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Abstract

This dissertation focuses on a conjecture of S. Chowla which asserts the equidistribution

of the parity of the number of primes dividing the integers represented by a polynomial of

degree d. This involves the behaviour of the classical Liouville function λ(n) which captures

the parity of the total number of prime factors of an integer n.

For any non-square polynomial f(n) with integral coefficients of degree d we consider

the distribution of the sequence {λ(f(n))}∞n=1. Chowla conjectured that the partial sum

average of this sequence goes to zero. In the first two chapters we study a weaker form of

this conjecture for polynomials of degree 2 with integer and rational coefficients and prove

that this sequence takes the values −1 and +1 infinitely often. In the final chapter we show

that this partial sum average goes to zero when f(n) = n(n+ 1)(n+ 2) and λ(n) is replaced

by the truncated Liouville function λy(n).
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1.3 Liouville and Möbius functions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Chowla’s conjecture and the Liouville function at consecutive integers . . . . 5

2 Liouville function on Integer Quadratics 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Previous Partial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Special Quadratic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Liouville function on Rational Quadratics 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



3.3 Chebyshev Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Rational and integer examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Triple order Correlation 22

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Basic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Preliminary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Future directions 43

5.1 Consecutive integer case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Cassaigne et al. conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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Preface

In this dissertation we study a conjecture of S. Chowla which asserts the equidistribution

of the parity of the number of primes dividing the integers represented by a polynomial of

degree d. This concerns the behaviour of the classical Liouville function λ(n) which gives

the parity of the total number of prime factors of an integer n counted with multiplicity.

We are interested in studying the distribution of the sequence {λ(f(n))}∞n=1 where f(n) is

a non-square polynomial with integral coefficients of degree d. Chowla conjectured that this

sequence had asymptotic mean zero. We prove this conjecture when f(n) = n(n+ 1)(n+ 2)

is a product of three consecutive integers and λ is replaced by a truncated Liouville function

λy. We also study a weaker version of Chowla’s conjecture for polynomials of degree 2 with

integer and rational coefficients and prove that this sequence takes the values −1 and +1

infinitely often thereby extending some partial known results.

This dissertation is divided into five chapters: one for each of the three key results,

together with an introductory and concluding chapter with some open questions for future

exploration.

In Chapter 1, we give an introduction to the theory involving the Liouville function and

its connection to the classical theory of the distribution of primes. This leads us to study

Chowla’s conjecture and we give a detailed analysis about the depth and significance of this

conjecture. Finally, we mention a conjecture of Cassaigne et al. which is a weaker version

of Chowla’s conjecture.

In Chapter 2, we prove our first main result. We first introduce the previous results of

viii



Cassaigne et al. conjecture known in the literature. One of our main results is that the

sequence {λ(f(n))}∞n=1 cannot be eventually constant for any quadratic integer polynomials

f(n) and if there is one sign change, then there are infinite many sign changes. Moreover in

practice, using this result one can easily verify the Cassaigne et al. conjecture for any given

integer quadratic polynomial by computer.

In Chapter 3, we establish our second result. Motivated by our earlier work in the

previous chapter, we continue to study the equation f(g(x)) = f(x)hm(x) in the unknown

polynomials f, g, h over any field K and we completely describe the set of solutions to this

equation in the case when f is a non-constant and separable polynomial, deg(g) ≥ 2 and

the derivative of g is nonzero. Using some explicit construction of zero sets and degree

arguments we prove that the solutions include only linear and quadratic polynomials f , and

in the case when f is quadratic, the polynomials g and h are given by usual Chebyshev

polynomials of the first and second type, respectively. Defining the Liouville function over

the rationals, one can easily prove the analogue of the main result in Chapter 2, namely,

either λ(f(r)) is constant for all rational numbers r greater than the largest real root of

g(x)−x or it changes sign infinitely often, where f(r) is a quadratic polynomial with rational

coefficients.

In Chapter 4, for any arithmetic function f(n) and x > 0, we define the triple order

correlation function C(f, x) by

C(f, x) =
∑
n≤x

f(n)f(n+ 1)f(n+ 2).

One would naturally expect from Chowla’s conjecture that the sum C(λ, x) is of order o(x)

when x→∞ which seems to be a hopelessly difficult task at present. This motivates us to

study functions which are in some way “close” to the Liouville function but its correlation

function would be easier to estimate. In particular, λy(n) denotes the truncated Liouville

function which equals −1 or +1 according to whether n has an odd or even number of

prime divisors p ≤ y counted with multiplicity. Now in this setting, we take a modest step

ahead in Chapter 4 and we succeed in obtaining an asymptotic formula for the average

λy(n(n + 1)(n + 2)) up to n ≤ x. It follows from the main theorem that the analogous

Chowla’s conjecture holds whenever log(y) = o(log(x)) and gives evidence in favour of

Chowla’s conjecture for the classical Liouville function. The crucial step here is to use the

ix



method of smooth primes which helps to transform the sum into a sieve problem and using

fundamental lemma type results of Brun’s sieve one obtains desired results.

The final chapter of this dissertation contains a collection of related questions and con-

jectures for future study.

All of the results of this thesis have been published or are in preparation to be submitted

for publication. We have taken without hesitation from articles to which the author has

been a major contributor ([5], [20]).
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Chapter 1

Introduction

1.1 Dirichlet series and Asymptotics

One of the basic goals in analytic number theory is to obtain statistical information about

a sequence {an} of real or complex numbers from the analytic behaviour of an appropriate

generating function, such as power series
∑
anz

n or a Dirichlet series
∑
ann

−s.

A Dirichlet series is a series of the form G(s) =
∑∞

n=1 ann
−s where s is a complex

variable and we write s = σ + it. If we have a second Dirichlet series H(s) =
∑∞

m=1 bmm
−s

then

G(s)H(s) =
∞∑
k=1

∞∑
m=1

akbm(km)−s =
∞∑
n=1

( ∑
km=n

akbm

)
n−s.

Thus the product is a Dirichlet series
∑∞

n=1 cnn
−s whose coefficients are cn =

∑
km=n akbm.

The Riemann zeta function is one of the special Dirichlet series, which for σ > 1 is defined

by the absolutely convergent series

ζ(s) =
∞∑
n=1

n−s.

In order to investigate the asymptotic behaviour of the generating functions we have some

special notations which are commonly used in number theory and all of mathematics. Let

D be a subset of the complex numbers C and let f : D → C be a complex valued map

defined on D and let g : D → R+. For example, we say ‘f(x) is asymptotic to g(x)’ as x

1



CHAPTER 1. INTRODUCTION 2

tends to infinity and write f(x) ∼ g(x) (x→∞), if

lim
x→∞

f(x)

g(x)
= 1.

This notation is commonly used in the formulation of the Prime Number Theorem

(PNT), which gives the asymptotic size of the number π(x) of prime numbers not exceeding

x; π(x) =
∑

p≤x 1. Legendre conjectured about this in 1798, and it was proved independently

by Hadamard [24] and de la Vallée Poussin [12] in 1896. The Prime Number Theorem asserts

that

π(x) ∼ x

log x
.

We can also view the above as

π(x) = (1 + o(1))
x

log x
,

which means that π(x) is x/ log(x) plus an error term that is in the limit negligible compared

with x/ log(x). In general we say, ‘f(x) is small oh of g(x)’ and write f(x) = o(g(x)), if

limx→∞ f(x)/g(x) = 0. Quantitatively, the Prime Number Theorem says that

π(x) =
x

log x
+O(

x

(log x)2
).

The above simply means that there is a constant C > 0 such that the inequality∣∣∣∣π(x)− x

log x

∣∣∣∣ ≤ Cx

(log x)2

holds for all x ≥ 2. In general, we say that ‘f(x) is big oh of g(x)’ and write f(x) = O(g(x))

if there is a constant C > 0 such that |f(x)| ≤ Cg(x) for all x ∈ D in the domain. Note that

the function f may be complex valued, but g is necessarily non-negative. Sometimes we use

the notation f(x)� g(x) instead of f(x) = O(g(x)) and such a situation arises when there

is no main term. We say f(x) is less-than-less-than g(x). In this context it is worthwhile to

mention that Chebyshev proved that π(x) � x/ log(x). This is a much weaker statement

than the Prime Number Theorem and was proved earlier in 1852. Chebyshev also showed

that π(x)� x/ log(x).

In general, we say that ‘f(x)� g(x)’ if there is a positive constant c such that |f(x)| ≥
c(g(x)) for all x ∈ D and g is non-negative. Note that here f and g take only positive

values. If both f(x)� g(x) and f(x)� g(x) then we say that f and g have the same order

of magnitude and write f � g. Thus Chebyshev’s estimates [1] can be written as

π(x) � x

log(x)
.
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1.2 Multiplicative arithmetic functions

A function is called an arithmetic function if its domain is the set N of natural numbers or

positive integers. An arithmetic function f(n) is said to be multiplicative if f(1) = 1 and

if f(mn) = f(m)f(n) whenever (m,n) = 1. Also, an arithmetic function is called totally

or completely multiplicative if f(1) = 1 and if f(mn) = f(m)f(n) for all m and n. If f is

multiplicative then the Dirichlet series
∑
f(n)n−s factors into a product over prime powers.

When the product ∏
p

(1 + f(p)p−s + f(p2)p−2s + f(p3)p−3s + · · · )

is expanded, any arbitrary term looks like

f(pk11 )f(pk22 ) · · · f(pkrr )

(pk11 p
k2
2 · · · p

kr
r )s

.

Setting n = pk11 p
k2
2 · · · pkrr , since f is multiplicative, the above expression can be seen as

f(n)n−s. Now in view of the fundamental theorem of arithmetic, after rearranging the

terms we get

∞∑
n=1

f(n)n−s =
∏
p

(1 + f(p)p−s + f(p2)p−2s + f(p3)p−3s + · · · ).

If f is completely multiplicative, the product simplifies and we have

∞∑
n=1

f(n)n−s =
∏
p

1

1− f(p)p−s
.

Note that in each case the product on the right-hand side is called the Euler product of

the Dirichlet series. Also the above holds only under the stronger assumption of absolute

convergence.

1.3 Liouville and Möbius functions

In this section we introduce two very important multiplicative arithmetic functions. Let

ω(n) denote the number of distinct primes dividing n and let Ω(n) be the number of distinct

prime powers dividing n. So we can write

ω(n) =
∑
p|n

1, Ω(n) =
∑
pk|n

1 =
∑
pk‖n

k.
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Note that ω(n) ≤ Ω(n) for all n, with equality if and only if n is square-free. These

functions are examples of additive functions because they satisfy the functional relation

f(mn) = f(m) + f(n) whenever (m,n) = 1. In other words Ω(n) is a totally additive

function satisfying the above functional relation for all pairs m,n. It is important to note

that an exponential of an additive function is a multiplicative function. In particular, the

Liouville lambda function λ(n) = (−1)Ω(n) is the completely multiplicative function (i.e.

λ(mn) = λ(m)λ(n) for all m,n ∈ N) and is closely related to the Möbius µ function, which

is defined by

µ(n) =

(−1)ω(n) = λ(n) if n is square-free,

0 otherwise.

Alternatively, in view of fundamental theorem of arithmetic we can say that λ(n) is the

unique completely multiplicative function and takes the value −1 at every prime. So λ(1) =

λ(4) = λ(6) = λ(9) = λ(10) = 1 and λ(2) = λ(5) = λ(7) = λ(8) = −1. Let ζ(s) denote the

Riemann zeta function, defined for complex s with <(s) > 1 by

ζ(s) :=
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

where the product is over all prime numbers p. Thus

ζ(2s)

ζ(s)
=
∏
p

(
1 +

1

ps

)−1

=
∏
p

(
1− λ(p)

ps

)−1

=
∞∑
n=1

λ(n)

ns
. (1.3.1)

Let L(x) denote the sum of the values of λ(n) up to x,

L(x) :=
∑

1≤n≤x
λ(n)

so that L(x) records the difference of the number of positive integers up to x with an even

number of prime factors (counted with multiplicity) and those with an odd number. Pólya

in 1919 showed in [48] that the Riemann Hypothesis, which says that all the non-trivial

zeros of ζ(s) are on the critical line <(s) = 1/2, will follow if L(x) does not change sign for

sufficiently large n. There is a vast amount of literature about the study of the sign change

of L(x). Until 1958, Haselgrove proved that L(x) changes sign infinitely often in [29]. For

more discussion about this problem, we refer the reader to [4].
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The summatory function of the Liouville λ-function is closely associated to some of the

most fundamental problems in mathematics. In particular, the prime number theorem is

equivalent to the statement that
∑

n≤x λ(n) = o(x) [37] and the Riemann hypothesis [3] is

equivalent to the statement that for every ε > 0, we have
∑

n≤x λ(n) = O(x1/2+ε).

1.4 Chowla’s conjecture and the Liouville function at consec-

utive integers

Complementary to the prime number theorem, in 1965 Chowla [11] conjectured that

Conjecture (Chowla). ∑
n≤x

λ(f(n)) = o(x)

for any polynomial f(x) with integer coefficients which is not of form bg(x)2 for some b 6= 0

and g(x) ∈ Z[x].

The above conjecture asserts that the Liouville function assumes the values −1 and +1

with roughly equal frequency on polynomials which are not constant multiples of the square

of a polynomial and can be said to represent the parity problem ([53], [30]) in its purest

form. Some cases of Chowla’s conjecture were already included in the Hardy-Littlewood [27]

conjectures. The conjecture for linear functions was already proved by Landau [37] but for

the degree greater than 1, the conjecture seems to be extremely hard and still remains wide

open. The first non-trivial case seems to be when f(n) = n(n + 1) i.e. f(n) is a product

of consecutive integers. One might expect that this “correlation” of the Liouville function

would give

lim
x→∞

1

x

∑
n≤x

λ(n)λ(n+ 1) = 0, (1.4.1)

but at present even the much weaker relation

lim inf
x→∞

1

x

∑
n≤x

λ(n)λ(n+ 1) < 1

has not been proved. It is worthwhile to mention that although Halász [25] completely

determined the asymptotic behaviour of the means

1

x

∑
n≤x

g(n)
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for multiplicative functions g satisfying |g| ≤ 1, unfortunately, his analytic method cannot

be used to deal with (1.4.1), since the corresponding Dirichlet series do not have an Euler

product representation, and it seems that the problem lies very deep.

In view of this Hildebrand [32] writes: “In other words, it is conceivable that for ‘most’

n we have λ(n) = λ(n+ 1), in which case the functions λ(n) and λ(n+ 1) are far from being

independent. It is possible (1.4.1) lies deep as the twin prime conjecture, for it amounts

to resolving, the ‘parity problem’ in sieve theory, which constitutes the main obstacle to

proving the twin prime conjecture by sieve methods ([19], [35]).”

In a recent paper Pintz [47] establishes the following interesting connection :

Theorem (Pintz). Suppose that with ϑ = ϑ1 >
3
4 and f(n) = λ(n)λ(n + h), where h is

any positive even integer, the following holds

∑
q≤Nϑ−ε

max
a

∣∣∣∣∣∣∣∣
∑

n≡a mod q
n≤N

f(n)

∣∣∣∣∣∣∣∣�ε,A
N

logAN
.

Then p+ h is prime for infinitely many primes p.

The best unconditional results when f(n) = n(n+ 1) was given by Harman, Pintz and

Wolke [28] in 1985. They proved that for x > x0(ε)

−(1 + o(1))
1

3
<

1

x

∑
n≤x

λ(n(n+ 1)) < 1− 1

(log x)7+ε
.

The lower bound in the above inequality improves bounds by R. Hall (unpublished), and

Graham and Hensley [22], and was generalized in Cassaigne et al. [9]. In other words, there

are infinitely many sign changes, but one is very far from proving an expected result of o(1).

For longer patterns, later Elliott [18] in 1992 in his paper quotes that “Even more hopeless

seems the conjecture that

x−1
∑
n≤x

λ(n)λ(n+ 1)λ(n+ 2)→ 0, x→∞.

It therefore comes as a surprise that

lim sup
x→∞

1

x

∣∣∣∣∑
n≤x

λ(n)λ(n+ 1)λ(n+ 2))

∣∣∣∣ ≤ 20

21
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can be obtained.” Note that this result was again improved and generalized by Cassaigne

et al. [9].

Results of this type have been extended in several directions: instead of studying the

Liouville λ- function at consecutive integers, one can study it on arithmetic progressions. A

deep theorem of Green and Tao [23] implies that∑
d≤x

∑
n≤x

λ(n)λ(n+ d)λ(n+ 2d)λ(n+ 3d) = o(x2).

This implies, averaged over d and n, that the product of the four values of the λ- function

is asymptotically as often positive as it is negative.

However one can consider a weaker form of Chowla’s conjecture, namely,

Conjecture (Cassaigne et al.). If f(x) ∈ Z[x] is not of form bg2(x), then λ(f(n)) changes

sign infinitely often.

Although it is weaker, the above conjecture formulated by Cassaigne et al.[10] is still

wide open for polynomials of degree > 1. One can also find similar formulation of the above

conjecture in the works of Kátai [36] and Sárközy [50]. In the next two chapters we will

study this weaker conjecture and prove a number of new results in this direction.



Chapter 2

Liouville function on Integer

Quadratics

This chapter contains results which can be found in a collaboration with Peter Borwein and

Stephen Choi (see [5] for details).

2.1 Introduction

From Chapter 1 we know that it is a consequence of the well-known prime number theorem,

and also appeared in the works of Landau [37], that

lim
x→∞

x−1
∑
n≤x

λ(n) = 0.

Complementary to the prime number theorem, Chowla [11] made the following conjecture

Conjecture 1 (Chowla). Let f(x) ∈ Z[x] be any polynomial which is not of form bg2(x)

for some b 6= 0, g(x) ∈ Z[x]. Then ∑
n≤x

λ(f(n)) = o(x). (2.1.1)

Clearly, Chowla’s conjecture is equivalent to the prime number theorem when f(x) = x.

For polynomials of degree > 1, Chowla’s conjecture seems to be extremely hard and still

remains wide open. One can consider a weaker form of Chowla’s conjecture, namely,

Conjecture 2 (Cassaigne et al.). If f(x) ∈ Z[x] is not of form bg2(x), then λ(f(n)) changes

sign infinitely often.

8



CHAPTER 2. LIOUVILLE FUNCTION ON INTEGER QUADRATICS 9

Clearly, Chowla’s conjecture implies Conjecture 2. In fact, suppose it is not true, i.e.,

there is n0 such that λ(f(n)) = ε for all n ≥ n0 where ε is either −1 or +1. Then it follows

that ∑
n≤x

λ(f(n)) = εx+O(1)

which contradicts (2.1.1).

2.2 Previous Partial Results

Although it is weaker, Conjecture 2 is still wide open for polynomials of degree > 1. In [10],

Conjecture 2 for special polynomials have been studied and some partial results are proved.

Theorem 2.1 (Cassaigne et al.). Let f(n) = (an + b1)(an + b2) . . . (an + bk) where a, k ∈
N, b1, . . . , bk are distinct integers with b1 ≡ · · · ≡ bk (mod a) then λ(f(n)) changes sign

infinitely often.

Proof. This is Corollary 2 in [10].

For certain quadratic polynomials, they proved

Theorem 2.2 (Cassaigne et al.). If f(n) = (n + a)(bn + c) where a, c ∈ Z, b ∈ N, ab 6= c

then λ(f(n)) changes sign infinitely often.

Proof. This is Theorem 4 in [10].

Theorem 2.3 (Cassaigne et al.). Let a ∈ N, b, c ∈ Z, and write f(n) = an2 + bn + c,

D = b2 − 4ac. Assume that a, b and c satisfy the following conditions :

(i) 2a|b,

(ii) D < 0,

(iii) there is a positive integer k with

λ

(
−D

4
k2 + 1

)
= −1.

Then λ(f(n)) changes sign infinitely often.

Proof. This is Theorem 3 in [10].
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In this chapter, we continue to study Conjecture 2 for the quadratic case. One of our

main results is Theorem 2.5 below. By Theorem 2.5, in order to show that the sequence

{λ(f(n))}∞n=1 changes sign infinitely often, we only need find one pair of large integers n1

and n2 such that λ(f(n1)) 6= λ(f(n2)). This will make the conjecture much easier to handle.

Some partial results from Theorem 2.5 are also deduced in the next section.

2.3 Main Results

Conjecture 2 for the linear polynomial is easily solved by the following result.

Theorem 2.4. Let P := {n ∈ N : λ(n) = +1} and N := {n ∈ N : λ(n) = −1}. Then both

P and N cannot contain infinite arithmetic progression. In particular, λ(an + b) changes

sign infinitely often in n.

Proof. We claim that both P and N cannot contain any infinite arithmetic progression.

Suppose not and there are an n0 and l such that

λ(n0 + lk) = λ(n0) (2.3.1)

for k = 0, 1, 2, . . . . Pick a prime p which is of the form lm + 1. Now put k = mn0 and

consider

λ(n0 + lk) = λ(n0 + lmn0) = λ(n0)λ(lm+ 1) = λ(n0)λ(p) = −λ(n0).

This contradicts (2.3.1). Hence our claim is attained.

One of the main results in this paper is the following theorem.

Theorem 2.5. Let f(x) = ax2 + bx+ c with a > 0 and l be a positive integer such that al

is not a perfect square. Then if the equation f(n) = lm2 has one solution (n0,m0) ∈ Z2,

then it has infinitely many positive solution (n,m) ∈ N2.

Proof. Let D = b2 − 4ac be the discriminant of f(x). By solving the quadratic equation

an2 + bn+ c = lm2, (2.3.2)

for n we get

n0 =
−b±

√
b2 − 4a(c− lm2

0)

2a
=
−b±

√
D + 4alm2

0

2a
.
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It follows that D + 4alm2
0 = t20 for some integer t0. By choosing a suitable sign of t0, we

may assume

t0 ≡ b (mod 2a), and n0 =
−b+ t0

2a
∈ Z. (2.3.3)

This leads us to consider the diophantine equation

t2 = 4alm2 +D. (2.3.4)

Suppose that (t0,m0) and (t,m) are solutions of (2.3.4). Then we have

t2 = 4alm2 +D

and

t20 = 4alm2
0 +D.

Subtracting the above two equations, we get

(t− t0)(t+ t0) = l(m−m0)(4am+ 4am0). (2.3.5)

We now let s and r be

r(m−m0) = 2as(t+ t0) , 2as(4alm+ 4alm0) = r(t− t0). (2.3.6)

By eliminating the terms t and m respectively in (2.3.6), we get

(r2 − 16a3ls2)m = r2m0 + 16a3ls2m0 + 4arst0 (2.3.7)

and

(r2 − 16a3ls2)t = r2t0 + 16a2ls2m0 + 16a3s2lt0. (2.3.8)

Note that by our assumption, 16a3l is not a perfect square. So the Pell equation

r2 − 16a3ls2 = 1 (2.3.9)

always have infinitely many solutions (r, s) ∈ Z2, and for each solution (r, s) of the Pell

equation (2.3.9) gives integers m and t through (2.3.7) and (2.3.8) such that

m = r2m0 + 16a3ls2m0 + 4arst0

and

t = r2t0 + 16a2lsrm0 + 16a3s2lt0.
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One can easily verify that if (r, s) 6= (±1, 0) then these m and t satisfy the equations (2.3.6)

and hence satisfy equation (2.3.4). Note that r2 ≡ 1 (mod 2a) and r(m−m0) ≡ 0 (mod 2a).

Hence we have m ≡ m0 (mod 2a) and t ≡ t0 (mod 2a) by (2.3.6). Since there are infinitely

many solutions (r, s) ∈ Z2 of the Pell equation (2.3.9) and these will give infinitely many

solutions (m, t) ∈ Z2 of the equation (2.3.6). In particular, there are infinite many positive

integers t such that t ≡ t0 (mod 2a) and

n =
−b+

√
D + 4alm2

2a
=
−b+ t

2a

to be a positive integer by (2.3.3). Therefore, there are infinitely many positive solutions

(n,m) ∈ N2 of (4.4.9). This completes the proof of the theorem.

It is worth to mention that one should not expect Theorem 2.5 is true for polynomials of

higher degree because they may only have finitely many integer solutions by Siegel’s theorem

on integral points in [54].

In view of Theorem 2.5, to determine the conjecture is true for a given quadratic

polynomial f(x), we only need to find one pair of positive integers n1 and n2 such that

λ(f(n1)) 6= λ(f(n2)). This gives us the following theorem.

Theorem 2.6. Let f(x) = ax2 + bx+ c with a ∈ N and b, c ∈ Z. Let

A0 =

[
|b|+ (|D|+ 1)/2

2a

]
+ 1.

Then the binary sequence {λ(f(n))}∞n=A0
is either a constant sequence or it changes sign

infinitely often.

Proof. Suppose {λ(f(n))}∞n=A0
is not a constant sequence. Then there are positive integers

n1 6= n2 ≥ A0 such that λ(f(n1)) 6= λ(f(n2)). Hence there are positive integers l1, l2 and

m1,m2 such that

λ(l1) = +1, and λ(l2) = −1, (2.3.10)

and

f(n1) = l1m
2
1, and f(n2) = l2m

2
2.

We claim that al1 and al2 are not perfect squares. If alj = N2 is a perfect square, then

the diophantine equation t2 = D + 4aljm
2 has only finitely many solutions (t,m). In fact,
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since (tj − 2Nmj)(tj + 2Nmj) = D, so there is d 6= 0 such that tj + 2Nmj = D/d and

tj − 2Nmj = d. It follows that 2tj = D/d+ d. Thus,

|tj | ≤
1

2

(
|D|
|d|

+ |d|
)
≤ |D|+ 1

2
.

Since f(nj) = ljm
2
j , so

nj =

∣∣∣∣∣−b±
√
D + 4aljmj

2a

∣∣∣∣∣ ≤ |b|+ |tj |2a
≤ |b|+ (|D|+ 1)/2

2a
< A0.

This contradicts nj ≥ A0. Therefore from Theorem 2.5, there are infinitely many n1 and n2

such that λ(f(n1)) 6= λ(f(n2)) and hence λ(f(n)) changes sign infinitely often.

As we remarked above, one should not expect Theorem 2.6 to be true for polynomials

of higher degree.

2.4 Special Quadratic Polynomials

We prove some partial results of special quadratic polynomials.

Theorem 2.7. Let f(n) = n2 + bn+ c with b, c ∈ Z . Suppose there exists a positive integer

n0 ≥ A0 (with a = 1) such that λ(f(n0)) = −1. Then λ(f(n)) changes sign infinitely often.

Proof. We observe the following identity

f(n)f(n+ 1) = f(f(n) + n)

which can be verified directly. Hence we have

λ(f(n))λ(f(n+ 1)) = λ(f(f(n) + n)). (2.4.1)

If {λ(f(n))}∞n=1 is a constant sequence, then it follows from (2.4.1) that

λ(f(n)) = +1, for all n = 1, 2, . . ..

Therefore if there is n0 ≥ A0 such that λ(f(n0)) = −1, then by Theorem 2.6, {λ(f(n))}∞n=1

changes sign infinitely often. This proves the theorem.
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The proof of Theorem 2.5 shows that the solvability of the diophantine equation

X2 − 4alY 2 = D (2.4.2)

is critical in solving the problem. In general, there is no simple criterion to determine

the solvability of the equation (2.4.2) except if we know the central norm of the continued

fraction of the irrational number
√
al. For more discussion in this area, we refer the readers

to [40]-[43]. The following theorem deals with a special case of D for which we can solve

the equation (2.4.2).

Theorem 2.8. Let f(x) = px2 + bx + c with prime number p. Suppose the discriminant

D = b2 − 4pc is a non-zero perfect square. Then λ(f(n)) changes sign infinitely often.

Proof. We first choose positive integers l1 and l2 such that p l1 and p l2 are not perfect

squares and λ(l1) 6= λ(l2). So the Pell equations

X2 − 4p ljY
2 = 1, j = 1, 2 (2.4.3)

have infinitely many positive solutions (X,Y ). Let D = q2 with q ≥ 1. Then any positive

solution (X,Y ) of (2.4.3) gives a positive solution (qX, qY ) of

X2 − 4p ljY
2 = D.

We can choose X large enough so that −b+ qX > 0. On the other hand, we have X2 ≡ 1

(mod p) by (2.4.3) and q2 ≡ b2 (mod p) because D = b2 − 4pc. Therefore (qX)2 ≡ b2

(mod p). Since p is a prime, so either (a) qX ≡ b (mod p) or (b) qX ≡ −b (mod p). We

define

n =
−b± qX

2p

where the sign ± is determined according to cases (a) or (b) so that n is a positive integer.

Therefore (n, qX) is a positive solution of the equations f(n) = ljm
2. Then our theorem

follows readily from Theorem 2.5.



Chapter 3

Liouville function on Rational

Quadratics

This chapter contains results which can be found in a collaboration with Jonas Jankauskas

(see [20] for details).

3.1 Introduction

We observe that from the previous chapter even the much weaker conjecture of Cassaigne

et al. which states

Conjecture (Cassaigne et al.) If f(x) ∈ Z[x] and is not of the form of bg2(x) for some

b 6= 0 and g(x) ∈ Z[x], then λ(f(n)) changes sign infinitely often.

has not been proved unconditionally for the polynomials of degree deg f > 2.

In Chapter 2, it has been proved that the sequence {λ(f(n))}∞n=1 cannot be eventually

constant for quadratic integer polynomials f(x) = ax2 + bx+ c, provided that at least one

sign change occurs for n > (|b|+ (|D|+ 1)/2)/2a, where D is the discriminant of f(x). The

proof is based on the solutions of Pell-type equations. In practice, using this conditional re-

sult, one can prove the Cassaigne’s conjecture for any particular integer quadratic f(x), for

instance, f(x) = 3x2 + 2x+ 1. In contrast, the only examples of degree deg f > 3 for which

the conjecture has been proved in [10] are f(x) =
∏k
j=1(ax+ bj), where a, bk ∈ N, bk are all

distinct, b1 ≡ · · · ≡ bk (mod a). No similar examples of irreducible integer polynomials of

15
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degree d > 3 are known . It appears that the problem of finding an irreducible example of

degree d = 3 is interesting and probably difficult.

The central problem investigated in the present chapter is motivated by the following

question:

Question : Do there exist integer polynomials f(x), g(x) and h(x) of degrees deg f > 3,

deg g > 2, f(x) separable (and possibly irreducible in Z[x]), such that f(g(x)) = f(x)h2(x)?

We now explain how the composition identity in the above question could be of use to

prove that λ(f(n)) or λ(f(−n)) is not eventually constant for cubic polynomials f(x). As-

sume that the leading coefficient of g(x) is positive. Since deg g > 2, there exists a positive

integer n0 such that g(n) > n for integers n > n0. Suppose that there exist two integers

k0, l0 > n0 such that λ(f(k0)) = −λ(f(l0)). Then λ(f(kj)) and λ(f(lj)) also differ in sign

for infinite sequences of integers kj and lj , defined by kj+1 = g(kj) and lj+1 = g(lj), j > 0,

since λ(f(g(n))) = λ(f(n)) follows by the composition identity.

Unfortunately, the answer to our question is negative. In the next section we prove a

general result which holds for polynomials with coefficients in an arbitrary field K. Our

result shows that one cannot prove the conjecture for cubic polynomials f(x) by using the

composition identity in the question.

3.2 Main Result

The main result of this paper is the following theorem:

Theorem 3.1. Let m > 2 be an integer not divisible by the characteristic of the field K.

Suppose that f(x) ∈ K[x] is non constant and separable, and the polynomial g(x), deg g > 2,

has a non-zero derivative. Then the equation

f(g(x)) = f(x)hm(x)

holds if and only if:

I) f(x) = ax+ b, a, b ∈ K, a 6= 0, g(x) =

(
x+

b

a

)
hm(x)− b

a
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or

II) f(x) = ax2 + bx+ c, a, b, c ∈ K, a 6= 0, m = 2,

with

g(x) =
1

2a

(
±Tn

(
2ax+ b√

D

)√
D − b

)
, h(x) = ±Un−1

(
2ax+ b√

D

)
,

where Tn(x), Un(x) are Chebyshev polynomials of the first and second kind, respectively,

D = b2 − 4ac is the discriminant of f(x).

We remark that the condition on the separability of f(x) cannot be weakened in Theorem

3.1 which can be seen by taking f(x) = g(x) = x(x − 1)m in Q[x]. The requirement that

g(x) has a non-zero derivative for fields K of characteristic p 6= 0 also cannot be weaken.

Indeed, consider the simple example given by f(x) = xd − 1, g(x) = xp
l

in Fp[x]. Also, if

the characteristic p divides the exponent m 6= 0 in the equation f(g(x)) = f(x)hm(x), then

one can write hm(x) = h
m/p
1 (xp) = h

m/p
2 (x), where h2(x) is a polynomial with coefficients

in K.

3.3 Chebyshev Polynomials

Recall that for the field K of characteristic not equal to 2, the Chebyshev polynomials

Tn(x) ∈ K[x] of the first kind are defined by the linear recurrence of order two:

T0(x) = 1, T1(x) = x, Tn+2(x) = 2xTn+1(x)− Tn(x). (3.3.1)

In the similar way, the Chebyshev polynomials of the second kind Un(x) ∈ K[x] are defined

by the recurrence

U0(x) = 1, U1(x) = 2x, Un+2(x) = 2xUn+1(x)− Un(x). (3.3.2)

Polynomials Tn(x) and Un(x) contain only even powers of x for even n, odd powers of x

for odd n. Thus, the coefficients of g(x) and h(x) in Theorem 3.1, (II) lie in K if n is odd

and in K(
√
D) if n is even. Chebyshev polynomials have many other remarkable properties,

see, for instance, [49]. They play a key role in the theorems of Ritt for decompositions of

polynomials [51]. In addition, Chebyshev polynomials are related to permutation polyno-

mials over finite fields called Dickson polynomials [38]. In our proof, the following property

of Chebyshev polynomials will be useful:
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Theorem 3.2. Suppose that the characteristic of the field K is not equal to 2. Then all

solutions of the Pell equation

P 2(x)− (x2 − 1)Q2(x) = 1

in the ring K[x] are given by

P (x) = ±Tn(x), Q(x) = ±Un−1(x),

where Tn(x) and Un(x) are Chebyshev polynomials of the first and second kind, respectively.

The equation wich appears in Theorem 3.2 is a special case of a general polynomial Pell

equation P (x)2 −D(x)Q2(x) = 1. Solutions to general Pell equations in polynomials over

complex number field K = C were investigated by Pastor [46]. Dubickas and Steuding [17]

gave an elementary algebraic proof for arbitrary field K. The proof of Proposition 3.2 can

be found in [17]. Alternative proofs (in the case K = C) are given in [2] and [46].

3.4 Proof of Main Theorem

Proof. Set d = deg f . Let a ∈ K and b ∈ K be the leading coefficients of polynomials f(x)

and g(x), respectively, ab 6= 0. Suppose that L is the field extension of K generated by the

roots of the polynomials f(x), xm − 1 and xm − b. Then

f(x) = a
∏

α∈V (f)

(x− α). (3.4.1)

Here V (f) ⊂ L denotes the set of the roots of the polynomial f(x). The composition

equation f(g(x)) = f(x)hm(x) factors in L[x] into

a
∏

α∈V (f)

(g(x)− α) = a
∏

α∈V (f)

(x− α)hm(x), (3.4.2)

and one can cancel a on both sides. Observe that distinct factors g(x)− α on the left hand

side of (3.4.2) are relatively prime in L[x] since their difference is a non-zero constant. We

claim that at most one factor g(x)− α may be relatively prime with f(x) if m > 2 and the

characteristic of K does not divide m. Indeed, suppose that g(x) − β, β ∈ V (f), β 6= α

is another such factor. Then both g(x) − α and g(x) − β divide hm(x), so g(x) − α and

g(x)− β must be the m-th powers of some polynomials u(x) and v(x) in L[x] which divide
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h(x), say, g(x)−α = um(x) and g(x)−β = v(x)m. (Note that u(x) and v(x) belong to L[x]

since the field L contains all roots of f(x) and the m–th roots of the leading coefficient b of

the polynomial g(x)). Then u(x)m − v(x)m = β − α is a non-zero constant polynomial. On

the other hand,

um(x)− vm(x) =
m−1∏
j=0

(u(x)− ζjv(x)),

where ζ is a primitive m–th root of unity in L and at least one of polynomials u(x)− ζv(x)

has degree greater than or equal to one which is impossible. Note that the condition that the

characteristic of K does not divide m is necessary for the separability (which is important

later in the degree-counting argument, in order to establish that degree of f(x) must be 1

or 2), if the field has a finite characteristic p 6= 0.

Now, suppose that V (f) = {α1, α2, . . . , αd}. Let Vj be the set containing all distinct common

roots of the polynomial g(x)− αj and the polynomial f(x),

Vj := V (g(x)− αj) ∩ V (f).

Then g(x)− αj = fj(x)uj(x), where uj(x) ∈ L[x] and

fj(x) :=
∏
α∈Vj

(x− α).

Note that fj(x) are all separable and and coprime in L[x]. Since f(x) is also separable, the

equation (3.4.2) implies

a
d∏
j=1

fj(x) = f(x) and consequently,
d∏
j=1

uj(x) = hm(x). (3.4.3)

The polynomials uj(x) are relatively prime, thus uj(x) = hmj (x), j = 1,. . . , d, for some

polynomials hj(x) ∈ L[x] whose product is equal to h(x) in (3.4.3). Let nj := deg fj , for

j = 1, . . . , d. Without loss of generality, assume that n1 6 n2 6 . . . 6 nd. Then n1 > 0.

Observe that n2 > 1 if n1 = 0, since no two factors g(x)− αj can be coprime with f(x), as

noted above. The first identity in (3.4.3) gives

n1 + n2 + · · ·+ nd = deg f = d. (3.4.4)

Since g(x) = fj(x)hj(x)m + αj , one also has deg g ≡ nj (mod m). We now consider two

cases for deg g modulo m.
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Case 1). Assume that deg g ≡ 0 (mod m). Then nj > m for j > 2, hence

d > m(d− 1) (3.4.5)

by (3.4.4). Since m > 2, one has d > 2d − 2 which is possible for d = 1 or d = 2 only.

Suppose that d = 2. Then one also has m 6 2 by (3.4.5).

Case 2). Assume that deg g 6≡ 0 (mod m). Then n1 = · · · = nd = 1 by (3.4.4). Let

deg g = sm + 1, where s := deg hj > 1 for 1 6 j 6 d. Since hmj (x) | g(x) − αj , the

polynomials hm−1
j (x) are (relatively prime) factors of the derivative g′(x). By conditions of

Theorem, g′(x) is a non-zero polynomial, hence

ms > deg g′ > deg hm−1
1 + · · ·+ deg hm−1

d = d(m− 1)s

and, consequently,

m > d(m− 1). (3.4.6)

Then d 6 m/(m− 1) 6 2. Suppose d = 2. Then, in addition, (3.4.6) gives m 6 2.

Thus it remains to consider the cases d = 1 and d = 2. In the first case, the polynomial

f(x) is linear, thus f(x) = ax+ b with a, b ∈ K, a 6= 0. The equation f(g(x)) = f(x)hm(x)

is equivalent to

ag(x) + b = (ax+ b)hm(x),

so one simplification solves g(x) and this completes the proof in the case d = 1. Suppose

d = 2. Then f(x) = ax2 + bx + c with a, b, c ∈ K, a 6= 0. Let D = b2 − 4ac, D 6= 0 since

f(x) is separable. One also has m = 2 by the conditions of Theorem 3.1 and the degree

inequalities in the two cases above. Hence, it suffices to find the polynomials g(x) and h(x)

in the equation f(g(x)) = f(x)h2(x). Since the characteristic of the field K is not equal to

2 by the conditions of Theorem 3.1, the linear change of variables x→ x(t) defined by

x =
t
√
D − b
2a

transforms the polynomial f(x) into

f(x) =
D

4a
F (t),

where F (t) = t2 − 1. Set

G(t) :=
1√
D

(
2ag

(
t
√
D − b
2a

)
+ b

)
, H(t) := h

(
t
√
D − b
2a

)
.
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By straightforward substitution, one easily checks that the map x → x(t) transforms the

composition equation f(g(x)) = f(x)h2(x) into D/4aF (G(t)) = D/4aF (t)H2(t). Canceling

the factor D/4a on both sides, one obtains

F (G(t)) = F (t)H2(t),

or, equivalently,

G2(t)− (t2 − 1)H2(t) = 1.

By Theorem 3.2 all the solutions to this equation are given by the formulas G(t) = ±Tn(t),

H(t) = ±Un−1(t), where Tn(t) and Un(t) are Chebyshev polynomials of the first and second

kind, respectively. Application of the inverse map t→ t(x) now yields the result.

3.5 Rational and integer examples

Let f(x) = ax2 + bx+ c be a quadratic polynomial with rational coefficients. For n = 3 in

Theorem 3.1, one has T3(x) = 4x3 − 3x and U2(x) = 4x2 − 1. Then f(g(x)) = f(x)h2(x)

holds by Theorem 3.1 for

g(x) = (16a2x3 + 24abx2 + (9b2 + 12ac)x+ 8bc)/D,

h(x) = (16a2x2 + 16abx+ 3b2 + 4ac)/D.
(3.5.1)

Extend the definition of λ function to the whole set of rationals Q by the complete multi-

plicativity of λ, i.e. λ(mn ) = λ(m)
λ(n) . Then, using the method outlined in Section 3.1, one can

prove easily the following analogue of Theorem 2.6 in [5] for the sign changes of λ function

at rational points f(r), r ∈ Q:

Theorem 3.3. λ(f(r)) is either constant for all rational numbers r greater than the largest

real root of g(x)− x or it changes sign infinitely often.

The question of finding all solutions of the composition equation in integer polynomials

f(x), g(x), and h(x) is closely related to the solution of the polynomial Pell equations in

Z[x]. This does not seem to be easy. We refer the reader to the references [39], [45], [55].



Chapter 4

Triple order Correlation

4.1 Introduction

Let λ(n) denote the Liouville function : λ(n) = (−1)Ω(n). We know from Chapter 1 that

complementary to the prime number theorem, Chowla [11] made the following conjecture

Conjecture (Chowla). ∑
n≤x

λ(f(n)) = o(x) (4.1.1)

for any polynomial f(x) with integer coefficients which is not of form bg(x)2.

The prime number theorem is equivalent to (4.1.1) when f(x) = x. Chowla’s conjecture

is proved for linear functions, but for degree greater than 1, the conjecture seems to be

extremely hard and still remains wide open.

In fact, the case when f(n) = n(n+ 1) remains open and is commonly considered to be

as hard as the Twin Prime conjecture. Now for any arithmetic function f(n) and x > 0,

one can define a second order correlation function H(f, x) by

H(f, x) =
∑
n≤x

f(n)f(n+ 1).

One would expect from Chowla’s conjecture that the estimation of the correlation of the

Liouville function seems to be an extremely difficult task and Hildebrand [31] mentions that

22
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“ ... even the much weaker relation

lim inf
x→∞

H(λ, x)

x
< 1

is not known and seems to be beyond reach of the present methods”. This motivates us

to study functions which are in some way “close” to the Liouville function but easier to

estimate the correlation function. In general, for any multiplicative function f(n) and y > 0

let us define the multiplicative function fy(n) by

fy(p
α) =

{
f(pα) for p ≤ y,
1 for p > y.

Alternatively one can write

fy(n) =
∏
pα‖n

fy(p
α) =

∏
pα‖n
p≤y

f(pα).

Let λy(n) denote the completely multiplicative “truncated” Liouville function and

λy(p) =

{
−1 (= λ(p)) for p ≤ y,
+1 for p > y.

Thus Daboussi and Sárközy [13] studied the second order correlation of this “truncated”

Liouville function and they proved

H(λy, x) = o(x) (y →∞)

under the condition that

log y = o(log x). (4.1.2)

Now we take a modest step ahead by replacing (n, n+ 1) by the triplet (n, n+ 1, n+ 2) and

define a triple order correlation function C(f, x) by

C(f, x) =
∑
n≤x

f(n)f(n+ 1)f(n+ 2)

where f(n) is completely multiplicative with |f(n)| ≤ 1. Our main result of this chapter is

the following :



CHAPTER 4. TRIPLE ORDER CORRELATION 24

Theorem 4.1.1. Let f(n) be a completely multiplicative arithmetic function with

| f(n) |≤ 1 ∀ n ∈ N (4.1.3)

2 ≤ y ≤ x, and writing

u =
log x

log y
(4.1.4)

we have

C(fy, x) = x
∏
p≤y

θ(p) +O

(
x

(
(log y)−9 + exp(− u

12
)

))
(4.1.5)

where θ(p) is defined by

θ(p) =
p+ 2f(p)− 3

p− f(p)
. (4.1.6)

Now if we choose f(n) = λ(n), then from (4.1.6) we have

θ(5) =
5 + 2λ(5)− 3

5− λ(5)
= 0.

Thus from the above theorem we have

Corollary 4.1.2. If 5 ≤ y ≤ x and u is defined by (4.1.4) then

C(λy, x) = O

(
x

(
(log y)−9 + exp(− u

12
)

))
.

Hence, as y →∞ and under the assumption (4.1.2) one obtains

C(λy, x) = o(x).

4.2 Basic notations

For a fixed y, let us define the following notations

Qy = {n : ∀p | n⇒ p ≤ y}, Py =
∏
p≤y

p, By =
∑
p≤y

1

p
.

Define the completely multiplicative arithmetic functions e(n),m(n) by

n = e(n)m(n), e(n),m(n) ∈ N, e(n) ∈ Qy, (m(n), Py) = 1. (4.2.1)
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So e(n) consists of all the prime factors of n which are less than or equal to y. Then we can

write

fy(n) = f(e(n)). (4.2.2)

Let ψ(x, y) = |{n : n ≤ x,∀p | n ⇒ p ≤ y}|. In other words ψ(x, y) denotes the number of

y-smooth integers ≤ x. We define the multiplicative arithmetic functions ψ(n) and η(n) in

the following manner:-

For any α ∈ N we have

ψ(pα) =


(

1− 1
p

)(
1− 3

p

)−1

= p−1
p−3 for p 6= 3,

1 for p = 3.

We define

η(E) =

{
2
3 for 3 | E
0 for 3 - E,

so that

| ψ(pα) |≤ 3 ∀ p and α ∈ N, (4.2.3)

| η(E) |≤ 1 ∀ E ∈ N (4.2.4)

and also we have the following

| ψ(pα) | ≤
(

1− 1

p

)(
1− 3

p

)−1

<

(
1 +

1

p

)(
1 +

6

p2

)
≤

(
1 +

1

p

)
exp

(
6

p2

)
.

In other words,

| ψ(E) |=
∏
pα‖E

| ψ(pα) |≤
(∏
p|E

(
1 +

1

p

))
exp

(∑
p

6

p2

)
�
∏
p|E

(
1 +

1

p

)
. (4.2.5)

4.3 Preliminary Lemmas

The following lemmas play a crucial role in the estimations made in this chapter.
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Lemma 4.3.1. Let F1(n), . . . , Fk(n) be distinct irreducible linear polynomials with integer

coefficients such that

F (n) =

k∏
i=1

Fi(n) =

k∏
i=1

(ain+ bi).

Let 2 ≤ y ≤ x and set

v =
log x

log y
, B =

k∏
i=1

ai
∏

1≤i<j≤k
(aibj − ajbi)

and denote the number of solutions of the congruence F (x) ≡ 0 (mod p) by ρ(p) and assume

that

ρ(p) < p for all primes p.

Then for x→∞ we have

| {n : n ≤ x, (F (n), Py) = 1} | = x
∏
p|B
p≤y

(
1− ρ(p)

p

)∏
p-B
p≤y

(
1− k

p

)

× (1 +O(exp(−v(log v − log log 3v − log k − 2)) + (exp(−
√

log x)))).

Proof. This is a special case of the “fundamental lemma” of Brun sieve e.g.Theorem 2.6 in

[26].

It is worthwhile to mention that in Sieve theory fundamental lemmas have important

applications in those problems where one needs specific information about the distribution

of numbers which belongs to some integer sequence and have no “very” small prime factors.

Such problems arise in the study of additive arithmetic functions defined over polynomial

sequences.

Lemma 4.3.2. If 2 ≤ y ≤ x, then

|{n : n ≤ x, (n, Py) = 1}| � x

log y
.

Proof. This is special case of Lemma 4.3.1 above with F (n) = n.

Lemma 4.3.3. Assume that h(n) is a multiplicative function such that

h(p) = h(p2) = · · · = h(pα) = · · · for all p
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and there are numbers K > 0, L ≥ 0 with∣∣∣∣h(p)−K
∣∣∣∣ ≤ L

p
for all p.

Then for all 2 ≤ y ≤ z we have∑
z≤n
n∈Qy

h(n)

n
� (log y)K exp

(
− log z

log y

)

where the constants depends on K and L only.

Proof. This is Lemma 3 in [13].

Lemma 4.3.4. For all 2 ≤ y ≤ z we have∑
z≤n
n∈Qy

1

n
� (log y) exp

(
− log z

log y

)
.

Proof. This follows from Lemma 4.3.3 above with h(n) ≡ 1,K = 1, L = 0.

Lemma 4.3.5. If (log x)2 ≤ y ≤ x and u is defined by (4.1.4), then

ψ(x, y)� x exp(−u log u).

Proof. This follows from de Brujin’s classical estimate (e.g.Theorem 2 in Part II of [7]).

Lemma 4.3.6. Let e(n) and u be defined as in (4.2.1) and (4.1.4) respectively, then we

have ∑
n≤x

e(n)>x1/12

1� x exp

(
− u

12

)
. (4.3.1)

Proof. We have ∑
n≤x

e(n)>x1/12

1 =
∑
n≤x

x1/12<e(n)≤x
y

1 +
∑
n≤x

x
y
<e(n)

1 = K1 +K2. (4.3.2)

If n is counted in the first term, then writing e(n) = e,m(n) = m and n = em we have

x1/12 < e ≤ x
m ≤

x
y , e ∈ Qy, (m,Py) = 1 so now using Lemma 4.3.2 and then Lemma 4.3.4,
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we get

K1 ≤
∑

x1/12<e≤x
y

e∈Qy

∑
m≤x

e
(m,Py)=1

1

�
∑

x1/12<e≤x
y

e∈Qy

x

e log y

≤ x

log y

∑
x1/12<e
e∈Qy

1

e

� x

log y
(log y) exp

(
− log x1/12

log y

)
= x exp

(
− u

12

)
.

If n is counted in the second term in (4.3.2), then in n = em, (m,Py) = 1 we have

m ≤ x

e(n)
< y

which forces m = 1 and we have

K2 =
∑

x
y
<e≤x
e∈Qy

1 ≤
∑
e≤x
e∈Qy

1 = ψ(x, y).

If (log x)2 ≤ y, then by Lemma 4.3.5 it follows that

K2 � (x) exp

(
− log(x)

log y
log

log(x)

log y

)
≤ x exp(−u log u)� x exp(− u

12
).

If 2 ≤ y < (log x)2, then again by Lemma 4.3.5 we have

K2 ≤ ψ(x, y) ≤ ψ(x, (log x)2)

� (x) exp

(
− log(x)

log(log x)2
log

log(x)

log(log x)2

)
≤ x exp

(
− log x

log(log x)2
log

log x

log(log x)2

)
� x exp

(
−
(

1

2
+ o(1)

)
log x

)
= x1/2+o(1) � x exp

(
− 1

12

log x

log 2

)
≤ x exp

(
− u

12

)
for 2 ≤ y < (log x)2. Hence (4.3.1) follows from (4.3.2) and estimation of K1 and K2.
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4.4 Proof of the Main Theorem

Let us fix an integer n and writing n = p1
α1 · · · pkαkp

αk+1

k+1 · · · p
αt
t we have

f(n) = f(p1)α1 · · · f(pk)
αkf(pk+1)αk+1 · · · f(pt)

αt

by complete multiplicativity of f . Now let us assume that pk < y < pk+1, then

fy(n) = fy(p1
α1 · · · pkαkp

αk+1

k+1 · · · p
αt
t )

= fy(p
α1
1 ) · · · fy(pαkk )fy(p

αk+1

k+1 ) · · · fy(pαtt ) (by multiplicativity of fy)

= f(pα1
1 ) · · · f(pαkk )× 1 · · · 1 (by definition of fy).

Our goal is to estimate the sum C(fy, x) =
∑

n≤x fy(n)fy(n+ 1)fy(n+ 2). First we set

φ = 90By = 90
∑
p≤y

1

p
.

Writing

S =
∑
n∈N0

fy(n)fy(n+ 1)fy(n+ 2) (4.4.1)

where we define N0, N1, N2 and N3 by

N1 = {n : n 6 x, ω(e(n)e(n+ 1)e(n+ 2)) > φ}

N2 = {n : n 6 x,Ω(e(n)e(n+ 1)e(n+ 2))− ω(e(n)e(n+ 1)e(n+ 2)) > φ}

N3 = {n : n 6 x, e(n)e(n+ 1)e(n+ 2) > x
1
4 }

N0 = {n : n 6 x} \ {N1 ∪N2 ∪N3}.

It follows that

|
∑
n≤x

fy(n)fy(n+ 1)fy(n+ 2)− S | = |
∑

n∈N1∪N2∪N3

fy(n)fy(n+ 1)fy(n+ 2) |

≤
∑

n∈N1∪N2∪N3

| fy(n)fy(n+ 1)fy(n+ 2) |

≤
∑

n∈N1∪N2∪N3

1 ≤ |N1|+ |N2|+ |N3|.

It remains to estimate each of these sets N1, N2, N3 and S.
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First we consider N1. For any integer n ∈ N1 we have

(n, n+ 1, n+ 2) = 1⇒ (e(n), e(n+ 1), e(n+ 2)) = 1

and it follows that

ω(e(n)e(n+ 1)e(n+ 2)) = ω(e(n)) + ω(e(n+ 1)) + ω(e(n+ 2)) > φ.

Hence

max(ω(e(n)), ω(e(n+ 1)), ω(e(n+ 2)) >
φ

3
.

Thus either of n, n + 1or n + 2 is divisible by a number e such that for e ∈ Qy we have

ω(e) > φ
3 which in turn gives

| N1 | ≤
∑
e∈Qy
ω(e)>φ

3

| {n ≤ x : e | n} | + | {n ≤ x : e | n+ 1} | + | {n ≤ x : e | n+ 2} |

≤ 3
∑
e∈Qy
ω(e)>φ

3

x+ 2

e
≤ 9x

∑
e∈Qy
ω(e)>φ

3

1

e

= 9x
∑
k>φ

3

∑
e∈Qy
ω(e)=k

1

e
≤ 9x

∑
k>φ

3

1

k!

(∑
p≤y

∞∑
α=1

1

pα

)k
= 9x

∑
k>φ

3

1

k!

(∑
p≤y

1

p− 1

)k

≤ 9x
∑
k>φ

3

1

k!

(
2
∑
p≤y

1

p

)k
.

By Stirling’s formula we have

|N1| ≤ 9x
∑
k>φ

3

(
3

k

)k
(2By)

k < 9x
∑
k>φ

3

(
18By
φ

)k
= 9x

∑
k>φ

3

5−k � x5−φ/3 � x(log y)−30.

Recall that N2 = {n : n ≤ x,Ω(e(n)e(n+ 1)e(n+ 2))− ω(e(n)e(n+ 1)e(n+ 2)) > φ}. If

n ∈ N2 then either

Ω(e(n))− ω(e(n)) >
φ

3
(4.4.2)

or

Ω(e(n+ 1))− ω(e(n+ 1)) >
φ

3
(4.4.3)
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or

Ω(e(n+ 2))− ω(e(n+ 2)) >
φ

3
(4.4.4)

has to hold. If (4.4.2) holds then writing e(n) in the form

e(n) = r2s with |µ(s)| = 1,

we have
φ

3
< Ω(e(n))− ω(e(n)) = 2Ω(r) + ω(s)− ω(e(n));

hence

Ω(r) >
1

2

(
φ

3
+ ω(e(n))− ω(s)

)
≥ φ

6
.

Therefore we have

r2 ≥ (2Ω(r))2 ≥ 2φ/3.

Inequalities (4.4.3) and (4.4.4) can handled similarly. Now

|N2| ≤
∑

r2≥2φ/3

(
|{n : n ≤ x, r2 | n}|+ |{n : n ≤ x, r2 | n+ 1}|+ |{n : n ≤ x, r2 | n+ 2}|

)
≤

∑
r2≥2φ/3

3|{n : n ≤ x, r2 | n}|

�
∑

r2≥2φ/3

x

r2

= x
∑

r2≥2φ/3

1

r2
� x2−φ/6 � x(log y)−9.

Finally let us consider N3 = {n : n ≤ x, e(n)e(n+ 1)e(n+ 2) > x1/4} we have

N3 ⊂ {n : n ≤ x, e(n) > x1/12} ∪ {n : n+ 1 ≤ x, e(n+ 1) > x1/12}

∪{n : n+2 ≤ x, e(n+2) > x1/12}∪{n : x < n+1 ≤ x+1}∪{n : x < n+2 ≤ x+2}

and by Lemma 4.3.6 it follows that

|N3| ≤ 3
∑
n≤x

e(n)>x1/12

1 + 2� x exp

(
− u

12

)
. (4.4.5)

We now consider the sum S in (4.4.1) where the sum is defined over N0 which can be

redefined as

N0 = {n : n ≤ x, ω(e(n)e(n+ 1)e(n+ 2)) ≤ φ,

Ω(e(n)e(n+ 1)e(n+ 2))− ω(e(n)e(n+ 1)e(n+ 2)) ≤ φ, e(n)e(n+ 1)e(n+ 2) ≤ x1/4}
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and from (4.2.2) it follows that

S =
∑
n∈N0

fy(n)fy(n+ 1)fy(n+ 2)

=
∑
n∈N0

f(e(n))f(e(n+ 1))f(e(n+ 2))

=
∑

(e1,e2,e3)

f(e1)f(e2)f(e3) | {n : n ∈ N0, e(n) = e1, e(n+ 1) = e2, e(n+ 2) = e3} |

where we sum over all triplets (e1, e2, e3) such that there is at least one n with

n ∈ N0, e(n) = e1, e(n+ 1) = e2, e(n+ 2) = e3. (4.4.6)

Now if there is at least one n with these properties, then we must have

e1 = e(n) ∈ Qy, e2 = e(n+ 1) ∈ Qy, e3 = e(n+ 2) ∈ Qy (4.4.7)

and by the definition of N0 we have

ω(e1e2e3) = ω(e(n)e(n+ 1)e(n+ 2)) ≤ φ,

Ω(e1e2e3)− ω(e1e2e3) = Ω(e(n)e(n+ 1)e(n+ 2))− ω(e(n)e(n+ 1)e(n+ 2)) ≤ φ,

e1e2e3 = e(n)e(n+ 1)e(n+ 2) ≤ x1/4.

Beside this by (4.4.6) we have e1 | n, e2 | n+ 1 and e3 | n+ 2 and therefore (e1, e2, e3) = 1.

Since we are summing over all triplets (e1, e2, e3) by the above properties we restrict our

attention to a smaller set

∆ = {(e1, e2, e3) : e1, e2, e3 ∈ Qy, ω(e1e2e3) ≤ φ,

Ω(e1e2e3)− ω(e1e2e3) ≤ φ, e1e2e3 ≤ x1/4, (e1, e2, e3) = 1}.

If (e1, e2, e3) ∈ ∆ then the sum S can be written as

S =
∑

(e1,e2,e3)∈∆

f(e1e2e3) | {n : n ≤ x, e(n) = e1, e(n+ 1) = e2, e(n+ 2) = e3} | . (4.4.8)

For a fixed (e1, e2, e3) ∈ ∆, n satisfies (4.4.6) if and only if the representation of (n, n+

1, n+ 2) has the following forms :

If n is odd :

n = e1m1 (m1, Py) = 1 (4.4.9)

n+ 1 = e2m2 (m2, Py) = 1 (4.4.10)

n+ 2 = e3m3 (m3, Py) = 1. (4.4.11)
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Otherwise, if n is even :

n = 2ẽ1m1 (m1, Py) = 1, ẽ1 = e1/2

n+ 1 = ẽ2m2 (m2, Py) = 1, ẽ2 = e2

n+ 2 = 2ẽ3m3 (m3, Py) = 1, ẽ3 = e3/2.

Note that in particular for each of the above case we have

(e1, e2) = (e2, e3) = (e1, e3) = 1 (4.4.12)

(ẽ1, ẽ2) = (ẽ2, ẽ3) = (ẽ1, ẽ3) = 1. (4.4.13)

Both the cases can be handled in a similar way. Here let us consider the case when n is

odd. First of all from (4.4.12) it follows that there exist unique integers ē1, ē2 and ē3 such

that the following holds

e3ē3 ≡ 1 (mod e1e2)⇒ e3ē3 ≡ 1 (mod e1), e3ē3 ≡ 1 (mod e2) (4.4.14)

e2ē2 ≡ 1 (mod e1), e1ē1 ≡ 1 (mod e2). (4.4.15)

Consequently from the above equations (4.4.14) and (4.4.15) we have

e2ē2 − e1ē1 = 1 (−e2 < ē1 ≤ 0) (4.4.16)

e3ē3 + e2ē2 = 1 (−e3 < ē2 ≤ 0). (4.4.17)

Now from (4.4.9),(4.4.10) and (4.4.11) we have

e2m2 − e1m1 = 1

e3m3 − e2m2 = 1.

Solving the above system of linear equations we get

m1 =
e3

e1
z − 2

e1

m2 =
e3

e2
z − 1

e2

m3 = z.

Then the positive integers m1,m2 and m3 satisfy

(n =) e1m1 = e2m2 − 1 = e3m3 − 2 ≤ x
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if and only if there exist a positive integer z such that

e3z ≡ 2 (mod e1)

e3z ≡ 1 (mod e2).

Now since (e1, e2) = 1 by Chinese Remainder Theorem we have

e3z ≡ 2e2ē2 + e1ē1 (mod e1e2),

or, z ≡ 2e2ē2ē3 + e1ē1ē3 (mod e1e2).

In other words there exist a positive integer r such that

m1 = e2e3r +
2(e2ē2e3ē3 − 1) + e1ē1e3ē3

e1
(4.4.18)

m2 = e1e3r +
2e2ē2e3ē3 + e1ē1e3ē3 − 1

e2
(4.4.19)

m3 = e1e2r + 2e2ē2ē3 + e1ē1ē3. (4.4.20)

Note that we clearly see that m1,m2 and m3 are linear polynomials in r with integral

coefficients and the latter fact follows from (4.4.14) and (4.4.15).

By (4.4.9)-(4.4.11),(4.4.18), (4.4.19) and (4.4.20), S can be rewritten as

S =
∑

(e1,e2,e3)∈∆

f(e1e2e3)

∣∣∣∣{r : r ≤ x+ 2− 2e2ē2e3ē3 − e1ē1e3ē3

e1e2e3
,

(m1m2m3, Py) = 1}
∣∣∣∣.

(4.4.21)

If (e1, e2, e3) ∈ ∆, then by definition of ∆ we have

e1e2e3 ≤ x1/4. (4.4.22)

Let us assume for simplicity that

g(x) =
x+ 2− 2e2ē2e3ē3 − e1ē1e3ē3

e1e2e3
.

Hence from (4.4.16) and (4.4.17) it follows that

x

e1e2e3
+ 1 + ē3 − 2e2ē2 ≥ g(x) ≥ x

e1e2e3
≥ x3/4. (4.4.23)
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Now we may assume that y < x3/4. Then by (4.4.23), Lemma 4.3.1 can be applied with

g(x) and m1m2m3 in place of x and F (n), respectively. We clearly see that each of these

linear polynomials m1,m2 and m3 are distinct and also direct calculation gives

B = a1a2a3(a1b2 − b2a1)(a2b3 − a3b2)(a1b3 − a3b1) = 2(e1e2e3)3 6= 0

and also

ρ(p) = 1 for p | B.

By (4.4.23),

v =
log
(
g(x)

)
log y

≥ 3

4
u.

Hence it follows from Lemma 4.3.1 that for (e1, e2, e3) ∈ ∆ we have

| {r : r ≤ g(x),

(
m1(r)m2(r)m3(r), Py

)
= 1} | (4.4.24)

= g(x)
∏
p|B

(
1− 1

p

)∏
p-B
p≤y

(
1− 3

p

)

×
(

1 +O

(
exp

(
−u

2
log u

)
+ exp(−

√
log x)

))
=

x

e1e2e3

∏
p|2(e1e2e3)3

(
1− 1

p

) ∏
p-2(e1e2e3)3

p≤y

(
1− 3

p

)

×
(

1 +O

(
exp

(
−u

2
log u

)
+ exp(−

√
log x)

))
+O(1) +O(ē3) +O(e2ē2).

Note that in the above estimate the main term depends only on the value of the product

e1e2e3. Thus we introduce the notation E = e1e2e3 and from (4.4.21) and (4.4.24) we

rewrite S in the following manner

S =
∑
E

| {(e1, e2, e3) : (e1, e2, e3) ∈ ∆, e1e2e3 = E} | (4.4.25)

× f(E)

(
x

E

∏
p|2E3

(
1− 1

p

) ∏
p-2E3

p≤y

(
1− 3

p

)

×
(

1 +O

(
exp

(
−u

2
log u

)
+ exp(−

√
log x)

))
+O(1) +O(ē3) +O(e2ē2)

)
.



CHAPTER 4. TRIPLE ORDER CORRELATION 36

where the sum E runs over all integers that can be expressed in the from E = e1e2e3 with

(e1, e2, e3) ∈ ∆ and we denote this set of integers by Γ. In other words

Γ = {E : E ∈ Qy, ω(E) ≤ φ,Ω(E)− ω(E) ≤ φ,E ≤ x
1
4 } (4.4.26)

and we have

| {(e1, e2, e3) : (e1, e2, e3) ∈ ∆, e1e2e3 = E} | (4.4.27)

= | {(e1, e2, e3) : e1e2e3 = E, (e1, e2) = (e2, e3) = (e1, e3) = 1} |

= 3ω(E).

From (4.4.26) it follows that we can drop the error terms O(1), O(ē3) and O(e2ē2) since they

are smaller than the other error terms. Hence from (4.4.25) and (4.4.27) it follows that

S = x
∑
E∈Γ

f(E)3ω(E)

E

∏
p|2E

(
1− 1

p

) ∏
p-2E
p≤y

(
1− 3

p

)

+O

(
x exp

(
−u

2
log u

)∑
E∈Γ

3ω(E)

E

∏
p|2E

(
1− 1

p

) ∏
p-2E
p≤y

(
1− 3

p

))

+O

(
x exp(−

√
log x)

∑
E∈Γ

3ω(E)

E

∏
p|2E

(
1− 1

p

) ∏
p-2E
p≤y

(
1− 3

p

))
.

We rewrite the sum S by adding new variables S1 and S2 as

S = xS1 +O

(
x exp

(
−u

2
log u

)
S2

)
+O(x exp(−

√
log x)S2). (4.4.28)

Then the first sum, say S1 in S can be handled as

S1 =
∑
E∈Γ

f(E)3ω(E)

E

∏
p|E

(
1− 1

p

)∏
p-E
p≤y

(
1− 3

p

)

=
∏

2≤p≤y
p 6=3

(
1− 3

p

)∑
E∈Γ

f(E)3ω(E)η(E)ψ(E)

E
.

Now as before we write

Γ1 = {E : E ∈ Qy, ω(E) > φ}

Γ2 = {E : E ∈ Qy,Ω(E)− ω(E) > φ}

Γ3 = {E : E ∈ Qy, E > x
1
4 }
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so that

Γ = Qy \ (Γ1 ∪ Γ2 ∪ Γ3).

From the above construction it follows that

S1 =
∏

2≤p≤y
p6=3

(
1− 3

p

)( ∑
E∈Qy

f(E)3ω(E)η(E)ψ(E)

E

+ O

( ∑
E∈Γ1∪Γ2∪Γ3

| f(E) | 3ω(E)η(E)ψ(E)

E

))

=
∏

2≤p≤y
p6=3

(
1− 3

p

) ∑
E∈Qy

f(E)3ω(E)η(E)ψ(E)

E
+O

(
(log y)−3

(∑
E∈Γ1

3ω(E)ψ(E)

E
+

∑
E∈Γ2

3ω(E)ψ(E)

E
+
∑
E∈Γ3

3ω(E)ψ(E)

E

))

=
∏

2≤p≤y
p6=3

(
1− 3

p

) ∑
E∈Qy

f(E)3ω(E)η(E)ψ(E)

E
+O

(
(log y)−3

( ∑
E∈Qy
ω(E)>φ

3ω(E)3ω(E)

E
+

∑
E∈Qy

Ω(E)−ω(E)>φ

3ω(E)3ω(E)

E
+

∑
E∈Qy
E>x1/4

3ω(E)ψ(E)

E

))

= M +O((log y)−3(M1 +M2 +M3)), say.

So now we need to estimate

S1 = M +O((log y)−2(M1 +M2 +M3)). (4.4.29)

Note that in order to estimate S1 we have to estimate each of the four terms M,M1,M2
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and M3. First we proceed to estimate the main term M with E ∈ Qy and we have

M =
∏

2≤p≤y
p 6=3

(
1− 3

p

) ∑
E∈Qy

f(E)3ω(E)η(E)ψ(E)

E

=
∏

2≤p≤y
p 6=3

(
1− 3

p

) ∞∑
i=1

∑
Ē∈Qy

3iĒ=E,3-Ē

f(3i)f(Ē)31+ω(Ē)ψ(Ē)

3iĒ

2

3

=
∏

2≤p≤y
p 6=3

(
1− 3

p

)
2
∞∑
i=1

f(3i)

3i

∑
Ē∈Qy

3-Ē

f(Ē)3ω(Ē)ψ(Ē)

Ē

= 2
∞∑
i=1

(
f(3)

3

)i ∏
2≤p≤y
p 6=3

(
1− 3

p

)(
1 +

∞∑
β=1

f(pβ)3ω(pβ)ψ(pβ)

pβ

)

= 2

∞∑
i=1

(
f(3)

3

)i ∏
2≤p≤y
p 6=3

(
1− 3

p

)(
1 + 3ψ(p)

∞∑
β=1

f(pβ)

pβ

)

=
∏
p≤y

θ(p)

where θ(p) is defined by (4.1.6). Now since f(n) is completely multiplicative then we have

θ(3) = 2
∞∑
i=1

(
f(3)

3

)i
=

2f(3)

3− f(3)
=

3 + 2f(3)− 3

3− f(3)

and

θ(p) =

(
1− 3

p

)(
1 + 3

p− 1

p− 3

f(p)

p− f(p)

)
=
p+ 2f(p)− 3

p− f(p)
for p 6= 3.

It remains to compute the error terms M1,M2 and M3 which appears in the sum S1 which

can be handled in the following way :-

M1 =
∑
E∈Qy
ω(E)>φ

3ω(E)3ω(E)

E
=

∑
E∈Qy
ω(E)>φ

9ω(E)

E
=
∑
k>φ

∑
E∈Qy
ω(E)=k

9k

E

≤
∑
k>φ

1

k!

(∑
p≤y

∞∑
α=1

9

pα

)k
=
∑
k>φ

1

k!

(
9
∑
p≤y

1

p− 1

)k
≤
∑
k>φ

1

k!
(18By)

k

and by Stirling’s formula

M1 �
∑
k>φ

(
54By
φ

)k
=
∑
k>φ

(
5

3
)−k � (

5

3
)−φ = O((log y)−45).
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So we have

M1 � (log y)−45. (4.4.30)

Similarly for M2 we write each E ∈ Qy with Ω(E)−ω(E) > φ in the form of E = r2s where

s is square-free. Then we have

φ < Ω(E)− ω(E) = 2Ω(r) + ω(s))− ω(E)

hence

Ω(r) >
1

2

(
φ+ ω(E)− ω(s)

)
>
φ

2
.

Therefore it follows that

r2 ≥ (2Ω(r))2 ≥ 2φ = 290By > (log y)54.

So we have

M2 =
∑
E∈Qy

Ω(E)−ω(E)>φ

3ω(E)3ω(E)

E

≤
∑
E∈Qy

Ω(E)−ω(E)>φ

9ω(E)

E

≤
∑

r2>(log y)54

∑
s∈Qy
|µ(s)|=1

9ω(r2s)

r2s

≤
∑

r>(log y)27

9ω(r)

r

∑
s∈Qy
|µ(s)|=1

9ω(s)

s

� (log y)−26
∏
p≤y

(
1 +

9

p

)
≤ (log y)−26 exp(9By).

Hence we have

M2 � (log y)−17. (4.4.31)

Now to estimate M3 we have

ψ(E) =
∏
pα‖E

ψ(pα)�
∏
p|E

(
1 +

1

p

)
.
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Hence it follows from above and (4.2.5)

M3 ≤
∑
E∈Qy
E>x1/4

3ω(E)ψ(E)

E
�

∑
E∈Qy
E>x1/4

3ω(E)

E

∏
p|E

(
1 +

1

p

)
.

The function

h(E) = 3ω(E)
∏
p|E

(
1 +

1

p

)
is multiplicative and

h(p) = h(p2) = . . . = h(pα) = . . . = 3

(
1 +

1

p

)
.

So we can apply Lemma 4.3.3 with K = 3, L = 3 and substituting x1/4 in place of z we

have

M3 � (log y)3 exp

(
− log x1/4

log y

)
= (log y)3 exp

(
−u

4

)
. (4.4.32)

Now all we need to calculate is the sum S2 appearing in the error term in S

S2 =
∑
E∈Γ

3ω(E)

E

∏
p|E

(
1− 1

p

)∏
p-E
p≤y

(
1− 3

p

)

=
∏
p≤y
p6=3

(
1− 3

p

)∑
E∈Γ

3ω(E)η(E)ψ(E)

E

� (log y)−3
∑
E∈Qy

3ω(E)

E

∏
p|E

(
1 +

1

p

)
.

Now we need to simplify ∑
E∈Qy

3ω(E)

E

∏
p|E

(
1 +

1

p

)
.

Since the sum is absolutely convergent we can express it as an Euler product and we get∑
E∈Qy

3ω(E)

E

∏
p|E

(
1 +

1

p

)
=

∏
p≤y

(
1 +

( ∞∑
α=1

3ω(pα)

pα

)(
1 +

1

p

))

=
∏
p≤y

(
1 +

( ∞∑
α=1

3

pα

)(
1 +

1

p

))

=
∏
p≤y

(
1 +

3(p+ 1)

p(p− 1)

)
.
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Now a little computation shows that

1 +
3(p+ 1)

p(p− 1)
= 1 +

3

p
+

6

p(p− 1)
=

(
1 +

3

p

)(
1 +

6

p2 + 2p− 3

)
≤

(
1 +

3

p

)
exp

(
6

p2 + 2p− 3

)
.

Since 2p− 3 ≥ 1 then
6

p2 + 2p− 3
≤ 6

p2
= O

(
1

p2

)
.

Thus substituting back in the original sum S2 we get

S2 � (log y)−3
∑
E∈Qy

3ω(E)

E

∏
p|E

(
1 +

1

p

)

= (log y)−3
∏
p≤y

(
1 +

3(p+ 1)

p(p− 1)

)

≤ (log y)−3
∏
p≤y

(
1 +

3

p

)
exp

(
6

p2 + 2p− 3

)

≤ (log y)−3
∏
p≤y

(
1 +

3

p

)
exp

(
O

(
1

p2

))

� (log y)−3
∏
p≤y

(
1 +

3

p

)
.

So we have

S2 = O(1). (4.4.33)

Now collecting the main term M and it follows from (4.4.28), (4.4.29), (4.4.30),(4.4.31),

(4.4.32) and (4.4.33) that

S = x
∏
p≤y

θ(p)

+ O

(
x(log y)−3

(
(log y)−45 + (log y)−17 + (log y)3 exp

(
−u

4

)))
+ O

(
x

(
exp

(
−u

2
log u

)
+ exp(−

√
log x)

))
= x

∏
p≤y

θ(p) +O

(
x

(
(log y)−20 + exp

(
−u

4

)
+ exp(−

√
log x)

))
.
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Now we see that

exp(−
√

log x)� max

{
(log y)−20, exp

(
−u

4

)}
.

So dropping the term exp(−
√

log x) we get

S = x
∏
p≤y

θ(p) +O

(
x

(
(log y)−20 + exp

(
−u

4

)))
. (4.4.34)

Finally we get the best possible error terms after comparing with the error terms we got

from N1, N2 and N3 respectively.



Chapter 5

Future directions

This dissertation mainly focuses on Chowla’s conjecture and its weaker version later formu-

lated by Cassaigne et al. There are some natural questions which arise from these topics

and some of these questions might be very difficult to solve. In this chapter, we have gath-

ered some of these questions with the hope of presenting a clearer picture for future work

surrounding these topics.

5.1 Consecutive integer case

The best unconditional upper and lower bound given by Harman, Pintz and Wolke [28] is,

−(1 + o(1))
1

3
<

1

x

∑
n6x

λ(n(n+ 1)) < 1− 1

(log x)7+ε
.

Can we improve the upper bound by a constant, or any function smaller than 1 − 1
log7x

?

Also proving (unconditionally) that

lim inf
x→∞

1

x

∑
n≤x

λ(n)λ(n+ 1) < 1− ε

for any ε > 0 will be a very interesting result.

5.2 Cassaigne et al. conjecture

In Chapter 2 and 3 we proved the Cassaigne et al. conjecture for quadratic polynomials with

integer and rational coefficients. The next step should be to prove cubic polynomials. So

43
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the first goal might be to show that λ(x3± 1) changes signs infinitely often. It is interesting

to note that λ(x3±1) = λ(x±1)λ(x2∓x+1) and we do know that each factor λ(x±1) and

λ(x2 ∓ x+ 1) changes signs infinitely often. It will also be interesting to show that for any

irreducible cubic of the form x3 + p where p is any prime, λ(x3 + p) changes signs infinitely

often.

5.3 Extending work of Kátai

In 2010 two Hungarian number theorists, Lazlo Germain and Imri Kátai [21] proved that∑
n≤x λ((n)(n + 1)) = o(x) under the assumption that there is an exceptional Siegel zero.

One might try to extend there idea to solve the parity problem conditionally for some other

integer polynomials of degree deg ≥ 2. More precisely, under what assumptions relating to

Siegel zeroes can one prove the parity problem for a general class of polynomials f(n) with

integer coefficients?

5.4 k-fold correlation

One could also try to generalize the results mentioned in Chapter 4 where we compute

the third order correlation of completely multiplicative functions. The next step should be

to prove the general case where for any fixed integer k we consider the k-fold correlation

function defined by the polynomial.

5.5 Chowla’s conjecture for finite fields

One natural direction is to study Chowla’s conjecture on polynomials over finite fields.

Recently Carmon and Rudnick [8] proved the following finite field version of Chowla’s con-

jecture.

Following their notations, let Fq be a finite field with q elements and Fq[x] the poly-

nomial ring over Fq. For any nonzero F we define µ(F ) = (−1)r if F = cP1 . . . Pr where

c ∈ F∗q , P1, . . . Pr are distinct monic irreducible polynomials and µ(F ) = 0 otherwise.
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Let Mn denote the set of monic polynomials of degree n over Fq. For r > 0, distinct

polynomials α1, . . . αr ∈ Fq[x], with degαj < n and εi ∈ {1, 2}, not all even, set

C(α1, . . . αr;n) :=
∑
F∈Mn

µε1(F + α1) . . . µεr(F + αr).

Carmon and Rudnick [8] proved that for n > 1, r > 1 we have

Theorem 5.5.1. Fix r > 1 and assume n > 1, q odd. Then for any choice of distinct

polynomials α1, . . . , αr ∈ Fq[x] with max degαj < n, εi ∈ {1, 2}, not all even

| C(α1, . . . αr;n) |≤ 2rnqn−
1
2 + 3rn2qn−1.

Thus under the assumption of the above theorem for fixed n > 1,

lim
q→∞

1

qn

∑
F∈Mn

µε1(F + α1) . . . µεr(F + αr) = 0.

So perhaps in a more general setting one might try to prove the following : fix a natural

number d. Let f(T ) be a polynomial of degree d over Fq, with f not a constant multiple

of a square. Then the sum of λ(f(A)), as A ranges over the monic polynomials of degree

n over Fq, is o(qn) as q → ∞, uniformly in the choice of f . Note that d is fixed and q is

tending to infinity. It might be possible to obtain something if d is allowed to tend infinity

much slower that q. This result is important as it can be seen as depicting the analogies

between the theory of rational primes and the distribution of irreducible polynomials over

finite fields. Therefore, proving this problem asserts the equidistribution of the parity of the

number of irreducible factors of a polynomial over finite fields.

5.6 A related Chowla’s conjecture on Liouville function

Let CM(−1, 1) denote the class of completely multiplicative functions taking values in

{−1, 1}. For any such f ∈ CM(−1, 1), let

N(f, x, ε1, ε2, . . . , εk) = | {n ≤ x : f(n+ i) = εi ∈ {−1, 1}, i = 1, . . . , k} | .

The following conjecture of Chowla which appeared in the work of Hildebrand [34] states

that
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Conjecture 3 (Chowla). For each of the 2k many choices of signs,

N(λ, x, ε1, . . . , εk)→∞ as x→∞.

Hildebrand [33] proved the first nontrivial case when k = 3 and he showed that each

of the eight sign patterns (±1,±1,±1) occurs infinitely often in the sequence (λ(n), λ(n +

1), λ(n + 2)), and remarked that the same is true for f ∈ CM(−1, 1) with f(2) = f(3) =

f(5) = f(7) = f(29) = f(31) = −1.

In the recent work of Y. Buttkewitz and C. Elsholtz [6], the authors study functions

f ∈ CM(−1, 1) at arguments with constant gap d. Assuming necessary conditions on f ,

it is shown that all sixteen patterns of length 4 occur infinitely often. While many of the

earlier results in this area use methods from analytic number theory, their work is of a rather

combinatorial nature and uses graph theory.

It is worth to mention that the above conjecture of Chowla was proved by Cassaigne et

al. [9] assuming Schinzel’s hypothesis H [52] but unconditionally its still open for k ≥ 4.

Heuristically one expects that

N(λ, x, ε1, ε2, . . . , εk) ∼
x

2k
,

for all of the 2k many sign combinations. Even for k = 2 one is very far away from a result

of this type as it goes back to establish the correlation function

lim
x→∞

1

x

∑
n≤x

λ(n)λ(n+ 1) = 0

which seems to be very hard at the moment.
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[30] D. R. Heath-Brown, A parity problem from sieve theory , 29 (1982), pp 1– 6.

[31] A.Hildebrand, Math Rev., review no. 95d:11099

[32] A. Hildebrand, Multiplicative functions at consecutive integers. II, Math. Proc. Camb.

Phil. Soc. (1988), 103, 389–398.

[33] A. Hildebrand, On consecutive values of the Liouville function, Enseign. Math. II. Sér.

32 (1986) 219–226.

[34] A. Hildebrand, Multiplicative Properties of Consecutive Integers, London Mathematical

Society Lecture Note Series (No. 247), Cambridge University Press pp. 103–118 (1997).

[35] H. Iwaniec, Sieving limits, In Séminaire de Théorie des Nombres, Paris 1979-80, pp.

151–169.
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