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Abstract

In cloud computing, to protect privacy when outsourcing database management systems,

confidential data (e.g., bank account balance) has to be encrypted which however renders

traditional query processing methods (e.g., the B-tree index) inapplicable. In this thesis,

we consider processing range query search (e.g., retrieving all records with a bank account

balance being less than some threshold) over a confidential numeric attribute with two

main challenges. First, the confidentiality requires hiding the value and the relative order

of the attribute in records from the cloud server, but computing a range query requires

comparing the values of this attribute. Second, since the encrypted data does not preserve

the closeness of plaintext values (for privacy reasons), a straightforward search has to scan

the entire encrypted data to retrieve wanted records, which is not scalable for data of the

cloud scale. In this work, we present a novel searchable encryption/index scheme to address

these challenges.

Keywords: Privacy; Range Query; Encryption; Cloud Computing; Database as a Service;

Outsourcing; Numeric Attribute; Index
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Chapter 1

Introduction

Cloud computing is no doubt an effective approach to deal with big data, through providing

on-demand high quality services from powerful and configurable computing resources. One

application of cloud computing is “database as a service” [20][21], where the data owner

outsources complex database management systems into the cloud server. To protect data

privacy against attacks from the cloud server, confidential data must be encrypted before

being uploaded to the cloud server. This, however, makes it difficult to perform traditional

query processing operations.

In this thesis, we consider the problem of processing range query search over a confiden-

tial numeric attribute K in an outsourced setting of cloud computing and we assume exact

answers must be returned. In our model, the cloud server is the adversary and it knows

all the plaintext domain values (i.e., all the distinct actual values of K) and has access to

all the encrypted records and queries. In addition, the cloud server possesses background

knowledge of the frequency information about the K values and knows partial correspon-

dence between some plaintext values and ciphertext values (i.e., the cloud server knows

palintext values for some ciphertext values). Our goal is to protect the complete corre-

spondence between plaintext values and ciphertext values for both records and queries from

being disclosed except those obtained by the cloud server from the background knowledge

(i.e., the cloud server should not be able to figure out plaintext values for other ciphertext

values it does not know). We will discuss this in detail in Chapter 3.

This problem faces two challenges. First, the confidentiality requires hiding the values

and the relative order of the attribute in records from the cloud server, but computing a

range query requires comparing the values of this attribute. We will discuss the reason why

1



CHAPTER 1. INTRODUCTION 2

protecting the relative order is important soon in the following context. Second, since the

encrypted data does not preserve the closeness of plaintext values (for privacy reasons), a

straightforward search has to scan the entire encrypted data to retrieve wanted records,

which is not scalable for data of the cloud scale. In this work, we present a novel searchable

encryption/index scheme to address these challenges.

Additionally, the exactness of the returned answers could expose the plaintext frequency

and order information which could be used to help the cloud server to identify the plaintext

values for certain ciphertext values. Here comes the controversy part because the exact

answers, however, are often required. This is because, if additional data is returned (i.e.,

there are false positives), the user will probably get more information than allowed which

could cause privacy concerns for the data owner. If less data is returned (i.e., there are

false negatives), the user will get incomplete answers which will probably become useless.

In this sense, exact answers are often required. In our work here, we do not intend to

achieve full frequency and order privacy to guarantee the exactness of the returned answers.

Brief reasons on why exact answers could disclose the frequency and order information will

be discussed soon and we consider to resolve the issue of exact answers as our future work.

Also, we will use the terms “privacy” and “security” interchangeably in the rest of the thesis

and either of them means that the plaintext values are hidden rather than exposed. And

the attacker here refers to the cloud server.

1.1 Background

In modern society, cloud computing [28] is a promising paradigm which becomes more and

more ubiquitous. In cloud computing, people can flexibly configure computing resources

(e.g., servers, storage systems and applications) and this brings stupendous scalability.

The great advantage of cloud computing can be explained by the following example. For

instance, a startup company wants to do a throwaway computation on big data and this

needs ten servers with database management systems included for storage and computation.

However, after the computation, the company actually does not need the data and the

hardware resources anymore. Before cloud computing, the company has to buy the hardware

(i.e., the ten servers including database management systems) and all these resources would

be useless to that company after computation and thus would be wasted. In addition, the

company also needs to spend time configuring these machines.
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Figure 1.1: Cloud computing logical diagram

But now, in the paradigm of cloud computing, the company can actually rent ten (virtu-

al) machines from Amazon EC2 and use S3 [1] for data storage with much cheaper cost and

all the resources are already configured. This totally frees the company from complicated

configuration by itself and also enable the company to just focus on the computation logic.

More importantly these resources could be collected back and utilized by others after this

company finishes the computation. These resources won’t be wasted and the company saves

cost.

As shown in Figure 1.1: Cloud computing logical diagram 1, cloud computing provides

on-demand services through three “X as a Service” models with three different levels of

resources [28] as follows.

• Infrastructure as a Service (IaaS): In this model, the service provider offers hardware

infrastructure (usually virtual machines) in which the customers can install arbitrary

softwares including operating systems as they want. The customers also have control

over the hardware resources like network and disk storage. Typical examples are

Amazon EC2 [1].

1http://en.wikipedia.org/wiki/File:Cloud_computing.svg
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• Platform as a Service (PaaS): In this model, the customers don’t have control over low-

level services like operating systems but they can freely deploy applications created by

certain programming languages and tools supported by the provider. Typical examples

include Google App Engine [2], Windows Azure Cloud Services [3] and so on.

• Software as a Service (SaaS): In this model, the customers don’t have to be worried

about any deployment issues (since they don’t even have control over any software

installations) but they can just use the applications supported by the service provider.

For example, Gmail, Google App, Microsoft Office 365 are all instances of SaaS.

One application of cloud computing is “database as a service” [20][21], where the data

owner outsources complex database management systems into the cloud (e.g., Amazon Re-

lational Database Service: MySQL, Microsoft SQL Azure: MS SQL). The on-demand high

quality computation power of the cloud server for query evaluation attracts great attention

from the customers and makes such a paradigm itself popular.

As promising as it is, there are also problems and challenges with this “database as a

service” model. The concern comes from the fact that the data is outside the trusted domain

of the data owner but within the cloud server which could be malicious. For instance, a

hospital (the data owner) wants to outsource the medical database into a cloud server for

authorized researchers (the data users) to do analysis. The medical data is confidential so

the server is not allowed to see any plaintext values in the database. As a result, the medical

database needs to be encrypted before it is outsourced. This gives rise to the difficulty to

do query evaluation. Searchable encryption which supports query evaluation directly over

the encrypted data is a promising approach to achieve both the query computation power

from the cloud server and data privacy.

1.2 Motivation

As a big part, range query search is quite common in people’s daily life. It is worthwhile

to support range query search over encrypted data in our context where the cloud server is

the adversary and the cloud server is not allowed to see any plaintext values. So here we

want to consider the problem of processing range query search over a confidential numeric

attribute K for a relational database outsourced to a cloud server. In addition, range query

search is so general that we will later on show query evaluation (i.e., equality test) on a
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categorical attribute could also be treated by the same way as treating a special kind of

range query search (see more discussion in Chapter 3).

More specifically, a range query over a numeric attribute K with domain [α, β] will re-

trieve all records having a K value within a specified query interval [a, b] (a ≤ b, a, b ∈ [α, β]).

We assume that K is confidential (e.g., bank account balance, income, transaction time, and

other sensitive financial information) and our goal here is to protect any plaintext K values

from being disclosed except those obtained by the cloud server due to prior background

knowledge. We aim to achieve the protection of the plaintext values from three confiden-

tiality requirements by protecting the secret key, the frequency information and the relative

order of the encrypted K values. Also, the cloud server should be able to compute the exact

answers from the outsourced encrypted database. We will discuss the goal, the model and

the specific requirements as well as what the cloud server can do and what the cloud server

knows in much more detail in Chapter 3.

Note we give a stronger confidential model by requiring the relative order also to be

confidential here. The confidentiality of the order information results from the following

observation: as we discussed briefly at the beginning of this chapter, the cloud server knows

all the plaintext K values and has access to all the encrypted records. Once the order

information of the encrypted values is exposed, that is, the cloud server knows the ordered

encrypted values u1 < · · · < um. Then with ordered plaintext domain values v1 < · · · < vm,

it is immediately known that ui is the encryption of vi. As a result, it is necessary for us to

protect the relative order information as well.

1.3 Challenges

Although there already has been quite some work on secure processing of equality test, range

query search, aggregation query computation and keyword based query search or similarity

query search (see Chapter 2), little work on secure processing of range query search without

preserving the order information has been reported. A basic challenge is that computing a

range query requires comparing the order of values, but the confidentiality of the attribute

requires that this order be concealed to the cloud server. The usual trick of injecting noises

into values does not work here because it could change the outcome of comparison. The

order preserving encryption [6][15] does not meet our confidentiality requirement because

it preserves the order of plaintext values. The bucketing scheme in [20][24] maps values to
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coarser buckets at the cost of returning false positives, which can be arbitrarily many. Since

the boundary of a bucket corresponds to some range of the numeric attribute, it may be

disclosed by correlating the growth of buckets with background knowledge on such growth.

The homomorphic encryption scheme [22], which is good for aggregation, however, is not

useful for range query search. See more discussions in Chapter 2.

Another challenge is that, since we require the encryption scheme not to preserve the

order information, the encrypted data will not preserve the closeness of plaintext values. So

all the indexing methods based on the order information such as the B-tree index won’t be

useful in our setting. To our knowledge, no efficient indexing method exists to help make

the query evaluation on encrypted data much faster. A straightforward search has to scan

the entire encrypted data to retrieve wanted records. This is not scalable for data of the

cloud scale.

In addition, the frequency analysis attack is a strong attack where the attacker tries

to identify corresponding plaintext values for certain ciphertext values by linking the same

frequency statistics obtained from background knowledge. To resist this attack, a proba-

bilistic encryption (frequency not preserved) has to be adopted instead of a deterministic

one (frequency preserved), yet, we still need to return exact answers. In the simplest case

of frequency analysis attack, to compromise the plaintext content of a search query when

a deterministic encryption (frequency preserved) is adopted, the attacker could collect the

frequency information gradually by keeping a counter for each encrypted query. Then every

time the attacker sees an encrypted query which previously appeared, the counter for this

query is incremented by one. After some time, with high probability, the attacker could map

the encrypted query with the largest counter number (most frequent) to the most frequent

one in plaintext which the attacker knows from the background knowledge. As a result, the

plaintext values of the query could be exposed.

1.4 Contributions

In this thesis, we present a novel probabilistic encryption scheme to address the problem

of range query search over a confidential numeric attribute K without preserving the order

information in an encrypted setting and we also give an efficient indexing method directly

over the encrypted database to give more efficient query evaluation than the linear scan

method. As we briefly discussed at the beginning of this chapter, we need to guarantee
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the exactness of the returned answers which however could disclose the plaintext frequency

and order information. The reason is that repeated queries could be identified based on

the same returned answers and thus frequency information could be inferred. Also, exact

answers guarantee the consecutive property of K among the returned records. For instance,

query answers {X,Y,W} and {F,X, Y } indicate records X,Y are consecutive in the order

of K and thus order information could be exposed. As a result, we do not achieve full

privacy on frequency and order information in our work here and we will discuss the details

of these privacy issues of the exact answers in Chapter 4.6. The contributions of our work

can be summarized as follows.

• The first contribution is a new probabilistic encryption scheme for processing range

query search over a confidential numeric attribute K, assuming that the cloud server

follows the prescribed protocols but is curious about plaintext contents. The scheme

protects the confidential K values and does not preserve the relative order of such

values in encrypted records.

• Also, we propose an indexing method to efficiently evaluate range query search over

encrypted data. Traditional indexing methods on numerical values are usually based

on the order information. However, in our encryption, the order won’t be preserved to

protect privacy and thus making the traditional indexing methods inapplicable here.

The proposed indexing method turns out to be much more efficient than linear scan

by our experiment results which yet does not need to preserve the order information.

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 thoroughly describes the related

work in this area of secure query processing. Chapter 3 formulates the problem of processing

range query search in a systematic way and defines all the assumptions in our setting as

well as the confidential requirements. We also give our system model and the symbol table

which includes a convenient reference to all the symbols we use throughout the thesis in

this chapter. We give the complete detailed encryption scheme in Chapter 4. The indexing

method over the encrypted database is presented in Chapter 5. And the experiment results

and analysis will be discussed in Chapter 6. We conclude the thesis with a summary of

conclusion and future work in Chapter 7.



Chapter 2

Related Work

Encryption is a perfect way to protect data privacy which also gives rise to the difficulty

in executing regular query on such encrypted data. To keep the advantage of computing

ability on the server side, it is not reasonable to download the entire encrypted data and

execute the query on the data after decryption, the cloud server has to have the ability to

execute query directly over the encrypted data and return the correct results to the user.

There have been considerable interests in querying encrypted data and various queries

are considered. Briefly, the works include equality test (e.g., [20][36]), range query search

(e.g., [6][30][32]), aggregation query computation (e.g., [7][22]) as well as keyword based

query search or similarity query search (e.g., [10][35][27]). However, little work on secure

processing of range query search without preserving the order information has been reported.

The basic challenge comes from the following dilemma: a range query requires comparing

the values of the attribute, whereas the privacy model requires hiding the order of such

values. Next, we give a detailed description of the related work.

2.1 Database Area

In the database field, typical works include the following. [20][24] proposed to partition the

domain of K into coarser buckets and replace exact domain values with their corresponding

bucket identifiers. This method suffers from false positives and is vulnerable to linking

attacks [13]. The exactly correct answers still need to be found by decrypting the data.

In addition, if the data growth concentrates on a small number of buckets, the boundary

of such buckets may be re-identified based on the background knowledge on the growth of

8



CHAPTER 2. RELATED WORK 9

certain values in real life.

The work in [23] further addresses how to control the amount of false positives by

adding a second step called “Controlled-Diffusion” to the bucketization algorithm. While

they mainly deal with multidimensional range queries, their redistributed buckets are still

fixed there. As a result, the false positives are not diverse at all.

The order preserving encryption scheme in [6][30] with property that Ek(vi) ≤ Ek(vj)

holds for every pair vi ≤ vj where Ek is the encryption algorithm with secret key k directly

discloses the relative order of the confidential attribute in records. This gives the attacker

a chance to figure out the order preserved encryption u1 < · · · < um, and in a case where

the ordered domain values v1 < · · · < vm are known, it is possible to figure out ui is the

encryption of vi. And [26] gives a specific example about how to compromise the scheme

in [6]. In a word, the order preserving encryption schemes do not meet our confidentiality

requirement.

The work in [32] presents a scheme to allow an authorized auditor to retrieve encrypted

log records that fall into an interval of time. Their motivation and setting are quite different

from ours, and they do not consider the selection attribute as confidential because the order

and intervals of such attributes are all known to the sever.

The line of research on aggregation queries, e.g., [7], assumes that the aggregation at-

tribute is sensitive but the selection attribute is not, and employs the homomorphic en-

cryption scheme to compute the aggregation operation [22]. This encryption scheme is

not applicable to range query search. In addition, as discussed in [38], the homomorphic

encryption in [22] is not fully secure.

In [38], secure computation of k-nearest neighbor queries (kNN) were studied in an

outsourced setting. Their technique is based on a notion of distance between data points and

the query point, and approximation of such distances. The comparison operation required

by range query search does not have a natural notion of distance or approximation.

The MONOMI’s design in [36] takes an approach of split client/server execution of

queries and considers a larger class of SQL queries. The idea is to execute as much of the

query as possible over encrypted data on the server, and execute the remaining components

by shipping encrypted data to a trusted client. Their approach relies on various encryption

methods for the execution on the server, rather than replacing encryption methods.

An alternative approach is to build a B-tree over plaintext, but encrypt every record and

the B-tree at the node level using conventional encryption. The B-tree index is maintained
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by the user to locate the data of interest [13][33][17][37]. In general, this approach does not

provide access confidentiality or pattern confidentiality because it could be observed that

an access aims at a specific data and two accesses aim at the same data.

The proposals of oblivious RAM [19] and Private Information Retrieval (PIR) [11][12]

[34] aim to address this issue. The idea is that each data read or write request will generate a

completely random sequence of data accesses from the server’s perspective and they proposed

several techniques, namely, cover searches, cached searches, and shuffling. But they incur

a heavy workload at the client, communication costs, high computational complexity, or

require special-purpose hardware, so they are not applicable to large databases of the cloud

scale.

A secure B+-tree index is also used in [37] where a salted IDA encoding scheme and

column-access-via-proxy query processing has been processed. To hide access patterns, the

client side has to keep the B+tree index to direct the search while the sever stores and

retrieves the encrypted data.

2.2 Keyword Based Search

In [16], a simple but effective scheme has been proposed to encrypt a look-up directory

consisting of (key, value) pairs. The goal is to allow the corresponding value to be retrieved

if and only if a valid key is provided. However, their idea is using an associated one-way hash

function mapping the original keys in a deterministic way and as a result it could suffer from

frequency analysis attacks if the attackers are armed with background knowledge about the

data distribution or frequency information.

In [10], multi-keyword similarity searches over encrypted documents are considered.

Both documents and queries are represented as vectors over keywords and the similarity

between a document and a query is measured by the inner product between their represented

vectors. The query answers are the set of documents that have a similarity score (inner

product) above a specified threshold. They further introduce noises into the inner product

to resist attacks specific to their schemes while sacrificing the accuracy of the results. We

will later on show for our encryption scheme, we also introduce noises but in such a way

that the exact answers are not affected (see Chapter 4).

In [35], interesting searchable symmetric key encryption schemes are proposed to support

keyword searches over an encrypted text repository such as email messages. However, only



CHAPTER 2. RELATED WORK 11

equality tests of a single keyword are considered in their work and the time complexity is

linear in its repository size per query. In [27], an index based on locality sensitive hashing

is proposed to support similarity search for high dimensional data like text data. It is not

clear how these techniques can be adapted for range query search in relational databases.

2.3 Others

There are also some more works based on trusted hardware. The recent advent of tamper-

resistant trusted hardware [8] advocates a hardware solution. The trusted hardware, which

is placed at the server side and is tamper-resistant, has limited capacity in storage and

processing power compared to general-purpose hardware, therefore, only operations involv-

ing sensitive data are performed by the trusted hardware and the remaining operations are

performed by general-purpose hardware.

Not only that the computation power of the cloud server is not fully utilized, but also this

partitioning implies that intermediate results will be communicated back and forth between

trusted hardware and general-purpose hardware, which could open doors for attacks based

on access patterns or make subsequent processing more difficult. For example, before sending

the intermediate result of the range query Salary ≥ 200K for the sensitive attribute Salary

back to general-purpose hardware, it may be necessary to encrypt the non-sensitive attribute

Name, making it difficult to further process Name, such as join by Name. Futhermore,

as pointed out in [36], such approaches require relatively intrusive changes on behalf of the

service provider.

In the field of cryptography, there are mainly two areas: symmetric-key cryptography

and public-key cryptography [14]. In symmetric-key cryptography (e.g., Data Encryption

Standard (DES) [4], Advanced Encryption Standard (AES) [5], etc.), the same key is used for

both encryption and decryption while in public-key cryptography (e.g., RSA [25]), anyone

can do encryption using the public key, but only the paired private key (different key) can

be used to do decryption.

However, it is not clear at all how these existed cryptography methods such as RSA [25]

could be adapted to support direct query search over encrypted data. The essential reason

is that these cryptography schemes are originally designed only for the purpose of protection

of confidential data rather than supporting query search over encrypted data. As a result,

such techniques in cryptography might not be that suitable in our context.
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Oracle’s Transparent Data Encryption (TDE) [29] considers a different setting from ours.

TDE assumes the server is trusted and the adversary could be other malicious ones who try

to compromise the server. TDE encrypts data on disks (so even when the encrypted database

is stolen by malicious people, it is still protected) but the query evaluation is performed on

plaintext data after decryption in the server (i.e., the server is trusted) without impacting

existing applications. That is, the server could see the plaintext data which, however, is not

acceptable in our model where the cloud server is assumed to be malicious and not trusted

and thus not allowed to see plaintext data. In theory, fully homomorphic encryption [18]

could be used to evaluate any function over encrypted data. In practice, this construction is

prohibitive for databases of the cloud scale, requiring slowdowns on the order of 109 times

[9].

So far, we have summarized all the typical works in database area, keyword based search

and other works or issues including hardware based approaches, techniques in cryptography

or homomorphic encryption. As we can see, every approach has its own limits and it

seems no perfect approaches exist to fully solve the problem of secure query processing over

encrypted data in the cloud. We conclude this chapter here.



Chapter 3

Problem Formulation

In this chapter, we describe the data, queries, parties involved. We give detailed discussion

on our model, our goal and confidentiality requirements and the motivation behind them.

We first formulate the specific problem (data and queries) we want to solve and then we

discuss our setting of cloud computing including the system model. Finally, we give out

our confidentiality requirements as well as all notations we use throughout the whole thesis.

The details of our encryption scheme will be discussed in next chapter.

3.1 Range Queries

As a big part, the problem we considered here is to support processing range query search

over a numeric attribute K for a relational database outsourced to a cloud server. More

specifically, we consider a relational table of the form R(rid,K), where K is a numeric

attribute and rid is the record id. K is confidential and is the searchable attribute.

For the data, we assume that K has the domain [α, β] for some β > α > 0. [α, β] here

is not a real number interval but a discrete interval which contains all the actual discrete

K values of all the records in the database.

On the other hand, for the query, a range query has a condition a ≤ K ≤ b, where a

and b are in [α, β]. This query retrieves all records having a K value within the range [a, b]

exactly (i.e., there are no false positives or false negatives in the returned answers). Note

a single side range query (K ≥ a, K ≤ b) and exact equality query K = a could all be

converted into the general form a ≤ K ≤ b as shown in Table 3.1.

We clarify the domain [α, β] a bit more. Note in the query a ≤ K ≤ b, a, b are assumed

13
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original condition equivalent form

K = a a ≤ K ≤ a
K ≤ b α ≤ K ≤ b
K ≥ a a ≤ K ≤ β

Table 3.1: The translation from other conditions into the general range query a ≤ K ≤ b

to be in [α, β]. That is, a, b are actual domain values in the database by the definition of

[α, β]. This is fine because any range query a′ ≤ K ≤ b′ where a′, b′ are not domain values

could be equivalently transformed into a ≤ K ≤ b where a and b are in [α, β] and both of

them retrieve the same set of records.

In summary, we consider such a problem of processing range query search a ≤ K ≤ b

over a numeric attribute K with domain [α, β] for a relational database outsourced to a

cloud server where β > α > 0 and a, b ∈ [α, β].

A categorical attribute K can be treated as a special case for a numeric attribute with

the domain [1, |K|], where |K| is the number of distinct values of K, and only queries with

a condition a ≤ K ≤ a are allowed, where a is an integer in the range [1, |K|].

3.2 System Model

Figure 3.1 shows the big picture of the outsourcing model considered in this work, which

involves four entities Owner, Users, Proxy, and Server. This is a distributed setting where

Server is on the remote side and not trusted. More specifically, Owner collects and owns the

data R and has all rights to upload, query and encrypt data, and may also grant the query

right to authorized users with access control keys. Users is a group of users authorized to

post a query and receive the answers. Owner encrypts the data and then uploads it to the

Server (or delegates this task to a trusted Proxy as shown in the figure). Proxy serves a

bridge between Users and Server.

A query from Users will go though the trusted Proxy, which encrypts the query and

submits the query to Server. Server computes and returns the answer to Proxy. Proxy then

decrypts the answer, and returns the answer to Users. For example, Owner is a hospital,

who outsources patient records to the cloud, and Users are various medical research labs,

who post queries to retrieve patient records of interests.
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Figure 3.1: System model

We assume an honest but curious cloud server model in our setting. That is, the Server

will follow our protocols to do query computation correctly but it is curious about the

confidential plaintext values and tries to learn information from everything stored, received,

and processed. More specifically, the only assumption is that the Server will perform the

query evaluation correctly and return the correct answers. There are no constraints on any

other operations the Server could do or could not do. That is, the Server will do the query

computation correctly and can do any other operations it wants to do.

In our model, Server is the adversary and it is not allowed to see any plaintext values.

Server knows all the distinct plaintext values of K and all the encrypted records and queries.

Server can do any operations over things stored, received or processed. In addition, Server

has prior background ground knowledge of the frequency information of the K values among

the records and queries and knows partial correspondence between some plaintext values
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and ciptertext values. The only thing Sever does not know and tries to figure out is the

complete correspondence between the plaintext values and ciphertext values.

Our system must prevent Server from learning any additional correspondence between

plaintext values and ciphertext values except those obtained by prior knowledge. That is, we

must protect the plaintext values for any encrypted records or queries from being disclosed

to Server. The detailed goals are described as below.

3.3 Our Goal and Confidentiality Requirements

Our goal in this work is to protect the plaintext K values for both records and queries from

being disclosed. Specifically, the goal is to protect the complete correspondence between

plaintext values and ciphertext values on attribute K from being disclosed to Server except

those obtained by Server from its prior background knowledge.

Firstly, Server knows everything stored, received and processed which are directly known.

Additionally, as we discussed previously, Server possesses background knowledge which we

define as follows: (1) Server knows all the distinct plaintext K values and the frequency of

any particular K values among the records and queries; (2) Server knows plaintext values

for some ciphertext values (i.e., partial correspondence).

According to how the Server could make use of the background knowledge to compromise

plaintext values for any particular encrypted records or queries (i.e., correspondence) we give

the following privacy definitions which all aim to contribute to achieve the ultimate goal of

protecting the correspondence between plaintext values and ciphertext values. “X privacy”

where X could be Secret Key, Frequency (for ciphertext values), or Order (for ciphertext

values) in the following is defined as that X is confidential and should not be disclosed. The

detailed definitions and discussions are described as follows.

• Secret Key Privacy: The secret key is the direct protection on the database and

query content. So it is extremely important to protect the secrete key from being

compromised. To our knowledge, in our case, the strongest attack to compromise

the secret key is to establish a linear system based on the partial correspondence be-

tween plaintext values and ciphertext values which Server knows from the background

knowledge (known as known-plaintext attack in cryptography [14]). So if we achieve

the secret key privacy, the other unknown plaintext should still be safe even when

partial correspondence is exposed.
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• Frequency Privacy: This is to protect the original plaintext frequency information

among ciphertext values from being disclosed. This is important to help protect the

complete correspondence because Server knows the frequency of plaintext values and

all the plaintext values. If the original plaintext frequency information among cipher-

text values is exposed, Server could identify the plaintext of encrypted values with high

probability by identifying those with similar frequency. We call this attack frequency

analysis attack. As a result, original plaintext frequency should not be preserved in

the ciphertext values, and a probabilistic encryption scheme that encrypts each occur-

rence of a value probabilistically without preserving the frequency information would

provide a stronger protection.

• Order Privacy: This is to protect the order information for ciphertext values from

being disclosed. Since Server knows all the plaintext K values, it of course knows

the order (i.e., v1 < · · · < vm). Once the order information for ciphertext values

(i.e., ordered encrypted values u1 < · · · < um) is exposed, it is known that ui is

the encryption of vi. As a result, it is necessary for us to protect the relative order

information and an encryption scheme which does not preserve the order information

gives stronger protection.

Note the “Frequency Privacy” and “Order Privacy” are important to protect but also

difficult to fully achieve if we want to guarantee the exactness of the returned answers. As

we mentioned previously in Chapter 1.4, the exactness of the returned answers could disclose

the frequency and order information. As long as we guarantee the exact answers, we cannot

achieve full frequency and order privacy. More details will be discussed in Chapter 4.

In summary, in our work here, we try to achieve the goal to protect the complete corre-

spondence between plaintext values and ciphertext values. That is, Server could not learn

any additional plaintext values for any particular encrypted records or queries except the

partial correspondence known by Server from prior background knowledge. To achieve this

goal, we define more specific requirements (i.e., Secret Key Privacy, Frequency Privacy and

Order Privacy) based on what the Server could do using its background knowledge. We will

discuss these again and what we actually achieve in more detail in the next chapter.
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3.4 Symbol Table

As shown in Table 3.2, we give a summary of all the frequently used notations or symbols

in this thesis.

Symbol Definition

R The relational database table R(rid,K,A)

K The searchable numerical attribute in the table R

[α, β] The domain for the attribute K

[a, b] The query interval in the range query a ≤ K ≤ b
p p is a column vector representing the encoded form of a plaintext record

in the database table

q q is a column vector representing the encoded form of a plaintext query
a ≤ K ≤ b

e(p) The encrypted form of the plaintext record p

e(q) The encrypted form of the plaintext query q

ε1i , · · · , εUi εti, t = 1, · · · , U are randomly chosen from (0, 1] and appended to each
record vector as extended dimensions

f1, · · · , fU f t, t = 1, · · · , U are randomly chosen and determined in Theorem 4.4.1

Cq Cq = rq(1 + a
b ) is the encrypted form of the given value to the server

U The number of extended positions in record and query vector

S S = (s1, · · · , s2+U ) is the split indicator vector

s The number of non-zero bits in S = (s1, · · · , s2+U )

` The security parameter defined as the number of dimensions of an en-
crypted record

M The `× ` invertible transformation matrix

SK SK = {S,M} is the secret key consisting of the split indicator vector S
and the transformation matrix M

Tq Tq = (e(q), Cq) which is the trapdoor of query q

Re The encrypted form of the plaintext relational table R(rid,K,A)

Anse The set of the returned answer records in encrypted form

Table 3.2: The symbols we use in this thesis



Chapter 4

A New Encryption Scheme

In this chapter, we present a new encryption scheme for processing range query search over

the confidential numeric attribute K. The idea is to encrypt the attribute K in both data

and queries in such a way that the query condition can be tested in the encrypted form of

data and queries. There are totally five building blocks as follows in our scheme.

4.1 Building Blocks

• Setup(1`): Taking a security parameter ` as input, Owner outputs a secret key as SK.

• Build(R, SK ): Based on the dataset R, Owner builds a searchable encrypted form of

R, Re, then outsources it to Server.

• Trapdoor(q): With a query q as input, Proxy runs this algorithm to generate a corre-

sponding encrypted query, Tq, called the trapdoor.

• Query(Tq, Re): Server runs this algorithm to perform the encrypted query Tq on the

encrypted data Re, and return the encrypted answer to Proxy.

• Decrypt(Anse, SK): Proxy runs this algorithm to decrypt the answer Anse received

using the key SK and return the plaintext answer to Users.

Before going into the details of these building blocks, we summarize the high level ideas

of our scheme. First, we encode a record p and a query q as column vectors such that p

satisfies q if and only if pT ·q ≤ 1+ a
b holds, where pT is the transpose of p, pT ·q is the inner

19
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product of p and q, and [a, b] is the query interval. This test in plaintext does not provide

confidentiality. We then transform these vectors into encrypted vectors e(p) and e(q) such

that pT ·q ≤ 1+ a
b holds if and only if e(p)T ·e(q) ≤ Cq holds, where Cq is an encrypted value

representing the query q and we will show soon that Cq is random such that it is different

even for the same repeated query q. Next, we first present the vector encoding scheme for

p and q, then present the encryption scheme for computing e(p) and e(q).

4.2 Encoding Records and Queries

We adopt the following encoding scheme for records and queries. For each record p with

the value v on K, we encode it as a vector p = ( 1v , v). For a query q with the condition

a ≤ K ≤ b, we encode it as a vector q = (a, 1b ). All vectors are column vectors. Table 4.1

shows a concrete example for encoding of the attribute K. And for example, a range query

5 ≤ bank account balance ≤ 8 would be encoded as a column vector q = (5, 18).

K = bank account balance (103) Encoded Form

5 (1/5, 5)
10 (1/10, 10)
8 (1/8, 8)

Table 4.1: Example of encoding: the relational table R with K as bank account balance

Therefore, we have the following equation:

pT · q =
a

v
+
v

b
(4.1)

Let y = a
v + v

b and Figure 4.1 shows an example of the plot of the function y = 2
v + v

8 .

It can be seen that, as v increases, y first decreases, reaches the minimum value 1 at v = 4,

and then increases.

Generally, we have the same pattern, that is, for y = a
v + v

b , as v increases, y first

decreases, reaches the minimum value 2
√
a/b at v =

√
ab, and then increases. At v = a and

v = b, y = 1 + a
b . Therefore, for a ≤ v ≤ b, y ≤ 1 + a

b , and all other values of v, y > 1 + a
b .

Such pattern is very important. Firstly, it gives us a sufficient and necessary condition

to test if a ≤ v ≤ b (we will show this more specifically soon). Secondly, the non-monotone

pattern (y decrease first and then increase) prevents the inference of the relative order of
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Figure 4.1: Shape of the function y = 2
v + v

8

the K value of records (we will see more details in Chapter 4.6). Thus, we give a formal

proof for this property in Lemma 4.2.1.

Lemma 4.2.1 For b ≥ a > 0 and v > 0, as v increases, function y = a
v + v

b first decreases,

reaches the minimum value 2
√
a/b at v =

√
ab, and then increases. At v = a and v = b,

y = 1 + a
b .

Proof: First, we take derivative of the function y, we have

f ′(v) =
dy

dv
=
−a
v2

+
1

b

We then take the second derivative, we have

f ′′(v) =
df ′(x)

dv
=

2a

v3

Since b ≥ a > 0 and v > 0, then f ′′(v) = 2a
v3
> 0, as a result, f ′(v) is strictly increasing as

v increases. We know at v =
√
ab, f ′(v) = 0. Then we have when 0 < v <

√
ab, f ′(v) < 0,

thus, y is decreasing as v increases, when v >
√
ab, f ′(v) > 0, thus, y is increasing as v

increases. So we have proved that as v increases, function y = a
v + v

b first decreases, reaches

the minimum value at v =
√
ab, and then increases. The minimum value at v =

√
ab is
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2
√
a/b and at v = a and v = b, y = 1 + a

b as one can easily compute the values. We finish

the proof here. �

The following fact and lemma follow from Lemma 4.2.1.

Fact 1: (1) For b ≥ a > 0 and v > 0, pT · q ≤ 1 + a
b if and only if a ≤ v ≤ b. (2) For

a ≤ v ≤ b, as v increases, pT · q first decreases, reaches the minimum 2
√
a/b at v =

√
ab,

then increases.

Fact 1(2) implies that pT · q is non-monotone within the query range [a, b]. As we will

see in Chapter 4.6, this property prevents the inference of the relative order of the K value

of records.

Lemma 4.2.2 A record p is in the answer to a query q if and only if pT · q ≤ 1 + a
b .

4.3 Encrypting Records and Queries

Lemma 4.2.2 tests whether p satisfies q in plaintext. To preserve privacy, this test must be

done in an encrypted form. We present our encryption scheme below. Let p and q be the

encoded vectors defined above.

4.3.1 Setup Secret Key

Our secret key consists of a split indicator vector S and a transformation invertible matrix

M . Basically, the split indicator vector S is used to help break the correspondence between

the plaintext and ciphertext values and the transformation matrix M is used to transform

the record vector from plaintext space into the encrypted space. We now describe the

detailed way of how we construct the secret key.

Setup(1`). ` > 2 is the security parameter and is defined as the number of dimensions of

an encrypted record. Owner randomly picks an integer U > 0 in the range [d `2e − 2, ` − 2]

and let s = `− U − 2, and randomly generates a split indicator vector

S = (s1, · · · , s2+U )

where si ∈ {0, 1,−1}, such that there are exactly s non-zero si’s. Here, si = 0 indicates we

do not perform split on the dimension i, si = 1/ − 1 means we perform split (in different

ways for −1 and 1, details could be found in Build(R,SK)). Finally, Owner generates a

`× ` invertible matrix M . SK = {S,M} is the secret key for encryption. Note that {U, s}
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is a random (integer) partition of ` − 2. More detailed discussion on the purpose of S,M

could be found in Chapter 4.6.

The reason for U ∈ [d `2e − 2, ` − 2] is by the constraint of s ∈ [0, 2 + U ] which results

from the definition for s to be the non-zero bits in the vector S = (s1, · · · , s2+U ) of length

2 + U , so U can’t be too small or too large, otherwise, it will lead to invalid secret key and

make the encryption impossible. U cannot be too large because U = ` − 2 − s ≤ ` − 2, U

cannot be too small because s = `− 2−U ≤ 2 +U , so U ≥ `
2 − 2 ≥ d `2e− 2, and we will see

soon that U actually is the number of extended positions appended to p, for privacy reason,

we require U > 0 and we will discuss this shortly in Chapter 4.6.

To make the process more clear, let’s consider a concrete example of choosing ` = 10.

That is, the dimension of the encrypted record should be 10, and we could pick any U ∈ [3, 8],

but if we choose U out of [3, 8] such as U = 2, then s = ` − 2 − U = 6, it is not possible

since the maximum value for s is 2 + U = 4 (the reason is by definition, s is the non-zero

bits in the vector S = (s1, · · · , s2+U ) ).

4.3.2 Data Encryption

As discussed before, a probabilistic encryption scheme has to be adopted. We achieve such a

probabilistic encryption by injecting randomness into each record vector pi such that every

record (including those having the same K values) looks different. More specifically, the

encryption process is as follows.

Build(R,SK). For each record pi = ( 1
vi
, vi) (with value vi on K and note pi is in the

vector form by the encoding scheme presented previously rather than a single original vi

value) in the database R, the ciphertext of pi, e(pi), is produced in three steps. Step 1,

extend pi into (pi, ε
1
i , · · · , εUi ) with εti, t = 1, · · · , U randomly chosen from (0, 1]. The purpose

of εti, t = 1, · · · , U is to inject randomness and make each record different in encrypted form.

More importantly, εti, t = 1, · · · , U introduces randomness into the inner product result

while such randomness does not affect the correctness of the answer (Theorem 4.4.1). As

we will see shortly in Fact 2, the split in next step 2 does not influence the inner product

computation result, and thus, εti, t = 1, · · · , U is necessary to help prevent Server from

identifying same records or repeated queries (see more details in Chapter 4.6).

Step 2, split (pi, ε
1
i , · · · , εUi ) into (p′, p′′), where p′ is a length 2 + U vector and p′′ is a

length s vector: if the jth bit of S is 0, p′[j] = (pi, ε
1
i , · · · , εUi )[j]; if the jth bit of S is 1

and is the j′th non-zero in S, p′[j] and p′′[j′] are a random split of (pi, ε
1
i , · · · , εUi )[j], i.e.,
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p′[j] + p′′[j′] = (pi, ε
1
i , · · · , εUi )[j]; if the jth bit of S is -1 and is the j′th non-zero in S, p′[j]

and p′′[j′] are equal to (pi, ε
1
i , · · · , εUi )[j]. As discussed in Setup(1`), this split step is useful

for breaking the correspondence between the plaintext and ciphertext values, we give the

details of how it helps in Chapter 4.6.

Since step 2 is a bit complicated, let’s consider the following concrete example to clarify

the process so far. Suppose we select the security parameter as ` = 5 and pick U = 1, s = 2,

and then we generate S = (1, 0,−1) and M as a `× ` (i.e., 5× 5) invertible matrix. And we

take the first record in Table 4.1 as our p = (15 , 5) = (0.2, 5). In step 1, p = (15 , 5) = (0.2, 5)

would be extended by U = 1 more dimension as p = (0.2, 5, 0.7) (note the 0.7 on the last

dimension is the random number generated corresponding to ε1i ∈ (0, 1]).

In step 2, we need to split p = (0.2, 5, 0.7) into (p′, p′′) where p′ is a vector of length

2 + U = 3 and p′′ is a length s = 2 vector. Then we determine the dimension values of

p′, p′′ according to S = (1, 0,−1). S[1] = 1, it is non-zero and is the 1st non-zero bit in

S, then p′[1], p′′[1] need to be decided and they are a random split of p[1] = 0.2. Let’s say

p′[1] = −2.7, p′′[1] = 2.9. By random split, it means as long as we keep p′[1] + p′′[1] = p[1]

here, then it is fine. Then we have S[2] = 0, since it is zero, we leave p′[2] = p[2] = 5 and

don’t need to take care of p′′. Lastly, S[3] = −1, and it is the 2nd non-zero bit in S, then

p′[3], p′′[2] need to be decided and they are set to the same value as p′[3] = p′′[2] = p[3] = 0.7.

Then the record p = (0.2, 5, 0.7) will be split into (p′, p′′) = (−2.7, 5, 0.7, 2.9, 0.7). We now

talk about the last step.

Step 3, compute the encrypted record for pi as e(pi) = MT · (p′, p′′). Note that e(pi)

is a `-dimensional column-vector. Let Re denote the set of all encrypted records e(pi) for

the records pi in R. To finish the example, we will multiply (p′, p′′) = (−2.7, 5, 0.7, 2.9, 0.7)

with the 5 × 5 transformation matrix M . Note after split, now the record becomes of

length 5, and it is valid to do multiplication between the 5 × 5 invertible matrix M and

(p′, p′′) = (−2.7, 5, 0.7, 2.9, 0.7).

After all the three steps of Build(R,SK), the encryption extends pi with U + s new

dimensions, U dimensions for random values εi and s dimensions for random splits. Since

{U, s} is a random split of `−2, Server does not know exactly how many of the added U +s

dimensions are due to the random split (i.e., s). We will discuss more details on the purpose

of adding these dimensions in Chapter 4.6.
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4.3.3 Query Encryption

The query encryption (i.e., Trapdoor(q)) here will generate the trapdoor of a query q which

involves two parts. The encrypted vector e(q) of the same length as the encrypted record

vector e(pi) in Build(R,SK) and Cq = rq(1 + a
b ) which is the encrypted form of 1 + a

b . The

detailed process is as follows.

Trapdoor(q). This function produces the trapdoor of a query q: Randomly choose a

positive number rq > 0 which is used to hide the plaintext inner product 1 + a
b in Equation

(4.3) and pTi ·q in Lemma 4.3.1. Let f1, · · · , fU be positive values (i.e., f t > 0, t = 1, · · · , U)

determined later (i.e., Theorem 4.4.1). f1, · · · , fU serves two purposes, one is to inject

randomness into the encryption form of queries such that even identical queries have different

encrypted form. The other is together with εti, t = 1, · · · , U , to introduce randomness into

the inner product result as in Lemma 4.3.1 and more importantly, we can control f1, · · · , fU

such that the randomness does not affect the correctness of the returned answer (Theorem

4.4.1).

Next, we split the vector (rqq,−rqf1, · · · ,−rqfU ) into (q′, q′′) exactly as for (pi, ε
1
i , · · · , εUi )

(see the concrete example in Build(R,SK) for further reference), except for using S′, where

S′ is the 1/-1 complement of S, that is, if the jth bit of S is 1, the jth bit of S′ is -1,

and if the jth bit of S is -1, the jth bit of S′ is 1. All zeros in S are preserved in S′.

The split for the query here corresponds to the split in data records but in a complement

way by using a complement split indicator vector S′ instead of S. Such a way of split in

query and records not only injects randomness into the encryption but also could recover

(pi, ε
1
i , · · · , εUi )T · (rqq,−rqf1, · · · ,−rqfU ) which will be shown in Fact 2.

Finally, we compute the encryption of q as e(q) = M−1 ·(q′, q′′), where M−1 is the inverse

of M . e(q) is a `-dimensional vector. Return the trapdoor

Tq = (e(q), Cq) (4.2)

where

Cq = rq(1 +
a

b
) (4.3)

Since rq is randomly chosen for each query, Cq does not reveal a
b .

Fact 2: (p′, p′′)T · (q′, q′′) = (pi, ε
1
i , · · · , εUi )T · (rqq,−rqf1, · · · ,−rqfU ) = rq(pi

T · q −∑U
t=1 f

tεti).
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The second equality follows trivially. The first equality follows from our construc-

tion of (p′, p′′) and (q′, q′′). To see this, let x denote (pi, ε
1
i , · · · , εUi ) and let y denote

(rqq,−rqf1, · · · ,−rqfU ). And we want to verify (p′, p′′)T · (q′, q′′) = xT · y in Fact 2.

If the jth bit of S is 0, p′[j] = x[j] and q′[j] = y[j]. So x[j]y[j] = p′[j]q′[j].

If the jth bit of S is 1 and is the j′th non-zero in S, p′[j] + p′′[j′] = x[j] and q′[j] =

q′′[j′] = y[j], so x[j]y[j] = (p′[j] + p′′[j′])y[j] = p′[j]y[j] + p′′[j′]y[j] = p′[j]q′[j] + p′′[j′]q′′[j′].

For a similar reason, if the jth bit of S is -1 and is the j′th non-zero in S, the equality

x[j]y[j] = p′[j]q′[j] + p′′[j′]q′′[j′] also holds.

Note x, y, p′, q′, S are of length 2+U while p′′, q′′ are of length s. By the above discussion,

we have x[j]y[j] = p′[j]q′[j] when S[j] = 0 and x[j]y[j] = p′[j]q′[j]+p′′[j′]q′′[j′] when S[j] 6= 0.

Thus,

xT · y
=

∑2+U
j=1 x[j]y[j]

=
∑

j,S[j]=0 x[j]y[j] +
∑

j,S[j] 6=0 x[j]y[j]

=
∑

j,S[j]=0 p
′[j]q′[j] +

∑
j,S[j] 6=0 p

′[j]q′[j] + p′′[j′]q′′[j′]

=
∑

j,S[j]=0 p
′[j]q′[j] +

∑
j,S[j] 6=0 p

′[j]q′[j] +
∑

j,S[j]6=0 p
′′[j′]q′′[j′]

=
∑

j,S[j]=0 p
′[j]q′[j] +

∑
j,S[j] 6=0 p

′[j]q′[j] +
∑s

j′=1 p
′′[j′]q′′[j′]

=
∑2+U

j=1 p
′[j]q′[j] +

∑s
j′=1 p

′′[j′]q′′[j′]

= (p′, p′′)T · (q′, q′′).
The next Lemma 4.3.1 follows from Fact 2.

Lemma 4.3.1 For a query q and a record pi, e(pi)
T · e(q) = rq(pi

T · q −
∑U

t=1 f
tεti).

Proof: e(pi)
T · e(q)

= (MT · (p′, p′′))T · (M−1 · (q′, q′′))
= (p′, p′′)T ·M ·M−1 · (q′, q′′)
= (p′, p′′)T · (q′, q′′)
= rq(pi

T · q −
∑U

t=1 f
tεti) (Fact 2). �

4.4 Computing the Query

Based on the relationship between e(pi)
T · e(q) and pi

T · q in Lemma 4.3.1, we can derive

the encrypted test condition for the query.
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Query(Tq, Re) returns the encrypted records e(pi) in Re such that e(pi)
T · e(q) ≤ Cq,

where (e(q), Cq) is the trapdoor in Equation (4.2). Lemma 4.3.1 suggests that a sufficiently

large
∑U

t=1 f
tεti always leads to e(pi)

T · e(q) ≤ Cq, which means that all records e(pi) will be

returned. To ensure that the set of returned records is exactly the answer to the query, we

must choose proper values for f1, · · · , fU . Let f =
∑U

t=1 f
tεti. We first identify the range

for f such that e(pi)
T · e(q) ≤ Cq if and only if pi is the answer to the query q. We then

determine the value for each f t > 0, t = 1, · · · , U such that f is in this range.

Recall that [α, β] is the domain range of K containing all the discrete values for K.

Consider any domain value c for K. Let c+ denote the smallest domain value greater than

c, and c− denotes the largest domain value less than c. If c is the smallest domain value α,

let c− be α/2, and if c is the largest domain value β, let c+ be β + 1. Note that α/2 and

β + 1 are not domain values. We define

f∗ = min{ a
b+

+
b+

b
− 1− a

b
,
a

a−
+
a−

b
− 1− a

b
}

Note f∗ is positive by the above definition. This is because by Lemma 4.2.1 and the

definition of a−, b+, we have that for y = a
v + v

b , when v ranges from a− to a, y is decreasing,

that is, a
a− + a−

b > a
a + a

b = 1 + a
b , so we have a

a− + a−

b − 1− a
b > 0. Similarly, when v ranges

from b to b+, y is increasing (Lemma 4.2.1). So we also have a
b+

+ b+

b > a
b + b

b = 1 + a
b , that

is, a
b+

+ b+

b − 1− a
b > 0. As a result, f∗ > 0. And we claim:

Theorem 4.4.1 For any f such that 0 < f < f∗, pi is in the answer to q if and only if

e(pi)
T · e(q) ≤ Cq; therefore, Query(Tq, Re) computes the exact answer for q.

Proof: According to Lemma 4.3.1, e(pi)
T · e(q) ≤ Cq ⇔ rq(pi

T · q − f) ≤ rq(1 + a
b ) ⇔

pi
T · q − f ≤ 1 + a

b . That is, e(pi)
T · e(q) ≤ Cq holds if and only if pTi · q − f ≤ 1 + a

b . With

Lemma 4.2.2, pi is in the answer to q if and only if pTi · q ≤ 1 + a
b . So as long as we show

that pTi · q ≤ 1 + a
b holds if and only if pTi · q − f ≤ 1 + a

b holds, then we are done.

“Only if” is trivial. Since we have f =
∑U

t=1 f
tεti by definition and f t, εti are all defined

as positive numbers. So f > 0. That is, because f > 0, if pTi · q ≤ 1 + a
b , we must have

pTi · q − f ≤ 1 + a
b .

For “If”, suppose pTi · q − f ≤ 1 + a
b , we need to show pTi · q ≤ 1 + a

b . The condition

0 < f < f∗ implies
a

b+
+
b+

b
− f > 1 +

a

b
(4.4)



CHAPTER 4. A NEW ENCRYPTION SCHEME 28

a

a−
+
a−

b
− f > 1 +

a

b
(4.5)

Let y(v) = a
v + v

b . From Lemma 4.2.1, y(b+) is the minimum value for any domain value

v > b and y(a−) is the minimum value for any domain value v < a. Therefore, if v > b,

y(v) ≥ y(b+), thus, y(v)− f ≥ y(b+)− f > 1 + a
b (Equation (4.4)). But this contradicts the

assumption that pTi ·q−f ≤ 1+ a
b . Therefore, v ≤ b. Similarly, if v < a, y(v) ≥ y(a−), thus,

y(v)− f ≥ y(a−)− f > 1 + a
b (Equation (4.5)). This, however, contradicts the assumption

that pTi · q − f ≤ 1 + a
b again. So we must have a ≤ v ≤ b under the assumption that

pTi · q − f ≤ 1 + a
b . Then Fact 1 implies pTi · q ≤ 1 + a

b as required. �

Finally, to determine f t > 0, t = 1, · · · , U , such that 0 <
∑U

t=1 f
tεti < f∗, it suffices to

have 0 <
∑U

t=1 f
t < f∗ because εti ∈ (0, 1]. Any f t such that 0 < f t < f∗

U , t = 1, · · · , U ,

serves this purpose. Alternatively, f t > 0, t = 1, · · · , U can be chosen differently for each

query, as long as these inequalities hold.

4.5 Decryption

Basically, the decryption is just a reversed process of encryption, the detailed process is

described as follows.

Decrypt(Anse, SK). A record e(pi) in Anse is decrypted by computing (MT )
−1 · e(pi),

where e(pi) = MT · (p′, p′′), and reconstructing pi from (p′, p′′) using S. Note this is just for

the K in R(rid,K,A), to decrypt part A associated with e(pi) we just use the conventional

decryption approach according to what we use to encrypt A.

4.6 Analysis

Let us analyze the privacy properties of the proposed encryption scheme and the query

computation given by Theorem 4.4.1. Server knows e(pi), the trapdoor Tq = (e(q), Cq),

and the security parameter ` and all these are directly known. In addition, Server possesses

background knowledge and knows all the distinct plaintextK values and the frequency of any

particular K value in the database and the queries. Server also knows partial correspondence

between the plaintext values and ciphertext values. However, Server does not know the

secret key SK = {S,M} whereM is a `-dimensional invertible matrix. And we try to achieve

the goal to protect the complete correspondence between plaintext values and ciphertext
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values from being disclosed by achieving the following specific privacy. We now discuss what

we actually achieve as follows.

4.6.1 Secret Key Privacy

To our knowledge, the known-plaintext attack is the strongest attack to compromise the

secret key based on what Server knows in our assumption. So we first focus on analyzing this

attack. In this attack, Server tries to derive the secret key M by establishing enough number

of equations MT · pi = e(pi). Since M is a `× ` invertible matrix. As long as Server obtains

` such equations which are linearly independent with each other, Server could compromise

M . That is, suppose there are ` such linear independent MT · pi = e(pi), i = 1, · · · , `. Let

B1 = (p1, · · · , p`), B2 = (e(p1), · · · , e(p`)), then the linear system MTB1 = B2 is known,

and MT = B2B
−1
1 .

In a simple case (e.g., the encryption is just a matrix transformation by multiplying

a plaintext vector pi with the matrix MT and there is no extension or split) where pi is

the plaintext encoding vector ( 1v , v), Server is able to establish the linear system based on

the partial correspondence which Server already knows (i.e., Server knows v for pi and the

corresponding e(pi)).

However, in our case, this is not straightforward. More specifically, in our case, the

ciphertext e(pi) = MT · (p′, p′′) of a record pi is constructed from a random split {p′, p′′} of

(pi, ε
1
i , · · · , εUi ), determined by the split indictor vector S. Similarly, e(q) = M−1 · (q′, q′′)

for a query q is constructed from a random split {q′, q′′} of (rqq,−rqf1, · · · , rqfU ).

Without knowing the exact random splits, i.e., {p′, p′′} and {q′, q′′}, Server could not

establish the linear system. And for the split indictor vector S, not only Server does not

know exactly how many splits (value of s) we perform, but also, Server is not able to know

whether it is a random split on record or on query (i.e., non-zero bit in S could be either -1

or 1). Please refer to Theorem 6 in [38] for more discussion which gives a formal proof on

such a splitting scheme could resist the known-plaintext attack.

4.6.2 Frequency Privacy

Frequency privacy is protected by the random values εti, t = 1, · · · , U for a record pi and

the random value rq, f
t, t = 1, · · · , U for a query q. Note that these values are chosen

randomly for each occurrence of a record or query, thus, even duplicate records or repeated
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query requests get encrypted differently. Such probabilistic encryption is highly effective to

resist frequency analysis attacks where the attacker tries to identify corresponding plaintext

values for certain ciphertext values by linking the same frequency statistics obtained from

background knowledge. In addition, the random splits of dimensions pi[j] or q[j] mentioned

above further contribute to the probabilistic nature of ciphertext values.

Lemma 4.3.1 also implies that two identical records p1 and p2 do not necessarily yield

the same inner products e(p1)
T · e(q) and e(p2)

T · e(q) even for the same query q, thanks to

the random values εti, t = 1, · · · , U introduced to records. Let’s see in a bit more detail the

importance to introduce εti, t = 1, · · · , U into records and f t, t = 1, · · · , U into queries.

For two duplicated record p1, p2 (i.e., they are identical on attribute K), without using

f t, t = 1, · · · , U (and εti, t = 1, · · · , U), from Lemma 4.3.1, e(p1)
T · e(q) and e(p2)

T · e(q) are

identical for every query q, therefore, Server could infer p1 and p2 are identical. With the

use of f t, t = 1, · · · , U (correspondingly, εti, t = 1, · · · , U), even if p1 and p2 are identical, the

inner products e(p1)
T ·e(q) and e(p2)

T ·e(q) are guaranteed to be different if εi, t = 1, · · · , U
is randomly chosen for each pi and thus they are different from each other. This is how

f t, t = 1, · · · , U and εti, t = 1, · · · , U prevent inferring whether two records are same based

on their inner products with the same query.

4.6.3 Order Privacy

Firstly, from a direct point of view, the encryption of a record p, e(p) = MT · (p′, p′′), goes

through the random split (p′, p′′) and the multiplication by the matrix M , which aggregates

over multiple dimensions, including random values εi’s. As a result, the order of the K

value in a record p is randomized in e(p). That is, original order in not preserved under our

encryption scheme.

Furthermore, inferring the relative order of two records p1 and p2 by comparing e(p1)
T ·

e(q) and e(p2)
T · e(q) for the same query q does not help here. From Lemma 4.3.1, this is

equivalent to comparing rq(p1
T · q−

∑U
t=1 f

tεt1) and rq(p2
T · q−

∑U
t=1 f

tεt2). From Fact 1(2),

pi
T · q is non-monotone, which means that a large pi

T · q could be produced by either a large

K value of pi or a small K value of pi.
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4.6.4 Additional Analysis and Summarization

So far, we assume that exact answers must returned. The reason is that if more data than

asked is returned, the user will know more than allowed and if less data than asked is

returned, the user will not get complete answers which are not useful. There are additional

privacy leakages due to the exactness of the returned answers. However, this does not only

apply to our particular scheme here but applies to all the schemes which guarantee the

exactness of the returned answers. We analyze the privacy concerns regarding the exact

answers as follows.

The first concern here is that a solution that always returns the exact answers may open

a door to frequency analysis attack mentioned above because Server may identify repeating

queries based on the identity of the results. This is not difficult to understand, if the answers

are exactly the same (even in encrypted form, Server could always tell whether the answer

A1 to q1 is the same as another answer A2 to q2), then Server could conclude that these two

queries q1 and q2 are the same query with a high probability.

Secondly, a more tricky issue is that an exact answer for a range query has the property

that all records in the answer are consecutive in the order of K. Server could use this

property to infer the relative order of K in records. For example, if one query retrieves

{X,Y,W} and another query retrieves {F,X, Y }, then X and Y must be consecutive in the

order of K. Why? Because if X and Y are not consecutive, then it must be true that F is

in the middle of X and Y since {F,X, Y } is returned, and in any other answer, if X,Y are

returned at the same time, then F must also be returned due to the consecutive property.

However, the returned answer {X,Y,W} does not include F . So we could conclude that

X,Y must be consecutive in the order of K.

After the answers for a large number of queries are observed, Server may learn a long

chain of consecutive records by eliminating permutations that are inconsistent among query

answers. Once the relative order of two records on this chain is known, so is the relative

order of all records on the chain.

In a context where incorrect answer (e.g., false positives, false negatives) are allowed,

possible ways to combat the above attacks could be generating false positive and/or false

negative records into the answers in a controlled manner. The purpose is to destroy the

above “consecutive property” and the exactness. We consider this as our future work.

Lastly, we give a summary of our analysis here. Essentially, the goal we try to achieve
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is to protect the complete correspondence between plaintext values and ciphertext values

from being disclosed. That is, Server cannot identify plaintext values for any particular

ciphertext values except those Server obtained from prior background knowledge. Based on

what Server knows, we try to analyze all the possible attacks Server could do and check

whether our scheme can resist against these attacks or not (i.e., the three privacy aspects

we discussed previously).

What we actually achieve is this: our scheme can resist against all the specific attacks as

we discussed previously. Other potential attacks may or may not apply but for now, to our

knowledge, it is not clear how other attacks would apply. We did not achieve our goal fully

because the exactness of the returned answers may cause additional privacy leakages. We

are making progress regarding existed works which directly preserve the order information.

We conclude this chapter here.



Chapter 5

Indexing Method

In this chapter, we propose an efficient indexing method to support faster query evaluation

than the trivial linear scan manner. Until now, the query answer is computed by evaluating

the condition e(pi)
T · e(q) ≤ Cq in Theorem 4.4.1 for every encrypted data point e(pi) in

the database. This linear scan is not acceptable for large databases. We adopt the ball

tree index in [31] to retrieve such points while pruning as many data points as possible.

Briefly, a ball tree is a binary tree such that each non-leaf node represents a ball and has

two child nodes. A data point belonging to a parent goes to the child ball whose center is

closer to the data point. All data points are only stored at the leaf nodes. To build such a

ball tree, we could keep separating the data point space into two partitions (left and right

child) recursively until the number of data points in some partition is below a predefined

threshold and we make this partition as a leaf node. We call this threshold as “max leaf

size” and we will test it in our experiment chapter. The detailed algorithm to construct

the ball tree (i.e., how to encrypted records into balls) could be found in [31] and we don’t

bother to bring the exactly same algorithm here.

Algorithm 1 gives the outline of our branch-and-bound pruning search based on such a

ball tree index just described. Let’s explain how exactly this algorithm works. Essentially,

we need to retrieve all data points e(pi) whose inner product with e(q) is no more than Cq.

For a query q, we traverse the ball tree in a depth-first branch-and-bound manner. At each

node N , two bounds are estimated using Theorem 5.0.1 below: UB(e(q), N) is defined as

the maximum possible inner product between e(q) and any point inside the node N , and

LB(e(q), N) is defined as the minimum possible inner product between e(q) and any point

inside the node N . Then we have the following:

33
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Algorithm 1 BallTreeSearch(Query e(q), TreeNode N)

1: if Cq < LB(e(q), N) then
2: The subtree rooted at N will be pruned
3: else if Cq ≥ UB(e(q), N) then
4: Return all the data points in the leaf

nodes of the subtree rooted at N
5: else
6: if isLeaf(N) then
7: LinearSearch(e(q), N)
8: else
9: BallTreeSearch(e(q), N .leftChild);

10: BallTreeSearch(e(q), N .rightChild);
11: end if
12: end if

If Cq < LB(e(q), N), the subtree rooted at N is pruned because even the minimum

possible inner product LB(e(q), N) is larger than Cq, then none of the data points in the

leaf nodes of the subtree rooted at N would have an inner product with e(q) to be no more

than Cq.

If Cq ≥ UB(e(q), N), all the data points in the subtree rooted at N are returned. This

is because even the maximum possible inner product UB(e(q), N) is less than or equal to

Cq, then it is sure that all of the data points in the leaf nodes of the subtree rooted at N

would have an inner product with e(q) to be no more than Cq. Note this is also a way to

achieve the same effect as pruning in a sense that we don’t have to linear scan each data

point.

Otherwise in the third case, if N is a leaf node, we evaluate e(pi)
T · e(q) ≤ Cq for

every data point e(pi) in N ; if N is not a leaf node, we examine the two child nodes of N

recursively.

Furthermore, the ball tree index can be implemented on disk storage by allocating the

nodes to disk pages in the depth-first order of the tree, where several adjacent nodes in

the order can be allocated to the same disk page. This makes sense because the nodes are

examined in the depth-first order of the tree nodes. The branch-and-bound operation can

be supported by having each node pointing to its sibling node, so the subtree of the node

can be skipped by following this pointer in the depth-first traversal.

The only remaining thing is to find the exact values for LB(e(q), N), UB(e(q), N). We

give Theorem 5.0.1 as follows. And from now on we don’t particularly distinguish a point
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𝐞𝐞(𝐩𝐩∗) 

𝐫𝐫𝟎𝟎 

𝐑𝐑𝟎𝟎 
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𝛚𝛚𝐩𝐩 

𝛟𝛟

Figure 5.1: Plot example for ball node (a circle) in 2-dimensional space
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from a vector which starts from the origin when it does not cause any ambiguity. That is,

we will call an encrypted record e(p) either a vector or a point in the encrypted space. We

give the proof for LB(e(q), N) in Theorem 5.0.1 while the proof for UB(e(q), N) could be

found in [31].

Theorem 5.0.1 Given a ball tree node N with the center e(p0) and the radius R0, and an

encrypted query e(q),

UB(e(q), N) = e(p0)
T · e(q) +R0|e(q)|

LB(e(q), N) = e(p0)
T · e(q)−R0|e(q)|

Proof: As shown in Figure 5.1, suppose that e(p∗) is the vector(point) in the ball node

N for the query vector e(q) with minimum inner product and r0 be the Euclidean distance

between the ball center e(p0) and e(p∗) (by definition, r0 ≤ R0 and note everything is in the

encrypted space). Let θp be the angle between the vector e(p0) and the vector e(p∗)−e(p0),
the one starting from point e(p0) and end at e(p∗), φ and ωp be the angles between the

vector e(p0) and vectors e(q) and e(p∗) respectively (refer to the Figure 5.1).

The angle ωp can be expressed in terms of p0 and θp as:

cosωp =
|e(p0)|+ r0 cos θp

|e(p∗)|
, sinωp =

r0 sin θp
|e(p∗)|

. (5.1)

Let θq,p∗ be the angle between the vectors e(q) and e(p∗). With the triangle inequality

of angles, we have:

|θq,p∗| ≤ |φ+ ωp| (5.2)

We use the range [−π, π] as the angle system for all the angle calculation and thus

0 ≤ |θq,p∗| ≤ π, 0 ≤ |φ+ ωp| ≤ π. We then get:

cos θq,p∗ = cos |θq,p∗| ≥ cos |φ+ ωp| = cos(φ+ ωp) (5.3)

We derive the lower bound as follows:

LB(e(q), N) = min
e(p)∈N

{e(p)T · e(q)}

= |e(q)||e(p∗)| cos θq,p∗

≥ |e(q)||e(p∗)|cos(φ+ ωp) (by (5.3))

= |e(q)||e(p∗)|(cosφ cosωp − sinφ sinωp) (expand cos(φ+ ωp))

= |e(q)|(cosφ(|e(p∗)| cosωp)− sinφ(|e(p∗)| sinωp))
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= |e(q)|(cosφ(|e(p0)|+ r0 cos θp)− sinφ(r0 sin θp)) (by (5.1))

≥ |e(q)|min
θp
{cosφ(|e(p0)|+ r0 cos θp)− sinφ(r0 sin θp)}

= |e(q)|min
θp

(|e(p0)| cosφ+ r0(cosφ cos θp − sinφ sin θp))

= |e(q)|min
θp

(|e(p0)| cosφ+ r0 cos(φ+ θp))

= |e(q)|(|e(p0)| cosφ− r0)
≥ |e(q)|(|e(p0)| cosφ−R0)

= e(p0)
T · e(q)−R0|e(q)|

That is, the minimum possible inner product between e(q) and any point inside the

node N is larger than or equal to e(p0)
T · e(q) − R0|e(q)|. Thus, we set the lower bound

as LB(e(q), N) = e(p0)
T · e(q) − R0|e(q)|. The proof for the upper bound UB(e(q), N) is

similar and could be found in [31]. �

More discussion. Although the ball tree is defined as a binary tree and we also adopt

a binary ball tree in the experiments, the ball tree could actually be a more general tree with

the number of children of each node being between M1 and M2 (2 ≤ M1 < M2). Because

the branch-and-bound pruning in a depth first search order does not depend on the number

of children of each node, as long as it is tree, such branch-and-bound pruning in depth first

search order can work properly.

The advantage of such a more general ball tree is that such a tree could be short and

thus could be more efficient when implemented on disks. We could construct such a general

ball tree by adopting a similar recursive partition procedure as for binary ball tree. To

construct M (M1 ≤M ≤M2) children of a parent node, we keep partitioning the points in

the parent node by performing M − 1 binary partitions (for the detailed binary partition

algorithm, please see [31]). Note the first binary partition splits the parent node into two

children. The second binary partition splits one of these two children and adds one more

child to the parent node. So every binary partition adds one more child and M−1 partitions

will split the parent node into M child nodes. Such partitioning will be stopped when the

number of points within a node is below a threshold we set (i.e., maximum leaf size). We

bring this up just for discussion purpose and this is not the focus of our work here. In this

thesis, we simply adopt a binary ball tree as our index.



Chapter 6

Experiments

In this chapter, we report our studies on the feasibility of the encryption schemes proposed

in Chapter 4 and the performance of the indexing method in Chapter 5. On one hand, we

investigate the performance of the ball tree index including its pruning power measured by

examined portion (test ratio) and the real effectiveness measured by average query execution

time. We will also compare the average query execution time by ball tree index with the

query execution time by linear scan approach.

On the other hand, we intend to give a thorough study and analysis over the encryption

scheme including the evaluation on storage cost, encryption cost, query execution cost as

well as the communication cost. For the communication cost, it is of no particular interest

because our encryption scheme return exact answers and thus has the minimum communi-

cation cost among the solutions that guarantee the completeness of answers because all such

solutions return all correct records. While for the other costs, we give all concrete experi-

ment results and analysis. That is, storage cost would be measured by the disk space used to

store the encrypted database under our encryption schemes. And both encryption cost and

query execution cost are measured by the time consumption to perform these operations.

6.1 Experimental Setup

Here we first describe the dataset and the queries we use. And then we also discuss the

specific parameters we choose to run the experiments and the reason why we choose some

specific ones rather than others. We discuss how and why we design certain experiments as

well.
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6.1.1 General Setup

For the dataset, we utilized the 2000 Brazil CENSUS data1 for our studies. This contains

10M records over 9 attributes summarized in Table 6.1. We choose AGE as the attribute K

for range queries and we created three samples of sizes 1M, 5M, and 10M in records. The

purpose of creating different databases is to study how the query execution time changes as

the database size increases.

For the query, we generated a pool of range queries over K of varied selectivity by

sampling 50 queries uniformly at random from those with selectivity less than 5%, where

the selectivity of a query is defined as the percentage of records that are retrieved by the

query. Such queries model real life queries that usually retrieve a small fraction of the whole

database. The reported query processing time is the average time of these 50 queries. We

implemented these schemes in C++ and run a Intel(R) Xeon(R) CPU 2.53 GHZ PC with

12GB of RAM as Server.

Attributes Sizes Attributes Sizes

STATE 26 AGE 101

SEX 2 MARITAL STATUS 4

STATE OF BIRTH 30 RACE 6

EDUCATION 32 OCCUPATION 511

CLASS OF WORKER 4

Table 6.1: Attributes and domain sizes

6.1.2 Specific Design

We now discuss the specific parameters for our encryption scheme. We consider four security

parameter settings: ` = 3, 4, 5, 6. Recall that ` = U + 2 + s. Since the variance between

U and s does not make a big difference here for the same `, we set U = 1, so s = 0, 1, 2, 3

corresponding to ` = 3, 4, 5, 6, respectively. We say that an encryption is s-split if S has s

non-zero bits.

Then, the first set of test is to test the performance of the ball tree index over different

parameters. This is in the first place because we need to choose a best ball tree to do

1https://international.ipums.org/international/
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comparison with the linear scan approach in next step. The only adjustable parameter

which affects the performance of the ball tree is the threshold, max leaf size we defined in

Chapter 5 which is the maximum number of points a leaf node could contain.

So we test different performance of the ball tree index by setting different max leaf

size as 3, 5, 10, 20, 40. And we basically want to measure two things, one is the pruning

power measured by test ratio defined as the percentage of records in the database that are

actually tested against the query condition. The other is the real effectiveness of the ball

tree measured by average query execution time. The database size does not particularly

reflect anything about the ball tree performance, so we will do experiment to test ball tree

on the 1M database and use the 50 queries we generated. We test all of the four s-split

s = 0, 1, 2, 3 encryptions.

Next, we discuss more settings for the experiments on storage cost, encryption cost,

query execution cost of the encryption scheme. For the encryption cost, we would like to

evaluate total time spent to encrypt the whole databases and the query. Also we want to

test the disk space cost for the storage cost evaluation. For these two cost evaluation we

collect statistics over the three different databases (1M, 5M, 10M) to see how it changes

as the database sizes increases. And we keep the average time to encrypt one query as

the measurement of query encryption cost. Here what we need is just a taste on whether

the cost to perform our encryption scheme on modern computers is acceptable. So for this

second set of test Encryption time and space overhead, we just adopt the 3-split encryption

with the setting of ` = 6, U = 1, s = 3 which is expected to be the most time consuming

and have most space overhead.

The final third set of test Query execution time is about the query execution cost. By

only checking the linear scan query execution time cost is not that interesting, so we combine

the best ball tree index test here to do comparison as we previously discussed. We use the

thee encrypted databases to test the average query execution time over the 50 generated

queries respectively. And we adopt all the four s-split (s = 0, 1, 2, 3) encryptions to check

how the query execution time changes. The max leaf size of the ball tree here would be set

as 10 since later on we will see that this max leaf size turn out to be the best one.

6.2 Results and Analysis

We collect experiment results and summarize the analysis here.
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6.2.1 Ball Tree Performance
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Figure 6.1: Test ratio of the ball tree index for 1M records

Figure 6.1 examines the test ratio of the ball tree index. As previously defined, it is the

percentage of records in the database that are actually tested against the query condition.

As the maximum leaf size increases, the test ratio increases because a larger leaf ball is more

likely to intersect with the region of the query, in which case all records in the leaf ball will

be tested against the query condition. In addition, as we do more splits in the encryption,

the test ratio increases as well. This trend is consistent with the increase in query time in

Figure 6.3. The reason is that more splits means a higher dimensionality of the encrypted

K, which reduces the effectiveness of the index.

However, as we can see from Figure 6.2, it is not always true that the smaller max leaf

size is, the better the real performance (average query execution time) is. This is because

the real average query execution time consists of two parts. The first part is the time spent

on testing the lower and upper bound UB(e(q), N), LB(e(q), N) of the inner product for

each node N and the second part is the time spent on tests of the inner product between

each individual record and the query. Smaller max leaf size leads to less tests for the second

part but also leads to a deeper ball tree containing more nodes and thus leads to more tests
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Figure 6.2: Average query execution time of the ball tree index for 1M records

for the first part. So there is a trade-off. Considering both the test ratio and the query

execution time results, we think max leaf size = 10 gives a best ball tree which will be used

in comparison with linear scan approach in the following experiments.

6.2.2 Encryption Time and Space Overhead for K

In Table 6.2, the last row summarizes the time for 3-split encryption and the first three

rows in Table 6.2 show the space overhead of 3-split encryption. The construction time is

considered efficient because encryption is done off line and only once. The storage for K after

encryption jumps 6 times because the ciphertext is in the space of 6 dimensions, compared

to the single dimension K. This ratio remains constant as the database size increases. In

general, s-split encryption for a larger s has a higher level of security but at the cost of more

storage space. The average time to encrypt one query is 1.76× 10−5 seconds. These results

are quite acceptable for the contemporary computer systems.
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Database size (M records) 1 5 10

Original storage for K (MB) 8.3 41.8 83.9

Encrypted storage for K (MB) 51 253 505

Encryption Time (seconds) 5.69 28.48 56.93

Table 6.2: Encryption time and space overhead for K and 3-split encryption

6.2.3 Query Execution Time

This refers to the time for Server to compute the answer to a received query. Table 6.3

collects the average query execution time over the plaintext database as the baseline for

query execution time.

Database size (M records) 1 5 10

Query Execution Time (seconds) 0.051 0.253 0.52

Table 6.3: Average query execution time over plaintext database

Figure 6.3 compares the query time for the ball tree index method and the linear scan.

Firstly, compared with the baseline, the encryption adds more cost to execute the query.

Secondly, as the data size increases, the query time for both methods increases linearly, but

the time for the linear scan increases much faster. The query time for 0-split or 1-split is

significantly smaller than for 2-split and 3-split. This trend is intuitive because more splits

lead to a higher dimensionality of encrypted K, which causes the branch-and-bound strategy

of the ball tree index to become less effective. Overall, the indexing method is significantly

more efficient than the linear scan.

In summary, we could see from all these experiment results, that less split encryption

leads to lower dimensionality of encrypted data, thus, more efficient encryption and query

computation, but introduces less randomness in the encryption. This reflects the trade-off

between privacy and efficiency. If a high level of privacy is required, the linear scan might

be the only choice. In this case, partitioning and distributing the database (on Server) onto

multiple machines for parallel linear scans is a promising approach.
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Figure 6.3: Average query execution time for max leaf size 10



Chapter 7

Conclusion

7.1 Summary

A major challenge or concern in the cloud computing paradigm is data privacy. On one hand,

there is a demand to leverage the powerful resources of the cloud server to provide services

to clients. On the other hand, the cloud server must not learn any sensitive information

about the data being managed and the queries being answered. We consider the service of

answering the class of range query search over numerical data and propose a data encryption

scheme to address these requirements.

We adopt a strong privacy model where the relative order of K values is considered

confidential. This problem is challenging essentially because of the following dilemma: a

range query requires comparing the values of K, whereas the privacy model requires hiding

the order of such values. We propose a probabilistic encryption scheme which does not

preserve the order information to address the challenges. We also enable faster search by

applying an effective ball tree indexing method directly over encrypted data. Therefore, it

is suitable for large scalable applications.

One limitation of our scheme is that the exactness of the returned answers could cause

additional privacy leakages and this applies to all the schemes which guarantee the exactness

of the returned answers.
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7.2 Future Work

Currently in this thesis, we only consider privacy preserving range query search over a

single attribute. The first initial step towards the future work could be considering a more

complicated and challenging case to enable range query search over multiple attributes (e.g.

bank account balance ≤ 10K and/or salary ≤ 5K). Secondly, range query is only a subset

of all the operations supported by database management systems although it is a big part.

More other spaces could be explored to support more sql queries or operations such as

aggregation query, join, group by and so on.

Additionally, because the exactness of the returned answers may open doors for the

cloud server to derive useful information, in the future, we could consider this issue in a

bit more detail and give a solution to resolve the issue in a different context where false

positives or false negatives are allowed in the returned answers.
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