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Abstract

Traditional XML parsers process XML documents sequentially, one byte-at-a-time. Parabix-

XML, however, parses documents 128-bytes-at-a-time, through the use of Pablo-generated

parallel bit stream operations. Prior research on accelerating XML processing using the

Parabix Framework lead to a number of interesting yet feature-light research prototypes.

This project investigates the integration of Parabix into an existing widely-used XML parser,

Xerces-C 3.1.1 of the Apache Software Foundation. Xerces was systematically restructured

into nine independent layers that leverage parallel transcoding, deletion and bit stream

operations yet still adhere to the existing programmer API. icXML supports all features

provided by Xerces with the exception of object serialization and its layered structure sup-

ports future multicore acceleration using pipeline parallelism. Evaluation of icXML in a

single-core setting demonstrates a speedup of 50% to 100% in a wide range of workloads.

Keywords: XML, Parabix, Parallel bit stream technology, SIMD
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nologies” [20]. As lead author of that paper, I can state that it presented an earlier view of

icXML that does not completely represent its current state as of submittal of this report.
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Chapter 1

Introduction

icXML is a proof-of-concept re-implementation of the Xerces-C 3.1.1 XML parser. The goal

was to adapt Xerces to leverage the advantages inherent in the Parabix Framework [18] yet

maintain its existing API and functionality. The challenge is that Xerces, like all tradi-

tional XML parsers, is an “embarrassingly sequential” byte-at-a-time parser [1] whereas the

Parabix Framework uses wide SIMD registers to process input in a parallel block-at-a-time

fashion. Given the diametrically-opposed ideologies between the two concepts, blending

them required extensive re-engineering.

To leverage SIMD parallelism via bit stream processing and support the eventual in-

clusion of multicore acceleration, Xerces was conceptually divided into nine separable task-

critical layers. In icXML, each layer is an independent module.

Organization of this report is as follows: Ch. 2 provides a basic introduction to XML,

Xerces-C 3.1.1 and the Parabix Framework. Ch. 3 discusses the icXML’s overall architecture

and the key differentiating features between it and Xerces. Ch. 4 to 12 discuss each layer

individually, highlighting the core functionality, how they support subsequent modules (both

directly through data manipulation and indirectly through a priori knowledge), and their

validation contributions. Ch. 13 compares icXML and Xerces and presents a comparative

evaluation of their performance over three key benchmarks. Ch. 14 concludes the paper

with my closing comments.

1



Chapter 2

Background

This chapter provides a brief introduction to XML (including standard XML terminology

and production rules), XML Processors, the Xerces-C 3.1.1 Parser and the Parabix Frame-

work. It does not contain any material regarding the icXML project itself.

2.1 XML Overview

Extensible Markup Language (XML) [3,4] is a core technology standard of the World Wide

Web Consortium (W3C), providing a common framework for encoding and communicating

structured and semi-structured information. XML plays a ubiquitous role in data interoper-

ability in applications ranging from Office Open XML in Microsoft Office to NDFD XML

of the NOAA National Weather Service, from KML in Google Earth to Castor XML in the

Martian Rovers, from ebXML for e-commerce data interchange to RSS for news feeds.

In XML, documents consist of two logical components: (1) markup, which encodes a

description of an XML document’s storage layout and logical structure, and (2) content,

which contains the textual values that is associated with each item of data in the XML

instance. Fig. 2.1 provides a standard product list encapsulated within an XML document.

All content is highlighted in bold. Anything that is not content is considered markup.

XML documents are typically divided into two categories: (1) data-oriented and (2)

document-oriented XML instances. The markup density — the percentage of bytes used

to express the markup tags over the size of the document — is a key metric used to dis-

tinguish between the two. Data-oriented instances typically have a higher magnitude of

2
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1. <Product ID="1931W">

2. <ProductName Lang="English">Widget</ProductName>
2. <ProductName Lang="French">Bitoniau</ProductName>
4. <Company ID="ACME ">ACME Corporation</Company>
5. <Price Regular="$19.95" Clearance="$11.95"/>
6. <!-- Not For Sale to Actual Customers -->

7. </Product>

Figure 2.1: Sample XML Document

markup compared to content than document-oriented XML instances; they are are typi-

cally used for system-to-system communications, such as XHTML, SOAP, GML, KML and

VML amongst many others. Document-oriented instances often intended to be human-

readable; the markup tags are often quite verbose and sparsely laid out throughout the

document.

Virtually any type of information can be represented in XML but for an XML document

to be considered well-formed, it must adhere to the following production rules:

Document := Prolog Element Misc*

Prolog := XmlDecl Misc* (DocTypeDecl Misc*)?

Misc := Comment | PI | Space

XmlDecl := '<?xml' VersionInfo EncodingDecl? SDDecl? Space? '?>'

DocTypeDecl := See Extensible Markup Language (XML) specification (2.8)

Content := CharData? ((Element | CDATA | Comment | PI ) CharData?)*

Element := StartTag Content EndTag | EmptyTag

StartTag := '<' Name (Space Attribute)* Space? '>'

EmptyTag := '<' Name (Space Attribute)* Space? '/>'

Attribute := Name Eq AttValue

EndTag := '</' Name Space? '>'

AttValue := '"' ([^<&"] | Reference)* '"' | "'" ([^<&'] | Reference)* "'"

Comment := '<!--' ((Char - '-') | ('-' (Char - '-')))* '-->'

CDATA := '<![CDATA[' (Char* - (Char* ']]>' Char*)) ']]>'

PI := '<?' PITarget (Space (Char* - (Char* '?>' Char*)))? '?>'

PITarget := Name - (('X' | 'x') ('M' | 'm') ('L' | 'l'))
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VersionInfo := Space 'version' Eq ("'" VersionNum "'" | '"' VersionNum '"')

VersionNum := '1.0' | '1.1'

EncodingDecl := Space 'encoding' Eq ('"' EncName '"' | "'" EncName "'" )

EncName := [A-Za-z] ([A-Za-z0-9._] | '-')*

SDDecl := Space 'standalone' Eq (("'" ('yes' | 'no') "'") |

('"' ('yes' | 'no') '"'))

CharData := [^<&]* - ([^<&]* ']]>' [^<&]*)

Space := (#x20 | #x9 | #xD | #xA)+

Char := Space | [#x21-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

Eq := Space '=' Space

Name := NameStartChar (NameChar)*

NameStartChar := ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6] |

[#xF8-#x2FF] | [#x370-#x37D] | [#x37F-#x1FFF] |

[#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] |

[#x3001-#xD7FF] |[#xF900-#xFDCF] | [#xFDF0-#xFFFD] |

[#x10000-#xEFFFF]

NameChar := NameStartChar | "-" | "." | [0-9] | #xB7 | [#x0300-#x036F] |

[#x203F-#x2040]

2.2 XML Processor

An XML Processor (or XML parser) is a software module that is capable of reading an XML

document and distinguishing between the markup and content held within it. It feeds the

the resultant XML data to the application, typically through an event-based interface.

Traditional XML processors parse an XML document from the first to the last character

in the source text. Each character is examined to distinguish between the markup identifiers,

such as a left angle bracket ‘<’, and the content held within the document. A logical cursor

position denotes the current character under interpretation. As the parser moves its cursor

through the document, it alternates between markup scanning, validation, and content

processing operations. In other words, XML parsers are finite-state machines (FSMs) that

use byte-space comparisons to transition between data and metadata states. Each state

transition indicates the context for interpreting any subsequent characters. Unfortunately,

markup and content tends to consist of variable-length strings sequenced in unpredictable
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patterns; thus any character could be a state transition until deemed otherwise. As an

application class, FSMs are considered to be “embarrassingly sequential” [1] and therefore

very difficult to parallelize.

2.3 Xerces-C++ 3.1.1

Xerces-C++ 3.1.1 is a widely-used standards-conformant open-source stream-oriented vali-

dating XML Parser and is a key component of the Apache XML project. It features com-

prehensive support for a variety of character-encodings both commonplace (e.g., UTF-8,

UTF-16) and rarely used (e.g., EBCDIC), support for multiple XML vocabularies through

the XML namespace mechanism, as well as complete implementations of structure and data

validation through multiple grammars declared using either legacy DTDs (document type

definitions) or modern XML schema facilities. Xerces also supports several APIs for access-

ing parser services, including event-based parsing using either pull parsing or SAX/SAX2

push-style parsing as well as a DOM tree-based parsing interface.

2.4 Parabix Framework

The Parabix (parallel bit stream) framework is a transformative approach to text processing.

The key idea is to exploit the availability of wide SIMD registers in commodity processors

to represent data from long blocks of input data by using one register bit per single input

byte. Parabix programs can be generally broken into four logical stages: (1) transposition,

(2) character classification, (3) lexical analysis, and (4) post-processing operations.

2.4.1 Transposition (from Byte-Space to Bit-Space)

Given a code-uniti of n bits, the input data is transformed into n basis-bit streams by

mapping the ith bit of the jth byte of input data to the jth bit of the ith basis-bit stream.

Just as forward and inverse Fourier transforms are used to transform between

the time and frequency domains in signal processing, bit stream transposition

iCode Unit: the minimum number of bits required to represent any code point in a specific character
encoding format. Some formats (e.g., UTF-8, UTF-16, etc) use variable-width encoding schemes (i.e., multi-
code-unit sequences) to represent some of the code points in the format’s character set.
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and inverse transposition provides bit-space and byte-space views of the source

text. The goal of the Parabix Framework is to support efficient text processing

using these two equivalent representations in the same way that efficient signal

processing benefits from the use of the frequency domain in some cases and the

time domain in others. [18]

The Parabix Framework works with blocks whose size in bytes is equal to the bit-width

of wide SIMD registers (e.g., 128 for SSE, 256 for AVX). Blocks are transposed into n basis

bit streams in parallel with an amortized cost of approximately 1 cycle/byte using SSE [18].

For example, in Fig. 2.2, the UTF-8 string “10<Ppl/>” was transposed into 8 basis-bit

streams, b0...7.

String 1 0 < P p l / >

ASCII 00110001 00110000 00111100 01010000 01110000 01101100 00101111 00111110

b7 b6 b5 b4 b3 b2 b1 b0
0 0 1 1 0 0 0 1

0 0 1 1 0 0 0 0

0 0 1 1 1 1 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

0 1 1 0 1 1 0 0

0 0 1 0 1 1 1 1

0 0 1 1 1 1 1 0

Figure 2.2: Byte-space to Bit-space Transposition

2.4.2 Character Classification

Typically, XML Processors parse byte-space data to locate specific characters to determine

if and when to transition between data and metadata parsing. For example, in XML, a left

angle bracket character < may indicate that we are starting a new markup tag—provided

that < is not within a Comment or CDATA section. Traditional XML Processors find these

characters by comparing the value of each with a set of known significant characters and

branching appropriately when one is found, typically using an if or switch statement. Using
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this method to perform multiple transitions in parallel is non-trivial and may require fairly

sophisticated (and often speculative) algorithms to do so correctly.

With the transposed bit-space representation of the input data, classification of these

characters can be performed in parallel using the Parabix Framework, which allows charac-

ters to be expressed mathematically, using an extended set of Boolean-logic operations. For

example, one of the fundamental characters in XML is a left-angle bracket. A character is

an ‘<’ if and only if ¬(b0 ∨ b1)∧ (b2 ∧ b3)∧ (b4 ∧ b5)∧¬(b6 ∨ b7) = 1. Similarly, a character is

numeric [0-9] if and only if ¬(b0∨b1)∧(b2∧b3)∧¬(b4∧(b5∨b6)). An important observation

here is that ranges of characters may require fewer operations than individual characters

and multiple classes can share the classification cost.

2.4.3 Lexical Analysis

To perform lexical analysis on the input data, Parabix computes lexical and error bit streams

from the character-class bit streams using a mixture of both boolean logic and arithmetic

operations. Lexical bit streams typically mark multiple current parsing positions. Unlike the

single-cursor approach of traditional text parsers, these allow Parabix to process multiple

cursors in parallel. Error bit streams are often the byproduct or derivative of computing

lexical bit streams and can be used to identify any well-formedness issues found during the

parsing process. The presence of a 1 in an error stream indicates that the lexical stream

cannot be trusted to be completely accurate and it may be necessary to perform some

sequential parsing on that section to determine the cause and severity of the error.

source text <a><valid> <string> <>ignored><error]

C0 = [a-zA-Z] .1..11111...111111.....1111111..11111.

C1 = [>] ..1......1........1...1.......1.......

C2 = [<] 1..1.......1.........1.........1......

L0 = Advance(C2) .1..1.......1.........1.........1.....

E0 = L0 ∧ ¬C0 ......................1...............

L1 = ScanThru(L0, C0) ..1......1........1...1..............1

E1 = L1 ∧ ¬C1 .....................................1

Figure 2.3: Lexical Parsing in Parabix

To form lexical bit streams, Parabix provides several parallel bit movement operations

in addition to bitwise logic, including, in particular, Advance and ScanThru. (ScanThru
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is the foundation of Parabix-2 Framework [10]) The Advance operator accepts one input

parameter, c, which is typically viewed as a bit stream containing multiple cursor bits, and

advances each cursor one position forward. On little-endian architectures, shifting forward

means shifting to the right. ScanThru accepts two input parameters, c and m; any bit that

is in both c and m is moved to first subsequent 0-bit in m by calculating (c+m)∧¬m. For

example, in Figure 2.3 suppose we have the regular expression <[a-zA-Z]+> and wish to

find all instances of it in the source text. We begin by constructing the character classes C0,

which consists of all letters, C1, which contains all ‘>’s, and C2, which marks all ‘<’s. In L0

the position of every ‘<’ is advanced by one to locate the first character of each token. By

computing E0, the parser notes that “<>” does not match the expected pattern. To find the

end positions of each token, the parser calculates L1 by moving the cursors in L0 through

the letter bits in C0. L1 is then validated to ensure that each token ends with a ‘>’ and

discovers that “<error]” too fails to match the expected pattern. The erroneous cursors in

L0 and L1 are handled in the post-processing phase.

2.4.4 Post-Processing

When using the Parabix Framework, the post-processing stage encompasses all byte-space

logic that follows the bit-space processing. Certain operations, such as the matching of a

start and end tag element names, are too complex to handle efficiently in bit-space.

2.4.5 Pablo Compiler

All Parabix applications are written in Pablo, a subset of the Python programming language.

The Pablo compiler transforms the Pablo program into its C/C++ equivalent. The key dif-

ference between the two is that Pablo views bit streams as unbounded streams whereas the

C/C++ version takes into account details such as finite SIMD register widths and applica-

tion buffer sizes. This abstracts the details and simplifies proving the correctness of the

Pablo code by separating the implementation from the mathematical representation of the

algorithm.

Unfortunately, SIMD registers were not designed for this form of use. As such, the block-

to-block processing model must be simulated through what are referred to as carry queues

(carryQs). Extended Boolean operations, such as Advance and ScanThru, are converted into

their block-by-block equivalent by integrating carry-out and carry-in functionality. Each call
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to one of these functions generates a single carry bit that is “queued” for insertion into the

subsequent block, effectively simulating an unbounded model. Further explanation of this

process can be found in “Parabix: Boosting the efficiency of text processing on commodity

processors” [18].

2.4.6 BitStream Iterators

Occasionally it is necessary to correlate positions within the bit streams with the input

data. The Parabix Framework uses Bit Stream Iterators to sequentially scan through and

extract the position of each 1-bit in a bit stream in either a forward or backward direction,

effectively allowing the processor to scan up to word-size’s worth of bytes using simple

processor intrinsics and mathematical operations. The positions found by these iterators

have a one-to-one correspondence with the code-unit-aligned positions in the source data.

Forward iterators transform a bit stream into a sequence of numbers {i1, i2, . . . , in},
where ij is the position of the j-th 1-bit in the bit stream. Backwards iterators produce a

similar sequence, except ij is the position of the (n− j)-th 1-bit in the bit stream.



Chapter 3

icXML Parser Architecture

icXML is more than an optimized version of Xerces: most of Xerces’s XML parsing logic

was entirely replaced with Parabix-style bit stream equations and what was not removed

was completely restructured into independent modules. This chapter presents an overview

of the icXML parser and how the various components interact with each other. Detailed

descriptions of individual modules can be found in later chapters.

3.1 icXML Overview

icXML is divided into three logical groups: the Prolog Parser, the Parabix Subsystem

and the Markup Processor. The Prolog Parser is a byte-at-a-time parser that handles the

detection and evaluation of the XMLDecl and DTD subset (Ch. 2.1). This occurs prior to the

instantiation of the Parabix Subsystem or Markup Processor because the XMLDecl informs

icXML as to which version of XML the document is specified in, the true character-encoding

format and whether the document is standalone or not. The DTD subset can be complex

and the full resolution of the DTD grammar may require loading an external DTD subset.

However since icXML was intended to parse large documents, schema parsing is often the

least-expensive component of the overall system.

Every module within the Parabix Subsystem either directly uses the Parabix Framework

[18] or processes one or more sets of parallel bit streams (Ch. 2.4). The algorithms used by

any module in this group are relatively stateless with respect to traditional XML parsers.

On the other hand, the modules within the Markup Processor do not process any bit streams

and are almost entirely state-driven. The overall design, organization and the inputs and

10
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Parabix Subsystem

Markup Processor

Symbol ProcessorSymbol Processor

Error APIError API

Line Column TrackerLine Column Tracker

XML DocumentXML Document

Parser APIParser API

Character Set AdapterCharacter Set Adapter

Content Stream GeneratorContent Stream Generator

Grammar ValidatorGrammar Validator

Prolog ParserProlog Parser

Namespace ResolverNamespace Resolver

Well­Formedness CheckerWell­Formedness Checker

Parallel Markup ParserParallel Markup Parser

Entity ManagerEntity Manager

Figure 3.1: icXML Architecture Diagram
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outputs of these modules was greatly influenced by the concepts presented by Thies et. al,

in StreamIt: A Language for Streaming Applications [25].

3.1.1 The Parabix Subsystem

One of the early insights into XML processing was that the performance of traditional

XML Processors is negatively correlated with the markup-density of an XML document [6,

10,18]. The Parabix Subsystem was designed with this in mind. The Character Set Adapter

(Ch. 4) mirrors Xerces’s Transcoder duties; however instead of producing UTF-16 directly, it

tranposes the source text and produces a set of character-class and lexical bit streams, which

includes u8-indexed bit streams for the UTF-16 representation [9] that are later compressed

and inverse transposed to UTF-16 by the Content Stream Generator (Ch. 8).

The primary goal of the Content Stream Generator is to produce the content stream,

which is a reduced representation of the source text. Almost all markup is filtered from the

content stream to reduce the future workload of the Markup Processor. For this to work,

the Parallel Markup Parser (Ch. 5) must first perform syntactical analysis on the lexical

bit streams. In doing so, it generates a set of marker and callout bit streams in which each

1-bit identifies the position of some critical piece of XML text, such as the beginning and

ending of element tags, element names, attribute names, attribute values, entity references,

and content, etc. Of all markup text, the names of elements and attributes are the most

prevalent and recurrent components. Prior to deletion, the Parallel Markup Parser identifies

them and provides the Symbol Processor (Ch. 6) with the information necessary to produce

the symbol stream from the source text. The symbol stream is a document-order sequence

of global identifiers (gids) of each name token. The modules within the Markup Processor

understand the contractual relationship between the content and symbol streams and parse

the document accordingly (discussed in Ch. 8).

Almost all intra-element syntax validation is handled by the Parallel Markup Parser

and any violation is considered a fatal XML error. Like Xerces, whenever any error occurs,

icXML reports the error type and line-column number through the Error API. The Line

Column Tracker (Ch. 9) uses the lexical bit streams to calculate the key “cursor” locations

through the use of an optimized population-count algorithm. Its output allows icXML to

report the position of any well-formedness or schema violation, or, in the case of Xalan and

other similar applications, disclose the source location of every Element tag and Content

string in the XML Document.
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3.1.2 The Markup Processor

Given the streams produced by the Parabix Subsystem, the Markup Processor continues

the validation and data-transformation process. The Well-Formedness Checker (Ch. 10) is

primarily responsible for ensuring the document meets the requirements of the XML 1.0/1.1

Specifications by validating any aspect of the document that was not handled within the

Parabix Subsystem. Once validated, the Namespace Resolver (Ch. 11) — presuming that

namespace processing is enabled — rescans the document to determine the namespace

bindings and contexts of every element and attribute in the document. This information

is fed directly to the Grammar Validator (Ch. 12), which apart from ensuring that the

document meets its own schemai, accumulates the data that will eventually be provided to

the application.

Although the Parabix Subsystem is almost entirely data-parallel, the modules in the

Markup Processor rely on state-dependant logic and, for the most part, must be performed

sequentially. Unlike Xerces, icXML is organized in a producer/consumer model with the

minimal amount of data being passed between modules. This increases the overall instruc-

tion count but opens the opportunity for pipeline parallelism in the future.

3.2 Key Features

3.2.1 Segment-Based Parsing Model

Dividing XML documents into “chunks” is a common technique for parsing very large files

whilst preserving system resources. icXML employs this concept to processes documents in

what are herein referred to as segments. A segment of data in is defined as a 16KB chunk of

data from the input document and/or the derivatives of that data from a preceding module.

(Other sizes were explored but the difference was minimal.) Each module is optimized for

a full segment and stack-allocates its internal memory accordingly.

Unfortunately, the XML specification does not impose any limits on the length of any

markup tag or content string. Consequently, no matter what segment size is chosen, each

segment will almost surely end with either a partial markup tag or content string. Each

partial item must be prepended to the subsequent segment to complete it in the following

iteration. Therefore, prior to parsing the next segment, any incomplete data from the

iNote: in icXML, the absence of schema is equivalent to having a schema without any validation rules.
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content, symbol, reference and namespace streams are copied back to the beginning of

that stream’s buffer. Before doing so, the Markup Processor tests whether there is any

possibility that parsing the next segment could result in a overflow exception and if there

is, doubles the size of the data stream to accommodate it. This allows icXML to handle

partial tags and strings and any markup or content that exceeds the segment size without

modifying the segment size itself.

3.2.2 Loosely-coupled Recursion

The occurrence of an general entity reference in an XML document marks the position

that a textual replacement will eventually occur. The name of the reference is an alias

to the replacement text that will eventually replace it (Ch. 7). In Xerces, each general

entity is parsed with an independent XMLReader class. The XMLScanner — the class re-

sponsible for lexing the source text and producing the callback events for the application

— relies on the XMLReader to provide it with data needed to construct each lexeme. The

XMLScanner interacts with each XMLReader through the ReaderMgr, which is effectively a

stack of XMLReader objects. Although separate instances of the XMLScanner class are in-

stantiated for the source document and each of its external grammars, entity expansion

occurs within the same XMLScanner.

In icXML, the concept of a ReaderMgr stack was replaced with a loosely-coupled re-

cursive architecture, thereby eliminating the constant cost of two memory indirections that

Xerces imposes on every character. Conceptually, each module within the Markup Processor

is capable of recursively calling its parsing method, passing in all of the necessary informa-

tionii. The icXML XMLReader mirrors the functionality of the XMLReader in Xerces for

prolog and external DTD schema parsing but operates solely as an input stream manager

for the Parabix Subsystem and Markup Processor.

3.2.3 Optimized Progressive Scanning Modes

Xerces supports both push-style document parsing and pull-style progressive scanning modes.

Document scanning mode begins when the application calls the parse(. . .) method.

In this mode, Xerces continuously parses the source text, pausing only to emit markup

and content callbacks to the application. However, when either parseFirst(. . .) or

iiNote: recursion is required only when icXML encounters a general entity containing markup.
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parseNext(. . .) are called, icXML provides the application with a single piece of markup

or content and waits for the application to call parseNext(. . .) (again) before scanning

any further. Having both modes gives the application programmer the means to build

either a callback (push) oriented or sequential (pull) oriented system. However, a sufficiently

complex application will consume a sizable portion of the CPU cache, which will increase

the probability of a cache miss when switching between Xerces and the application.

icXML supports both modes as well but the Document Accumulator (Ch. 12.2) buffers

the sequence of callbacks and related data, eliminating any notion of progressive scanning

from the internal modules. The layering approach has an additional side effect of reducing

the instruction and data cache contention, which reduces the possibility of a cache miss.

With further study, it may be possible to prevent cache misses altogether in icXML by

constraining the cache requirements of each module to only what is available within (or

easily prefetchable by) the processor.
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Character Set Adapter

In Xerces, all input is transcoded into UTF-16 to simplify the parsing logic of Xerces it-

self and provide the application with a standard output format regardless of the input

character encoding. However, this is a “relatively expensive operation that can contribute

significantly to the cost of text-oriented APIs” [23]. In icXML, the Character Set Adapter

is an XML-aware parallel transcoding system that replaces the functionality of Xerces’s

XMLTranscoders using techniques first explored in the u8u16 transcoder [9].

Given a specified input encoding, it is responsible for checking that input code units

represent valid characters, mapping the characters of the encoding into the appropriate bit

stream for the Parallel Markup Parser (Ch. 5), and supporting the ultimate transcoding

operations of the Content Stream Generator (Ch. 8).

4.1 Transcoding the Source Text

Based on Perkins, E. et. al. observations that transcoding XML documents can be expen-

sive [23], icXML’s initial design adopted a piecemeal transcoding strategy for AttVal and

Content strings. Preliminary analysis found that this was not an improvement over Xerces’s

design because it forced icXML to jump between transcoding and non-transcoding states.

Instead, the Character Set Adapter parses the entire segment of XML text — but

does not directly transcode it into UTF-16. When given the input text, it produces a set

of lexical bit streams and U16 bit streams, which are used by the Parallel Markup

Parser and Content Stream Generator to parse the input document and produce the con-

tent stream, respectively. To do so, the Character Set Adapter first transposes the input

16
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document (Ch. 2.4.1) and then decomposes it into a set of character-class bit streams

(Ch. 2.4.2). The exact process differs depending on the input character-encoding scheme.

4.1.1 UTF-8

Given its 8-bit code-unit size, UTF-8 is one of the most popular character encoding formats

for XML Documents. However, as Table 4.1 shows, transcoding UTF-8 to UTF-16 can be

complex because of the need to decode and classify each byte of input and map variable-

length UTF-8 byte sequences into 16-bit UTF-16 code units.

Unicode Range UTF-8 Pattern UTF-16 Pattern

0000-007F 0tuvwxyz 00000000 0tuvwxyz

0080-07FF 110pqrst 10uvwxyz 00000pqr stuvwxyz

0800-FFFF
1110jklm

10npqrst 10uvwxyz jklmnpqr stuvwxyz

10000-10FFFF
11110efg 10hijklm * 110110ab cdjklmnp

10npqrst 10uvwxyz 110111qr stuvwxyz

(* where abcd = efghi− 1)

Table 4.1: UTF-8 vs. UTF-16 Character Encoding Format. Adapted from “A Case Study
in SIMD Text Processing with Parallel Bit Streams UTF-8 to UTF-16 Transcoding” [9]

Since both UTF-8 and UTF-16 are extensions to the legacy 7-bit ASCII, transcoding

from UTF-8 to UTF-16 is trivial whenever the source text for a particular block of text

is parsing XML are confined to the ASCII repertoire (00-7F). For all other ranges, the

corresponding U16 bit streams can still be calculated in parallel from the UTF-8 data but

this results in series of UTF-8-indexed UTF-16 code points [7]. Transforming the UTF-

8-indexed bit streams to UTF-16-indexed bit streams requires the deletion of some of the

extraneous bit positions. Specifially, all but the final byte of each multi-byte sequence

must be marked in the deletion mask stream. This stream is a bitwise filter, which can

be combined using bitwise-ORs with other filters so that the deletion algorithm needs to be

applied only once per block. Deletion itself is deferred to the Content Stream Generator.

4.1.2 UTF-16

UTF-16 to UTF-16 transcoding is obviously a simpler problem than UTF-8 to UTF-16 but

since UTF-16 code points are two-byte units, it introduces endianness-related problems.
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Xerces automatically converts UTF-16B into UTF-16L within the UTF16Transcoder on

little-endian architectures, such as Intel, and UTF-16L to UTF-16B on big-endian machines.

icXML employs a similar technique within the Character Set Adapter but only as much as

necessary to perform character classification and support the other modules.

4.1.3 Other Character Set Encodings

Currently, icXML natively handles only UTF-8 and UTF-16. These are the two most

common encoding formats for XML documents and are required by all XML processors [3,

4]. All other encoding formats use Xerces’s Transcoder architecture to first convert the

source text to UTF-16 prior to processing it with the UTF-16 Character Set Adapter. This

ensures that icXML is fully compatible with any encoding method supported by Xerces,

including those supported via ICU, ICONV and other external transcoding libraries — but at

an increased cost when parsing non-standard encoding formats.

4.2 End-of-Line Handling

In XML, end-of-line sequences (EOLs) are uniformly reported with a single LF #xA character

unless they are specifically included in the source text as a character reference (Ch. 7).

Section 2.11 of the XML 1.0 specification dictates that any occurrence of a CR-LF {#xD,#xA}
or a CR #xD not followed by LF must be replaced with a LF [3]. Section 2.11 of the XML

1.1 specification extends the above rule to handle LS #2028 and NEL #x85 UNICODE

characters. Every occurrence of a LS, NEL or a CR-NEL is also subsituted with a LF.

Line-break normalization occurs prior to XML processing. The Character Set Adapter

assists the Parallel Markup Parser by locating and transforming any EOL into a LF character

in parallel and ORs the second code-point of any two code-point EOL into the deletion mask

stream. Fig. 4.1 shows the Pablo source code for this transformationi. Whilst doing so,

the Parallel Markup Parser calculates the lex.LF bit stream, which is a sequence of bits in

which each 1-bit marks the position of a LF. These are stored within the LineFeedStream,

which the Line Column Tracker uses to calculate the line-column position of any byte within

the input file.

iThis is a modified version of the original Line Column Tracking code in Parabix-XML.
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# Apply XML 1.0 line-break normalization rules.

if lex.CR:

# Modify CR (#x0D) to LF (#x0A)

u16lo.bit_5 ^= lex.CR

u16lo.bit_6 ^= lex.CR

u16lo.bit_7 ^= lex.CR

CRLF = pablo.Advance(lex.CR) & lex.LF

callouts.delmask |= CRLF

# Adjust LF streams for newline/column tracking

lex.LF |= lex.CR

lex.LF ^= CRLF

callouts.skipmask |= CRLF

# Apply additional XML 1.1 line-break normalization rules.

if parameters.XML_11:

if lex.NEL:

# Modify NEL (#x85) to LF (#x0A)

u16lo.bit_0 ^= lex.NEL

u16lo.bit_5 ^= lex.NEL

u16lo.bit_6 ^= lex.NEL

u16lo.bit_7 ^= lex.NEL

lex.LF |= lex.NEL

if lex.CR:

CR_scope1 = pablo.Advance(lex.CR)

CR_scope2 = pablo.Advance(CR_scope1)

CRNEL = CR_scope2 & lex.NEL

callouts.delmask |= CRNEL

lex.LF ^= CRNEL

callouts.skipmask |= CRNEL

# Modify LS (#x2028) to LF (#x0A)

if lex.LS:

u16hi.bit_2 ^= lex.LS

u16lo.bit_2 ^= lex.LS

u16lo.bit_6 ^= lex.LS

lex.LF |= lex.LS

Figure 4.1: Line-feed Handling in icXML
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4.3 Validation Responsibilities

The Character Set Adapter ensures the all input code-units represent valid characters with

respect to their given encoding format. As the rules for this validation process are complex

and dependent on the input character set, they exceed the scope of this report.



Chapter 5

Parallel Markup Parser

Introducing the Parabix Framework parallel-processing model into an inherently serial sys-

tem like an XML Processor is a complex process. Certain tasks, such has the detection of

legal markup tags, can be performed in parallel using Pablo [6,10,18] — but leveraging them

in Xerces requires extensive modifications. This chapter discusses how icXML incorporates

the Parabix Framework and how it exploits data-parallel techniques to identify, validate,

and “tokenize” the markup and content found within the XML Document.

5.1 Identifying Markup Tags

Every XML document contains a single root Element node, which can either be a start and

end tag pair or an empty tag. A start or empty tag can contain any number of attributes but

Content and child Elements can appear only between start and end tags. This structure

is complicated by the existence of comment, CDATA and processing instruction tags, all of

which can appear between any two pieces of markup or content and can contain characters

that could otherwise appear to be the start of some other markup tag. A typical example is

the use of a comment tag to hide one or more Elements from the XML Processor without

actually deleting them from the source text.

When the Parallel Markup Parser parses an XML document, it actually parses the lexical

bit streams generated by the Character Set Adapter and ignores the source text itself. With

them, the Parallel Markup Parser generates a series of marker and callout bit streams,

and in so doing, helps infer the syntactical meaning of the document, such as shown in

Fig. 5.1. Marker bit streams are used internally but the callout bit streams are passed out to

21
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subsequent modules. The callouts bit streams include: (1) markers indicating the start and

end of symols and references, (2) delimiters stating the beginning and end of each tag, (3) the

span of each AttVal string, (4) the terminal position of every Content and AttVal string,

(5) the penultimate deletion mask stream (Ch. 4.1.1), and (6) any information necessary to

calculate the line-column position of each markup tag and Content string (Ch. 9).

Source Text
<doc>fee<elem a1='fie' a2 = "foe"/> fum </doc>

L
e
x
i
c
a
l

Name Chars _111_111_1111_11__111__11____111____111___111_

Whitespace _____________1________1__1_1_______1___1______

Left Angle 1_______1_______________________________1_____

Right Angle ____1_____________________________1__________1

Slash _________________________________1_______1____

Equals ________________1_________1___________________

Single Quote _________________1___1________________________

Double Quote ____________________________1___1_____________

...

C
a
l
l
o
u
t

Start Tag Marks _1_______1____________________________________

End Tag Marks _________________________________________1____

Empty Tag Marks __________________________________1___________

Markup Delimiters 1___1___1_________________________1_____1____1

String Terminal ________1____________1__________1_______1______

AttVal Span __________________1111_______1111_____________

Deletion Mask _1111____111111111____1111111____11______11111

...

Figure 5.1: XML Source Data and Derived Bitstreams

Lexing and evaluation is divided into three logical stages: (1) parseCtCDPI, (2) parseTags

and (3) parseRefs. The first detects any comments, CDATA or processing instructions and

filters what the latter two views as actual markup tags and entity references, respectively.

Although these stages are performed sequentially, earlier work has shown that “a [pipeline]

parallelism strategy that requires neither speculation nor pre-parsing” [18] can be adopted

for further acceleration.

Parsing start and empty tags in parallel is the most complex problem within the Parallel

Markup Parser. icXML must contend with variable-length element names, attribute names,
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and attribute values, and an arbitrary number of attributes themselves. Fig. 5.2 provides

a detailed example of this process but omits the detection of erroneous start tags and the

existence of any other form of markup tag.

Using the Boolean operators supplied by the Parabix Framework (Ch. 2.4.3), the Parallel

Markup Parser first detects the left angle brackets ‘<’ denoting the start of some markup

tag in E0 (i.e., those not masked out by parseCtCDPI). Advancing E0 sets each cursor in

E1 to the first character of the element name. Scanning through the NameChars moves the

cursors in E1 to the character immediately after the last character of the element name. By

scanning from E1 through any potential whitespace, the algorithm determines which start

tags contain any attribute by masking the result with ¬[>]. The result, A1,1, denotes that

element x has no attributes but both e and e12 have at least one with the presence of a

1-bit at the appropriate position.

A1,1 to A1,7 handle the identification of the first attribute name and value string within

each element. The markers in A1,1 and A1,2 indicates the start and end position of each

attribute name, respectively. By scanning from A1,2 through any whitespace, A1,3 must

mark the position of a ‘=’ in order for the attribute production to be valid. This process

continues by locating leading and trailing quote of each attribute value (A1,5, A1,7). How-

ever, by scanning through the whitespace from A1,7, the Parallel Markup Parser discovers

that element e12 contains a second potential attribute-value pair. Thus the identification

process repeats from A2,1 to A2,7 to extract the second attribute. Because A3,1 = 0, the

algorithm knows that all attribute-value pairs have been identified and stops accordingly.

The identification of other markup tags proceeds similarly but becomes considerably

more complicated when the detection of illegal productions is introduced. For more infor-

mation, please refer to “High performance XML parsing using parallel bit stream technol-

ogy” [6] and “Parallel Scanning with Bitstream Addition: An XML Case Study” [10].

5.2 Filtering Markup Text

Once the Parallel Markup Parser generates the callout bit streams indicating the key po-

sitions within the source text, the later modules can safely ignore the markup identifiers

themselves. Identifiers includes any character used in the production of some markup tag

that is not an attribute value or the text within a comment, CDATA or processing instruc-

tion. icXML generates spans in which every 1-bit denotes a fully-parsed and unnecessary
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Source Text <e a= "137">---<el2 a ="17" a2="3379">---<x>-

N = Name Chars .1.1...111..111.111.1...11..11..1111..111.1.1

W = Whitespace ..1..1.............1.1.....1.................

Q = ¬["<] .11111.111.1111.11111.1.11.1111.1111.1111.111

E0 = [<] 1..............1.........................1...

E1 = Advance(E0) .1..............1.........................1..

E2 = ScanThru(E1, N) ..1................1.......................1.

A1,1 = ScanThru(E2,W ) ∧ ¬[>] ...1................1........................

A1,2 = ScanThru(A1,1, N) ....1................1.......................

A1,3 = ScanThru(A1,2,W )∧[=] ....1.................1......................

A1,4 = Advance(A1,3) .....1.................1.....................

A1,5 = ScanThru(A1,4,W )∧["] ......1................1.....................

A1,6 = Advance(A1,5) .......1................1....................

A1,7 = ScanThru(A1,6, Q)∧["] ..........1...............1..................

A2,1 = ScanThru(A1,7,W ) ∧ ¬[>] ............................1................

A2,2 = ScanThru(A2,1, N) ..............................1..............

A2,3 = ScanThru(A2,2,W )∧[=] ..............................1..............

A2,4 = Advance(A2,3) ...............................1.............

A2,5 = ScanThru(A2,4,W )∧["] ...............................1.............

A2,6 = Advance(A2,5) ................................1............

A2,7 = ScanThru(A2,6, Q)∧["] ....................................1........

A3,1 = ScanThru(A2,7,W ) ∧ ¬[>] .............................................

Figure 5.2: Example of Start Tag Parsing. Adapted From “Parallel Scanning with Bitstream
Addition: An XML Case Study” by Cameron, R. et. al. [10]
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markup character. These spans are OR-ed into the deletion mask stream, which can reduce

the length of the content stream output by as much as 50% (Ch. 8.1).

5.3 Parallel Symbol Tokenization

The Symbol Processor extracts every element and attribute name as a symbol token but

on its own it has no concept of XML nor what constitutes a legal XML document beyond

the characters allowed within a NCName or QName (Ch. 6.6). Section 5.1 showed how

the Parallel Markup Parser identifies the components of an start tag but in so doing, also

alluded to how it also identifies the symbol tokens within each. By OR-ing together the start

and end position of every element and attribute name (i.e., E1 ∨E2 ∨ (A1,1 ∨A1,2)∨ (A2,1 ∨
A2,2) ∨ · · · ∨ (An,1 ∨ An,2)), the Parallel Markup Parser produces a symbol marker stream

in which every 1-bit indicates the start or end position of some element or attribute tokeni.

5.4 Attribute-Value Normalization

One of the more vexing issues for any XML Processor is whitespace normalization. The

XML specification (3.3.3) requires that any whitespace character within attribute values

must be replaced with space (#x20) [3, 4]. Xerces handles this by testing every CharData

character read by the XMLReader and substituting each whitespace character with its appro-

priate replacement, despite the fact that normalization is typically not required. Although

schema-related whitespace normalization rules are impossible to apply in pure bit-space

without the development of a just-in-time (JIT) schema parser for the Parabix Framework,

icXML performs all non-schema-related whitespace normalization in parallel within the Par-

allel Markup Parser by simply altering the appropriate bits in the u16lo bit streams, as

depicted with the Pablo code in Fig. 5.3.

Both the DTD and XML Schema grammars provide mechanisms to remove any leading

or trailing whitespace from attribute values and replace any contiguous string of whitespace

characters with exactly one space character. An unexplored enhancement to this process

could be used to detect whether any attribute value could be modified by this process and

either “collapse” the whitespace in the Content Stream Generator (in the case of DTD

stipulation) or inform the Grammar Validator whether it would be necessary.

iNote: by virtue of the XML specification, it is impossible for any two symbol tokens to overlap [3, 4].
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callouts.AttValSpan = pablo.ExclusiveSpan(OpenQuotes, CloseQuotes)

...

# Normalize Whitespace in Attributes (replace LF, HT with SP)

WS_in_AttVal = lex.WS & callouts.AttValSpan

if WS_in_AttVal:

u16lo.bit_2 |= WS_in_AttVal

u16lo.bit_4 = u16lo.bit_4 &~ WS_in_AttVal

u16lo.bit_5 = u16lo.bit_5 &~ WS_in_AttVal

u16lo.bit_6 = u16lo.bit_6 &~ WS_in_AttVal

u16lo.bit_7 = u16lo.bit_7 &~ WS_in_AttVal

Figure 5.3: Attribute Value Whitespace Normalization

5.5 Supporting Entity Expansion

In XML, a character or entity reference is an alias to some replacement text that ought

to be substituted into the document at the point of insertion — but they are too costly

to resolve efficiently in bit space. Even character references, which could be converted in

parallel, are too costly to be computed given their expected density per bit-block. Instead

when the Parallel Markup Parser detects a reference, it marks all of its characters in the

deletion mask stream except the trailing semi-colon ‘;’, which it marks the position of in

the reference marker stream. The rationale behind this is threefold:

1. Single-character replacements are the most common case: all pre-defined entities are

exactly one character in length and the characters [#x0000,#xFFFD] all correspond

to code-points in the Basic Multilingual Plane, “which contains the vast majority

of common-use characters for all modern scripts of the world” [11].

2. A general entity could be any number of characters in length and the validity of the

substitution is dependent on whether it is parsed or unparsed, an internal or external

entity, and whether reference is within content or an attribute value. Additionally,

unparsed external entities could be resolved by the application via callbacks. As

such, its difficult to know upfront how much space is required but even if it were, all

general entities must be reported to the application at the point of expansion.

3. The Parallel Markup Parser parses the XML text in 16KB segments, which means

that it is possible for a reference to begin in one segment yet end in a subsequent one.
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Thus by using the terminal ‘;’, all later phases have the a priori knowledge that any

reference marked in the reference marker stream has been fully seen.

Further discussion on this topic can be found in Ch. 7.

5.6 Syntax Validation

In Xerces, syntax validation is an inherit part of the XMLScanner and XMLReader architec-

ture. However, the nested conditionals used to perform this verification makes the underly-

ing assumption that the input is incorrect until proven otherwise but, in practice, an XML

document will almost surely be well-formed and fully adhere to its internal schema.

A novel feature of the Parabix Framework is that even when it is given invalid data, it

is impossible for any subsequent fault to cause a hardware exception, segmentation fault,

or any other form of system crash during parallel bit stream operations. Such failures can

only potentially occur during postprocessing, depending on context. However, so long as

a proper mechanism for computing and testing for error bits prior to postprocessing, the

Parallel Markup Parser can operate under the assumption that the input is valid even when

given an illegal document.

In icXML, each type of well-formedness error is represented with an error bit stream

and the determination of whether an error of that type occurred is calculated using Boolean

logic. For example, Fig. 5.4 illustrates how icXML determines whether an attribute pro-

duction is valid. Currently, icXML tests whether any error occurred at a block-at-a-time

granularity (e.g., every 128 code-units using SSE) and then determines the type of error

that occurred if one exists. The ideal method would test only once at the end of each 16KB

segment but this would require additional compiler support to properly implement. Namely,

the ability to store and recall an arbitrary carryQ state (Ch. 2.4) and the ability to compile

two separate versions of the Parabix code: one that simply uses a single error bit stream

throughout the entire segment but tests it only once at the end of the segment and another

version that tests each error bit streams upon derivation with the knowledge that an error

has occurred somewhere in the document. While possible to develop manually, this was

deemed to be outside of the current project scope.
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...

errors.ExpectedAttrName |= (AttNameStart &~ lex.NameScan)

AttNameFollow = pablo.ScanThru(AttNameStart, lex.NameScan)

# Scan through WS to the expected '=' delimiter.

EqExpected = pablo.ScanThru(AttNameFollow, lex.WS)

# Check if any '='s are missing and report them as errors

errors.ExpectedEqSign |= EqExpected &~ lex.Equals

# Scan through whitespace to the expected quote delimiter

AttValPos = pablo.AdvanceThenScanThru(EqExpected, lex.WS)

DQuoteAttVal = AttValPos & lex.DQuote

SQuoteAttVal = AttValPos & lex.SQuote

errors.ExpectedAttrValue |= (AttValPos &~ (lex.DQuote | lex.SQuote))

# Test whether the closing quote delimiter matches the opening quote

DQuoteAttEnd = pablo.AdvanceThenScanTo(DQuoteAttVal, lex.DQuote)

SQuoteAttEnd = pablo.AdvanceThenScanTo(SQuoteAttVal, lex.SQuote)

errors.UnterminatedStartTag |=

((DQuoteAttEnd &~ lex.DQuote) | (SQuoteAttEnd &~ lex.SQuote))

...

Figure 5.4: Attribute Production Validation
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5.7 Validation Responsibilities

The Parallel Markup Parser handles all intra-element well-formedess validation, excluding:

(1) the verification of element and attribute names, (2) entity-reference expansions, and

(3) scope-dependent production rules (e.g., matching a start tag name with an end tag

name). These are handled by the Symbol Processor (Ch. 6), Entity Manager (Ch. 7) and

Well-Formedness Checker (Ch. 10), respectively.



Chapter 6

Symbol Processor

Apart from the Parabix Framework, the largest divergence between Xerces and icXML is

in handling element and attribute names. When Xerces encounters a name, it buffers the

string into a QName object, performs namespace resolution (Ch. 11), and then locates or

creates the appropriate grammar-specific element declaration or attribute definition. This

is repeated for every occurrence of a QName in the XML Document — greatly impacting

the performance of the entire system. In fact, ≈ 7% of the total running time in Xerces

can be directly attributed to memcpy operations of which this was the greatest contributor.

icXML eliminates this entirely by viewing all QNames as XMLSymbol objects. This chapter

discusses how icXML is capable of doing this and the Symbol Processor assists future work.

6.1 Locating Symbols in XML Documents

One artifact of the Parallel Markup Parser is an amalgamated symbol marker stream

in which every 1-bit indicates the start or end position of some element or attribute token

(Ch. 5.3). This stream can be scanned through using a Bit Stream Iterator (Ch. 2.4.6)

to produce a sequence of start and end positions for each tokeni.

Although the iterators enable icXML to cheaply locate the symbol tokens, mapping them

to the appropriate data structures requires a hash table. The XMLSymbolTable is effectively

a XMLSymbol factory; it relies on the BaseSymbolTable to map the symbol tokens to their

unique global identifier (gid). All XMLSymbols are retrieved from the XMLSymbolTable using

iThe code-unit size is known by the Character Set Adapter at compile time.

30
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their gid. This allows memory to be moved within the table without interfering with any

other module.

6.1.1 Base Symbol Table

To map the symbol tokens to their unique global identifier (gid), the BaseSymbolTable

employs a Cuckoo hashing scheme (see below). Cuckoo hashing trades a potentially higher

insertion cost for an O(2) worst-case look-up cost. Given that a typical XML Document

contains relatively few unique element and attribute names, insertions are rare. However,

each name will be looked up repeatedly throughout the document. Thus Cuckoo hashing

seems like a natural fit for icXML but any algorithm that can map variable-length byte

sequences to a gid is a viable alternative.

Cuckoo Hashing

When developing the Cuckoo hashing technique, Pagh and Rodler noted that most hashing

schemes assume that “the hash function values were uniformly random and independent”

and sought to develop one that did not [22]. Conceptually, Cuckoo hashing is relatively

simple: it uses two hash functions instead of one. New entries are hashed using the primary

function and greedily inserted into a hash table, kicking out any existing key occupying the

chosen slot. Any displaced entry is rehashed using the secondary function and re-inserted

into the table, potentially evicting yet another key. This process repeats until all entries are

placed. Generalizations of this scheme use m ≥ 2 hash functions and n ≥ 1 hash tables but

their use has not been explored in icXML.

When comparing Cuckoo hashing to regular hashing techniques, it has two major disad-

vantages: (1) the insertion cost can be higher and (2) infinite hashing chain arise whenever

inserting item x causes item y to be evicted more than once. However, Drmota and Kutzel-

nigg noted there is an ≈ 81.6% probability that the expected insertion cost is at most O(4),

subject to the condition that the table is less than half-full [14], and many techniques can

mitigate infinite cycles, such as the dynamic selection of new hash functions (as recom-

mended by Pagh and Rodler) or the expansion of the hash table itself.
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6.1.2 XML Symbol Table

The function of the XMLSymbolTable is to construct a XMLSymbol object whenever a new

gid is created. Each XMLSymbol object includes a QName object that Xerces uses to contain

the qualified name (QName) or non-colonized name (NCName) of XML element and/or

attribute that the gid refers to, and the set of grammar-specific references, which Xerces uses

for validation and provides to the application (See Ch. 12). Because the symbol marker

stream is effectively stateless, the XMLSymbolTable cannot distinguish between element and

attribute symbols during construction. However, the syntax of an element or attribute

Name is identical and can be safely evaluated and validated independent of its context.

Although Xerces 3.1.1 conforms to either XML 1.0 4th edition or XML 1.1 2nd edition

syntax specification for Name fields, icXML adheres to XML 1.0 5th edition and XML 1.1

2nd edition. This ensures acceptance of documents according to the latest editions of the

standards and simplifies processing because of the convergence of Name syntax.

6.1.3 Maximum Symbol Length

icXML does have one major limitation. In Xerces, element and attribute names can be

arbitrarily long. However, since icXML maps the symbol tokens to gids using the input

data, the maximum length of any symbol is bounded to segment size − 1. In practice,

this limitation is a security feature since absurdly-long element and attribute Names are

almost surely an attempt to instigate a buffer-overflow (denial-of-service) attack and with

recompilation the segment size can be adjusted to any multiple of the SIMD-register width.

6.2 Assisting the Namespace Resolver

The Namespace Resolver effectively maps each QName to the appropriate Uniform Re-

source Identifier (URI) [RFC3986] in accordance with the namespace declarations and the

scoping rules of the Element structure (Ch. 11). A QName is either a PrefixedName or an

UnprefixedName, depending on whether it contains a colon ‘:’. Xerces parses each QName

and determines its PrefixId of any PrefixedName byway of an internal string pool. Each

PrefixId is mapped to a URIId by the element stack and grammar resolver.

To support namespace binding, the Symbol Processor contains a set of XMLPrefix ob-

jects. Each XMLSymbol contains an immutable prefixId, which refers to exactly one of them.
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The prefixId of an UnprefixedName is always 0 but the prefixId of a PrefixedName is

unique to each distinct prefix and is dependent on the occurrence order of the prefixes in

the XML Document. Using prefixIds eliminates a major parsing cost of the Namespace

Resolver, which in turn improves the performance of icXML.

Although it is possible to store prefixes in a hash table, they are stored in a simple un-

ordered list. Typically, unique prefixes are rare with respect to the XMLSymbols themselves.

As such, the cost of the hash function and the memory overhead necessary to maintain a

hash table could easily exceed the cost of a linear probe. It could be beneficial to reorder the

set of XMLPrefixes and use a binary search to locate them but value of such an optimization

has not been explored at this time.

6.3 Assisting the Grammar Validator

Xerces relies on string comparisons to validate NCNames and QNames against their grammar-

counterparts, which incurs a substantial performance penalty when validating an XML doc-

ument. To allow for pointer-based comparisons within the Grammar Validator, icXML

repurposes the StringPool within Xerces’s GrammarResolver to intern each NCName and

QName when constructing each XMLSymbol and when parsing the DTD or XML Schema

grammars.

6.4 Identifying Default Attributes

Default attributes are problematic for XML Processors. Conceptually, they allow a docu-

ment author to append attributes to an Element whenever the attribute is not explicitly pro-

vided for that Element in the document. Speciously, this does not seem to be a challenge—

until one considers the possibility of default namespace-binding (xmlns) attributes. These

attributes must be processed by the Namespace Resolver (Ch. 11) to correctly identify the

Uniform Resource Identifiers (URIs) [RFC3986] of the elements and attributes in the doc-

ument and potentially which grammar must be used by the Grammar Validator (Ch. 12)

when validating the Element—but default attributes are not in the content or symbol

streams: they are stored in the DTD or Schema grammar.

The DTD ATTLIST grammar definition provides both default and #FIXED attribute dec-

larations that must be processed by the XML Processor as if they were part of the document
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itself. Internal and external DTDs are defined in the prolog of the XML Document, which

is parsed by a modified version of Xerces’s DTDScanner. Since the prolog precedes the

actual data portion of the XML document, the XMLSymbolTable has a priori knowledge of

any default DTD attributes. Identifying default attributes derived from an XML Schema,

however, is vastly more complex because the correct set of default attributes is dependent

on the namespace binding of the Element itself. However, section 3.2.6 of the XML Schema

specification explicitly excludes xmlns as a default attribute name [5]. Thus these attributes

can be safely handled by the Grammar Validator.

During XMLSymbol creation, any potential DTDElementDecl is located for that sym-

bol. If one exists and it contains default attributes, the Symbol Processor stores the set

of default-attribute gids and default-value string pairs in the XMLSymbol, creating new

symbols for each as necessary. Entity resolution and whitespace normalization are per-

formed by the DTDScanner. Although some work is wasted attempting to locate non-existent

XMLElementDecls for attributes, this occurs only once per symbol when the symbol is first

encountered in the document and greatly simplifies the logic in the Markup Processor.

6.5 Handling Disparate Character Encodings

When Xerces parses a general entity from an internal or external DTD subsets, it transcodes

it to UTF-16 for storage. Since icXML does not modify Xerces’s schema parsing function-

ality, the XMLSymbolTable contains a secondary table to map the UTF-16 symbol tokens

to gids of symbol tokens recorded in the primary document character set. Even if icXML

were to handle DTD parsing in the future, similar functionality would still be necessary to

handle external DTDs encoded with a different character set.

6.6 Validation Responsibilities

Whenever a new XMLSymbol is created, it entails that icXML has encountered a previously

unseen symbol Name. The Parallel Markup Parser identifies the start and end position of

each token by scanning through the lex.NameScan character class (Ch. 2.4.2) but that

class is a proper super-set of all NameChars, as shown in Table 6.1. Since the cost of fully

validating each Name in the Parallel Markup Parser is considerable, icXML fully validates

each unique Name once, during symbol creation.
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Name := NameStartChar (NameChar)*

NameStartChar := ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6] |

[#xF8-#x2FF] | [#x370-#x37D] | [#x37F-#x1FFF] |

[#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] |

[#x3001-#xD7FF] |[#xF900-#xFDCF] | [#xFDF0-#xFFFD] |

[#x10000-#xEFFFF]

NameChar := NameStartChar | "-" | "." | [0-9] | #xB7 |

[#x0300-#x036F] |[#x203F-#x2040]

lex.NameScan := NameChar | [#x80-#xFFFF]

Table 6.1: Legal Name characters vs. Lexical NameScan

Additionally when namespace processing is enabled the Symbol Processor rejects any

symbol token that contains more than one colon ‘:’ and prohibits the creation of any

xmlns:xmlns symbol. The XML Namespace specification states that every Name must

be a prefixed or unprefixed QName (4) and explicitly forbids the declaration of the xmlns

namespace and disallows the use of the xmlns prefix in any element QName (3). All of these

errors are reported as fatal errors to the XMLParser.
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Entity Manager

The occurance of an entity in an XML document marks the position that a textual re-

placement will eventually occur. The name of the entity is an alias to the text that will

eventually replace it. Character references (e.g., &#28657; or &#x6FF1;, which are decimal

and hexadecimal Unicode values for 濱, respectively) and pre-defined references (i.e., &lt;,

&gt;, &amp;, &apos;, &quot;) are directly substituted for their replacement text. General

entities refer to user-defined strings, which can be declared either internally or externally

with respect to the source document. If the replacement text of a general entity contains

general entity references, they are recursively expanded.

Xerces automatically converts any character or predefined references into the appropriate

character sequence but it expands general entities (both internal and external) by using

a recursive reader architecture. Essentially, the ReaderMgr contains a stack of XMLReader

instances, each of which can parse external DTD subsets and general entity replacement text.

When a general entity reference is encountered, an XMLReader is instantiated, directed to the

entity’s replacement text and pushed onto the ReaderMgr stack. The XMLScanner then views

the first character of the replacement text as the next character in the XML Document and

parses accordingly. This tight integration allows the recursive instance to seamlessly work

with the registered callback methods of the document instance and its associated internal

data structures. Although logically simple, the imposition of a ReaderMgr overseeing every

character of data read incurs a considerable cost on parsing in the normal (entity-less)

case. Any alternative design must deal with the issue of recursive parsing implied by the

occurrence of general entity references or references to DTD-defined internal or external

entities). This chapter discusses the design and techniques used in icXML to provide the

36
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necessary functionality without needlessly penalizing performance.

7.1 Locating Entity References

In icXML, the entity references themselves are simply another type of symbol in the source

text. Like element and attribute symbols, reference symbols can be detected with bit scans

(Ch. 6.1) on the Reference Opener and Closer like those shown in Fig. 7.1.

Source Data <doc>fee&fie;<elem attr='&foe;'></elem>fum</doc>

Reference Opener ________1________________1______________________

Reference Closer ____________1________________1__________________

Figure 7.1: Entity Reference Identification

The Reference Openers and Closers are produced by the Parallel Markup Parser

(Ch. 5). Given the similarity between the Symbol Processor and Entity Manager, the

XMLEntityTable extends the BaseSymbolTable class (Ch. 6.1.1). Apart from the produc-

tion and use of the actual “symbol” data structures, they behave identically.

7.2 Producing Replacement Text (Objects)

The concept of replacement text is well defined in the XML specification. After an expansion

is performed, the text is processed as if it were actually incorporated into the original

document at the point of insertion. However, icXML represents an XML document as a

content stream and symbol stream. Since the replacement text is written in XML and must

be effectively inserted into an XML Document, the Entity Manager splits it into content

and symbol streams during the construction of an XMLReplacementText object.

Intuitively, storing only fully-expanded replacement text in the XMLEntityTable ought

to improve parsing performance. However, the Xerces API provides two entity-specific call-

backs: startEntityReference(const XMLEntityDecl&) and endEntityReference

(const XMLEntityDecl&), which effectively trigger when any entity-instantiated XMLReader

is pushed onto or popped off of the ReaderMgr stack, respectively. Generally these callbacks

are superfluous but they are required for the proper construction and annotation of DOM
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trees [16]. Additionally, all line-column numbers are reported at their point of origin in

the source text. This means the reported position within a general entity will be that of its

replacement text in the DTD and not the location of the entity replacement in the XML

document. Further, the application could restrict — or outright prohibit — the expan-

sion of general entities. Given these stipulations, icXML records entities in their unmodified

state.

A future enhancement to icXML could be to map any identical expanded reference to

the same internal data structure (e.g., &lt; and &#60; both map to ‘<’ in any context).

The value of such an optimization has not been investigated at this time.

7.2.1 Entity Contexts

To distinguish between entities found within Content and AttValue spans, the Entity Man-

ager uses the AttValueSpanStream, produced by the Parallel Markup Parser (Ch. 5). The

n-th bit of the AttValueSpanStream indicates whether the n-th code-unit of the input data

is within an attribute value. By extracting the bit corresponding to the reference closer ‘;’,

the Entity Manager can determine the context without checking the source text itself.

7.2.2 Whitespace Normalization

Character references and pre-defined entities are not subject to the normal whitespace nor-

malization rules. General entities, however, are — but the rules differ depending on whether

they are found within Content or AttValue spans. Typically general entities will not be

referred to in both contexts so icXML stores a separate XMLReplacementText object for

each case upon detecting at least one incidence of it in the particular context.

Entities are loaded in two stages. First, when icXML parses the prolog section it uses a

modified version of Xerces’s DTDScanner to load the DTD into memory. The DTDScanner is a

character-at-a-time parser that relies on the XMLReader to supply it with transcoded input.

The XMLReader automatically performs line-break normalization (Ch. 4.2) when reading

the source text. Attribute-value normalization is performed within the XMLReferenceTable

after reading the entity extracted from the DTD grammar.
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7.3 Handling Entity Expansion

Superficially, whenever an entity expansion occurs, the replacement text is inserted in place

of the reference marker ‘;’ in the content stream — but there is room for only one code-unit

in it. To overcome this limitation, icXML uses loosely-coupled recursion. I.e., any module

within the Markup Processor is capable of recursively instantiating its parsing function. For

simplicity, this new instance will be referred to as the EntityParser. When the XMLParser

detects an entity expansion, the anterior and posterior content surrounding the ‘;’ is buffered

around the replacement text and a pointer to the XMLReplacementText object is given to

the EntityParser in place of the content stream (Fig. 7.2).

Content Stream:

0Anterior ContentXMLBuffer: Replacement Text Posterior Content

Anterior Content ;... Posterior Content= 0 ...

Figure 7.2: Content Stream Entity Expansion

Entity references can occur in one of two places: within attribute values and within

content — but what replacement text is admissible in those cases differs considerably: in

attribute values, no opening ‘<’ markup delimiters may occur and any quote within the

replacement text is always interpreted as a literal value. In other words, replacement text in

attribute values will never alter the structure of the XML Document. In content, however,

markup is permissible within the replacement text but any markup must be fully well-

formed and completed within the replacement text. (A recursive EntityParser is only

instantiated in the latter case.) These constraints are enforced during the creation of the

XMLReplacementText object but introduce two hidden complexities:

� A start tag or empty tag could contain many attributes and each attribute may contain

many references. Consequently, the XMLBuffer must persist for the life-time of the

tag currently being parsed with all of the attribute values with entity expansions for

that tag contained within it. Additionally, all whitespace characters within general

entities are replaced with space characters #x20; whitespace character references are

not modified, however.

� Since replacement text in content can contain markup, the XMLBuffer must be safely

reusable by the EntityParser. The XMLParser will first buffer the anterior content
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along with CharData that precedes the first markup item in the replacement text. The

EntityParser will emit it as content, reset the XMLBuffer, parse its own markup, and

then buffer the very final portion of CharData within the replacement text, allowing the

XMLParser to append the posterior text and output the resulting content accordingly.

7.3.1 Line-Column Position Calculation

The Locator object provides the logical XML cursor location to the application. In

Xerces, it’s constantly updated as the top-most XMLReader parses the XML Document,

entity or grammar. In icXML, each general-entity XMLReplacementText object encapsulates

an XMLEntityDecl, which contains the source position of the entity’s replacement text.

When a Locator is requested whilst parsing these entities, the EntityParser uses the

XMLReplacementText’s LineColumnDiffStream to report the position (Ch. 9.3).

7.3.2 Reader Number Removal

To ensure that every expanded entity is well-formed, Xerces assigns an unique ReaderNum

to each XMLReader upon instantiation. Whenever a start tag is added to the ElemStack,

the ReaderNum of the top-most XMLReader is pushed along with it. Upon reaching an end

tag, the current ReaderNum is compared against the one on the top of the ElemStack and

a PartialTagMarkupError is thrown if they do not match. Prior to removing them from

the system, recording and testing these ReaderNums accounted for up to 0.6% of the total

instructions fetchedi. Instead, when icXML parses the replacement text, it verifies the

well-formedness of it; thereby eliminating the need to test it in the parser itself.

7.4 Validation Responsibilities

When icXML constructs a XMLReplacementText object, it knows whether it will be placed

within an attribute value span or a content string. At the point of creation, the Entity

Manager tests the validity of the replacement text to ensure that it meets the well-formedness

constraints. That is, no entity can expand into a ‘<’ in an attribute value and no external

entity can be referred to within an attribute value (3.1). Additionally, every general entity

that contains markup (i.e., contains at least one ‘<’) is transformed and validated with the

iBased on before and after removal measurements obtained from callgrind using roads-2.gml.
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Parabix Subsystem and Well-Formedness Checker to ensure that it is both syntactically

legal and fully well-formed (4.3.2). Finally, the Entity Manager must ensure that no general

entity can recursively call itself by any number of intermediate expansions and may have to

consult with Xerces’s security manager to ensure that no expansion exceeds the expansion

depth or maximum size stipulations of the application.



Chapter 8

Content Stream Generator

When Xerces parses an XML Document, it parses every character sequentially — but the

Parallel Markup Parser (Ch. 5) and Symbol Processor (Ch. 6) performs all of the syntactical

analysis and extract all of the element and attribute tokens up front, eliminating the need

to parse markup text in the Markup Processor.

The Content Stream Generator transforms the generally-unpredictable XML input into

a near-optimal content stream model, which the Markup Processor processes along with the

symbol stream. This chapter discusses the design of the Content Stream Generator and how

the content stream model differs from the original XML text.

8.1 Content Stream Model

The objective of the Content Stream Generator is to produce a minimal representation of

the XML document for the Markup Processor to parse sequentially. Several factors influence

the overall design and requirements of the content stream.

1. After each application callback, Xerces reuses any memory dedicated to attributes,

AttValues and Content strings.

2. In Xerces, all strings are encoded in UTF-16 and are null-terminated.

3. General entity references must be announced to the application through the API.
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Once the Parallel Markup Parser generates the bit streams indicating the key positions

within the source text, icXML can safely ignore the markup identifiers themselves. Simi-

larly, after the Symbol Processor (Ch. 6) and Entity Manager (Ch. 7) resolves the gids of

the element, attribute and entity tokens, the Markup Processor can bypass them. Conse-

quently, they are filtered from the content stream by OR-ing their spans into the deletion

mask stream. Deletion of the bits within the U16 bit streams is a complicated process.

Currently, icXML employs Steele’s parallel prefix compression algorithm [26]. It and many of

its alternatives are explained in detailed in “A case study in SIMD text processing with par-

allel bit streams: UTF-8 to UTF-16 transcoding” [7]. The key advantage of this algorithm

is that performance is independent of the number of positions deleted and the instructions

required are well suited for commodity vector processors, such as SSE and NEON. Future

versions of icXML are expected to take advantage of the parallel-extract operation [15] that

Intel is now providing in its Haswell architecture.

Inverse transposition of the “compressed” U16 bit streams to the content stream fol-

lows deletion. It uses “SIMD merge instructions... [to] interleave fields from parallel registers

to generate merged results.” [7] A full description of this process can be found in “u8u16 –

A High-Speed UTF-8 to UTF-16 Transcoder Using Parallel Bit Streams” [9].

8.2 Markup Identifiers

Unfortunately, the modules in Markup Processor still requires some form of identifier for

every attribute value and markup tag. As shown in Fig. 8.1, seven identifiers are required

in total, =, >, />, </, ?, -, and [. These are converted in parallel to hex-numeric codes

01, 02, 12, 03, 04, 05, and 07i, respectively, to facilitate the construction of a jump table

within each module. By virtue of the XML specification, a (potentially-empty) Content

string follows every markup tag; ergo, no identifier is required for them.

The rationale behind the choice of these identifiers is that while a StartTag or EmptyTag

can both contain an arbitrary number of Attributes, every Attribute must contain an

‘=’. Similarly, it is only possible to differentiate between a StartTag and an EmptyTag by

making sure there is no ‘/’ before the markup closer ‘>’. Additionally, whenever a StartTag

or EmptyTag with n Attributes is parsed, it generates exactly n + 1 symbol gids — and

iNote: 06 is reserved for entity references but is not set by the Content Stream Generator.
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Figure 8.1: Content Stream Model

n + 1 identifiers. Although the gids are out of order with respect to the identifiers, this

interrelation between the streams simplifies the consumption of gidsii. The choice of the

other markup identifiers follows a similar logic.

8.3 Parallel String Construction

In Xerces, every Content and AttVal string is stored in an XMLBuffer and implicitly null-

terminated prior to being reported to the application. To output text directly from the

content stream, icXML null terminates these strings in place.

In any legal XML Document the CharData in a Content or AttValue span is always

immediately followed by either a left-angle bracket < or closing quote {',"}, respectively.

By OR-ing together the bit streams marking the end of each comment, CDATA, processing

instruction, closing attribute quote, and the beginning of every markup tag, the Content

Stream Generator produces the delimiter marker stream. With it, the Content Stream

Generator can null-terminate every string in parallel with a series of ANDC operations.

To bypass searching for string terminals in the Markup Processor, the Content Stream

Generator uses a Bit Stream Iterator (Ch. 2.4.6) to locate the end position of each. Since

general entities must be reported to the application and can alter the produced string,

their markers are OR-ed into the delimiter marker stream prior to scanning it. These positions

are converted into pointers referring to the delimiters within the content stream. The use of

iiNote: rearrangement of gids was explored but was deemed to have little value in terms of performance.
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pointers over string lengths simplifies the segment-to-segment processing model by allowing

the Content Stream Generator to ignore the existence of partial strings from a previous

segment.

8.4 Expanding Entities in the Content Stream

In XML, a character or an entity reference is an alias to some replacement text that ought

to be substituted into the document at the point of insertion — but they are too com-

plex to resolve efficiently in bit space. In this regard, the Content Stream Generator

acts as a filter for the Parallel Markup Parser and Entity Manager. When the Parallel

Markup Parser detects a reference, it marks all of its characters for deletion except for the

trailing semi-colon ‘;’, which it marks the position of in the reference marker stream

(Ch. 5.5). The Entity Manager, on the other hand, constructs XMLReplacementText ob-

jects for each reference as reported to it by the Parallel Markup Parser (Ch. 7.2). It also

generates the ReferenceStream, which is a sequence of gids indicating the appropriate

XMLReplacementText object for each marker in the reference marker stream. There are

two types of reference replacements: direct and recursive substitutions.

� Direct Substitution: these occur when icXML encounters a character reference or a

predefined-entity reference. All predefined entities and character references within the

basic multilingual plane ([0x0000,0xFFFD]) occupy exactly one code-unit of space but

references to characters in the supplementary planes ([0x10000,0x10FFFF]), herein

known as surrogate character references, require two code units of space.

Recall that the Parallel Markup Parser marks every character within a reference for

deletion except for the closing ‘;’ (Ch. 5.5). To ensure that there is room for a

surrogate character reference, the Entity Manager must modify the deletion mask

stream by inverting the bit immediately prior to the bit indicating the position of the

‘;’. This effectively expands the allotted space within the content stream by treating

the expansion as a non-deletion operation.

Although the shortest character reference that can result in a surrogate character ref-

erence is eight characters in length (e.g., &#65536;), icXML parses the source text in

16KB segments. As such, it is possible that the trailing ‘;’ could be the first byte of

the current segment. To handle this eventuality, the deletion mask stream actually
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contains n + 1 bit-blocks where n blocks is sufficient to represent the entire segment.

The 0th deletion mask is initialized with all 0s. The Parallel Markup Parser begins

writing the deletion mask stream on the 1st block. The Content Stream Generator

effectively ignores the 0th block except to test whether the Entity Manager has mod-

ified it; in which case it knows that the very first byte of the segment terminated a

surrogate character reference and allots the necessary space.

� Recursive Substitution: when icXML encounters a general entity reference, it

knows that an n-length string will be inserted into some Content or AttValue string,

effectively substituting the ‘;’ with the appropriate replacement text. All general en-

tities are reported to the application prior to their substitution, effectively giving

the application an opportunity to dynamically resolve any such entities. General

entities could be bypassed or restricted by the application.

Note: icXML will guarantee only that the first dynamic resolution will be stored as the

replacement text. Currently, it is possible for an application to modify the replace-

ment text whenever a callback occurs under Xerces. Such a system would drastically

complicate the Entity Manager, is illegal according to the XML specifications [3, 4]

and is only indirectly supported by Xerces as a consequence of their API structure.

8.5 Validation Responsibilities

The Content Stream Generator does not validate the input. It relies on the previous modules

to provide it with valid data.
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Line Column Tracker

Line-column tracking is a ubiquitous problem in Xerces: as the cursor moves through the

transcoded data, each character is tested to see whether it’s the start of an end-of-line

sequence (EOL), the set of which differs depending on the XML version of the Document.

Xerces solves this problem using two hard-coded character-flag tables, one for each supported

XML version (1.0 and 1.1). Each table contains an 8-bit flag for every character within the

basic plane ([0x0000,0xFFFD]). Xerces accesses the appropriate table accessed via a pointer

stored in the XMLReader class to determine whether the EOL flag is set. This means every

character of XML data has at least one conditional comparison and two memory indirections

simply to test whether it is an EOL. This chapter discusses how icXML handles line-column

tracking without any per-character tests.

9.1 Use Cases for Line-Column Tracking

As a standalone application, Xerces only needs the line-column position when it encounters

an error within an XML Document. Xalan, however, annotates every Element and Content

string with its source position so that if any errors occur during transformation, Xalan can

report its original placement in the source document.

Generalizing these two cases encapsulates every possible use of line-column tracking. In

the first case, it is important to note that outside of the XML conformance suite test cases,

errors are exceptionally rare in XML Documents. This is because the cost of detecting

and handling any error is detrimental to the performance of any validating XML Processor

and a potential fault source for the application. In the second case, Xerces must provide
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the location of every tag, general entity reference, and content string. However, Xerces

only provides the line-column number of the terminal character for each of these locations,

greatly reducing the set of possible positions.

Unfortunately, XML errors can occur due to a variety of reasons, i.e., violations of the

character-encoding specifications, well-formedness constraints (including those imposed by

standalone documents), namespace-processing rules, and schema-related stipulations. In

Xerces, character-encoding errors are caught by the XMLTranscoder prior to lexical anal-

ysis by the XMLReader. Well-formedness errors are detected by the XMLScanner when it

“tokenizes” the input into markup-identifiers, QNames, attribute-value and content strings

and performing syntactic analysis on the resulting tags. These types of errors are reported

on the character in which they are found. Errors found during namespace resolution and

grammar validation are reported on the terminal character of the tag in which they occur.

9.2 Calculating Positions in the Parabix Subsystem

Reporting the line-column position within the Parabix Subsystem implies that there is a

fatal error in the source text. Upon encountering an error, the Line Column Tracker uses

the LineFeedStream, which is a bit stream that marks the position of each EOL in the

source data (Ch. 4.2), to calculate the actual position.

The Line Column Tracker uses an optimized partial-sum population count to tally the

number of encountered EOLs, thereby giving the line position. When the column number

of some arbitrary byte-offset is required, a combination of bit masks and bit scans is used

to calculate the actual position with respect to the input data. When an error is detected

within the Parabix Subsystem, the appropriate module directs the Line Column Tracker to

compute the position of the error, which pushes the cost of detection to the occurrence.

9.3 Calculating Positions in the Markup Processor

Reporting line-column numbers within the Markup Processor is a more nuanced problem

than within the Parabix Subsystem. The need for a line-column position within the Parabix

Subsystem indicates the presence of a fatal error; ergo, the cost of the function is inconse-

quential as it will never occur in a well-formed document. However, when the line-column

position is reported by the Markup Processor, it could be at the bequest of the application.
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To support a future multi-threaded design, the Markup Processor is prevented from

accessing the input data. Unfortunately, when the Content Stream Generator transforms

the input data into the content stream, it strips out the majority of the markup text and

performs whitespace normalization on the attribute value and content strings (Ch. 8.1). To

solve this problem, the Line Column Tracker pre-calculates the line-column of the terminal

character of every content string and markup tag, which are indicated by 1-bits in the

markup delimiter stream. Using a Bit Stream Iterator (Ch. 2.4.6), the Line Column Tracker

scans through the markup delimiter stream to locate the code-unit-offset of each terminal

character. The offset is then converted into a line-column pair using the population count

algorithm similar to the one used for the Parabix Subsystem but optimized for the case that

there is at least one delimiter in every 32/64 characters (i.e., the CPU word-size).

Unfortunately, the maximum line or column position is bounded only by the file size

of the document. Since documents could be extremely large, safely storing the line and

column position requires either a sequence of very large integers or a complex variable-

length encoding scheme to be used. Neither option is particularly effective — but storing

the actual position of each terminal is not the only option.

Even though line numbers are guaranteed to be monotonically non-decreasing, column

numbers are potentially random (with respect to the Kolmogorov complexity of the number

sequence [12]) — but the difference between any two positions within a segment is bounded

by the segment size / code-unit size. Given a segment size of ≤ 32KB, it is possible to

represent the difference between any two positions in the same segment with a signed 16-bit

integer. As such, icXML generates a sequence S of n signed 16-bit integer pairs such that

Li = Li−1+
∑n

j=0 Sj [0] and Ci = Ci−1+
∑n

j=0 Sj [1], where {Li, Ci} is the initial line-column

position of segment i and {L0, C0} is the position immediately following the Prolog section.

Since the line-column position of every markup tag, general entity and content string must

be provided to the application, no additional work must be performed to calculate Li and

Ci at the end of every segment to keep a running tally for the subsequent one.

9.3.1 Caveat Regarding Standalone Documents

One functional deviation from Xerces is in how icXML reports the position of some stan-

dalone errors. A standalone XML document can have an internal or external schema asso-

ciated with it but an external schema cannot modify the structure of the XML document.

In Xerces, standalone errors are detected and reported on the character in which they
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occur. Although icXML reports all standalone errors, it reports them at the subsequent

line-column indicated by the markup delimiter stream. For example, icXML can report

the position of an external general entity but cannot report the exact line-column of an

attribute-value normalization error. The ability to provide the exact location of every pos-

sible standalone error would dramatically increase the cost and complexity of every module

within the Markup Processor. Since XML documents are almost-surely error free, this

deviation was deemed a non-issue.

9.4 Handling Multi-Code-Unit Characters

Every character within a character set is referred to as a code point within the code space.

Some code points require multiple code units to represent a particular code point. Addi-

tionally XML Processors consider all end-of-line sequences, such as CR-LF, to be a single

character. To calculate the correct column number, the Character Set Adapter generates

a ColumnSkipMaskStream in which every 1-bit indicates the existence of a code unit that

should be “skipped” when calculating it. The Line Column Tracker uses a population count

on the relevant portion of the ColumnSkipMaskStream to calculate how many positions to

subtract the actual column position before reporting it.

Note: in a typical XML document, skipped positions will either be non-existent or

abundant. The algorithm discussed in Section 9.3 is optimized for both cases.

9.5 Validation Responsibilities

The Line Column Tracker does not validate any input. It relies on the Parallel Markup

Parser and Content Stream Generator to provide it with correct data.
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Well-Formedness Checker

In Xerces, well-formedness checking is an integral part of the scanning process. As the

cursor moves through the document, every character of text is tested to determine whether

it changes the processor’s markup-state. This often occurs by way of a switch table, nested

if statements, or look up tables depending on the current markup context. On average,

Xerces requires 6 - 13 branches per byte of schema-less XML Data [18] — the vast majority

of which is dominated by this logic. This chapter discusses how icXML parses the input

streams to prove the document is well-formed and — more importantly — what a priori

knowledge it provides to the later stages of the Markup Processor.

10.1 Prescanning and Insertion of Default Attributes

Apart from validating the document, the Well-Formedness Checker has two major responsi-

bilities: (1) it calculates the space needed for any memory structure within the Namespace

Resolver, Grammar Validator and Document Accumulator; and (2) it tests whether any an

element contains a default attribute derived from a DTD schema. Default attributes are

rare but must be treated as if they occurred in the document itself. The only difference

being they are not but can be are superseded by any like-named attribute that is. Unfortu-

nately, they can be used to declare namespace bindings and may affect the correctness of a

document when validated against an XML Schema. Consequently, the Namespace Resolver

and Grammar Validator must be aware of them and process the document accordingly.

Since DTDs are rare and the use of default attributes rarer still, icXML is optimized

for the case in which they do not occur. However, whenever they arise, they are likely to
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manifest many times throughout the document. To handle this case without penalizing

the performance of the Namespace Resolver and Grammar Validator, the Well-Formedness

Checker reconstructs the content stream, symbol stream, and string end stream so that the

default attributes and their values may be effectively inserted (Ch. 6.4).

Augmented streams are built in-place as the Well-Formedness Checker assesses the doc-

ument and are copied back over the original streams. As a result, the Namespace Resolver

and Grammar Validator cannot differentiate between the two. The cost of constructing

augmented streams is non-negligible, but paid only in the presence of default attributes.

10.2 Validation Responsibilities

The primary objective of the Well-Formedness Checker is to ensure that the XML Document

is fully well-formed with respect to the XML Specification [3, 4]. Although the Markup

Processor is responsible for the majority of the well-formedness and syntax validation, some

tests are simply too costly to perform in bit-space.

The Well-Formedness Checker ensures that the gid of any StartTag Name matches the

gid of its accompanying EndTag Name. Additionally, it tests whether the gid of any attribute

is duplicated within any StartTag or EmptyTag. It also handles any of the post-processing

logic for the Parabix Framework, such as verifying that any <![CDATA[...]]> tag contains

the exact word CDATA rather than <![ followed by some number of NameChars.
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Namespace Resolver

Namespace resolution is a fundamental requirement of any XML Processor [2–4]. An XML

document may contain element and attribute names from multiple XML vocabularies.

Namespaces help prevent naming conflicts in the application when two or more of those vo-

cabularies share the same local names or when a vocabulary refers to application-dependent

functions, e.g., when XML or SVG documents are embedded within XHTML files.

Each namespace refers to an Uniform Resource Identifier (URI) [RFC3986], which is

a string used to identify specific abstract or physical resource, such as an XML Schema

URL. Each unique URI is given an distinct uriId. Xerces maintains a stack of in-scope

namespace bindings that are pushed (popped) every time a start tag (end tag) occurs in the

document. This is a costly function considering that a typical namespaced XML document

only comes in one of two forms: (1) those that declare a set of namespaces upfront and never

change them, and (2) those that repeatedly modify the namespaces in highly-predictable

patterns. For that reason, icXML contains an independent namespace stack that uses bit

vectors to cheaply perform data-parallel speculation and scope-resolution operations. This

chapter discusses how namespace binding is transformed into a bitwise problem and how

icXML exploits it to improve performance.

11.1 Declaring Namespaces

Namespaces are declared by way of an xmlns pseudo-attribute declaration. Any unprefixed

element is mapped to the default (empty) namespace, which can be bound to a specific URI

using xmlns="URI". Similarly, any element or attribute whose name starts with prefix:
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can be bound to a specific namespace name via xmlns:prefix="URI". For example, in

Fig. 11.1, the XHTML Processor is instructed to render the string “Rotated Text” rotated

180◦. On Line 2, the default namespace is bound to "http://www.w3.org/2000/svg".

This instructs the parser to interpret everything between Line 2-4 using the SVG Processor,

which allows the parser to correctly interpret the text transformation. Were the parser to

ignore the binding, the XHTML Processor would discard the text element as a superfluous

HTML tag and simply display the “Rotated Text” as plain content string.

1. <html>

2. <svg xmlns="http://www.w3.org/2000/svg" version="1.1">

3. <text transform="rotate(180)">Rotated Text</text>

4. </svg>

5. </html>

RotatedText Rotated Text

(a) With namespacing (b) Without namespacing

Figure 11.1: XML Namespace Example 1

Every namespace binding is scope dependent. Whenever an XML Processor encoun-

ters a Element with an xmlns declaration, that Element and any of its children inherit

the same namespace binding. A declaration will override any existing binding but the

namespace will revert back to its original state once the matching end tag is reached. For

example, on Line 1 of Fig. 11.2, the default namespace is bound to "books.org". To

the XML Processor, the QName of elements, title, author and publication all expand

to "books.org":title, "books.org":author and "books.org":publication respectively.

On line 4, the namespace URI "publisher.net" is bound to the prefix pub and remains

in-scope between the lines 4−7. Consequently, pub:name is read as "publisher.net":name

by the XML Processor. Line 9, however, illegally uses the prefix pub; this would be consid-

ered a fatal error by any XML Processor that supports namespaces. To correct this issue,

a namespace would have to be bound to pub within the element on line 1, 8 or 9 to en-

sure it’s in-scope on line 9. Note that if pub was bound on line 1 to something other than

"publisher.net", it would still be bound to "publisher.net" on line 4− 7.
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1. <book xmlns="books.org">

2. <title>Rendezvous with Rama</title>

3. <author>Arthur C. Clarke</author>

4. <publication year="1973" xmlns:pub="publisher.net">

5. <pub:name>Gollancz (UK)</pub:name>

6. <pub:name>Harcourt Brace Jovanovich (US)</pub:name>

7. </publication>

8. <publication year="1990">

9. <pub:name>Spectra</pub:name>

10. </publication>

11. </book>

Figure 11.2: XML Namespace Example 2

11.2 Handling Namespace Resolution in icXML

XML documents often contain many namespace declarations and may refer to multiple

grammars, which themselves may also contain additional namespace declarations and their

own grammars. In Xerces, URIs are bijectively mapped to uriIds. To properly validate a

document, this mapping persists for the lifetime of the XML Processor. Since icXML relies

on the Xerces’s infrastructure for grammar validation, icXML also uses uriIds — but how

it generates and resolves them is vastly different.

When the Symbol Processor encounters a new XMLSymbol, its Prefix and LocalPart

NCNames are extracted from the QName and its prefixId and localPartId are determined

(Ch. 6.2). The prefixId of any non-xmlns symbol is equivalent to the localPartId of

a QName that begins with “xmlns:”, or 0 in the case of a NCName. If prefixId has

not been encountered before it’s added to the XMLPrefixTable. This process builds the

XMLPrefixTable prior to parsing any URIs.

The Namespace Resolver parses the content and symbol streams, which provide the

scoping-context, URIs and the element and attribute XMLSymbol objects. Like Xerces,

icXML maintains a global string pool to map URIs to uriIds. However, whenever icXML

encounters an xmlns attribute, the mapping between the prefixId and uriId is per-

manently stored in the Namespace Binding Table (with respect to the lifetime of the

XML Processor) even after the namespace goes out of scope. Namespace resolution is

performed using a series of Namespace Binding Set, using simple intrinsic functions and

boolean operators to determine what bindings are still in-scope.
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11.2.1 Namespace Binding Table

A namespace binding is a scope-dependent mapping between a prefix and an URI. Every

entry of the namespace binding table consists of a {prefixId, uriId} pair. These are

either pre-defined (e.g., xml, xmlns, xsi and the default namespace) or encountered during

processing. The index of each entry is known as the namespace binding id (nsId), which

serves as an unique identifier for a particular namespace binding. For example, Fig. 11.3

provides a sample GML document and the resulting Namespace Binding Table. The first

four entries are predefined XML namespace mappings but only 0− 2 are visible by default.

(The xsi namespace binding is crucial for any XML Processor [5] but the discussion of it

goes beyond the scope of this chapter.)

1. <wfs:FeatureCollection

2. xmlns:gml="http://www.opengis.net/gml"

3. xmlns:wfs="http://www.opengis.net/wfs"

4. xmlns:xlink="http://www.w3.org/1999/xlink"

5. xmlns:van="http://www.galdosinc.com/vancouver"

6. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

· · ·
7. <gml:featureMember xmlns:gml="http://www.opengis.net/gml">

8. <van:RP2U gml:id="RP2U11742">

9. <gml:description xlink:type="simple">Roads rP2U</gml:description>

10. <gml:name xmlns:xlink=""/>

· · ·
11. </van:RP2U>

12. </gml:boundedBy>

13. </wfs:FeatureCollection>

nsId Prefix URI prefixId uriId

0 none 0 0

1 xml http://www.w3.org/XML/1998/namespace 1 1

2 xmlns http://www.w3.org/2000/xmlns/ 2 2

3 xsi http://www.w3.org/2001/XMLSchema-instance 3 3

4 wfs http://www.opengis.net/wfs 4 4

5 gml http://www.opengis.net/gml 5 5

6 xlink http://www.w3.org/1999/xlink 6 6

7 van http://www.galdosinc.com/vancouver 7 7

8 xlink 6 0/−1

Figure 11.3: Namespace Binding Table Example
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Upon seeing xmlns:gml="http://www.opengis.net/gml" on Line 2, the sixth entry is

added (nsId:5). This is because the Symbol Processor first encounters the wfs prefix on

Line 1 and assigns it prefixId:4. Normally, each prefix is bijectively bound to exactly one

URI. Consequently, the Namespace Resolver reserves nsId:4 and uriId:4 for it, leaving a

temporary gap in the table. Line 3 fills the gap for wfs, establishing the correct prefix-URI

mapping. Line 4 and 5 add the entries for xlink and van, respectively. Line 6 formally

declares the xsi binding but since it’s already in the table, it’s simply marked as being

in-scope. Line 7 redeclares the gml namespace but does not change the mapping so no

modification is made to the table. Line 10 rebinds the xlink namespace, which adds the

9th binding to the table (nsId:8). Unlike the earlier ones, however, this one is a non-bijective

binding because it maps prefixId:6 to uriId:0, in the case of an XML 1.0 document or

uriId:-1 in the case of an XML 1.1 document. uriId:-1 is a special uriId within the

Namespace Resolver because it effectively marks the namespace as unknown or unusable.

The Namespace Binding Table can be viewed as a relational database, consisting of

two vectors, a hash table and a string pool, organized as follows:

� PrefixToNamespaceBindingTable: a vector of Namespace Binding Sets, indexed by

prefixId, giving for each prefix the set of namespace bindings having that prefix.

� NamespaceToUriBindingTable: a gid vector, indexed by nsId, giving the uriId for

each namespace binding.

� XMLNamespaceTable: a hash table, keyed by URI, giving the uriId of each predefined

or encountered URI string.

� XMLPrefixList: an unordered list of prefix strings, for which the index in the list is

also the prefixId of that prefix.

11.2.2 Namespace Binding Sets

A Namespace Binding Set is a bit vector in which each bit corresponds to a nsId in the

Namespace Binding Table. The nth bit of any Namespace Binding Set marks whether

the nth nsId is in that binding set. For example, in Fig. 11.3, the set of all bindings for the

prefix “xlink” is MSB 000000101.

Internally, the Namespace Binding Set class is implemented using an expandable set of



CHAPTER 11. NAMESPACE RESOLVER 58

integers whose initial length is equal to the wordsize of the target machinei. Boolean oper-

ations, such as OR, XOR, AND, and ANDC are all included as overloaded operators. Additional

namespace-related functions, such as mask_and_extract and scan_to_first, also exist to

simplify the code within the Namespace Resolver.

11.3 Assessing Namespace Visibility

During namespace resolution, icXML maintains a CurrentlyVisibleNamespaces variable,

a Namespace Binding Set identifying all of the in-scope namespace bindings. As each

(sequential) element is processed, any changes in namespace state associated with that

element are identified in the LocallyModifiedNamespaces array of Namespace Binding

Sets. These binding sets have the property that upon entry or exit of an Element, the set

of visible namespaces can be updated as follows:

CurrentlyVisibleNamespaces ^= LocallyModifiedNamespaces[CurrentScope]

This XOR operation eliminates the need for maintaining an independent stack for each

namespace attribute and the cost of resolving each attribute individually. When entering

a start tag the LocallyModifiedNamespaces[CurrentScope] is initialized to 0, indicating

that no namespace modification occured. If an xmlns attribute is found, the corresponding

nsId is resolved through the Namespace Binding Table and the namespace-scope state is

updated as follows:

if (!CurrentlyVisibleNamespaces[nsId]) {

XMLNamespaceBindingSet hidden =

CurrentlyVisibleNamespaces & PrefixToNamespaceBindingTable[nsId];

XMLNamespaceBindingSet modified =

hidden | (1 << nsId);

LocallyModifiedNamespaces[CurrentScope] |= modified;

CurrentlyVisibleNamespaces ^= modified;

}

iIn the future, SIMD registers could be used to store the bit vectors but the additional functions are
currently too costly to compute with the given SSE intrinsics.
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11.3.1 Speculative URI Resolution

Before all of the xmlns attributes for an element are processed, it’s impossible to fully resolve

which nsIds will be in-scope and what uriIds to apply to each prefix. However, icXML

provides fast speculative resolution for most “normal case” types of XML Documents, i.e.,

when each prefix uniquely denotes a distinct URI. This technique works as follows: the

Namespace Resolver retrieves the prefixId of each non-xmlns attribute. If the Namespace

Binding Table does not have an entry for that prefixId, the Namespace Resolver assumes

that it’s canonical, i.e., its prefixId = uriId. Otherwise, it assumes that the uriId will

remain unmodified with respect to its last known state. By definition, any canonical set

will always be correctly speculated.

A CanonicalBindingSet marks any canonical bindings in the Namespace Binding Table

with a 1. For example, the CanonicalBindingSet for Fig. 11.3 is MSB 111111110.

11.3.2 Full URI Resolution

If speculation fails, then the Namespace Resolver can rely on the a priori knowledge given

by the Well-Formedness Checker that no two xmlns attributes are identical for the same

element. Therefore, there must be a nonbijective relationship between the namespace map-

pings, i.e., some prefixId and/or uriId is associated with more than one nsId. To deter-

mine which mapping is the correct (in-scope) mapping, the following resolution process is

required for each attribute.

1. Using the prefixId of the attribute, retrieve the set B of all namespace bindings that

may apply:

B = PrefixToNamespaceBindingTable[prefixID];

2. Determine which one, if any is visible.

V = B & CurrentlyVisibleNamespaces;

3. Determine the nsId. At most, one namespace can be visible at any given time.

nsId = scan_to_first(V);

4. Lookup the canonical uriId.

uriId = NamespaceToUriBindingTable[nsId].uriId;



CHAPTER 11. NAMESPACE RESOLVER 60

11.4 Supporting the Grammar Validator

Although the Namespace Resolver generates the uriIds for the elements and attributes,

the Grammar Validator sometimes requires namespace mappings of entities that are not

present at that point in the document. For instance, the value of an xsi:type attribute is a

QName whose prefix must be resolved to the correct URI. To handle any scenario in which

namespace resolution must be performed outside of the Namespace Resolver, it generates a

context id stream, which is a sequence of gids in which each refers to a particular set of

visible namespaces. Each unique set of namespace bindings is given a context id.

11.5 Processing XML Schemas in icXML

In Xerces, XML Schemas are loaded the moment that the XMLScanner encounters an

xsi:schemaLocation or xsi:noNamespaceSchemaLocation attribute; the value of which

indicates the location of the schema document.

Each XML Schema could contain its own namespace bindings and may import (or in-

clude) its own schemas. Because icXML requires that all {URI, uriId} bindings remain

consistent throughout the lifetime of the XML Processor, the XMLNamespaceTable must be

shared by every instance of a Namespace Resolver of any sub-document. Conceptually, this

does not pose any problems. In practice, however, it does degrade performance when trying

to establish maximum number of canonical binding sets.

Since the URIs declared within schemas are typically not used by the parent document,

this can lead to very large gaps in the Namespace Binding Set space, which reduces the

effective value of each bit in the binding sets. icXML mitigates this in two ways:

1. The Namespace Resolver makes special note of any attribute bound to the xsi names-

pace and stores the value of any xsi:schemaLocation or xsi:noNamespaceSchemaLocation

attribute. Following namespace resolution (of the 16KB segment), icXML loads any

previously unparsed schema documents indicated by any of the values. Indirectly, this

seperation greatly increases the probability that the namespaces within the main XML

document will be maximally canonical because typical XML documents will contain

all possible namespace bindings within the first 16KB of raw text.

2. Although icXML uses a global XMLNamespaceTable, any encountered namespace is

stored within a local XMLNamespaceTable with respect to the document being parsed.
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By using the XMLNamespaceTable, the Namespace Resolver effectively discards any

namespace bindings found within a schema, which results in a greater number of

canonical sets.

11.6 Validation Responsibilities

Apart from reporting the illegal use of xmlns as an element name, the Namespace Re-

solver is responsible for reporting all namespace related errors that are not covered by

well-formedness rules:

� Reserved Prefixes and Namespace Names: The xml and xmlns namespaces are

bound to “http://www.w3.org/XML/1998/namespace” and “http://www.w3.org/2000/xmlns/”

by default. xml can be declared but can only be bound to its default namespace. Nei-

ther the xmlns nor the xmlns namespace can be declared or bound any other prefix

respectively.

� Prefix Declaration: Excluding xml and xmlns, every namespace prefix must be

declared within the element or be in-scope prior to being used. Only XML 1.1 allows

prefixes to be undeclared with xmlns:prefix="".

� Uniqueness of Attributes: Although the well-formedness constraint requires that

an element cannot contain more than one attribute with the same name, namespacing

further requires that no two attributes have the same expanded name. In other words,

if two or more attributes are qualified names with the same LocalPart, the Prefixes

cannot be bound to identical URIs [2]. Since DTDs have no concept of namespacing,

this restriction is applied after appending any default attributes that are a result of a

DTD ATTLIST grammar declaration.
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Grammar Validator

In Xerces, an instance of one of the XMLScanner classes drives the parsing of an XML

Document. Each piece of markup is extracted sequentially, potentially validated, and im-

mediately given to the application. This constant switching between markup parsing and

application code was shown to degrade cache utilization, prefetcher and branch-predictor

behaviour [20]. icXML uses heavily-modified versions of the XMLScanner classes, which are

templated into the Grammar Validator framework. Any parsing-related functionality was

removed and the interface was completely restructured to take advantage of the streams

built by and the validation performed by the previous modules. Instead of providing the

output directly, all data is buffered in the Document Accumulator.

12.1 Fundamental Differences between icXML and Xerces

In Xerces, the raw text for a markup tag or Content string is accumulated in an XMLBuffer.

The text is then validated and transformed into the appropriate output for the application.

In the case of Element tags, Xerces first determines which Grammar is applicable to the

Element then uses a hash table associated with that Grammar to look up the element Name

and extract an XMLElemDecl. Any attributes (in the case of a start or empty tag), are con-

verted into XMLAttDefs by way of a hash table stored within the XMLElemDecl. Validation

is then performed on the resulting objects and normalized attribute values. This system

works well when handling XML documents with schemas that are associated with multiple

namespace bindings or vice versa — but this type of document is exceptionally rare.

Instead, in icXML each XMLSymbol (Ch. 6.1.2) contains a dynamic list of XMLElemDecls
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and XMLAttDefs that have ever been associated with that XMLSymbol. The list is anno-

tated with the information necessary to determine which object to use, such as the names-

pace binding and element scope. For typical documents, each list will contain exactly one

XMLElemDecl or XMLAttDef. As such, icXML uses a simple unordered list to store them,

thus discarding the overhead of a hash table in the normal case. When the XMLSymbol

does not contain the desired object, icXML uses the Grammar’s hash table to locate it and

updates the list accordingly. Validation is then performed in a similar manner to Xerces

but the DTDValidator and SchemaValidator were optimized to take advantage of interned

Names (Ch. 6.3).

12.2 Document Accumulator

The Document Accumulator is a new feature in icXML with respect to the version pre-

sented in “icXML: Accelerating a Commercial XML Parser Using SIMD and Multicore

Technologies”. Conceptually, all data that would have been provided to the application

by the Grammar Validator is instead buffered in a DocumentObject and DocumentContent

stream. The former is a sequence of XMLElemDecl and XMLAttDef objects (as well as any

others required by the Post-Schema-Validation Infoset) and the latter is essentially a schema-

normalized content stream. These are then parsed by the Document Disseminator, which is a

templated class that wraps the XMLParser object that was instantiated by the application

to parse the XML Document.

Currently, only the Grammar Validator is capable of transforming the input streams into

the data required by the Document Accumulator. This is far from ideal, however, since not

all XML documents have schemas nor is validation always enforced. Even though standard

output of the SAX, SAX2 and DOM XMLParser classes consists of UTF-16 strings, efforts to

make the Grammar Validator an optional module were hampered by existence of so called

advanced handlers. In Xerces, an advanced handler is a user-defined class that is installed

in the XMLParser at runtime. An XMLParser can have any number of advanced handlers.

Each are provided with the schema-derived (or faulted in) objects that internal to Xerces

immediately after Xerces provides the standard output to the application. Even when

validation is disabled, Xerces locates the appropriate grammar object in memory to provide

the advanced handlers with the correct instances but bypasses the actual validation test.

Additionally, the concept of the accumulator and disseminator was based around the
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notion that the application would perform a substantial amount of work — but for ex-

tremely simple applications, the buffering cost could exceed the benefit. A better method

would require that the output of any module within the Markup Processor could be directly

fed to the Document Disseminator, making the Document Accumulator an optional feature

but that has not been explored at this time.

12.3 Identity Constraints

The XML DTD and XML Schema specification both provide mechanisms for ensuring the

uniqueness of certain identifiers within the XML Document. Whereas ID fields, as defined

in the XML specification (3.3.1), require that an identifier must be unique throughout the

document instance, identity constraints (XML Schema specification 3.11) use XPath queries

to enforce the uniqueness of identifier relative to a specific Element. The latter provides

a flexible mechanism for asserting uniqueness — but in so doing, requires a vastly more

complex system to ensure it.

In Xerces, processing these constraints is an integral part of the XMLScanner processing

logic. Each constraint is effectively processed by an internal advanced handler that receives

start and end element events from the XMLScanner as it processes the file. Because this

parsing logic is optional and complex, in icXML the Grammar Validator performs all of the

standard validation first and then if and only if it observed (or is already processing) an

identity constraint, does it rescan the document to validate them.

12.4 Validation Responsibilities

The Grammar Validator handles all DTD and/or XML Schema-based validation of an XML

Document to the extent that Xerces was capable of supporting them. The full description of

the DTD and XML Schema grammar goes beyond the scope of this report. For more infor-

mation, please refer to the XML specification [3, 4] and the XML Schema specification [5].



Chapter 13

Performance Evaluation

This chapter evaluates icXML and Xerces against three benchmarks: (1) raw XML parsing

using SAXCount and WFXMLScanner; (2) grammar parsing and validation using SAX2Count

and IGXMLScanner, and (3) a real world GML to SVG transformation application using

the IGXMLScanner and SAX2 interface. Both icXML and Xerces were instrumented using

PAPI Version 5.1.1.0. The performance measurement counters (PMCs) were obtained from

an Intel Core i7 quad-core (Sandy Bridge) processor (3.40GHz, 4 physical cores, 8 threads

(2 per core), 32+32 KB (per core) L1 cache, 256 KB (per core) L2 cache, 8 MB L3 cache)

running the 64-bit version of Ubuntu 12.04 (Linux). Due to the high volatility of some of

the PMCs, each benchmark consisted of 1, 000 + 1 trials. The first trial was discarded and

the median value of the remaining runs was recorded for each PMC.

13.1 Evaluation Datasets

Table 13.1 shows the document characteristics of the XML instances selected for this perfor-

mance study, including both document-oriented and data-oriented XML files. “arw.xml”,

“jaw.xml” and “dew.xml” are document-oriented XML instances of Wikimedia books, writ-

ten in Arabic, Japanese and German, respectively. The remaining files are data-oriented.

“roads-2.gml” file is an instance of Geography Markup Language (GML), a modelling lan-

guage for geographic information systems as well as an open interchange format for geo-

graphic transactions on the Internet. “po.xml” is an example of a standard purchase order

and “soap.xml” contains a large SOAP message. Markup density is the ratio of all markup

(including attribute values and entity references within Content) vs. the total file size.
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File Name
Document Workloads Data Workloads

arw.xml dew.xml jaw.xml roads-2.gml po.xml soap.xml

File Size (KB) 113,082 66,240 7,343 11,584 74,658 2,653

Elements 684,641 203,396 37,441 140,362 2,317,055 90,002
Attributes 62,747 18,808 3,529 160,418 463,397 30,001
References 555,377 796,851 89,949 0 0 0
Markup Count 1,346,143 400,978 73,979 260,673 4,634,110 170,004

Markup Density 10.6% 5.4% 9.0% 70.9% 57.2% 85.7%

Table 13.1: XML Document Characteristics

13.2 XML Parsing Performance

The first test evaluates icXML and Xerces-C 3.1.1 using the SAXCount application and

the WFXMLScanner scanner module. This application reports the total number of elements

and attributes and the total length of all Content within a given XML document. The

WFXMLScanner is the simplest XMLScanner for both icXML and Xerces: its sole purpose is

to test whether a document is well-formed and report the structure of the document to the

application. While the WFXMLScanner is capable of namespace processing (Ch. 11), it can

neither parse nor validate a document against any schema.

The purpose of this test is to measure the raw parsing speed of both icXML and Xerces

but since icXML was designed with the assumption that the application would perform

a significant amount of work, this test favours Xerces in terms of relative speedup. As

Fig. 13.1 shows, icXML out-performs Xerces with respect to throughput — but interestingly,

Table 13.2 shows it behaves worse in terms of data cache (D-Cache) and instruction cache

(I-Cache) utilization, which starkly contrasts my findings presented in “icXML: Accelerating

a Commercial XML Parser Using SIMD and Multicore Technologies” [20]. (Note: DCM,

ICM, and TCM stands for D-Cache, I-Cache, and Total Cache Misses, respectively.)

However, since that paper was submitted, icXML underwent extensive modifications

in preparation for a scalable multicore implementation. The multicore version presented

in that paper only split the Parabix Subsystem and Markup Processor into two separate

threads and did not use the Document Accumulator concept. The resulting increase in

cache accesses may explain the discrepancy between the current version of icXML and the

one presented in the paper – especially in the case of “po.xml”, which exhibited the greatest
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increase in total cache accesses, cache misses and the worst overall speedup (≈ 40%).
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Figure 13.1: Performance of icXML and Xerces using WFXMLScanner and SAXCount

(Sorted by Markup Density)

Data Library
L1 L2 L3

DCM ICM DCM ICM TCM

dew.xml
icXML 219.3 14.3 13.5 4.8 0.1

Xerces 121.9 7.7 3.7 2.5 0.1

jaw.xml
icXML 233.5 16.4 11.2 5.1 0.3

Xerces 93.4 8.9 4.9 3.3 0.2

arw.xml
icXML 221.1 15.3 10.3 4.0 0.1

Xerces 96.5 9.1 3.4 2.6 0.0

po.xml
icXML 378.8 12.6 19.9 5.2 0.0

Xerces 110.0 24.3 2.9 1.2 0.0

roads-2.gml
icXML 287.9 13.6 13.8 4.3 0.2

Xerces 124.2 16.3 4.0 2.1 0.1

soap.xml
icXML 405.9 19.4 28.4 8.6 0.6

Xerces 121.0 40.6 5.2 2.7 0.3

Table 13.2: Median Cache Utilization with Well-Formedness Checking per KB input
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To determine whether this problem was isolated to a few modules, the above experi-

ment was re-run on icXML with each module individually instrumented. The PMCs were

normalized against the total observed in Table 13.1. The results are displayed Table 13.3

and Table 13.4, detailing the average cache utilization in Document and Data workloads

respectivelyi. (Note: the Miss Rate column gives the misses to accesses ratio.)

Interestingly, the Character Set Adapter and Parallel Markup Parser layer (CSA+PMP)

exhibits the worst cache utilization for both types of workload but it also performs the

greatest amount of work (with respect to total cycles). Surprisingly, it appears that 18−21%

of the L1 instruction cache misses are L2 misses as well. This implies that its I-Cache

footprint is causing the processor to evict the cached instructions, which is likely introducing

cache stalls — exactly what the layered design was intended to avoid.

The decision to fuse the CSA and PMP to reduce the D-Cache footprint of the modules

likely hurt I-Cache utilization but given that there were less than 20 L1 I-Cache misses per

KB of input data in all cases, its unlikely that this is significantly affecting performance.

However, Table 13.2 shows that L1 and L2 D-Cache misses could be a concern. Unfortu-

nately, every byte of data read by the CSA is a new byte of input from the input stream.

Optimizing icXML’s I/O architecture ought to reduce this — but the degree of improvement

is limited by the file stream.

Optimizing the D-Cache usage of the Content Stream Generator (CSG) is a difficult

challenge: generating the content stream is inherently a sequential process — but only

because the cost of deletion is significant enough that it is counterproductive to isolate the

inverse transposition, entity replacement and string delimiter calculation stages within it.

However, with some careful reorganization it may be possible to lower the D-Cache miss

rate by rearranging the input to work more efficiently with the prefetchers.

For data-based workloads, many of the modules appear to be fairly well balanced but the

L3 misses of all the modules account for less than 50% of all L3 misses. Given the simplicity

of the SAXCount application, the greatest contributor to the remaining L3 misses is likely

the file I/O and segment-to-segment buffer copy mechanism. However with ≤ 0.6 L3 misses

per KB, even a substantial reduction is unlikely to improve performance.

iNote that none of the PMC columns total to 100% as each data point represents only the portion the
particular module contributes to the observed measurement over the lifetime of the library and application.
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Module
L1 L2 L3 Total

DCM % ICM % DCM % Miss Rate ICM % Miss Rate TCM % Miss Rate Cycles

CSA+PMP 25.9 25.6 11.3 3.3 19.6 17.9 4.6 0.2 31.8

SP 2.7 4.3 2.8 7.8 4.9 22.0 5.8 1.1 6.1

EM 2.5 4.0 1.9 5.6 2.6 14.8 1.9 0.5 7.4

CSG 23.3 13.6 9.7 3.1 9.6 16.4 19.4 0.6 22.9

LCT 3.2 1.7 1.1 2.6 1.7 17.7 0.2 0.1 4.4

WF 3.7 8.4 4.0 8.2 8.8 21.2 19.8 1.2 3.3

NR 1.7 7.9 2.7 11.8 6.6 16.6 4.0 0.6 5.6

GV 5.7 8.0 6.8 9.2 6.3 17.8 10.6 0.6 6.9

DD+API 1.9 3.4 1.3 5.8 6.8 37.8 1.1 0.2 5.3

70.6 77 41.5 – 66.9 – 67.4 – 93.5

Table 13.3: Average Per Module Ratio of Median Cache Misses when Parsing Document Workloads with icXML

Module
L1 L2 L3 Total

DCM % ICM % DCM % Miss Rate ICM % Miss Rate TCM % Miss Rate Cycles

CSA+PMP 15.9 22.6 10.0 4.7 14.7 21.4 8.2 0.4 16.6

SP 5.6 5.1 3.1 4.0 4.5 25.9 10.5 1.6 14.2

EM 0.6 1.9 0.3 3.4 1.9 26.4 0.4 0.4 0.3

CSG 14.0 11.8 3.6 1.9 8.5 25.4 2.8 0.3 14.8

LCT 3.3 1.9 1.1 2.4 1.9 26.8 0.3 0.1 4.8

WF 7.6 9.1 4.7 4.6 11.7 36.5 13.5 0.9 4.6

NR 6.3 10.5 3.8 4.6 10.5 27.6 6.3 0.5 12.8

GV 18.7 9.0 9.3 3.7 8.5 28.2 5.4 0.3 15.0

DD+API 10.3 4.2 1.6 1.2 7.1 45.6 2.2 0.4 13.2

82.3 76.1 37.6 – 69.3 – 49.4 – 96.3

Table 13.4: Average Per Module Ratio of Median Cache Misses when Parsing Data Workloads with icXML
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Data
Branches Mispredictions Mispredictions %

icXML Xerces icXML Xerces icXML Xerces

arw.xml 1896.9 9841.1 55.0 183.0 2.9 1.9

dew.xml 1592.3 7666.0 47.4 113.7 3.0 1.5

jaw.xml 1825.1 9151.5 54.6 151.0 3.0 1.6

po.xml 6008.6 17952.9 120.8 129.5 2.0 0.7

roads-2.gml 3291.8 14961.1 59.4 137.8 1.8 0.9

soap.xml 6792.0 23568.1 99.0 172.1 1.5 0.7

Table 13.5: Branch Behaviour in icXML and Xerces per KB input

Finally, as shown in Table 13.5, branch behaviour in icXML is significantly better than

Xerces. Proportionately, icXML has a higher misprediction rate but also a 67− 81% reduc-

tion in branch instructions. Interestingly, “po.xml” again exhibits the worst behaviour. This

file warrants additional study to determine what properties are causing the degradation.

13.3 Grammar Validation Performance

This experiment reevaluates icXML and Xerces against the document workloads, “arw.xml”,

“dew.xml” and “jaw.xml”, using the IGXMLScanner and SAX2Count application. The

IGXMLScanner is the most feature-rich XMLScanner provided by Xerces. It is capable of

parsing and validating a document against a DTD and/or any number of XML Schemas,

which necessitates the ability to perform general entity expansions and namespace pro-

cessing. SAX2Count is functionally identical to the SAXCount application except that it

adheres to the SAX2 interface. Apart from enforcing a slightly different API structure, its

major functional difference is that reports any change to the namespace state through the

startPrefixMapping and endPrefixMapping callbacks and suppresses all xmlns names-

pace declarations from the standard document API. The documents are dependant on the

“export-0.3.xsd” XML Schema, which imports “xml.xsd”, and is transitively dependant on

“XMLSchema.dtd”. These schemas were modified to point to local copies of the grammar

to eliminate network transfer costs from the PMCs. Grammar caching was disabled.

The purpose of this test is to determine the performance of icXML and Xerces when pro-

cessing document-based workloads. Typically, data-based workloads have complex schemas

and are validated only during production. Because icXML and Xerces uses the same internal

data structures to construct the Grammar object, icXML’s DTD and XML Schema parsers
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File Name export-0.3.xsd xml.xsd XMLSchema.dtd

Schema Type XML Schema XML Schema DTD

File Size (KB) 4.8 4.8 16.1

Table 13.6: Schema Characteristics

are functionally identical to Xerces’s. The only major difference between is that icXML’s

versions took advantage of its own string interning and namespace processing capabilities.

However, both libraries share a similar grammar construction overhead.

WFXML IGXML WFXML IGXML WFXML IGXML
arw.xml dew.xml jaw.xml
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Figure 13.2: Performance of icXML and Xerces using IGXMLScanner and SAX2Count

As expected, schema validation significantly increases the cost of XML parsing for both

icXML and Xerces, nearly doubling it in most cases (Fig. 13.2). icXML showed an improve-

ment in the relative performance when comparing its speedup of the datasets in the previ-

ous benchmark to this one. Interestingly, while “arw.xml” still exhibited the best speedup

when comparing icXML to Xerces, its relative speedup when comparing the (WFXML)

results from the last dataset to the (IGXML) figures of this experiment was the worst. If

markup density was the key factor, “jaw.xml” should have displayed a similar behaviour and
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Data Library
L1 L2 L3

DCM ICM DCM ICM TCM

arw.xml
icXML 407.6 185.5 66.9 39.6 0.2
Xerces 466.7 758.8 43.2 40.7 0.2

dew.xml
icXML 386.7 118.9 76.9 36.7 0.4
Xerces 368.2 400.0 45.7 34.9 0.4

jaw.xml
icXML 391.9 170.3 64.8 39.7 1.0
Xerces 417.9 649.4 46.5 41.6 0.8

Table 13.7: Median Cache Misses with XML Schema Validation per KB input

“dew.xml” the greatest increase. Since each workload is validated against “export-0.3.xsd”,

its difficult to ascertain why this occurred — but it may be related to cache utilization.

Cache behaviour in this benchmark, presented in Table 13.7, is strikingly different than

the previous experiment. As expected, D-Cache and I-Cache access and miss rates increased

considerably but unlike that test, icXML is comparable to Xerces in terms of L1 D-Cache

and L2 I-Cache utilization but ≈ 35% worse than Xerces with respect to L2 D-Cache

behaviour and ≈ 6% worse in L3 miss rate. L1 I-Cache usage, however, shows a substantial

improvement: ≈ 275%. These results are in-line with but not quite as good as the results

shown in “icXML: Accelerating a Commercial XML Parser Using SIMD and Multicore

Technologies”. Again, the additional layering is the likely culprit.

When comparing the results shown in Table 13.2 and Table 13.7, the “arw.xml” workload

showed the greatest relative increase in L1 and L2 cache misses but the lowest for L3 cache

misses. This file warrants additional study to determine whether this is an effect of the file

I/O and segment-to-segment buffer copy system or if it has any underlying properties that

could be affecting performance.

13.4 GML2SVG Performance

For the final benchmark the GML-to-SVG (GML2SVG) application was chosen to evaluate

icXML and Xerces using a substantial application that was designed for Xerces. This ap-

plication transforms geospatially encoded data represented using an XML representation in

the form of Geography Markup Language (GML) [17] into a format suitable for displayable

maps: Scalable Vector Graphics (SVG) format [19]. In the GML2SVG benchmark, GML
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feature elements and GML geometry elements tags are matched. GML coordinate data are

then extracted and transformed to the corresponding SVG path data encodings. Equiva-

lent SVG path elements are generated and output to the destination SVG document. The

GML2SVG application is thus considered typical of a broad class of XML applications that

parse and extract information from a known XML format for the purpose of analysis and

restructuring to meet the requirements of an alternative format. The SVN source code repos-

itory for this application is located at “http://parabix.costar.sfu.ca/svn/proto/gml2svg”.

GML
File Size Markup Max Content Cycles/Byte Speedup

(KB) Density Length (B) icXML Xerces (%)

rp2u 11583.8 57.2 2468 37.3 55.9 49.6

rl1u 4175.2 54.7 3776 37.7 54.2 43.8

rp4u 1220.4 58.3 644 37.5 56.8 51.5

singletrack 296.8 54.8 1283 37.3 52.8 41.3

rl2u 274.4 53.3 1661 38.8 53.9 39.0

school 253.7 47.9 1728 37.4 48.1 28.8

rp4d 245.3 56.8 1382 38.1 56.3 47.6

bridge 218.1 63.5 508 36.1 59.9 65.9

rrough 214.3 39.4 4658 40.2 43.9 9.3

church 207.0 56.9 441 35.5 53.8 51.5

transmissiontower 185.8 45.2 407 36.5 44.2 20.9

rp2u1w 165.7 51.7 1050 39.6 52.7 33.3

ocean 135.1 4.4 45595 58.7 18.4 -68.6

transmissionline 118.1 63.9 439 35.9 57.0 58.6

lake 102.6 24.9 20979 45.5 33.0 -27.4

lightrailtransit 44.6 63.9 237 38.9 58.3 49.8

hospital 43.5 41.8 1425 41.8 45.1 8.1

spur 43.4 50.4 832 42.3 53.3 26.2

riverb 24.1 53.0 1248 44.5 54.9 23.5

footbridge 22.3 64.2 237 42.0 62.1 47.7

college 21.7 49.6 1522 46.0 53.0 15.3

firestation 18.2 58.1 371 45.0 58.1 29.2
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GML
File Size Markup Max Content Cycles/Byte Speedup

(KB) Density Length (B) icXML Xerces (%)

unspecifiedbuilding 16.9 41.7 976 48.4 46.9 -3.2

multipletrack 16.8 49.4 946 49.7 54.0 8.7

postoffice 13.1 57.2 305 49.7 59.8 20.3

trestle 12.5 68.3 67 48.1 68.5 42.3

policestation 11.0 56.8 406 52.5 60.4 15.1

cutearthwork 10.7 40.6 1011 55.3 50.8 -8.1

fillembankment 9.7 53.1 643 55.5 59.6 7.4

doubletrack 8.3 64.8 265 57.4 69.4 21.0

pipeline 8.0 61.4 270 60.0 68.6 14.4

reservoir 6.8 51.9 574 65.0 63.2 -2.8

rp3u 6.5 43.0 1144 66.4 59.4 -10.6

retainingwall 6.3 63.7 203 62.7 70.9 13.2

greenhouse 6.0 59.3 330 67.0 69.8 4.2

cityhall 4.7 56.7 441 75.4 72.2 -4.3

buildup 4.3 21.4 3190 86.2 49.9 -42.1

communications 3.6 63.0 169 90.6 81.1 -10.6

ferryroute 3.3 56.1 742 90.1 77.5 -14.0

tunnel 3.2 67.6 101 91.5 88.7 -3.0

courthouse 2.2 61.8 304 125.4 96.1 -23.3

university 2.0 45.1 909 127.6 86.0 -32.6

abandonedtrack 1.9 63.9 305 140.4 102.7 -26.9

ferryterminal 1.6 59.5 405 154.8 108.0 -30.2

rp6u 1.6 73.1 101 152.0 118.8 -21.8

tailingpond 1.3 69.5 168 186.4 125.3 -32.8

Table 13.8: GML Datasets (in Decreasing Order of File Size)

Internally, the GML2SVG application uses the (default) IGXMLScanner but the gml files

themselves are not associated with any schema — which is standard for GML files given

the complexity of the grammar. As such, both icXML and Xerces dynamically construct
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DTDElemDecls and DTDAttDefs in memory to represent the “faulted in” elements and at-

tributes. The GML to SVG data translations were executed on GML source data modelling

the city of Vancouver, British Columbia, Canada. The GML source document set consists

of 46 distinct GML feature layers ranging in size from approximately 1.3 KB to 11.3 MB

and with an average document size of 130 KB. Markup density ranges from approximately

4.4% to 73.1% and with an average markup density of 55.7%. The 19.3 MB of source GML

data generates 9.1 MB of SVG data. These workloads are listed in Table 13.8 in descending

order of document size.

L1 L2 L3 Total
DCM ICM DCM ICM TCM Instructions Cycles

icXML 388.8 79.4 73.6 32.2 2.0 81,479.1 38,838.4

Xerces 410.6 725.6 42.3 24.8 0.1 103,484.3 56,166.9

Change (%) -5.6 -813.9 42.5 23.2 93.3 -27.0 -44.6

Table 13.9: Average GML2SVG Performance (per KB input)

Overall, icXML provided an average speedup of 44.6% over Xerces yet reduced the

total instructions retired by only 27.0% (Table 13.9). Given the significant reduction in

L1 I-Cache misses, it is possible that icXML’s segment-based parsing model is improving

the performance of the GML2SVG application by making more conservative use of the

I-Cache space. More investigation is necessary to make a definitive claim.

However, in many cases involving small files, GML2SVG was faster with Xerces than

icXML. Initially, as shown in Table 13.8, I observed that icXML tended to perform worse

than Xerces when parsing gml files that were under 6KB, which I believe is an effect of

the 16KB segment size window. However, this does not explain “ocean.gml” or “lake.gml”,

which are 135KB and 104 KB in size, respectively. Both files have a relatively low markup

density — yet markup density does not appear to be a reliable indicator of performance in

GML2SVG (R < 0.2). This is not surprising: it is just as difficult to transform a few long

sequences of coordinates as it is to convert many short sequences.

A unique property of both “ocean.gml” and “lake.gml” is that they both have the longest

Content spans of any of the tested datasets. More importantly, they are the only files in

which icXML would be forced to expand the content stream (within the segment-to-segment

buffer copy mechanism) to fit the entire Content string within it. Although Xerces is faced
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with a similar challenge, it has to contend with only a single string whereas icXML must heap

allocate enough to handle a full segment’s worth of data. This is likely causing havoc with

the D-Cache and TLB yet neither file is large enough that the cache behaviour can stabilize

sufficiently. These files warrant additional study to determine whether this is correctable or

simply an unfortunate side-effect of icXML’s segment-based processing model when handling

extremely long Content strings.
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Conclusions

icXML is a large project. Initially, it began as a research prototype to determine whether

it was feasible to introduce parallel bit streams into a commercial-grade XML processing

library. Xerces-C 3.1.1 was chosen due to its wide-spread use in programming community.

Modifying the WFXMLScanner to use the Parabix Framework was a relatively easy prob-

lem. Unfortunately Parabix cannot handle stateful validation unless the all of the data

needed to perform it is present in the source. As such, adapting the IGXMLScanner was

a difficult process but doing so begat the content stream model, which united the parallel

transcoding and deferred deletion techniques. Were I to begin this project again, my first

goal would have been to redesign Xerces’s internal API between XMLReader and XMLScanners

and divorce the parsing and buffering logic from each of the scanning routines. By sepa-

rating the parsing routines from the (stateful) validation functionality, it was possible to

isolate what parallel bit streams work well with within the Parabix Subsystem and what

they do not handle well in the (sequential) Markup Processor.

The performance improvements in icXML appear to be substantial: a speedup of 50 −
100% was noticed in many cases but D-Cache utilization is a significant issue. An earlier

attempt at pipeline parallelism was reported on in “icXML: Accelerating a Commercial

XML Parser Using SIMD and Multicore Technologies” [20]. icXML-p, the pipelined version

of icXML presented in that paper, was 1.5 − 2× faster than icXML. Although icXML’s

current design ought to support a greater degree of parallelism, implementation of icXML

using the StreamIt model [25] was deemed to be beyond the scope of this project.

In conclusion, the icXML project was successful: it adheres to the Xerces-C 3.1.1 API

and shows an improvement in parsing performance for all XML documents over 6KB and

77
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supports all features of Xerces (with the exception of object serialization) whilst providing

a solid foundation for future enhancements.



Bibliography

[1] Krste Asanovic et al. The landscape of parallel computing research: A view from
Berkeley. Technical Report UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, Dec 2006.

[2] Tim Bray, Dave Hollander, Andrew. Layman, Richard Tobin, and Henry S. Thompson.
Namespaces in XML 1.0 (third edition). W3C Recommendation, 2009.

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible markup language (XML) 1.0 (fifth edition). W3C Recommendation, 2008.

[4] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, and
John Cowan. Extensible markup language (XML) 1.1 (second edition). W3C Recom-
mendation, 2006.

[5] Tim Bray, Henry S. Thompson, David. Beech, Murray Maloney, and Noah. Mendelsohn.
XML schema part 1: Structures (third edition). W3C Recommendation, 2004.

[6] R.D. Cameron, K.S. Herdy, and D. Lin. High performance XML parsing using parallel
bit stream technology. In Proceedings of the 2008 conference of the center for advanced
studies on collaborative research: meeting of minds, page 17. ACM, 2008.

[7] Rob Cameron. A case study in simd text processing with parallel bit streams: Utf-
8 to utf-16 transcoding. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 91–98. ACM, 2008.

[8] Rob Cameron, Ken Herdy, and Ehsan Amiri. Parallel bit stream technology as a
foundation for XML parsing performance. In International Symposium on Processing
XML Efficiently: Overcoming Limits on Space, Time, or Bandwidth, volume 8, 2009.

[9] Robert D Cameron. u8u16–a high-speed utf-8 to utf-16 transcoder using parallel bit
streams. Technical report, Technical Report TR 2007-18, Simon Fraser University,
Burnaby, BC, Canada, 2007.

[10] Robert D. Cameron, Ehsan Amiri, Kenneth S. Herdy, Dan Lin, Thomas C. Shermer,
and Fred P. Popowich. Parallel scanning with bitstream addition: An XML case study.
In Euro-Par 2011, LNCS 6853, Part II, Lecture Notes in Computer Science, pages 2–13,
Berlin, Heidelberg, 2011. Springer-Verlag.

79



BIBLIOGRAPHY 80

[11] Unicode Consortium. The Unicode Standard. Core Specification. Unicode Consortium,
http://www.unicode.org/versions/Unicode6.2.0/ch02.pdf, 6.2 edition, 2012.

[12] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 1991.

[13] John Cowan and Richard. Tobin. XML information set (second edition). W3C Rec-
ommendation, 2004.

[14] M. Drmota and R. Kutzelnigg. A precise analysis of Cuckoo hashing. ACM Transactions
on Algorithms (TALG), 8(2):11, 2012.

[15] Yedidya Hilewitz and Ruby B Lee. Fast bit compression and expansion with parallel
extract and parallel deposit instructions. In Application-specific Systems, Architectures
and Processors, 2006. ASAP’06. International Conference on, pages 65–72. IEEE, 2006.

[16] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Jonathan Robie, Mike Champion,
and Steve. Byrne. Document object model level 3 core. W3C Recommendation, 2004.

[17] R. Lake, D.S. Burggraf, M. Trninic, and L. Rae. Geography mark-up language (GML)
[foundation for the geo-web]. Wiley, Chichester, 2004.

[18] Dan Lin, Nigel Medforth, Kenneth S. Herdy, Arrvindh Shriraman, and Rob Cameron.
Parabix: Boosting the efficiency of text processing on commodity processors. In
International Symposium on High-Performance Computer Architecture, pages 1–12,
Los Alamitos, CA, USA, 2012.

[19] C.T. Lu, R.F. Dos Santos, L.N. Sripada, and Y. Kou. Advances in gml for geospatial
applications. Geoinformatica, 11(1):131–157, 2007.

[20] Nigel Medforth, Dan Lin, Kenneth Herdy, Rob Cameron, and Arrvindh Shriraman.
icXML: Accelerating a commercial XML parser using simd and multicore technologies.
In Balisage: The Markup Conference, 2013.

[21] M. Mitzenmacher. Some open questions related to Cuckoo hashing. Algorithms-ESA
2009, pages 1–10, 2009.

[22] R. Pagh and F. Rodler. Cuckoo hashing. Algorithms—ESA 2001, pages 121–133, 2001.

[23] E. Perkins, M. Kostoulas, A. Heifets, M. Matsa, and N. Mendelsohn. Performance
analysis of XML APIs. XML, 2005.

[24] Jie Tang, Shaoshan Liu, Chen Liu, Zhimin Gu, and Jean-Luc Gaudiot. Acceleration of
XML parsing through prefetching. Computers, IEEE Transactions on, 62(8):1616–1628,
2013.



BIBLIOGRAPHY 81

[25] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt: A language
for streaming applications. In Proceedings of the 11th International Conference on
Compiler Construction, CC ’02, pages 179–196, London, UK, UK, 2002. Springer-
Verlag.

[26] H.S. Warren. Hacker’s delight. Addison-Wesley Professional, 2003.


