations of J(R), let us recall some definitions.

Definition 1.1.2. An R-module M is called simple if M has no nonzero proper submodule.

A nonzero ring R is called simple if R has no nonzero proper ideal.

Definition 1.1.3. An ideal P of R is called left primitive if P = l.anng (M) for some simple
left R-module M. If the zero ideal is left primitive, then R is called a left primitive ring.

Right primitive ideals and rings are defined analogously.

The following proposition gives two characterizations of J(R).
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Proposition 1.1.4 ([39], Lemma 4.1). Let R be a ring and let U(R) be the set of invertible

elements of R.
(1) The Jacobson radical J(R) is the intersection of the left primitive ideals of R.

(2) We have J(R) ={x € R: 1—rz € U(R),Vr € R}.

Definition 1.1.5. A ring R is called semiprimitive if J(R) = (0).

Let S = R[z] be the ring of polynomials in the central variable z. Amitsur [39, Theorem
5.10] proved that J(S) = (RN J(S))[z]. In fact, Amitsur’s result holds for polynomial rings
in any number of variables, finite or infinite. We will not need this theorem in this thesis
and so we will not prove it. What we prove is that the leading coefficient of every element

of J(S) is nilpotent.

Proposition 1.1.6. Let S = R|x] be the ring of polynomials in the central variable x with
coefficients in R. The leading coefficient of every element of J(S) is nilpotent. In particular,

RN J(S) is a nil ideal of R and so if R has no nonzero nil ideals, then S is semiprimitive.

Proof. Let f = Y1 ja;z' be a nonzero element of J(S). Then zf € J(S) and thus, by
Proposition 1.1.4, there exists some unit g = > bz’ € S such that (1 —zf)g = 1. Thus

=1+ zfg and then an easy induction shows that for all positive integers k
k-1
g=2a"fFg+ > a'f. (1.1)
i=0

So, choosing k large enough, for every 0 < i < m the coefficient of z("t1s+i on the left
hand-side of (1.1) is zero. Thus a%b; = 0 for all i and hence a%g = 0. Therefore a® = 0

because g is a unit of S. O
Lemma 1.1.7 ([39], Theorem 4.12). If R is left artinian, then J(R) is nilpotent.

Theorem 1.1.8. (Amitsur, [39, Theorem 4.20]) Let k be a field and let A be a k-algebra.
If dimy A < |k|, as cardinal numbers, then J(A) is nil.

Proof. If k is finite, then dimy A < oo and so A is artinian. Thus J(A) is nilpotent, by
Lemma 1.1.7, and hence nil. Suppose now that k is infinite. Let a € J(A). Then, by
Proposition 1.1.4, a — ~y is invertible for all 0 # v € k.
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Now consider the set S = {(a —7)~' : 0 # v € k}. Since k is infinite, we have
|S| = |k| > dimy A. Thus the elements of S cannot be k-linearly independent. So there exist

an integer n > 1 and nonzero elements 3;,; € k such that
n
> Bila—v) "t =0. (1.2)
i=1

Obviously all a — ~; commute with each other and with all 5;. Multiplying (1.2) through
by [[i=(a — 7i) clears denominators and gives > i 8; [[,;(a — ;) = 0 and so if we let
plz) =316 [1;2:(x—";) € k[z], then p(a) = 0. Also, p(z) is not identically zero because,
for example, p(y1) # 0. So a is algebraic over k and thus

am+apa™ 4 ay, =0,

for some integer m > 1 and «; € k. We have a,,, = 0 because a is not invertible. If o; =0
for all 1 < ¢ < m, then ¢ = 0 and we are done. Thus we may assume that there exists

1 < ¢ < m such that ay # 0 and
a™ + a1t 4 aa™ ™t = 0.

Let ¢ = _%_1(@@71 +a1a®2 + - 4+ ay_1). Then ay(1 — ca)a™* = 0 and hence a™* = 0,

by Proposition 1.1.4. O

Remark 1.1.9. If A is finitely generated and k is uncountable, then dimy A is countable,
because A is finitely generated, and thus dimy A < |k|. So, by the theorem, J(A) is nil.

1.2 Ore Localization

Throughout this section R is a ring and S is a multiplicatively closed subset of R such that
1€ Sand0 ¢ S. We know from commutative algebra that if R is commutative, then we can
always localize R at S and find the quotient ring S~'R. An element ¢ € S~ R is in the form
s~ 1r, where s € S and r € R. This quotient ring contains R if S consists of elements which
are not zero-divisors in R. Also, every element of S is a unit in S™'R. Suppose now that
R is not commutative and we want to construct a left quotient ring S~'R with the same

1 would be an element

properties as the commutative case. Let r € R and s € S. Then rs~
of ST'R and so rs~! = s/’ for some s’ € S and v’ € R. Thus s'r = /s, i.e. RsN Sr # ().

So RsNSr # () for all € R, s € S. This property is called the Ore condition and S is called
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a left Ore set. So we have shown that a necessary condition for a left quotient ring S™!'R to
exist is that S is left Ore and we will prove later in this section that this is also a sufficient

condition in many important cases, e.g. when S is central.

1.2.1 Definitions and Basic Results

We begin with giving the definition of a left (resp. right) quotient ring with respect to a
multiplicatively closed subset. Then we investigate the existence and uniqueness and also

the common denominator property in a quotient ring.

Definition 1.2.1. A ring @ is called a left quotient ring of R (with respect to S) if there

exists a ring homomorphism f : R — @ such that the following conditions are satisfied.
(1) f(s)is aunitin @ for all s € S.

(2) Every element of @ is in the form (f(s))~1f(r) for some r € R and s € S.

(3) ker f ={r € R: sr =0 for some s € S}.

A right quotient ring of R is defined symmetrically.

We now show that if a left or right quotient ring exists, then up to isomorphism it is

unique. This is an immediate result of the following lemma.

Lemma 1.2.2. Suppose that g : R — Ry is a ring homomorphism and Q) is a left or right
quotient ring of R with respect to S. If g(s) is a unit in Ry for every s € S, then there exists

a unique homomorphism h : Q — Ry which extends g.

Proof. Assuming that f is the map in Definition 1.2.1 we define h by

h(f(s)7 f (1)) = (9(5)) " g(r)

for all r € R and s € S. We only prove that h is well-defined. Suppose that (f(s))~1f(r) =
(f(s")"Lf(r"), for some r,7’ € R and 5,5 € S. Then f(s')(f(s))"Lf(r) = f(+'). We also
have (f(t))"1f(r") = f(s')(f(s))~" for some t € S and 7" € R. Hence f(r'r) = f(tr')
and f(r"s) = f(ts'). Thus r"'r — tr',ts’ — r"s € ker f and so wr’r = utr’, vts’ = vr's, for
some u,v € S. Therefore g(r")g(r) = g(t)g(r") and g(t)g(s’) = g(r")g(s). It follows that
g(H)g(r") = 9" )g(r) = g(B)g(")(9(5)~g(r) and 50 (9(s)) " 9(r) = (g(s'))"g(+") because
g(t) is a unit in R;. O



CHAPTER 1. PRELIMINARIES 11

Theorem 1.2.3. If a left (resp. right) quotient ring R exists, then it is unique up to
isomorphism. If R has a left quotient ring Q and a right quotient ring Q' with respect to S,

then Q = Q.
Proof. An easy result of the lemma. O

Definition 1.2.4. The left (resp. right) quotient ring of R with respect to S, if it exists, is
also called the left (resp. right) localization of R at S and is denoted by S~'R (resp. RS™1).

The question now is that under what conditions the left (resp. right) quotient ring of R

exists. Our next goal is to find an answer for this question.

Definition 1.2.5. A multiplicatively closed subset S of R is called left Ore if it satisfies
the Ore condition, i.e. RsN Sr # () for all r € R and s € S. Similarly, if sRN7rS # () for all
re R, s€ S, then S is called right Ore. We call S Ore if S is both left and right Ore.

Definition 1.2.6. A left Ore set S is called a left denominator set if for every r € R and
s € S with rs = 0, there exists s’ € S such that s'r = 0. Similarly, A right Ore set S is
called a right denominator set if for every r € R and s € S with sr = 0, there exists s’ € S
such that s’ = 0. An Ore set S is called a denominator set if S is both left and right

denominator.

Theorem 1.2.7 ([55], Proposition 3.1.3 and Theorem 3.1.4). The left (resp. right) quotient
ring of R with respect to S exists if and only if S is a left (resp. right) denominator set.

Proof. Suppose that the left quotient ring of R with respect to S exists and let Q = S™'R.
Let f be the homomorphism in Definition 1.2.1. Let r € R and s € S. Then, since
f(r)(f(s)~! € Q, there exist 7' € R and s’ € S such that f(r)(f(s))~! = (f(s) " f ().
Thus f(s'r) = f(r's) and hence s'r —r's € ker f. So s”(s'r —1's) = 0 for some s” € S giving
us s”s'r = s"r’'s € Rs N Sr. So S is left Ore. Also, if rs = 0 for some r € R and s € S, then
f(r)f(s) = f(rs) = 0 and hence f(r) = 0 because f(s) is a unit in . Thus r € ker f and
hence s'r = 0 for some s’ € S. This proves that S is a denominator set.

Conversely, assuming that S is a left denominator set, we construct the left quotient
ring of R by first defining a relation on S x R. We say (s1,71) ~ (s2,r2) if and only if there
exist 7|, 75 € R such that rjry = rhre and rjs; = rhsy € S. It turns out that the relation ~
is an equivalence relation. The equivalence class of (s,7) € S x R is then denoted by s~!r

and we let Q be the set of all s~ !r.
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We are going to put a ring structure on Q. Let o = 51_17“1, 8= 82_1’/"2 be two elements
of Q. By the left Ore condition, Rsy N Ssy # () and thus there exist » € R and s € S such
that rs; = ssy = t € S. Now define a + 3 = t~1(rry + sr2). Also, since Rsy N Sry # 0,
there exist some v € R and s’ € S such that r'sy = s'r;. Let s's; =t/ € S and define
aff = t'71r'ry. It is straightforward to show that the addition and the multiplication that
we have defined are well-defined and satisfy all the conditions needed to make @ a ring.
Let 1 = 1g. Then 1710 = 0g and 17!1 = 1. Finally define f : R — Q by f(r) = 17 !r.
We see that f is a ring homomorphism. Now r € ker f if and only if (1,7) ~ (1,0) if
and only if there exist some ri,79 € R such that ri7 = 0 and ry = 7o = s € S. Thus
ker f = {r € R: sr = 0,for some s € S}. Therefore Q = S™!'R is the left quotient ring of
R with respect to S. O

We also have the common denominator property in quotient rings as the next result

shows.

Proposition 1.2.8 ([55], Lemma 3.1.10). Every finite subset of ST'R can be written as

{s_lxl, e s_la:n}.

Proof. We first show that if si,---,s, € S, then there exist rq,...,r, € R such that
r1§1y = -+ = rps, € 5. The proof is by induction on n. We choose r; = 1 if n = 1.
Suppose that n > 1 and that the claim is true for n — 1. Choose r},...,r),_; so that
sy = =71,_1Sp—1 = s € S. Also there exist r, € R and ¢ € S such that r,s, = ts,
since Rs, N Ss # 0. Let rj == tr’ for j=1,...,n — 1. Then for all 1 < j <n — 1 we have
risj = tr;-sj =ts =1r,5, and ts € S.

Now, let {sl_lyl, ooy 87 yn} € STIR. As we just proved, there exist 71,...,7r, € R such

that r1s1 =---=r,s, =s € S. Let z; = r;jy;, 1 < j <n. Then $; 1yj = s_lznj for all j. [

1.2.2 Localization at Regular Submonoids

The left or right quotient ring of a ring is more useful if it contains the ring, i.e. ker f = (0)

where f is the map defined in Definition 1.2.1. This leads us to the following definition.

Definition 1.2.9. An element s € R is called left regular if l.anng(s) = (0) and it is called
right reqular if r.anng(s) = (0). If s is both left and right regular, then we say that s is
reqular. A subset S of R is called a regular submonoid if it is multiplicatively closed, 1 € S

and every element of .S is regular.



CHAPTER 1. PRELIMINARIES 13

Clearly a regular submonoid is a left (resp. right) denominator set if and only if it is left
(resp. right) Ore. Thus if S is a regular submonoid, then S~!'R exists if and only if S is left
(resp. right) Ore. In this case, the map f: R — S™'R (resp. f: R — RS™!) defined by
f(r) =171r (resp. f(r) = r1~1) would be injective because if r € ker f, then sr = 0 (resp.
rs = 0) for some s € S and hence r = 0. That means R can be viewed as a subring of S™'R
(resp. RS™1). Note that if S is a regular submonoid of R contained in the center of R, then
S is Ore.

Definition 1.2.10. Let S be the set of all regular elements of R. If S is left Ore, then
Q(R) := ST R is called the classical left quotient ring of R. Similarly, if S is right Ore, then
Q(R) := RS~ is called the classical right quotient ring of R. If Q(R) is the left or right

classical quotient ring of R, then R is called an order in Q(R).

Note that localization at a regular submonoid S does not always give us a larger ring.
For example if R is left artinian, then S™'R = R. This is easy to see: for any s € S the
chain Rs O Rs?> O --- must terminate, i.e. there exists some integer n > 1 such that
Rs" = Rs"*l. Then s" = rs"*! for some r € R and thus (1 — rs)s” = 0 which implies
rs = 1. That means Rs = R and hence RsNSr' = Sr’ £ () for all s € S, ' € R. So S is left
Ore and S™'R = R.

The following easy proposition gives a relationship between the ideals of R and Q(R).
This result will be used in the proof of Goldie’s theorem in section 3 of this chapter. We
assume that S, the regular submonoid of R, is left Ore and so Q(R) = S~!R exists.

Proposition 1.2.11. Let I, J be left ideals of Q(R). Then I = Q(R)(INR) and INR = JNR
if and only if I = J.
Proof. Straightforward. O

An important case of localization at regular submonoids is when R is a domain.

Definition 1.2.12. Let R be a domain and let S = R\ {0}. If S is left Ore, then R is called
a left Ore domain. Similarly, if S is right Ore, then R is called a right Ore domain. If S is

Ore, then R is called an Ore domain.

Clearly a domain R is a left (resp. right) Ore domain if and only if Rr; N Rry # (0)
(resp. "R N raR # (0)) for all nonzero elements 1,7y € R. It is also obvious that if R is a
left (resp. right) Ore domain, then Q(R) is a division ring. Every division ring is an Ore

domain. The following result gives an important class of Ore domains.
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Proposition 1.2.13 ([48], Theorem 2.1.15). A left (resp. right) noetherian domain R is a
left (resp. right) Ore domain.

Proof. Let ri,79 € R be nonzero. We need to show that Rr; N Rry # (0). So suppose,
to the contrary, that Rri N Rry = (0). We show that the sum Y ° Rriry is direct and
thus R cannot be noetherian. Suppose that the sum is not direct and choose n to be the
smallest positive integer for which there exist a; € R, j = 0,---,n, not all zero, such that

>0 ajr17% = 0. Then n > 1 because R is a domain and thus

n—1
—agry = Z ajr1m1ry | ro € Rry N Rrg = (0).
§j=0
Hence ag = 0 and Z?:_ol aj+1r1r% = 0, contradicting the minimality of n. O

Let X be a set of noncommuting variables and let C' be a commutative ring. We denote
by C(X) the C-algebra of polynomials in variables from X. If X = {z1,...,x,} is finite, then
we write C(z1,...,x,) for C(X). Note that if C' is a domain and |X| > 2, then R := C(X)
is not Ore because then Rx; N Rxe = (0) for any two distinct elements x1, x5 € X.

We are now going to prove that those domains which are not Ore have one thing in

common: all of them contain a polynomial ring in two noncommuting variables.

Lemma 1.2.14. (Jategaonkar, [40, Lemma 9.21]) Let R be a ring and suppose that a,b € R
are left or right linearly independent over R. Let C be a central subring of R. Then the
C-subalgebra of R generated by a and b is isomorphic to C{x,y) for some noncommuting

variables x and y.

Proof. We assume that a, b are left linearly independent over R. We need to prove that the
set of all monomials in a and b is a C-basis for the algebra generated by a and b over C. So
suppose that the claim is false. Then there exists a nonzero f € C(x,y) of minimum total
degree such that f(a,b) = 0. Write

f(zy) = utg(z,y)x + h(z,y)y,
where v € C and g, h € C(z,y) with g # 0. Now

0=">bf(a,b) = ub+ bg(a,b)a + bh(a,b)b = bg(a,b)a + (u+ bh(a,b))b.
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Thus bg(a,b) = 0 because a and b are left linearly independent over R. Again, we can write
9(z,y) = + g'(z,y)z + h'(z, )y,
where v/ € C and ¢/, h' € C(z,y). Then
0 = bg(a,b) = bg'(a,b)a + (u' + bh'(a,b))b
and so bg'(a,b) = 0. But that contradicts the minimality of deg f because degyg'(x,y) <
degg(x,y) < deg f(z,y). 0
The converse of Lemma 1.2.14 is also true because clearly Rz N Ry = (0).

Proposition 1.2.15. Let R be a C-algebra which is a domain. Then R is Ore if and only

if it does not contain a polynomial C-algebra in two noncommuting variables.

Proof. Choose 11,79 # 0 such that Rrqy N Rre = (0). Then 71, ry are left linearly independent
over R and thus Lemma 1.2.14 can be applied. A similar argument shows that r{RNryR #

(0) for all nonzero elements 71,72 of R. O

Definition 1.2.16. Let S be the set of regular elements of R contained in Z := Z(R).
Then S is clearly Ore and thus Qz(R) := S~ R exists. The ring Qz(R) is called the central

localization of R.

Definition 1.2.17. A ring R is called prime if I.J # (0) for any nonzero ideals I, J of R. If

R has no nonzero nilpotent ideal, then R is called semiprime.

Clearly every prime ring is semiprime and it is easy to see that R is prime (resp.
semiprime) if and only if aRb = {0} (resp. aRa = {0}) implies @ = 0 or b = 0 (resp.
a=0) for all a,b € R.

Proposition 1.2.18 ([54], Propositions 1.7.4 and 1.7.5). Let Z := Z(R) be the center of R

and let S be the set of reqular elements of R contained in Z.

(1) Z(Qz(R)) =87'Z.

(2) If R is prime (resp. semiprime), then Qz(R) is prime (resp. semiprime).

Proof. Clearly S™1Z C Z(Qz(R)). Now let ¢ = s 'a € Z(Qz(R)) and r € R. Then
si(ra—ar)=r(s"ta) — (s ta)r=rq—qr=0

and hence ra = ar, i.e. a € Z. Thus Z(Qz(R)) C S~'Z. The proof of the second part is
straightforward. O
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1.3 Goldie’s Theorem

The idea of localization is to embed a ring into a larger ring with a nicer structure. If the
larger ring has a more complicated structure, then there is no point of localizing it. So it is
important to find rings which have nice classical quotient rings. During the 1950s, Alfred
Goldie, an English mathematician, proved that the classical quotient ring of a semiprime
Noetherian ring is a semisimple ring. A semisimple ring is a nice ring because, by the Artin-
Wedderburn theorem, it is a finite direct product of matrix rings over division rings. Goldie
proved his theorem for a larger class of rings. To state his theorem we need the following

definition.

Definition 1.3.1. A ring R is called left Goldie if R satisfies the ascending chain condition

on left annihilators and R does not contain an infinite direct sum of left ideals.

Theorem 1.3.2. (Goldie, [48, Theorem 2.3.6]) Let R be a ring and let Q(R) be the left
classical quotient ring of R. Then Q(R) is semisimple (resp. simple artinian) if and only if

R is semiprime left Goldie (resp. prime left Goldie).

Every left noetherian ring is clearly left Goldie. Also, every commutative domain is
left Goldie because the intersection of any two nonzero ideals of a commutative domain is
nonzero. So if C is a commutative domain and {z; : ¢ € N} is a set of commuting variables
over C, then the polynomial ring Clx1, x9,...| is a nonnoetherian Goldie ring.

In this section, the goal is to prove one side of Goldie’s theorem, i.e. if R is semiprime
left Goldie, then Q(R) is semisimple. The other side of the theorem is much easier and
not useful for our purpose. Note that we also need to prove that Q(R) basically exists.
We first recall the definition of semisimple rings. Let R be a ring. A left R-module M
is called semisimple if every submodule of M is a direct summand of M. The ring R is
called semisimple if it is semisimple as a left R-module, i.e. every left ideal of R is a direct

summand of R. We now have the following result.

Proposition 1.3.3 ([39], Theorem 4.14). A ring is semisimple if and only if it is left

artinian and semiprimitive.
Semisimple rings are characterized by the celebrated Artin-Wedderburn theorem.

Theorem 1.3.4. (Artin-Wedderburn, [39, Theorem 3.5]) A ring R is simple and Artinian

if and only if R = My, (D) for a unique integer n > 1 and, up to isomorphism, a unique
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division ring D. More generally, R is semisimple if and only if
R = M, ,(Dy) x -+ x M,, (D)

for a unique integer k > 1, some division rings D; and some integers n; > 1. The pairs

(ni, D;), up to permutation and isomorphism of D;, are uniquely determined.

Assumption. For the rest of this section, R is a semiprime left Goldie ring and S is the

submonoid of regular elements of R. Also, by ann(a) we mean the left annihilator of a in R.
We now begin the proof of Goldie’s theorem with a definition.

Definition 1.3.5. A left ideal I of R is called essential if I NJ # (0) for every nonzero left
ideal J of R.

It is clear that a left ideal I is essential if and only if I N Ra # (0) for all 0 # a € R.

Also, if I; C I are left ideals of R and I; is essential, then I is essential too.
Lemma 1.3.6. If I is a left ideal of R and I NS # 0, then I is essential.

Proof. Let a € INS. So a € I and ann(a) = 0. If we show that Ra is essential, then we are
done because Ra C I. So suppose, to the contrary, that J is a nonzero left ideal of R and
RanJ =(0). Let 0 # b € J. Then RaN Rb = (0) and so the sum ) >, Rab" is direct (see
the proof of Proposition 1.2.13). Thus R is not left Goldie, contradiction! O

The converse of Lemma 1.3.6 is also true and it is the key to the proof of Goldie’s

theorem. In order to prove the converse, we need a few lemmas.
Lemma 1.3.7. If a € R is left regular, then a is right regular too and hence a € S.

Proof. We need to show that if ann(a) = 0, then {b € R: ab = 0} = (0). So suppose, to
the contrary, that ab = 0 for some 0 # b € R. Then ann(b) is a proper left ideal of R and
a € ann(b) N S. Thus, by Lemma 1.3.6, ann(b) is essential. Since R is left Goldie, the set

A ={ann(c): 0# c€ R, ann(b) C ann(c)}

has a maximal element, say ann(u). Hence uRu # (0) because R is semiprime. Thus uvu # 0

for some v € R. Since ann(u) C ann(uvu), we have
ann(u) = ann(uvu),

by the maximality of ann(u) in A. It follows that ann(u) N Ruv = (0) and, since ann(b)

-
ann(u), we have ann(b) N Ruv = (0). Therefore ann(b) is not essential, contradiction! O
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Lemma 1.3.8. Fvery nil left ideal of R is zero.

Proof. Suppose, to the contrary, that I is a nonzero nil left ideal of R and 0 £ a € I. Let
A ={ann(ar) : r € R, ar # 0}.

Since R is left Goldie, A has a maximal element, say ann(au). Let b = au. Since R is
semiprime, bRb # 0 and so bvb # 0 for some v € R. Since [ is nil, wva € I is nilpotent. Thus
bv = aww is nilpotent too. Let n be the smallest integer such that (bv)™ = 0. Note that since
bv # 0, we have n > 2. Thus (bv)"~! # 0. We also have (bv)"~! € aR because bv = auv € aR.
Hence ann((bv)" 1) € A. Now, ann(b) C ann((bv)" 1) and so ann(b) = ann((bv)"~!), by
the maximality of ann(b) in A. But bv € ann((bv)"~!) and hence bv € ann(b), i.e. bvb = 0,

contradiction! ]
Lemma 1.3.9. If I is a nonzero ideal of R, then RaNann(a) = (0) for some 0 # a € I.

Proof. Since I is nonzero, I has an element b which is not nilpotent, by Lemma 1.3.8. Since

R is left Goldie, the ascending chain
ann(b) C ann(b?) C ann(b®) C - - -,
stops at some point. So ann(b") = ann(b*"), for some n, and hence Rb" Nann(b") = (0). O

We are now ready to prove the converse of Lemma 1.3.6, which is the heart of the proof

of Goldie’s theorem.
Lemma 1.3.10. If a left ideal I of R is essential, then I NS # ().

Proof. Suppose, to the contrary, that 1 NS = (). We claim that there exists a sequence
aj,asz, ... of nonzero elements of I such that a,+; € ann(ay,...,a,) and Ra,Nann(a,) = (0)
for all n. If we prove this claim, then the sum )" ;| Ra, will be direct and so R will not be
Goldie.

Now, by Lemma 1.3.9, there exists 0 # a; € [ such that Ra; Nann(a;) = (0). Let
n > 1 and suppose that we have found nonzero elements ai,...,a, in I such that ay+1 €
ann(ay,...,ax) for all 1 < k < n —1 and Ra, Nann(ag) = (0) for all 1 < k < n. Let
I, :=ann(ay,...,ay). Clearly I,, C ann(aj + -- - + ay). Now, if r € ann(aj + - - - + ay), then
Yo ra; =0 and so ra? = 0 because ag, . ..,a, € ann(aj). But then ra; € Ra; Nann(a;)

and so ra; = 0. Similarly ray = -+ = ra, = 0 and so r € ann(ay,...,ay). Thus [, =
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ann(aj + - - -+ ay) and hence I,, # (0) because if I,, = (0), then a1 +---+a,, € S, by Lemma
1.3.7, contradicting I NS = (). So I, NI # (0), because [ is essential, and hence there exists
0 # ap41 € I, N I such that Ra,41 Nann(a,+1) = (0) by Lemma 1.3.9. O

Proposition 1.3.11. The classical left quotient ring Q(R) exists.

Proof. We only need to prove that S is left Ore. Let s € S, r € R and define the left ideal
K :={a € R: ar € Rs}. Note that Rs is essential, by Lemma 1.3.6, because s € RsN S.
We now show that K is also essential. So suppose that .J is a nonzero left ideal of R. If
Jr = (0), then J C K and thus J N K = J # (0). If Jr # (0), then RsN Jr # (0), because
Rs is essential. So we can choose as = br # 0, for some a € R and b € J. But then br € Rs
and hence 0 # b € JN K. So K is essential and hence K N S # (), by Lemma 1.3.10. Thus
there exists a € S such that ar € Rs. That means ar € Sr N Rs and so Sr N Rs # (), i.e. S
is left Ore. O

The last step of the proof of Goldie’s theorem is to prove that Q(R) is semisimple.
Theorem 1.3.12. The classical left quotient ring Q(R) is semisimple.

Proof. By Proposition 1.3.3, we need to prove that Q(R) is semiprimitive and left artinian.
We first prove that Q(R) is left artinian. So suppose, to the contrary, that Iy D Iy D I3 D - --
is a strictly descending chain of left ideals of Q(R). Let J; = I; N R, i > 1. Then

JIDODJyDJ3D -

is a strictly descending chain of left ideals of R, by Proposition 1.2.11. Fix an integer ¢ > 1.
Since J; D Jiy1, there exists a; € J; \ Jiy1. Let

K,={reR: ra; € Ji;1},

which is a left ideal of R. Suppose that s € K; NS. Then sa; € J;+1 and so, by Proposition
1.2.11, a; € s7'Jip1 € Q(R)Jix1 = Q(R)(Iix1 N R) = ;1. Hence a; € I;11 N R = Jiyq,
which is false. So we have proved that K; NS = (). Therefore K; is not essential, by Lemma
1.3.10. So there exists a nonzero left ideal L; of R such that K; N L; = (0). Since a; € J;,
we have L;a; C J;. We also have L;a; N J;+1 = 0 because if ba; € J;+1 for some b € L;, then
be K;NL; =(0). Let T; = L;a;. So we have proved that T; C J; and T; N J;11 = (0). Hence
the sum )2, 7; is direct, which is impossible because R is left Goldie. This contradiction

proves that Q(R) is left artinian.
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We now prove that Q(R) is semiprimitive, i.e. J(Q(R)) = (0). Since Q(R) is artinian,
J(Q(R)) is nilpotent by Lemma 1.1.7. Hence J(Q(R)) N R is a nilpotent ideal of R. But R
is semiprime and so J(Q(R)) N R = (0). Therefore J(Q(R)) = Q(R)(J(Q(R)) N R) = (0),
by Proposition 1.2.11. O

1.4 Polynomial Identity Rings

In section 2 of this chapter, we used the concept of localization in commutative rings
to define localization in noncommutative rings. In this section, we generalize another
side of commutative rings to noncommutative rings. Let Z{x1,...,x,) denote the ring
of polynomials in noncommuting variables x1,xs,...x, with coefficients in Z. If Ry is
a commutative ring and fi(x1,x2) = z1x9 — xow1 € Z(x1,22), then fi(a,b) = 0 for
all elements a,b € R;. Now let C' be a commutative ring and let Ry := Ms(C). Let
fo(xy, 22, 23) = (x172 — 2ow1)%w3 — 23(2102 — 2271)? € Z(21, 72, 23). Then fo(a,b,c) =0
for all a,b,c € Ry (see Example 1.4.3). Both R; and Ry satisfy some polynomial in
Z{x1,...,xy). We say that R; and Ry are PI. Here, PI stands for Polynomial Identity.
So the class of Pl-rings contains the class of commutative rings properly.

In this section, we look at primitive and prime rings which are PI. The goal is to prove
two theorems. First, a theorem due to Kaplansky and Amitsur. The theorem states that
a primitive ring is PI if and only if it is a finite-dimensional central simple algebra. There
is another central theorem in the theory of Pl-rings which is due to Posner. By Posner’s
theorem, a prime ring is PI if and only if it is an order in a finite-dimensional central simple
algebra. To be more precise, Posner’s theorem says that a prime ring is PI if and only if its
central localization is a finite-dimensional central simple algebra.

Throughout this section, C' is a commutative ring with 1 and C{(x1,...,z,) is the C-

algebra of polynomials in noncommuting variables x1, ..., z, with coefficients in C.

1.4.1 Definitions and Basic Results

This subsection is an introduction to subsections 4 and 5. We first give the definition and
some examples and properties of Pl-algebras. Then we prove that the polynomial ring in
one variable over a semiprime Pl-ring is a semiprimitive PI-ring. This result will be used in

subsection 5 of this section to prove the celebrated Posner’s theorem.
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Definition 1.4.1. Let R be a C-algebra. We say that R satisfies a polynomial identity if
there exists an integer n > 1 and a monic polynomial f € C(x1,...,x,), i.e. the coefficient
of at least one of the monomials of the highest degree in f is 1, such that f(r,rg, -+ ,7,) =0
for all r1,...,r, € R. The algebra R is also called a Pl-algebra. A Pl-ring is a Pl-algebra
over C' = Z. An algebra R is called locally PI if every finitely generated subalgebra of R is
PI.

Example 1.4.2. Commutative algebras are PI because they satisfy x1x9 — xox1.

Example 1.4.3. Consider the C-algebra R := M>(C) and let Tr(r) be the trace of r € R.
Then for any 71,72 € R we have Tr(rqre —rar1) = 0. Thus, by the Cayley-Hamilton theorem,
(rire — r2r1)2 is a scalar multiple of the identity element of R and so it commutes with all
elements of R. Thus R satisfies the polynomial f = (2179 — zox1)%23 — 23(2172 — 2271)%
The identity f is called Wagner’s identity.

Remark 1.4.4. If R satisfies a polynomial f, then subalgebras and homomorphic images

of R satisfy f too.

Definition 1.4.5. A polynomial f € C(x1,...,x,) is called multilinear if for every i the de-
gree of z; in every monomial occurring in f is one, i.e. f = Zaesym(n) CoTa(1)Ta(2) " To(n)s
where Sym(n) is the set of all permutations of 1,2,...,n and ¢, € C. The multilinear
polynomial S,, = Sp(z1,...,2,) = ZJESym(n) SgN(0)Ty(1)To(2) ' * To(n), Where sgn(o) is the

signature of o, is called the standard polynomial of degree n.

Remark 1.4.6. If a C-algebra R satisfies a multilinear polynomial of degree one, then
R = (0). To see this, let f =>"", ¢;xi, ¢; € C be an identity for R. We may assume that
c1 =1. Ifin f we let z; = 0 for all 4 # 1, then we see that the polynomial g = x; is also an
identity for R and hence R = (0).

Proposition 1.4.7 ([48], Corollary 13.1.13 (i)). A C-algebra R which is finitely generated
as C'-module, is PI.

Proof. Tt is easy to see that if R is generated by n elements, then R satisfies the standard
polynomial Sy,11. The point here is that Sy(a1,...,a,) = 0 if a; = a; for some i # j. O

Example 1.4.8. By Proposition 1.4.7, R = M, (C) satisfies S,,2 1, because R, as C-module,

is generated by n? elements.
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Proposition 1.4.7 is also a result of the following important theorem.

Theorem 1.4.9. (Jacobson, [35, page 14]) Let R be a C-algebra which is integral of bounded
degree over C, i.e. there exists an integer n > 1 such that for every r € R there exists a

monic polynomial g € C[x] of degree n with g(r) = 0. Then R is a Pl-algebra.

Proof. Choose two elements 71,72 € R and a polynomial g;(x) = 2™ + az"l1+...4¢,in

Clz] with ¢1(r1) = 0. For every a,b € R let [a,b] = ab — ba. We have
0=[g1(r1),ra] = [r1,mo] + ea[r ™' ra] + -+ + e fr1, o).

Now let ga(z) = [g1(2),72]. Then

1

0= [92("“1)? [Tla TQ]] = [[Tﬂf, 7“2], [Tlv TQH + Cl[[r?i ,1"2], [7“1, TQH +oet CTL*Q[[T% T2]a [Tlv TQH

Then we let g3(x) = [g2(z), [r1, 2] and consider [g3(r1), [r?, 2], [r1,72]]] to get rid of ¢, _s.
If we continue in this manner until all the coefficients ¢; are gone, we will end up with a
polynomial f € C(xy,x9) such that f(r1,r2) = 0. Then f has a monomial of highest degree
with coefficient 1. O

We will use the following obvious fact later in this section.

Remark 1.4.10. Let R be a C-algebra and let K be a commutative C-algebra. If R satisfies
a multilinear polynomial f, then R ®¢ K satisfies f too.

The above is not necessarily true if f is not multilinear. For example, let F, denote the
field of order q. Let f(z) = 22 — 2 and R = C = Fy. Then f is an identity for R. Now
let K = F4. Clearly K is a C-algebra, R ®c K = K and f is not an identity for K. The

following proposition considers this situation.

Proposition 1.4.11 ([24], Part B, Theorem 1.9). Let k be an infinite field, K a commutative
k-algebra and R a k-algebra satisfying a polynomial f € k(x1,...,xy). Then RRy K satisfies
f too.

Proof. Let A= {r;: j € J} be a basis for R over k and let B = {y;; : 1 <i<mn,jeJ}be
a set of commuting variables over K. For each 1 < ¢ < n, let z; = Yia,Ta;, +* + YiasTais>
where s can be any integer for each i. Then f(z1,...,2,) = ugvy + - - - + ugvy, where each

u; is a monomial in k[B] and each v; is a monomial in k(A) C R. So we can write each v;
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as a finite k-linear combination of elements of A because A is a basis for R over k. Thus

f(z1,.. ., 20) = wjyrj, + -+ wj, 1), where each wj, is an element of k[B]. Let By be the
set of all elements of B which appear in f(z1,...,2,). We give to each element of B; a
value in k. Then z; € R for all i and thus f(z1,...,2,) = 0. Hence if the variables in each

polynomial w;, have values in k, then w;, = 0. But k is infinite and therefore each w;, must

be identically zero and so f(z1,...,2,) = 0 if elements of B; have values in K. O

Proposition 1.4.12 ([48], Proposition 13.1.9). If a C-algebra R satisfies a polynomial f of

degree n, then R satisfies a multilinear polynomial of degree at most n.

Proof. Suppose that f € C(x1,---,z,). First note that for any variable, say z; for the
sake of simplicity, we can write f = g(x1,...,2,) + h(z2,...,zy,), where h consists of those
monomials of f in which x1 does not occur. Now if we let 1 = 0 and let zo,--- , z, be any
elements of R, then h, and hence g = f — h, is an identity of R. So we may assume that
x1 occurs in every monomial of f. Continuing this process, eventually we may assume that
every x; occurs in every monomial of f.

Now, if f is not multilinear itself, then the monomials of highest degree occurring in f
cannot be multilinear. Thus, say x1, occurs in those monomials with maximal degree k& > 2.

Let

g(xla e anaxn-i-l) - f($1 +xn+17$27 .. '7xn) - f(xl)x27' . '7xn) - f(x’n-i-l)xQ?' . '71"77,)‘

Clearly R satisfies g and g is monic of degree at most n and the degree of 1 in each monomial

of g is at most k — 1. An induction now completes the proof. O

Corollary 1.4.13 ([24], Part B, Corollary 1.15). Let R be a C-algebra. If R is PI and x is

a central variable, then the polynomial algebra R[z| is PI too.

Proof. By Proposition 1.4.12, R satisfies some multilinear polynomial f(z1,--- ,zy,). Now
if gj(x) € Rlz], j = 1,2,...,m, then there exist an integer n and some elements r;; € R
such that
flgr, o igm) = Zf(T‘u,-.-,Tz’m)ﬁi
i<k
and thus f(g1,...,9m) = 0. O

Lemma 1.4.14 ([48], Proposition 13.3.2). If R is a prime Pl-ring, then R does not contain

any nonzero nil ideal.
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Proof. The proof is by induction on n, the degree of the multilinear polynomial satisfied by
R. By Remark 1.4.6, there is nothing to prove if n = 1. Suppose that R is a prime Pl-ring
which satisfies a multilinear polynomial f(zi,...,x,) of degree n > 2 and any prime ring,
which may or may not have an identity element, which satisfies a multilinear polynomial of
degree less than n has no nonzero nil ideal.

Now, to get a contradiction, suppose that I is a nonzero nil ideal of R and choose
0 # a € I such that a®> = 0. Let J = Ra and S := J/(J Nlanng(J)). Then S is a prime

ring. Now, after permuting the indices of x1,...,x, if necessary, we can write

flxy,... xn) =x19(22, ...y 20) + (21, ... 20),

where both g, h are multilinear, no monomial in h begins with x; and ¢ is not identically
zero. Let w be a monomial in A. Since no monomial in h begins with 1, there exists some
i # 1 such that the term x;z1 appears in w. So if r, 7" are any elements of R, then the value

2¢ = 0. Thus if ri,79,...,r, € R, then

of w at x; = ra, 1 = ar’ is zero because z;11 = ra
h(ari,raa,...,rpa) = 0 and hence aryg(raa, ..., rn,a) = 0. Therefore aRg(raa,...,rna) =0
and so g(rea,...,r,a) = 0 because R is prime and a # 0. Thus J, and hence S, satisfies g.
But the degree of g is less than n and so, by the induction hypothesis, S has no nonzero nil
ideal. On the other hand, J C I and so J is nil because I is nil. Thus S is a nil ideal of

itself and so S = (0). Therefore J? = (0), contradicting the hypothesis that R is prime. [J

Corollary 1.4.15 ([24], Part B, Lemma 6.1). If R is a semiprime Pl-ring and x is a central

variable, then R[x] is a semiprimitive PI-ring.

Proof. By Corollary 1.4.13, R[z| is a Pl-ring. Let {P; : i € I} be the set of prime ideals
of R. Then (;,c; Pi = (0), because R is semiprime. Let R; = R/P;, i € I, and define
the map v : R[z] — [[,c; Rilz] by v(3rja?) = (3(rj + P;)z7). Then v is an injective
ring homomorphism. Now, R; is a prime Pl-ring for every ¢ € I and hence R;[z] is a
semiprimitive ring, by Lemma 1.4.14 and Proposition 1.1.6. If p(z) = Y r;2/ € J(R[x]),
then > (r; + P;)a? € J(R;[z]) = 0 for all i € I. Thus r; € P, for all j and i € I and hence

rj = 0 for all j. O
For the next result we refer the reader to Definition 1.2.16.

Corollary 1.4.16. Let R be a C-algebra. If R is PI, then Qz(R) is PI too.
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Proof. By Proposition 1.4.12, R satisfies some multilinear polynomial f(x1,..., 2, ). Now if
g = si_lri € Qz(R), then, since f is multilinear and s; are central, we have f(qi,...,qmn) =
(s1...8m) " f(r1,...,rm) = 0. O

Corollary 1.4.17 ([48], Proposition 13.3.2). The C-algebra R = M, (C) does not satisfy

any polynomial of degree less than 2n.

Proof. Suppose, to the contrary, that R satisfies a polynomial of degree at most 2n — 1.

Then, by Proposition 1.4.12, R satisfies a multilinear polynomial

9@ty TR) = D Colg(1) Ta(h),

ocESE
for some k < 2n — 1 and ¢, € C. Renaming the variables, if necessary, we may assume that
c = cia # 0. Let {e;;} be the standard basis of R over C. Then g(ei1,e12,e22,€23,--+) =
ceyg = 0, for some ¢. Therefore ce;; = e;1(cerg)eg; = 0 for all 4, 5. Thus ¢ = 0, which is a

contradiction. O

Theorem 1.4.18. (Amitsur-Levitzki, [51]) The C-algebra M, (C) satisfies Sop.

1.4.2 Kaplansky’s Theorem

It is easy to show that a primitive ring is commutative if and only if it is a field. Now, which
primitive rings are PI? The answer is that a primitive ring R is PI if and only if R = M, (D)
for some division ring which is finite-dimensional over its center. The goal in this subsection
is to prove this important result. This result is due to Kaplansky and Amitsur and it is
often called the Kaplansky’s theorem. We begin with recalling a few facts about primitive
rings. Given a left R-module M, let Endg(M) denote the ring of R-homomorphisms from
M into M.

Lemma 1.4.19. (Schur’s Lemma, [54, Lemma 1.5.1]) If M is a simple R-module, then
Endg(M) is a division ring.

Proof. For any nonzero element f € Endgr(M), the kernel and the image of f are R-
submodules of M. Therefore, since M is simple and f # 0, we have ker f = 0 and f(M) = M,

i.e. f is an isomorphism and so it is an invertible element of Endg(M). O

We have already defined primitive rings in Definition 1.1.3. We now rephrase the defi-

nition.
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Definition 1.4.20. A ring R is called left primitive if there exists a simple left R-module
M which is faithful, i.e. Lanng(M)={re R: rM = (0)} = (0).

Example 1.4.21. Every simple ring R is left primitive because if [ is a maximal left ideal
of ring R, then M = R/I is a faithful simple left R-module.

Theorem 1.4.22. Let D be a division ring with the center Z and let K be a subfield of D.
Let A=D®z K.

(1) A is a simple ring and thus left primitive.

(2) D is a faithful simple left A-module and if K is a mazimal subfield, then End (D) = K.

Proof. Let {kj : j € J} be a Z-basis for K. Suppose that A is not simple. Let I be a
nonzero ideal of A. Choose n to be the smallest integer for which there exists 0 # x =
> i1 dj @k € I. Then dy # 0 and so, by replacing x with (d7' @ 1)x if necessary, we may
assume that d; = 1. Now, for any d € D we have

> (ddj—did) @ ky, = (d®@ )z —x(d@ 1) €1,

j=2
which gives dd; = d;d, by the minimality of n. So d; € Z for all j. Thus x = 1 ® k, for some
0#kc K. Butthenly=1®1=(1®k o clandsol=A.

For the second part of the theorem, define (d; ® k)ds = dydak for all di,dy € D, k€ K
and extend it linearly. Then D becomes a faithful left A-module because l.ann (D) # A is
an ideal of A and A is a simple ring by the first part of the theorem. To prove that D is
a simple A-module, let di # 0 and dy € D. Then (del_l ® 1)d; = dy and hence Ady = D.
To prove that End4(D) = K we define the map ¢ : Enda(D) — K by ¢(f) = f(1). It
follows that if K is a maximal subfield, then ¢ is a ring isomorphism. The reason is that

the centralizer of K in D is K itself. O
The following theorem gives a structure theorem for left primitive rings.

Theorem 1.4.23 ([39], Theorem 11.19). Let R be a left primitive ring with a faithful simple
left R-module M. Let D = Endg(M).

(1) If dimp M = n < oo, then R = M,(D).
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(2) If dimp M = oo, then for any integer n > 1, M, (D) is the homomorphic image of some
subring of R.

Lemma 1.4.24. Let R be a left primitive C-algebra. Let M be a faithful simple left R-module
and let D = Endr(M). If R satisfies a polynomial f of degree d, then dimp M =n < |d/2]
and R = M, (D).

Proof. Suppose dimp M > |d/2]. Then, by Theorem 1.4.23, there exists some k > [d/2]
such that either R = My (D) or My (D) is a homomorphic image of some subring of R. In
either case, My(D), and hence My(Z(D)), satisfies f by Remark 1.4.4. Thus by Lemma
1.4.17

d>2k>2(|d/2] +1) >d,

which is absurd. O

Theorem 1.4.25. (Kaplansky’s theorem, [54, Theorem 1.5.16]) Let R be a left primitive
C-algebra and let M be a faithful simple left R-module. Let D = Endr(M). Suppose that R

satisfies a polynomial of degree d.
(1) R= M, (D), where n =dimp M < |d/2| and so k = Z(R) = Z(D) is a field.

(2) dimy D = dimy, R < (|d/2])2.

Proof. We have already proved the first part in Lemma 1.4.24. So we only need to prove the
second part of the theorem. By Proposition 1.4.12, R satisfies some multilinear polynomial
f of degree at most d. Clearly D satisfies f too because it is a subring of M, (D) = R. Let
K be a maximal subfield of the division ring D and let A := D ®;, K. By the first part of
Theorem 1.4.22, A is simple and thus left primitive. By Remark 1.4.10, A satisfies f. Now,
if in Lemma 1.4.24 we let R = D ®; K and M = D and apply the second part of Theorem
1.4.22, then we get A = M,,(K), for some integer m > 1. Therefore

R®p K = M,(D) @, K = M,(A) = My, (K)

and hence
dimy, R = dimg R ®; K = (mn)>.

On the other hand R®y, K satisfies f and thus d > deg f > 2mn. So mn < d/2 and therefore
mn < |d/2]. Finally we have dimy, R < dimy, R ®;, K = (mn)? < (|d/2])?. O
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If R is simple (resp. division) ring, then we say R is a central simple (resp. division)
k-algebra if Z(R) = k.

Corollary 1.4.26. Let D be a finite-dimensional central division k-algebra and R = M,, (D).
Let K be a mazimal subfield of D. Then R is PI, R®y K = My(K) and dimy, R = s% for

some integer s > 1.

Proof. By Proposition 1.4.7, R is PI. Clearly R is left primitive because it is simple. Thus,
as we showed in the proof of Theorem 1.4.25, R ®) K = M(K) for some integer s and
dimy R = s2. O

Definition 1.4.27. If R is a finite-dimensional central simple k-algebra, then the integer
vdimg, R is called the degree of R.

So, by Kaplansky’s theorem, a primitive ring R satisfies a polynomial identity if and
only if R is a finite-dimensional central division algebra. What can we say about a prime

ring that satisfies a polynomial identity? We will answer this question in the next section.

1.5 Posner’s Theorem

A prime ring is commutative if and only if it is a commutative domain. Now, which prime
rings are PI? The answer is that a prime ring R is PI if and only if Qz(R) = M, (D), where
Qz(R) is the central localization of R and D is a division ring which is finite-dimensional
over its center. The goal in this subsection is to prove this result which is due to Posner.

Let R be a prime ring. Since Z(R), the center of R, is a domain, the set of nonzero
elements of Z(R) is a regular submonoid which is obviously Ore. Thus Qz(R), the localiza-
tion of R at S = Z(R) \ {0}, exists and contains R as a subring (see Definition 1.2.16). By
Proposition 1.2.18, the center of Qz(R) is the localization of Z(R) at S, i.e. the quotient
field of Z(R).

Before proving Posner’s theorem we need some preparation.

Definition 1.5.1. Let R be a C-algebra. A polynomial f(z1,...,2,) € C{z1,...,2,) is
called a central polynomial for R if the constant term of f is zero, f is not an identity for R

and f(ri,...,m) € Z(R) for all r,...,r, € R.

Example 1.5.2. Let k be a field. By Example 1.4.3, f(x1,22) = (7122 — 2271)? is a central
polynomial for My(C).



CHAPTER 1. PRELIMINARIES 29

Next, We prove that central polynomials always exist for M, (k) if k is a field. But first

we give a definition.

Definition 1.5.3. Let n > 2 be an integer, k a field and k[z1,...,2,+1] the polynomial

algebra in n 4+ 1 commuting variables z;. Define the map

M:kﬁ[Zl,...,Zn+1] ? k<x7y17"'7yn>
on monomials by
mi M Mn+1\
,LL(Zl 12:2 2., ZTL—;’-LI ) = ,:Emlyla'ijyQ e xmnynxmn+l

and extend the definition k-linearly. Now let

g(zl, ... ,Zn+1) = H (21 — Zi)(zn+1 — Zi) H (Zl — Zj)2 S k[zl, ey an]

2<i<n 2<i<i<n

and define g(z,y1,...,yn) = p(g(z1, ..., 2n+1)). Finally, define

F(x)ylv"wyn) :g(xvyla"wyn) +§(l‘ay25'°'aynayl) + - +§(£7ynayla"'aynfl)'
The polynomial F(z,y1,...,yy) is called the Formanek polynomial.

For example, if n = 2, then g(21, 22, 23) = (21 — 22)(23 — 22) = 2123 — 2129 — 2223 + 23.
Thus §(z,y1,%2) = Ty1y22 — TY17Y2 — Y12Y22 + y12°y2 and the Formanek polynomial is
F(xaylqu) = g(mayhyQ) +§(x7y27y1)‘

Theorem 1.5.4. (Formanek, [24, Part B, Theorem 3.4]) Let k be a field and let n > 2 be

an integer. The Formanek polynomial F(x,y1,...,yn) is a central polynomial for M, (k).

We are now going to prove Formanek’s theorem for n = 3. The proof for the general

case is similar. We begin with a useful lemma.

Lemma 1.5.5. Let k be a field and let n > 2 be an integer. Let F(x,y1,...,yn) be the
Formanek polynomial. If F(X,Y1,...,Y,) is a scalar matriz for all diagonal matrices X €
M, (k) and all matriz units Y1,...,Y, € M,(k), then all valuations of F(x,y1,...,yn) on

M, (k) are scalar matrices.

Proof. The Formanek polynomial is multilinear in y1,...,y, and the matrix units e;; span
M, (k). Thus if F(a,by,...,b,) is a scalar matrix for all elements X € M, (k) and all
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matrix units Y1, ...,Y, € M,(k), then all valuations of F(x,y,...,y,) on M, (k) are scalar
matrices.

Now, Let x;;, 1 <1i,5 <n be n? commuting independent variables over k and let K be
the field generated by k and these variables. Let K denote the algebraic closure of K. Let
Xo be the element of M, (K) whose (i, j)-entry is x;;. In order to show that all valuations
of F on M,(k) are scalar matrices, we only need to show that F(Xo,Y1,...,Y,) € M,(K)
is a scalar matrix for all Y1,...,Y,, € M,(k). Note that Xy has n distinct eigenvalues
because the diagonal matrix Y ., xje;; has n distinct eigenvalues. Thus X is diag-
onalizable, i.e. there exist invertible matrix P € M,(K) such that PXqP~! is diago-
nal. Now, PF(Xq,Y1,...,Y,)P~! = F(PXoP~ ', PY1P~! ... PY,P~!) and the fact that
F(Xo,Y1,...,Y,) is a scalar matrix if and only if PF(Xg,Y1,...,Y,)P~!is a scalar matrix,
completes the proof. ]

Proof of Theorem 1.5.4 forn =3. . Let X = aje11 + asess + asess, a; € k be a diagonal
matrix and let Y; = ep,4,, ¢ = 1,2,3 be any matrix units of M3(k). By Lemma 1.5.5, we
only need to show that F(X,Y7,Y2,Y3) is a scalar matrix and also F' is not identically zero
on Ms(k).

Let g and g be the functions as defined in Definition 1.5.3. We have

9(21, 22, 23,24) = (21 — 22) (24 — 22) (21 — 23) (24 — 23) (22 — 23)2. (1.3)

Let r, s, be any permutation of 1,2,3. Since Xe;; = a;e;; and e;; X = aje;; for all 4, j, we

have X™e;; = aj"e;; and €;; X = a}”eij. Thus

mi m2 ms3 ma _ M1 M2 M3 14
X YTX YSX Y;fX - apr aps apt aqt €prqr€psqs Epigr

. Hence
9(X, Y, Y5, Y1) = g(ap,, ap,, ap, s Qg,)€pq, €pyqs Eprar - (1.4)

By (1.3), we also have

g(apT, aps,apwath) = (apr - aps)(aqt - aps)(apr - apt)(a’% - apz)(aps - apt)Q' (1.5)

By (1.4), if ep,q4,€p.q.€pige = 0 Or glap, ,ap,,ap,,aq) = 0, then g(X,Y7,Y5,Y3) = 0. Now,
€prqr€psqs€prg; = 0 unless g, = ps and ¢qs = py. Also, by (1.5), g(ap,, ap,, ap,, ag,) = 0 unless

Pr, Ds, Pt 18 a permutation of 1,2,3 and ¢; = p,. Note that if ¢, = p,, then by (1.5),

g(apr7aps7apt7%t) = (apr - ap5)2(apr - apt)Q(aps - apt)2-
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Let

A(al,CLQ,CLE}) = (apr - aps)Q(apr - apt)2(aps - apt)z'

Note that since p,, ps, p: is a permutation of 1,2, 3, we have
Alar, a2, a3) = (a1 — a2)*(az — az)?*(a1 — az)*.

So g(X,Y,,Ys,Y;) = 0 unless p,, ps, pr is a permutation of 1,2,3 and ¢, = ps, ¢s = pt, ¢ =
pr and in this case (X, Y1,Y2,Y3) = A(a1,az,a3)ep,p,.. Thus F(X,Y,,Ys,Y;) = 0 unless

Pr, Ps, Pt is a permutation of 1,2,3 and ¢, = ps, ¢s = pt, ¢ = pr and in this case

F(Xax"a}/sa}/t) = E(Xa Y1>Y27}/:3) +§(X7}67}%’Y1) +§(X7}/31Y17Y2)

(1.6)
= A(a1,a2,a3)(ep,p, + epp, + €pp) = Alar, az,a3)l.

To complete the proof of the theorem, we show that F' is not identically zero on Ms3(k).
This is clear if k is infinite because then we can choose three distinct elements a1, as, a3 € k.
Then A(aq,a2,a3) # 0 and the result follows from (1.6).

If k is finite, let k be the algebraic closure of k. Let z be a variable over k and let f € k[2]
be an irreducible polynomial of degree three. Let X € Ms3(k) be its companion matrix. Then
X has distinct eigenvalues in k and so it is diagonalizable. Hence there exist an invertible
element P € M3(k) such that PX P~! is diagonal and its diagonal entries are distinct. So,
by (1.6), there exist matrix units Fy, Fs, E3 € Ms(k) such that F(PXP~1 Yy, Ys,Y3) # 0.
Let P'E;P =U;, i =1,2,3. Then U; € M3(k) and

PF(X,U,,Us,U3) P~ = F(PXP~ ', E\, Ey, E3).

Thus F(X,U;,Us,Us) # 0. Finally, since F' is multilinear in y; and each U; is a linear
combination of matrix units and F(X,U;, Uz, Us) # 0, it follows that there exist matrix
units Y1, Ys, Y3 € M3(k) such that F(X,Y7,Y2,Ys) # 0 and the proof is complete. O

The following lemma extends Formanek’s theorem to finite-dimensional central simple

algebras.

Lemma 1.5.6 ([24], Part B, Lemma 4.14 (d)). Let R be a finite-dimensional central simple
k-algebra of degree n.

(1) The standard polynomial Say, is an identity for R and R does not satisfy any polynomial

of degree less than 2n.
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(2) The Formanek polynomial F(xz,y1,...,yn) is a central polynomial for R.

Proof. So R = M,,(D) for some finite-dimensional central division k-algebra. Let K be a
maximal subfield of D. Then, by Corollary 1.4.26, R®j K = M, (K). By Remark 1.4.10, R
and M, (K) satisfy the same multilinear polynomials. Thus the standard polynomial Sy, is
an identity for R and no polynomial of degree less than 2n is an identity for R, by Corollary
1.4.17 and Theorem 1.4.18.

To prove the second part of the lemma, we consider two cases. If k is finite, then D is
a field and we are done by Theorem 1.5.4. So we may assume that k is infinite. Let z be a
variable and consider the polynomial h = [F), z]. Clearly h is an identity for M, (K) = R®y K
because F' is a central polynomial for M, (K). Therefore h is an identity for R too. Also,
by Proposition 1.4.11, F' is not an identity for R because it is not an identity for M, (K).
Thus F' is a central polynomial for R. O

Lemma 1.5.7. Let R be a finite-dimensional central simple k-algebra of degree m. The

Formanek polynomial F(x,y1,...,yn), n > m, is an identity for R.

Proof. By Corollary 1.4.26, there exists a field extension K/k such that R®j K = M,,(K).
So we only need to prove that F is an identity for M,,(K). Now, there is an embedding

M, (K) — M, (K) defined by
a 0
a — .
0 0

Let a,b1,...,b, € My, (K). Then ¢ = F(a,b1,...,b,) € My,(K) is in the center of M, (K),
ie. ¢ = al, where a € K and [ is the identity matrix of M, (K). But the only scalar
multiple of I which is in M,,(K) is the zero matrix. Thus ¢ = 0. O

Theorem 1.5.8. (Rowen, [53]) Let R be a semiprime Pl-ring. If J # (0) is an ideal of R,
then J N Z(R) # (0).

Proof. Suppose first that we have proved the theorem for semiprimitive PI-rings and let J be
a nonzero ideal of R. Let S = R|x], the polynomial ring in the variable . By Corollary 1.4.15,
S is a semiprimitive PI-ring and clearly J[x] is a nonzero ideal of S. Thus, since the center
of S'is Z(R)[z], we have (J N Z(R))[z] = J[z] N Z(R)[z] # (0) and hence J N Z(R) # (0).
So we may assume that R is a semiprimitive Pl-ring. Let J be a nonzero ideal of R

and suppose that R satisfies a polynomial identity of degree d. Let {FP; : i € I} be the
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set of left primitive ideals of R. Then (;c; Pi = (0) and R; = R/P; is a primitive PI-
ring for all ¢ € I. Thus, by Theorem 1.4.25, each R; is a finite-dimensional central simple
algebra of degree, say, n;. Let m; : R — R;, © € I be the natural projection defined by
mi(r) = r+ P;, r € R. We also have an injective ring homomorphism v : R — [[;c; R
defined by v(r) = (m;(r))er-

Clearly every polynomial identity for R is also an identity for each R;. Also, by Lemma
1.5.6, R; does not satisfy any polynomial of degree less than 2n;. Thus d > 2n; for all ¢.
Therefore the set {n; : i € I} is bounded above by d/2. Now, m;(J) = J;, i € I, is an ideal
of R;. Since R; is a simple ring, we have J; = (0) or J; = R; for each i. We cannot have

Ji = (0) for all ¢ because then J = (0). So there exists some s € I such that J; = R;. Let
n =max{ns: Js = Rs}. Let F(x,y1,...,yn) be the Formanek polynomial and let

A={F(a,by,...,by): a,by,...,bp e J} CJ.

For each i let m;(A) = A; C J;. If n; > n, then A; = (0) € Z(R;) because J; = (0). If
n; < n, then again A; = (0) C Z(R;) because F is an identity for R;, by Lemma 1.5.7. If
n; = n, then F is a central polynomial for R;, by the second part of Lemma 1.5.6, and thus
A; € Z(R;). So each A; is central in R; and hence v(A) is central in [[;c; R;. Therefore A
is central in R because v is injective. Thus A C J N Z(R).

The only thing left is to show that A # (0). To prove this, choose an i € I such that
n; = n. Then, J; = R; and F is a central polynomial for R; and so it is not an identity for
R;. Hence there exist u,vy, ..., v, € R; such that F(uj,vi,...,v,) # 0. Now, since m;(J) =
Ji = R;, there exist a,by,...,b, € J such that m;(a) = u and 7 (b)) = v, t = 1,...,n.
Therefore m;(F(a,b1,...,by)) = F(u,v1,...,v,) # 0 and so 0 # F(a,by,...,b,) € A. O

Corollary 1.5.9 ([24], Part B, Corollary 6.3). If the center of a semiprime PI-ring R is a

field, then R is a finite-dimensional central simple algebra.

Proof. Let J be an ideal of R. If J # (0), then there exists a nonzero element a € J N Z(R),
by Theorem 1.5.8. Since Z(R) is a field, a is invertible and thus 1 € J,i.e. J = R. So R is

a simple ring and we are done by Theorem 1.4.25. O

Theorem 1.5.10. (Posner, [50]) Let R be a prime ring and let Qz(R) be the central local-

ization of R.

(1) The ring Qz(R) is prime and Z(Qz(R)) is the quotient field of Z(R).
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(2) The ring R is PI if and only if Qz(R) is a finite-dimensional central simple algebra.

Proof. The first part follows from Proposition 1.2.18 and the fact that the center of a prime
ring is a domain. We now prove the second part of the theorem. If Qz(R) is a finite-
dimensional central simple algebra, then it is PI and so R is PI too because R C Qz(R).
Conversely, if R is PI, then @z (R) is PI by Corollary 1.4.16. Thus, by the first part of the
theorem, Qz(R) is a prime Pl-ring whose center is a field and so it is a finite-dimensional

central simple algebra by Corollary 1.5.9. O
Corollary 1.5.11. If R is a PI-domain, then Q(R) = Qz(R) and thus Q(R) is PI too.

Proof. If R is a PI-domain, then R is Ore and hence Q(R) exists and it is a division ring.
On the other hand, Qz(R) is a domain and thus, by Theorem 1.5.10, @z (R) is a division
ring too. The result now follows from R C Qz(R) C Q(R) and the fact that Q(R) is the

smallest division ring containing R. Now Corollary 1.4.16 completes the proof. O

1.6 Gelfand-Kirillov Dimension

Throughout this section, & is a field. Let A be a finitely generated k-algebra. The Gelfand
Kirillov dimension, or GK dimension, of A measures the rate of the growth of A in terms of
any generating set of A. The smallest possible value of the GK dimension of A is zero and
this happens if and only if dimy A < co. On the other hand, if A contains a free algebra on
two variables, then the GK dimension of A is infinity. If A is commutative, then the GK
dimension of A is just the Krull dimension of A. We begin with the definition and some

basic facts about the GK dimension of algebras.

1.6.1 Definitions and Basic Results

Let A be a k-algebra. Let V' be a k-vector subspace of A spanned by the set {a1,...,an}. For
any integer n > 1 we denote by V" the k-subspace of A spanned by all monomials of length
nin ai,...,an,. We also define VO = k. If A, as a k-algebra, is generated by ai,--- ,an,
then V is called a generating subspace of A. We denote by V,, the union (J" V. Note that
A=U2o V" = Upy Va, for any generating subspace of A. A generating subspace of A

which contains 1 is called a frame of A. If V' is a frame of A, then clearly V,, = V" for all n.
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For example, let A = k[x1,- - , ], the polynomial algebra over k in n variables z1, - - - , x,.
Then V = kx1 + - - - + kx, is a generating subspace but not a frame of A. The vector space

k +V is a frame of A.

Lemma 1.6.1. Let A be a finitely generated k-algebra and let V. and W be two generating
subspaces of A. Then limsup log,, (dim V},) = lim sup log,, (dim W},).
n—o0 n—oo

Proof. We have A = ;" Vi, = U, 2, Wy. Since both V' and W are finite-dimensional,

there exist integers » > 1 and s > 1 such that V C W,. and W C V;. Thus V,, C W,,, and
Wy, C Vg, for all integers n > 0. Now, dim V,, < dim W,.,, implies that

log,, (dim V},) < log,, (dim W,,,) = (1 + log,, r) log,., (dim W,,,).
Taking limsup of both sides of the above inequality gives

lim sup log,,(dim V;,) < lim sup log,, (dim W,,),

n—oo n—oo

because lim (1 +log,r) =1 and

n—o0

lim sup log,.,, (dim W;.,) < limsup log,,(dim W,,).

n—0o0 n—oo
Similarly dim W,, < dim Vj,, implies
lim sup log,, (dim W,,) < lim sup log,, (dim V},),
n—0o0 n—oo
which completes the proof. ]
By the above lemma, lim suplog,, (dim V},) does not depend on the generating subspace

n—oo
V. So the following definition makes sense.

Definition 1.6.2. Let A be a finitely generated k-algebra and let V' be a generating subspace
of A. The Gelfand-Kirillov dimension, or GK dimension, of A is defined by GKdim(A) :=
limsuplog, (dim V,,). If V' is a frame of A, then

n—oo

GKdim(A) = limsup log,, (dim V™).

n—oo
We will see later in this section that if A is commutative, then the GK dimension of A
and the Krull dimension of A are equal.
The following simple result allows us to extend the definition of GK dimension to arbi-

trary algebras, as given in Definition 1.6.4.
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Proposition 1.6.3. Let A be a finitely generated k-algebra and let B be a finitely generated
subalgebra of A. Then GKdim(B) > GKdim(A).

Proof. Let W be a frame of B and extend W to a frame V of A. Then W™ C V" for all n.
Thus dim W™ < dim V" for all n and the result follows. O

So by the above Proposition, if A is a finitely generated k-algebra, then sup GKdim(B) =
B
GKdim(A), where sup runs over all finitely generated k-subalgebras B of A. Now we can

define the GK dimension of an arbitrary algebra.

Definition 1.6.4. Let A be a k-algebra. We define GKdim(A) := sup GKdim(B), where
B

sup runs over all finitely generated k-subalgebras B of A.

Proposition 1.6.5 (48], Proposition 8.2.2). Let A be a k-algebra, B a subalgebra of A and
I an ideal of A. Then GKdim(A) > max{GKdim(B), GKdim(A/I)}.

Proof. The inequality GKdim(A) > GKdim(B) is obvious by Definition 1.6.4 and the fact
that every finitely generated subalgebra of B is a finitely generated subalgebra of A.

Now let A; be a finitely generated subalgebra of A/I. Let m: A — A/I be the natural
homomorphism. Then Ay = 7~1(A;) is a finitely generated subalgebra of A. Let W be a
frame of A;. Then V = 7r’1(W) is a frame of Agp and clearly dimg V" > dimg W™ for all n.
Thus GKdim(A) > GKdim(Ap) > GKdim(A;). Taking supremum over all finitely generated
subalgebras Ay gives GKdim(A) > GKdim(A/I). O

If I in Proposition 1.6.5 contains a left or right regular element, e.g. if A is a domain,

then we have a stronger upper bound for the GK dimension of A/I, as the next result shows.

Proposition 1.6.6 ([56], Proposition 6.2.24). Let A be a k-algebra and let I be an ideal of
A. Ifl.anng(a) = (0) for some a € I, then GKdim(A/I) < GKdim(A) — 1.

Proof. Let B be any finitely generated subalgebra of A and let V be a frame of B’ := Bla]
which contains a. Let V = (V + I)/I. Clearly V is a frame of B’ = (B’ +1)/I = (B+1)/I.
If n is an integer, then, as k-vector spaces, V" = (V" N I) @ W,, for some finite-dimensional
k-vector space W,,. Note that W, = V" /(V"NI) = (V" +1)/1 =V". Also, since AanNW,, C
INV™and AanNW,, C W,,, we have AaNW,, = (0) for all n. Therefore, since L.ann4(a) = (0),
the sum Y 1", Wya' is direct for all n. Clearly Y"1  Wya' C V2 for all n because both a
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and W,, are in V". Thus

dimy V™ > dimy, Z Wpha! = Z dimy, Wpa' = (n + 1) dimy, W, > ndimy, W,, = ndimy, v
=0 =0
Hence
GKdim(A) > GKdim(B') > 1 + GKdim(B’).

Since every finitely generated subalgebra of A/I is in the form (B + I)/I for some finitely
generated subalgebra B of A, the above inequality holds for any finitely generated subalgebra
of A/I. Thus GKdim(A4) > 1 + GKdim(A/I). O

And here is a nice little application of the proposition.

Corollary 1.6.7. Let A be k-algebra which is a domain. Let B be a simple subalgebra of
A. If GKdim(A) < GKdim(B) + 1, then A is simple too.

Proof. Let I be a nonzero ideal of A. If I N B # (0), then I N B = B, because B is simple,
and so I = A. Suppose now that I N B = (0). Then the natural homomorphism B — A/I
would be injective and so GKdim(B) < GKdim(A4/I) < GKdim(A) — 1, by Proposition

1.6.6, which is a contradiction. ]

Now, we are going to look at algebras with the smallest and the largest possible GK di-
mension, i.e. zero and infinity. First, we show that free algebras have infinite GK dimension

and then we characterize algebras of GK dimension zero.

Proposition 1.6.8 ([48], Proposition 8.1.15 (iv)). If X is a set of noncommuting variables
with | X| > 2 and A := k(X), then GKdim(A) = oo.

Proof. Let x,y € X and put B = k(z,y). Let V. = k + kx + ky. Then V is a frame of B
and dim V" =1+ 2+ --- 4+ 2" > 2", Thus log, (dim V") > nlog, 2. Hence GKdim(A) =
lim sup log,, (dim V™) > le nlog, 2 = oo and so GKdim(A) = oo, by Definition 1.6.4. [

n—oo

Corollary 1.6.9 ([48], Corollary 8.1.21). Let A be a k-algebra which is a domain. If
GKdim(A) < oo, then A is Ore.

Proof. If A contains a copy of k(z,y), where z and y are noncommuting variables, then
GKdim(A) = oo, by Proposition 1.6.8. Thus A does not contain such a subalgebra and
hence A is Ore by Proposition 1.2.15. O
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Proposition 1.6.10 ([48], Proposition 8.1.17 (i)). Let A be a k-algebra. Then GKdim(A) =
0 if and only if A is locally finite, i.e. every finitely generated subalgebra of A is finite-

dimensional over k.

Proof. Suppose first that A is locally finite and let B be a finitely generated subalgebra of A.
Then B is finite-dimensional over k£ and so V' = A is a frame of B. Clearly V" = B and thus
GKdim(B) = limsuplog,, (dim B) = 0, because dim B does not depend on n. Conversely,
suppose that Gﬁgﬁ(fl) =0 and let B be a finitely generated subalgebra of A. Let V be a
frame of B and suppose for now that V™® c V"*! for all n. Then k C V C V2 C --- and
thus 1 < dimV < dimV? < --- . Hence dimV > 1, dim V? > 2 and in general dim V" > n.
Therefore

0 = GKdim(B) = limsuplog,, (dim V") > lim log,n =1,
n—oo

n—oo
which is absurd. So our assumption that V™ C V™! for all n, is false. Hence V" = V"t
for some integer n > 0 and so B = |J;°, V'’ = V™. Thus B is finite-dimensional and so A is

locally finite. O

Remark 1.6.11. If A is a domain of GK dimension zero, then A is a division ring. To
see this, let a € A. Then, by Proposition 1.6.10, the k-subalgebra generated by a is finite-
dimensional and hence a is algebraic over k. Thus A is algebraic over k and we know that

an algebraic k-algebra which is a domain is a division ring.
Assumption. For the rest of this section, all algebras have finite GK dimension.

There is no algebra whose GK dimension is strictly between zero and one, as the next

result shows.

Proposition 1.6.12 ([48], Proposition 8.1.17 (ii)). Let A be a k-algebra. If GKdim(A) # 0,
then GKdim(A) > 1.

Proof. Since GKdim(A) # 0, there exists a finitely generated k-subalgebra B of A such
that GKdim(B) # 0. Let V be a frame of B. If V" = V™" for some integer n > 0, then
B =2, V"= V™ and so B is finite-dimensional. But then GKdim(B) = 0, by Proposition
1.6.10, which is false. Thusk C V C V2 C --- and hence dim V" > n for all n > 0. Therefore
GKdim(B) = lirrisup log,,(dim V") > 1 and so GKdim(A) > GKdim(B) > 1. O

So if 0 < av < 1, then there is no algebra A with GKdim(A) = «. We will see in the next
subsection that for any integer m > 1 there exists an algebra A such that GKdim(A4) = m.
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1.6.2 GK Dimension of Polynomial and Weyl Algebras

In this subsection, we find the GK dimension of a commutative polynomial k-algebra in n
variables and the n-th Weyl algebra over k. We begin by evaluating the GK dimension of

polynomial algebras.

Proposition 1.6.13 ([48], Proposition 8.2.7 (iii)). Let A be a k-algebra. Then GKdim(A[z]) =
1+ GKdim(A).

Proof. Let By be a finitely generated subalgebra of A[z] generated by fi,..., fm € Alz].
Let B be the subalgebra of A generated by the coefficients of f;, ¢ = 1,..., m. Then clearly
B is a finitely generated subalgebra of A and By C B[z]. Now, let W be a frame of B. Let
V =W + kx. Then V is a frame of B[z] and clearly V" = (W + kz)" C @}, W"z® for all
integers n > 0. Hence dim V™ < (n + 1) dim W™ and so

GKdim(By) < GKdim(B[z]) < li_}rn log,,(n+1)4+GKdim(B) = 1+GKdim(B) < 1+GKdim(A).

Therefore GKdim(A[z]) < 1 + GKdim(A). It is also clear that V2" = (W + kz)?" D
D, Wnz' for all integers n > 0. Thus dim V2" > (n + 1) dim W™ and so

GKdim(A[z]) > GKdim(B[z]) > le log,,(n + 1) + GKdim(B) = 1 + GKdim(B).
Hence GKdim(A[z]) > 14+ GKdim(A) and the result follows. O

Corollary 1.6.14. Let A be a k-algebra. Then GKdim(A[z1,...,zy]) = m + GKdim(A).
In particular, GKdim(k[z1, ..., zn]) = m.

So, by the above corollary, for any integer m > 1 there exists a finitely generated algebra
A such that GKdim(A) = m. Thus, by Definition 1.6.4, if X is an infinite set of commuting
variables, then GKdim(k[X]) = co. The following theorems together give the possible values

of the GK dimension of an algebra.

Theorem 1.6.15. (Bergman’s gap theorem, [37, Theorem 2.5]) There is no algebra A with
1 < GKdim(A) < 2.

Theorem 1.6.16. (Warfield, [48, Proposition 8.1.18]) For any real number o > 2 there

exists a finitely generated k-algebra of GK dimension «.
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Proof. We only need to show that for every 2 < g < 3 there exists a finitely generated
k-algebra of GK dimension q. The reason is that if » > 3 is any real number, then r = ¢+m
for some 2 < ¢ < 3 and some positive integer m. So if A is a finitely generated k-algebra
of GK dimension ¢, then, by Corollarty 1.6.14, the polynomial algebra A[z1,...,z,] is a
finitely generated algebra of GK dimension ¢ +m = r.

Now, fix a real number 2 < g < 3 and let R := k(X,Y). Let I be the two-sided ideal of
R generated by Y. It is easy to see that GKdim(R/I?) = 2 and GKdim(R/I3) = 3. Now,
consider the algebras of the form R/J where I3 C J C I?. It turns out that we can choose
J somehow that GKdim(R/J) = q. We define J as follows. First, for every positive integer
n let a, = [n(@=D/2] Let

J:=I+1L,

where L is the two-sided ideal of R generated by all monomials X"Y X*Y X? of length n,
where n is any positive integer and s < n—a,,. The claim is that GKdim(R/J) = ¢. To prove
the claim, let =,y be the images of X,Y in R/J, respectively, and consider the generating
subspace V = kx + ky of R/J. Let n be a positive integer. By the definition of J, every
monomial in V" whose degree in y is > 3 is zero. Also, every monomial z"yz*yz! € V",

where s < n — ay,, is zero. So the set
{2 2"yx? 2 yz’yx' : utv+l=r+s+t+2=mn, s>n—a,}

is a k-basis for V" and hence

1
dimV"zl—i—n—l—an(a;).

The rest of the proof is just simple calculus: using the fact that nla-D/2_1 < o, < pla-1/2,

we see that there exists an integer N and positive constants 3,y such that
ﬁnq_l <dmV" < ’ynq_l

for all n > N. Thus if we estimate dim | J[_, V* = Y"1 ,dim V? with a definite integral, we

get GKdim(R/J) = nh_)ngo log,, ;dlmv =q. O

We now give the definition of the Weyl algebras and then we find their GK dimension.

Definition 1.6.17. Let R be a ring and let n > 0 be an integer. The n-th Weyl algebra
over R is defined as follows. First we define Ag(R) = R and for n > 1, A,(R) is defined
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to be the ring of polynomials in 2n variables x;,v;, 1 < ¢ < n, with coefficients in R and
subject to the relations x;x; = 2, viy; = y;¥, and y;x; = x;y; + d;; for all 4, j, where
0;; is the Kronecker delta. We will assume that every element of R commutes with all 2n

variables z; and y;.

So, for example, A;(R) is the ring of polynomials generated by x,y with coefficients in R
and subject to the relation yz = zy+ 1. An element of A;(R) is in the form Y r;;x%y?, rij €
R. Tt is not hard to prove that the set of monomials in the form z{* -- :rg"yf Lo yﬁ" is an
R-basis for A, (R). We also note that A,(R) = A;(Ap—1(R)). If R is a domain, then A, (R)
is a domain too. It is well-known that if char(k) = 0, then A, (k) is a simple noetherian
domain [48, Theorem 1.3.5].

We are now going to prove that if R is a k-algebra, then GKdim(A,(R)) = 2n +

GKdim(R), a result similar to Corollary 1.6.14.

Proposition 1.6.18 ([48], Proposition 8.1.15 (ii)). If R is a k-algebra, then GKdim(A1(R)) =
2 + GKdim(R).

Proof. Suppose first that R is finitely generated and let V be a frame of R. Let U =
k + kx + ky. Since yxr = zy + 1, we have

1 2
dimy, U™ = (”J’)Q(”J“) (1.7)
Let W = U + V. Clearly W is a frame of A;(R). We have W™ = }_ UV for all n,
because every element of V' commutes with every element of U. Therefore, since V/ C V" and
U? CU"for alli, j < n, we have W™ C UMV"™ and W2 D U"V™. Thus W" C U"V" C W?".

Hence log,, dim;, W™ < log,, dim, U™ + log,, dim, V" < log,, dimj W?" and so

i+j=n

GKdim(A;(R)) < 2 + GKdim(R) < GKdim(A;(R)),

by (1.7), and we are done.
For the general case, let Ry be any finitely generated k- subalgebra of R. Then, by what
we just proved, 2 + GKdim(Ry) = GKdim(A;(Rp)) < GKdim(A;(R)) and hence

2 + GKdim(R) < GKdim(A;(R)).

Now, let Ay be a k-subalgebra of A;(R) generated by a finite set {f1,..., fin}. Let Ro be the
k-subalgebra of R generated by all the coefficients of fi,..., fi. Then Ay C A;(Rp) and so
GKdim(Ap) < GKdim(A;(Rp)) = 2+GKdim(Rp) < 24+GKdim(R). Thus GKdim(A;(R)) <
2 4+ GKdim(R) and the proof is complete. O
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Corollary 1.6.19. If R is a k-algebra, then GKdim(A,(R)) = 2n + GKdim(R) for all n.
In particular, GKdim(A4,(k)) = 2n.

Proof. Tt follows from Proposition 1.6.18 and the identity A, (R) = A1(4An—1(R)). O

1.6.3 GK Dimension of Extensions of Algebras

Let A be a k-algebra. In this subsection, we study the behavior of the GK dimension under
some extensions of A. We first show that the GK dimension of any algebra which is a finite
module over A is equal to the GK dimension of A. This extends Proposition 1.6.10. We also
prove that the GK dimension of a central localization of A is equal to the GK dimension
of A. These fundamental results have two important consequences. The first one is that
the GK dimension and the Krull dimension of a finitely generated commutative algebra are
equal. The second consequence is that, over an algebraically closed field k, every finitely
generated k-algebra which is a domain of GK dimension at most 1 is commutative. We

begin with a lemma.

Lemma 1.6.20 ([48], Proposition 8.2.3). If A and B are k-algebras and GKdim(B) = 0,
then GKdim(A ®j B) = GKdim(A).

Proof. Since A = A®y, 1 C A® B, we have GKdim(A4) < GKdim(A ®;, B). Now, let C
be a finitely generated subalgebra of A ®; B with a frame W. Since dim; W < oo, there
exist finite-dimensional subspaces U,V of A, B, respectively, such that 14 € U, 1p € V
and W C U ® V. Let Ag, By be the algebras generated by U,V respectively. Now, W" C
U™ ® V™ for all n, and hence dim W" < (dimy U")(dimy, V™). Therefore log,, dim, W" <
log,, dimg U™ + log,, dimy, V™ and hence, taking limsup, gives

GKdim(C) < GKdim(Ap) + GKdim(Bj) = GKdim(4p) < GKdim(A).

Since the above holds for any finitely generated subalgebra C' of A®y B, we have GKdim(A®y,
B) < GKdim(A). O

Corollary 1.6.21 ([48], Proposition 8.2.17 (i)). If B is a k-algebra, then GKdim(M,,(B)) =
GKdim(B).

Proof. We have M, (B) = B ®j; M,(k) and GKdim(M,(k)) = 0, by Proposition 1.6.10.
Thus GKdim(M,,(B)) = GKdim(B), by Lemma 1.6.20. O
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Let A be a k-algebra and let B be a subalgebra of A. If A, as a B-module, is both finitely
generated and free over B, then GKdim(Endp(A)) = GKdim(B), by Corollary 1.6.21. If A

is finitely generated but not necessarily free over B, then we have the following result.

Lemma 1.6.22 ([48], Proposition 8.2.9 (i)). Let B be a subalgebra of a k-algebra A. Suppose
that, as a left module, A is finitely generated over B. Then GKdim(Endg(A)) < GKdim(B).

Proof. So A=3"" | Ba; for some a; € A. Define ¢ : B" — A by ¢(b1,...,by) =Y i bia;
and let I = kerp. Let C = {f € Endg(B™) : f(I) C I}. Clearly C is a subalgebra of
Endp(B") = M,(B). Now, given f € C define f : A — A by f(a) = ¢f(u), where u is any
element of B™ with ¢(u) = a. Note that f is well-defined because if p(v) = a for some other
v € B", then u —v € I and thus f(u—v) € I. Hence 0 = ¢ f(u —v) = ¢f(u) — ¢f(v) and
so ¢f(u) = of(v). It is easy to see that f € Endg(A). Finally, define ¢ : C — Endpg(A)
by ¥(f) = f. Then 4 is a k-algebra onto homomorphism and hence

GKdim(Endp(A4)) < GKdim(C) < GKdim(M,(B)) = GKdim(B),
by Proposition 1.6.5 and Corollary 1.6.21. ]

Proposition 1.6.23 (48], Proposition 8.2.9 (ii)). Let B be a subalgebra of a k-algebra A.
If, as a left module, A is finitely generated over B, then GKdim(A) = GKdim(B).

Proof. The algebra A has a natural embedding into Endp(A) and so
GKdim(A) < GKdim(Endg(A)).
Thus GKdim(A) < GKdim(B), by Lemma 1.6.22. O

We recall that Kdim(A), the Krull dimension of a commutative algera A, is the largest
integer n > 0 for which there exist prime ideals P;, 0 < i < n, of A such that Py C P; C
. C P,. If there is no such integer, then we define Kdim(A) = oco. A consequence of
Proposition 1.6.23 is that GKdim(A) = Kdim(A) for any finitely generated commutative

k-algebras A. This is a simple consequence of the following well-known result.

Theorem 1.6.24. (Noether normalization theorem, [25, Theorem Al, p. 221]) Let A be a
finitely generated commutative k-algebra of Krull dimension m. There exists a k-subalgebra
B of A such that B = k[z1,...,%m], the polynomial algebra in m variables x1, ..., ZTm, and

A is a finitely generated B-module.
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Corollary 1.6.25 ([48], Theorem 8.2.14 (i)). If A is a finitely generated commutative k-
algebra, then GKdim(A) = Kdim(A).

Proof. Let m = Kdim(A). Then A contains a polynomial k-algebra B = k[z1,..., %] and
A is a finitely generated B-module, by Theorem 1.6.24. Thus, by Corollary 1.6.14 and
Proposition 1.6.23, GKdim(A) = GKdim(B) = m. O

The GK dimension is also well-behaved under central localization, as the next result

shows.

Proposition 1.6.26 ([48], Proposition 8.2.13). Let A be a k-algebra. Suppose that S is a
regular submonoid of A contained in the center of A. Then GKdim(S~—!A4) = GKdim(A).

Proof. Let T be a finitely generated k-subalgebra of S~'A and suppose that
W:{wl :1,...,wm}

is a frame of T. Then, by Proposition 1.2.8, there exit s € S and aq,...,a, € A such that
w; = s 'a; for all 5. Let B be the k-subalgebra of A generated by a; and let V be the
k-subspace generated by 1 and a;. Now, since S is in the center of A, we have s"W"™ C V",
Thus dim W" = dim s"W" < dim V". Therefore

GKdim(7T') < GKdim(B) < GKdim(A),

for every finitely generated k-subalgebra of T of S~ A, and so GKdim(S~tA) < GKdim(A).
On the other hand, A C S™1 A, because S is regular, and thus GKdim(A4) < GKdim(S—1A4).
O

As an application of the above proposition, we can find the GK dimension of a Laurent

polynomial ring.

Corollary 1.6.27 ([48], Corollary 8.2.15). Let A be a k-algebra. Then GKdim(A[z,z™!]) =
1+ GKdim(A).

Proof. Since A[z,z7!] is the localization of A[z] at the central regular submonoid S =
{1,z,22,...}, we have GKdim(A[z,z7!]) = GKdim(A[z]). The result now follows from
Proposition 1.6.13. O
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We are now able to prove an important result, i.e. Proposition 1.6.32, that will be used
frequently in chapters two and three. We have already seen that GKdim(A) = 0 if and only
if A is locally finite and that there is no algebra of GK dimension strictly between 0 and one.
What can we say about the case GKdim(A) = 1?7 The answer is that in many important
cases they are finitely generated modules over some polynomial algebra in one variable. In

order to prove this result, we need the following two theorems.

Theorem 1.6.28. (Artin-Tate, [25, p. 143]) Let A C B C C be commutative k-algebras.
Suppose that A is Noetherian and C is a finitely generated A-algebra. If C is a finitely
generated B-module, then B is a finitely generated A-algebra.

Theorem 1.6.29. (Small, Stafford and Warfield, [59, Theorem 1.6]) Let A be a finitely
generated semiprime k-algebra. If GKdim(A) = 1, then A is finitely generated over its
center Z(A).

Proposition 1.6.30 ([56], Recapitulation 6.2.34). If A is a finitely generated semiprime
k-algebra, then GKdim(A) = 1 if and only if A is finitely generated as a module over some
polynomial algebra k|x].

Proof. If A is finitely generated as a module over some polynomial algebra k[z], then
GKdim(A) = GKdim(k[z]) = 1, by Proposition 1.6.23 and Corollary 1.6.14. Conversely, if
GKdim(A) = 1, then by Theorem 1.6.29, A is finitely generated Z(A) and thus GKdim(Z(A))
1, by Proposition 1.6.23. We also have k C Z(A) C A and we know that A is both a finitely
generated k-algebra and a finitely generated Z(A)-module. Thus, by Theorem 1.6.28, Z(A)
is a finitely generated k-algebra. Therefore Kdim(Z(A)) = 1, by Corollary 1.6.25, and so
Z(A) is a finitely generated module over some polynomial algebra k[x], by Theorem 1.6.24.
The result now follows because A is a finitely generated Z(A)-module. O

An important consequence of Proposition 1.6.30 together with Tsen’s theorem is that
domains of GK dimension one over algebraically closed fields are commutative. We first

state T'sen’s theorem.

Theorem 1.6.31. (Tsen, [64], see also [41]) Let D be a finite-dimensional division K-
algebra and suppose that K is a finitely generated extension of a field k of transcendence

degree one. If k is algebraically closed, then D is commutative.
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Proposition 1.6.32. Let A be a k-algebra which is a domain and GKdim(A) < 1. If k is

algebraically closed, then A is commutative.

Proof. First note that if a,b € A, then the k-subalgebra generated by a, b has GK dimension
at most one too and so we may assume that A is finitely generated. The case GKdim(A) =0
easily follows because then A would be finite-dimensional, and hence algebraic, over k and
therefore A = k because k is algebraically closed. Now, suppose that GKdim(A) = 1. The
algebra A is PI, by Proposition 1.6.30 and Proposition 1.4.7, and thus @z (A), the central
localization of A, is a finite-dimensional central simple algebra by Theorem 1.5.10. Since A is
a domain, Qz(A) is a domain and hence Qz(A) = D is a finite-dimensional division algebra
over its center F, which is the quotient field of Z(A). Thus Kdim(F') = Kdim(Z(A)) = 1,
by Corollary 1.6.25. Hence, by Theorem 1.6.31, Qz(A) = F. Thus Qz(A), and so A itself,

1s commutative. O]

We close this section with two fundamental theorems in GK dimension theory. The first
one gives a lower bound for the GK dimension of an algebra which is not locally PI. This
result is due to Smith and Zhang. A special case of the second theorem, which is due to W.
Borho and H. Kraft, gives some information about any subalgebra of a finitely generated
algebra whose GK dimension is equal to the GK dimension of the algebra. We begin with

a lemma.

Lemma 1.6.33. If A is a k-algebra which is a domain, then either A is locally PI or
GKdim(A) > 2.

Proof. Let B be a finitely generated k-subalgebra of A. If GKdim(B) = 0, then B is finite-
dimensional over its center and hence PI. If GKdim(B) = 1, then B is again PI by [59].
Thus if B is not PI, then we must have GKdim(B) > 2. O

Theorem 1.6.34. (S. Smith and J. Zhang, [60]) Let A a k-algebra and let B C Z(A) be
a k-subalgebra such that S = B\ {0} is a regular subset of A. If A is not locally PI, then
GKdim(A4) > 2 + GKdim(B).

Proof. We know from Lemma 1.6.33 that GKdim(A) > 2. So there is nothing to prove if
GKdim(B) = 0. Thus we may assume that GKdim(B) > 1. Let By be any finitely generated

k-subalgebra of B. By Corollary 1.6.25, By contains a polynomial k-algebra By in d variables
By such that GKdim(B;) = GKdim(By) and by Corollary 1.6.14, GKdim(B;) = d. We only
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need to prove that GKdim(A) > 2 + GKdim(Bj). Let S; be the set of nonzero elements of
Bi and let Q := Sl_lA. Let F := Sl_lBl. Since B is a domain, F' is the quotient field of Bj.
By Proposition 1.6.26, GKdim(Q) = GKdim(A) > 2 and GKdim(F') = GKdim(B;) > 1.
Let 0 < d < GKdim(F) and 0 < e < GKdimp(Q). Then there exist a finite-dimensional

k-vector subspace V of F' which contains 1 and
dimy, V" > n?

for all large enough integers n. Also, there exists a finite-dimensional F-vector subspace W
of (Q which contains 1 and
dimp W™ > n®

for all large enough integers n. Clearly V' C W and hence, for large enough integers n we
have
dimy, W2 > dimy(W"V"™) > (dimpg W")(dimg V™) > n®te.
Thus
GKdim(Q) > e+d.

Since the above inequality holds for all real numbers 0 < d < GKdim(F') and 0 < e <
GKdimp(Q), we have

GKdim(A4) = GKdim(Q) > GKdimp(Q) + GKdim(F') = GKdimp(Q) + GKdim(B;).

Now, @ is not locally PI over F' because A is not locally PI over k. Thus GKdimp(Q) > 2,
by Lemma 1.6.33, and the proof is complete. ]

Theorem 1.6.35. (Borho and Kraft, [19]) Let A be a finitely generated k-algebra which is
a domain. Let B be a k-subalgebra of A and suppose that GKdim(A) < GKdim(B) + 1.
Let S := B\ {0}. Then S is an Ore subset of A and S™'A = Q(A). Also, Q(A) is finite-

dimensional as a (left or right) vector space over Q(B).

Proof. First note that, by Corollary 1.6.9, A is an Ore domain and hence both Q(A) and
Q(B) exist and they are division algebras. Now, suppose, to the contrary, that S is not left
Ore. Then there exist z € S and y € A such that Sy N Az = (). This implies that the sum
By+ Byx+- - -+ Byx™ is direct for any integer m. Let W be a frame of a finitely generated
subalgebra of B. Let V = W + kx + ky. Then for any positive n we have

VI DO W™ (kx4 ky)" D Wy + Wy + - - - + Whya" !
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and thus dimy V2" > ndimy W™ because the sum is direct. Therefore log,, dimy V> 14
log,, dimg W™ and hence GKdim(A) > 1+ GKdim(B), a contradiction. A similar argument
shows that S is right Ore. So we have proved that S is an Ore subset of A.

Before we show that S~1(A) = Q(A), we prove that Q(B)A = S~ A is finite-dimensional

as a left vector space over Q(B). So let V' be a frame of A. For any positive integer n, let

r(n) = dimgp) Q(B)V".

Clearly Q(B)V™ C Q(B)V™H! for all n and | J22, Q(B)V" = Q(B)A because | J;°, V" = A.
So we have two possibilities: either Q(B)V"™ = Q(B)A for some n or the sequence {r(n)} is
strictly increasing. If Q(B)V"™ = Q(B)A, then we are done because V" is finite-dimensional
over k and hence Q(B)V™ is finite-dimensional over Q(B). Now suppose that the sequence
{r(n)} is strictly increasing. Then r(n) > n because 7(0) = dimgp)Q(B) = 1. Fix an
integer n and let eq,...,e.,) be a Q(B)-basis for Q(B)V". Clearly we may assume that
e; € V" for all i. Let W be a frame of a finitely generated subalgebra of B. Then

(V4+W)? DWWV D Wy + -+ + We,(n),

which gives
dimy, (V 4 W)?" > r(n) dim, W" > ndimg, W™,

because the sum W"ey + -+ + W"e,, is direct. Therefore GKdim(A) > 1 + GKdim(B),
which is a contradiction. So we have proved that the second possibility is in fact impossible
and hence Q(B)A is finite-dimensional over Q(B).

Finally, since, as we just proved, dimg gy Q(B)A < oo, the algebra Q(B)A is algebraic
over Q(B) and thus it is a division algebra. Hence Q(B)A = Q(A) because A C Q(B)A C
Q(A) and Q(A) is the smallest division algebra containing A. O



Chapter 2

Centralizers

2.1 Introduction

Except for the last section, which gives our results on centralizers in semiprime Pl-rings,
the rest of this chapter reviews some of well-known results on the structure of centralizers
in associative algebras. For a ring R and a subset X C R, we denote by C(X; R) the set
of all elements of R which commute with every element of X. We say that C(X; R) is the
centralizer of X in R. That is,

C(X;R)={reR: rea=uzr, Vzx € X}.

If X = {a}, then we simply write C(a; R) instead of C({a};R). Clearly C'(X;R) is a
subring of R and it contains the center Z(R). It is also clear that C'(X; R) = R if and only
if X C Z(R). We are only interested in C'(a; R) where a ¢ Z(R).

2.2 Centralizers in Differential Polynomial Rings

In this section, we give Amitsur’s results on centralizers in differential polynomial rings [1].
Let k be a field and let L be a k-vector space. Suppose that [—,—] : L x L — L is a

k-bilinear map such that [a,a] = 0 and
[a [b; ] + [b, [e, a]] + [e, [a, 0] = 0

for all a,b,c € L. Then L is called a Lie algebra. For example, R? with the vector cross

product is a Lie algebra over R. Any associative algebra is a Lie algebra because we can

49
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define [a,b] = ab — ba for all a,b € A. Now, let L be a Lie k-algebra and define U(L) to be

the associative k-algebra generated by the elements of L with the relation
ab — ba = [a, b

for all a,b € L. The algebra U(L) is called the universal enveloping algebra of L.

For example, let L be a two-dimensional k-vector space with a basis {a, b}. Define [—, —]
by [a,a] = [b,b] =0, [a,b] = b and extend the definition to L by linearity. It is easy to see
that L is a Lie algebra. So U(L) is the algebra k[a,b] with the relation ab — ba = b. Thus
ab = ba + b and an easy induction shows that af = fa+bf’ for all f € k[b], where f’ is the
derivation of f with respect to b. The map & := b-% : k[b] — k[b] is a derivation of k[b], i.e.
J is k-linear and 0(fg) = d(f)g + fd(g) for all f,g € k[b]. So an element of U(L) is in the
form Y"1 fia’, fi € k[b], and when we multiply two elements of U(L) we need to apply the

rule
af = fa+46(f), f € kb

We say that U(L) is a differential polynomial ring and we write U(L) = R[a;d] where
R = k[b].

Definition 2.2.1. Let R be a ring and let ¢ be an endomorphism of R. A o-derivation of
R is a linear map 6 : R — R such that

d(rire) = o(r1)d(re) + 8(r1)re
for all 71,79 € R. If ¢ is the identity map, then ¢ is called a derivation of R.

Definition 2.2.2. Let R be a ring and let ¢ be an endomorphism of R. Let § be a o-
derivation of R. A ring S is called a skew polynomial ring over R if S satisfies the following

conditions.

(1) S contains R as a subring.

(2) There exists x € S such that S is a free left R-module with basis {1,z,22,...}.
(3) xr =o(r)x + 6(r) for all r € R.

In this case, we write S = R[z;0,d]. If 6 = 0 (resp. o is the identity map), we write
S = R[z; 0] (resp. S = R|z;d].).
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So an element of S is in the form > 1 ;r;z* and elements of S are added and multiplied
just like ordinary polynomials with this exception that if » € R, then we have the rule
xr = o(r)x + §(r). To show that the ring S exists, let ¢t be an independent variable over R
and let F be the endomorphism ring of the polynomial ring R[t]. Clearly E contains a copy
of R. Define z € E by

z(rt") = o(r)t" T 4+ 5(r)t"

for all r € R and n > 0. It follows that xr = o(r)z + §(r) and that ) 7, Ra™ is a ring.
Hence S = ) 7, Rz". Note that if R is a domain and o is injective, then S is a domain
too.

In this section, we will only deal with skew polynomial rings in the form R[z;J], i.e. we
assume that o is the identity map. The ring R|x;d] is called a differential polynomial ring.

We note that if § is a derivation of R, then the set {r € R: J§(r) = 0} is a subring of R
which contains the identity element of R. Also, if R is a field, then {r € R: 4(r) = 0} is
a subfield of R. To see this, let 0 # 7 € R, then 0 = 6(1) = 6(rr=1) = 6(r)r L +r6(r~!) =
ré(r~1). Thus 6(r~1) = 0.

Remark 2.2.3. Let 6 be a derivation of a commutative domain R and let Q(R) be the field
of fractions of R. Let p = a/b € Q(R) where a,b € R and b # 0. We define ¢ : Q(R) — Q(R)
by

< d(a)b— ad(b

i) = N 0]
It is straightforward to see that § is a derivation of Q(R). For the sake of simplicity, we

write d for 4.

Assumption. For the rest of this section, we assume that R is a commutative domain, &
is a derivation of R and k := {p € Q(R) : §(p) = 0} is a subfield of characteristic zero of R.
If f=rpy” + 71y '+ -+ 719 € Rly; 0], 7, # 0, then we call n the degree of f and we
write deg f = n.

Remark 2.2.4. An easy induction on n shows that in R[y;d] we have
Y=y <i>5’(7”)y”_z (2.1)
=0

for all » € R and integer n > 1. In particular, since R is a domain, deg fg = deg f + degyg
for all 0 # f, g € R[y;d] and so R[y;d] is a domain too.
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Remark 2.2.5. Let S := Ry;0]. If r € R\ k, then C(r;S) = R. This is easy to see: clearly
R C C(r;S) because R is commutative. Conversely, if g = r,y" +---+rg € S, r, # 0,
commutes with r and n > 1, then comparing the coefficients 4”1 in both sides of rg = gr
gives nr,d(r) = 0. This is a contradiction because R is a domain and the characteristic of k

is zero. Thus n = 0 and hence g € R.

Lemma 2.2.6. Let S := R[y;d] and suppose that f = apy™ +---+ag €S, n>1, a, #0.
Let g = bpy™ + -+ by, by 0, and h = cpy™ + -+ 4+ co, ¢ # 0, be two elements of
C(f;S). Then by, = acy, for some o € k.

Proof. By (2.1) y'r = ry* + £5(r)y*~' + -- -, for any integer £ > 1 and r € R. Therefore

n+m—1

the coefficient of y in fg and gf are napd(by,) + anbm—1 + an—1by, and mby,0(a,) +

bman—1 + bm—1ay, respectively. Thus, since fg = gf, we must have
Nnan0(by) + anbm—1 + an—1by = mbpd(an) + bpan—1 + bm—1an.
Hence, since R is commutative, we have
Nnan0(by,) = md(an)bm. (2.2)
A similar argument shows that fh = hf implies
nand(cm) = md(an)cm. (2.3)

Now, multiplying both sides of (2.2) by ¢, and both sides of (2.3) by b, and then subtracting
the resulting identities gives nay, (¢nd(bm) — bmd(cm)) = 0. Thus

em0(bm) — bmd(cm) = 0, (2.4)

because R is a domain, a, # 0 and the characteristic of k is zero. So, in Q(R), we have
d(bm/cm) =0, by (2.4), and hence by, /¢y, € k. O

Theorem 2.2.7. Let S := R[y;d] and let f € S with deg f =n > 1. Then C := C(f;S) is
a free k[f]-module of rank d, where d is a divisor of deg f.

Proof. Suppose that N is the set of all integers m > 0 for which there exists some g € C'
such that deg g = m. Clearly N is a submonoid of Z: 0 € N because k£ C C and N is closed

under addition because C' is a subring of S. For any m € N let m be the image of m in
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Z/nZ and put N = {m: m € N}. Since N is a submonoid of a finite cyclic group, it is a
(cyclic) subgroup and hence d = |N| divides |Z/nZ| = n. Let m; = 0 and, in general, for
every 1 < i < d, choose m; € N to be the smallest member of its class m;. That means
if m = m; modn and m € N, then m > m;. For any 1 < i < d, choose g; € C' with
deg g; = m;. So g1 can be any nonzero constant (degree zero) in C. We choose g1 = 1. To
complete the proof of the theorem, we are going to show that, as a k[f]-module, g1, ..., g4
generate C and ¢, ..., gq are linearly independent over k[f].

We first show that C = 3% | gik[f]. Clearly % | g:ik[f] € C because f,g; € C for all
1 <i<d Nowlet g € C and suppose that degg = £. If £ = 0, then degg = degg; and
hence, by Lemma 2.2.6, g € k C g1k[f] C Z?Zl gik[f]. If £ > 1, then ¢ = m;, for some j. We

also have £ > m; by the minimality of m;. Thus
{=mj+nu

for some integer u > 0. Therefore degg = £ = m; + nu = degg; f“. Both g and g; f* are
obviously in C. So if b and ¢ are the leading coefficients of g and g; f*, respectively, then
by Lemma 2.2.6, b = ac for some a € k. Therefore deg(g — ag;f*) < £ — 1 and, since
g — ag;f* € C, we can apply induction on degg to get g — ag;f* € Z?Zl gik[f]. Thus
g e Z(ij=1 gik[f].

It remains to show that gp,...,gq are linearly independent over k[f]. Suppose, to the

contrary, that
g (f) + -+ + gapa(f) =0, (2.5)

for some p;(f) € k[f] and not all p;(f) are zero. Note that if ¢ # j and u;(f), ui(f) # 0,
then deg(g;pi(f)) = m; mod n and deg(g;u;(f)) = m; mod n. Since i # j, we have
m; # m; mod n and hence deg(g;p;(f)) # deg(g;u;(f)). Thus the left hand side of (2.5) is
a polynomial of degree max{deg(g;ui(f)) : gini(f) # 0} and so it cannot be equal to zero.
This completes the proof of the theorem. O

Now, we are going to prove that C(f; R[y; d]) is commutative if f € R[y; ] and deg f > 1.

Lemma 2.2.8. Let S := Rly; 6] and let f € S with deg f > 1. If m > 0 is an integer, then
the set V,, consisting of all elements of C(f;S) of degree at most m is a finite-dimensional

k-vector space.

Proof. 1t is clear that V,, is a k-vector space. The proof of finite dimensionality of V,,, is by

induction on m. If m = 0, then V,,, = k and there is nothing to prove. So suppose that m > 1
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and fix an element g € V,,, with deg g = m. If there is no such g, then V,,, = V,;,_1 and we are
done by induction. Now, let h € V,,,. If degh < m, then h € V,,_1 and if degh = m, then
there exists some o € k such that h — ag € V,;,_1, by Lemma 2.2.6. Thus V,, = kg + V;,,_1

and hence dimy V;,, = degy, V;,—1 + 1 and we are done again by induction. O

Theorem 2.2.9. Let S := R[y;d] and let f € S with deg f =n > 1. Then C := C(f;S) is

commutative.

Proof. Let N and N be the sets defined in the proof of Theorem 2.2.7. As we mentioned in
there, N is a cyclic subgroup of Z/nZ of order d, for some divisor d of n. Let m, m > 0, be

a generator of N and choose g € C such that deg g = m. Now let
A= K[f]+ghlf] 4+ 9" k[f];
Clearly A C C. Let
M={mi+nj: 0<i<d-1,j>0,i,j€Z}.

So basically M is the set of all nonnegative integers which appear as the degree of some
element of A. Let p € N. Then p = mi mod n, for some integer 0 < i < d — 1 because m is
a generator of N. Hence p = mi + nj, for some integer j. If 5 > 0, then p € M and if j < 0,
then 0 < p <mi < m(d—1). Thus if h € C and degh > m(d — 1), then degh € M. Let V
be the set of all elements of C' of degree at most m(d — 1). By Lemma 2.2.8, V' is k-vector
space and

dim; V = v < 0.

The claim is that
C=A+V. (2.6)

Clearly A+V C C because both A and V are in C. To prove that C C A4V, let h € C. We
use induction on deg h. If degh = 0, then h € k, by Lemma 2.2.6. If degh < m(d — 1), then
h € V and we are done. Otherwise, deg h € M and hence there exists some h; € A such that
deg h = deg hy. Thus, by Lemma 2.2.6, there exists some « € k such that deg(h — ahy) <
deg h. Therefore by induction h — ah; € A+ V and hence h € A+ V because ahy € A. This
completes the proof of (2.6).

Now let h € C and let 0 < i < v = dimy, V. Clearly f’h € C and so

f'h—h; € A, (2.7)
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for some h; € V. Since dim V' = v, the elements hg, ..., h, are k-linearly dependent and so
Y iio @ih; = 0 for some «; € k which are not all zero. It now follows from (2.7) that u(f)h €
A, where 0 # p(f) = >0y aif' € k[f]. So we have proved that for every h € C there exists
some 0 # p(f) € k[f] such that u(f)h € B. Let hy,ho € C and let 0 # u1(f), p2(f) € k[f]
be such that pi(f)h1 € A and pa(f)he € A. Then, since A is clearly commutative, we
have pq1(f)hipe(f)he = po(f)hapi(f)hy. Therefore, since k[f] is commutative and h; and

ho commute with f, we have

pa (f)pe(f)hihe = ur(fp(f)haha.

Thus, since S is a domain and p1(f), p2(f) # 0, we have hihy = hoh;. Hence C' is commu-
tative. 0

So we have proved that if k is a field of characteristic zero and f € R[y; d] with deg f > 1,
then C(f; R[y; d]) is a commutative domain and a free module of finite rank over k[f]. What
can we say about the field of fractions @ of C(f; Rly;d])? The next theorem shows that @

has a very simple form.

Theorem 2.2.10. Let S := R[y;d] and let f € S with deg f > 1. Let Q and k(f) be the
field of fractions of C := C(f;S) and k[f] respectively. Then Q is an algebraic extension of

E(f) and Q = k(f)[g], for some g € C.

Proof. Let g,d and A be as defined in the proof of Theorem 2.2.9. We proved that for every
h € C there exists some 0 # pu(f) € k[f] such that

u(f)h € A= k[f] + gk[f] + -+ g" 'k[f]. (2.8)

If in (2.8) we choose h = g%, then g¢ € k(f) + gk(f) +---+ g% k(f). So g is algebraic over
k(f) and thus k(f)[g] is a subfield of Q. Also (2.8) shows that h € k(f)[g] for all h € C' and
thus C' C k(f)[g]. Therefore C' C k(f)[g] € Q and hence Q = k(f)[g]- O

Now let R = k[z], the polynomial ring in the variable x. Clearly 6 = d/dx is a derivation
of Rand {p € Q(R) : d(p) =0} ={p € k(z): dp/de =0} = k. Let S := R[y;0]. In S we
have yr = xy + 6(x) = zy + 1. So the generators of S and A; (k) satisfy the same relation.
Thus there exists an onto k-algebra homomorphism ¢ : A; (k) — S. Since A; (k) is simple,
because char(k) = 0, we have ker ¢ = (0) and thus S = A; (k).
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Corollary 2.2.11. Let f € A1(k)\k. Then C := C(f; A1(k)) is commutative and a free k[f]-
module of rank d, where d is a divisor of deg f. Also, if Q and k(f) are the field of fractions
of C and k[f], respectively, then Q is an algebraic extension of k(f) and Q = k(f)|g], for
some g € C.

Proof. Write f = > I 7y’ r; € k[z], r, # 0. If deg f > 1, then the result follows from
Theorems 2.2.7, 2.2.9 and 2.2.10. If n = 0, then f € k[z] and thus C' = k[z], as we proved
in Remark 2.2.5. Now, Theorems 2.2.7, 2.2.9 and 2.2.10 with R = k and § = 0 complete the
proof of the corollary in this case because k[y] = k[z]. O

We close this section by giving another form of A;(k), the first Weyl algebra over k. Let
E := Endy(k[z]). Define D, L € E by D(u) = du/dx and L(u) = zu for all u € k[x]. Now,

DL(u) = D(zu) = D(z)u+ xD(u) = v+ LD(u)

and hence DL — LD = 1, where 1 is the identity element of E. Let A be the k-subalgebra
of F generated by D and L. An element of A is called a differential operator. Since the
generators of A and A (k) satisfy the same relation, there exists a k-algebra homomorphism
from A;(k) onto A and that is in fact an isomorphism because A;(k) is simple. Note that
if char(k) = p > 0, then A and A;(k) are not isomorphic. The reason is that in this case
DP =0 and so A is not a domain but A; (k) is a domain. To prove DP = 0, we only need to
show that DP(2™) = 0 for all integers m > 0, because D is k-linear. Now, if m < p, then the
p-th derivative of 2™ is zero and if m > p, then DP(z™) =m(m —1)---(m —p+ 1)a™ P =
p!(;'}):vm_p =0.

2.3 Centralizers in Free Associative Algebras

In this section, we look at two well-known results on centralizers in free associative algebras,
i.e. Cohn’s centralizer theorem and Bergman’s centralizer theorem. A nice application of
Bergman’s centralizer theorem is given at the end of this section.

Throughout this section, X is a set of noncommuting variables, which may or may not
be finite, and k is a field. Let X* denote the free monoid generated by X. An element of
X (resp. X*) is also called a letter (resp. word) and X is called an alphabet. Let k((X))
and k(X) denote the k-algebra of formal series and polynomials in X, respectively. So an

element of k((X)) is in the form a = }_ . a,w, where a,, € k is the coefficient of the
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word w in a. The length |w| of w € X* is the number of letters appearing in w. For example,

if X = {z;} and w = z1737123, then |w| = 5. Now, we define the valuation
v K((X)) — Zs0 U {o0)

as follows: v(0) = oo and if a = ) oy« ayw # 0, then v(a) = min{|w| : a, # 0}. Note
that if w is constant, then v(w) = 0 and v(ab) = v(a) + v(b) for all a,b € k((X)). The

following fact is easy to prove.

Lemma 2.3.1. (Levi’s Lemma) Let wy,ws, w3, wy € X* be nonzero with |wa| > |wy|. If

wiwe = wawy, then we = wwy for some w € X*.

Proof. The proof is by induction on |wsy|. Let = be the last letter of we and w4. Then

wy = wha and wy = wjz and thus wiw) = wsw). The result now follows by induction. [

Next lemma extends Levi’s lemma to k((X)).

Lemma 2.3.2 ([46], Lemma 9.1.2). Let a,b,c,d € k((X)) be nonzero. If v(a) > v(c) and
ab = cd, then a = cq for some q € k{(X)).

Proof. Fix a word u that appears in b and |u| = v(b). So if v is any (nonzero) word appearing
in d, then
lv| > v(d) = v(b) +v(a) —v(c) > v(b) = |ul. (2.9)

Let w be any element of X*. The coefficient of wu in abis ) | arbs, where a, and bs are

rs=wu

the coefficients of the words r, s which appear in a, b respectively. Similarly, the coefficient

of wu in ed is ) cyd.. Since ab = cd, we have

Y abs= D cyds, (2.10)

rTS=wu Yz=wu

yz=wu

where the sums are over r, s and y, z. So |z| > |u|, by (2.9), and |s| > |u| by the definition
of u. Thus rs = wu and yz = wu imply s = syu and z = zyu for some s1,z1 € X*, by Levi’s
lemma. Hence rs; = yz; = w. Therefore (2.10) can be written as
Y b= Y ¢z, (2.11)
rs|i=w Yyz1=w

where the sums are over 7,51 and y, 21. Let b' = 3. . bsus1 and @' = Y. . dzyuzt
Then (2.11) gives ab’ = c¢d’. The constant term of b’ is b, # 0 and hence b’ is invertible in
k{(X)). Hence if we let ¢ = d'b'"!, then a = cq. O
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An interesting consequence of Lemma 2.3.2 is the following result that will be used at

the end of this section.

Corollary 2.3.3. Let a € k{((X)). Then b € C(a;k((X))) if and only if a,b are not free,

i.e. f(a,b) =0 for some nonzero series f € k((x,y)).

Proof. If ab = ba, then f(a,b) = 0 for f = xy — yx. Conversely, suppose that there exists
a nonzero series f € k((z,y)) such that f(a,b) = 0. Let n = v(ab — ba). The proof is by
induction on n. First note that the constant term of ab — ba is zero and thus n = 0 if and
only if ab = ba. Clearly we may assume that the constant terms of a and b are zero because
if a = a4+ a; and b = B + by, where «, 8 are the constant terms of a,b respectively, then
ab — ba = ai1b; — bya;. So we may assume that v(a) > v(b) > 1. We have f = zg + yh + 7,
for some g,h € k{{z,y)) and v € k. Now, since 0 = f(a,b) = ag(a,b) + bh(a,b) + v and
the constant terms of a,b are zero, we must have v = 0. Thus ag(a,b) = —bh(a,b) = 0.
Lemma 2.3.2 now gives some ¢ € k((x,y)) such that a = bg. So ab — ba = b(¢gb — bq) and
thus v(gb — bg) < v(ab — ba) = n. We also have that b, ¢ are not free because a = bq and b
are not free. Thus, by induction, bg = ¢b and therefore ab = ba. ]

Lemma 2.3.4. Suppose that the constant term of an element a € k{((X)) is zero and
b,c € Cla; k((X)))\ {0}. If v(c) > v(b), then ¢ = bd for some d € C(a; k{(X))).

Proof. Since the constant term of a is zero, we have v(a) > 1. Thus, for n large enough, we
have v(a™) = nv(a) > v(c). We also have ac = ca™ because ¢ € C(a;k{(X))). Thus, by
Lemma 2.3.2, a™ = cq for some ¢ € k{(X))). Hence cgb = a™b = ba™ and since v(c) > v(b),
we have ¢ = bd, for some d € k((X))), by Lemma 2.3.2. Finally,

bad = abd = ac = ca = bda,
which gives ad = da, i.e. d € C(a; k{(X))). O

Theorem 2.3.5. (Cohn’s centralizer theorem, [46, Theorem 9.1.1]) If a € k{(X)) is not
constant, then

Cla; k(X)) = E[[«]],

where k[[x]] is the algebra of formal power series in the variable x.
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Proof. Let C := C(a;k{((X))). If ag € k is the constant term of a, then clearly C' =

C(a — ap; k((X))) and so we may assume that the constant term of a is zero. Thus the set
A={ceC: v(c) >0}

is not empty because a € C and so there exists b € A such that v(b) is minimal. To show
that k[[b]] = k[[z]], suppose that >, . Bibt = 0, Bi € k,Bm # 0. Then we must have
00 = V(X ism Bib") = v(b™) = muv(b), which is absurd. So, to complete the proof of the
theorem, we now need to prove that C' = k[[b]]. Let ¢ € C. If ¢ is constant, then obviously
¢ € k[[b]]. So we assume that ¢ is not constant. The claim is that there exist 8; € k such

that "
vic—=> Bib') > (n+ 1)u(b). (2.12)
=0

If we prove that, then we are done because then v(c—)",5, fib") = oo and so ¢ = Y5 Bib" €
k[[b]]. The proof is by induction on n. Let Sy be the constant term of ¢. Then ¢— 3 € A and
thus v(e¢ — By) > v(b), by the minimality of b. This proves (2.12) for n = 0. Suppose now
that we have found o, ..., 3, € k such that v(c — >_i_, Bib") > (n + 1)v(b). Then, since
(n+ Dv(b) = v(b™1), we have
c— Y Bt =bv""d
=0

for some d € C, by Lemma 2.3.4. If d is constant, we are done because then ¢ € k[b] C k[[b]].
Otherwise, let 5,11 be the constant term of d. Then d — 3,41 € A and hence v(d — Sp41) >
v(b), by the minimality of b. Therefore, by Lemma 2.3.4, d — 8,41 = bd' for some d’ € C.

Hence

c— Zﬁlbz —pntlg = bn+1(bd/ + IBn+1) — 2 + 5n+1bn+1’
1=0

which gives ¢ — S" ! 8ib7 = b7 24, Hence

n+1
v (C - Zﬂibi> =v(O"2d) = v(b" ) +u(d) = (n +2)v(d) + v(d) > (n+ 2)v(b),
i=0

which completes the induction and the proof of the theorem. ]
Now, since k(X) C k((X)), it follows from the above theorem that if a € k(X) is not

constant, then C(a; k(X)) is commutative because C'(a; k((X))) is commutative. The next

theorem shows that a result similar to Theorem 2.3.5 holds for C(a; k(X)).
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Theorem 2.3.6. (Bergman’s Centralizer Theorem, [18] or [46, Theorem 9.5.1]) If a € k(X)

is not constant, then C(a; k(X)) = k[z], the polynomial algebra in one variable x.

We close this section by an application of Theorem 2.3.6. We first recall the structure
of the free product R * k[t], where R is a k-algebra and k[t] is the polynomial algebra in
the variable t. If B is a k-basis for R, then the set {bitbat---tb, : n > 1,b; € B} is a
k-basis for R * k[t]. The multiplication in R x k[t] is done just like multiplication in the free
associative algebra k(X). There is one point here. If b,b" € B, then bb' € R and so we can
write bb' = 3" B;bi, b; € B, ;i € k. So in the product of two elements of R  k[t], we must
replace bb’ with >, B;b;.

Example 2.3.7. If 2,y are two variables, then k[z] * k[y] = k(x,y).

Proposition 2.3.8. (Drensky, [23]) Let R be a k-algebra. If Rxk[t] = k(z,y), as k-algebras,

then R = k[z], as k-algebras. Here we are assuming that x,y, z,t are variables.

Proof. Since R x k[t] = k(z,y), as k-algebras, R * k[t] is generated by two elements as a
k-algebra. Let (t) be the two-sided ideal of R x k[t] generated by t. Then (R * k[t])/(t) = R
and hence R is also generated by two elements, say u,v, as a k-algebra. If u,v are free,
then R = k(u,v) and thus k(z,y) = R * k[t] = k(u,v,t), which is absurd. Thus u,v are
not free and hence uv = vu, by Corollary 2.3.3, and R is commutative because, as a k-
algebra, R is generated by u,v. On the other hand, since R C R x k[t] = k(z,y), we have
R C C(u; R k[t]) = k[w], for some w € R * k[t], by Theorem 2.3.6. From the structure of
R « k[t], we know that w = wg + w1, where wy € R and ¢ appears in each term of w;. Let
f € R. Then f = g(w) € k[w] and thus f = g(wo + w1). Since f is independent of ¢, we
may let ¢ = 0 to get f = g(wp). So we have proved that R C k[wp], which gives R = k[wy]
because wgy € R. ]

2.4 Centralizers in Domains of Finite GK Dimension

In this section, we give Bell and Small’s results on centralizers in domains of finite GK
dimension. Let k be a field and let A be a finitely generated k-algebra which is also a
domain. Let a € A. If GKdim(A) = 0, then A is finite-dimensional over k, by Proposition
1.6.10, and hence PI, by Proposition 1.4.7. So C(a; A) is PI too. If GKdim(A) = 1, then A
is PI, by [59, Theorem 1.6]. Thus C(a; A) is PI too. Also, in this case, if k is algebraically
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closed, then A is commutative, by Proposition 1.6.32, and so C(a; A) is commutative. There
are no algebras of GK dimension between 1 and 2 by Bergman’s gap theorem (Theorem
1.6.15).

In this section, we consider the cases GKdim(A) = 2 and GKdim(A) = 3. We first prove
that if GKdim(A) = 2 and k is algebraically closed, then C(a; A) is PI. Also, in this case, if A
is not PI, then C'(a; A) is commutative. We prove that if & is uncountable and algebraically
closed, A is noetherian with GKdim(A) = 3 and «a is not algebraic over Z(Q(A)), the center
of the quotient division algebra of A, then C(a; A) is PI again and GKdim(C(a; A)) < 2.

Now suppose that A is a finitely generated simple noetherian domain of GK dimension
larger than 3. Suppose also that a € A is not algebraic over Z(Q(A)). Would C(a; A) be

PI? The answer is no and here is an example.

Example 2.4.1. [See Definition 1.6.17] Consider the n-th Weyl algebra A,(k),n > 2,
where k is a field of characteristic zero. It is easy to see that C'(x1; A, (k)) is the subalgebra
generated by x1,...,Zn,Y2,...,Yn. S0 C(a;A,(k)) contains the subalgebra generated by
x2,y2 which is isomorphic to A;(k). Thus if C(a; A, (k)) is PI, then A;(k) must be PI too.
But A;(k) is simple and hence, by Theorem 1.4.25, A;(k) has to be finite-dimensional over

k, which is false.

Theorem 2.4.2. (Bell and Small, [14]) Let k be an algebraically closed field. Let A be
a finitely generated k-algebra which is a domain and GKdim(A) = 2. If A is not PI and
a ¢ Z(A), then C(a; A) is a commutative domain and GKdim(C(a; A)) = 1.

Proof. First note that, since k is algebraically closed and a is noncentral, a is transcendental
over k and hence GKdim(k[a]) = 1. Now let B be any finitely generated k-subalgebra of
C(a; A) which contains a. Then k[a] C B and thus

GKdim(B) > 1. (2.13)

In fact, k[a] C Z(B) and hence
GKdim(Z(B)) > 1. (2.14)

If B is not PI, then by (2.14) and Theorem 1.6.34, GKdim(B) > 3, which is absurd because
B is a subalgebra of A and hence GKdim(B) < 2. Thus B is PI. Now, let Q(A) and Q(B)
be the quotient division algebras of A and B respectively. Suppose that

GKdim(B) > 1 = GKdim(4) — 1.



CHAPTER 2. CENTRALIZERS 62

Then, by Theorem 1.6.35, Q(A) is a finite-dimensional vector space over Q(B). It follows
that Q(A) is PI because Q(B) is PI. But then A would be PI too, which is a contradiction.
Thus GKdim(B) < 1 and so, by (2.13), GKdim(B) = 1. So we have proved that every
finitely generated k-subalgebra of C'(a; A) which contains a has GK dimension one. Hence
GKdim(C(a; A)) = 1 and every finitely generated k-subalgebra of C(a; A) is commutative,
by Proposition 1.6.32. Thus C(a; A) is a commutative domain. O

Now let A be a finitely generated k-algebra of finite GK dimension. How large could
GKdim(C(a; A)) beifa ¢ Z(A)? Bell [13] has proved that if A is a domain and a is not alge-
braic over Z(Q(A)), the center of the quotient division algebra of A, then GKdim(C'(a; A)) is
< GKdim(A) — 1. He then uses this result to show that if £ is uncountable and algebraically
closed, A is a finitely generated noetherian domain over k¥ and GKdim(A) = 3, then C(a; A)
is a PI-domain of GK dimension at most 2 for every a € A which is not algebraic over

Z(Q(A)). We need a few lemmas before proving these two results.

Lemma 2.4.3. Let R and S be noetherian rings and suppose that, as a left and right
R-module, S is finitely generated and free. If S is a simple ring, then R is simple too.

Proof. Suppose that R is not simple. Then R has a proper nonzero two-sided ideal I. Let
J := IS. Then J is a right ideal of S and, since S is a free left R-module, J N R = I.
Let M := S/J. Clearly M is an (R, S)-bimodule and, since S is a finitely generated left
R-module, M is a finitely generated left R-module too. Since M is also a torsion right
S-module, M has a nonzero annihilator [43, Theorem 2.1], which is a two-sided ideal of S,

a contradiction. ]

Lemma 2.4.4. Let k be a field and let C' be a commutative domain over k. Let k(z) be the
field of rational functions in one variable x. If C' is not algebraic over k, then R := C ®k(x)

is not a field.

Proof. Clearly R, as a k-algebra, is isomorphic to the k-algebra T := {p(t)/q(t) : p(t) €
Ct],0 # q(t) € k[t]}, the localization of C[t| at k[t]. So we only need to prove that T is not
a field. Let a be an element of C' which is not algebraic over k. We claim that a —t € T is
not invertible and hence T is not a field. So suppose, to the contrary, that a —t is invertible.
Then (a —t)p(t) = q(t) for some p(t) € C[t],0 # q(t) € k[t]. But then if we choose t = a, we

get g(a) = 0 and so a is algebraic over k, contradiction. O
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Lemma 2.4.5. Let A be a noetherian ring and let J be an ideal of A. If J is nil, then J is

nilpotent.

Proof. The proof still works if A is left or right noetherian and J is a one-sided ideal.
Since A is noetherian, the set of nilpotent ideals of A has a maximal element, say M. Let
R := A/M. Then R is a semiprime noetherian ring and (I + M)/M is a nil ideal of R. Thus
(I + M)/M =0, by Lemma 1.3.8, and hence I C M proving that I is nilpotent. O

Next result is especially useful for studying centralizers in algebras of low GK dimension.

Theorem 2.4.6. (Bell, [13]) Let k be a field and let A be a finitely generated k-algebra of
finite GK dimension. If A is a domain and a € A is not algebraic over Z(Q(A)), the center
of the quotient division algebra of A, then GKdim(C(a; A)) < GKdim(A) — 1.

Proof. Let B := C(a; A). First note that Q(A) and Q(B) exist by Corollary 1.6.9. Now, we
may replace A by Z(Q(A))A if necessary and so we may assume that k = Z(Q(A)). Suppose,
to the contrary, that GKdim(B) > GKdim(A) — 1. Then, by Theorem 1.6.35, Q(A) is finite-
dimensional as both a left and a right vector space over Q(B). Let R = Q(B) ®j, k(z) and
S = Q(A) ® k(x), where k(zx) is the field of rational functions in one variable x. Clearly S
is free and finitely generated as a left R-module because Q(A) is a finite-dimensional vector
space over Q(B). Also, S is simple because Z(Q(A)) = k. Finally, R is noetherian because
R is isomorphic to the localization of Q(B)[x] at k[z]. Similarly, S is noetherian. So by
Lemma 2.4.3, R is simple too. In particular, Z(R) is a field. But Z(R) = Z(Q(B)) ®x k(z)
and a € Z(Q(B)). Thus Z(Q(B)) is not algebraic over k because a is not algebraic over k.
Hence Z(R) is not a field by Lemma 2.4.4, contradiction. O

We mentioned in Example 2.4.1 that C(z1, A,,(k)) is the subalgebra generated by

L1y Ty Y2y -5 Yn-

It is easy to see that this subalgebra has GK dimension 2n — 1. So it is possible to have

equality in the above theorem.

Theorem 2.4.7. (Bell, [13]) Let k be an uncountable algebraically closed field and let A
be a finitely generated noetherian k-algebra of GK dimension three. If A is a domain and

a € A is not algebraic over Z(Q(A)), then C(a; A) is PI.
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Proof. Let B := C(a; A). We have GKdim(B) < 2, by Theorem 2.4.6. Since k[a] C B and a
is not algebraic over k, we have GKdim(B) > 1 and thus GKdim(B) = 1 or 2, by Theorem
1.6.15. If GKdim(B) = 1, then B is PI, by [59, Theorem 1.6]. In fact, in this case B is
commutative, by Proposition 1.6.32. So we may assume that GKdim(B) = 2.

We now show that B is locally PI. Let B’ be any finitely generated k-subalgebra of B.
Then B'la] C B is also finitely generated and k[a] C Z(B'[a]). Thus GKdim(Z(B'[a])) > 1.
So if B’[a] is not PI, then

GKdim(B'[a]) > GKdim(Z(B'[a])) + 2 > 3,

by Theorem 1.6.34, which is false because GKdim(B'[a]) < GKdim(B) = 2. Therefore B'[al,
and hence B’, is PI. Now let By be any finitely generated subalgebra of Q(B). Suppose that

By is generated by ¢; = s 'b;, i = 1,...,r. Let B’ be the subalgebra of B generated by

)

Siybiy, i =1,...,7. Clearly
By C Q(B). (2.15)

Since B is locally PI, B’ is PI and hence, by Corollary 1.5.11, Q(B’) is PI too. Thus By is
PI, by (2.15), and so Q(B) is locally PI. Also, (2.15) implies that GKdim(Q(B)) = 2 and
hence GKdimy,)(Q(B)) = 1.

Let K be an algebraically closed field extension of k(a) with

|K| > dimy,) Q(B), (2.16)

as cardinal numbers, and let R := Q(B) ®(,) K. Since A is noetherian, A®y, K is noetherian
too by [16, Theorem 1.2]. Therefore Q(A) ®; K is noetherian because it is a localization of
A®y K. Thus Q(B) ® K is noetherian because Q(A) @y K is free over Q(B) ® K. Hence
R is noetherian because R is a factor of Q(B) ® K. Also, (2.15) implies that R is locally PI
and GKdimg (R) = GKdimy,4)(Q(B)) = 1. Let J := J(R), the Jacobson radical of R. Then,
by (2.16) and Theorem 1.1.8, J is nil and thus nilpotent by Lemma 2.4.5. Therefore R/J
is a semiprime noetherian ring and so, by Theorem 1.3.12, Q(R/J) is semisimple. Thus, by
Theorem 1.3.4,

QR/J) = [ [ M (D),
i=1

for some division K-algebras D;. Each D; is locally PI and has GK dimension at most
1 as a K-algebras because R has this property. Since K is algebraically closed, each D;
is commutative by Proposition 1.6.32. Thus Q(R/J), and hence R/J, is PI. Let f be a
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polynomial identity of R/J. Since J is nilpotent, J" = (0) for some n and thus f™ is an
identity of R. So R is PI and hence B is PI too because B is a subalgebra of R. O

2.5 Centralizers in Quantum Planes

This section gives Makar-Limanov’s result on centralizers in quantum planes. Let k be an
algebraically closed field and let ¢ be a nonzero element of k. The quantum plane kq[x,y] is
a k-algebra generated by z and y and with the relation yx = gxy. Clearly the set {x'y’ :
i,j > 0} is a basis for kq[z,y] as a k-vector space. It is easily seen that k,[z, y] is a domain.
If we choose V' = k + kz + ky, then the relation yx = qxy gives

(n+2)(n+1)

dimk Vn = D)
and thus

GKdim(ky[z,y]) = 2.

If ¢ is a root of unity, i.e. ¢ = 1 for some n, then it follows from yx = qxy that 2™ and
y™ are central. Thus, in this case, k;[z,y] is a finite module over the commutative algebra
klz™, y"] and therefore it is PI, by Proposition 1.4.7.

Now suppose that ¢ is not a root of unity. Then the center of kq[x,y] is just k. To see

this, let f =>" al-jq:iyj be a central element. Then, since y/z = ¢/zy’ and zf = fx, we have

"y o
D ai iy =) dagatty

Therefore aij(qj — 1) = 0 for all 7, j. Hence, since ¢ is not a root of unity, we have a;; = 0
for all < and j > 1. Similarly yf = fy gives a;; = 0 for all ¢ > 1 and j. That means a;; = 0
for all (z,7) # (0,0) and so f € k. We now show that if ¢ is not a root of unity, then kq[x, y|
is not PI. To prove this, suppose, to the contrary, that k,[x,y] is PL. Let @ be the central
localization of kq[x,y|. Then, by Theorem 1.5.10, the center of @ is the quotient field of the
center of k,[z,y], which is k, and @ is finite-dimensional over k. Therefore k4[x,y], which is
a subalgebra of @, is also finite-dimensional over k. This is of course absurd. Thus k4|, y]
is PI if and only if ¢ is a root of unity.

So if ¢ is not a root of unity, ky[z,y] satisfies all the conditions in Theorem 2.4.2 and
thus C(f; kg[z,y]) is a commutative domain of GK dimension one for every f € kq[z,y] \ k.

Makar-Limanov [44] used a different approach to prove a stronger result. He proved that
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centralizers are in fact a subalgebra of a polynomial k-algebra in one variable. We are now

going to give his proof of this result. We begin with a simple lemma.

Lemma 2.5.1. If q € k is not a root of unity and f(x,y) € kq[x,y]\ k such that f(x,0) ¢ k,
then there exists a k-algebra injective homomorphism from C(f, ky[z,y]) into k[z]. Similarly,

if £(0,y) ¢ k, then there exists a k-algebra injective homomorphism from C(f,kq[x,y]) into
kly]-

Proof. We prove the lemma for the case f(x,0) ¢ k. The proof for the case f(0,y) ¢ k is
similar. We have f(z,y) = Y., fi(z)y’ and we are given that fo(z) = f(x,0) ¢ k. Let

m

0#g(w,y) =D gi(x)y’ € C(f,kylw,9)).

i=0
We claim that g(x,0) = go(x) # 0. So suppose, to the contrary, that go(z) = 0. Then
g(@,y) = Xt gi@)y’s v =1, gp(z) # 0. Let fo(z) = 37 gaia’, a; € k. Note that
ysxt — qStl't

fg=gf gives

y® for all integers s,t > 0. Thus equating the coefficients of y” in both sides of

P p
gr(T) Z a;x’ = gr(x) Z gzt
1=0 1=0

Thus, since ky[z,y] is a domain and g,(z) # 0, we have a;(¢" —1) = 0 for all 0 < i < p.
Therefore, since ¢ is not a root of unity and r > 1, we have a; = 0 for all ¢ > 1. Hence
fo(x) = ag € k, which is a contradiction. This completes the proof of the claim.

Now define the map ¢ : C(f;kqlz,y]) — k[z] by ¢(g(z,y)) = g(x,0). Obviously ¢ is
a well-defined k-algebra homomorphism. If g(z,0) = 0, then, by the claim we just proved,
g(x,y) = 0. Thus ker ¢ = 0 and so ¢ is injective. O

Theorem 2.5.2. (Makar-Limanov, [44]) If g € k is not a root of unity and f € kq[z,y] \ k,
then C(f; kqlz,y]) C klul, for some u € kqlx,y].

Proof. Let A be the set of all ordered pairs (i,5) € Z? such that az'y’, o € k* is a term of
f. By Lemma 2.5.1 we may assume that if (i,j) € A, then i > 1 and 7 > 1. Now look at the
elements of A as a finite set of points on the plane. Clearly there exists a line L which goes
through both the origin and at least one of the points in A, say (p, ¢), such that each point
in A lies either on L or on the left side of L. The equation of L is obviously ¢z — py = 0.
Dividing by ged(p, ¢), we can write the equation of L as Ax — puy = 0, where A\, u > 1 are
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some positive integers with ged(A, ) = 1. The fact that each point in A lies either on L or
on the left side of L is equivalent to saying that A\i — pj > 0 for all (i,5) € A.
Now, define the weight of az'y’ € ky[z,y], o € kX, by

w(az'y’) = Ni — pj.

So every monomial of f has a nonnegative weight and at least one monomial of f has
weight zero (those that lie on L). Let u = x#y*. Then w(u) = 0 and if v = ax’y! with
w(v) = 0, then A\i = pj and thus, since ged(A, u) = 1, we must have i = puc and j = Ae.
Then v = azty’ = aq_(g)uc. So {au® : «a € k*, ¢ > 0} is the set of all monomials
of weight zero. A similar argument shows that if » > 0 is an integer and w(v) = r, then
{ouv: o € kX, ¢ > 0} is the set of all monomials of weight r. So if g € kq[x,y], then we

can group all terms of g which have the same weight and find a unique presentation

s
9= giwGi
i=—r
where G; is a monomial of weight <.
We next show that C(g(u);kq[x,y]) = k[u] for any nonconstant polynomial g(u) €
E[u]. So suppose that h € C(g(u); kq[x,y]). By what we just showed we can write h =
> hi(u)H;, where r,s > 0 and H; is a monomial of weight i. Now g(u)h = hg(u) gives

i=—r "

> hi(wg(w)H; = > hi(u)Hig(u).

t=—T i=—7

Since the weight of each monomial in g(u)H; is i, the above identity holds if and only if
9(u)H; = Hig(u)

for all 7. It is easy to see that only monomials of weight zero commute with a nonconstant

element of k[u]. Thus » = s = 0 and hence h € k[u]. This proves that

Clg(u); kqlz, yl) = klul, (2.17)

for all nonconstant g(u) € k[u].
Finally, let g € C(f;kqlz,y]) and write g = Y7 gi(u)Gj, where r,s > 0 and G; is
a monomial of weight zero. We also have f = """, fi(u)F; because, as we mentioned at

the beginning of the proof, every monomial of f has a nonnegative weight and at least
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one of the monomials has wight zero. We also mentioned that in each monomial of f
both  and y occur. So, if we choose Fy = 1, then fy(u) cannot be a constant. Now
looking at the monomials of minimum weight in both sides of fg = gf we see that G_,
and ho(u) must commute, i.e. G_, € C(ho(u);kqlx,y]). Thus G, € k[u], by (2.17), and
so —r = w(G_,) = 0. Hence » = 0 and so every element of C(f;ky[z,y]) is in the form
> i 9i(u)G;. Therefore the map

: C(f; kylz,y]) — Klu]
defined by ¢(g) = go(u) is an injective k-algebra homomorphism. O

Makar-Limanov then extended his idea to prove a similar result for quantum spaces. Let
k be an algebraically closed field and let n > 1 be an integer. Let {g;; : 1 <1i,j <n} C k*
be such that ¢; = 1, gj; = qigl and the set {g;; : ¢ < j} is a free basis for some abelian
group. The quantum n-space kq(x1, ..., xy] is the algebra generated by 1, ..., z, subject to
the relations xjz; = g;;x;z; for all 7, j. Makar-Limanov [44] proved that the centralizer of a

noncentral element of kq[z1,. ..,y is again contained in k[u], for some u € kq[z1, ..., zy].

2.6 Centralizers in Semiprime PI-Rings

In this section, we give our results on centralizers in a semiprime Pl-ring R. We first find
the center of a centralizer in R and then we characterize those semiprime Pl-rings in which
the centralizer of every noncentral element is commutative.

We have already seen a few examples of rings in which the centralizer of every noncentral
element is commutative, e.g. the first Weyl algebra and quantum planes. A ring R is called
CT if the centralizer of every noncentral element of R is commutative. In the definition,
CT is short for commutative transitive. The reason that we call such rings CT is this simple
fact that the centralizer of every noncentral element of a ring R is commutative if and only
if the property © commutes with y is transitive over noncentral elements. There are many
examples of rings which are not CT. For example, the matrix algebra M, (C),n > 3 or the
Weyl algebra A,,(C),n > 2. In fact, it is easy to see that M, (R), n > 2, is CT if and only
if n =2 and R is a commutative domain. Therefore, by Theorem 1.5.10, a prime Pl-ring
R is CT if and only if Qz(R) = M, (D), where Qz(R) is the central localization of R and
n=1or 2. If n =1, then D is a finite-dimensional central division algebra which is CT
and if n = 2, then D is a field.
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In this section, we characterize semiprime Pl-rings which are CT. We show that a
semiprime PI-ring R is CT if and only if Qmax(R) = C & M, (D), where Qmax(R) is the
largest left quotient ring of R, C'is a commutative ring (or the zero ring) and n =1 or 2. If
n =1, then D is a finite-dimensional central division algebra which is CT and D is a field

if n = 2. But what is this largest left quotient ring of R?

2.6.1 Maximal Left Quotient Rings

The proof of results mentioned in this paragraph can be found in [40, section 13B]. Fix a
ring R. Let M be a left R-module. We say that a submodule N of M is dense and we write
N C4 M if for every x,y € M, with x # 0, there exists r € R such that rx # 0 and ry € N.
Clearly every dense submodule is essential. A ring S is called a general left quotient ring of
Rif R Cy4 S. For example, if R has a classical left quotient ring Q(R), then Q(R) is a general
left quotient of R. The reason is that if z,y € Q(R), with  # 0, then we can write y = ¢t~ u
for some t,u € R. So tx # 0, because x # 0 and ¢ is a unit in Q(R), and ty = u € R. Now,
consider R as a left R-module and let F := E(R) be the injective hull of R, i.e. the smallest
injective R-module containing R. Let H := Endgr(F) and @ := Endy(E). Then @ is a
general left quotient ring of R and every general left quotient ring of R can be embedded
into Q. The ring @ is called the mazimal left quotient ring of R and we write Qmax(R). If R
is commutative, then Qmax(R) = Z(H), the center of H, and hence Qmax(R) is commutative
too. Also, if the classical left quotient ring Q(R) of R exists and if every dense left ideal of
R contains a regular element, then Qpax(R) = Q(R). In particular, if R is a semiprime left
Goldie ring, then Qmax(R) = Q(R). So if D is a division ring, then Qmax(My (D)) = My (D).
If R is the subring of M, (D) consisting of upper triangular matrices, then Q(R) = R but
QmaX(R) = Mn(D)-

There is a useful characterization of the maximal left quotient ring of a semiprime Pl-ring

given in the following theorem.

Theorem 2.6.1. (Rowen, [52]) If R is a semiprime PI-ring, then Q := Qmax(R) is char-

acterized by the following properties.
(1) There is a canonical injection R — Q.

(2) For any essential ideal J of Z(R), the center of R, and any f € Homyg(J, R), there
exists ¢ € Q such that xq = f(x) for all z € J.



CHAPTER 2. CENTRALIZERS 70

(8) For any q € Q,Jq C R for some essential ideal J of Z(R).

(4) g =0 if and only if Jg = (0) for some essential ideal J of Z(R).

Note that parts three and four of the theorem show that Quax(R) is both an essential
extension of R and a semiprime Pl-ring.

We recall that R is called left nonsingular if {r € R: lanng(r) C. R} = (0). Also, R
is called von Neumann regular or just regular if for every r € R there exists s € R such
that » = rsr. A regular ring is called strongly regular if it is reduced, i.e. it has no nonzero
nilpotent element. It is known that Qunax(R) is regular if and only if R is nonsingular [40,
Theorem 13.36] and in this case Qmax(R) = E(R). It is an easy consequence of Theorem
1.5.8 that semiprime Pl-rings are nonsingular. So if R is a semiprime Pl-ring, then Qmax(R)
is regular and Qmax(R) = E(R). The following proposition gives more properties of Qax(R)

when R is a semiprime Pl-ring.

Proposition 2.6.2. Let R be a semiprime Pl-ring.

(1) Z(Qmax(R)) = Qmax(Z(R)).

(2) Qmax(R) is a finite module over its center.

(3) If M is a mazimal ideal of Z(Qmax(R)), then Qmax(R)nr, the localization of Qmax(R)
at M, is a finite-dimensional central simple algebra.

Proof. See [52, Corollary 3] for the proof of the first part. For the proof of the second and

the third part of the theorem see [6, Theorem 3.7] and [4, Corollary 9], respectively. O

By Proposition 2.6.2, Qmax(R) is finitely generated over its center for any semiprime
Pl-ring R. The following example shows that even being CT does not necessarily imply that

a semiprime Pl-ring is finite over its center.

Example 2.6.3. Let A = Z[z1,z2,...], the polynomial algebra in an infinite set of com-
muting variables {z1,22,...}, and let k be the field of fractions of A. Let I = 3., Ax;

(1)

and
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We show that Ms(k) = kR. It is clear that kR C My (k). To prove Ms(k) C kR, we only
need to show that kR contains the standard basis {e11, €12, €21, €22} of My (k). This is clear
because €11, €21, €99 € R and e1p = xfl(azlelg) € kR.

Now, Ma(k) = kR implies that R is semiprime, PI and CT because M(k) is so. But R

is not finitely generated over its center because I is not finitely generated over A.

2.6.2 The Double Centralizer Property in Semiprime PI-Rings

In this section we use Theorem 2.6.1 to find the center of the centralizer of an element in a
semiprime Pl-ring. This, in particular, gives the form of centralizers in semiprime PI-rings
which are CT.

We know from linear algebra that if k is a field and a € M,y(k), then b € M,(k)
commutes with every matrix which commutes with a if and only if b € k[a]. In other words,

Z(C(a; My (k))) = kla] or equivalently we have the double centralizer property
C(C(a; Mn(k)); Mp(k)) = kla].
This result has the following extension.

Lemma 2.6.4. (Werner, [65]) If A is a finite-dimensional central simple k-algebra, then
C(C(a; A); A) = k[a).

Armendariz [7] extended Werner’s result by proving that if D is any central division k-
algebra, then a € M, (D) satisfies the double centralizer property if and only if a is algebraic
over k. The following example shows that in general the double centralizer property does

not hold in semiprime PI-rings even for elements which are integral over the center.

1 0 Z 0
Example 2.6.5. Let R = M3(Z) and a = 0 . Then C(C(a; R); R) = 0 7z and,

10
for example, Zla.
Q J¢ [a]

The next theorem shows that an element @ in a semiprime PI-ring R satisfies the double
centralizer property if and only if Z(Q)[a]R = Z(R)[a], where Q := Qmax(R). In particular,

a semiprime Pl-ring whose center is self-injective satisfies the double centralizer property.

Theorem 2.6.6. Let R be a semiprime Pl-ring and let Q := Quax(R). Then

Z(C(a; R)) = Z(Q)la] N R
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for all a € R.

Proof. We first show that
2(Cla: R)) € Z(C(a: Q)). (2.18)
Let b € Z(C(a;R)) and g € C(a;Q). By Theorem 2.6.1, there exists an essential ideal
J C Z(R) such that J¢g C R. Then Jq C C(a; R) and so xgb = bxq = xbq for all x € J.
Therefore J(gb — bg) = (0) and so gb = bq.. Hence b € Z(C(a;Q)), by Theorem 2.6.1.
Next, we show that Z(C(q; Q)) = Z(Q)[q] for all ¢ € Q. To see this, we suppose, to the
contrary, that there exists some p € Z(C'(¢; Q)) \ Z(Q)[q|. Let
I'={z € Z(Q): xpe Z(Q)q]}

Clearly [ is a proper ideal of Z(Q). Let M be a maximal ideal of Z(Q) which contains I.

By Proposition 2.6.2, Qs is a finite-dimensional central simple algebra. Therefore

Z(C(q/1;Qu)) = Z2(Qur)la/1],

by Lemma 2.6.4. Hence p/1 € Z(Qnr)[g/1] and so p/1 =Y 7_,(x;/s)¢’, for some integer n
and xj/s € Z(Qnr). Therefore there exists u € Z(Q) \ M such that

n
sup = Z uziq’. (2.19)
5=0
By Proposition 2.6.2, @ is finitely generated over Z(Q). Let
m
Q=> uZ(Q).
i=1

Since zj/s commutes with y;/1 for all i, there exists some s; € Z(Q) \ M such that s;z;
commutes with y;. Let t; = s152---s,,. Then t;z; commutes with each y; and hence t;z; €
Z(Q). Let t = tyty- - - t,. Then tx; € Z(Q) for all j and hence by (2.19)

tsup = Zutquj € Z(Q)lql-

j=0
That means tsu € I C M which is absurd. Thus we have proved that for all ¢ € Q
Z(Clq:Q)) = Z(Q)ldal- (2:20)

Now it is easy to prove the theorem. By (2.18) and (2.20) we have
Z(Cla; R)) € 2(C(a; Q) = Z(Q)[a].

Therefore Z(C(a; R)) C Z(Q)[a] N R. The inclusion Z(Q)[a] R C Z(C(a; R)) is trivial. [



CHAPTER 2. CENTRALIZERS 73

2.6.3 Characterizing Semiprime PI-Rings which are CT

We are now going to characterize semiprime Pl-rings which are CT. First let us consider
the case for division algebras. Let D be a finite-dimensional central division k-algebra and
suppose that D is CT. Let K be a subfield of D which properly contains k and let a € K\ k.
Let L be any subfield of D which contains K. By Theorem 2.6.6

kla] = Z(C(a; D)) = C(a; D).

We also have kf[a] C K C C(a; D) = kla] and hence K = k[a]. Similarly, L = k[a] and thus
K = L. Therefore every subfield of D which properly contains k£ is maximal. Conversely,
suppose that every subfield of D which properly contains k is maximal and let a € D\ k.
Let b € C(a; D). Then k[a] and k[a,b] are both subfields of D and so b € k[a]. Hence
C(a;R) = k[a] and so D is CT. So we have proved that D is CT if and only if every
subfield of D which properly contains k is maximal. For example, if p is a prime number
and [D : k] = p?, then D is CT. Now suppose that D is CT. We claim that [D : k] is a prime
power. To see this, we recall that D has a primary decomposition [26, Theorem 4.19], i.e.

if p1,...,pn are the prime divisors of [D : k|, then
D=D1®;, Do Q-+ R Dy

for some division algebras D; such that p; is the only prime divisor of [D; : Z(D;)]. If
n > 1, then a subfield of D; which properly contains & would be a subfield of D which is
not maximal in D and so D would not be CT. Thus a finite-dimensional central division
k-algebra is CT if and only if D satisfies these properties: [D : Z(D)] is a prime power and
every subfield of D which properly contains k is a maximal subfield. It is clear that if D is
CT, then D cannot be a crossed product, i.e. D cannot have a maximal subfield which is
Galois over the center, unless [D : k] = p? for some prime p. This is a trivial result of the
Galois correspondence theorem.

We see in this section that characterizing semiprime Pl-rings which are CT is eventually
reduced to the same problem for finite-dimensional central division algebras which are CT.

We begin with two simple observations.

Lemma 2.6.7. Let R;, i € I, be a family of rings and let R := [[,.; R;. Suppose that the
ring R is not commutative. Then R is CT if and only if there exists j € I such that R; is

both noncommutative and CT and R; is commutative for all i # j.
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Proof. Suppose that R is CT. Since R is not commutative, there exists j € I such that R;
is not commutative. Let r := (r;);c; € R where r; is any noncentral element of R; and
r; = 0 for all 4 # j. Then 7 is a noncentral element of R and hence C(r; R) = [[;c; C(ri; R;)
has to be commutative. So C(r;; R;) is commutative for all i € I. Thus R; is CT and R;
is commutative for all i # j because C(r;; R;) = C(0; R;) = R;. Conversely, suppose that
there exists j € I such that R; is both noncommutative and CT and R; is commutative for
all i # j. Let a := (a;);cr be any noncentral element of R. Then a; is a noncentral element
of R; and hence C(aj; R;) is commutative. We also have C'(a;; R;) = R; for all i # j. Thus

C(a; R) is commutative. O

Lemma 2.6.8. Let R be a semiprime PI-ring. Then R is CT if and only if Qmax(R) is
CT.

Proof. Let Q := Qmax(R). The if part of the lemma follows immediately from the fact that
Z(Q)N R = Z(R). Conversely, suppose that R is CT and let ¢y be a noncentral element of
Q. Let q1,92 € C(qo; Q). We need to prove that g1g2 = g2q1. Let J be an essential ideal of
Z(R) such that Jg; C R for i = 0,1,2. If Jgo C Z(R), then gy € Z(Q), which is not true.
So there exists some « € J such that agy € R\ Z(R). Thus C(aqo, R) is commutative. Now
the result follows from the fact that Jq; C C(aqo; R) for i = 1,2. O

Another fact that we need is that in semiprime rings, commutative ideals are central.

This is easy to prove.

Lemma 2.6.9 ([47], Lemma 1). Let R be a semiprime ring and let J be a left or right ideal
of R. Considering J as a ring, we have Z(J) = J N Z(R).

Recall that the index of a nilpotent element a in a ring R is the smallest integer n > 1 such
that ™ = 0. Let i(a) denote the index of a. The index of aring Risi(R) = sup{i(a) : a € R}.
A ring R is said to have bounded indez if i(R) < oo.

For example, matrix rings over commutative rings have bounded index. More generally,

every semiprime Pl-ring has bounded index.

Lemma 2.6.10 ([48], Theorem 13.4.2). Every semiprime PI-ring can be embedded into
some matriz ring My, (C), where C' is a direct product of fields.

Regular self-injective rings of bounded index have a nice form.
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Lemma 2.6.11 (]33], Theorem 7.20). A regular self-injective ring has bounded indez if and

only if it is a finite direct product of full matriz rings over strongly reqular rings.
We are now ready to prove the main result of this section.

Theorem 2.6.12. A noncommutative semiprime Pl-ring R is CT if and only if
Qmax(R) =Co® Mn(D), n < 2,

where C' is either zero or a commutative ring and if n = 1 (resp. n = 2), then D is a

finite-dimensional central division algebra which is CT (resp. field).

Proof. The if part follows from Lemma 2.6.8 and the fact that Ms(k) is CT for any field k.
Conversely, suppose that a semiprime PI-ring R is CT. Then Qumax(R) is also CT by Lemma
2.6.8. Since Qmax(R) is a semiprime Pl-ring, it has a bounded index by Lemma 2.6.10, and
so, by Lemma 2.6.11, Qnax(R) is a finite direct product of full matrix rings over strongly

regular rings. Therefore, by Lemma 2.6.7,
Qmax(R) =S ©® Mn(T), n < 2,

where S is either zero or a commutative ring and 7' is both strongly regular and CT.

If n = 2, then T is a field because a commutative domain is regular if and only if it
is a field. If n = 1, then T cannot be commutative because R is not commutative. So, to
complete the proof of the theorem, we only need to show that if a noncommutative strongly
regular ring T is CT, then T is a direct product of a commutative (or zero) ring and a
division ring, which clearly has to be CT and finite-dimensional over its center by Theorem
1.4.25. We now show that if a is a noncentral element of T, then l.ann(a) is commutative.
To see this, note that 7' = T'a®l.ann(a) because T is strongly regular. Thus, since T" is CT,
either Lann(a) or T'a must be commutative. Since a is not central, l.ann(a) is commutative
and hence central by Lemma 2.6.9. Now, let I be the sum of all commutative ideals of T.
We show that I is a maximal left ideal of T". To see this, let a ¢ I. Then l.ann(a) C I and
hence T'=Ta @ lL.ann(a) C T'a + I C T, which proves that I is a maximal ideal.

Finally, we have
{0} # {2y —yx: z,y € T} C Lann(])

because T is not commutative and I C Z(T). It follows, by the maximality of I, that
T = I & l.ann(I) and hence Lann(/) = T'/I is a division ring. O
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Corollary 2.6.13. If R is a semiprime PI-ring which is CT, then Qumax(R) is the central

extension of R.

Proof. Let Z denote the center of Quax(R). By Theorem 2.6.12 there exists a commutative
ring C, a field k and a finite-dimensional central simple k-algebra V' such that Qunax(R) =
Ca®V. Thus RZ = C ® Rk and since C' @ Rk is finitely generated over Z = C' @ k, the result
follows from [5, Theorem 5. O

Let R be a semiprime Pl-ring and let S be a nil multiplicatively closed subset of R. We
know from [54, Corollaries 1.6.23 and 1.6.26] that S is nilpotent. If R is CT, then S? = {0}
by Theorem 2.6.12. We also have the following result.

Proposition 2.6.14. Let R be a ring and suppose that Z(R) is semiprime. Let S be a nil
multiplicatively closed subset of R. If C(x; R) is commutative for every noncentral element

x € S, then S is commutative and hence locally nilpotent.

Proof. Since Z(R) is semiprime, noncentral elements of S are exactly nonzero elements of
S. For a,b € R let [a,b] := ab — ba. Let 0 # z,y € S. Let n > 2 be the smallest integer

n—1

such that 2™ = 0. For any z € R and integer j > 1 we have [z" !, zz27] = [z""1,2] = 0. So

rza? x € C(2" % R) and hence 22227 = 222771, Thus if i > 2 and j > 1, then

itj—1 itj—1

z'za! = xzx , yzy! = yzy

So every monomial in x,y has one of the following forms

x(y:IZ)TySJIt, y(xy)rmsyt7 (l,y)rxsyt, (yJI)TyS(Et.
Hence there exists an integer N such that every monomial of degree N in z,y is zero. Let
r be the smallest integer such that every monomial of degree r in x,y is zero. Let w # 0
be a monomial of degree r — 1 in x,y. Then [w, z] = [w,y] = 0. Thus z,y € C(w; R) and so
[z,y] = 0. O



Chapter 3

Centralizers in Ay(k) and K|z, 2z 1; 0]

3.1 Introduction

The structure of centralizers in a differential polynomial ring S := R]y; d] has been studied
by many authors. Amitsur proved that if R is a field of characteristic zero and if k = {r €
R : §(r) = 0}, then the centralizer of a nonconstant element f € S is a commutative k-
algebra and also a free module of finite rank over k[f]. In fact, Amitsur’s proof of this result
works for a more general setting. That is, let R be a commutative domain of characteristic
zero. We extend d to Q(R), the quotient field of R. If k := {q € Q(R) : d(q) = 0} is a
subfield of R, then again the centralizer of a nonconstant element f € S is commutative and
a free module of finite rank over k[f]. We gave the proof of this result in section 2 of chapter
2. In particular, if R = k[z] and § = d/dz, then we have Amitsur’s result for centralizers in
Ay (k), the first Weyl algebra. K. Goodearl [32] proved a similar result for S when R is a
semiprime commutative ring. He proved that if k := {r € R: §(r) = 0} is a subfield of R,
then the centralizer of an element of f = Y"1  a;y* € S, where n is invertible in k and a,
is invertible in R, is a commutative domain and a free module of finite rank over k[f].

Let k be a field of characteristic zero. Dixmier [22] gave explicit form of centralizers
of some elements of A;(k). J. Guccione and others [34] proved that if [¢,p] = 1 for some
elements p,q € A;(k), then C(p; A1(k)) = k[p]. His proof is long and computational. V.
Bavula [11] gave a shorter and more elegant proof of this result. A derivation § of a k-algebra
A is called locally nilpotent if for every u € A there exists an integer n such that §"(u) = 0.
Bavula proved that the centralizer C' of a nonconstant element of A;(k) admits a locally

nilpotent derivation ¢ if and only if C' = k[u] for some v € C and § = d/du. He used this

7
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result to give his proof of Guccione’s result.

In section 2 of this chapter, we study centralizers in the second Weyl algebra Ay (k). We
will assume that k£ is an algebraically closed field of characteristic zero and we prove that
the GK dimension of a centralizer in Ay(k) has three possible values one, two and three.
Those of GK dimension one or two are commutative and those of GK dimension three are
not locally PI. We show that As(k) has centralizers of GK dimension one, two or three. We
also give explicit forms of centralizers of some elements of As(k).

In section 3, we study the structure of centralizers in subalgebras of skew Laurent poly-
nomial rings. These algebras contain A;(k) as well as some other algebras as subalgebras.
So our result in this section is a generalization of Amitsur’s result on centralizers in A (k).
We prove that, under some conditions, centralizers in subalgebras of skew Laurent polyno-
mial rings are commutative and free modules of finite rank over some polynomial algebra
in one variable. In section 4, a few problems are posed and a connection between Dixmier’s

Fourth Problem and the problem of finite generation of centralizers in Aa(k) is given.

3.2 Centralizers in the Second Weyl Algebra

Throughout this section, k is an algebraically closed field of characteristic zero and A, (k),n >
1, is the n-th Weyl algebra over k as defined in Definition 1.6.17. We assume that x1,...,Zn, Y1, -+, Yn

are the generators of A, (k) with the relations
[zi, 23] = [yi,y5] = 0, [yi, 5] = b5,

for all 4, j, where d;; is the Kronecker delta.

If a € Ai(k) \ k, then, by Theorems 2.2.7 and 2.2.9, C'(a; A1(k)) is commutative and,
as a k[f]-module, free and finitely generated. As we saw in Example 2.4.1, if n > 2, then
centralizers in A, (k) may not even be PIL.

In this section, we investigate the structure of centralizers in Ay (k). In the first subsec-
tion, we prove that the GK dimension of a centralizer in As(k) is one, two or three. Those
centralizers of GK dimension one or two are commutative and those of GK dimension three
are not locally PI. We also prove that for each integer n = 1,2, 3 there exists an element of
Aa(k) whose centralizer has GK dimension n.

In the second subsection, we find the centralizer of any element of A3 (k) in which exactly

two of the four generators x1, z2,y1,y2 occur.
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3.2.1 GK Dimension of Centralizers

We begin this subsection with stating two important results about commutative subalgebras
of A, (k).

Theorem 3.2.1. (Makar-Limanov, [45]) Let B be a commutative subalgebra of An(k). If
GKdim(B) = n, then C(B; A, (k)) is commutative.

Theorem 3.2.2 ([10], Corollary 1.6). If B is a commutative subalgebra of A,(k), then
GKdim(B) < n.

We also need the following simple fact.

Lemma 3.2.3. Let B be a finitely generated k-algebra which is a domain of finite GK
dimension. If B is PI, then GKdim(B) = GKdim(Z(B)).

Proof. Since B is a PI-domain, the quotient division algebra Q(B) and the central localiza-
tion QQz(B) are equal, by Corollary 1.5.11. By Theorem 1.5.10, Q(B) is finite-dimensional
over its center and Z(Q(B)) = Q(Z(B)). Thus GKdim(Q(B)) = GKdim(Z(Q(B))), by
Proposition 1.6.23. Hence

GKdim(Z(B)) = GKdim(Z(Q(B))) = GKdim(Q(B)) = GKdim(B),

because, by Proposition 1.6.26, the GK dimension of the central localization of an algebra

is equal to the GK dimension of the algebra. O

We are now ready to prove the first half of the main result of this subsection.

Proposition 3.2.4. Let A := Ay(k),a € A\ k and C := C(a; A). Then GKdim(C) €
{1,2,3}. If GKdim(C) € {1,2}, then C is commutative and if GKdim(C) = 3, then C is
not locally PI.

Proof. Since k[a] C C, we have GKdim(C') > 1. We also have
GKdim(C) < GKdim(A) — 1 =3,

by Theorem 2.4.6 and Corollary 1.6.19. If GKdim(C) = 1, then C is commutative by
Proposition 1.6.32. There is no algebra whose GK dimension is strictly between 1 and 2, by
Theorem 1.6.15. Now, suppose that GKdim(C') = 2. In order to prove that C' is commuta-

tive, we only need to show that every finitely generated subalgebra B of C'is commutative.
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Clearly we may assume that a € B and so GKdim(B) € {1,2}. If GKdim(B) = 1, then B is
commutative by Proposition 1.6.32. We claim that if GKdim(B) = 2, then B is PI. So sup-
pose, to the contrary, that B is not PI. Then Lemma 1.6.34 and the fact that k[a] C Z(B)
gives

2 = GKdim(B) > 2+ GKdim(Z(B)) > 2 + GKdim(k[a]) = 3,

which is nonsense. Hence B is PI and so GKdim(Z(B)) = GKdim(B) = 2, by Lemma 3.2.3.
Therefore C(Z(B); A) is commutative, by Theorem 3.2.1, and so B is commutative because
B C C(Z(B);A). We now claim that if B is a finitely generated subalgebra of C' such that
a € B and GKdim(B) > 2, then GKdim(B) = 3. To see this, suppose first that B is PL
Then

GKdim(Z(B)) = GKdim(B) > 2,

by Lemma 3.2.3, contradicting Theorem 3.2.2. So B is not PI and hence GKdim(B) > 3,
by Theorem 1.6.34. Since B C C, we also have GKdim(B) < 3 and the claim follows.

An immediate result of the claim is that if GKdim(B) > 2, then GKdim(B) = 3. In
this case, C is not locally PI because if B is a finitely generated subalgebra of C' with
GKdim(B) > 2, then, as we showed in the proof of the claim, B is not PI. O

We now show that for each n € {1,2,3} there exists some element in As(k) whose
centralizer has GK dimension n. We begin with centralizers of GK dimension three. It
is easy to find examples of centralizers of GK dimension three, e.g. if a € k[z;], then

C(a; As(k)) = k[x1, x2,y2]. More generally, we have the following result.

Proposition 3.2.5. Let a € Az(k) \ k and C := C(a; A2(k)). If at most two of the four

generators x1, Y1, T2, y2 occur in a, then GKdim(C') = 3.

Proof. By Proposition 3.2.4, we only need to show that C is not commutative. If a €
kx1,y1], then z2,y2 € C and so C is not commutative. A similar argument holds if a €
Elxe, ya]. If a € k[x1, 2], let

u = [y2, alyr — [y1, alyo. (3.1)
Then [u,a] = 0 and thus u € C. We also have [u, z1] = (%2 and [u, x9] = —g—;l. Hence, since
a is not a constant, either [u,z1] # 0 or [u,x2] # 0. Thus C is not commutative because

x1,x2 € C. A similar argument holds if a is an element of k[z1, y2], k[y1, x2] or k[y1,y2]. O
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Corollary 3.2.6. Let a € As(k) and C := C(a; Az(k)). Let deg(a) denote the total degree
of a. If deg(a) = 1, then GKdim(C) = 3 and if deg(a) = 2, then GKdim(C') = 2 or 3.

Proof. Suppose first that deg(a) = 1 and let a = axy + Sy1 + yxe + dy2 where o, 8,7,6 € k.
If a # 0, define f € Aut(Az(k)) by

flar) = Brr+ oy, fyr) = —awr, f(22) =2, f(y2) = 1.

Then f(a) = y1 + yx2 + dy2. If v # 0, then we can also eliminate z in f(a) in a similar
way. Thus we may assume that only two of the four generators x1,y1, T2, y2 occur in a and
we are done by Proposition 3.2.5. If deg(a) = 2, then one can find an automorphism f of
As(k) such that f(a) = a(z? +y?)+ (23 +y3) +7, for some a, 3,7 € k [21, Exercise 7.6.11].
Thus k[z? 4+ y?, 23 + 93] C C and so GKdim(C) > 2. Therefore GKdim(C) = 2 or 3, by
Proposition 3.2.4. O

The fact that the centralizer of every nonconstant element of Aj(k) is commutative
implies that a subalgebra C' of A;(k) is a maximal commutative subalgebra if and only if
C is the centralizer of some nonconstant element of A; (k). This is not true in As(k) as the

next corollary, which is an immediate result of Proposition 3.2.5, shows.

Corollary 3.2.7. The algebra k[xy,z2] is a mazimal commutative subalgebra of As(k) and
klx1, 2] # Cl(a; A2(k)) for all a € As(k).

Remark 3.2.8. By Proposition 3.2.5, if at most two of the four generators x1,xs,y1, Yy
occur in a, then GKdim(C(a; A2(k))) = 3. Now, suppose that at most three of the four
generators x1,x2,y1,y2 occur in a € Ag(k) \ k and let B be the k-algebra generated by
those three generators. Let C' := C(a; A2(k)) and Cy := C(a; B). Then GKdim(C) = 2 or
3 and GKdim(C) = 2 if and only if a ¢ Z(B) and C = Cy. To see this, we assume that
B = k[x1,22,y2] and so Z(B) = k[z1]. If a € k[z1], then B = C and so GKdim(C) = 3.
Otherwise, k[z1,a] C C and so GKdim(C) = 2 or 3. Now, if GKdim(C) = 2, then C is
commutative, by Proposition 3.2.4, and so 8%!71 = [b,z1] =0 for all b € C. Hence b € Cy and
so C' = Cy. Conversely, suppose that a ¢ k[z1] and C = Cy. Then a is not algebraic over
k(z1), the field of fractions of k[z1], and hence

GKdim(C) = GKdim(Cy) < GKdim(B) — 1 = 2

by Theorem 2.4.6. Alternatively, we can argue that since B = Aj(k[z1]) C Ai(k(z1)),
we have Cy C C(a; A1(k(x1))) and so Cp is commutative by Theorem 2.2.9. Thus C is
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commutative and hence GKdim(C') = 2. Notice that the condition C' = Cj is equivalent to
this condition: if blg—;l = [a, bo] for some b; € Cy and by € B, then by = 0. The reason is
that C # Cy if and only if there exists b € C' whose degree with respect to y; is at least
one. Then, since z1 € C, we have aa—;l = [b,z1] € C and so we may assume that the degree
of b with respect to y; is one. Let b = byy; + by, b1,bp € B. Then [b,a] = 0 if and only if
[b1,a] = 0 and blaa—;l = [a, bo].

The next example gives a centralizer of GK dimension two in Aa(k).

Example 3.2.9. Let a := x1y1 + axaye, a € k. If a ¢ Q, then C(a; Az(k)) = k[z1y1, z2y2]
and so GKdim(C(a; A2(k))) = 2.

Proof. 1t is clear that both z1y; and zoys belong to C(a; A2(k)) and so
k[z1y1, 22y2] € Cl(a; Aa(k)).
Conversely, suppose that

b= Z Bwuvley{l‘gyg € C(CL; AZ(k))
i7j7u7v
Then, since [xily{,mlyl] =(j— z)xﬁy{ and [xéy%,xgyg} =(j— z)x’zyé, our hypothesis that
[b,a] = 0 gives
> Bijun((j — ) + o(v — u)) 2 ylahys = 0.
Thus (j — i) + a(v —u) = 0 for all 7, j,u,v and, since o ¢ Q, we have i = j and u = v.
Therefore
b= Buriyisys.

An easy induction shows that for every positive integer m there exist ; € k such that
2y = (1) + i (zy)™ '+ w1y
Thus z{"y]* € klx1y1]. Similarly, z5'y5" € k[xay2] and so b € k[z1y1, z2ya]. O

We now give an example of a centralizer of GK dimension one. We begin with an
element of the form a = y; + a1 where a1 € k[x1,x2,y2]. The idea is to find a; somehow
that the leading coefficient of every element of C(a; A2(k)) becomes constant. This implies
that C(a; Aa(k)) = k[a] and so the GK dimension of C(a; A2(k)) is one.
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Example 3.2.10. Let a := y; + (z122 + 1)ya. Then C(a; A2(k)) = k[a] and therefore
GKdim(C(a; A2(k))) = 1.

Proof. Let ai := (z122 4+ 1)y2. Soa =y +a; and if b= )" biyt, by € k[z1,x9,72], is an
element of C'(a; Aa(k)), then
m+1 abm m
ab:bmyl 4+ =— +bn-1+ ar1bn, Yy + -
8951
and
ba = by + (bmar + bm-1)yi" + -
equating the coefficients of y" in both sides of ab = ba gives %E’T*;’ = [bm, a1]. So
Oby,
83;1

We claim that by, € k which, in particular, implies C(a; A2(k)) N k[x1, x2,y2] = k. There is

= [bm, (331172 + l)yg]. (3.2)

nothing to prove if b,, = 0. Let

n

by, = Zciyé, ¢i € kl[z1,z2], ¢n #0.

=0
We now find the coefficients of y4 in both sides of (3.2). Clearly the coefficient of y in %IJTT
is g@. We also have
1
[bm, (172 +1)y2] = Zz;[ciyé, (x122+1)Yy2] = ZZ; ((imlci — (z122 + l)g;;)yé + - > . (3.3)

So the coefficient of y§ in [by,, (x122 + 1)y2] is nz1cy, — (T122 + 1)%. Thus (3.2) gives

dey, dcy,
In — narcn — &, 4
o nric (129 + )3:162 (3.4)

Let ¢, = 3.5 ouiwh, u; € k[z1], us # 0. Then equating the coefficients of x5 and x5 ' in

both sides of (3.4) gives
dug

dzq

= ('I’L - S)xlus (35)

and
dus—l

dr (n— s+ 1)zius—1 — sus. (3.6)

Comparing the degrees in both sides of (3.5) gives n = s and us € k. It then follows from
(3.6) that n = 0 and so b,, = ¢p = ug € k. Thus b — b,a’™ is an element of C(a; Az(k))
whose degree with respect to y; is smaller than m. An induction now shows that b € k[a]
and so C(a; A2(k)) = k[a]. O
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So we have proved the following result.

Theorem 3.2.11. Let a € As(k)\ k and C := C(a; Az(k)). Then GKdim(C) € {1,2,3}. If
GKdim(C) € {1, 2}, then C is commutative and if GKdim(C) = 3, then C is not locally PI.
Furthermore, for each n € {1,2,3} there exists an element of Aa(k) whose centralizer has

GK dimension n.

3.2.2 Centralizers of Elements of k[zy,xs]

We have already seen, in Proposition 3.2.5, that if at most two of the four generators
x1,%2,Y1,y2 occur in a € Ag(k), then GKdim(C'(a; A2(k))) = 3. In this subsection, we
would like to find C(a; A2(k)). We consider two cases. First, suppose that the generators
occurring in @ do not commute with each other, i.e. a € k[z1,y1] or a € k[xa,y2]. This case
is trivial. If a € k[z1,11], then C(a; A2(k)) = Colza, y2] where Cj is the centralizer of a in
klx1,y1] = Ai(k). So in this case C(a; A2(k)) = A1(k) ®k Cp and the problem is reduced to
centralizers in A;(k). A similar result holds if a € k[z2, ya].

The second case, which is not trivial, is when the generators occurring in a commute
with each other. Theorem 3.2.12 solves this case for a € k[x1,z2]. A similar argument can
be used to find C'(a; A2(k)) when a is an element of k[x1,ys], k[y1,y2] or klyi, x2]. The key
in the proof of Theorem 3.2.12 is the element introduced in (3.1). We note that if a € k[z1]
or a € k[xs], then we are back to the first case and so we may assume that %% # 0.

We then give an example of an element of k[x1, z2] whose centralizer has no subalgebra
isomorphic to Aj(k). At the end of this subsection, we prove a necessary condition for a

centralizer in As(k) to contain a nontrivial simple subalgebra.

Theorem 3.2.12. Let a € k[z1,x2] and suppose that %({%‘2 #0. Let d := gcd((%‘17 %).
Let (.%f; = pd, 59—;1 = qd and u := py1 — qy2. Then C(a; Az(k)) = k[z1, z2,u].

Proof. Let C := C(a; A2(k)). We have
Oa da
u,al = ,al — ,a| =p— —q=— =20
[u. al = plyr, o] = alye, o] =pg — — a5
and so u € C. We note that the set {1,u,u?,...} is linearly independent over k[z1,z2].
To see this, suppose to the contrary that n is the smallest integer for which there exist

Vg, - - -, Uy € k[x1, 2] With v, # 0 such that Y ;v;u’ = 0. Then

n
0= Zvi [u', 1] = npv,u™ ! 4 (terms of lower degree in u).
=0
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This contradicts the minimality of n because p # 0.
Now, let
m .
b:= Zbiyi, bi € klx1, 2, ya),
i=0
be any element of C'. We claim that b, = vp™ for some v € k[z1, z2]. To prove this claim,

we equate the coefficients of powers of y; in both sides of ab = ba. That gives

and
2 (m —J 0" a
[bm_wa]‘i‘Z(ZJ)bm_]axuzo,’l/:l,,m (38)
j=0 1
We note that since a € klz1,x2], for every ¢ = >0_, ciyh, ¢; € klz1,x2], we have [c,a] =
rcr(%‘;yg*l + -+ . Thus degc,a] = dege — 1 if dege > 1, where deg is with respect to yo.
So (3.7) and (3.8) imply that degb,,—; =i, i = 0,...,m. In particular b,, € k[z1,x2] and
hence
C N klx1, 22, y2] = k[z1, 22]. (3.9)
Now, let
i
bm—i == Zﬁ?‘,m—iygv 1= 07 cee, M, 57",777,—2' S k[x17x2]~ (310)
r=0

Given ¢ = 1,...,m, the coefficient of yé_l on the left-hand side of (3.8) is the sum of the
coefficients of y& ! in [by,_;,a] and (m — i + 1)bm,i+1§—;1. Thus applying (3.10) gives
) Oa , Oa .
Zﬁiymfiaixz + (m — 1+ 1)ﬁi,17m,i+187$1 = O, 1= 1, cee M. (311)
Multiplying both sides of (3.11) by ¢ and applying the identity pg—;l = q% gives
i,@i,m_ip =+ (m — 4+ 1)ﬁi_1’m_i+1q = 07 ;= 1, ceo, M. (3.12)

It follows from (3.12) that
Bomq™ = (=1)" Bm,op™
and hence p™ divides Sy, = by, because ged(p, g) = 1. So we have proved the claim.
We are now ready to prove that b € k[x1, z2,u]. Let b, = vp"™, where v is some element
of k[xy1,z2]. Since (py1)™ = p™y" + wo for some wy € Az(k) whose degree with respect to

y1 is less than m, we have

u™ = (py1 — qu2)™ = p"yi" + wo
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for some ug € Ay(k) whose degree with respect to y; is less than m. Hence

m m—1
b= E by = vp™y + Z by = vu™ + uy
=0 =0

for some u; € As(k) whose degree with respect to y; is less than m. Since u; = b—vu™ € C,

an induction together with (3.9) show that b € k[z1, x2,u] and so C = k[z1, x2, ul. O

It is not true that every centralizer of GK dimension three in As(k) contains a subalgebra

isomorphic to A;(k). Theorem 3.2.12 gives the following counter-example.

Example 3.2.13. The algebra C' := C(x122; A2(k)) does not contain any subalgebra iso-
morphic to A;(k) but it contains a subalgebra of GK dimension two which is isomorphic to

some subalgebra of A; (k).

Proof. By Theorem 3.2.12, C' = k[z1, x2,u] where u := x1y; — x2y2. For every v € k[x1, x9]
let §(v) := [u,v] = 931(%’1 - .’EQ%. Let b := > " b’ and ¢ = >t cju?, where b;,c; €

k[x1,x2], be two elements of C. Then the constant term of [b, ¢], with respect to u, is

vy = ZbZ(SZ(Co) — ZCjéj(bo).
=1 7j=1

Clearly vy # 1 because the constant term of §"(v), with respect to z1,z2, is zero for all

v € k[x1,z2] and all integers r > 1.

For the second part, consider the subalgebra k[zi,u| of C. Since [u,z1] = x1, we can
embed k[x1,u] into Aj(k) = % via the map z1 — s and u > st. O

We now give a necessary condition for a centralizer in As(k) to contain a simple subal-

gebra B # k. We first need two lemmas.

Lemma 3.2.14. ([37, Proposition 3.12]) Let A and B be k-algebras. If GKdim(B) < 2,
then GKdim(A ®; B) = GKdim(A) + GKdim(B).

Lemma 3.2.15. Let A be a k-algebra and let B be a central simple k-subalgebra of A. If C
is a k-subalgebra of C(B; A), then B ®) C = BC.

Proof. Define the k-algebra homomorphism ¢ : B ®; C — BC by ¢(b ® ¢) = be, b €
B, c € C, which is clearly surjective. Suppose that ker p # (0) and let n be the smallest

integer for which there exist nonzero elements b; € B and k-linearly independent elements



CHAPTER 3. CENTRALIZERS IN Ay(K) AND K[X, X1, 0] 87

¢; € C such that """ | byc; = 0. Since B is simple, there exist x;,y; € B and integer m such
that >0, x;b1y; = 1. For each i let b} := 3", 2;b;y;. Then

1+ Zb;cz‘ =0. (3.13)
=2

Now let b € B. Then (3.13) gives Y ;" o(bb; — bjb)c; = 0 and so bb] = ;b for all i, by the
minimality of n. Therefore b, € Z(B) = k for all i and hence, by (3.13), the elements

c1,...,cy are k-linearly dependent, contradiction! O

Proposition 3.2.16. Let a € Az(k) \ k and C := C(a;Az(k)). If B # k is a simple
subalgebra of C, then GKdim(C') = 3, GKdim(B) = 2 and J N k[z] # (0) for all nonzero
ideals J of C and all z € Z(C) \ k.

Proof. If GKdim(C') # 3, then C' is commutative, by Proposition 3.2.4, and hence B is a
field which gives the contradiction B = k. Thus GKdim(C') = 3 and so
3 = GKdim(C) > GKdim(k[a]B) = GKdim(k[a]) + GKdim(B) = 1 + GKdim(B),

by Lemma 3.2.15 and Lemma 3.2.14. Hence GKdim(B) < 2. If GKdim(B) < 1, then
B is a field, by Proposition 1.6.32, and so we have the contradiction B = k. Therefore
GKdim(B) > 1 and so GKdim(B) = 2 by Theorem 1.6.15.

For the second part, suppose to the contrary that J N k[z] = (0) for some nonzero ideal
J of C and some z € Z(C) \ k. Since B is simple, we have BN .J = (0) and so the natural
homomorphisms k[z] — C/J and B — C/J are injective. So we may assume that C'/.J

contains k[z|B. By Proposition 1.6.6,

GKdim(k[z]B) < GKdim(C/J) < GKdim(C) —1 =2
and hence, by Lemma 3.2.15 and Lemma 3.2.14,

2 > GKdim(k[z]B) = GKdim(k[z]) + GKdim(B) = 3,

which is absurd. O

3.3 Centralizers in Skew Laurent Polynomial Algebras

Let R be a ring and let o € Aut(R). We defined the skew polynomial ring S = R[z; ] in
Definition 2.2.2. Let
X ={1l,z,2% -}
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Clearly X is a multiplicatively closed subset of S. The claim is that X is a denominator set
and thus the localization of S at X exists. It is clear that all elements of X are regular. So we
only need to show that X is Ore. Let f =Y (riz® € Sanda™ € X. Let g = > 1, o™ (r;)a!
and h = Y o ™(r;)z’. Then 2™ f = gz™ and fz™ = 2™h. Thus X is Ore and hence
X718 = SX 1 exists. It is clear that an element of SX ! is in the form Y1 r;2' where
m < n are integers and r; € R. Of course, we still have the right multiplication rule, i.e.
xr = o(r)x because SX ! contains R[z;0]. Since o is an automorphism, it is invertible and
so the right multiplication rule implies that z"r = ¢"(r)z" for all n € Z. We call SX~! a
skew Laurent polynomial ring over R and we write SX ! = R[z,27!;0]. Note that if R is

1. 5] is a domain too.

a domain, then R[z,z~

Now, let K be a field and o0 € Aut(K). An argument similar to the standard proof of
the Hilbert basis theorem shows that B := K[z, x71; 0] is noetherian [48, Theorem 1.4.5].
Therefore B is an Ore domain, by Proposition 1.2.13, and hence it has a quotient division
algebra. In this section, the goal is to show that if the fixed field k£ of o is algebraically
closed and if A is a k-subalgebra of B, then for every f € A\ K, the centralizer C(f; A) is
a commutative algebra and a free module of finite rank over a polynomial algebra k[u] for
some u € C(f; A). But first we give three examples of algebras which are subalgebras of B
for some field K.

Quantum planes. Let k be a field. Recall that the quantum plane k4|, y] is the k-algebra
generated by z,y subject to the relation yr = gzy where 0 # ¢ € k. Let B = k(u)[v,v™1; 0]
where the automorphism o is defined by o(u) = qu. The algebra ky[z,y] has the obvious
embedding = — u, y — v, into B.

The first Weyl algebra. Let k be a field of characteristic zero. Recall that the first Weyl
algebra Aj(k) is the k-algebra generated by x,y subject to the relation yz = xy + 1. Let

B = k(u)[v,v~1; 0] where the automorphism o is defined by o(u) = u + 1. Define
v:k{z,y) — B
by ¢(x) = v~'u and ¢(y) = v and then extend ¢ homomorphically to k(z,y). Then
olyr —zy— D =uv—v'w—-1=u—c(upwv-—1=u—(u—1)—1=0.

Thus (yz —xy — 1) C ker ¢ and so ¢ induces a k-algebra homomorphism

k(z,y)

_2d 4B
(yr — 2y —1)

Ay (k) =
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The above homomorphism is injective because A;(k) is simple.

Finitely generated graded algebras of GK dimension two. Let k be a field and let A be a
k-algebra. Suppose that there exist k-vector subspaces A;, ¢ > 0 of A such that A4;A; C A;;
for all 4,5 > 0, and A = @izo A;, as k-vector spaces. The algebra A is called a graded k-
algebra. If Ay = k, then A is called connected. An element a € A is called homogeneous if
a € A; for some ¢ > 0. If 0 £ a € A, then a = Z?:o a; for some a; € A; with a,, # 0. Now
suppose that A is a domain of finite GK dimension. Then A is an Ore domain by Corollary
1.6.9. Let Q(A) be the quotient division algebra of A. There is another quotient ring related
to A that we are now going to define. Let

S =[] 4\ {0},
i>0
which is clearly multiplicatively closed. The claim is that S is Ore. Suppose first that
a,s € S. Then, since A is Ore, there exist b,c¢ € A such that ba = cs. Let b= Y7 b;,c =
ZT:O cj, where b; € A;,c; € Aj and byc,,, # 0. Then ba = cs implies that b.a = ¢y, s and so
Asn Ss # (0). For the general case, let 0 #a =" ja; € A, ap, # 0 and s € S. By what
we have just proved, there exists sg € S such that sgag € As. In general, for every 0 <i <n
there exists some s; € S such that s;s;_1---s1s0a; € As. So if we let t = s,,8,,_1--- 89 € 5,
then ta € As and hence As N Sa # (0).

Therefore we can localize A at S and we call S™'A the graded quotient ring of A. Let

Qgr(A) denote the graded quotient ring of A. Clearly A C Qg(A) € Q(A). Now let

D={a"': a,be A,,a#0, n>0}.

It is easy to see that D is a division k-subalgebra of Qg (A) and obviously Ay C D. Choose
and fix an element 0 # ¢ € Ay and let z = ¢~ 1. If d = a7 b € D, then xdx~! = (ac)~tbe € D
and so we have o € Aut(D) defined by

o(d) = zdz™"

and so xd = o(d)x for all d € D. Note that if o € k, then o(ad) = ao(d) because k
is in the center of A. Now let ¢ = a~'b, where 0 # a € A,,,b € A,. If n > m, then
c"Ma € A, and hence (ac®™)"1b € D. Thus ¢ € D™ ". If m > n, then a~'bc™ " € D
and hence ¢ € Dz™ ™. So we have proved that Qg (A) = D[z,z71;0]. It is known that
if k is algebraically closed and A is a connected finitely generated graded algebra of GK
dimension two, then D is a field [8] and so Qg (A) = K[z,27 ;0] for some field K.
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Assumption. For the rest of this section, K is a field and o € Aut(K). We assume that
k is the fixed field of o and that k is algebraically closed. If K = k, then K|[z,z~!;0] is
commutative and so not interesting for our purpose. So we assume that K # k. An element
g € K[z,27%;0] is in the form g = Y1 a2’ a;, m,n € Z, m < n. We assume that
Aman 7 0.

Definition 3.3.1. If ¢ = Y. a;2' € K[z,271;0], then the integers o(g) := m and
deg g := n are called the order and the degree of g, respectively.

We are now going to prove our main result in this section. We begin with a lemma.
Lemma 3.3.2. If 0" (c) = ¢ for some ¢ € K and some integer m # 0, then c € k.

Proof. Clearly we may assume that m > 0. Let
m—1 )
p(x) =[] (z = o'(0)) € Ka].
i=0
Then p(c) = 0 and each coefficient of p(x) is invariant under o. Thus p(x) € k[z] and so ¢ is
algebraic over k. Hence ¢ € k because k is algebraically closed. O
It is easy to see that the center of K[z, ';0] is k. A nontrivial result is the following.

Corollary 3.3.3. The center of the quotient division algebra of K[x,x~1; 0] is k.

Proof. Let Q be the quotient division algebra of K[z,77!;0] and let 0 # ¢ = a~'b € Z(Q),
the center of ). Let

n S
a= Z ai:vi, b= Zbixi, anbs # 0.
=m i=r

Since g € Z(Q), we have paq = gpa for all p € Q and thus apb = bpa. Let p1 = 2%, u € Z
and py = v € K. Then equating the coefficients of monomials of highest degree in both sides
of ap1b = bp1a and apab = bpsa gives

a0 (bs) = bso* T (ay,), ano"™(ybs) = bso®(yay). (3.14)

We claim that n = s and b,, = aa, for some a € k. So suppose that n # s and let u = —s.
Then the first equation in (3.14) gives 0" *(bs) = bs and, since n — s # 0, we have bs € k

by Lemma 3.3.2. The same equation then gives 05t%(a,,) = a, for all integers u and hence
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an € k by Lemma 3.3.2. But then the second equation in (3.14) becomes " *(y) = ~ for
all v € K. Thus, since n — s # 0, Lemma 3.3.2 gives the contradiction K = k. So n = s.
Now, the first equation in (3.14), with u = 1 — n, gives o(a,'b,) = a,'b, and hence
a, b, € k. So b, = aa, for some a € k. We now show that ¢ = «, which completes the
proof. Suppose, to the contrary, that ¢ — «a # 0. Clearly ¢ — a € Z(Q) because ¢, € Z(Q).
Thus a ' (b — aa) = ¢ — a € Z(Q) and so dega = deg(b — aa). But this is not possible

because b, = aa,, and so deg(b — aa) < n = dega. O

Corollary 3.3.4. Let A be a k-subalgebra of K[z,z ';0] and let f =Y " ax’ € A\ k.
Let g =Y :_ biz" and h =31, c;x® be two elements of C(f; A). If r =t and either m # 0
orr # 0, then b.c;' € k. Similarly, if s = u and either n # 0 or s # 0, then bsc; ! € k.

Proof. We only prove the first part because the proof of the second part is similar. Equating
The coefficients of 2" in both sides of fg = gf and fh = hf gives

o (by) = bro (am)

and

amo™(¢cr) = o (am).

Therefore b.c, ' = o™ (b.c;}). Thus, by Lemma 3.3.2, either m = 0 or b.c;! € k. But if
m = 0, then r # 0 and 0" (ag) = ap. Hence ayp € k and so we can replace f with f — ag
because C(f; A) = C(f — ao; A). O

Lemma 3.3.5. Let F' be an algebraically closed field and let A be a domain and an F-algebra.
If A is a finite module over some polynomial algebra Fla], a € A, then A is commutative

and a free module of finite rank over F[a).

Proof. By Proposition 1.6.23, GKdim(A) = GKdim(F[a]) = 1 and hence A is commutative
by Proposition 1.6.32. Since A is a domain, it is torsion free as F'[a]-module and the result
now follows from the fundamental theorem for finitely generated modules over a principal

ideal domain. ]

Lemma 3.3.6. Let A be a k-subalgebra of K[z, 27 1;0] and let f € A\ K. Let C := C(f; A)
and Cyp := C N K[x;o]. Then CNK = k and if u € Cy with degu > 1, then Cy is

commutative and a free module of finite rank over klu].
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Proof. Let c€e CNK and let f =" a;x’. Then fc = cf gives 0™(c) = 0"(c) = c. Thus,
by Lemma 3.3.2, either m = n = 0, which is not possible because f ¢ K, or ¢ € k. Hence
CNK=k.

Now, for any remainder ¢ modulo m = degu let u; € Cp, if it exists, be such that
degu; =7 mod m and degu; is as small as possible. We choose ug = 1. Now let v € Cy. If
degv =0, thenv € CNK = k. If degv > 0, then degv = degu; mod n for some i and so
deg v — degu; = rm for some integer r > 0. Hence we can apply Corollary 3.3.4 to get some
a € k such that deg(v — au"u;) < degu. We can continue this process to eventually have
Co = > k[u]u;. The result now follows from Lemma 3.3.5. O

We are now ready to prove the main result of this section. Let A be a subalgebra of
Klz,z7';0] and let f € A\ k. Suppose that g(x) = Y. a;x’ and h(z) = Y ;_, bia’ are
in C(f; A). The crucial step in the proof of Theorem 3.3.7 is to show that if m = r (resp.
n = s), then a;,b,! € k (resp. a,b,' € k). After proving this, we look at the degree and
the order of elements of C'(f; A) modulo the degree and the order of f.

Theorem 3.3.7. Let A be a subalgebra of Klx,x ;0] Let f = > 1 aix’ € A\ k and
C:=C(f;A). If fe K, then C = ANK. If f ¢ K, then C is commutative and a free

module of finite rank over k[u] for some u € C.

Proof. If f =ap € K and g = Y_;_ bz’ € C, then fg = gf gives 0" (ap) = 0°(ag) = ap and
hence, since f ¢ k, we must have r = s = 0 by Lemma 3.3.2. Thus g € K and so C = ANK.
Now, suppose that f ¢ K. We consider two cases.

Case 1. C'N Klz;0] = C: this case follows from Lemma 3.3.6.

Case 2. C N Klz;o] # C: so there exists some h € C such that o(h) = p < 0. For any
remainder ¢ modulo p let h; € C, if it exists of course, be such that o(h;) < 0, o(h;) =1
mod p and o(h;) is as large as possible. We choose hg = 1. We claim that

C => k[hh; + C N Klz;o]. (3.15)

To prove the claim, let w € C. If o(w) = 0, then w € C N K[x;0]. If o(w) < 0, then
o(w) = o(h;) mod p for some i. Let o(w) — o(h;) = tp. Then t > 0 and, since o(w) # 0,
there exists some (3 € k such that o(w — Sh'hj) > o(w) by Corollary 3.3.4. Continuing in
this manner, we will eventually get (3.15). Now, if C N K[z;0] = k, then C = ) k[h]h;;,
because hg = 1 and so k C k[h]hg, and we are done by Lemma 3.3.5.
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So we may assume that C' N K[z;0] # k and hence we can choose
g=by+---+bx® € CNK|z;0]

with s > 1. Suppose that by # 0. If m = o(f) < 0, then gf = fg implies that a,,,0c™(by) =
ambp and thus o (bg) = by. Therefore, by Lemma 3.3.2, by € k. So g — by € C and
o(g —bo) > 1. If m = 0, then hf = fh implies ag € k. So f —ap € C and o(f — ag) > 1.
Thus C'N K[x; 0] contains an element of order at least one. So we may assume that by = 0.
By Lemma 3.3.6,

CN K[zl = klglgi (3.16)
for some g; € C'N Klz; 0], and C N K[z;0] is commutative. Now, let z € C. Since o(g) > 1,

there exists an integer ¢ > 0 such that

z¢" € CNK[z;0] = Zkz[g]gj.

Therefore, in the quotient division algebra of K[z,z!;0], we have z € > k[g, g~ ']¢; and

hence
CC> klgg g

Thus C' is commutative and finitely generated, as a k-algebra, by (3.15) and (3.16). Also,
GKdim(C) =1 by Corollary 1.6.27 and Proposition 1.6.23. Thus C is a finite module over
klu] for some u € C' by Theorem 1.6.24 or Proposition 1.6.30. Now, Lemma 3.3.5 completes
the proof the theorem. O

Remark 3.3.8. The element u in Theorem 3.3.7 is not always f. It is easy to see that
C:=C(z;Klz,z7 Y 0]) = k[z,27 1. Let f1,..., fn € C. Clearly the set

{o(g): g€ Zk[x]fi}

is bounded from below and thus C' # Y7 | k[z]f;. However, if we choose u = x + 2~ !, then

an induction shows that «" € k[u|x + Ek[u] for all n € Z and hence C = k[u|x + k[u].

In fact, in the above remark, the set {1,z} is a basis for the k[u]-module C. To see
this, suppose that 1,z are k[ul-linearly dependent. Then fx = g for some f,g € klu].
Let f =" ai(z+2 Y and g = 310 Bi(x + 27 1), where oy, 3; € k and a8, # 0.
If n > m, then multiplying fx = g by 2™ and equating the z-degree of both sides gives
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m = n + 1, which is false. If n < m, then multiplying fx = g by ™ and equating the
constant coefficients of both sides gives 3, = 0, which is false again. Thus the set {1,z} is

klu]-linearly independent.

Remark 3.3.9. The result in Theorem 3.3.7 does not hold if k£ is not algebraically closed
even if |o| = co. To see this, let p, be the n-th prime number and let ¢, := exp(27i/py),

the p,-th primitive root of unity. Let K = Q((1,(2,...). The set

{Gue G s2 L 0 ai<py, — 1)

Ng?

is a Q-basis for K. Define the Q-automorphism o € Aut(K) by o(¢,) = ¢2, n > 1. Clearly
|o| = oo and the fixed field k of o is not algebraically closed. Now, in K|[z,z~!;0], the
elements (3 and = do not commute with each other but they both commute with z2. So the
centralizer of 2 is not commutative. Also, note that 2 is not central because, for example,

it does not commute with (5.

3.4 Problems

Let k be a field of characteristic zero. By Amitsur’s theorem, the centralizer of every element
of Aj(k) is a finitely generated algebra. We proved in the second section of this chapter that
if a € Ag(k) and if at most two generators of four generators x1,x2,y1,y2 of A2(k) appear
in a, then the centralizer of a in Ay (k) is a finitely generated k-algebra. It is natural to ask

the following question.

Question 1. Is it true that the centralizer of every element of As(k) is a finitely generated

k-algebra?

There is an interesting connection between the problem of finite generation of centralizers
in Ay(k) and a weak version of Dixmier’s Fourth Problem [22], which is still open [11]. We
first recall the notions of a filtered algebra and its associated graded algebra. This is basically
a generalization of the notion of a graded algebra. Let A be a k-algebra and suppose that
there exists a sequence By C By C --- of k-subspaces of A such that A = Uizo B; and
B;B; C B;yj for all 7,j. The algebra A is called a filtered algebra. Now define the k-
vector space of gr(A) := €P,5 Ci, where C; = B;/B;—; for all i > 0 and B_; := (0). The
multiplication in gr(A) is defined by (u+B;_1)(v+Bj_1) = uwv+B;1j_1 forallu € B;,v € B;
and all 7, 7. It is easy to see that this multiplication is well-defined and it gives gr(A) the
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structure of a graded algebra. The algebra gr(A) is called the associated graded algebra of
A.

Now let a € Ai(k) and let § : Aj(k) — Ai(k) be the map defined by §(u) = [u, a] for
every u € Ay(k). For any integer i > 0 let N(a,i) := ker 0. Let N(a) := U;> N(a, ). Tt
is easy to see that C(a; A1(k)) = N(a,0) C N(a,1) C --- and N(a,i)N(a,j) € N(a,i+ j)
for all ,j. So N(a) is a filtered algebra.

Dizmier’s Fourth Problem. Is gr(N(a)) a finitely generated k-algebra?

We note that if the answer to Dixmier’s Fourth Problem is positive, then N(a) would
be finitely generated too. So the problem of finite generation of N(a) is a weak version
of Dixmier’s Fourth Problem. V. Bavula [9] proved that if a is a homogeneous element of
Ai(k), then N(a) is finitely generated. The general case is still open.

The connection between this problem and the problem of finite generation of centralizers

in As(k) is given in the following proposition.

Proposition 3.4.1. Let a = y; + a1 € As(k), where a; € klxa,y2] = Ai(k). Let B =
C(a; k[z1, z2,y2]). Then C(a; A2(k)) = Bla] and B = N(ay). Hence C(a; Az(k)) is finitely
generated if and only if N(ay) is finitely generated.

Proof. Let ¢ = > 1" eyt € Aa(k) where ¢; € k[z1,22,y2]. Let § be the map k[z2,ya] —
E[xg,y2] defined by d(u) = [u,ai] for every u € k[za,y2]. Then ¢ € C(a; Az(k)) if and
only if ¢; € B, for all i, because y; € C(a;A2(k)). Thus C(a; A2(k)) = Blyi] = Blal.
We are now going to prove that B = N(ay). Let b = Z;:o Bj:c{ € klz1,x2,y2], where
Bj € klza,y2]. Then b € B if and only if [b,a] = 0 if and only if 68—;1 = [b,a1] if and only
if 378l = iy 0(8;)x] if and only if 3(8,) = 0 and §(8;) = (j + 1)Bj+1 for all
j <r—1. It now follows that b € B if and only if 3; = %53'(60) for all j and 6"T1(By) = 0.
Sob=37"_, %(W (Bo)z] where Sy is any element of ker §7+1.
We now define the map ¢ : B — N(a1) by

T
1 . .
o | Y =6 (Bo)x] | = Bo
— J-
7=0
and we claim that ¢ is a k-algebra isomorphism. Let

T 1 . ) S 1 . )
bi=)_ 38 (Bo)at, b = > RSO
j=0 j=0
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be two elements of B with r < s. We first show that ¢ is k-linear. Since §"*1(5y) = 0,
we have 6/(fp) = 0 for all j > r and hence b; = > =0 %5j(,80)m{. Let o € k. We have
§°F1(Bo + ayo) = 0. Thus

o(by + aby) = Z 07 (Bo+ ayo)z] | = Bo+ avo = w(b1) + ap(by).

Clearly ¢ is one-to-one and onto.

So we only need to show that ¢(b1ba) = ¢(b1)p(bs). Since § is a derivation, we have
6*(Boyo) = ZH] —t ( )52(@’0)53 (70). Hence 6"+ (Byy0) = 0 and

78 (Bov0) = 3 578" (B)d” (30)

ij=t
On the other hand, .
bibp=>» > ,L (B0)& (7o)
t=0 i+j=t
Thus bi1by = Z:+§ tl, 8 (Boyo)x} and hence p(b1b2) = Bovo = w(b1)p(b2). O

Question 2. Let k be a field of characteristic zero. Is it true that GKdim(C/(a; A, (k))) is
an integer for all n and all a € Ay (k)?

The last question is related to Theorem 3.2.12 and Example 3.2.13.

Question 3. Is it true that if a € klx1,x2], then C(a; A2(k)) always contains a subalgebra

of GK dimension two which is isomorphic to some subalgebra of Ay(k)?



Chapter 4

Division Rings that are Left
Algebraic over a Subfield

4.1 Introduction

Kurosch [38], see also [56, Problem 6.2.6] asked whether or not an algebra that is both finitely
generated and algebraic over a field k is necessarily finite-dimensional over k. Kurosch’s
problem is a ring-theoretic analogue of Burnside’s problem for groups. Both problem were
shown to have a negative answer by Golod and Shafarevich [31]. In fact, Golod [30] used their
construction to give an example of a finitely generated infinite group G with the property
that every element in G has finite order, giving a negative answer to Burnside’s problem.
As Rowen [56, p. 116] points out, there are two special cases of Kurosch’s problem: the case
that the algebra we consider is a division ring and the case that it is a nil ring.

Many examples of finitely generated algebraic algebras that are not finite-dimensional
over their base fields now exist [12, 63, 61, 62, 42]. The strangest of these examples are due
to Smoktunowicz, who showed a simple nil algebra (without 1) exists [61] and that there
is a nil algebra (without 1) with the property that the polynomial ring over it contains a
free algebra on two generators [62]. Lenagan and Smoktunowicz [42] also showed that there
is a finitely generated nil algebra (without 1) that is infinite-dimensional over its base field
but has finite Gelfand-Kirillov dimension [42]. Despite the large number of pathological
examples of nil rings, there are no similar pathological examples of algebraic division rings.

At the moment, all known examples of algebraic division rings have the property that every

97
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finitely generated subalgebra is finite-dimensional over its center. Kaplansky considered
algebraic algebras that have the stronger property that there is a natural number d such that
every element of the algebra is algebraic of degree at most d. With this stronger property,
one avoids the pathologies that arise when one considers algebras that are algebraic. Such
algebras are PI by Theorem 1.4.9 and if they are primitive, then they are finite-dimensional
over their centers by Theorem 1.4.25. In fact, a primitive algebra that is finite-dimensional
over its center is a matrix ring over a division ring by Theorem 1.3.4.

We consider an analogue of Kaplansky’s result for division rings that are left algebraic

over some subfield.

Definition 4.1.1. Let A be a ring and let B be a subring of A such that A is a free left
B-module. We say that A is left algebraic over B if for every a € A there is some natural

number n and some elements «g, ..., a, € B such that «,, is regular and

n

EI ) —
aja’ = 0.

J=0

The left algebraic property has been used by Bell and Rogalski in investigating the
existence of free subalgebras of division rings [15]. In section 3, we give an analogue of
Kaplansky’s result in which we replace the algebraic property with being left algebraic over
a subfield.

Theorem 4.1.2. Let d be a natural number, let D be a division ring with center Z(D), and
let K be a (not necessarily central) subfield of D. If D is left algebraic of bounded degree d
over K then [D : Z(D)] < d?.

We note that the bound of d? in the conclusion of the statement of Theorem 4.1.2 is
the best possible. For example, let k£ be a field and let ¢ be an automorphism of k& with
|o| = d. Let F be the fixed field of 0. Let D be the ring of formal skew Laurent series in z, i.e.
D = {3} ', n€Z,a; €k}, where we define multiplication in D by zae = o(a)z, o € k.
It is easy to see that D is a division ring and Z(D) is the field of formal Laurent series in
z? over F,ie. Z(D)= {3 ciz¥ n € 7Z, a; € F}. Let Fy be the field of formal Laurent
series in 2% over k. Then {1,z,...,2% '} is a basis for D/F| and [F| : Z(D)] = |o| = d.
Thus [D : Z(D)] = d?. In particular, D is algebraic over Z(D) and since =% € Z(D), every
element of D is algebraic of degree at most d over Z (D).

The fact that K in Theorem 4.1.2 is not necessarily central complicates matters and

as a result our proof is considerably different from Kaplansky’s proof. We rely heavily on
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combinatorial results on semigroups due to A. Shirshov [58]. Usually Shirshov’s theorem
is applied to finitely generated Pl-algebras R. It gives that the sufficiently long words on
the generators contain either a g-decomposable subword or a high power of a nontrivial
subword. The existence of a multilinear polynomial identity replaces the g-decomposable
subword with a linear combination of words which are lower in the degree lexicographic order
and the algebra R is spanned by words which behave like monomials in a finite number of
commuting variables.

In section 2, we establish a new version of Shirshov’s theorem which states that the
factors in the g-decomposition may be chosen to be of almost the same length. Using
these combinatorial results, we are able to prove that every finitely generated subalgebra
of D satisfies a polynomial identity. Then we use classical results of structure theory of

Pl-algebras to complete the proof of Theorem 4.1.2.

4.2 A New Version of Shirshov’s Theorem

In this section, we recall some of the basic facts from combinatorics on words and use them
to give a strengthening of Shirshov’s theorem.

Let M be the free monoid consisting of all words over a finite alphabet {z1,...,zy}.
Let |w| denote the length of w € M. We put a degree lexicographic order on all words in
M by declaring that

Ty = Tg e = Ty

Given a word w € M and a natural number g, we say that w is g-decomposable if there
exist wr,...,wy € M such that w = wjws - - - wy and for all permutations o € Sym(q) with
o # id we have

Wiw2 -+ Wq > Wo(1)We(2) *** Wo(q)-

If in addition, we can choose wy, ..., w, such that (¢ — 1)|w;| < |w| for all i € {1,...,q}, we
say that w is strongly q-decomposable. Shirshov proved the following famous combinatorial

theorem.

Theorem 4.2.1. (Shirshov, [58], see also [54, Lemma 4.2.5]) Let m, p, and q be natural
numbers and let M be the free monoid generated by m elements x1,...,xy,. Then there

exists a positive integer N(m,p,q), depending on m, p, and q, such that every word on



CHAPTER 4. DIVISION RINGS THAT ARE LEFT ALGEBRAIC OVER A SUBFIELD100

X1,...,Tm of length greater than N(m,p,q) has either a q-decomposable subword or has a

nontrivial subword of the form wP.

By following the proof of Pirillo [49], we are able to give a strengthened version of
Shirshov’s theorem. We first give some of the basic background from combinatorics on
words.

Let ¥ = {z1,...,24} be a finite alphabet. We say that w is a right infinite word over
the alphabet X if there is some map f: N — X such that

w=f1)f(2)f(3)--

We say that v is a subword of the right infinite word w if there exist natural numbers ¢ and

7 with ¢ < j such that
v=f)fi+1)---f()

We say that the right infinite word w is uniformly recurrent if for each subword v of w there
exists some natural number N = N (v) such that the word f(¢)f(i+1)--- f(i+ N) contains
v as a subword for all ¢ > 1. Given ¢ < j, we let v[i, j| denote the subword of v that starts
at position ¢ and ends at position j.

We recall two classical results in the theory of combinatorics of words. The first one is a
consequence of Konig’s infinity lemma in graph theory [36] which gives a sufficient condition

for an infinite graph to have an infinitely long path, see e.g. [3, p. 28, Exercise 41].

Theorem 4.2.2. (Konig) Let X be a finite alphabet and let S be an infinite subset of the
free monoid X* generated by X. Then there is a right infinite word w over X such that every

subword of w is a subword of some word in S.

Theorem 4.2.3. (Furstenberg, [28], see also [3, p. 337, Exercise 22]|) Let ¥ be a finite
alphabet and let w be a right infinite word over X. Then there is a right infinite uniformly

recurrent word u over Y such that every subword of u is also a subword of w.
Using these results, we are able to prove the following result.

Theorem 4.2.4. Let m, p, and q be natural numbers and let M be a free monoid generated
by m elements x1,...,Ty. Then there exists a positive integer N (m,p,q), depending on m,
p, and q, such that every word on x1,...,x,, of length greater than N(m,p,q) has either a

strongly q-decomposable subword or has a nontrivial subword of the form tP.
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Proof. Suppose to the contrary that there are arbitrarily long words in M that do not have
a subword of the form P or a strongly g-decomposable subword. Clearly ¢ > 2. Then by
Ko6nig’s theorem there is a right infinite word w over {z1,...,z,,} such that each finite
subword v of w has the property that it does not have a subword of the form t* or a strongly
g-decomposable subword. By Furstenberg’s theorem, there is a right infinite uniformly
recurrent word u such that each subword of u has the property that it does not have a
subword of the form t* or a strongly ¢-decomposable subword. Let w(n) denote the number
of distinct subwords of u of length n. Then w(n) is not O(1), since otherwise we would
have wu is eventually periodic and thus it would have a subword of the form tP. Hence there
is some natural number N such that there are at least ¢ distinct subwords of u of length
N. Let wy; > wg > --- = wy be g such words of length N. Since wy,...,w, are uniformly
recurrent in u, there is some natural number L such that wq,...,wq occur in the interval
ulé,i + L] for each i. Then there is an occurrence of w; somewhere in u[l,1+ L]. We
let j1 € {1,...,1+ L} denote the position of the first letter of w; in some occurrence in
u[l,1 + L]. Then there is an occurrence of wy somewhere in u[2Lq + 1,2Lqg + L + 1]; we
let jo denote its starting position. Continuing in this manner, we define natural numbers
J1s---,Jq such that j; € [2Lq(i — 1) +1,2Lg(i — 1) + L + 1] for 1 < i < ¢ and such that
w; = uljs, ji + N — 1]. We define u; := u[j;, jig1 — 1] for i € {1,...,q — 1} and we define
Ug = u[jq, Jq + 2Lg]. Then by construction, |u;| < L(2q + 1) for all i and w; is the initial
subword of length N of w; for all 7. In particular, uy - ug = Ug(1) " Us(g for all o # id.

Finally, note that j; < L+ 1, j, > 2Lg(qg — 1) + 1 and hence
lup gl = 2Lg + jg—j1+1>L(2¢* = 1) + 1> (¢ — 1)L(2¢ + 1) > (¢ — 1)|u]

for i € {1,...,q}, which contradicts the assumption that u does not contain strongly g-

decomposable subwords. ]

4.3 An Analogue of Kaplansky’s Theorem

In this section we prove Theorem 4.1.2. Let D be a division ring with center k. The proof
is done by a series of reductions. We first prove that if D is left algebraic of bounded degree
over a subfield K, then every finitely generated k-subalgebra satisfies a standard polynomial
identity. We then use a theorem of Albert, i.e. Theorem 4.3.1, to prove that D must satisfy

a standard identity. From there, we prove the main theorem by embedding D in a matrix
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ring and looking at degrees of minimal polynomials. We begin the proof of Theorem 4.1.2

with stating a theorem of Albert.

Theorem 4.3.1. (Albert, [2]) A finite-dimensional central division k-algebra is generated

by two elements as a k-algebra.

We now prove the first step in our reduction. For the definition of the standard polyno-

mial identity S¢ see Definition 1.4.5.

Lemma 4.3.2. Let the division algebra D be left algebraic of bounded degree d over a (not
necessarily central) subfield K. If m is a natural number, then there is a positive integer
C = C(m,d), depending only on d and m, such that every k-subalgebra of D that is generated

by m elements satisfies the standard polynomial identity Sc.

Proof. Let x1,...,z, be m elements of D. Consider the k-subalgebra A of D generated by
Z1,...,Tm. We put a degree lexicographic order on all words over {x1, ..., x,,} by declaring
that

Ty > T2 > - > Ty

Let N = N(m,d,d) be a positive integer satisfying the conclusion of the statement of
Theorem 4.2.1 in which we take p = ¢ = d. We claim that the left K-vector space V := KA
is spanned by all words in x1,...,x,, of length at most N. To see this, suppose that the
claim is false and let w be the smallest degree lexicographically word with the property that
it is not in the left K-span of all words of length at most N. Then w must have length strictly
greater than N and so by Theorem 4.2.4, either w has a strongly d-decomposable subword

or w has a nontrivial subword of the form u®. If w has a nontrivial subword of the form u®

dw,y. Notice that conjugation by w; gives an automorphism of D

then we can write w = wiu
and so D must also be left algebraic of bounded degree d over the subfield F' := w; LKw;.
Notice that the sum

Ful + Fu' 4 ...+ F
is not direct and thus we can find «ay,...,aq—1 € K such that

d -1 d—1 -1
U =Wy g 1wy + -+ wy Tapwi.
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Thus

w = wlude
_ -1 d—1 -1
= w1 |Wy ag1wiu + -+ w; Tapwr | wa

d—1
= Qg_1wiu w2 + -+ qpwiwsy

€ ZKU.

v<w

By the minimality of w, we get an immediate contradiction. Similarly, if w has a strongly

d-decomposable subword, then we can write
W = wiuy -+ - UqwWa

where we have

Uy Ud > Ug(1) " Ug(d)

for all id # o € Sym(d) and such that (d — 1)|u;| < |ug - - ugq| for each i. As before, we let
F = wi'Kw;. Given a subset S C {1,...,d}, we let ug = > jes Uj- Then for each subset
S of {1,...,d}, we can find o, ...,aq—1,5 € K such that

uflg = wflad_lwludsfl + -4 wflaowl.
The condition (d — 1)|u;| < |uy - - - ug| implies that if & < d, then
|way - wqy | < Jug-- - udl

and hence u;, - - u;, < uy---uq for all summands of u’fq, k < d. Notice that

SC{1,...,d} o€sym(d)
o#id
and so
w = wiujg---uqwy
d—1
d—|S j
= — Z Wilg(1) - - - Ug(d)W2 + Z Z(—l) 15l gwiudwg
o€Sym(d) SC{1,...,d} =0
o#id

S ZK’U.

v<w
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By the minimality of w, we get a contradiction. Thus V = K A is indeed spanned by all
words over {z1,..., T} of length at most N. Consequently, V is at most (1 + m + m? +
.-+ + m")-dimensional as a left K-vector space. The right multiplication r, by a € A of
the elements of V' commutes with the left multiplication by elements of K. Hence r, acts
as a linear operator on the left K-vector space V and A embeds in the opposite algebra
Endg (V) of Endg (V). In this way A embeds in the ring of n x n matrices over K for
some n < 1+m+m?+---+m¥. Thus taking C = 2(1 +m +m? +---+m¥) and invoking
the Theorem 1.4.18, we obtain the desired result. O

Lemma 4.3.3. Let D be a division algebra which is left algebraic of bounded degree over a
subfield K. Then every finitely generated division k-subalgebra E of D 1is finite-dimensional

over its center.

Proof. Let E be generated (as a division k-algebra) by x1,..., %, and let A be the k-
subalgebra of E generated by these elements, i.e., A is the k-vector space spanned by
all words over {z1,...,zy,}. By Lemma 4.3.2 the algebra A satisfies a standard identity
Sc = 0 of degree C = C(m,d). Since A is a prime Pl-algebra, @ := Qz(A) is a finite-
dimensional central simple algebra by Theorem 1.5.10. Since A is a subalgebra of F, the
natural embedding ¢ : A — E extends to an injection ¢ : Q — E. Since ((Q) is a subring of
the division ring F, it is a central simple algebra without zero-divisors, i.e. it is a division
algebra. As a division k-algebra ¢(Q) is generated by the same elements zj ..., x,, as the
division k-algebra E. Hence we obtain that (@) = E and E is isomorphic to @) and so E

is finite-dimensional over its center. O

Proposition 4.3.4. Let D be a division algebra that is left algebraic of bounded degree d
over a maximal subfield K. Then D satisfies the standard polynomial identity Sc, where
C = C(2,d) is a constant satisfying the conclusion of the statement of Lemma 4.3.2.

Proof. Let k be the center of D. If D does not satisfy the standard identity S¢ = 0, then
there exists a finitely generated division k-subalgebra E of D such that E does not satisfy
the identity Sc = 0. By Lemma 4.3.3, E is finite-dimensional over its center Z(E). By
Theorem 4.3.1, F is generated by two elements as a Z(F)-algebra. Let a and b be the
generators of the Z(F)-algebra E. By Lemma 4.3.2, the k-algebra A generated by a and b
satisfies the standard identity of degree C' = C(2,d). Since the center k of D is contained
in the center Z(FE) of E and a,b € E, we have that Z(E)A C E. Since F is generated as
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a Z(F)-algebra by a and b we conclude that E = Z(E)A. Thus we have a surjective ring
homomorphism
Z(E) @ A— E

and since A satisfies the standard identity of degree C, the same holds for Z(E) ®; A and
E a contradiction. Thus D satisfies the standard polynomial identity of degree C. 0

We are now ready to prove our main result. We have already shown that if a division
ring D is left algebraic of bounded degree over a subfield K, then D satisfies a polynomial
identity and hence is finite-dimensional over its center. The only thing that remains is to
get the upper bound that is claimed in the statement of Theorem 4.1.2. This is not difficult
if the subfield K is separable over k as one can use a theorem of Brauer and Albert [39,

Theorem 15.16]. The inseparable case presents greater difficulty.

Proof of Theorem 4.1.2. 1t is no loss of generality to assume that K is a maximal subfield
of D. Let k denote the center of D. By Proposition 4.3.4, D satisfies a polynomial identity
and hence it is finite-dimensional over k by Theorem 1.4.25. Let n = \/[D: k]. Then
[D : K] = n and we must show that d > n. We note that D has a separable maximal

subfield L = k(x) and D is a faithful simple left D ®; L-module, via the rule
(@@ a’)(B) = afa’

for j > 0 and «,8 € D (see [39, Theorem 15.12]). We let T' € Endg (D) be defined by
T(a) =ax. If ¢g,...,cn—1 € K then

n
(cold+ -+ + 1T 1) () = (Z ¢ ® xl> ().
i=0
Since D is a faithful D ®; L-module, we see that if
cold+ -4+ cp 1TV 1 =0

n—1

then ¢y = ... = c¢,—1 = 0 and so the operators id, T, ..., T" " are (left) linearly independent

over K. We claim that there exists some y € D such that the sum
K+ KT(y)+ -+ KT" ' (y)

is direct. To see this, we regard D as a left K[X]-module, with action given by f(X) - a
f(T)(«) for f(X) € K[X] and @ € D. Let g(X) denote the minimal polynomial of T over
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k. Then g(X) annihilates D and thus D is a finitely generated torsion K[X]-module. By
the fundamental theorem for finitely generated modules over a principal ideal domain, there

exists some y € D such that
{f(X)e KIX] : f(X)-y=0}={f(X)e K[X] : f(X)-a=0foral ae D} (4.1)

If the sum K + KT(y) + --- + KT !(y) is not direct, then we can find a polynomial
f(X) € K[X] of degree at most n — 1 such that f(T)-y = 0. Thus f(T)-a = 0 for all
a € D by Equation (4.1), which contradicts the fact that the operators id, T, ..., T""! are

(left) linearly independent over K. Hence the sum
K+KT@y)+--+KIT"Yy) = K+ Kyz 4 - + Kyz"!

is direct. Let u = yaxy~!. Then K + Ku + --- + Ku"! is direct. But by assumption, every
element of D is left algebraic over K of degree at most d and thus n < d. O

4.4 Problems

Unlike the algebraic property, which has been extensively studied in rings, the left algebraic
property appears to be new. Many of the important open problems for algebraic algebras
have analogues in which the algebraic property is replaced by being left algebraic. We pose

a few problems.

Question 4. Is it true that a division ring that is finitely generated over its center and left

algebraic over some subfield is finite-dimensional over its center?

Question 5. Let k be an algebraically closed field and let A be a finitely generated noetherian
k-algebra that does not satisfy a polynomial identity. Is it possible for the quotient division

algebra of A to be left algebraic over some subfield?
We note that the right algebraic property can be defined analogously.

Question 6. If a division ring D is left algebraic over a subfield K must D also be right

algebraic over K ?

We believe that the last question has probably been posed before, but we are unaware

of a reference.
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