
FROM PEERS TO THE CLOUD: UTILIZING

DISTRIBUTED RESOURCES FOR CONTENT

DELIVERY AND USER COLLABORATION

by

Haiyang Wang

M.Eng., Tongji University, 2006

B.Sc., Jiangxi Normal University, 2003

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

c© Haiyang Wang 2013

SIMON FRASER UNIVERSITY

Summer 2013

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

lib m-scan7
Typewritten Text

APPROVAL

Name: Haiyang Wang

Degree: Doctor of Philosophy

Title of Thesis: From Peers to the Cloud: Utilizing Distributed Resources for

Content Delivery and User Collaboration

Examining Committee: Dr. Janice Regan

Chair

Dr. Jiangchuan Liu, Senior Supervisor

Associate Professor

Dr. Mohamed Hefeeda, Supervisor

Associate Professor

Dr. Qianping Gu, SFU Examiner

Professor

Dr. Kui Ren, External Examiner

Associate Professor, University at Buffalo

The State University of New York

Date Approved:

ii

lib m-scan7
Typewritten Text
30 May

Partial Copyright Licence

Acknowledgments

First, I give my foremost gratitude to my senior supervisor Dr. Jiangchuan Liu. His

significant enlightenment, guidance and encouragement on my research are invaluable for

the success of my PhD Degree in the past six years. He is the one who totally changes the

path of my life and gives me the abilities to finally find a job in academia. I love you, JC!

We all love you! You are simply the best supervisor ever!

I thank Dr. Ke Xu, for his great support and guidance since the year 2004. He is always

like a mentor to me, and I sincerely cannot imagine how my life would be without his help.

My gratitude also goes to Dr. Mohamed Hefeeda, Dr. Qianping Gu and Dr. Kui Ren for

serving on the thesis examining committee. I thank them for their precious time reviewing

my thesis and for advising me on improving this thesis. I would like to thank Dr. Janice

Regan for chairing my PhD thesis defence.

I thank Dr. Feng Wang, and Dr. Dan Wang, for helping me with the research as well

as many other problems during my PhD study.

I thank Mrs. Ji Xu, for giving us wonderful group parties every year. I just want to let

her know that we really appreciate it. She is always our nice colleague, good friend and the

best hostess!

I thank my colleagues and friends at Simon Fraser University, as well as ex-colleagues

whom I worked with. Although I am not listing your names here, I am deeply indebted to

you.

Last but certainly not least, I thank my family for their love, care, and support: my

dearest wife Qi, my parents and my grandparents. I sincerely hope that I have made them

proud of my achievements today. This thesis is dedicated to you all.

iii

Abstract

In this thesis, we tackle the problem of content delivery and user collaboration with emerging

Internet technologies. Our investigation starts from peer-to-peer (P2P) sharing with social

relations to contemporary cloud computing with flexible resource provisioning. We seek to

leverage distributed resources for efficient sharing and collaboration, which leads to a hybrid

system design that seamlessly bridges users’ local resources to public datacenters.

We first explore social-network-based optimizations in peer-to-peer content delivery. We

give solid evidences that long-term social relations can be found and applied to enhance the

sharing efficiency in peer-to-peer networks, and present practical implementation strategies

for the popular BitTorrent system. We then investigate the performance of cloud-based

file synchronization applications and identify the bottlenecks in their system design, in

particular, the task interferences. We propose an interference-aware provisioning algorithm,

which effectively mitigates the problem. We further examine the users’ interactions in

state-of-the-art cloud-based distributed interactive applications. We find that, despite the

benefit in terms of cost savings and better scalability, the cloud-based deployment greatly

increases the users’ interaction latency. We demonstrate that a smart assignment algorithms

for virtual machines can remarkably reduce such latency. Finally, we present a real-world

system design that effectively bridges users’ local resources to enterprise cloud platforms.

Our measurements as well as system analysis indicate that it serves as a complement of

great potentials to enterprise cloud services.

iv

Contents

Approval ii

Acknowledgments iii

Abstract iv

Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Related Works . 3

1.1.1 P2P-based Content Delivery . 3

1.1.2 Cloud-based User Collaboration and File Synchronization 4

1.1.3 Cloud-based Distributed Interactive Applications 5

1.1.4 Cloud Computing and Customer Resources 6

1.2 Organization of the Thesis . 7

2 Accelerating P2P with Social Relations 8

2.1 Introduction . 9

2.2 Background and Measurement Scheme . 10

2.2.1 BitTorrent and Social Applications . 10

2.2.2 Measurement Scheme . 11

2.3 Common Interests Among Peers . 12

2.4 Whether Peers Can Meet Each Other Again? 13

v

2.5 How to Identify Socially Active Peers? . 15

2.5.1 Trace Analysis . 15

2.5.2 Hadamard Transform based Social Index 17

2.6 Can Social Networks Accelerate Content Sharing? 19

2.6.1 Collaboration Among BT Peers: A Simple Solution 19

2.6.2 Evaluation . 20

2.6.3 Performance with a Hybrid System . 21

2.7 Summary . 23

3 Resource Provisioning for Cloud User Collaboration 24

3.1 Introduction . 25

3.2 Dropbox Design: Measurement and Analysis 26

3.2.1 Background . 26

3.2.2 Dropbox Protocol Analysis . 27

3.2.3 Overhead of Collaboration/Synchronization 29

3.3 Interferences Between Bandwidth-intensive and CPU-intensive Tasks 30

3.4 Revisiting Instance Selection for Dropbox . 32

3.4.1 Motivation . 32

3.4.2 Problem Formulation and Solution . 33

3.5 Performance Evaluation . 37

3.6 Further Discussions . 39

3.7 Summary . 40

4 Latency Minimization in Cloud-Based User Interaction 43

4.1 Introduction . 44

4.2 Cloud-Based DIA: Background and Framework 46

4.3 Network Latency in CDIA . 48

4.4 Latency Optimization in CDIA: Basic Model and Solution 50

4.4.1 The Basic CDIA Latency Problem . 50

4.4.2 An Optimal Solution . 52

4.5 Processing Latency on Cloud Proxy . 53

4.5.1 Measurement of Response Time . 53

4.6 Latency Optimization in CDIA: An Enhanced Model 55

4.7 Performance Evaluation . 57

vi

4.8 Summary . 61

5 Customer-Provided Resources for Cloud Computing 62

5.1 Introduction . 63

5.2 Enabling Customer Resources for Cloud: An Overview 65

5.3 Provisioning across Dynamic Customer-Provided Resources 66

5.3.1 The Resource Provisioning Problem 66

5.3.2 Optimal Provisioning with Dynamic Resources 68

5.4 Pricing with Heterogeneous Resource Providers 71

5.5 SpotCloud: A Practical System Implementation 73

5.6 Lease- vs Migration-Cost: A Closer Look . 78

5.7 Summary . 82

6 Conclusion and Future Work 83

Bibliography 86

vii

List of Tables

3.1 CPU benchmark running time under different traffic loads on virtualized EC2

small instance . 32

viii

List of Figures

2.1 Sampled graph visualization . 11

2.2 An illustration to show the existence of highly overlapped peers 13

2.3 # of peers that encountered with peer# 313 13

2.4 # of peer encounters . 14

2.5 Length of overlap time slots between peer pair samples (in Twitter swarms) . 14

2.6 The autocorrelation function for the data in 6 hours 16

2.7 Amplitude distribution of peer#117 and peer#313 16

2.8 Randomness of peers’ online behaviors . 17

2.9 CDF of social index . 17

2.10 Completion time . 19

2.11 Startup delay . 19

2.12 Downloading rate . 20

2.13 Downloading completion time (larger swarm) 20

2.14 Downloading completion time (mixed swarm) 22

2.15 Startup delay(mixed swarm) . 22

3.1 Dropbox framework . 27

3.2 Synchronization delay . 28

3.3 Increasing of CPU benchmark on small instance 29

3.4 Increasing of CPU benchmark on large instance 30

3.5 An example for the resource provisioning . 33

3.6 Comparison of average synchronization delay 36

3.7 Reducing of average synchronization delay . 38

3.8 Comparison of total synchronization delay(total delay for Dropbox to fulfill

all the user demands) . 39

ix

3.9 Comparison of renting cost . 40

3.10 Algorithm to compute the load assignment matrix. 42

4.1 Basic Framework of Gaikai . 46

4.2 Path of client interaction . 48

4.3 Time cost between user and server (DIA v.s. CDIA) 49

4.4 Average user-server latency in CDIA . 50

4.5 Algorithm to find the optimal assignment between clients, cloud proxies and

servers . 50

4.6 Average latency of user’s action . 51

4.7 Finding Optimal Assignment in converted DAG 53

4.8 Transform G into G∗
A . 56

4.9 Algorithm to compute the resource provisioning. 57

4.10 Optimal client assignment only consider the networking latency 58

4.11 Interference-aware client assignment . 58

4.12 Interaction latency across client pairs (different budget) 58

4.13 Interaction latency across client pairs (different # of clients) 59

4.14 Adjusting parameter a (VM’s maximum processing latency) 59

4.15 Adjusting parameter b (skewness of the relationship) 60

4.16 Interaction latency across 200 and 588 clients 60

4.17 Algorithm to accommodate the lease cost . 61

5.1 Overview of Framework . 64

5.2 Algorithm to compute the optimal provisioning schedule. 70

5.3 Software module design . 72

5.4 Finite-state machine in SpotCloud . 73

5.5 An example of message format for utilization monitoring 74

5.6 Locations of SpotCloud Resources . 74

5.7 # of CPUs . 75

5.8 Memory size . 75

5.9 Online availability . 75

5.10 Initialization delay . 76

5.11 Server-client throughput . 76

5.12 Pricing distribution . 77

x

5.13 Analysis of Lease cost . 78

5.14 Migration cost with different service durations 79

5.15 # of used VMs with different service durations 79

5.16 Lease cost with different service durations . 79

5.17 Migration cost with different content sizes . 79

5.18 # of used VMs with different content sizes . 81

5.19 Lease cost with different content sizes . 81

5.20 Service availability with different service durations 82

5.21 Service availability with different content sizes 82

5.22 Trade-off between cost and service availability 82

xi

Chapter 1

Introduction

In the span of only a few years, the Internet has witnessed an astronomical growth in the use

of specialized content delivery and user collaboration systems. The efficiency, scalability, and

flexibility issues of such applications as Bittorrent [20], Giakai [58] and Dropbox [30] have

attracted an increasing amount of attention from both industry and academia [7] [3] [16] [65].

These new generation of applications, beyond conventional client/server structures with

dedicated datacenters, have attracted a vast number of Internet users by utilizing the highly

distributed and elastic resources from the peers as well as the cloud platforms. In this thesis,

we conduct four joint and extensive studies on content delivery and user collaboration

systems. Our investigation starts from the well-developed P2P networks to the newly-

emerging cloud platforms and finally reaches a hybrid system that aiming to bridge users’

local resource to the public datacenters. In detail, to enhance the existing P2P content

delivery systems, we for the first time examine the challenges and potentials of accelerating

P2P file sharing with social networks. We show that the peers in such swarms have stronger

temporal locality, thus offering great opportunity for improving their degree of sharing.

Based on the Hadamard Transform of peers’ online behaviors, we develop a social index

to quickly locate peers of common patterns. We also demonstrate a practical cooperation

protocol that identifies and utilizes the social relations with the index. Followed by this

intergradation, we further explore the user collaboration in the cloud-based systems such

as Dropbox and Gaikai. In particular, Dropbox is one of the most popular cloud storage

and content delivery providers on the Internet. It has 10 million users and stores more

than 100 billion files as of May 2011 [31] with the increasing of 1 million files in every 5

minutes [32]. On the other hand, Gaikai is the most famous could-based gaming service

1

CHAPTER 1. INTRODUCTION 2

provider with over 10 million monthly active users. Recent news also indicates that Sony

Computer Entertainment (SCE) has acquired Gaikai for 380 million USD, putting such a

cloud-based distributed interactive application (CDIA) into its strategic plan for the future

online gaming market.

To better understand these cloud-based systems, such as Dropbox, we present initial

measurements to understand the design and performance bottleneck of the proprietary

Dropbox system. Our measurement identifies the cloud servers/instances utilized by Drop-

box, revealing its hybrid design with both Amazon’s S3 (for storage) and Amazon’s EC2

(for computation). The mix of bandwidth-intensive tasks (such as content delivery) and

computation-intensive tasks (such as compareing hash values for the contents) in Drop-

box enables seamless collaboration and file synchronization among multiple users; yet their

interference, revealed in our experiments, creates a severe bottleneck that prolongs the

synchronization delay with virtual machines in the cloud, which has not been seen in con-

ventional physical machines. We thus re-model the resource provisioning problem in the

Dropbox-like systems and present an interference-aware solution that smartly allocates the

Dropbox tasks to different cloud instances. In terms of the Gaikai-based gaming/interactive

service, we also apply an extensive packet-level analysis. The measurement result reveals

the inside structure as well as the operations of real CDIA systems and identifies the critical

role of the cloud proxies. While this design makes effective use of cloud resources to mitigate

the clients’ workloads, it can also significantly increase the interaction latency among clients

if not carefully handled. To minimize the interaction latency, we present a novel model that

accommodates cloud proxies and develop optimal solutions.

Based on these investigations, we can see that the rapid growth of cloud computing

already provides an efficient means for the users to enjoy distributed Internet resources as a

form of utility. Yet, as the cloud customers are pure consumers, their local resources, though

abundant, have been largely ignored. To this end, we further explore the potentials and

challenges towards enabling customer-provided resources for cloud computing. Given that

these local resources are highly heterogeneous and dynamic, we closely examine two critical

challenges in this new context: (1) How can high service availability be ensured out of the

dynamic resources? and (2) How can the customers be motivated to contribute or utilize

such resources? We present practical resource provisioning algorithms that ensure service

availability with minimized lease and migration costs. We also demonstrate a distributed

market for potential sellers to flexibly and adaptively determine their resource prices through

CHAPTER 1. INTRODUCTION 3

a repeated seller competition game. We then present SpotCloud, a real working system

that seamlessly integrates the customers’ local resources into the cloud platform, enabling

them to sell, buy, and utilize these resources. We discuss the implementation of SpotCloud

and evaluate its performance. Our data trace analysis confirms it as a scalable and less

expensive complement to the pure datacenter-based cloud.The contributions of this thesis

are summarized as follows:

• Our study showed that long-term social relations can be found and applied in the

P2P content delivery systems. Such a relationship can greatly enhance the sharing

efficiency of P2P applications.

• Our study showed that the cloud deployment will, however, introduce a serve bot-

tleneck to the user collaboration and interactive applications. Our measurement

indicated that the performance degradation is due to the interference between the

computational intensive and bandwidth intensive tasks.

• Our study investigated the applicability of enabling customer provided resources for

cloud computing. We discussed design as well as the performance issues in a real-

world system: SpotCloud. Our analysis validated SpotCloud as a complement of

great potentials to datacenter-based cloud service. cloud.

1.1 Related Works

In this section, we will revisit the existing studies about content delivery and user collabo-

ration. These studies are from the conventional P2P-based systems,such as Bittorrent, to

the emerging cloud-based systems such as Dropbox and Gaikai.

1.1.1 P2P-based Content Delivery

There have been numerous studies on the implementation, analysis, and optimization on

peer-to-peer file sharing, particularly on BT [7] [8]. To deal with certain peers’ selfish behav-

iors, BT introduces the Tit-for-Tat incentive mechanism, which largely prevents a peer from

free riding [9]. The effectiveness of Tit-for-Tat has been evaluated through both theoretical

analysis and practical experiments [10] [11]. Fan et al. [12] further proposed strategies for

assigning rates to connections, which ensures fairness if universally adopted. Neely et al.

CHAPTER 1. INTRODUCTION 4

[13] explored the utility optimization for dynamic networks with Tit-for-Tat. Unfortunately,

recent studies have also identified potential problems in this incentive mechanism, e.g., data

pollution [14] and weak robustness [15].

More importantly, it is known that Tit-for-Tat hinders decent peers or peers of close

relationship from more efficient collaboration. To address this problem, private torrents

that do not solely rely on Tit-for-Tat have been introduced for closed communities [3] [16].

For public torrents, long-term relationships among peers have been explored to improve the

content availability [17] and the sharing efficiency [18]. However, whether such long-term

relationships do exist and how they could be effectively identified and then properly utilized

remains unknown, which will be addressed in this thesis. We also extend the earlier works

on community-based BT [2] [19] by explicitly incorporating the Twitter communities, a

real-world social network that have gained great popularity among BT users.

1.1.2 Cloud-based User Collaboration and File Synchronization

There are many existing studies on the design and measurement of client/server and peer-

to-peer file hosting systems [35] [36]. Dropbox however represents a new generation of

file hosting service that emphasizes not only on storage, but also, and more importantly,

on sharing and synchronization across diverse users. Its success lies largely on the rapid

development and deployment of cloud computing in the past five years. In this context, the

partition and allocation of services to datacenters and local computers have been closely

examined in [98][99][100][101]. There have also been a significant amount of related works

on capacity provisioning in computer clusters and grids [102][103][104]. In particular, the

classical feedback control theory has been used to model the bottleneck tier in web applica-

tions [105][106]. Based on these studies, Sharma et al. [99] further proposed a cost-aware

provisioning algorithm for cloud users. Yet the impact of virtualization remains unclear in

these studies, despite that virtual machines have been extensively used in modern cloud

systems [46][47][48].

In 2007, the researchers from the University of Michigan and HP performed a per-

formance evaluation comparing different virtualization techniques for use in server consol-

idation [49]. They compared Xen, a hypervisor-based paravirtualization technique, and

OpenVZ, a container-based virtualization technique. The results showed that OpenVZ

had better performance and lower overhead than Xen. Soltesz et al. [50] compared Xen

and Linux VServer in terms of performance and architectural design. Matthews et al. [51]

CHAPTER 1. INTRODUCTION 5

tested HVM, PVM and Container Virtualization for performance isolation. They found that

HVM has better performance isolation, followed closely by PVM, and that container-based

solutions provide the least isolation. Ostermann et al. [52] further performed a performance

analysis on Amazon EC2 to determine its suitability for high performance scientific comput-

ing. They found that the use of virtualization can impose significant performance penalties

on many scientific computing applications. The impact of virtualization on network perfor-

mance in Amazon EC2 was evaluated in [53]. It showed that, due to virtualization, users

often experience bandwidth and delay instability.

1.1.3 Cloud-based Distributed Interactive Applications

The origins of Distributed Interactive Applications (DIAs) can be traced back to 1983 when

a United States research program initiated the SIMNET project [60] to train soldiers in bat-

tlefield tactics. Since then, an increasing number of academic, military and commercial DIA

systems have been developed and documented. Nowadays, despite the increase of process-

ing powers at participating clients and the availability of greater communication bandwidth,

minimizing the interaction latency remains one of the most fundamental challenges in the

DIA framework. Many studies have shown that the latency is particularly problematic

when the network delays are comparable to the interaction time or speed [61]. Such studies

suggested that the interaction latency should be bounded for real-world DIAs [62]. For ex-

ample, the typical latency values to maintain real-time interaction fall between 40 and 300

ms [63]. Gutwin [64] investigated the effects of latency on two types of user interactions:

prediction of movement and moving a shared object. This study showed that both gaming

performance and user strategy will be greatly affected by interaction latencies higher than

the expected range.

To minimize the interaction latency in DIAs, Webb et al. [65] proposed a nearest server

assignment to reduce the client-server latency. Ta et al. [66] proposed a two-phase solution

for large-scale DIAs. The study by Cronin et al. [67] further discussed the server placement

problem to enhance users’ interactivity. Vik et al. [68] explored the spanning tree problems

in DIAs for latency reduction. Cong et al. proposed an Indirect Relay System (IRS)

to forward game-state updates over detour paths in order to reduce the round-trip time

(RTT) among DIA users [69]. A recent study from Zhang et al. [70] revisited the problem

and proposed a distributed-modify-assignment approach to adapt to the dynamics of client

participation and network conditions.

CHAPTER 1. INTRODUCTION 6

For cloud computing, there have been a series of works measuring the performance of

public or private cloud services from diverse aspects, including computation, storage, and

networking services [94]. There are also many studies addressing application designs that

leverage cloud resources [98]. For example, Wu et al. [100] explored the use of cloud for

Video-on-Demand applications.

1.1.4 Cloud Computing and Customer Resources

The salient features of cloud computing have enticed a number of companies to enter

this market [87][88][89][90][91] and have also attracted significant attention from academia

[92][93][86]. There have been a series of measurement and comparison of the diverse cloud

platforms. Garfinkel et al. studied the performance of Amazon’s Simple Storage Service

(S3) and described the experience in migrating an application from dedicated hardware to

S3 [94]. Walker et al. investigated the performance of scientific applications on Amazon

EC2 using both macro- and micro-benchmarks [95]. A recent study from Li et al. [96] fur-

ther presented CloudCmp, a systematic comparator for the performance and cost of cloud

providers in today’s market. These studies have mainly focused on cloud enabled by enter-

prise datacenters. They have demonstrated the power and benefit of such enterprise clouds,

but also revealed many of their weaknesses. In particular, Ward [97] showed that the virtu-

alization technique in Amazon EC2 can lead to dramatic instabilities in network throughput

and latency, even if the datacenter network is only lightly loaded. The recent outage of the

Amazon’s cloud service further suggests that the datacenters are not necessarily as reliable

as assumed.

There have been recent studies on the partition and allocation of services to the data-

centers and the local computers, respectively [98][99][100][101]. Our work differs from them

through seamless provisioning the customer local resources to the overall cloud. There have

been a significant amount of related works on capacity provisioning in computer clusters

and grids [102][103][104]. The classical feedback control theory has also been used to model

the bottleneck tier in web applications [105][106]. Based on these studies, Sharma et al. [99]

further proposed a cost-aware provisioning algorithm for cloud users. Utilizing customer-

provided resources, however, presents new challenges given their stronger dynamics.

CHAPTER 1. INTRODUCTION 7

1.2 Organization of the Thesis

The remainder of the thesis is structured as follows:

• In Chapter 2, we examine the P2P-based content delivery. We reveal the underlaying

relationship between social networks and P2P systems and provide useful guidance to

enhance users’ downloading performance.

• In Chapter 3, we investigate the cloud-based storage and file synchronization systems.

We study their basic framework and identify the related design challenges. We also

provide a new model to optimize users’ file synchronization performance.

• In Chapter 4, we explore users’ interactions/collabrations in the cloud-based gaming

systems. We identify the bottlenecks in the system design and provide optimizations

to minimize users’ interaction latency.

• In Chapter 5, we discuss the design of a real-world system which enables users’ idle

local resources to better support the pure datacenter-based cloud. Our data trace

analysis confirms it as a scalable and less expensive complement to the enterprise

cloud service.

• In Chapter 6, we conclude the thesis, and also discuss some future works.

Chapter 2

Accelerating P2P with Social

Relations

Peer-to-peer file sharing systems, most notably BitTorrent (BT), have achieved tremendous

success among Internet users. Recent studies suggest that long-term relationships among

BT peers could be explored for peer cooperation, so as to achieve better sharing efficiency.

However, whether such long-term relationships exist remain unknown. From an 80-day trace

of 100, 000 real world swarms, we find that less than 5% peers can meet each other again

throughout the whole period, which largely invalidates the fundamental assumption of these

peer cooperation protocols.

Yet the recent emergence of online social network applications sheds new light on this

problem. In particular, a number of BT swarms are now triggered by Twitter, reflecting

a new trend for initializing sharing among communities. In this chapter, we for the first

time examine the challenges and potentials of accelerating peer-to-peer file sharing with

Twitter social networks. We show that the peers in such swarms have stronger temporal

locality, thus offering great opportunity for improving their degree of sharing. Based on

the Hadamard Transform of peers’ online behaviors, we develop a social index to quickly

locate peers of common patterns. We further demonstrate a practical cooperation protocol

that identifies and utilizes the social relations with the index. Our PlanetLab experiments

indicate that the incorporation of social relations remarkably accelerates the downloading

time. The improvement remains noticeable even in a hybrid system with a small set of

socially active peers only.

8

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 9

The chapter is organized as follows: In section Section 2.1, we present the big picture

of this chapter. Based on the measurement of real world Twitter swarms in Section 2.2,

we examine four key issues on accelerating peer-to-peer file sharing with social relations in

Sections 2.3, 2.4, 2.5 and 2.6, respectively. Finally, the chapter is summarized in Section

2.7.

2.1 Introduction

Peer-to-peer file sharing systems, in particular, BitTorrent (BT), have achieved tremendous

success among Internet users. To ensure that the system grows organically, the existing

BT protocol relies on a Tit-for-Tat mechanism to penalize free-riders [1]. This incentive

mechanism deals well with certain peers’ selfish behaviors, and has indeed become a key

factor toward the prevailing popularity of BT. Unfortunately, it also hinders decent peers

or peers of close relations from more efficient collaboration. Recent studies suggest that

long-term relationships among certain BT peers could be explored to achieve better sharing

efficiency [2][3]. However, whether such long-term relationships do exist and how they could

be effectively identified remain unknown. We have collected trace-data from more than

100, 000 real world swarms spanning over 80 days. We find that peers’ online patterns in

conventional BT swarms are highly diverse: less than 5% peers can meet each other again

in our entire measurement duration1. As such, the peers hardly have a chance to help each

other, implying the cooperation protocols that blindly assume the existence of long-term

relations may not work well.

The recent emergence of online social network applications, for example, Facebook [4]

and Twitter [5], sheds new light into this problem. Such applications have been quickly

changing the Internet users’ behaviors as well as the content sharing landscape. In particular,

we have noticed that a number of BT swarms are now triggered by Twitter, reflecting a

new trend for initializing sharing among communities. In our 80-day trace, we found that

there are 2, 106 Twitter-triggered swarms among the 100, 000 real world swarms, and its

percentage steadily grows in our more recent data (as we finished this study, it reached

above 7%).

1Note that the peers are not necessarily online at the same time even they are downloading identical
contents in the same swarms.

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 10

In this chapter, we for the first time examine the challenges and potentials of accelerat-

ing peer-to-peer file sharing with social networks, particularly Twitter-trigger BT swarms,

whose downloads are initialized/shared in Twitter communities. We show that, in these

swarms, the peers’ online periods are much better overlapped. In particular, more than

35% peers can meet each other again, thus being able to perform data exchange. A closer

look into individual peers suggests that a number of peers indeed exhibit very similar online

patterns. This temporal locality partly reflects their common social interests, and offers a

great opportunity for improving their degree of sharing.

Given the sheer population of Internet peers, identifying these peer pairs of common

patterns is resource-intensive, not to mention the requirement of real-time online computa-

tion. We address this challenge through qualifying whether a peer is socially active in BT

networks. Intuitively, assuming a swarm is a party, a socially active peer is a person who

regularly attends many parties to meet his/her friends. Through a Hadamard Transform

[6] of peers’ online behaviors, we develop social index, a simple hint to locate these active

peers. Its effectiveness has been validated through our trace data. We further demonstrate

a practical cooperation protocol that identifies and utilizes the social relations through the

index. Preliminary PlanetLab experiments indicate that the incorporation of social relations

remarkably accelerates the downloading time for BT peers. The performance improvement

remains noticeable even in a hybrid system with a small set of socially active peers only.

2.2 Background and Measurement Scheme

2.2.1 BitTorrent and Social Applications

Despite its name, peer-to-peer file sharing is often a solitary pursuit, where the peers swap

bits of contents, but each of them remains anonymous to one another. Yet, an increasing

number of users in P2P networks is now trying to make downloading more socialized by

incorporating social relationships [20]. Twitter, one of the most popular social applications

on the Internet, has therefore attracted significant attention from BT users and developers2.

A new feature in the latest version of the uTorrent [21] client called “Torrent Tweets” allows

users to talk about a given download from the application and see what everyone else is

2It is worth noting that Twitter itself also highly depends on the BT to manage its thousands of data
servers. The BitTorrent-powered system in Twitter’s new setup has made the Twitter server deployment 75
times faster than before [5].

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 11

(a) Peer’s common interest in normal
swarms

(b) Peer’s common interest in Twitter
swarms

Figure 2.1: Sampled graph visualization

saying on Twitter. These social functionalities, have already started changing the way of

Internet torrents sharing, similar to the increasing video sharing on Facebook [4].

We have found that more than 10, 0000 groups on Twitter site are built for torrent shar-

ing. It is well known that Twitter emphasizes the up-to-date sharing of instant information

among friends. Once a tweet(Twitter user) updates a message/torrent link, his/her follow-

ers will be able to see it at the same time through updating notifications to their PCs or

smartphones. We believe that this feature will potentially change the sharing behavior of

peers and is thus worth investigation.

2.2.2 Measurement Scheme

To this end, we first collected over 100, 000 torrents from www.btmon.com, one of the most

popular BT torrent sites. We further crawled the Twitter pages from a cluster of servers

in Simon Fraser university to check whether these torrents are also shared among Twitter

communities. We found that about 2% (2, 106 out of 100, 000) of torrents in our dataset

are shared on Twitter by Feb 2010, and this ratio has steadily increased to 7% when we

finished this chapter . For ease of exposition, we call these swarms Twitter swarms and

others Normal swarms.

To learn the peers’ online behaviors in these swarms, we passively monitored the BT

traffic from the out-going switch of a local ISP from Oct 2009 to Jan 2010 (for over 80

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 12

days)3. We generated a tracker list based on the collected torrent files (resulting in 683 active

trackers in total). According to this tracker list, we obtained the updating message between

these trackers and the peers that are located in this ISP. Based on the torrent information

in these messages, we found 334 torrents (10, 120 peers) belonging to our Twitter swarm

dataset and 2, 271 torrents (33, 240 peers) belonging to our normal swarm dataset. In other

words, the peers in this ISP have participated in 2, 605 torrents (out of 100, 000) over the

80-day duration.

Considering that many peers may not belong to the ISP that we have measured, we

also actively probe the peer information from PlanetLab nodes [22] to obtain more detailed

peer information in the swarms. We ran a modified BT client on over 250 PlanetLab nodes,

which actively joined the torrents and recorded the observed peer information, as in [23]. As

such, we successfully detected the IP addresses of over 95% peers for most of the swarms4.

We use this result to infer the common interest among BT peers.

2.3 Common Interests Among Peers

We start from examining the peers of commonly interested files. We model the peer re-

lationship across different swarms in a n × n matrix, Q, where n is the number of peers.

Each component of Q, Qi,j, is a binary value which indicates whether peers i and j share

at least one common torrent (1-yes, 0-no). We use Qnormal and Qtwitter to record the peer

relationships in normal swarms and in Twitter swarms, respectively.

A sample graph visualization of Qnormal and Qtwitter is presented in Figure 2.1a and

Figure 2.1b (with 400 sampled peers), where the distance between two nodes corresponds

to the number of torrents that the peers shared in common; in other words, peers will be

closer to each other if they have downloaded more torrents in common. Here we only plot

the peers with a degree being greater than 1, i.e., having relationship with others. We can

see that Qtwitter is denser than Qnormal (with 374 and 291 peers respectively). Intuitively,

this implies that more peers in Twitter swarms share clear interests with others and have

downloaded at least one torrent in common.

3This is one of the largest ISPs in China which provides both cable and DSL access service for the users.
4This ratio is calculated by comparing the number of detected peers against the total number of peers

advertised by the tracker of each torrent.

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 13

10 20 30 40 50 60 70 80
310

315

320

325

330

335

Time slot (day)

P
e

e
r

ID

Peer# 332

Peer# 313

Figure 2.2: An illustration to show
the existence of highly overlapped
peers

0 1 2 3 4 5 6 7
0

5

10

15

20

25

Time slot (day)

#
 o

f
p

e
e

rs
 t

h
a

t
e

n
c
o

u
n

te
re

d
 w

it
h

 P
e

e
r#

 3
1

3

Figure 2.3: # of peers that encoun-
tered with peer# 313

A closer look shows that both graphs are not random, but rather having certain commu-

nity behaviors. This is quantified by evaluating their clustering coefficient5. The clustering

coefficient of Qtwitter is over 0.25, whereas the clustering coefficient of Qnormal is 0.2. Both

of them are noticeably higher as compared to a random graph (nearly 0), and the Twitter

swarms exhibit greater communitized behaviors that could be explored.

2.4 Whether Peers Can Meet Each Other Again?

Unfortunately, simply having common interests is not enough to enable efficient sharing

among these peers. A more critical question is whether these peers have similar/overlapping

online patterns. Otherwise, the peers will have no chance to help their friends at all.

Figure 2.2 presents an illustration of two peers with similar online patterns. These two peers

join the BT networks regularly every day and their online time slots are highly overlapped

following a clear 7-day pattern. A closer look of Figure 2.3 shows that peer#313 is not only

overlapped with peer#332 but also very likely to meet other peers in its cluster. However,

it is not clear that whether such overlapped patterns are pervasive in BT networks.

To quantitatively evaluate this, we define K as the set of all the trackers, and thus

|K| = 683. We first collect the online information of the peers from all the trackers. Each

tracker k generates a peer availability matrix Ak that indicates the online time slots of

5The clustering coefficient of node i is the fraction of all possible edges between neighbors of i that are
present, while the clustering coefficient of a graph is the average of the coefficient across all nodes [24].

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 14

0 50 100 150 200 250 300 350

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

of overlapped time slots

C
D

F
 o

f
p

e
e

r
p

a
ir
 s

a
m

p
le

s

Twitter Swarms
Normal Swarms

0 5 10 15 20
0.8

0.85

0.9

0.95

1

Figure 2.4: # of peer encounters

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Length of overlapped time slots between peer paris (hours)

C
D

F
 o

f
p

e
e

r
p

a
ir
 s

a
m

p
le

s

0 50 100 150 200
0.8

0.85

0.9

0.95

1

Figure 2.5: Length of overlap time
slots between peer pair samples (in
Twitter swarms)

the peers: Each component of Ak, A
i,j
k , is of a binary value, indicating whether peer i is

connected to tracker k at time slot j (1-yes, 0-no). In our measurement, the maximum value

of i is 43, 360 and the maximum value of j is equal to 120, 000 minutes. We then merge all

683 matrixes together to get a global online matrix G. Each component of G, Gi,j is a binary

value indicating whether peer i is in the BT networks at time slot j. In our measurement,

this matrix refers to the online pattern of n = 43, 360 peers over m = 120, 000 minutes. Let

G(i,M) denote the ith row of G across time slots M . For example for two peers (n1 and

n2), we can get their overlapped time slots via the dot product of their availability as:

Ln1,n2
= G(n1,M) •G(n2,M), (2.1)

Each component of Ln1,n2
, Ln1,n2

(j) is a binary value, indicating whether peer n1 and

n2 are online at the same time at time slot j. The length (number of online slots) of this

overlapped time slots can be described as :

K(Ln1,n2
) =

M∑

j=1

Ln1,n2
(j), (2.2)

where K(Ln1,n2
) is an integer indicating the number of the overlapped time slots between

peer n1 and n2. We also use K(G(n1,M)) and K(G(n2,M)) to denote the total online time

of peer n1 and n2, respectively.

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 15

We first check the number of encounters between the peer pairs, i.e., how many times a

peer’s online duration is overlapped with another peer’s. From Figure 2.4, we can see that

the peers in normal BT swarms are not likely to meet others again; in particular, less then

5% peers can meet others more than once in the BT networks over 80 days. On the other

hand, we observe that peers’ online patterns are much better overlapped in the Twitter-

triggered swarms. In particular, the ratio is increased from 5% to 35%, indicating that more

peers are eligible to provide constant helps to others (we call these peers socially active peers

as discussed in section I). Note that a study from Piatek et al. [25] shows that the peers

can hardly have direct data exchange with others again (be assigned as neighbors again).

Our study is, however, focusing on peers’ online patterns and seeking for the potential to

build direct data exchange among social friends.

Given this higher encounter ratio, we further investigate the total length of the over-

lapped time slots in Twitter swarms. As shown in Figure 2.5, we can see that most (around

60%) peers overlapped with others for more than 15 hours in our measurement. This is

relatively a long time that could be utilized for effectively exchanging data. An intuitive

explanation of Figure 2.4 and Figure 2.5 is that Twitter emphasizes the up-to-date sharing

of instant information among friends. Once a tweet updates a message/torrent, his/her

followers will be able to see this message at the same time (through updating notifications)

and then start to download. Therefore, the peers are very likely to share common interests

and to have very similar online patterns. Since the Twitter communities consist of largely

trusted friends, a better sharing incentive can naturally be expected.

2.5 How to Identify Socially Active Peers?

Given the existence of overlaps, we now discuss how to identify the socially active peers in

this section. We will first examine the unique feature of these peers through trace analysis,

and then derive an effective index for identify.

2.5.1 Trace Analysis

In this part, our investigation is based on two sets of peers: 1) 200 peers that are highly

(meet more than twice) overlapped with others, and 2) 200 peers that are slightly (meet

less or equal than twice) overlapped with others. To illustrate their underlying difference,

we first analyze their autocorrelation.

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 16

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
a

m
p

le
 A

u
to

co
rr

e
la

tio
n

Sample Autocorrelation Function (ACF)

Highly overlapped peers
Slightly overlapped peers
Simulated poission data

Figure 2.6: The autocorrelation
function for the data in 6 hours

0 2 4 6 8 10 12 14

x 10
4

−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

Time slots (minute)

A
m

p
lit

u
d

e
s

Peer #313

Peer #117

Figure 2.7: Amplitude distribution
of peer#117 and peer#313

Let χ be the complex conjugate of χ. The autocorrelation of a for a given shift τ is

defined by:

Ca(τ) =
t−1∑

i=0

χ(ai+τ)χ(ai), 0 ≤ τ ≤ t− 1 (2.3)

where τ is a phase shift of the sequence {ai} and the indices are computed modulo t, the

period of a. {ai} = a refers to the input sequence (a row in global online matrix G).

Figure 2.6 shows the autocorrelation coefficient in 6-hour intervals for 200 highly-overlapped

peers, 200 slightly-overlapped peers and a simulated Poisson data. It is quite clear that the

autocorrelation of highly-overlapped peers decays very slowly, exhibiting a power-law-like

curve. On the other hand, the function of slightly-overlapped peers and simulated Poisson

data decay very quickly to a close-to-zero level which shows the absence of long-range de-

pendence. When we increase the length of the interval to one day, one week, and one month,

respectively, we find that the autocorrelation function of highly-overlapped peers becomes

more and more stable around 0.3, and the decay also becomes slower. The autocorrelation

function of slightly-overlapped peers and the Poisson data, however, decrease very quickly

to near-zero. This observation shows that that the online behaviors of slightly-overlapped

peers are relatively random (like Poisson data), which do not have long-range dependence,

even we consider a very long time interval, e.g., one month.

Note that the autocorrelation reveals the underlying difference of peers’ online behaviors.

Yet, itself is not efficient in identifying the overlapped peers, particularly considering its

computation overhead.

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 17

0 50 100 150 200 250 300 350
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Peer ID

R
a

n
d

o
m

n
e

ss

330 peers in Twitter swarms
330 peers in normal swarms

Figure 2.8: Randomness of peers’
online behaviors

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Social index

C
D

F

330 peers in
Twitter swarms
330 peers in
normal swarms

Figure 2.9: CDF of social index

2.5.2 Hadamard Transform based Social Index

From the trace analysis, we can learn that the online behavior of slightly-overlapped peers is

very similar with that of the Poisson data. Thus, if we can successfully detect the randomness

in this Poisson-like data, other highly-overlapped peers will naturally be identified.

Hadamard Transform [6], also known as Walsh-Hadamard Transform, belongs among a

generalized class of Fourier Transforms, and has been wildly used to measure the random-

ness of binary sequences in signal processing and security fields. The standard Hadamard

Transform of f(x) is defined as follows:

f̂(λ) =
∑

x∈T

χ(λx)χ(f(x)), λ ∈ T (2.4)

where f(x) is a trace representation [26] of the input a where a is a binary sequence indicating

the availability of a peer (1:online; 0:not online). χ(f(x)) is the complex conjugate of

χ(f(x)). If we define F = GF (q), the finite field with q elements, and F
∗
q, the multiplicative

group of Fq. T will be equal to Fq. The inverse transform is given by:

χ(f(λ)) =
1

q

∑

x∈T

χ(λx)f̂(x), λ ∈ T (2.5)

Let I(f̂(λ)) be the number of independent amplitudes of f̂(λ), and L be the length of

the sequence. The randomness r(f(λ)) is given by:

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 18

r(f(λ)) =
I(f̂(λ))

L
, λ ∈ T (2.6)

Therefore, we define the social index of f(x) as :

S(f(λ)) =
∑

λ∈T

f(λ)(1− r(f(λ))) (2.7)

An illustration of Hadamard Transform is shown in Figure 2.7, where peer#117 is a peer

with regular daily online pattern (for example: being online regularly at each day of the

week) and peer#313 is not. Figure 2.7 shows their amplitudes after Hadamard Transform

(Eq.4). We can see that the number of independent amplitudes in peer#117 is smaller

than that of peer#313. This confirms that peer#117’s online behavior is more regular than

peer#313.

Eq. 6 quantifies the randomness of the binary sequence a. This value is between 0 and

1 where r(f(λ)) = 1 means the peer’s behavior is random and no regular pattern can be

learnt. In Eq.7,
∑

λ∈T f(λ) refers the total online time of the peer and S is the expectation

that the peer will be regularly online to meet other friends. Recall the definition of socially

active peers: if we see each swarm as a party and the peer as a person, the social index S

is how likely this person will attend multiple parties regularly to meet his/her friends.

To validate whether the social index can well qualify the peer’s overlapping behavior,

we compute S(f(λ)) of the swarms in our dataset. As shown in Figure 2.8 and Figure 2.9,

we randomly select 330 peers in Twitter swarms and 330 peers in normal swarms. As

discussed earlier, the peers in Twitter swarms are better overlapped. We find that the peers

in Twitter swarms have significantly higher social indices than those of other peers. Based

on our trace data, we set a threshold e = 2, 000 to do the peer identification. We can see that

in Figure 2.9, 35% Twitter peers have social indices greater than 2, 000, which is consistent

with our observation in Section 5. It is also worth noting that the computation of the

peers’ social indices does not require the comparison between peer pairs. The complexity

of computing f̂(λ) is nlogn [27], which is efficiently enough to be applied in the real world

systems.

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 19

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Downloading completion time (seconds)

C
D

F

Social peers
Normal peers

Figure 2.10: Completion time

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Startup delay (seconds)

C
D

F

Social peers
Normal peers

Figure 2.11: Startup delay

2.6 Can Social Networks Accelerate Content Sharing?

In this section, we will discuss the performance gain of the peer incorporation based on social

relationship. A possible social network based protocol is proposed and evaluated through

preliminary Planet-lab experiment based on our trace.

2.6.1 Collaboration Among BT Peers: A Simple Solution

We assume that peers’ social relationships can be obtained by the trackers (either by the

interaction with social applications, such as Twitter, or by our proposed social index), and

the trackers will select the majority, but not all, of the peers’ social friends to build the

peers’ neighbor lists (with a maximum of 8 social friends out of 10 neighbors in our design).

The standard choking algorithm is designed by only changing who’s choked once every

10 seconds. This is processed by unchoking the 4 peers which it has the best downloading

rates. If a leecher has completed the downloading (became a seeder) it will use its uploading

rate rather than its downloading rate to decide whom to unchoke (note that the optimistic

unchoking is not discussed in here).

It is worth noting that for any leecher who wants to fetch data from other leechers, the

key requirement is that this leecher should be interested by others. This design guarantees

the instant rewards for every bit that the leechers uploaded (except for optimistic unchoking

cases), which is considered robust to peers’ possible selfish behaviors. However, it also

hinders decent peers or peers of close relations from more efficient cooperations; for example,

the friend peers in social networks. Therefore, we make a very simple modification to

leechers’ choking algorithm. In particular, the leechers will use the uploading rate to choke

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 20

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average downloading rate(Kbps)

C
D

F

Social peers
Normal peers

Figure 2.12: Downloading rate

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Downloading completion time (seconds)

C
D

F

Social peers
Normal peers

Figure 2.13: Downloading comple-
tion time (larger swarm)

their social friends (as a seeder in the standard BT protocol). In our design, the leechers

will unchoke the 3 peers among its social friends, with which it has the highest uploading

rates (in the past 10 seconds), and 1 other peer that has the highest uploading rate.

2.6.2 Evaluation

To evaluate the benefit of social network based content delivery, we carry out Planet-lab

experiments with a modified version of BT client. In particular, we use Planet-lab nodes to

run as peers. Considering the peer arrival/departure, most peers are joining the network at

once, i.e. the flash crowd scenario. For each torrent, there is one original seeder that will

always stay online (with 400Kbps uplink bandwidth). Our evaluation contains two parts:

First, to investigate the possible gain in an extreme case where all the peers are social

friends; Second, to further clarify this benefit in hybrid swarms with a small set of social

friends only.

In the first experiment, we investigate the sharing efficacy in two BT swarms Ssocial

and Snormal (both with 350 peers). Ssocial consists of social friends, and Snormal consists of

normal peers. The standard BT protocol is applied to the clients in Snormal, whereas our

modified choking algorithm is applied to the clients in Ssocial. The content size is 900MB

with the piece size of 1024kB. We used a local server in our campus network to run both the

seeder and tracker functions, and the seeder’s maximum uploading capacity is set to 10M.

There are 350 peers arriving over a very short period of 2 minutes. Note that the peers in

Snormal will leave the swarm as soon as they finish the downloading. On the other hand, the

social peers will continue to contribute their uploading if their friends are still downloading

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 21

the content6.

Figure 2.10 shows the download completion time of swarms Ssocial and Snormal. It is easy

to see that the social-relation-based enhancement significantly improves the peers’ download

completion time. In Ssocial, 70% peer will finish their downloading within 800 seconds, and

the maximum download completion time is 4, 000 seconds. In Snormal, only 40% peer can

finish their download within 4, 000 seconds and the maximum downloading completion time

reaches over 20, 000 seconds. Figure 2.11 further shows that the startup delay (the delay

till receiving the first data piece) is also greatly improved. In our new protocol, most peers

(90%) in Ssocial receive their first piece within 1 minute. Yet only 60% peers in Snormal

can achieve this speed with the conventional optimistic uncorking. We believe that it is

because the peers’ average downloading rate is greatly improved with the social-relation-

based enhancement. As shown in Figure 2.12, 30% peers in Ssocial can achieve a downloading

rate of 1M, while less than 10% peer can have such a high rate in Snormal.

We have also examined their performance in larger swarms, and a typical result for a

550-peer and 4-seeder systems is shown in Figure 2.13. Comparing to Figure 2.10, it is easy

to see that the peers in both swarms benefit from the increasing number of seeders. Since

the seeders are not selfish and act like ”common friends” to all the peers, when we keep

increasing the number of seeders in the swarm, the downloading performance of Ssocial and

Snormal will become closer. However our experiments shows that, the peers’ downloading

completion time in Ssocial remains much faster than Snormal.

2.6.3 Performance with a Hybrid System

The above experiment demonstrates the gain with entirely collaborative peers in BT swarms,

i.e., all peers are social friends in Ssocial. Before social networks become truly pervasively

and seamlessly integrated with BT, however, the real world swarms will still include normal

(selfish) peers, which may even dominate. It is thus necessary to see whether the peers can

still benefit in such a hybrid swarm with a small set of social friends only.

To this end, we use the trace from a real world Twitter swarm that consists of 350 peers.

Using our proposed social index, we find that most peers (280 peers) in this swarm have

very low (some of them have even near-zero) social indices whereas the rest of them have

6This is an reasonable assumption because peers’ online patterns are indeed better overlapped in Twitter
swarms.

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 22

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Downloading completion time (seconds)

C
D

F

Soical peers
in mixed swarm
Normal peers
in mixed swarm

Figure 2.14: Downloading comple-
tion time (mixed swarm)

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Startup delay (seconds)

C
D

F

Social peers
in mixed swarm
Normal Peers
inmixed swarm

Figure 2.15: Startup delay(mixed
swarm)

clear social friend properties (with social indices larger than 2, 000). The content size is

also 900MB with a default piece size of 1024kB. We test the downloading of this swarm

on PlanetLab with exactly the same peer configuration. We modified the client of 100

social peers with our proposed uploading choking algorithm and applied the standard BT

protocol to other peers. The social peers will use the uploading rate based choking algorithm

to communicate with their friends and use standard choking algorithm to communicate with

other peers. All the peer arrivals are within a relatively short period of less than 1.5 minutes.

The normal peers will leave the swarm as soon as they finished downloading. The social

peers however will continue uploading if their friends are still downloading the content.

Note that the tracker in this experiment is modified to achieve biased neighbor selection

according to peers’ social index (with a maximum of 8 social friends out of 10 neighbors in

total). The availability information of each peer is also obtained from our real world trace.

In Figure 2.14, we can see that the social collaboration of a small number of peers

can still lead to considerable benefit to peers’ downloading. 80% social peers will finish

their downloading around 6 minutes whereas less than 50% normal peers can finish the

downloading within 6 minutes. The startup delay in Figure 2.15 also indicates the benefit

of using social networks to accelerate BT, where most social peers can receive their first piece

within 15s. It is also worth noting that when we compare figure Figure 2.14, Figure 2.15

with Figure 2.10 and Figure 2.11, we can see that the deployment of social network based

enhancement will not harm the downloading performance of normal peers. In fact, all the

peers will more or less benefit from this enhancement. This is indeed consistent with earlier

discoveries on the benefit of clustering in the BT System [28].

CHAPTER 2. ACCELERATING P2P WITH SOCIAL RELATIONS 23

2.7 Summary

In this chapter, we for the first time examined the challenges and potentials of accelerating

peer-to-peer file sharing with Twitter social networks. Our trace analysis showed that the

BT system has enough potential to apply social network based enhancements. The Plan-

etLab experiments further indicated that the incorporation of social relations remarkably

accelerates the downloading time even in a hybrid system with a small set of socially ac-

tive peers only. Given the growing trend of spreading torrents through social networks,

we believe that there is a great opportunity to improve the data distribution efficiency in

peer-to-peer file sharing systems, which is worth further explorations.

Chapter 3

Resource Provisioning for Cloud

User Collaboration

Recent years have witnessed cloud computing as an efficient means for providing resources

as a form of utility. Different from the existing P2P networks, cloud computing is more

emphasized on providing an elastic yet stable service to the Internet users. Powered by

cloud computing, the industry leaders, such as Dropbox [30], enabled cloud-based file syn-

chronization systems. This new generation of service, beyond conventional client/server or

peer-to-peer file hosting with storage only, has attracted a vast number of Internet users. It

is however known that the synchronization delay of Dropbox-like systems is increasing with

their expansion, often beyond the accepted level for practical collaboration. In this chapter,

we present an initial measurement to understand the design and performance bottleneck of

the proprietary Dropbox system. Our measurement identifies the cloud servers/instances

utilized by Dropbox, revealing its hybrid design with both Amazon’s S3 (for storage) and

Amazon’s EC2 (for computation). The mix of bandwidth-intensive tasks (such as content

delivery) and computation-intensive tasks (such as compare hash values for the contents) in

Dropbox enables seamless collaboration and file synchronization among multiple users; yet

their interference, revealed in our experiments, creates a severe bottleneck that prolongs the

synchronization delay with virtual machines in the cloud, which has not seen in conventional

physical machines. We thus re-model the resource provisioning problem in the Dropbox-like

systems and present an interference-aware solution that smartly allocates the Dropbox tasks

to different cloud instances. Evaluation results show that our solution remarkably reduces

24

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION25

the synchronization delay for this new generation of file hosting service.

The rest of this chapter is organized as follows: In Section 3.1,we present the big picture

of this chapter. Section 3.2 discusses the Dropbox design and the challenges therein. After

that, we examine the interference between bandwidth-intensive and CPU-intensive tasks on

VM environment in Section 3.3. Section V presents the model design for resource provision-

ing and section VI further evaluates its performance. Some practical issues are discussed in

Section 3.6 and Section 3.7 summarizes the chapter.

3.1 Introduction

Over the past years, Dropbox has become one of the most popular online file hosting sys-

tems [30]. Powered by cloud computing, Dropbox not only provides reliable file storage but

also enables effective file synchronization and user collaboration. This new generation of

service, beyond conventional client/server or peer-to-peer file hosting with storage only, has

attracted a vast number of Internet users. As of May 2011, it has over 10 million users,

storing more than 100 billion files [31], with over 1 million files being added in every 5

minutes [32]. Such similar products products as Sugarsync [33] and SpiderOak [34] have

also seen their great success in the market.

It is however known that the synchronization delay of Dropbox-like systems is increasing

with their expansion, often beyond the accepted level for practical collaboration. Unfortu-

nately, despite its wide use, Dropbox remains a proprietary system with little known inside,

not to mentioning locating the root causes of the long delay.

In this chapter, we present an initial measurement to understand the design and perfor-

mance bottleneck of the Dropbox system. Our measurement identifies the cloud servers/instances

utilized by Dropbox, revealing that it not only relies on Amazon’s S3 for file storage, but also

uses Amazon’s EC2 instances to provide such key functions as synchronization and collabo-

ration. This hybrid design makes effective use of cloud resources for both computation (with

EC2) and storage (with S3), thus enabling seamless collaboration and file synchronization

among multiple users.

While the use of the high-performance internal interconnections between Amazon EC2

and S3 servers is seemingly highly efficient, we find that the mix of bandwidth-intensive tasks

(such as content delivery) and computation-intensive tasks (such as compare hash values

for the contents) in Dropbox indeed creates a severe bottleneck. As a comparison, our

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION26

experiments show that a direct use of the S3 service without computation is approximately

4 times faster than that of using Dropbox1. A closer looks shows that, given that machines

are all virtualized in the cloud, the bandwidth-intensive and the CPU-intensive tasks will

seriously affect the performance of each other if not handled carefully on a virtual machine

(VM). In particular, an increase of traffic load will greatly slow down the CPU benchmark of

EC2 instances. In the case of Dropbox, when the EC2 VMs are used to collect/deliever files

from/to the users during synchronization, such CPU-intensive operations as file encryption

and comparison will also be invoked; the great number of Dropbox users and files further

enlarge their mutual-interference, potentially leading to poor user experience.

Such interferences however do not exist in conventional physical machines (or to a much

lower degree). As such, existing resource provisioning solutions mainly focus on the opti-

mization of stand-alone workloads, without considering their interference in the virtualized

environment. To address this problem, we re-model the resource provisioning problem in the

Dropbox-like systems and present an interference-aware solution that smartly allocates the

user tasks to different instances. Our evaluation results show that our solution effectively

reduces the synchronization delay for this new generation of file hosting service.

3.2 Dropbox Design: Measurement and Analysis

3.2.1 Background

Since its initial release in September 2008, Dropbox has become one of the most popular

cloud storage providers on the Internet. It has 10 million users and stores more than 100

billion files as of May 2011 [31] with the increasing of 1 million files in every 5 minutes [32].

Besides simple file hosting, Dropbox enables multiple users to effectively share, edit, and

synchronize online files [54]. To this end, it splits each file into chunks of up to 4 megabytes

in size. When a user adds a file to his/her local Dropbox folder, the local Dropbox client

application will calculate the hash values of all the chunks of the file using the SHA-256

algorithm. The hash values are then sent to the server and compared to the hashes already

stored on the Dropbox servers. Only if the chunks do not exist in the server database will

the client is requested to upload them. Otherwise, the existing file on the server is linked to

1Note that Dropbox does not allow its users to directly connect to S3 services even when the users already
have their own S3 accounts.

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION27

������� ������	 ��
 ���

������� ��������
���

v-client.sjc.dropbox.com
199.47.216.174
199.47.216.172

… …

���� ������

��	��
����

���� ������ �� �� �!"#!"$ "� %&��'�($#&)#&$ *�! +,-.

�/�� 0#" %&��1�($#&)#& ���&#$$#$ 2&�3 ����41���! #&

�5�� 67! 8&�!9:# �!"#!"$ "� �"8#& �"# �9#!"$

�;�� <&� #$$ "8#
=�����#� �!"#!"$ �!�
$#!� 9" "� 6> $#&)#&$

������� ������	 ��
 �;�

6"�&�?# "8# �!"#!"$
2�& "8# =$#&$

Figure 3.1: Dropbox framework

that Dropbox account. With this calculation and comparison, Dropbox can save remarkable

traffic and storage costs, and provide faster services to its users, particularly when multiple

users are accessing the same file. The connections between the clients and the Dropbox

servers are secured with SSL. The uploaded/downloaded data are encrypted with AES-256

and then stored in the Amazon’s S3 storage platform that is part of the Amazon Web

Services (AWS).

Unfortunately, despite its wide use, the Dropbox is a proprietary system. Except for

the above well-known facts, the detailed Dropbox protocol as well as its framework design

remain unknown to the general public. Even such information as the total number of the

Dropbox servers is not available.

3.2.2 Dropbox Protocol Analysis

To understand the Dropbox protocol as well as the potentials and challenges with this new

generation of service, we have conducted a traffic measurement and analysis from the edge of

four networks, which are located in four different countries and two distinct continents. We

first captured the traffic between our 4 probing nodes in these networks and the Dropbox

servers. The traces show that all these servers are indeed Amazon’s EC2 instances with

domain names of format dl-clientN .dropbox.com, where the “N” is an integer. Since the

Dropbox clients can only connect to the cloud servers with this domain name, we carefully

scanned this domain with different N and find that DropBox is currently using 260 active

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION28

100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

Size of content (MB)

S
yn

ch
ro

ni
za

tio
n

de
la

y
(m

in
ut

es
)

Amazon S3
DropBox

Figure 3.2: Synchronization delay

EC2 instances to support their service. There are also 100 inactive EC2 instances for backup,

providing elastic services2.

We accordingly illustrate the Dropbox service framework in Figure 3.1, which consists

of three major components. The first is six load-balancers that are deployed by Drop-

box. The domain name is ”v-client.sjc.dropbox.com”, which includes six IP addresses:

199.47.216.172, 199.47.216.173, 199.47.216.174, 199.47.217.172, 199.47.217.173 and 199.47.217.174 ;

The second is 360 EC2 instances, which provide data uploading, downloading and file pro-

cessing functions, e.g., encryption and comparison. As mentioned, their domain names

range from dl-client1.dropbox.com to dl-client360.dropbox.com, where the first 260 servers

are active and the remaining 100 servers are temporally inactive for backup; The third is

S3 services that store the uploaded files.

Our measurement shows that Dropbox dose not allow its users to make direct communi-

cation to the S3 servers. Instead, it uses EC2 instances to bridge them. The following data

flow facilitates a sources client to upload a file in its dropbox folder:

First, the data source (a Dropbox user) will send out a DNS request to query the IP

address of domain ”v-client.sjc.dropbox.com”, the load-balancers of Dropbox. The DNS

server will reply a whole list of six load-balancers with this domain name. The source client

will randomly pick a load-balancer and send the related file information to the load-balancer,

including the file size, type, and etc. The load-balancer will then assign an EC2 server from

2These 100 servers have been registered on the DNS servers, but not yet in any type of service.

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION29

0 100 200 300 400 450
0

10

20

30

40

50

60

70

80

90

100

Traffic load (Mbps)

In
cr

ea
se

 in
 C

P
U

 b
en

ch
m

ar
k

 r
un

ni
ng

 ti
m

e
(p

er
ce

nt
ag

e)

Virtualized EC2
server (small)
Base line of
non−virtualized
server

Figure 3.3: Increasing of CPU benchmark on small instance

the server list (dl-client[1 to 260].dropbox.com) to the source client, and the sources client

will upload the file to the EC2 server3. When the files are successfully uploaded, the EC2

server will forward this file to the clients’ S3 folders; meanwhile, it will also delivery the file

to the destinations that need to be synchronized.

3.2.3 Overhead of Collaboration/Synchronization

The design of Dropbox makes effective use of cloud resources for both computation (with

EC2) and storage (with S3), enabling seamless collaboration and file synchronization among

multiple users. Such richer services, beyond conventional file hosting, are no doubt one of

the most important factors contributing to the success of Dropbox. On the other hand,

it is known that synchronization delay of Dropbox is increasing with its expansion, often

beyond the accepted level for practical collaboration. This has been a widely discussed

issue, particularly in Dropbox’s official forum4. A critical question is thus: whether this is

due to the inherent overhead of the Dropbox hybrid design?

To this end, we have compared the synchronization delay of Dropbox and that of an

experimental S3-based pure storage system. We deployed 2 servers in our campus with

Dropbox client installed. The system for comparison implements the basic functions for

3Note that the Dropbox will check if a identical copy of this file (or some identical chunks) was previously
uploaded by the users; if yes, the sources client will not need to upload this file again.

4http://forums.dropbox.com/topic.php?id=12859

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION30

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

Traffic load (Mbps)

In
cr

ea
se

 in
 C

P
U

 b
en

ch
m

ar
k

 r
un

ni
ng

 ti
m

e
(p

er
ce

nt
ag

e)

Virtualized EC2
server (large)
Base line of
non−virtualized
server

Figure 3.4: Increasing of CPU benchmark on large instance

file storage directly on S3, but has no such user collaboration functions as encryption and

file uploading history function in Dropbox. We used both the Dropbox client and our

S3-based system to synchronize different size of contents between these two servers and

the results are shown in Figure 3.2. We can see that if we directly apply the S3 service

for content synchronization, this delay is generally small, costing the user less than 20

minutes to synchronize a 500MB content via S3. This is largely determined by the harddrive

and network bottlenecks. On the contrary, Dropbox suffers from a significantly longer

synchronization delay, almost 4 times (80 minutes). Since both systems use S3 and the

clients are the same, the Dropbox’s extra delay (60 minutes) obviously comes from the

involvement of EC2 services, which we will closely examine in the next section.

3.3 Interferences Between Bandwidth-intensive and CPU-

intensive Tasks

To clarify the underlying reason of this high overhead, we carry out a real-world experiment

to examine this issue. In particular, we run the standard CPU benchmark on different EC2

instances, adjust the traffic load on this instance and check the time cost of running the

benchmark. To provide fair comparison, we also do the experiment on local servers (non-

virtualized servers) with similar/weaker hardware configurations as a baseline. Figure 3.3

shows a comparison between a EC2 small instance and our local server. In this experiment,

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION31

the EC2 small instance has 1.7 GB memory, 1 EC2 compute unit (1 virtual core with 1

EC2 compute unit), 160 GB instance storage with 32-bit platform. Our local server also

has similar hardware configuration that is comparable to the EC2 small instance. From this

figure, we can see that the traffic load on the non-virtualized server will only slightly increase

the running time of CPU benchmark, e.g., 250Mbps traffic load will only increase the running

time of CPU benchmark by 20%. However, for the virtualized EC2 small instance, 250Mbps

traffic load will double the running time of the CPU benchmark with very small standard

deviation (the detailed experiment data can be find in Table I). Moreover, we have also

tested this on EC2 large instances with multiple cores. In this experiment, the EC2 large

instance has 7.5 GB memory, 4 EC2 compute units (2 virtual cores with 2 EC2 compute

units each), 850 GB instance storage with 64-bit platform and very high I/O performance.

Our local server, on the other hand, has weaker hardware configuration than that in terms

of the CPU capacity. As shown in Figure 3.4, we can see that the traffic load on large

instances still brings remarkable overheads to the system. Although the result is better

than that of small instances, the traffic load will still largely slow down the running time of

CPU benchmark especially when comparing to the non-virtualized baseline.

To further validate this result, we also test the content encryption task on EC2 large

instances. We find that when there is no traffic load, the time to encrypt a 500M file is

around 4 minutes. Yet when we increase the traffic load to 625Mbps, the encrypt time will be

greatly increased to more than 15 minutes. Recalling the experimental results in Figure 3.2,

it is now easy to understand why running bandwidth-intensive and CPU-intensive tasks at

the same time can cause such a high overhead to the Dropbox system. Since these tasks

cannot be decoupled for many applications, it is thus important to see if we can mitigate

the overhead through a smart approach by revisiting the resource provisioning problem.

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION32

Table 3.1: CPU benchmark running time under different traffic loads on virtualized EC2
small instance

Load
Run1 Run2

Run3

Run4

Avg

Running time of CPU benchmark(ms)

1Mbps 37.17 36.71 36.75 36.64 36.82

5Mbps 36.92 37.06 37.07 37.07 37.03

10Mbps 37.41 37.51 37.36 37.42 37.42

22Mbps 38.21 38.49 38.75 38.30 38.44

34Mbps 39.03 39.13 39.06 39.13 39.09

40Mbps 40.33 40.59 40.39 40.20 40.38

55Mbps 41.28 41.22 41.06 41.67 41.31

75Mbps 43.20 43.21 43.14 43.69 43.31

140Mbps 49.00 48.84 50.06 48.13 49.01

190Mbps 56.28 56.26 55.60 55.96 56.02

230Mbps 71.50 70.67 69.06 73.01 71.06

3.4 Revisiting Instance Selection for Dropbox

Based on our experimental analysis, we can see that as the traffic load will greatly increase

the running time of CPU benchmark, virtualization may bring significant challenges to the

cloud-based applications when the bandwidth-intensive and CPU-intensive tasks cannot

be decoupled. With this observation, we revisit the resource provisioning problem in this

section.

3.4.1 Motivation

We will first clarify why we have to find a new model for the resource provisioning problem

in Dropbox. Figure 5.5 shows two examples. In both cases of this figure, the system have

two data sources s1, s2, two cloud instances c1, c2 and two destinations a1, a2 respectively.

The total delay of synchronizing contents from s to a though c can therefore be divided into

three parts: t1 shows the delay to upload the content from data source s to cloud instance c;

t2 shows the internal processing delay (mostly CPU-intensive tasks) in the cloud instance;

t3 shows the delay to distribute the content from cloud to the data destination.

Case#1 shows an example when the cost of internal processing delay t2 can be omitted.

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION33

S1 C1 C1@ A1

S2 C2 C2@ A2

S1 C1 C1@ A1

S2 C2 C2@ A2

t1 t3t2

case#1

case#2

Figure 3.5: An example for the resource provisioning

In this case, if the total traffic load is less than instance c1’s capacity, the optimize solution

is to use c1 to connect all data sources and destinations5. However, our measurement shows

that the traffic load will in fact greatly increase the running time of CPU benchmark.

Therefore, t2 will become very large and related with the traffic load in case#2. In this

case, if we use c1 to carry all the traffic load, t2 will be increased and unavoidably cause a

longer synchronization time. To mitigate such a problem, use c1 and c2 together will thus

become a more reasonable solution for a better synchronization delay (such an approach

may potentially increase the renting cost, this issue will be discussed later in Section VI).

Therefore, we need to design a new model to capture this feature and find a general solution

to address the problem.

3.4.2 Problem Formulation and Solution

We use C = {c1, c2, ..., cm} to denote the set of m cloud instances. Each instance ci ∈ C has

an uploading capacity u(ci) and a downloading capacity d(ci). As mentioned in last section,

the computation capacity of an instance may be affected by the traffic load. To this end, we

define a function fci(B,L) as the processing (including the content coding and comparison

time cost as mentioned in Section III) delay inside an instance ci to capture the impact of

traffic load, where B is the traffic bandwidth and L is the total load6.

5Without loss of generality, we assume that renting price of c1 is cheaper than that of c2.
6Note that the function fc in our model is the general form of the processing delay for all types of

instances. In the evaluation part, we will give different types of instance different fc function to better fit

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION34

The price of renting an instance c is denoted by wins(c), and the traffic price is denoted

by wtra. For the Dropbox users, we use S = {s1, s2, ..., sn} to refer the set of n data

sources (the original place of the contents). Each data source sj is trying to synchronize

a set of given files with the total size of Fj to a set of destinations denoted by Aj , where

Aj = {aj1, a
j
2, ..., a

j
q}. We use b(x, y) to refer to the maximum end-to-end bandwidth between

x and y. For example, b(sj , ci) denotes the maximum bandwidth between data source sj

and cloud instance ci.

We next begin with the simplest problem where there is only one data source sj and

this data source only wants to synchronize the files of total size Fj with one destination a
j
1.

We aim to reduce the total synchronization delay Tj , which can be calculated as follows for

a given instance c:

Tj(sj, c, {a
j
1}) =

Fj

b(sj , c)
+ fc(b(sj , c), Fj) +

Fj

b(c, aj1)
(3.1)

s.t. b(sj , c) ≤ min[u(sj), d(c)] (3.2)

b(c, aj1) ≤ min[u(c), d(aj1)] (3.3)

Therefore we can further get the synchronization delay when there are multiple destinations

as follows:

Tj(sj, c, A
j) =

Fj

b(sj, c)
+ fc(b(sj , c), Fj)

+ max
a
j
k
∈Aj

{
Fj

b(c, ajk)
}

(3.4)

Define M as a load assignment matrix, where each component M(s, c) is a binary value

denoting whether the load of data source s is assigned to the cloud instance c (1: s is

assigned to c; 0: otherwise). The synchronization delay of the case with multiple sources

can thus be computed as:

our the measurement results. Therefore, this function is used to capture the actual computing capacity for
the EC2 instances.

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION35

Tj(sj , c, A
j) =

Fj

b(sj, c)
+ fc

(n∑

j=1

b(sj , c) ·M(sj, c),

n∑

j=1

Fj ·M(sj, c)

)
+ max

a
j
k
∈Aj

Fj

b(c, ajk)

(3.5)

The resource provisioning problem can thus be formulated as to minimize the average syn-

chronization delay (Tsync) among all data sources as well as the cost of renting cloud in-

stances (Costrent) respectively:

Tsync =

n∑

j=1

m∑

i=1

M(sj, ci) · Tj(sj , ci, A
j)

n
(3.6)

Costrent =
m∑

i=1

(
wins(ci) · I[

∑n
j=1

M(sj ,ci)>0]

+

n∑

j=1

wtra · Fj ·
∣∣Aj

∣∣ ·M(sj, ci)

) (3.7)

s.t. b(sj , ci) ≤ u(sj) (3.8)

b(ci, a
j
k) ≤ d(ajk) (3.9)

n∑

j=1

b(sj, ci) ·M(sj , ci) ≤ d(ci) (3.10)

n∑

j=1

M(sj, ci) ·
∑

a
j
k
∈Aj

b(ci, a
j
k) ≤ u(ci) (3.11)

m∑

i=1

M(sj, ci) = 1 (3.12)

where I[·] is the indicator function. Costrent actually consists of two parts: the instance

renting cost and the traffic cost. Eqs. 3.8 to 3.11 are the bandwidth constraints. Eq. 3.12

asks that each source can only be assigned to one instance.

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION36

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

Average content size (MB)

A
ve

ra
g

e
 s

yn
ch

ro
n

iz
a

tio
n

 d
e

la
y

a
cr

o
ss

 u
se

rs
(m

in
u

te
s)

Interference
aware provistioning
Cost aware provisioning

Figure 3.6: Comparison of average synchronization delay

By exhaustively searching along all the possible combinations in M , an optimal solution

can be achieved. However, actual usefulness of the optimal solution is somehow quite limited

considering the real-world implementation of Dropbox. Therefore we transform Eq. 3.7 into

a constraint and assume that the total cost of instance renting and traffic should be less

than or equal to a given budget g. We then focus on the design of an efficient algorithm to

provide dynamic provisioning for the Dropbox system. In particular, we first find an initial

M between data sources and cloud instances by omitting the processing delay inside a cloud

instance. After that, we minimize the largest processing delay among cloud instances, i.e.,

we locate the bottleneck instance with the highest processing delay and iteratively switch

user demands to other instances with lower load to improve the overall performance. The

detailed algorithm is shown in Fig. 3.10.

As aforementioned, we omit the processing delay inside instances while computing the

initial M (line 1). For each data source and the its corresponding data destinations, we

find a cloud instance that has the maximum uploading speed and also make sure that this

instance still has enough free bandwidth capacity to serve the demand from the data source

and to all its destinations. Moreover, the total cost of renting cloud instance (computed by

Eq. 7) should be less or equal to the given budget g. We then start to iteratively improve the

initial M (line 3-37). Specifically, in each iteration, we find the instance with the maximum

processing delay, and try to switch a data source to another instance so as to minimize

the synchronization delay (line 5-27). If the data source is successfully switched to another

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION37

instance and the renting cost after the switch is still less or equal to g, we update T ′
sync∗

and M ′∗, and repeat this process until T ′
sync∗ can not be further reduced. To alleviate the

possibility of being stuck in a local optimum, we also randomly change some assignments in

M and redo the computation for a Threshold number of times (line 31-35). And at last, the

M∗, which is the one that has been found to yield a local minimum average synchronization

delay, will be returned (line 38).

3.5 Performance Evaluation

We will now present the trace-base evaluation of the proposed algorithm. We simulate a

Dropbox environment using MATLAB with 350 user clients that consist of 30 data sources

and 320 destinations. Each data source is related to 1 to 15 destinations which the user

wants to synchronize/collaborate with. Given this synchronization demands, we also add 25

EC2 instances, where 6 of them are large instances, 8 of them are median instances and the

rests are all small instances. Note that Dropbox is using 260 EC2 servers to serve all their

users across the globe. Therefore, the capacity of 25 EC2 instances is enough to explore the

system performance for our evaluation. The bandwidth capacity of the instance is as follows:

large instances: 1000Mbps; median instances: 600Mbps, and small instances: 400Mbps. We

also obtain the throughput information between user and cloud instance from our real-world

measurements [55]. Considering the scale of our simulation, the maximum budget of renting

these instances is set to 60 USD. We set function fc to be linear functions that learnt from

our measurement, where fsmall = (0.43 ∗ F + 0.56 ∗ b), fmedian = (0.21 ∗ F + 0.44 ∗ b)

flarge = (0.15 ∗ F + 0.21 ∗ b) (F is the content size in MB and b is the total rate of traffic

load in Mbps). Note that finding a general/suitable function for all types of instances is still

a challenging job that needs more detailed measurements and investigations. Although the

existing f functions will not bias our discussion, we are still working on a method to better

capture this feature in our future studies.

In the evaluation, we are aiming to clarify whether our proposed algorithm can achieve

better synchronization delay; for ease of presentation, we call it interference-aware provi-

sioning algorithm. We will discuss its performance in different cases when the users are

holding different size of contents. Figure 3.6 shows the synchronization delay of our algo-

rithm and the cost-aware provisioning approach[99]. We can see that considering the task

interference in the provisioning can achieve better synchronization delay comparing to the

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION38

10 20 30 40 50 60 70 80 90 100
0

10%

20%

30%

40%

50%

60%

70%

Average content size (MB)

R
e

d
u

ci
n

g
 o

f
a

ve
ra

g
e

sy

n
ch

ro
n

iz
a

tio
n

 d
e

la
y(

p
e

rc
e

n
ta

g
e

)

Figure 3.7: Reducing of average synchronization delay

cost aware algorithms. In particular, when the average content size is 50MB, the average

synchronization delay of our algorithm is around 8 minutes whereas the average synchro-

nization delay of the cost aware-algorithm can only achieve 11.8 minutes. This means that

the users can generally save 4 minutes while synchronizing their contents. This improve-

ment is significant, especially when considering the average content size of 50MB. Note that

the synchronization delay is not monotonously increasing in this figure. This is because the

algorithm may sometimes decide to use some high performance(large) instances to serve

larger contents. This will result in a better synchronization delay yet will also introduce

extra rending cost (this renting cost will be discussed later in this section). Figure 3.7 fur-

ther clarified this performance gain. We can see that when the average content size is small,

our algorithm can remarkably accelerate the synchronization speed. In particular, it can

perform up to 65% better than that of the cost-aware algorithm. It is also worth noting that

the improvement will become smaller when the users are holding larger contents. This is

because the larger contents will need more time to be delivered through the network giving

the same networking capacity. This will reduce the partition of the interference overheads

and makes it less important to affect the overall performance. However, not to mention the

increasing capacity of the cloud systems, the real-world synchronization applications, such

as Dropbox, are trying to minimize the uploading content size via different approaches [56].

This is another reason of why the interference overhead becomes the root causes of the long

synchronization delay for these cloud-based systems.

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION39

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Average content size (MB)

T
o

ta
l s

yn
ch

ro
n

iz
a

tio
n

 d
e

la
y

a
cr

o
ss

 u
se

rs
(m

in
u

te
s)

Interference
aware provistioning
Cost aware provistioning

Figure 3.8: Comparison of total synchronization delay(total delay for Dropbox to fulfill all
the user demands)

Figure 3.8 presents the total delay that the Dropbox servers used to synchronize all the

contents from the users. We can again observe that the user demands can be fulfilled faster

if we smartly consider the interference overheads. In particular, when the average content

size is around 50MB. The cost aware-algorithm will need more than 25 minutes to finish all

the synchronization requests. However, our algorithm only needs less than 13 minutes to

fulfill all the user demands. It is also worth noting that this performance gain also comes

with higher renting cost. As shown in Figure 3.9, we can see that the renting cost of our

algorithm is slightly higher than that of the cost-aware algorithm. Note that this cost is

calculated based on EC2’s pricing model for individual users, the real cost of enterprise

customers, such as Dropbox, is much lower than that.

3.6 Further Discussions

This chapter takes first steps towards the impacts of virtualization cost for the real-world

file hosting systems. There are still many open issues that can be further explored.

Better understanding of Dropbox-like file hosting protocols: Cloud based stor-

age and file hosting systems have attracted more and more attenuations recently. Existing

studies have proposed many solutions and frameworks to explore a better service/business

model for such a system. However, the internal design of cloud-based storage/file hosting

system, such as Dropbox, still remains unclear due to their proprietary nature. Although

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION40

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Average content size (MB)

R
e

n
tin

g
 c

o
st

 (
U

S
D

)

Interference
aware provistioning
Cost aware provistioning

Figure 3.9: Comparison of renting cost

our work has explored some underlying features through a measurement based analysis,

more comprehensive studies are needed especially from the internal angle of these systems.

Better model to capture the future of virtualization cost for cloud-based

systems: Virtualization cost is a well-studied issue, especially in the field of operating

system. However, it is still not clear about why networking traffic will rise such a high

virtualization cost/overheads to the cloud-based systems. Although our existing model is

designed to capture some basic features through measurements, a more precise model is

needed from the system perspective considering the internal design of the hypervisors (also

known as virtual machine managers) including Xen, KVM and VMware.

Better provisioning algorithms: The virtualization cost cannot be ignored due to

its high overheads on the cloud-based systems. This new challenge calls for a smart resource

provision approaches to balance the bandwidth-intensive and CPU-intensive tasks on the

VMs. Although our study has proposed a practical solution to mitigate the problem for

Dropbox, a better and more general approach is needed to address the problem for some

other cloud based systems such as cloud-based VOD and online gaming applications.

3.7 Summary

This chapter investigated the impact of virtualization for Dropbox-like cloud file hosting

systems. Through real world measurements and experiments, we analyzed the workflow

of Dropbox and identified the potential bottlenecks therein. We also developed practical

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION41

solutions to mitigate the interference between data transfer and computation in virtual ma-

chines. Our work represents an initial attempt toward this direction; more in-depth studies

are expected to further examine the interferences as well as other potential bottlenecks in

Dropbox-like systems. We believe that a better understanding on virtualization cost will

also facilitate the design of many other cloud-based systems with both computation- and

bandwidth-intensive tasks.

CHAPTER 3. RESOURCE PROVISIONING FOR CLOUD USER COLLABORATION42

Algorithm InterferenceAwareProvisioning()

1: Compute initial M ; Compute Tsync by Eq. 6;
2: T ∗

sync ← Tsync; M
∗ ←M ; Count← 0

3: while true,
4: T ′∗

sync ← Tsync; M
′∗ ←M ;

5: while true,
6: Find c∗ ∈ C with highest processing delay;
7: T ′

sync ← Tsync; M
′ ←M ;

8: for sj with M(sj, c
∗) > 0,

9: for ci with ci 6= c∗,
10: M(sj, ci)← 1; M(sj , c

∗)← 0;
11: Compute Costrent by Eq. 7;
12: if Costrent > g,
13: goto 20;
14: end if

15: Compute Tsync by Eq. 6;
16: if Tsync < T ′

sync,

17: T ′
sync ← Tsync; M

′ ←M ;

18: end if

19: M(sj, ci)← 0; M(sj , c
∗)← 1;

20: end for

21: end for

22: if T ′
sync < T ′∗

sync,

23: T ′∗
sync ← T ′

sync; M
′∗ ←M ′;

24: else

25: break;
26: end if ;
27: end while;
28: if T ′∗

sync < T ∗
sync,

29: T ∗
sync ← T ′∗

sync; M
∗ ←M ′∗;

30: end if

31: Count← Count+ 1;
32: if Count > Threshold,
33: break;
34: end if

35: Randomly change some assignments in M ;
36: Compute Tsync by Eq. 6;
37: end while

38: return M∗;

Figure 3.10: Algorithm to compute the load assignment matrix.

Chapter 4

Latency Minimization in

Cloud-Based User Interaction

Besides file storage and synchronization systems, the distributed interactive applications

(DIAs), such as online gaming have also attracted a vast number of users over the past

decades. It is however known that the deployment of DIA systems mostly comes with

peculiar hardware/software requirements on the users’ consoles. Recently, such industrial

pioneers as Gaikai and Onlive have offered a new generation of cloud-based distributed inter-

active applications (CDIAs), which shift the necessary computing loads to cloud platforms

and largely relieve the pressure on the user clients.

In this chapter, we take a first step towards understanding the CDIA framework and

highlight its design challenges. Our packet-level measurement reveals the inside structure

as well as the operations of real CDIA systems and identifies the critical role of the cloud

proxies. While this design makes effective use of cloud resources to mitigate the clients’ work-

loads, it can also significantly increase the interaction latency among clients if not carefully

handled. We present a novel model that accommodates cloud proxies and develop optimal

solutions. We further find that the computation-intensive tasks (e.g., game rendering) and

bandwidth-intensive tasks (e.g., streaming the game screen to the clients) together create

a severe bottleneck in CDIA. Our experiment indicates that when the cloud proxies are

virtual machines (VMs) in the cloud, the computation-intensive and bandwidth-intensive

tasks will seriously interfere with each other if not handled carefully. We accordingly en-

hance our model and present an interference-aware solution that not only smartly allocates

43

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION44

the workloads but also dynamically assigns the capacities across VMs.

The rest of this chapter is organized as follows: In Section 4.1, we present the big

picture of this chapter. Based on the measurement of Section 4.2, we examine the problem

of network latency in CDIA in Section 4.3 and propose the optimal assignment model in

Section 4.4. In Section 4.5, we further explore the processing latency at the cloud proxies

and enhance our model to consider such an overhead in Section 4.6. Our solution is then

extensively evaluated in Section 4.7. Section 4.8 further summarizes the chapter.

4.1 Introduction

Distributed interactive applications (DIAs) have become increasingly popular in recent

years. By providing diverse interactions among the users, such applications as massive

multiplayer online gaming, live messaging, and shared whiteboard have attracted a vast

number of users over the Internet. Taking online gaming as an example, it is reported

in [57] that nowadays each US household on average owns at least one dedicated game con-

sole or PC for game playing, where 62% of them have played interactive games with others.

Yet, to support superior interactions, the DIAs often have peculiar demands on the users’

consoles. The specialized consoles with high-performance hardware unavoidably increase

users’ cost and greatly limit the penetration of DIAs to ubiquitous end users.

To realize true play-as-you-go, industrial pioneers like Gaikai [58] and Onlive [59] have

suggested a new generation of DIAs based on cloud computing platforms. Such a cloud-based

distributed interactive application (CDIA) effectively shifts the hardware/software require-

ments as well as the necessary computing loads to cloud proxies, and thus have attracted

increasing attention form both service providers and end users1.

Today, CIDA remains in its infancy with plenty of unknown issues. In this chapter, we

take a first step towards understanding the CDIA framework and highlight its design chal-

lenges. Our packet-level measurement reveals the inside structure as well as the operations

of real CDIA systems and identifies the critical role of the cloud proxies. While this design

makes effective use of cloud resources to mitigate the clients’ workloads, it also significantly

1For example, Gaikai has over 10 million monthly active users. Sony Computer Entertainment (SCE)
just acquired Gaikai for 380 million USD on July 2, 2012, putting CDIA into its strategic plan for online
interactive gaming.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION45

increases the interaction latency among clients if not carefully handled. First, the deploy-

ment of cloud proxies adds extra communication hops between clients. Our experiments

show that the network latency will be tripled if we do not carefully assign the clients to

the right cloud proxies and servers. We therefore develop a basic model to capture the

maximum interaction latency and obtain the optimal solution in the CDIA system.

Second, our measurements further indicate that the processing latency at the cloud proxy

is surprisingly high. While the use of the high-performance cloud platforms is expected to be

highly efficient, we find that the computation-intensive tasks (e.g., game rendering) and the

bandwidth-intensive tasks (e.g., streaming the game screen to the clients) together create

a severe bottleneck in CDIAs. Our experiment indicates that when the cloud proxies are

virtual machines (VMs) in the cloud, the computation-intensive and bandwidth-intensive

tasks will seriously interfere with each other if not handled carefully. An increase of traffic

load will greatly slow down the CPU benchmark of cloud VMs. In the case of CDIA,

when the cloud proxies are used to stream the game screen to the users, the computation-

intensive operations, such as game processing and message forwarding, will also be invoked

and prolong the interaction latency. The large number of CDIA users further aggravates

this issue with mutual-interference, leading to poor user experiences.

Such interference however does not exist in conventional physical machines or to a much

lower degree. As such, the existing load assignment solutions in the DIA system have mainly

focused on the optimization of stand-alone workloads, without considering their interference

in the VM environment. To address this problem, we further enhance our model and

present an interference-aware solution that not only smartly allocates the workloads but

also dynamically assigns the capacities across VMs.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION46

ABCDEBFGH IEJKL

MNOPQ PRSQOPT UVWP SQRXQYP

Z[\ IEJKL

UVWP SYNPR]
OPYNP^PT_

`TVSaNRb cTQd_ NReQ

fgDh

IEBDiHg

jkCD

gDhlDhg

[EJKL mhJno

AJkLpqkEkiIDhg

r s t

u

v

w

x

yz{|r} y{~{�z � ���{ ��� �{�� �{��{�z z� ��s ���

yz{|s} �{~��{� z�{ ������ ���{ �~�{�z z� z�{ ��{�
yz{|t} �{~��{� z�{ �� ~��z �� �~��� |����{� z� z�{ ��{�
yz{|u} y{~{�z ��{ ���{~���z �� �� z�{ �~��� |����

yz{|x} ���{ �����~{ ��z���z{� ��� �{�� ���|~�� z� {����{�
yz{|v} �����{� �z�{�� z�{ ���{ ���{{� z� z�{ ��{�
yz{|w} ������� ��{� �|{��z�����������z��� z� �z�{� ��{��

Figure 4.1: Basic Framework of Gaikai

4.2 Cloud-Based DIA: Background and Framework

Cloud-based distributed interactive applications (CDIAs) allow multiple participants at dif-

ferent locations to interact with each other. Different from existing DIAs, CDIAs utilize

the powerful and elastic service capacity offered by cloud computing to mitigate the hard-

ware/software requirements on the user consoles. For example, the cloud-based gaming

applications, such as Gaikai and Onlive, deploy the actual game clients/consoles on cloud

platforms and only stream the game screen/interactions to end users.

To understand how CDIAs work in detail, we focus on Gaikai as a case study. Since 2011,

it has emerged as one of the most popular cloud-based online gaming systems with over 100

million subscribers. It not only provides free PC game demos but also powers high quality

gaming experiences onto smartphones, tablets and Internet TVs [74]. We have conducted

traffic measurement and analysis from the edge of four networks, which are located in four

different countries (United States, Canada, China and Japan) in two distinct continents. We

monitor Gaikai’s online gaming service with the PCs from these four networks and capture

their traffic to the Gaikai servers. After that, we use Wireshark [75] to extract packet-level

details.

From analyzing the captured traffic, we illustrate Gaikai’s basic framework/protocol in

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION47

Figure 4.1. We can see that there are two major components on the server side of Gaikai

(marked as grey boxes in the figure). The first part is Amazon EC2 [76] load-balancers2, and

the second part is the Limelight-based game proxy servers [77]. Both Amazon and Limelight

are leading cloud service providers based on Xen virtualization [78]. Gaikai applies both

platforms to accomplish different functionalities and utilizes their widely geo-distributed

instances to push these functions closer to the users.

When a user selects a game on Gaikai (Step1 in Figure 4.1), an EC2 virtual machine

(VM) will first deliver the Gaikai game client to the user (in Step2). After that, it forwards

the IP addresses of the Limelight game proxies that are ready to run the selected games

to the users (in Step3). The user will then use one game proxy to run the game (in

Step4). To ensure smooth game playing, this selected game proxy uses a packet train

measurement [79] to estimate the available bandwidth to the users3. After that, the game

proxy starts to run the game and the game screen will be streamed back to the user via UDP

(in Step5 and Step6). For multiplayer online games, these game proxies will also forward

user operations to the game servers (mostly deployed by the game developers) and send

the related information/reactions back to the users (in Step7). It is easy to see that such a

CDIA system can remarkably relieve the hardware/software requirements on the user side,

given that now the games are running on the cloud platforms. This change enables users

to play hard-core games over much less powerful devices, e.g., over smartphone, tablets, or

even digital TVs, as long as they are multimedia- and network-ready.

We have also measured other CDIA platforms, and have found that Gaikai’s framework is

representative, which is not surprising given it as a very natural extension to the conventional

DIA with cloud assistance. Another representative is Onlive, whose framework is very

similar to Gaikai, except that Onlive relies on own private cloud to provide services. Our

later findings are thus generally applicable to both.

2Based on our measurement, they also have other functions beside load-balancing. We call them load-

balancers because Gaikai marks them with ”LB” in their domain names.
3This is identified by our packet-level analysis, which shows that the game proxy sends back-to-back

packets with empty payload to test the available bandwidth. Note that the game proxy starts the game only
when the available bandwidth can well-support an FPS (frames per second) around 60 for video streaming.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION48

c� c� c�

l� l�

s� s�

c c¡

l l�

s s�

¢£¤¥¦§¨¤©ª£ «§¤¬ ©£ ¢®

¢£¤¥¦§¨¤©ª£ «§¤¬ ©£ ¯¢®

Figure 4.2: Path of client interaction

4.3 Network Latency in CDIA

The CDIA framework offers great opportunities for both users and service providers. It

however also introduces new challenges. Figure 4.2 illustrates the length of the interaction

path in both conventional DIA and CDIA frameworks, where L is the set of clients, S is the

set of servers, and C is the set of cloud-based proxies. It is easy to see that the path between

two clients in CDIA is longer than that of DIA. For example, there are 3 hops between clients

1 and 4 in DIA (dotted lines), but are 5 hops in CDIA (solid lines). Intuitively, this would

increase the user interactive latency in CDIA.

To better understand the extra network latency due to the cloud proxies, we carry out

a real-word experiment from Planet-lab. We use a server in our campus to emulate the

game server in CDIA4. We select 588 Planet-lab nodes (the maximum number of nodes

that we can access) to run as CDIA clients and emulate the CDIA framework by using the

server and these clients to connect Gaikai’s cloud proxies. We have found 28 cloud proxies

during the measurement of Gaikai5, and therefore use the IP addresses of these proxies in

this experiment. We first measure the RTTs between 588 Planet-lab clients and 28 Gaikai

cloud proxies and then the RTTs between the server and these cloud proxies. The sum of

these two latencies can be used to calculate the client-server RTTs in this CDIA system.

To provide a fair comparison, we also measure the direct RTTs between the server and the

4We have observed similar results over 50 servers that are located in different places.
5The total number of Gaikai’s cloud proxy is unknown to the general public. These ”sampled” cloud

proxies are only used to estimate the network latency in such a system.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION49

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT (ms)

C
D

F

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Client−server RTT
of CDIA (best case)
Client−server RTT
of CDIA (worst case)
Client−server RTT
of DIA

Figure 4.3: Time cost between user and server (DIA v.s. CDIA)

Planet-lab clients as the baseline (the case of conventional DIA).

Figure 4.3 compares the client-server RTT in both DIA and CDIA. We can see that

most (over 80%) users in DIA have quite low interaction latency (less than 60 ms), while

the average latency is much worse if we put them into CDIA, as shown in Figure 4.4. The

worst case in Figure 4.4 shows 90% users have an interaction latency over 200ms, which

is hardly acceptable for smooth interaction6. It is however known that adding extra nodes

in any overlay network is not necessarily leading to longer path length given that triangle

inequality does not hold in the Internet [80]. Hence, there is indeed space to reduce the

latency beyond naive proxy deployment7.

6Note that this experiment only considers the latency issues due to the network communication. The the
processing latency on the virtual machines will be further considered and discussed in Section VI.

7The 588 PlanetLab nodes are applied in both DIA and CDIA experiments to provide fair comparison.
Since some real-world interactive applications, such as Starcraft 2, may divide their users into regions, we
also investigated the case using a subset of PlanetLab nodes from one region. The results remain consistent
to Figure 4.3.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION50

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

Rank of clients (sorted by RTT)

R
T

T
 (

m
s)

Average client−server
RTT in CDIA

Figure 4.4: Average user-server latency in CDIA

Algorithm 1 OptimalLoadAssignment()

1: while IsConnected(L,G) == true,
2: path∗ = LongestPath(G);
3: Remove(path∗, G);
4: end while

5: Recover(path∗, G);
6: Return any viable A from G;

Figure 4.5: Algorithm to find the optimal assignment between clients, cloud proxies and
servers

4.4 Latency Optimization in CDIA: Basic Model and Solu-

tion

Given the importance of latency for interaction, there have been significant studies on

latency minimization for conventional DIAs, mostly focusing on latency directly between

client pairs [67] [68] [70]. Unfortunately, the existence of cloud proxies prevents them from

being used in the CDIAs. We now revisit the latency modeling problem in this new context.

4.4.1 The Basic CDIA Latency Problem

To ensure responsive interactions, previous studies have suggested that reducing the average

latency is not enough, because any fast users would suffer when they interact with long

latency users [64] [81]. Our objective is thus to minimize the maximum latency between all

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION51

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

Experiment index

La
te

nc
y

(m
s)

Average latency of
user action (Gaikai)
RTT between user
and cloud proxy

Running on
local console

Processing time
on cloud proxy

Figure 4.6: Average latency of user’s action

client pairs that are bridged by cloud proxies. We focus on network latency here, and will

address processing latency in the next two sections.

We use S = {s1, s2, ..., sm} to denote the set of m servers and L = {l1, l2, ..., ln} to denote

the set of n clients. Let C = {c1, c2, ..., co} be the set of o cloud proxies. Each client in L will

be assigned to a cloud proxy and a server in order to send operations and receive updates

from other clients. An assignment A is a mapping L→ C × S, where for each client l ∈ L,

we use cA(l) ∈ C to denote the assigned cloud proxy of client l and sA(l) ∈ S to denote the

assigned server of client l.

For two clients li and lj to interact, the communication should go through their assigned

cloud proxies and servers in CDIA. Specifically, if li issues an operation to lj , the following

steps have to be taken so that lj can see the effect of this operation: First, li sends the

operation to its assigned cloud proxy cA(li). cA(li) will then forward this operation to the

server sA(li) that is also assigned to li; After that, if lj is assigned to a different server

sA(lj), server sA(li) should forward the operation to server sA(lj); Then sA(lj) executes

the operation and delivers the resultant state update to lj’s cloud proxy cA(lj); Finally,

cA(lj) will generate the game screen and stream the display to client lj . Let D(u, v) be

the path latency between two nodes that are not directly connected and d(u, v) be the link

latency between two neighbor nodes. To be consistent with the existing DIA models [70],

we assume that D(u, v) = D(v, u) and d(u, v) = d(v, u). The latency between client li to its

server sA(li) can be calculated as:

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION52

D
(
li, sA(li)

)
= d

(
li, cA(li)

)
+ d

(
cA(li), sA(li)

)
(4.1)

We can therefore obtain the total interaction latency between li and lj as follows:

D(li, lj) = D
(
li, sA(li)

)
+D

(
lj , sA(lj)

)

+d
(
sA(li), sA(lj)

)
· I[

sA(li)6=sA(lj)
] (4.2)

where d
(
sA(li), sA(lj)

)
denotes the latency between server sA(li) and sA(lj), and I[·] indi-

cates whether li and lj are assigned to different servers (1: yes; 0: no). Given the interaction

latency between li and lj , our objective is to find an assignment A to minimize U(A), the

maximum interaction latency among all client pairs:

minimize U(A) = max
li,lj∈L

{
D(li, lj)

}
(4.3)

4.4.2 An Optimal Solution

To solve the assignment problem, we convert it into a directed acyclic graph (DAG) G(V,E)

with virtual source x and sink y. This is because the longest path (the slowest interaction

path) can be found with worst-case running time of O(|V | + |E|) [82] in a DAG G(V,E).

As illustrated in Figure 4.7(a) (which shows an example with 2 clients, 1 server and 2

cloud proxies), each path from x to y refers to one possible path between two clients in

L. We first find the path with highest latency. For example, in Figure 4.7(a), the longest

paths are shown in the dark lines (there will be 2 longest paths in each round since they are

symmetric). We then try to remove the edges between servers (dotted lines in Figure 4.7(a))

only when all client pairs are still connected after this removal. This step is repeated until

no edge can be further removed from the graph. At last, we find A, the assignment of cloud

proxy and server for each client in the remaining graph so that all the client pairs can be

connected. The optimal algorithm is given in Algorithm 4.5 .This can be easily proved by

contradiction as follows:

Proof: Suppose A∗ is another assignment in which the maximum interaction latency

smaller than A. Since A∗ and A can both be used to connect all client pairs in L, we can

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION53

c°l°

c±

c°

c±l±

c° l°

c±

c°

c± l±

s°

s°

s°

s°

s°

s°

s°

s°

yx

c°l°

c±

c°

c±l±

c° l°

c±

c°

c± l±

s°

s°s°

s°

yx

(a) (b)

s°

s°

s°

s°

Figure 4.7: Finding Optimal Assignment in converted DAG

get that the longest path in A can be replaced by a shorter path (say path∗) that exists in

A∗, and A can still make all clients in L connected after this replacement. Since path∗ is

shorter than the longest path in A, path∗ also exist (is not removed) in A’s residual graph

(the graph after the longest path removal at Algorithm 4.5 step 4). This implies that there

are two pathes (the longest path and path∗) in A’s residual graph connecting identical client

pairs with different latencies. This leads to a contradiction because the longest path in A

can be safely removed without affecting the connections between clients.

Hence, the optimal of Algrithm 4.5 is proven. �

Although the maximum interaction latency is bounded by the longest path, the optimal

assignment A is not unique in Algorithm 1. This allows us to further improve other metrics,

for example, the lease cost for cloud proxies. Note that the proposed optimal model assumes

that the costs for all the cloud proxies are homogeneous. While this is partly valid for CDIAs

that rely on their own cloud platform, e.g., Onlive, it is not the case for those using public

clouds (e.g., Amazon EC2) with varying costs depending on such factors as location, time,

and capacities.

4.5 Processing Latency on Cloud Proxy

4.5.1 Measurement of Response Time

So far, we have considered the optimization of network latency. However, the cloud proxies

in CDIA will also bring extra processing latency to the interaction. We now closely examine

this latency and identify its impact.

To focus exactly on the interaction between clients and cloud proxies, we select a single

player game where a player (client) does not need to communicate with the game server

and other players. The player simply sends the operations to the cloud proxy and the proxy

then streams the responding game screen back to the player. Since the RTT between the

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION54

player and the cloud proxy can be directly measured, we only need to obtain the response

time8, which, after subtracting the RTT, gives the processing latency at the cloud proxy.

The detail of this experiment is as follows.

We first select an action button in the game The Witcher 2: Assassins of Kings; in

particular, the “map” button9. We click this button and start to record the game screen

at 100 FPS (frames per second). This sampling rate already exceeds the normal game play

which is around 60 to 70 FPS. We then check the video file frame-by-frame until we find the

frame where the map is displayed. We run this experiment multiple times under different

RTTs. These RTTs are controlled by the traffic shaping tool TC [83]. To better understand

the overhead at the cloud proxy, we also record the response time on a local game console.

We use the same game on Gaikai and the local console to provide a fair comparison.

As we can see from Figure 4.6, the local console general needs 80 ms to open the map

for the players with very small standard deviation. Note that the RTT is zero in this case

because the game is locally rendered. When we run this game remotely on Gaikai, the

response time elevates to more than 300 ms. The overhead (in terms of the processing

latency) on the Gaikai proxy is thus approximately 220 ms. To avoid measurement bias,

we also test actions that make different changes to the in game world, for example, small

character movements. The results remain consistent with Figure 4.6.

It is surprising to see that the cloud proxies can introduce such a high processing latency

in CDIA. This is unlikely due only to video encoding because many CDIA service providers

have claimed that their video encoding latency is indeed very small within 10 ms. It is

worth noting that the cloud proxy on Gaikai is different from a local game console. It is

a virtual machine (VM) running both computation-intensive tasks (for example, rendering

the game) and bandwidth-intensive tasks (for example, streaming the game screen to the

players) at the same time. Since these tasks cannot be decoupled into different VMs, this

will unavoidably cause the problem of task interference as we have discussed in Chapter 3.

It is easy to see that the CDIA cloud proxies are indeed in the same situation as these

EC2 instances in Figure 3.3. The traffic load can significantly slow down the game running

and unavoidably leads to a high processing latency. Yet, such a problem is rarely seen on

8The response time is the latency that the player waits until the result of her/his operations is returned.
For example, if the player clicks the button “option” at time ti and the option menu displays at time tj , the
response time is calculated as tj − ti.

9Note that the map information is directly obtained from the game disk.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION55

the non-virtualized local game consoles or cloud proxies (e.g., Onlive’s), or to a much lower

degree.

4.6 Latency Optimization in CDIA: An Enhanced Model

It is thus important to see if we can mitigate this overhead through an enhanced load

assignment approach. To this end, we further extend our model to consider the impact of

traffic load on different cloud proxies.

It is worth noting that CDIA offers elastic service capacity at cloud proxies. The capac-

ities of the cloud proxies can be dynamically adjusted to meet user demands. Therefore, we

use set P to denote the capacities of cloud proxies where P = {p1, p2, ..., po}; pi ∈ P refers to

the amount of resource that is assigned to cloud proxy ci (bandwidth capacity in this case).

Based on our measurement, we find that the NPV (Net Present Value) function [84] can be

borrowed to capture the relationship between virtualization latency (processing latency that

due to the traffic load on VMs) and traffic load10, we therefore compute the virtualization

latency of cloud ci as:

r(pi) =
a

bpi−qA(ci)
(4.4)

where a indicates the latency when the cloud proxy is fully loaded (with no remaining

bandwidth). Parameter b controls the skewness of the relationship between load and latency

where b ∈ (1,+∞). Note that different VMs may have different a and b. For example, in

Figure 3.3, a is around 105 and b is around 1.04.

Given a load assignment A and a user li, we use pA(li) to denote the resource that has

been assigned to cloud proxy cA(li). For a given set of servers, S = {s1, s2, ..., sm} and clients

l = {l1, l2, ..., ln}, the problem becomes how to use a set of cloud proxies C = {c1, c2, ..., co}

to connect these clients and servers, with load assignment A and resource assignment P , to

minimize the maximum interaction latency between all client pairs:

10This function has been widely used to quantify the relationship between cash and price/cost, which
resembles our case when we try to purchase more cloud resources to reduce the virtualization cost on the
VMs.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION56

minimize U(A,P) = Max
li,lj∈L

{
D(li, lj)

+r(pA(li)) + r(pA(lj))
} (4.5)

s.t. ∀i = 1, 2, ..., o, qA(ci) ≤ pi (4.6)
o∑

i=1

pi ∗ Cost(ci) ≤ K (4.7)

where K refers to the total budget, which we assume can at least serve all the clients in the

system.

It is easy to see that the virtualization latency makes the problem harder. If we assign

client li to cA(li), it will not only assign traffic load to cA(li) but also affect the performance of

other clients who have also been assigned to this cloud proxy. Assuming that the capacities

of the cloud proxies are given, this client assignment problem can therefore be transformed

into a 0−1 Multiple Knapsack problem with a non-linear objective function, which is known

to be NP-hard [85].

x

l²

l³

c³'

c³'

r(p´)

r(p´)

c³''

c³''

s²

s²

…

Figure 4.8: Transform G into G∗
A

By exhaustively searching along all the possible combinations of A and P , the optimal

solution can be achieved. However, the practical usefulness of this search is limited consid-

ering the real-time user demands in CDIA systems. We thus propose a bi-level heuristic,

which divides the optimization problem into two stages: load assignment and resource as-

signment. In the load assignment stage, we assume that all the cloud proxies are fully loaded

(the virtualization latency is therefore equal to a in Equation 4.4) and find the optimal load

assignment A by Algorithm 1. After that, we construct a subgraph GA based on the existing

graph G and assignment A. As shown in Figure 4.8, we then split the node ci to two virtual

nodes (c′i and c′′i), and use their link weight to refer the virtualization cost on ci. We use

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION57

Algorithm 3 ResourceProvisioning()

1: Get G∗
A from A;

2: R← K − C;
3: while true,
4: path∗ = LongestPath(G∗

A);
5: Get ci, cj from path∗;
6: if R ≥ max(Cost(ci), Cost(cj)),

7: if
r(pi)−r(pi+1)

Cost(ci)
≥

r(pj)−r(pj+1)
Cost(cj)

,

8: R← R− Cost(ci);
9: pi ← pi + 1;
10: else

11: R← R− Cost(cj);
12: pj ← pj + 1;
13: else if R ≥ min(Cost(ci), Cost(cj)),
14: if Cost(ci) ≤ Cost(cj),
15: w← i;
16: else

17: w← j;
18: R← R− Cost(cw);
19: p(cw)← p(cw) + 1;
20: end if

21: else

22: break;
23: end if

24: end while

Figure 4.9: Algorithm to compute the resource provisioning.

G∗
A to denote the resulting graph. We further apply a greedy algorithm to find the resource

assignment P in G∗
A. As shown in Algorithm 3, this greedy algorithm iteratively assign

resource to the cloud proxies on the longest path. The algorithm stops when the remaining

budget is not enough. In the next section, we will show that this bi-level heuristic achieves

near-optimal performance in practical settings.

4.7 Performance Evaluation

We now evaluate the performance of our solution via extensive trace-based simulations in

MATLAB. The network latency (measured in Section IV) and the processing delay (mea-

sured in Section VI) will both serve as the inputs of our evaluation. We first examine the

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION58

0 10 20 30 40 50 60
100

200

300

400

500

600

700

800

of CDIA clients

M
a

xi
m

a
l i

n
te

ra
ct

io
n

 la
te

n
cy

 (
m

s)

Base line of the worst case
Optimal client assignment

Lease cost
5.356 USD/hour

Lease cost
5.356 USD/hour

Lease cost
4.004 USD/hour

Lease cost
2.754 USD/hour

Lease cost
1.462 USD/hour

Figure 4.10: Optimal client assignment only consider the networking latency

5 10 15 20 25
400

420

440

460

480

500

520

540

560

580

600

Total budget (USD per hour)

M
a

xi
m

a
l i

n
te

ra
ct

io
n

 la
te

n
cy

 (
m

s)

Interference−aware
client assignment
Optimal baseline
Not aware of interference

of servers: 5
of cloud
proxies: 5
of clients: 20
a = 105; b = 1.04

Figure 4.11: Interference-aware
client assignment

300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interaction latency between client pairs (ms)

C
D

F

Budget = 5 USD/hour
Budget = 10 USD/hour	
Budget = 15 USD/hour

of servers: 5
of cloud proxies: 5
of clients: 20
a = 105; b = 1.04

Figure 4.12: Interaction latency
across client pairs (different bud-
get)

performance of our optimal client assignment when there is no task interference11. After

that, we investigate the performance of the interference-aware client assignment algorithm

in the virtualized environment.

We start with a CDIA system that consists of 20 clients, 5 cloud proxies and 5 servers.

The renting cost of cloud proxies are referenced from the instance price list of Amazon’s

On Demand instances [76]. Figure 4.10 presents the performance of our optimal client

assignment when there is no task interference (the processing latency is a default value of

80 ms at the cloud proxies). It is easy to see that the smart client assignment greatly reduces

11This will be the case when the system is deployed on non-virtualized cloud platforms.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION59

200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interaction latency between client pairs (ms)

C
D

F

10 clients
20 clients
30 clients

of servers: 5
of cloud proxies: 5
Total budget = 15
a = 105; b = 1.04

Figure 4.13: Interaction latency
across client pairs (different # of
clients)

80 90 100 110 120 130
435

440

445

450

455

460

465

470

Parameter a in eq.5

M
a

xi
m

a
l i

n
te

ra
ct

io
n

 la
te

n
cy

 (
m

s)

Interaction latency
b = 1.04
of servers: 5
of clients: 20
Total budget: 15 USD/hour

Figure 4.14: Adjusting parameter
a (VM’s maximum processing la-
tency)

the interaction latency. Without optimization, the maximum client interaction latency can

be as high as 700 ms. Our approach, on the other hand, can reduce the maximum latency

to less than 500 ms. It is also worth noting that the renting price is linearly related to the

client population. This indicates a good scalability of our approach.

It is not surprising to see that the optimal client assignment can achieve such a significant

gain when there is no task interference. Figure 4.11 further explores the case when the

optimal assignment can hardly be archived in the task interference environment. We can

see that the optimization of task interference is very critical for CDIAs. The maximum

interaction latency can be larger than 580 ms if we only focus on the optimization of network

latency. Fortunately, our interference-aware algorithm can achieve a near-optimal (with the

difference within 5 ms) latency that greatly reduces the interaction latency12. It is worth

noting that the interaction latency can be further reduced and become closer to the optimal

results when we have more budget to purchase more capacities at the cloud proxies.

Figure 4.12 takes a closer look at the interaction latency between individual clients. We

can see that all clients can benefit from the total budget increase. To be more specific, when

the budget is equal to 5 USD/hour, less than 30% clients can have an interaction latency less

than 400 ms. If we increase the budget to 15 USD/hour, more than 95% clients can interact

with each other with a latency below 400 ms. The difference between the fastest and the

slowest clients are also quite small, around 150 ms. Figure 4.13 further shows the cases with

different number of CDIA clients. We can see that for a given budget, our algorithm scales

12The optimal base-line is obtained by brute-force searching.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION60

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
370

380

390

400

410

420

430

440

450

460

Parameter b in eq.5

M
a

xi
m

a
l i

n
te

ra
ct

io
n

 la
te

n
cy

 (
m

s)

Interaction latency
a = 105
of servers: 5
of cloud proxies: 5
of clients: 20
Total Budget: 15 USD/hour

Figure 4.15: Adjusting parameter
b (skewness of the relationship)

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Client pair latency (ms)

C
D

F

200 clients
588 clients

of servers: 5
of cloud proxies: 5
Total budget : 100
a = 105; b = 1.04

Figure 4.16: Interaction latency
across 200 and 588 clients

well with an increasing number of clients. Note that the total budget also bounds the total

capacity of the cloud proxies. We thus cannot add more clients in Figure 4.13.

To understand the virtualization latency on different types of VMs, we investigate the

case with different parameter inputs in Equation 5. Figure 4.14 presents the case when the

maximum processing latency (parameter a for the cloud proxies) is changed from 85 ms to

125 ms. We can see that the interaction latency increases linearly with a. On the other

hand, Figure 4.15 presents the case when the virtualization latency and traffic load have

more skewed relationships13. Based on these two figures, we can find that a good VM should

have a small a and a large b. The maximum processing latency should be small when the

VM is fully loaded (small a). In other words, adding idle resources on the VM should be

able to significantly reduce such a processing latency (large b).

Figure 4.16 further presents the CDF of the interaction latency across 200 random

selected clients and all the 588 clients14 in our measurement, respectively. It is easy to see

that 80% clients can achieve the interaction latency within 300 ms. The interaction latencies

between most (70%) client pairs are between 200 ms and 250 ms. It is also worth noting

that the total budget in this case is relatively high with 100 USD per hour. This is because

we are using the pricing list of Amazon’s On Demand instances. Choosing other types of

platforms/instances, such as the Reserved instance may further reduce this cost.

13Note that different a, b pairs in these two figures can be used to present different cloud instances. For
example, we use a = 105 and b = 1.04 to capture the features of EC2 large instances in our simulation.

14All clients that we have used in our measurement in Section IV.

CHAPTER 4. LATENCYMINIMIZATION IN CLOUD-BASEDUSER INTERACTION61

Algorithm 2 AccommodateLeaseCost()

1: Sort C by ascendant order of Cost(ci);
2: for i = 1 to n,
3: cA(li)← c1;
4: sA(li)← s1;
5: end for

6: i← 1;
7: while i <= n,
8: for j = 1 to i− 1,
9: if PathExisted(x, li, cA(li), sA(li),

sA(lj), cA(lj), lj , y,G) == false,
10: break;
11: end if

12: end for

13: if j == i− 1,
14: i← i+ 1;
15: else

16: if Next(sA(li), S)! = null,
17: sA(li)← Next(sA(li), S);
18: else if Next(cA(li), C)! = null,
19: cA(li)← Next(cA(li), C);
20: sA(li)← s1;
21: else

22: i← i− 1;
23: end if

24: end if

25: end while

26: Return A;

Figure 4.17: Algorithm to accommodate the lease cost

4.8 Summary

In this chapter, we examined the framework design and latency optimization in Cloud-based

Distributed Interactive Applications (CDIAs) through real system measurement and anal-

ysis. Our study identified the unique features as well as the fundamental design challenges

in the CDIA systems. The experimental results further confirmed that users’ interaction

latency can be largely reduced when we carefully consider the task interference on the cloud

VMs.

Chapter 5

Customer-Provided Resources for

Cloud Computing

Till now we have discussed the content delivery as well as the user collaboration on both

P2P and cloud computing applications. In this chapter, we aim to further bridge these

seemly disjoint technologies together. In particular, we will investigate the potentials and

challenges towards enabling customer-provided resources for cloud computing. Given that

these local resources are highly heterogeneous and dynamic, we closely examine two critical

challenges in this new context: (1) How can high service availability be ensured out of the

dynamic resources? and (2) How can the customers be motivated to contribute or utilize

such resources? We present an optimal resource provisioning algorithm that ensures service

availability with minimized lease and migration costs. We also demonstrate a distributed

market for potential sellers to flexibly and adaptively determine their resource prices through

a repeated seller competition game.

We then present SpotCloud, a real working system that seamlessly integrates the cus-

tomers’ local resources into the cloud platform, enabling them to sell, buy, and utilize these

resources. We discuss the implementation of SpotCloud and evaluate its performance. Our

data trace analysis confirms it as a scalable and less expensive complement to the pure

datacenter-based cloud.

The rest of this chapter is organized as follows: In Section 5.1, present the big picture

of this chapter. Section 5.2 discuss the framework design as well as the challenges. After

that, we examine the resource provisioning problem and the pricing problem in Section

62

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 63

5.3 and 5.4, respectively. Section 5.5 presents the SpotCloud design and its performance

result. We further investigate the cost and availability issues in the system in 5.6. Finally,

Section 5.7 summarizes the chapter.

5.1 Introduction

Recent advances in cloud computing offers an efficient means for providing computing as

a form of utility. Such enterprise cloud providers as Amazon, Google, and Microsoft have

enjoyed significant increase of their customer populations, enforcing them to constantly

upgrade and expand their datacenter infrastructures1. Yet, the existing enterprise cloud

capacity is still a fraction of the need when we consider the fast growth of the customers’

demand. Recent studies suggest that the user experience of enterprise clouds, such as

Amazon EC2, is indeed decreasing2, not to mention its devastating service outage in April,

2011.

On the other hand, the customers’ local computing resources are still rapidly evolving.

Today’s advanced consumer CPUs, like the Intel’s Core i7, is no slower than many of the

server CPUs a few years ago; this CPU is even faster than most of the medium or even

some large instances in today’s enterprise cloud. The aggregated computation, storage,

and network resources available at cloud customers are indeed more than that at a typical

datacenter. In other words, the cloud as an elusive platform is not simply due to the

abundant resources available at a remote location; yet meeting resource demand is a key

factor to the cost of maintaining datacenters and providing cloud services, and the resulting

service prices often hinder customers from migrating to the cloud3.

There have been recent studies on smart service partitioning that keeps certain tasks

local [86]. We however envision a more general solution that seamlessly integrates the

customers’ local resources into the cloud platform, enabling them to sell, buy, and utilize

these resources, thus offering a more scalable and less expensive complement to the pure

datacenter-based cloud.

1http://blog.rightscale.com/2009/10/05/amazon-usage-estimates/
2http://www.thebuzzmedia.com/amazon-ec2-performance-drops-too-many-users/

https://www.cloudkick.com/blog/2010/jan/12/visual-ec2-latency/
3To put things into perspective, leasing the same amount of computation and storage resources from

Amazon EC2 as that of an ordinary PC now costs $910 per year (with Reserved large Instances), which is
not cheaper than purchasing the PC.

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 64

In this chapter, we take a first step towards the feasibility and the system design of

enabling customer-provided resources for cloud computing. Given that these local resources

are highly heterogeneous and dynamic, we closely examine two critical challenges in this new

context: (1) How can high service availability be ensured out of the dynamic resources? and

(2) How can the customers be motivated to contribute or utilize such resources? We present

an optimal resource provisioning algorithm that ensures service availability with minimized

lease and migration costs. We also demonstrate a distributed market for potential sellers to

flexibly and adaptively determine their resource prices through a repeated seller competition

game.

We then present SpotCloud4, a real working system that enables customers to seam-

lessly contribute their resources to the overall cloud. Since its deployment in November

2010, SpotCloud has attracted customers worldwide. In this chapter, we overview the Spot-

Cloud design and, through trace-analysis, demonstrate it as a promising complement to

the datacenter-based cloud. In particular, it offers cloud service with flexible and relatively

lower cost and yet comparable performance to state-of-the-art enterprise clouds. We further

examine the lease and migration costs in the presence of dynamic resource availability in

the real deployment, and highlight the trade-offs therein.

µ¶·¸¹º¹»¼¸ ½¾¿ÀÁ

Â¶Á ÁÂ·Â½¸¶·¸¹¼

ÃÀ¼·¿Ä¸¹ ¾¿½Â¾

¹¸¼¿À¹½¸¼

ÃÀ¼·¿Ä¸¹

º¹¿Å»Á¸Á ½¾¿ÀÁ

ÆÀÇ

¼¸¾¾

ÆÀÇ

Figure 5.1: Overview of Framework

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 65

5.2 Enabling Customer Resources for Cloud: An Overview

We now offer an overview of our framework that enables customer-provided resources in

the cloud. We will then address the key design issues in this framework, and present a

practical system implementation, namely Enomaly’s SpotCloud, along with its performance

measurement.

In Figure 5.1, we outline the relation between the cloud providers and their customers.

The solid lines illustrate the business model for the existing cloud, with the customers

being pure resource-buyers. As such, their local resources have been largely ignored or

exclusively used for each individual’s local tasks, which are known to be ineffective. Aiming

at mitigating this gap between centralized datacenter resources and the distributed local

resources, our framework enables individual cloud customers to contribute their otherwise

exclusively owned (and idled) resources to the cloud and utilize others’ resource if needed,

as illustrated by the dotted lines in the figure.

It is worth emphasizing that we view customer-provided resources a complement to

the datacenter resources, not a replacement. Given that the design and optimization of

datacenter-based cloud have been extensively studied, in this chapter, we will be focusing

on the effective utilization of customers’ local resources and their seamless integration into

the overall cloud platform. While exploring distributed local resources have been closely

examined in such other contexts as grid computing [108] and peer-to-peer [109], the state-

of-the-art cloud environment poses a series of new challenges for our proposed solution. In

particular, to enable enterprise-level services, we have to ensure high service availability

when integrating customers’ resources. Different from datacenters, there is no guarantee

that a particular customer’s local resources will be always online for cloud computing. Yet,

through trace-analysis and an adaptive algorithm design, we demonstrate that highly stable

service availability that is comparable with state-of-the-art datacenters is possible with the

distributed and dynamic resources.

Another critical challenge is to offer enough incentive for a customer to contribute her/his

resources or utilize others’. The problem is further complicated given that the customers are

highly heterogeneous, making the coarse-grained pricing model used by the existing cloud

providers hardly working. We address this problem through a distributed resource market

that allows the customers to decide the quality, quantity, and pricing of their local resources

4http://www.spotcloud.com/

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 66

to be contributed. We demonstrate the effectiveness of the market with a repeated com-

petition game design. This is further confirmed through trace-analysis from the SpotCloud

system, in which we also address a series of practical issues toward a real-world deployment.

5.3 Provisioning across Dynamic Customer-Provided Resources

We start from examining the problem of resource provisioning across dynamic customer-

provided resources.

5.3.1 The Resource Provisioning Problem

We consider a generic model of N resource providers (instead of one giant provider as in the

conventional cloud, i.e., the datacenter). Without loss of generality, we assume each provider

only offers one Virtual Machine (VM) for the market, denoted by S = {s1, s2, · · · , sN}. The

resource capacity of VM si includes computation power psi , memory size msi , disk size dsi ,

and network bandwidth bsi . Given that such a VM is available on the cloud platform only

when the provider does not plan to use it locally, we use Asi(t) to denote the availability

of VM si at time t; that is, Asi(t) = 1 if VM si is available, and otherwise Asi(t) = 0. In

practice, such information can be obtained by asking the provider to indicate when it offers

the VM to the cloud platform.

For a customer that expects to lease resources from the cloud platform, her/his demands

include the aggregate computation power, the aggregate memory size, the aggregate disk

size, and the aggregate bandwidth, denoted by P , M , D and B, respectively. Such demands

are also accompanied by a request period [tstart, tend] indicated by the customer.

Define a provisioning schedule as W = {(x1, t1, l1), (x2, t2, l2), · · · , (xk, tk, lk)} (tstart ≤

t1 ≤ t2 ≤ · · · ≤ tk ≤ tend), where each tuple (xi, ti, li) (xi ∈ S and li > 0 for i = 1, 2, · · · , k)

means that, starting at time ti, VM xi is provisioned for period li. The problem is thus

to find a proper provisioning schedule given the demands, subjecting to the following con-

straints:

(1) VM Availability Constraint:

∀(xi, ti, li) ∈W , ∀t ∈ [ti, ti + li], Axi
(t) = 1;

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 67

(2) VM Utilization Constraint:

∀(xi, ti, li) ∈W , if ∃(xj , tj, lj) ∈W and xi = xj,

then [ti, ti + li] ∩ [tj , tj + lj] = ∅;

(3) Resource Requirement Constraint:

∀t ∈ [tstart, tend],

k∑

i=1

pxi
· I[

t∈[ti,ti+li]
] ≥ P ,

k∑

i=1

mxi
· I[

t∈[ti,ti+li]
] ≥M ,

k∑

i=1

dxi
· I[

t∈[ti,ti+li]
] ≥ D,

k∑

i=1

bxi
· I[

t∈[ti,ti+li]
] ≥ B;

where I[·] is the indicator function. The above constraints ensure the resource availability

during the lease period, a VM can be leased only in one schedule at any time, and the

resource demands are fulfilled at any time instance within the lease period, respectively.

Let csi be the lease cost of VM si per unit time. Our objective is thus to minimize a

cost function f(W), which involves two parts in our scenario:

Lease Cost :

k∑

i=1

cxi
· li, which is the total cost for leasing the VM in W .

Migration Cost :

tend−1∑

t=tstart

k∑

i=1

I[
ti+li=t

], which is the cost to migrate the service/data to a

new VM should the old VM becomes unavailable. Given the dynamic resource availability,

migration across different providers in the lease period is necessary in our system to ensure

the demands are fulfilled within the whole lease period. Accordingly, it is calculated as the

number of VMs that becomes unavailable before time tend.

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 68

It is worth noting that, for a fully cooperative non-profit system, the costs here can

simply be the provider’s net costs for offering the services. Yet if the providers are profit-

motivated, which is natural for a commercial system, the costs depend on the provider’s

expected resource prices, which we will examine in the next section.

5.3.2 Optimal Provisioning with Dynamic Resources

The lease cost is a major concern in any cloud platform. Yet given the dynamically available

resources across providers, the migration cost is not negligible in our system, either. The

availability requirement also introduces another dimension. As such, the solution space for

the provisioning problem becomes much larger. We now present the algorithm for optimizing

a user request with a general cost function f(W)5. We then present a series of heuristics for

specific types of costs, further minimizing the search space for online dynamic provisioning.

Our algorithm is summarized in Fig. 5.2. We first sort the VMs in S in ascending order

of the lease cost per unit resource6 (referred to as rule 1). For the VMs with the same lease

cost per unit resource, we further order them in descending order on their first unavailable

times after tstart (referred to as rule 2). This allows the VMs that are mostly available

and with cheaper resources being explored first and near-optimal solutions can then be

quickly found. With such solutions, we can further cut other search branches with equal

or higher costs (line 6-11) and greatly reduce the search space for an optimal solution. We

also check whether current VM sk is available at time (line 13-17). If not, we will skip the

current one and go on to the next. Every time a VM sk is selected (line 18-20), it will

be considered leased at time and Req[time] will be reduced by the VM’s resource capacity

(psk ,msk , dsk , bsk), accordingly. After that, the algorithm checks if any other VM needs to

be leased (line 21-24). If not, time will be increased by one unit and k will be reset to 0.

In addition, similar to line 1, we sort the VMs in S based on rules 1-2, but then move the

VMs used at previous time unit ahead to the beginning (referred to as rule 3). This allows

the VMs already being used are first explored, thus reducing the migration costs. When the

search finishes, the optimal provisioning schedule W will be generated and returned (line

31-32).

Depending on the application, lease cost and migration cost might have remarkably

5As we have discussed in Section 5.3.1, it will be g(Lease cost, Migration cost) when we consider the
lease cost and the migration cost at the same time.

6For multiple types of resources, the most stringent one can be used for sorting.

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 69

different contributions. We can then further speed up the online algorithm by assuming one

of them is dominating. In particular, given a cost of interest, we can first sort the VMs in

S by the rule (rule 1 or rule 2) corresponding to this cost. For the VMs tied with the rule

for the cost of interest, we further sort them by the rule for the other cost. Then we pick

the first k available VMs that can fulfill the demands at tstart. When a picked VM becomes

unavailable, we pick a number of available but not yet used VMs from the beginning of S

to fill up the demand gap until tend. The effectiveness of the speedup algorithm as well as

the tradeoffs between lease and migration costs will be evaluated in Section VII.

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 70

Algorithm OptimalProvisioningSchedule()
1: Sort S with ascendant order based on rules 1-2 ;
2: for t ∈ [tstart, tend], Req[t]← (P,M,D,B); end for

3: Set Stack empty; k ← 0; time← tstart;
4: Cost← 0; Costmin ←∞; Set Stack∗ empty;
5: while true,
6: if time > tend or Cost ≥ Costmin,
7: if Cost < Costmin,
8: Costmin ← Cost; Stack∗ ← Stack;
9: end if

10: goto 26;
11: end if

12: k ← k + 1;
13: if k > |S|,
14: goto 26;
15: else if Ask

(time) = 0,
16: continue;
17: end if

18: Push {k, time, S} in Stack;
19: Req[time]← Req[time]− (psk ,msk

, dsk , bsk);
20: Update Cost according to f(W);
21: if Req[time] ≤ (0, 0, 0, 0),
22: time← time+ 1; k ← 0;
23: Sort S with ascendant order based on rules 1-3 ;
24: end if

25: continue;

26: if Stack is empty, break;
27: else

28: Pop Stack; Update Req and Cost accordingly;
29: end if

30: end while;
31: Generate optimal provisioning schedule W by Stack∗;
32: return W ;

Figure 5.2: Algorithm to compute the optimal provisioning schedule.

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 71

5.4 Pricing with Heterogeneous Resource Providers

In most of the existing enterprise cloud platforms, fixed pricing remains the most popular

strategy. Amazon EC2, as a typical example, advertises $0.02 − 2.62 per hour for each of

its On Demand Virtual Machine instances, depending on their types. Recently, dynamic

pricing also been introduced, e.g., the “spot pricing” in EC2 [110] that aims at better

utilizing the vacant capacities in the datacenters. It is known that the spot price will be

dynamically adjusted to matching the supply and demand, though the full details have not

been disclosed.

Since the potential resource providers in SpotCloud are heterogeneous and are not forced

to contribute their resources, a working business model is necessary to offer them enough

incentive. Therefore, instead of setting a standardized pricing rule for unit resource, we

suggest a distributed market that allows the potential providers (i.e., sellers) to decide the

quality, quantity, and pricing of their local resources to be contributed, in which:

(1) A seller will advertise the configuration (amount and availability) of its local resources

as well as the asking price; such information will be seen by other sellers and buyers;

(2) Both resource sellers and buyers are rational: given the advertised prices, a buyer

will try to minimize the cost for resource provisioning, and a seller will try to maximize the

profit;

(3) After seeing others’ advertised information, a seller will adjust her/his own configu-

ration and price to maximize her/his potential profit.

The intuition behind this design is that the sellers have better knowledge of their own

resources in terms of both running costs and expected values. If they cannot find a good way

to gain profits, any fixed or dynamic pricing rule will fail to give them the incentive to join

cloud markets. This business model can be formulated as a variation of a Repeated Seller

Competition game [111]. It can be shown that a stationary outcome equilibrium exists in

this game. Let S̄ be the stationary outcome equilibrium set across N sellers with unit price

e (where the sellers charge the same price per unit resource in each round). The sellers’

profit is as follows:

π(S̄) =

(e− γi) ·
|H|[h≤e]

N
− F if

|H|[h≤e])

N
< c

(e− γi) · c− F else

(5.1)

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 72

ÈÉÊ ËÌÍÌÎÏÐ

ÑË ÒÐÏÌÓÔÐ

ÕÖÖ ×ÓÔÐÏ
ØÙÚÛÜÛÝÞ
ßàáßâàÝ

Øãä åâà
äÜßæçàáßæÙ
èéæàáßÛâÜÝ

êáÝßâÚæà
ëæàìÛíæ
ãâàßáî

ïðñòóôõ öôñ÷ø

ùúûüýþú ÿûñüýøúû

ÿôó��ñûò �ñû

ù�ñ�öôñ÷ø

�æÜ
�ÛÜ��
��� ���áàæ

É�Ô�� ËÌÍÌÎÏ�ÏÍÓ

�ññ	ôú
�� ïð	ýðú

ÕÒÒÔ�ÍÓ ËÌÍÌÎÏ�ÏÍÓ

ù�ñ�öôñ÷ø �óûú�

��ÏÐ �ÍÓÏÐ�ÌÒÏ

ãáàßÜæàÝ

ëæîîæàÝ

!��æàÝ

������� �

Figure 5.3: Software module design

where H = {h1, h2, ...} refers to the set of buyers’ demands. |H|[h≤e] denotes the number

of demands with reservation prices less or equal to e. Here, the reservation price can be

practically set to the price should an enterprise cloud provider (e.g., Amazon EC2) ask for

the same service. F is a fixed cost (e.g., the deployment overhead) when sellers configure

their local resources for cloud service.

Let δ be the discount factor [112] in this repeated game. This discount factor denotes the

sellers’ patience (close to 0: not patient; close to 1: highly patient). Since δ is a probability,

we have1 + δ2 + δ3 + ... = 1
1−δ

. The expected profit (over infinitely many rounds) at this

stationary equilibrium then becomes 1
1−δ

π(S̄). Hence, as long as 1
1−δ

π(S̄) > 0, a seller will

prefer to join the market instead of being inactive. In particular, from Eq.(1), we can see

large demands will motivate more sellers.

A more detailed description of the game model as well as the derivations can be found in

[113]. Its effectiveness has also been confirmed by our trace-analysis with concrete examples,

as shown in the next two sections.

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 73

"#$%
&'%()*%$+
,#%$-*

./)*

Create VM0102 34

Authentication
failed

Seller:
creation

confirmed

Buyer: logout

Display VM
information

B
u

yer:
create V

M

F
ailed to

create V
M

In
iti

al
iz

at
io

n
Fa

ile
d

Seller: V
M re

ady

to use

Authentication
successful

5)6-7)
34

Remove failed

B
uyer:

rem
ove V

M

Buyer: login

8$99$*:

Seller: initialization

confirm
ed

4-*$%-;$*:

Billing initialized

B
illing stopped

Seller: removal
confirmed

Figure 5.4: Finite-state machine in SpotCloud

5.5 SpotCloud: A Practical System Implementation

So far we have laid the theoretical foundations for enabling customer-provided resource in the

cloud. We now present a real-world system implementation, namely Enomaly’s SpotCloud,

which further addresses a series of practical challenges. As shown in Figure 5.3, SpotCloud

consists of three key modules: Cloud management, Account management, and User inter-

face. The cloud management module supports a variety of common hypervisors (also known

as virtual machine managers) including Xen, KVM and VMware as well as a highly fault

tolerant and distributed Extensible Messaging and Presence Protocol (XMPP) with built-in

failover capabilities. It also works with our resource provisioning algorithm for VM pro-

vision and migration. The account management, built on the Google App engine, allows

the customers to create Google accounts for the SpotCloud marketplace. This marketplace

is provided by the user interface module to let the potential sellers post and update their

configurations and prices for the contributed resources.

Figure 5.4 shows a simplified finite-state machine (FSM) in the SpotCloud system, where

the Authentication state is managed by the account management module; the Wait, Open

and Billing states are managed by the user interface module, and the rest of states are

managed by cloud management module. The dark circles refer to the states that are used

to communicate with the sellers. In particular, SpotCloud uses a set of RESTful (wait for

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 74

Request sent by SpotCloud:

https://api.provider.com/utilization?
login=Login
&ecp username=39480304
&ecp auth digest=
lfOBcOAfcLPqPUz1b1dE4MYQFSw=

Response returned by resource sellers:

{
total memory: 4085,
free storage: 84146,
free memory: 1397,
total storage: 291618,
loadfifteen: 1.7

}

Figure 5.5: An example of message format for utilization monitoring

sellers’ information/reply to go to the next state) HTTP-based APIs for such communica-

tions. Figure 5.5 shows an example of the message format when SpotCloud sends a HTTP

utilization monitor request to a seller, where loadfifteen field includes the average load over

the past fifteen minutes for the seller. More details can be found in our API and Third

Party Provider Integration Guide [115].

As shown in Figure 5.6, SpotCloud platform has already attracted the Internet customers

worldwide. We now examine a sample set of 116 typical customers for a basic understanding

of the system performance and efficiency.

We first check the number of CPUs in the SpotCloud VMs. As shown in Figure 5.7, it is

easy to see that most SpotCloud resources (> 75%) possess less than 4 virtual cores. This

4%
10%

16%

10%

2%
9% 4%

44%

Australia (4%)
Canada (10%)
Iceland (16%)
Isleof man (10%)
Italy (2%)
Netherlands (9%)
Philippines (4%)
USA (44%)

Figure 5.6: Locations of SpotCloud Resources

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 75

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of CPUs

C
D

F

Simulated enterprise instances
SpotCloud instances

Figure 5.7: # of CPUs

0 1 2 3 4 5 6 7

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory (MB)

C
D

F

Simulated enterprise instances
SpotCloud instances

Figure 5.8: Memory size

0 20% 40% 60% 80% 100%
0

0.2

0.4

0.6

0.8

1

Percentage of online availability

C
D

F

Figure 5.9: Online availability

is not surprising since most of the customer-provided resources are not as powerful as those

from enterprise datacenters. Yet, there are also some relatively powerful VMs; for example,

a customer-provided VM has 16 virtual cores with 2 computation units in each core, which

is capable of running certain CPU intensive tasks. We also show the memory sizes on the

VMs in Figure 5.8. We can see that most VMs (80%) in SpotCloud have a memory less

than 5GB, which is not extra huge but is suitable to run most of the real-world tasks. It is

worth noting that, the curves of SpotCloud VMs are quite smooth, indicating the existence

of more flexible options to meet the heterogeneous demands from customers.

Different from enterprise servers that are known to have very high availability, the re-

source availability in SpotCloud is mostly depending on the sellers. Figure 5.9 shows the

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 76

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Initialization Delay(mins)

C
D

F

Figure 5.10: Initialization delay

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Server−client throughput

C
D

F

Figure 5.11: Server-client through-
put

online availability of the resources for one month. It is easy to see that the instance avail-

ability in SpotCloud is persistent: 40% VMs have an online availability below 20%, that

is, less than 6 days in the 30-day measurement period. This availability is acceptable for

short-term tasks lasting for a few hours or days. For longer tasks, SpotCloud has to care-

fully assist its buyer to choose proper VMs based on our proposed resources provisioning

algorithms.

It is worth noting that before a buyer can really use a cloud instance, there is a delay

due to the necessary initialization processes in any cloud platform. For example, the AWS

Management Console [116] shows that it generally needs 15 to 30 minutes to initialize

a Windows instance on Amazon EC2 before a customer can really connect to it. For

SpotCloud, as shown in Figure 5.10, we can see that most VMs (more than 60%) can be

initialized within 10 minutes, and the maximum initialization delay is less than 27 minutes.

This is considerably lower than that of Amazon EC2. The reason is that the system/user

profiles of SpotCloud VMs are already included in buyers’ VM appliances. Note that VMs’

operation systems can also be personalized by the buyers in SpotCloud. Yet, if buyers do

not want to decide the OS type, Linux (Ubuntu 10.10) is set as a default, which indeed

has even lower initialization delay. We further investigate the VM throughput. As shown

in Figure 5.11, we can see that the throughput of over 50% VMs are more than 10 Mbps,

which is good enough to deliver customers’ contents to the cloud servers in normal cases.

One important feature of cloud services is that the customers pay only for what they

have used. In most of the cloud systems, this cost consists of two major parts: The cost

of leasing VMs, and the cost of data transfer. Their pricing model is computed/decided

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 77

0 0.5 1.0 1.5 2.0 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pricing (USD)

C
D

F

Simulated enterprise instances
SpotCloud instances

Figure 5.12: Pricing distribution

carefully by the enterprise service providers. As we have discussed in the previous section,

the price of SpotCloud VMs, however, is customized by individual sellers who provide/sell

their cloud capacities. As shown in Figure 5.12, we can see that the SpotCloud VMs are

mostly very cheap. Moreover, this curve is also quite smooth indicating that the buyers

have very high flexibility in selecting VMs in this customer-provided cloud platform.

Our trace analysis confirms the efficiency of our system model design. In particular,

SpotCloud has attracted many customers to contribute their local resources in our market-

place. Compare to the high-performance enterprise datacenters, the price distribution of

these resources is also quite reasonable, implying that the sellers are motivated to sell their

resources. Note that a typical price here, $0.1 per hour, is relatively cheaper than that by

Amazon EC2 (mostly instances more than $0.5 per hour), suggesting that a buyer will have

the incentive to purchase as well. On the other hand, it also shows that the resource avail-

ability is indeed a very critical problem for customer-provided clouds. The performance of

our resource provisioning algorithms therefore needs further evaluation under such a system.

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 78

0 1 week 2 weeks 3 weeks 4 weeks
0

5

10

15

Service Duration (Size of content=40G)

L
e

a
s
e

 c
o

s
t

(U
S

D
)

Optimal (O)
LA−aware (A)
L−aware (L)

1Week

2Weeks

3Weeks

Content size is set to 3Gigabytes 4Weeks
A:[9 VMs,6.220$, 100%]
O:[8 VMs,4.557$, 100%]
L:[2 VMs,2.066$, 74.22%]

A:[9 VMs,5.012$, 100%]
O:[7 VMs,3.499$, 100%]
L:[2 VMs,1.350$, 73.9%]

A:[6 VMs,2.872$, 100%]
O:[5 VMs,2.135$, 100%]
L:[2 VMs,1.010$, 76.5%]

A:[5 VMs,1.504$, 100%]
O:[4 VMs,1.075$, 100%]
L:[2 VMs,0.452$, 58.7%]

(a) Lease cost with different service dura-
tions

0 5 Gigabytes 10 Gigabytes 15 Gigabytes 20 Gigabytes
0

10

20

30

40

50

60

Size of content

L
e

a
s
e

 c
o

s
t

(U
S

D
)

Optimal (O)
LA−aware (A)
L−aware (C)

10G

15G

20G

5G

Service duration is set to 700 hours

A:[9 VMs,6.970$, 100%]
O:[6 VMs,4.969$, 100%]
L:[2 VMs,2.066$, 65.7%]

A:[11 VMs,16.016$,100%]
O:[8 VMs,11.397$, 100%]
L:[4 VMs,4.707$, 86.1%]

A:[12 VMs,39.075$,100%]
O:[9 VMs,27.502$, 100%]
L:[6 VMs,10.929$, 98.6%]

A:[11 VMs,29.573$,100%]
O:[8 VMs,20.235$, 100%]
L:[5 VMs,7.259$, 88.8%]

(b) Lease cost with different content sizes

Figure 5.13: Analysis of Lease cost

5.6 Lease- vs Migration-Cost: A Closer Look

Given that the lease cost and migration cost play key roles in the resource provisioning and

in pricing, we now take a closer look at their impact and tradeoffs with the SpotCloud trace

data. We will also examine the effectiveness of heuristics respectively focusing on lease and

migration costs, as discussed in Section IV. We call the algorithm that treats lease cost with

more interest as LA-aware, and that treats migration cost with more interest as MA-aware.

Note that both of them strike to ensure service availability out of dynamic customer-provided

resources. For comparison, we also implement a state-of-the-art cost-aware-only algorithm

(C-aware) [99], which however is difficult in ensuring service availability in SpotCloud as

we will show.

We apply the real data traces from SpotCloud to run the algorithms. From the traces,

we find that the online patterns of customer-provided resources can be well fitted by a

self-similar process with Hurst parameters [117] around 0.7 (more details can be found in

our technical report [113]). We will be focusing on an online storage application, which,

as compared to CPU-intensive applications, creates more challenges when resources are

distributed at diverse locations. Yet, with certain modifications (mostly simplifications),

our experiments and conclusions can be extended to CPU-intensive applications. This

storage service enables a buyer to lease a set of SpotCloud resources to store her/his data

contents; both the content size and the service duration will be dynamically adjusted in our

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 79

0 1 Week 2 Weeks 3 Weeks 4 Weeks
0

5

10

15

20

25

Service duration

M
ig

ra
tio

n
 C

o
st

LA−aware
L−aware
MA−aware

Figure 5.14: Migration cost with
different service durations

0 1 Week 2 Weeks 3 Weeks 4 Weeks
0

1

2

3

4

5

6

7

8

9

Service duration

#
 o

f
u

se
d

 V
M

s

LA−aware
L−aware
MA−aware

Figure 5.15: # of used VMs with
different service durations

0 1 Week 2 Weeks 3 Weeks 4 Weeks

10
−1

10
0

10
1

10
2

10
3

Service druation

L
e

a
se

 c
o

st
 (

U
S

D
)

LA−aware
L−aware
MA−aware

Figure 5.16: Lease cost with differ-
ent service durations

0 5 Gigabytes 10 Gigabytes 15 Gigabytes 20 Gigabytes
5

10

15

20

25

30

35

40

Size of Content

M
ig

ra
tio

n
 c

o
st

LA−aware
L−aware
MA−aware

Figure 5.17: Migration cost with
different content sizes

experiment7.

C-aware vs LA-aware: We consider C-aware and LA-aware as the methods of resource

provisioning. Figure 5.13a shows the results when buyers use SpotCloud resources to have

a storage for a 3 Gigabytes content with different service durations. The boxes in the figure

show the number of used VMs, the lease cost, as well as the percentage of service availability.

It is easy to see that if we apply the existing C-aware algorithms for customer-provided

7Note that we do not provide the cost comparison with enterprise cloud services such as Amazon S3.
This is first because SpotCloud system is designed to complement the enterprise cloud services but not to
replace them. Second, the pricing model of Amazon S3 is also largely different from SpotCloud; for example,
besides the lease cost, S3 will also charge the customers based on the number of request and the amount of
their data transfer. As such, a direct comparison can be quite difficult. Yet it is possible for a user to take
advantage of both systems by splitting the storage, which can be an interesting direction worthy of further
investigation.

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 80

resources, the buyers will suffer from low service availability, which will be around 50% to

70% only, depending on the service duration. This service availability is obviously unable

to support most Internet storage services. Fortunately, the proposed LA-aware algorithm

provides very stable service availability, even when the buyers want to deploy this service

for a long time, around 720 hours. As a trade-off, the buyers have to pay more to enable

their service on more VMs. The lease cost of the LA-aware algorithm is also quite close with

the optimal results (approximately 10 percent higher than the optimal lease cost). Yet the

complexity of CA-aware heuristic is much lower than the optimal algorithm, as discussed

earlier.

Figure 5.13b provides a further comparison when users want to deploy larger contents for

one month (720 hours). This result shows that the lease cost is also quite sensitive with the

increasing of contents size. This is because more VMs will be used to hold larger content for

such a long service duration. It is worth noting that the service availability seems naturally

increasing when more VMs are used in C-aware algorithm. However, this availability is

depending on the randomly combined availability across all selected VMs, and there is no

guarantee for the buyers.

LA-aware vs MA-aware: We now introduce the migration cost as well as the number

of used VMs in our comparison. Figure 5.14 shows the migration cost when buyers deploy

their service from 1 week to more than 4 weeks. We can see that one drawback of the

LA-aware algorithm is the increasing of migration cost. This is not surprising because the

LA-aware algorithm is designed to schedule the contents across different VMs for lower lease

cost. The MA-aware algorithm, on the other hand, can better reduce the migration cost

for the buyers (with the migration cost less than 5 in the figure). As shown in Figure 5.15,

we can see that the MA-aware algorithm only used one VM to serve buyers’ content for the

first 3 weeks while the LA-aware algorithm used more than 5 VMs for lower lease cost.

As a trade-off, minimizing the migration cost will naturally increase the lease cost. As

shown in Figure 5.16, we can see that the lease cost of MA-aware algorithm is the highest

among all algorithms. In particular, its lease cost could be 10 times higher than that of the

LA-aware algorithm. The C-aware algorithm, on the other hand, provides low lease cost

and reasonable migration cost. However, it again suffers from the low service availability

as shown in Figure 5.20. Even worse, its service availability decreases very fast when the

buyers want to deploy their service for longer durations.

Figure 5.17 examines the migration cost when the buyers want to deploy larger contents

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 81

0 5 Gigabytes 10 Gigabytes 15 Gigabytes 20 Gigabytes
0

2

4

6

8

10

12

Size of content

#
 o

f
u

se
d

 V
M

s

LA−aware
L−aware
MA−aware

Figure 5.18: # of used VMs with
different content sizes

0 5 Gigabytes 10 Gigabytes 15 Gigabytes 20 Gigabytes
10

−1

10
0

10
1

10
2

10
3

Size of content

L
e

a
se

 c
o

st
 (

U
S

D
)

LA−aware
L−aware
MA−aware

Figure 5.19: Lease cost with differ-
ent content sizes

for a fixed time duration (720 hours). We can see that the LA-aware algorithm will again

give low lease cost but higher migration cost. The MA-aware algorithm, on the other hand,

provides a constant migration cost of 0 using 3 VMs (Figure 5.18). When we further check

these 3 VMs, we find that they are all very stable VMs with high storage capacities. The

selecting of these VMs can therefore give very low migration cost. However, as shown in

Figure 5.19, the lease cost of MA-aware algorithm is also quite high (around $200). This is

almost 20 times higher than that of the LA-aware algorithm. It is worth noting that for a

fixed service duration, selecting more VMs will potentially increase the service availability.

As shown in Figure 5.21,the service availability of the C-aware algorithm is increasing with

larger contents. Yet, as we have already discussed before, such a service availability cannot

be guaranteed.

It is worth noting that our algorithms are flexible for buyers to set up a customized

service availability, i.e., lower than 100%, for their applications. Figure 5.22 shows the

case when the a buyer wants to deploy a 5 Gigabytes content for 720 hours with different

service availabilities. With the LA-aware algorithm, we can see that the buyers’ service

availability is linearly related with the lease cost. This figure clarifies the trade-off between

service availability and lease cost. For example, the buyers will spend approximately $0.6

to increase their service availability by 10 percent.

CHAPTER 5. CUSTOMER-PROVIDED RESOURCES FOR CLOUD COMPUTING 82

0 1 Week 2 Weeks 3 Weeks 4 Weeks

0.6

0.7

0.8

0.9

1

Service duration

P
er

ce
nt

ag
e

of
 s

er
vi

ce
 a

va
ila

bi
lit

y

LA−aware
L−aware
MA−aware

Figure 5.20: Service availability with different service durations

0 5 Gigabytes 10 Gigabytes 15 Gigabytes 20 Gigabytes
0.6

0.7

0.8

0.9

1

Size of content

P
e

rc
e

n
ta

g
e

 o
f

se
rv

ic
e

 a
va

ila
b

ili
ty

LA−aware
L−aware
MA−aware

Figure 5.21: Service availability
with different content sizes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

C
o

st
 (

U
S

D
)

Service availability configured by buyers

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

g
e

 o
f

se
rv

ic
e

 a
va

ila
b

ili
ty

Lease cost
Service availability

Content size = 5Gigabytes
Service duration = 700 hours

Figure 5.22: Trade-off between
cost and service availability

5.7 Summary

This chapter investigated the feasibility and the system design of enabling customer-provided

resources for cloud computing. We closely examined the resource provisioning and pricing

problems with dynamically available resources, and developed efficient solutions. We then

presented the initial design of SpotCloud, a working system aiming at integrating the cloud

resources from both enterprise and individual sellers. Trace analysis validated SpotCloud

as a complement of great potentials to datacenter-based cloud.

Chapter 6

Conclusion and Future Work

In this thesis, we investigated a broad spectrum of issues about the content delivery and

user collaboration. Our study covered the related problems form the conventional P2P

applications to the conventional cloud systems and finally reached a hybrid system that

aiming to bridge users’ local resource to the public datacenters.

In the first part of this thesis, we examined the challenges and potentials of accelerating

peer-to-peer file sharing with social networks. The trace analysis showed that the Bittorrent

system has enough potential to apply social-network-based enhancements. Our PlanetLab

experiments further indicated that the incorporation of social relations remarkably acceler-

ates the downloading time and start-up time. Given the growing trend of spreading torrents

through social networks, we believe that there is a great opportunity to improve the data dis-

tribution efficiency in peer-to-peer file sharing systems, which is worth further explorations.

The second part of this thesis investigated the impact of virtualization for Dropbox-like

cloud file hosting systems. Through real world measurements and experiments, we ana-

lyzed the workflow of Dropbox and identified the potential bottlenecks therein. We also

developed practical solutions to mitigate the interference between data transfer and com-

putation in virtual machines. Our work represents an initial attempt toward this direction;

more in-depth studies are expected to further examine the interferences as well as other

potential bottlenecks in Dropbox-like systems. We believe that a better understanding on

virtualization cost will also facilitate the design of many other cloud-based systems with

both computation- and bandwidth-intensive tasks. The third part of this thesis examined

the framework design and latency optimization in Cloud-based Distributed Interactive Ap-

plications through real system measurement and analysis. Our study identified the unique

83

CHAPTER 6. CONCLUSION AND FUTURE WORK 84

features as well as the fundamental design challenges in the CDIA. Our model-based analysis

captures the distinguish features of CDIA to address its latency problems. This initial at-

tempt aims to facilitate the design of real-world protocols in the future research and system

enhancements. It is known that the DIA as well as CDIA are both complex systems. Beside

the latency minimization, many design issues , as the system scalability, should be carefully

considered before proposing an enhanced real-world protocol/framework design. We are cur-

rently investigating the efficiency of directly migrating some DIA protocols/optimizations

into the CDIA framework. Such analysis can help us better enjoy the benefit of cloud

computing while minimize the corresponding challenge. Our investigation is not limited to

improve the overall performance of CDIA framework, it can also help us better understand

the development of many other cloud-based systems with similar design frameworks. Based

on the analysis of these Internet systems, we further investigated the system design of en-

abling customer-provided resources for cloud computing. We presented the framework of

SpotCloud, a real working system that seamlessly integrates the customers’ local resources

into the cloud platform, enabling them to sell, buy, and utilize these resources. We discuss

the implementation of SpotCloud and evaluate its performance. Our data trace analysis

confirms it as a scalable and less expensive complement to the pure datacenter-based cloud.

This thesis identifies the unique features as well as the fundamental design challenges in

the content delivery and user collaboration systems. There are still many open issues that

can be further explored.

P2P-based Content Delivery: In our investigation, the peers are classified into two

categories, namely, either being friends or not. In the real social networks, however, not

all the friendships are equal. A peer may not care about the downloading of all its friends.

Therefore, obtaining and applying social relations with different weights are worth further

investigation. Other more complex social relations, beyond the simple friendship, may

also be examined. On the other hand, free riding is another very important issue in P2P

networks. In our discussions, the modified (uploading rate based) choking protocol is applied

among social friends; thus, free riders outside of the social communities will not affect the

overall performance. However, if free riders reside within the community, smarter detection

and prevention are to be developed. It is thus important to further understand the potential

free riders in social communities.

Cloud-based User Collaboration: Our study in Chapter3 and Chapter4 takes a

first step towards unveiling the interference between different types of tasks in the cloud

CHAPTER 6. CONCLUSION AND FUTURE WORK 85

systems. More research efforts are needed to further understand/model the interference

between the computation-intensive and bandwidth-intensive tasks. To better address such

a problem, we are working on the analysis of TCP/UDP flows on different types of VMs.

We find that the VMs’ hypervisors (also known as virtual machine managers such as Xen,

KVM and VMware) and total capacities play important roles for such kind of interference.

By examining this, we will be able to further clarify the questions like: whether a service

provider should rent a large instance with high performance or several small instances given

the same budget.

Customer Resources for Cloud Computing: When a customer provides resources

to SpotCloud, s/he needs to claim the periods that the local resources are available. The

customers will also be motivated to well behave given the profit from providing resources.

This is different from peer-to-peer networks where the peers can leave the system freely, and

thus the online/offline behaviors are much more predictable in our system. In the rare case

of uncontrollable random failures, some smart backup algorithms can be explored for fault

recovery. In particular, we aim to quantify the similarity of VMs’ online availability and

organize them into a binary tree structure to backup each other. Applying Amazon Elastic

Block Store (EBS) service with necessary revisions is also a possible option. Moreover, it is

worth noting that the migration cost defined in this thesis only considers the frequency of

migrations and serves as an approximation of the real migration cost. In practice, the actual

migration cost of different application can be different even when their migration frequencies

are identical; for example, the real migration cost can depend on the application protocol,

the content size or the bandwidth between VMs. Therefore, this migration cost could be

finer defined given the detailed characteristics of different applications. Such information

might also facilitate smart allocations between SpotCloud and datacenters.

Bibliography

[1] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free Riding in BitTorrent is

Cheap,” in Proc. ACM HOTNETS, 2006.

[2] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu, “Influences on Co-

operation in BitTorrent Communities,” in Proc. ACM P2PECON, 2005.

[3] P. Dhungel, D. Wu, Z. Liu, , and K. Ross, “BitTorrent Darknets,” in Proc. IEEE

INFOCOM, 2010.

[4] Facebook. [Online]. Available: http://www.facebook.com/

[5] Twitter. [Online]. Available: http://twitter.com/

[6] B. J. Fino and V. R. Algazi, “Classification of Random Binary Sequences Using Walsh-

Fourier Analysis,” Proceedings of the IEEE Transactions on Electromagnetic Compat-

ibility, EMC-13(3):74-77, 1971.

[7] D. Qiu and R. Srikant, “Modeling and Performance Analysis of Bit Torrent-Like Peer-

to-Peer Networks,” in Proc. ACM SIGCOMM, 2004.

[8] M. Hefeeda, C. Hsu, and K. Mokhtarian, “Design and Evaluation of a Proxy Cache for

Peer to Peer Traffic,” IEEE Transactions on Computers, 60(7):964–977 , 2011.

[9] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Workshop on Economics of

Peer-to-peer Systems 2003.

[10] R. Axelrod, “The Evolution of Cooperation,” in Basic Books, 1985.

[11] A. Bharambe, C. Herley, and V. Padmanabhan, “Analyzing and Improving a BitTorrent

Networks Performance Mechanisms,” in Proc. IEEE INFOCOM, 2006.

86

BIBLIOGRAPHY 87

[12] B. Fan, D.-M. Chiu, and J. Lui, “BitTorrent-like File Sharing Protocol Design,” in

Proc. ICNP, 2006.

[13] M. J. Neely and L. Golubchik, “Utility Optimization for Dynamic Peer-to-Peer Net-

works with Tit-For-Tat Constraints,” in Proc. IEEE INFOCOM, 2011.

[14] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting BitTorrent for fun (but

not profit),” in Proc. USENIX IPTPS, 2006.

[15] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani, “Do

Incentives Build Robustness in BitTorrent?” in Proc. USENIX NSDI, 2007.

[16] M. Meulpolder, L. D’Acunto, M. Capota, M. W. andJ.A. Pouwelse, D. Epema, and

H. Sips, “Public and Private BitTorrent Communities: A measurement Study,” in Proc.

USENIX IPTPS, 2010.

[17] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measurements, Analysis,

and Modeling of BitTorrent-like Systems,” in Proc. ACM/USENIX IMC, 2005.

[18] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop Reputations for

Peer to Peer File SharingWorkloads,” in Proc. USENIX NSDI, 2008.

[19] D. Choffnes, J. Duch, D. Malmgren, R. Guierm, F. Bustamante, and L. A. N. Ama-

ral, “Strange Bedfellows: Community Identification in BitTorrent,” in Proc. USENIX

IPTPS, 2010.

[20] BitTorrent. [Online]. Available: http://www.bittorrent.com/

[21] uTorrent. [Online]. Available: http://www.utorrent.com/

[22] Planetlab. [Online]. Available: http://www.planet-lab.org/

[23] J. Liu, H. Wang, and K. Xu, “Understanding Peer Distribution in Global Internet,”

IEEE Network Magazine, 2010.

[24] D. Watts and S. Strogatz, “Collective Dynamics of Small-world Networks,” Nature,

393(6684):409, 1998.

[25] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop Reputations for

Peer to Peer File Sharing Workloads,” in Proc. USENIX NSDI, 2008.

BIBLIOGRAPHY 88

[26] Z. Dai, G. Gong, H.-Y. Song, and D. Ye, “Trace Representation and Linear Com-

plexity of Binary eth Power Residue Sequences of Period p,” Proceedings of the IEEE

Transactions on Information Theory, 57(3):1530-1547, 2011.

[27] B. J. Fino and V. R. Algazi, “Unified Matrix Treatment of the Fast Walsh-Hadamard

Transform,” Proceedings of the IEEE Transactions on Computers, C-25(11):1142-1146,

1976.

[28] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and Sharing Incentives in

BitTorrent Systems,” in Proc. ACM SIGMETRICS, 2007.

[29] O. Saleh and M. Hefeeda, “Modeling and Caching of Peer-to-Peer Traffic,” Proc. IEEE

International Conference on Network Protocols, 2006.

[30] Dropbox. [Online]. Available: https://www.dropbox.com/

[31] At Dropbox, Over 100 Billion Files ServedAnd Counting. [Online]. Available:

http://gigaom.com/2011/05/23/at-dropbox-over-100-billionfiles-served-and-counting/

[32] Dropbox Users Save 1 Million Files Every 5 Minutes. [Online]. Available:

http://mashable.com/2011/05/23/dropbox-stats/

[33] Sugarsync. [Online]. Available: https://www.sugarsync.com/

[34] SpiderOak. [Online]. Available: https://spideroak.com/

[35] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran, “Network

Coding for Distributed Storage Systems,” in Proc. IEEE INFOCOM, 2007.

[36] F. Liu, Y. Sun, B. Li, B. Li, and X. Zhang, “FS2You: Peer-Assisted Semi-Persistent

Online Hosting at a Large Scale,” IEEE Transactions on Parallel and Distributed Sys-

tems, 21(10):1442-1457, 2010.

[37] Y. Seung, T. Lam, L. E. Li, and T. Woo, “Seamless Scaling of Enterprise Applications

into The Cloud,” in Proc. IEEE INFOCOM, 2011.

[38] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “Kingfisher: Cost-aware Elasticity in

the Cloud,” in Proc. IEEE ICDCS, 2011.

BIBLIOGRAPHY 89

[39] Y. Wu, C. Wu, B. Li, X. Qiu, and F. Lau, “CloudMedia: When Cloud On Demand

Meets Video On Demand,” in Proc. IEEE ICDCS, 2011.

[40] S. Kannan, A. Gavrilovska, and K. Schwan, “Cloud4Home – Enhancing Data Services

with Home Clouds,” in Proc. IEEE ICDCS, 2011.

[41] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier, “Cluster-based

Scalable Network Services,” in Proc. SOSP, 1997.

[42] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle, “Managing Energy

and Server Resources in Hosting Centers,” ACM SIGOPS Operating Systems Review,

35(5):103-116, 2001.

[43] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, “Virtual Machine Hosting for Net-

worked Clusters: Building the Foundations for Autonomic Orchestration,” in Proc.

VTDC, 2006.

[44] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Guarantees for Web Server End-Systems:

A Control-Theoretical Approach,” IEEE Trans on PDS, 13(3):8096, 2002.

[45] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning Servers in the Application

Tier for E-commerce Systems,” in Proc. IEEE IWQoS, 2004.

[46] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, “Per-

formance analysis of cloud computing services for many-tasks scientific computing,”

IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 6, pp. 931–945,

2011.

[47] J. Ekanayake and G. Fox, “High performance parallel computing with clouds and cloud

technologies,” Cloud Computing, pp. 20–38, 2010.

[48] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. Wasserman,

and N. Wright, “Performance analysis of high performance computing applications

on the amazon web services cloud,” in 2nd IEEE International Conference on Cloud

Computing Technology and Science, 2010, pp. 159–168.

[49] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin, “Performance evaluation of

virtualization technologies for server consolidation,” HP Labs Tec. Report, 2007.

BIBLIOGRAPHY 90

[50] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-based op-

erating system virtualization: a scalable, high-performance alternative to hypervisors,”

SIGOPS Oper. Syst. Rev., vol. 41, pp. 275–287, March 2007.

[51] J. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton, M. Mc-

Cabe, and J. Owens, “Quantifying the performance isolation properties of virtualization

systems,” in Proceedings of the 2007 Workshop on Experimental Computer Science.

ACM, 2007, pp. 6–es.

[52] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, “A

performance analysis of ec2 cloud computing services for scientific computing,” Cloud

Computing, pp. 115–131, 2010.

[53] G. Wang and T. Ng, “The impact of virtualization on network performance of amazon

ec2 data center,” in INFOCOM, 2010 Proceedings IEEE, 2010, pp. 1–9.

[54] Dropbox Wiki. [Online]. Available: http://en.wikipedia.org/wiki/Dropbox service/

[55] H. Wang, F. Wang, J. Liu, and J. Groen, “Measurement and Utilization of Customer-

Provided Resources for Cloud Computing,” in Proc. IEEE INFOCOM, 2012.

[56] T. Suel, P. Noel, and D. Trendafilov, “Improved File Synchronization Techniques for

Maintaining Large Replicated Collections over Slow Networks,” in Proc. IEEE ICDE,

2004.

[57] Essential Facts about the Computer and Video Game Industry 2012. [Online].

Available: http://www.theesa.com/facts/pdfs/ESA EF 2012.pdf

[58] Gaikai. [Online]. Available: http://www.gaikai.com//

[59] Onlove. [Online]. Available: http://www.onlive.com//

[60] SIMNET. [Online]. Available: http://en.wikipedia.org/wiki/SIMNET/

[61] P. M. Sharkey, M. D. Ryan, and D. J. Roberts, “A Local perception filter for dis-

tributed Virtual Environments,” Virtual Reality Annual International Symposium, 242-

249, 1998.

BIBLIOGRAPHY 91

[62] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg, “Locallag and Timewarp: Providing

Consistency for Replicated Continuous Applications ,” IEEE Transactions on Multi-

media, 6(1), 47-57, 2002.

[63] C. Diot and L. Gautier, “A Distributed Architecture for Multiplayer Interactive Appli-

cations on the Internet,” IEEE Network, 13(4), 615, 1999.

[64] C. Gutwin, “ The Effects of Network Delays on Group Work in Real-Time Groupware,”

in Proc. Seventh European Conference on Computer-Supported Cooperative Work (EC-

SCW), 2011.

[65] S.Webb, S. Soh, and W. Lau, “Enhanced Mirrored Servers for Network Games,” in

Proc. ACM SIGCOMM NetGames, 2007.

[66] D. Ta and S. Zhou, “A Two-phase Approach to Interactivity Enhancement for Large-

scale Distributed Virtual Environments,” Computer Networks, 51(14), 41314152, 2007.

[67] E. Cronin, S. Jamin, C. Jin, A. Kurc, D. Raza, and Y. Shavitt, “Constrained Mir-

ror Placement on the Internet,” IEEE Journal on Selected Areas in Communications

(JSAC), 20(7), 13691382, 2002.

[68] P. H. K. Vik and C. Griwodz, “Multicast Tree Diameter for Dynamic Distributed

Interactive Applications,” in Proc. IEEE International Conference on Computer Com-

munications (INFOCOM), 2008.

[69] C. Ly, C. Hsu, and M. Hefeeda, “Improving Online Gaming Quality using Detour

Paths,” Proc. ACM Multimedia, 2010.

[70] L. Zhang and X. Tang, “Client Assignment for Improving Interactivity in Distributed

Interactive Applications,” in Proc. IEEE International Conference on Computer Com-

munications (INFOCOM), 2011.

[71] S. Garfinkel, “An Evaluation of Amazon s Grid Computing Services : EC2 , S3 and

SQS,” Harvard University Tech, Rep., 2008.

[72] Y. Seung, T. Lam, L. E. Li, and T. Woo, “Seamless Scaling of Enterprise Applications

into The Cloud,” in Proc. IEEE INFOCOM, 2011.

BIBLIOGRAPHY 92

[73] Y. Wu, C. Wu, B. Li, X. Qiu, and F. Lau, “CloudMedia: When Cloud On Demand

Meets Video On Demand,” in Proc. IEEE ICDCS, 2011.

[74] Gaikai Powered Cloud-based Gaming on Samsung Smart TVs. [Online]. Avail-

able: http://www.engadget.com/2012/06/05/gaikai-powered-cloud-gaming-coming-to-

samsung-smart-tvs/

[75] Wireshark. [Online]. Available: http://www.wireshark.org/

[76] Amazon EC2. [Online]. Available: http://aws.amazon.com/ec2/

[77] Limelight Networks. [Online]. Available: http://www.limelight.com/

[78] K. Buytaert, R. Dittner, and D. R. Jr, “The Best Damn Server Virtualization Book

Period,” Syngress, 10(2), 422, 2007.

[79] R. Jain, “Packet Trains: Measurements and a New Model for Computer Network Traf-

fic,” IEEE Journal on Selected Areas in Communications (JSAC), 4(6), 986-995 ,

1986.

[80] R. Kawahara, E. K. Lua, M. Uchida, S. Kamei, and H. Yoshino, “On the Quality of

Triangle Inequality Violation Aware Routing Overlay Architecture,” in Proc. IEEE

International Conference on Computer Communications (INFOCOM), 2009.

[81] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive application per-

formance in the cloud,” in Proc. ACM SIGMM conference on Multimedia systems (MM-

Sys), 2010.

[82] I. Katriel, L. Michel, and P. Hentenryck, “Maintaining Longest Paths Incrementally,”

Constraints, 10(2), 159-183, 2005.

[83] Networking and Traffic Control On Linux. [Online]. Available:

http://tcng.sourceforge.net/

[84] S. A. Ross, “Uses Abuses and Alternatives to the Net-present-value Rule,” Financial

Management, 2(4), 96-102, 1995.

[85] C. Cotta and J. Troya, “A Hybrid Genetic Algorithm for the 0-1 Multiple Knapsack

problem,” Artificial Neural Nets and Genetic Algorithm 3, 250-254, 1994.

BIBLIOGRAPHY 93

[86] M. Hajjat, X. Sun, Y. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and M. Tawar-

malani, “Cloudward Bound: Planning for Beneficial Migration of Enterprise Applica-

tions to the Cloud,” in Proc. ACM SIGCOMM, 2010.

[87] Amazon Web Service. [Online]. Available: http://aws.amazon.com/

[88] GoGrid Cloud Hostin. [Online]. Available: http://gogrid.com/

[89] Google AppEngine. [Online]. Available: http://code.google.com/appengine/

[90] Microsoft Windows Azure. [Online]. Available: http://www.microsoft.com/

[91] Rackspace Cloud. [Online]. Available: http://www.rackspacecloud.com/

[92] M. Armbrust, R. G. A. Fox, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley View

of Cloud Computing,” University of California, Berkeley, Tech. Rep., 2009.

[93] K. Sripanidkulchai, S. Sahu, Y. Ruan, A. Shaikh, and C. Dorai, “Are Clouds Ready

for Large Distributed Applications?” in Proc. SOSP LADIS Workshop, 2009.

[94] S. Garfinkel, “An Evaluation of Amazon s Grid Computing Services : EC2 , S3 and

SQS,” Harvard University Tech, Rep., 2008.

[95] E. Walker, “Benchmarking amazon EC2 for high-performance scientific computing,”

Proc. USENIX Login, 2008.

[96] A. Li and X. Yang, “CloudCmp: Comparing Public Cloud Providers,” Proc.

ACM/USENIX IMC, 2010.

[97] J. S. Ward, “A Performance Comparison of Clouds: Amazon EC2 and Ubuntu Enter-

prise Cloud,” Proc. SICSA DemoFEST, 2009.

[98] Y. Seung, T. Lam, L. E. Li, and T. Woo, “Seamless Scaling of Enterprise Applications

into The Cloud,” in Proc. IEEE INFOCOM, 2011.

[99] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “Kingfisher: Cost-aware Elasticity in

the Cloud,” in Proc. IEEE ICDCS, 2011.

[100] Y. Wu, C. Wu, B. Li, X. Qiu, and F. Lau, “CloudMedia: When Cloud On Demand

Meets Video On Demand,” in Proc. IEEE ICDCS, 2011.

BIBLIOGRAPHY 94

[101] S. Kannan, A. Gavrilovska, and K. Schwan, “Cloud4Home – Enhancing Data Services

with Home Clouds,” in Proc. IEEE ICDCS, 2011.

[102] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier, “Cluster-based

Scalable Network Services,” in Proc. SOSP, 1997.

[103] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle, “Managing Energy

and Server Resources in Hosting Centers,” ACM SIGOPS Operating Systems Review,

35(5):103-116, 2001.

[104] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, “Virtual Machine Hosting for Net-

worked Clusters: Building the Foundations for Autonomic Orchestration,” in Proc.

VTDC, 2006.

[105] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Guarantees for Web Server End-

Systems: A Control-Theoretical Approach,” IEEE Trans on PDS, 13(3):8096, 2002.

[106] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning Servers in the Application

Tier for E-commerce Systems,” in Proc. IEEE IWQoS, 2004.

[107] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A Survey and Compar-

ison of Peer-to-Peer Overlay Network Schemes,” IEEE Communications Surveys and

Tutorials, 7(2):72-93 , 2005.

[108] K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy and Survey of Grid Re-

source Management Systems for Distributed Computing,” Software: Practice and Ex-

perience, 32(2):135-164 , 2002.

[109] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and Challenges of Peer-to-Peer

Internet Video Broadcast,” Special Issue on Recent Advances in Distributed Multimedia

Communications, 96(1):11-24 , 2008.

[110] Amazon EC2 Spot Instances. [Online]. Available: http://aws.amazon.com/ec2/spot-

instances/

[111] K. Zhu, “Information Transparency of Business-to-Business Electronic Markets: A

game-Theoretic Analysis,” Management Science, 50(5):670-685 , 2004.

BIBLIOGRAPHY 95

[112] J. Farrell and E. Maskin, “Renegotiation in Repeated Games,” Journal of Economic

Theory, 1(4):327-360 , 1989.

[113] H. Wang, F. Wang, and J. Liu, “Measurement and Gaming Analysis of SpotCloud,” Si-

mon Fraser University, Tech, Rep., 2011, [online]: http://netsg.cs.sfu.ca/spdata/sc.pdf.

[114] C. Wang, K. Ren, S. Yu, and K. M. R. Urs, “Achieving Usable and Privacy-assured

Similarity Search over Outsourced Cloud Data,” Proc. IEEE INFOCOM, 2012.

[115] Seller API and Third Party Provider Integration Guide. [Online]. Available:

http://spotcloud.com/fileadmin/docs/SpotCloudProviderGuide.pdf

[116] AWS Management Console. [Online]. Available: http://aws.amazon.com/console/

[117] V. Paxson and S. Floyd, “Wide-area traffic: the failure of Poisson modeling,” Proc.

ACM SIGCOMM, 1994.

