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Abstract

In a candidate gene association study the goal is to find associations between a trait of in-

terest and genetic variation at markers, such as single-nucleotide polymorphisms, or SNPs.

SNPs are grouped within candidate genes thought to influence the trait. Such grouping

imposes a tree structure on the hypotheses, with hypotheses about single-SNP associations

nested within gene-based associations. In this project we give a tutorial on the inheritance

procedure, a powerful new method for testing tree-structured hypotheses. We define sequen-

tially rejective procedures and show that the inheritance procedure is a sequentially rejective

procedure that strongly controls the family-wise error rate under so-called monotonicity and

single step conditions. We also show how to further improve power by taking advantage of

the logical implications among the nested hypotheses. The resulting testing strategy enables

more powerful detection of gene- and SNP-based associations, while controlling the chance

of incorrectly claiming that such associations exist.

Keywords: hierarchical testing; sequential testing; tree-structured hypotheses; family-

wise error rate; power
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Chapter 1

Introduction

This project is a tutorial on the inheritance procedure for multiple testing of tree-structured

hypotheses (Goeman and Finos, 2012). In this introduction, we will establish notation for

the statistical model and hypotheses to be tested, and review the basics of multiple testing.

We will also describe the type of multiple testing problem that motivated this project.

We then define tree-structured hypotheses and give an example of a tree of hypotheses to

illustrate ideas. The trees of hypotheses of interest to us are comprised of nested hypotheses

which induce so-called logical implications. We define logical implications and provide an

example. We conclude with an outline of the remainder of the project.

We begin by establishing notation for the statistical model that we are considering, the

collection of null hypotheses to be tested, and the sets of true and false null hypotheses.

Throughout we will refer to the following example linear regression model:

Y = β0 + β1X1 + β2X2 + β3X3 + ε (1.1)

where Y is the response; βk for k = 0, . . . ,3 are regression parameters; Xk for k = 1,2,3

are covariates; and ε is a random error term. To simplify the exposition, we will assume

that the error is from a known distribution; e.g., a Normal distribution with mean zero and

known variance. Let {PM ∶ M ∈ M} be the statistical model indexed by a set M. We will

refer to the M as parameters and M as the parameter space. For the example, in equation

(1.1) the parameter space is M = {(β0, β1, β2, β3) ∈ R4}. Let H denote a null hypothesis

and H denote the collection of all null hypotheses of interest. An example null hypothesis

is H1 ∶ β1 = 0. The collection of all null hypotheses of interest might be

H1 ∶ β1 = 0; H2 ∶ β2 = 0; H3 ∶ β3 = 0

1



CHAPTER 1. INTRODUCTION 2

along with their intersections

H12 ∶ β1 = β2 = 0; H13 ∶ β1 = β3 = 0; H23 ∶ β2 = β3 = 0; H123 ∶ β1 = β2 = β3 = 0

Each null hypothesis corresponds to a subset of the parameter space M. For example, the

hypothesis H1 ∶ β1 = 0 is the subset {(β0, β1, β2, β3) ∈ R4 ∶ β1 = 0}. Within H, some null

hypotheses are true and some are false, depending on the true probability measure under-

lying the data generating process. Let T (M) denote the collection of true null hypotheses

under the parameter M and F(M) = T (M)C denote the collection of false null hypotheses

under M . To see more precisely the dependence of T (M) on the parameter M , we can

proceed as follows. If M is the parameter, a true null hypothesis H under M is one that

contains M . For example, if the parameter in the example is M = (1,1,0,0), then the true

null hypotheses under M are H2 ∶ β2 = 0, H3 ∶ β3 = 0 and H23 ∶ β2 = β3 = 0. These are the

hypotheses that include the point β2 = β3 = 0. We can therefore express T (M) as the set of

all hypotheses that include M , or T (M) = {H ∈H ∶M ∈H}.
The project relies on standard notation and terminology for describing testing problems.

For testing a single hypothesis H, a type I error is the event that we reject H given that it

is a true null, and the type I error rate is the probability of this event. A type II error is

the event that we do not reject H given that it is a false null and the type II error rate is

the probability of this event. Power is the probability of rejecting H when it is false, which

is one minus the type II error rate.

A multiple testing procedure is one that tests the collection or family H of null hypothe-

ses of interest. For a multiple testing procedure, a type I error is the event that we reject

any of the true null hypotheses in T (M), and the probability of this event is the family-

wise error rate (FWER). Throughout this project we will study multiple testing procedures

that control FWER in the strong sense (Westfall and Young, 1993). Strong control of the

FWER at level α means that the probability of a type I error is less than or equal to α for

all possible T (M). By contrast, weak control means that the probability of type I error

is controlled for the complete null, in which all H ∈ H are true. We will not discuss weak

control any further. There are several possible definitions of the power of a multiple testing

procedure (e.g., Dudoit and van der Laan, 2007, p. 23). For this project, we will use the

term “powerful” to mean that a multiple testing procedure is better than others at detecting

false null hypotheses.

The type of multiple testing problem that motivated this project is the candidate gene
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association study. A prototype study has the following elements. The research focus is a

trait Y . This could be a binary indicator of disease status, or a quantitative measure such

as blood pressure or LDL cholesterol. Researchers have identified a list of genes thought

to influence the trait. These are the candidate genes. Within each gene, genetic variation

may be measured at markers known as single nucleotide polymorphisms, or SNPs. For this

project, information on the kth SNP will be summarized as a predictor variable Xk that

takes values 0, 1 or 2 for the number of copies of an index variant, or allele, at the SNP.

The goal of a candidate gene association study is to find SNPs that are associated with the

trait. There can be hundreds of SNPs tested.

In multiple testing problems such as a candidate gene study, the hypotheses have a tree

structure. The genes provide a natural top-level grouping of the SNP predictor variables.

Thus, we start looking for associations at the gene level, and then proceed to the SNP level

for genes that show an association with the trait. The genes themselves may be grouped

according to the network of genes, or pathway, that they belong to, but we will not discuss

such a higher-level grouping in this project.

Not only does a tree structure provide a natural way to organize the hypotheses but, as

argued by Meinshausen (2008), one should group hypotheses in order to improve the power

to detect associations. Meinshausen’s claim is illustrated with a multiple testing problem

that involves a single predictor (e.g., SNP) that is associated with a trait, and is highly cor-

related with several other predictors (e.g., other SNPs) that comprise a group (e.g., a gene).

In a genetic association study, alleles or variants at SNPs within the same gene are often

correlated in the population, or are in linkage disequilibrium (LD). LD can arise from recent

population admixture, by chance or by natural selection (e.g., Falconer and Mackay, 1996,

p. 16). The dependence among predictors yields unstable estimates in the joint analysis, to

the point where no single predictor can be detected to be associated. However, the group

as a whole is associated with the trait. Hence we choose to test the group first, so that we

at least detect the group association.

To illustrate a tree of hypotheses, we present the “toy example” from Goeman and Finos

(2012) in Figure 1.1. We refer to this as Example 1. Testing on this tree structure starts

with a test of the hypothesis at the root node N . If this hypothesis is rejected, we proceed

to test the hypotheses at the child nodes N1 and N2 of N . There is no order associated with

the testing of child nodes because they are tested simultaneously. Finally, if the hypothesis

at node N2 is rejected, we test the hypotheses at its child nodes N21 and N22.



CHAPTER 1. INTRODUCTION 4

N

N1 N2

N21 N22

Figure 1.1: Example tree-structured hypotheses

To make the Example 1 more concrete, suppose the hypotheses relate to testing for

an association between a quantitative trait and three SNPs with the linear model given in

equation (1.1). Suppose the first SNP is from one candidate gene and the second and third

SNPs are from another. The hypotheses to be tested are represented as nodes on the tree.

The top, or root node is the null hypothesis of no association between the SNPs and the

trait; i.e., N is H123 ∶ β1 = β2 = β3 = 0. The nodes at the next level are the null hypotheses of

no association between the trait and SNPs in the first and second genes, respectively; i.e.,

N1 is H1 ∶ β1 = 0 and N2 is H23 ∶ β2 = β3 = 0. The nodes in the bottom level are the null

hypotheses of no trait association with SNPs in the second gene; i.e., N21 is H2 ∶ β2 = 0 and

N22 is H3 ∶ β3 = 0. The leaves of the tree are the single-SNP hypotheses N1, N21 and N22.

In general, let L denote the leaf nodes of the tree and LH denote the set of descendant

leaves of node H. We use common tree-structure terminology to describe the relationships

between nodes of the tree, such as siblings, offspring, descendants, and ancestors. Examples

of these relationships in the diagram of Figure 1.1 are as follows. Nodes N21 and N22 are

siblings, and are the offspring of node N2. Nodes N1, N2, N21 and N22 are the descendants

of the root node N . The ancestors of node N21 are N2 and N .

We are interested in tree-structured testing problems in which the hypotheses on the

tree are nested, creating logical implications. Candidate gene studies provide an example of

nested hypotheses, with hypotheses about single-SNP association nested within those about

gene-based association. The logical implication between hypotheses induced by such nesting

is that falseness of the hypothesis of no association between the trait and any of the SNPs

within a gene implies falseness of at least one of the single-SNP hypotheses. For example, in

Example 1 a logical implication exists between the gene-based hypothesis H23 ∶ β2 = β3 = 0

(node N2 in Figure 1) and the single-SNP hypotheses H2 ∶ β2 = 0 and H3 ∶ β3 = 0 (nodes
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N21 and N22, respectively, in Figure 1). Since H23 is the intersection of H2 and H3, false-

ness of H23 implies falseness of at least one of H2 or H3. As noted by Goeman and Finos

(2012), in some situations (such as gene-set testing) hypotheses may follow a tree structure,

but logical implications need not hold. We therefore distinguish between tree-structured

hypotheses with and without logical implications.

The goal of the project is to explain the inheritance procedure (Goeman and Finos, 2012)

for testing tree structured hypotheses with logical implications. The inheritance procedure

is first developed to exploit the tree structure, but not logical implications. This basic

inheritance procedure is then extended to exploit logical implications. Both formulations

of the inheritance procedure, basic and extended, are designed to be sequentially rejective

procedures in the sense of Goeman and Solari (2010). To prove that the two forms of the

inheritance procedure control the FWER, Goeman and Finos (2012) show that they satisfy

the conditions under which a sequentially rejective procedure controls the FWER.

An overview of the remainder of this project is as follows. We describe sequentially re-

jective procedures first (Chapter 2), and then the basic and extended inheritance procedures

(Chapter 3) as special cases.



Chapter 2

Sequentially Rejective Procedures

In this chapter we define sequentially rejective multiple testing procedures (Goeman and

Solari, 2010) and sufficient conditions under which they strongly control the FWER. Se-

quentially rejective procedures that satisfy two conditions, the monotonicity and single-step

conditions, guarantee strong control of the FWER. The inheritance procedure is a sequen-

tially rejective procedure. In particular, it is a so-called Bonferroni-Shaffer procedure. To

facilitate understanding of the inheritance procedure, we next discuss the monotonicity and

single-step conditions, both in the general case and in the special case of a Bonferroni-Shaffer

procedure. The exposition is focused on an intuitive understanding of how the monotonicity

and single-step conditions guarantee strong control of the FWER.

2.1 Definitions and Notation

The purpose of this section is to define sequentially rejective procedures and the notation

used to describe them. We start with general definitions and notation, and then specialize

to Bonferroni-Shaffer methods, which compare raw p-values to multiplicity-adjusted levels

of tests of single hypotheses.

A sequentially rejective procedure is defined to be a sequence of single-step procedures.

A single-step procedure is a multiple testing procedure that tests all currently-unrejected

hypotheses simultaneously. The sequential procedure is initialized by declaring all hypothe-

ses to be unrejected. At each step, a single-step procedure is used to test the currently-

unrejected hypotheses, with a rejection rule that can depend on the set of previously-rejected

hypotheses. The sequential procedure is terminated when the single-step procedure does

6
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not reject any further hypotheses.

Goeman and Solari define the following general notation to describe sequentially rejec-

tive procedures more precisely. Recall the notation H for the collection of all null hypotheses

of interest. For a set R ⊆ H, write RC for its complement within H. Let Ri denote the

rejected set of hypotheses after step i of the sequentially rejective procedure. Let N (Ri)
denote the set of hypotheses that are rejected by the single-step procedure given that the

hypotheses in Ri have already been rejected. The function N (⋅) is called the successor

function. With this notation, a sequentially rejective procedure starts with

R0 = ∅

and iterates on

Ri+1 =Ri ∪N (Ri)

until there are no more rejections. Note that the successor function is only used to add

rejected hypotheses to the set already rejected in Ri. There is no need for the successor

function to return hypotheses already in Ri. We may therefore assume that N (Ri) ⊆ RCi .

Goeman and Solari do not explicitly make this assumption part of their general definition

of the successor function, but it seems to underlie much of their thinking, and it simplifies

the exposition.

An important class of multiple testing procedures are the Bonferroni-Shaffer methods

(Goeman and Solari, 2010) that compare raw p-values to multiplicity-adjusted levels of tests

of single hypotheses. A Bonferroni-Shaffer sequentially rejective procedure is defined by its

successor function, as follows. Let {pH}H denote the raw p-values for each hypothesis H

in H. The raw p-values have the property that for every parameter value M ∈ M and

H ∈ T (M), PM(pH ≤ α) ≤ α. In a Bonferroni-Shaffer approach, the single-step procedure

rejects hypotheses H with raw p-value, pH , less than a multiplicity-adjusted level, αH(R),
of the test of the single hypothesis H, given that the hypotheses in R have already been

rejected. That is, the successor function N (R) for a Bonferroni-Shaffer procedure is

N (R) = {H ∈RC ∶ pH ≤ αH(R)}.

2.2 Sufficient Conditions for Strong Control of the FWER

We now present the single-step and monotonicity conditions under which a sequentially

rejective procedure strongly controls FWER. Monotonicity is used by Goeman and Solari



CHAPTER 2. SEQUENTIALLY REJECTIVE PROCEDURES 8

(2010) to reduce the problem of familywise error control of the sequentially rejective proce-

dure to one of familywise error control of the single-step procedure in a particular scenario

they call the “critical case”. The single-step condition is familywise error control of the

single-step procedure in this critical case. The two conditions are first stated in full gen-

erality, and then specialized to the case of Bonferroni-Shaffer methods. In this section we

highlight the intuition for why the monotonicity and single-step conditions are sufficient to

control FWER.

2.2.1 The Monotonicity Condition

The monotonicity condition specifies that, for already-rejected sets of hypothesesR and S in

H, such that R ⊆ S, the new rejected hypotheses of a procedure provided by the “successor

function” N (⋅) should follow:

N (R) ⊆ N (S) ∪ S. (2.1)

We provide two alternate expressions for the monotonicity condition, one that justifies

the name, and another that will be used to simplify the condition for Bonferroni-Shaffer

procedures. Under the monotonicity condition, rejection sets grow monotonically as more

hypotheses are rejected, which can be seen as follows. Since R ⊆ S we may rewrite equa-

tion (2.1) as

N (R) ∪R ⊆ N (S) ∪ S. (2.2)

Thus, whenever R ⊆ S, N (R)∪R, the rejection set after applying the single-step procedure

to R, is contained in N (S)∪S, the rejection set after applying the single-step procedure to

S. An alternate form of the monotonicity condition (2.1) to be used later is

N (R) ∩ SC ⊆ N (S), (2.3)

which follows from simple set manipulations.

We now show how the monotonicity condition reduces the problem of familywise error

control of the sequentially rejective procedure to one of familywise error control of the single-

step procedure in a “critical case”. For a given parameter M , let the critical case be that

all of the false null hypotheses in F(M) and none of the true null hypotheses in T (M) have

been rejected. In the critical case, the single-step procedure makes no false rejections if

and only if the newly rejected set N (F(M)) is empty. Under monotonicity, N (F(M)) = ∅
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implies that the sequentially rejective procedure makes no false rejections. To see why,

suppose N (F(M)) = ∅ and apply the monotonicity condition (2.2) to the initial rejection

set R0. By definition R0 = ∅ and so R0 ⊆ F(M). Hence,

R1 = N (R0) ∪R0 ⊆ N (F(M)) ∪F(M) = F(M); i.e., R1 ⊆ F(M)

Next, since R1 ⊆ F(M), we may apply the monotonicity condition (2.2) again to get

R2 = N (R1) ∪R1 ⊆ N (F(M)) ∪F(M) = F(M); i.e., R2 ⊆ F(M)

and so on for R3, . . .. Thus, N (F(M)) = ∅ implies that the entire sequence of rejection

sets for the sequentially rejective procedure are subsets of the set of false nulls. Thus, the

sequentially rejective procedure makes no false rejections, as claimed. The key implication

of monotonicity is that the event of no false rejections of the single-step procedure in the

critical case implies the event of no false rejections of the sequentially rejective procedure.

This implication allows us to control the family-wise error rate of the sequentially rejective

procedure (i.e., the probability that it has no false rejections) by controlling the probability

of no false rejections of the single-step procedure in the critical case. We discuss these ideas

more fully in the Section 2.2.2.

For a Bonferroni-Shaffer procedure, Goeman and Solari claim that the monotonicity

condition becomes

αH(R) ≤ αH(S) ∀H ∈ SC (2.4)

where α(R) is the multiplicity-adjusted level of the test of a single hypothesis H, given that

the hypotheses in R have already been rejected. To see why, we start with the definition of

the successor function of a Bonferroni-Shaffer procedure

N (R) = {H ∈RC ∶ pH ≤ αH(R)}, (2.5)

and the monotonicity condition from equation (2.3). Note that both sides of equation (2.3)

are subsets of SC , and so the condition can be re-written as

∀H ∈ SC , H ∈ N (R)⇒H ∈ N (S). (2.6)

From the definition of the successor function N (R) in equation (2.5), H is in the newly

rejected set N (R) if and only if pH ≤ αH(R) and H is in the newly rejected set N (S) if

and only if pH ≤ αH(S). Thus the monotonicity condition in equation (2.6) becomes

∀H ∈ SC , pH ≤ αH(R)⇒ pH ≤ αH(S),
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which is true if and only if αH(R) ≤ αH(S) for all H ∈ SC ; i.e., if and only if equation

(2.4) holds. In Chapter 3 we show how the inheritance procedure satisfies the monotonicity

condition (2.4).

To summarize: The monotonicity condition reduces the problem of familywise error

control of the sequentially rejective procedure to one of familywise error control of the

single-step procedure in the critical case when all of the false null hypotheses in F(M) have

already been rejected. In particular, under monotonicity, no false rejections of the single-

step procedure in the critical case implies no false rejections of the sequentially rejective

procedure. For Bonferroni-Shaffer methods, the monotonicity condition simplifies to

αH(R) ≤ αH(S) ∀H ∈ SC for any sets of rejected hypotheses R and S, such that R ⊆ S. (2.4)

2.2.2 The Single-step Condition

The single-step condition is the control of familywise error in the critical case where all false

null hypotheses in F(M) have been rejected and none of the true null hypotheses in T (M)
have been rejected. Specifically, the condition is that for all parameter values M ,

PM(N (F(M)) = ∅) ≥ 1 − α (2.7)

where α is the level at which to control the FWER. To show that a sequentially rejective

procedure that obeys the single-step and monotonicity conditions also controls the FWER,

we will use the form (2.7) of the single-step condition. To simplify the single-step condition

for Bonferroni-Shaffer procedures, we will use the complementary form:

PM(N (F(M)) /= ∅) ≤ α for every M ∈M. (2.8)

The formulations (2.7) and (2.8) differ from the single-step condition given by Goeman

and Solari (2010), which is

PM(N (F(M)) ⊆ F(M)) ≥ 1 − α. (2.9)

However, equivalence of our formulations (2.7)/(2.8), and Goeman and Solari’s (2.9) follows

from equivalence of the events

{N (F(M)) ⊆ F(M)} ,

and

{N (F(M)) = ∅} .
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This equivalence arises because we have assumed that a set of newly-rejected hypotheses

N (R) is in the complement of the already-rejected hypotheses R and, hence, N (R) can

only be a subset of R if it is empty.

We now discuss why a sequentially rejective procedure that obeys the single-step and

monotonicity conditions controls the FWER. Let R∞ be the totality of rejected hypotheses

from the sequentially rejective procedure (i.e. the final rejection set). The event that the

procedure does not make a familywise error is equivalent to the event {R∞ ⊆ F(M)} that

the final rejection set is a subset of the set of false null hypotheses F(M). For a procedure

that obeys the monotonicity condition, the event {R∞ ⊆ F(M)} is implied by the event

{N (F(M)) = ∅} of no false rejections in the critical case of all false nulls having already

been rejected; i.e.,

{N (F(M)) = ∅}⇒ {R∞ ⊆ F(M)}. (2.10)

Therefore, combining the monotonicity condition (2.10) and the single-step condition (2.7)

gives control of the probability of no familywise error:

PM(R∞ ⊆ F(M)) ≥ PM(N (F(M)) = ∅) ≥ 1 − α.

Hence a sequentially rejective procedure that obeys the single-step and monotonicity con-

ditions controls the FWER.

For Bonferroni-Shaffer procedures, the single-step condition (2.8) can be specialized to

the following:

PM
⎛
⎝ ⋃
H∈T (M)

{pH ≤ αH(F(M))}
⎞
⎠
≤ α for every M ∈M. (2.11)

Equivalence of conditions (2.11) and (2.8) amounts to equivalence of the events

⎧⎪⎪⎨⎪⎪⎩
⋃

H∈T (M)
{pH ≤ αH(F(M))}

⎫⎪⎪⎬⎪⎪⎭

and

{N (F(M)) /= ∅}.

Recall that N (F(M)) is the set of newly-rejected hypotheses given that all false null hy-

potheses, F(M), have previously been rejected. Therefore, the event {N (F(M)) /= ∅} is

that at least one of the true null hypotheses in T (M) is rejected in the new step. For a
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Bonferroni-Shaffer method, this means that one or more of the p-values for testing hypothe-

ses in T (M) was less than its corresponding α-value. Thus, the event {N (F(M)) /= ∅} is

the union over H ∈ T (M) of the events {pH ≤ αH(F(M))}; i.e.,

{N (F(M)) /= ∅} =
⎧⎪⎪⎨⎪⎪⎩

⋃
H∈T (M)

{pH ≤ αH(F(M))}
⎫⎪⎪⎬⎪⎪⎭
,

as claimed. It follows that the general single-step condition (2.8) is equivalent to the condi-

tion (2.11) for Bonferroni-Shaffer procedures.

We now discuss the “Bonferroni-Shaffer inequality” (Goeman and Solari, 2010), which

can be used to create Bonferroni-Shaffer procedures that satisfy the single-step condition.

Our particular interest is in a special case of the Bonferroni-Shaffer inequality that is relevant

to our discussion of the inheritance procedure in Chapter 3:

PM
⎛
⎝ ⋃
H∈T (M)

{pH ≤ αH(F(M))}
⎞
⎠
≤ ∑
H∈T (M)

PM (pH ≤ αH(F(M))) = ∑
H∈T (M)

αH(F(M)).

(2.12)

The inequality in equation (2.12) is Boole’s inequality. The final equality follows from the

assumption that the p-values, pH , satisfy PM(pH ≤ α) = α for true null hypothesesH ∈ T (M)
and 0 < α < 1. To guarantee the single-step condition (2.11), we use the special case of the

Bonferroni-Shaffer inequality in equation (2.12). Specifically, we choose the level functions

αH(⋅) of the tests of single hypotheses given the set of previously rejected hypotheses such

that

∑
H∈T (M)

αH(F(M)) ≤ α for all M ∈M. (2.13)

In Chapter 3 we show how the inheritance procedure satisfies the single-step condition

(2.13).

To summarize: The single-step condition is that the single-step procedure controls the

probability of no false rejections in the critical case when all false null hypotheses and none

of the true null hypotheses have been rejected. Bonferroni-Shaffer procedures, such as the

inheritance procedure, can guarantee the single-step condition by choosing the levels of the

tests of single hypotheses such that ∑H∈T (M) αH(F(M)) ≤ α for all M ∈M.



Chapter 3

The Inheritance Procedure

The goal of this chapter is to describe the inheritance procedure (Goeman and Finos, 2012)

for testing tree-structured hypotheses with logical implications. Recall that logical implica-

tions exist when falseness of a hypothesis implies falseness of at least one of its offspring.

We begin by describing a basic form of the inheritance procedure that does not make use

of logical implications amongst hypotheses. This basic form is then extended to exploit the

logical implications. We show that both forms of the inheritance procedure are Bonferroni-

Shaffer procedures that obey the monotonicity and single-step conditions defined in Chapter

2. Satisfying these conditions guarantees strong control of the FWER. Using Example 1,

we illustrate how the extended inheritance procedure sets the level of individual tests of

logically-related hypotheses. We also point out an R package that implements the extended

inheritance procedure for tree-structured hypotheses of the effects of covariates.

3.1 Basic Procedure

In this section we state the basic inheritance procedure for tree-structured hypotheses that

does not make use of logical implications among hypotheses. To help fix ideas, the discus-

sion in the main part of this section is brief on some key points, with expanded discussions

appearing in subsections at the end. The basic inheritance procedure is extended to exploit

logical implications in Section 3.2.

The basic inheritance procedure is a Bonferroni-Shaffer procedure that starts by testing

the hypothesis at the root of the tree structure and then moves towards the hypotheses in the

leaves, as illustrated in Example 1 of the Introduction. The levels of the tests of individual

13
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hypothesis are treated like “wealth” that is “inherited” through the tree. In particular, if a

hypothesis is rejected at some step of the procedure (analogous to death), its “alpha wealth”

is inherited to unrejected hypotheses that are related. For example, the alpha wealth of a

hypothesis may go to its children on the tree, if it has any. If the hypothesis doesn’t have

children, its alpha wealth may go to its unrejected siblings. If the hypothesis doesn’t have

children or unrejected siblings, its wealth may go to its cousins, etc. Inheritance is specified

by an “heir function” h(⋅) that takes a hypothesis H as its argument, and returns a list of

hypotheses that are the heirs of H. The precise definition of h(⋅) and an illustration of how

it leads to the kind of inheritance described above is deferred to Section 3.1.2.

When a rejected hypothesis passes on alpha wealth to its heirs, the amount of wealth

that each heir receives is proportional to its hypothesis-specific weight. The weight for a

hypothesis is defined to be the sum of the weights of all leaf hypotheses that are its descen-

dants; i.e., wH = ∑L∈LH
wL, where wH is the weight for hypothesis H and LH is the set of

leaf hypotheses that are descendants of H. By default, the weight of each leaf hypothesis is

one, but Goeman and Finos (2012) allow for alternate schemes in which the leaf hypotheses

have unequal weights.

The basic inheritance procedure may be stated in terms of the heir function and hy-

pothesis weights, as follows (quoted directly from Goeman and Finos, 2012, page 4):

Inheritance procedure without logical implications

1. Set αT =α for the root node T and αH = 0 for all other hypotheses.

2. Reject all H for which pH ≤ αH .

3. Inherit the αH of every rejected hypotheses to its heirs, proportional to the weight of

each heir, setting,

αK = αK + αH wK

∑
J∈h(H)

wJ
for all K ∈ h(H) (3.1)

and setting αH = 0.

4. Repeat 2) and 3) until convergence, i.e., when αH does not change for any H between

subsequent steps.
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We show that the basic inheritance procedure is a Bonferroni-Shaffer procedure in Sec-

tion 3.1.1, and that it obeys the monotonicity and single-step conditions in Section 3.1.3.

Goeman and Finos (2012) note the connection between their inheritance procedure and

other multiple testing procedures that can be described similarly, but with different choices

for the heir function and weights. As our focus is on the inheritance procedure, we will not

elaborate on comparisons to other multiple testing procedures.

Goeman and Finos claim that their method of inheriting alpha wealth leads to more

interpretable results. Inheritance of alpha wealth has the effect of adaptively concentrating

the level of the tests for hypotheses, in parts of the tree where hypotheses have previously

been rejected. A concentration of the level of tests for hypotheses in certain parts of the

tree will tend to result in clusters of rejected hypotheses. Goeman and Finos (2012) claim

that such clusters of rejected hypotheses are more interpretable than rejected hypotheses

scattered throughout the tree. Rejected hypotheses scattered throughout the tree are more

likely with a procedure that distributes alpha wealth evenly among all unrejected hypothe-

ses.

In the following subsections we expand on some of the points that were discussed only

briefly in the above description of the basic inheritance procedure. In Section 3.1.1 we show

that the basic inheritance procedure is a Bonferroni-Shaffer procedure. In Section 3.1.2 we

give a detailed description of the heir function. Finally, in Section 3.1.3 we show that the

basic inheritance procedure obeys the monotonicity and single-step conditions, and hence

has strong control of the FWER.

3.1.1 Basic Inheritance is a Bonferroni-Shaffer Procedure

In this subsection, we show that the basic inheritance procedure is a Bonferroni-Shaffer pro-

cedure. Recall that a Bonferroni-Shaffer procedure is a sequence of single-step procedures.

Each step tests all currently-unrejected hypotheses simultaneously, using a rejection rule

that can depend on the set of previously-rejected hypotheses. Specifically, when hypotheses

in R have already been rejected, the single-step procedure rejects every hypothesis H /∈ R
with p-value pH less than a well-defined, multiplicity-adjusted level αH(R).

The basic inheritance procedure can be seen to be a Bonferroni-Shaffer procedure as

follows. The procedure starts with an initialization of the rejection rule (i.e., initialization

of alpha wealth) for all hypotheses, and then iterates between the following two steps until

no further hypotheses are rejected:
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Single-step procedure. Consider all currently-unrejected hypotheses in RC . For every

H ∈ RC , reject H if pH is less than the alpha wealth of H, where the alpha wealth

of H depends on the position of H in the tree of hypotheses, the set of previously

rejected hypotheses in R and the desired FWER α.

Update of alpha wealth. Inherit the alpha wealth of every rejected hypothesis to its

heirs.

Thus, in the basic inheritance procedure the rejection rule for the single-step procedure is

in the spirit of a Bonferroni-Shaffer procedure because it compares p-values to the “alpha

wealth” or multiplicity-adjusted levels of individual tests. What remains is to show that the

alpha wealth for a hypothesis H ∈ RC can be expressed as a well-defined function αH(R)
of R. In Appendix A it is shown that

αH(R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

wH

wT
α ∏
K∈an(H)

mK(R), an(H) ⊆R,

0 otherwise.
(3.2)

where an(H) denotes the set of all ancestors of hypothesis H and

mK(R) =
wK

∑
J∈ch(K)−E(R)

wJ
. (3.3)

In establishing equation (3.2), Goeman and Finos (2012) show that the alpha allocation

for hypotheses outside a given rejection set R does not depend on how one arrives at R.

Therefore, for H ∈ RC , αH(R) is a well-defined function of R alone, and does not depend

on the order of rejection sets or the number of steps leading to R.

3.1.2 The Heir Function

The heir function h(⋅) takes a hypothesis as its argument and returns a list of its heirs.

As shown below, the list of heirs depends on the current set of rejected hypotheses R. To

highlight the dependence on the rejection set, we write the heir function as hR(⋅). The

purpose of the heir function is to transfer the inheritance of alpha wealth from a rejected

hypothesis to its unrejected relatives. To motivate the definition of Goeman and Finos

(2012) [see equation (3.5) below] we discuss two examples. The first is Example 1 and the

second is a new example, Example 2, that illustrates the key concept of extinct clades.

With the tree of hypotheses from Example 1, we will illustrate the inheritance of alpha
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wealth, highlighting how heirs are defined, how their definition depends on the rejection

set, and how they are used to inherit wealth from rejected hypotheses to their unrejected

relatives. To help fix ideas, we will not focus on the exact amount of wealth being passed

to heirs. We will, however, keep track of which unrejected hypotheses on the tree have

positive alpha wealth, and will focus the discussion on the tests of these hypotheses. Since

the single-step procedure rejects hypotheses whose p-values are less than their alpha wealth,

we know that hypotheses with zero alpha wealth can not be rejected.

1. The basic inheritance procedure starts by testing all currently-unrejected hypotheses,

which is the set of all hypotheses. Initially the hypothesis at the root node N is the

only hypothesis on the tree with positive alpha wealth. All other hypotheses have

zero alpha wealth, but this will change due to inheritance as the procedure moves

through the tree. Suppose the hypothesis at N is rejected, so that the first set of

rejected hypotheses is R1 = {N}. The heirs of N are its children N1 and N2. Each

heir inherits part of N ’s alpha wealth. Thus, at the end of the first step, N1 and N2

are the only hypotheses with positive alpha wealth. All others have zero wealth.

2. The second step is to test all currently-unrejected hypotheses. As described above, this

amounts to testing single hypotheses having positive alpha wealth. In the example,

such hypotheses are the heirs N1 and N2. Suppose the hypothesis at N1 is not rejected

but the hypothesis at N2 is, so that the second set of rejected hypotheses is R2 =
{N,N2}, represented by the red nodes on the following diagram.

N

N1 N2

N21 N22

The heirs of N2 are its children N21 and N22. Each heir inherits part of N2’s alpha

wealth. Thus, at the end of the second step, hypotheses N1, N21 and N22 have positive

alpha wealth. All others have zero wealth.

3. The third step is to test all currently-unrejected hypotheses, which amounts to testing

the single hypotheses at nodes N1, N21 and N22 having positive alpha wealth. Since
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N1’s alpha wealth has not changed since the second step, we know it will not be

rejected at this step of the procedure, and we focus on testing the hypotheses at nodes

N21 and N22. Suppose that N21 is rejected, but N22 is not, so that the third set of

rejected hypotheses isR3 = {N,N2,N21}, represented by the red nodes in the following

updated diagram.

N

N1 N2

N21 N22

Node N21 has no children, so its alpha wealth should be inherited by its nearest

unrejected relative, which is its sibling N22. Though N22 inherits the wealth of its

sibling N21, it is not an heir of N21. Heirs must always be children or parents. In

this case, the parent N2 is the heir of N21’s wealth. However, since N2 has already

been rejected, the inherited wealth from N21 is immediately passed to its child N22,

an unrejected hypothesis. At the end of the third step, hypotheses N1 and N22 have

positive alpha wealth. All others have zero wealth.

4. The fourth step of the basic inheritance procedure is to test all currently-unrejected

hypotheses, which are at nodes N1 and N22. Both of these hypotheses have positive

alpha wealth. The alpha wealth ofN1 has not changed, but the wealth ofN22 has. Sup-

pose with the addition of alpha wealth inherited from N21, the hypothesis in node N22

is now rejected, so that the fourth set of rejected hypotheses is R4 = {N,N2,N22,N21},
represented by the red nodes in the following updated diagram.

N

N1 N2

N21 N22

N22 has no children and no unrejected hypotheses in its immediate family, so its alpha

wealth should be inherited by its nearest unrejected relative, which is its aunt N1.
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Though N1 inherits the wealth of its niece N22, it is not an heir of N22. In this case

the parent N2 is the heir of N22, and the grandparent N is the heir of the parent

N2. Since N has already been rejected, the inherited wealth from N22 (via N2) is

immediately passed to its child N1, an unrejected hypothesis. At the end of the fourth

step, the only node with positive alpha wealth is N1.

5. The fifth and final step of the basic inheritance procedure is to test the currently-

unrejected hypothesis N1. Regardless of whether or not hypothesis N1 is rejected, the

procedure will terminate and no alpha wealth will be inherited.

For each of the inheritances in the preceding description, alpha wealth was passed from

a rejected hypothesis to an unrejected relative through one or more heirs. The heirs of each

node were either its unrejected children, if they existed, or its parent. This suggests the

following working definition for the heir function.

hR(H) =
⎧⎪⎪⎨⎪⎪⎩

ch(H) −R if H has unrejected children

pa(H) otherwise
(3.4)

where ch(H) denotes the children of H and pa(H) denotes the parent of H. As shown in

the next example, this working definition is not sufficient to inherit wealth from a node to

its cousin.

Example 2 is the tree of hypotheses from Example 1 augmented by nodes N11 and N12

that are the children of N1, as illustrated in Figure 3.1.

N

N1

N11 N12

N2

N21 N22

Figure 3.1: Second example of tree-structured hypotheses

1. Suppose that the first two steps of the basic inheritance procedure applied to this

example have resulted in rejection of N , N1 and N2; i.e., the first two rejection sets

are R1 = {N} and R2 = {N,N1,N2}. The nodes with positive alpha wealth at the end
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of these two steps will be the leaf nodes N11, N12, N21 and N22. All other nodes have

zero wealth.

2. The third step is to test all currently-unrejected hypotheses, which are at the leaf

nodes. All of the leaf nodes have positive alpha wealth. Suppose the hypothesis at

N12 is not rejected, but that N11, N21 and N22 are rejected, so that the third set of

rejected hypotheses is R3 = {N,N1,N2,N11,N21,N22}, represented by the red nodes

in the following diagram.

N

N1

N11 N12

N2

N21 N22

The rejected nodes N11, N21 and N22 have no children and should inherit their alpha

wealth to their nearest unrejected family member, node N12. Though N12 inherits

the wealth of N11, N21 and N22 it is not an heir of any of them. To illustrate ideas,

let us focus on the wealth N12 inherits from its cousin N21. N2 is the heir of N21,

and N is the heir of N2. The next steps should be to specify N1 as the heir of N

and, finally, N12 as the heir of N1. According to equation (3.4), while N12 is the

heir of N1, N1 is not the heir of N because it has already been rejected. In fact,

according to equation (3.4), N has no heirs because both of its children have already

been rejected. Thus, equation (3.4) needs to be modified so that N1 is the heir of N .

Goeman and Finos (2012) circumvent these problems by defining what we refer to as

“extinct clades”. In the example, the rejected node N2 has only rejected descendants

and is therefore defined to be in an extinct clade. By contrast, the rejected nodes N

and N1 have an unrejected descendant N12 and are therefore defined to be outside

of an extinct clade. For a given rejection set R, the set of nodes in extinct clades is

denoted E(R) and is formally defined as

E(R) = {H ∈R ∶ of(H) ⊆R}

where of(H) is the collection of descendant, or offspring nodes of H, with the con-

vention that of(H) = ∅ when H is a leaf node. For example, E(R3) = {N2,N21,N22}.
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The rejected node N1 will be an heir of the rejected node N if we define heirs to be

children outside of extinct clades. A revised definition of the heir function is therefore

hR(H) =
⎧⎪⎪⎨⎪⎪⎩

ch(H) − E(R) if any such children exist

pa(H) otherwise
(3.5)

With the revised definition of the heir function in equation (3.5), N1 is the heir of N .

3.1.3 The Monotonicity and Single-Step Conditions

In this subsection, we show that the basic inheritance procedure obeys the monotonicity

and single-step conditions. Hence, the basic inheritance procedure has strong control of the

FWER.

1. Monotonicity condition

Recall from Section 3.1.1 that the basic inheritance procedure is a Bonferroni-Shaffer

procedure. In Chapter 2 we saw that for a Bonferroni-Shaffer procedure the mono-

tonicity condition simplifies to the requirement that the alpha wealth or test levels of

unrejected hypotheses do not decrease as more hypotheses are rejected. The basic in-

heritance procedure fulfills this requirement because the alpha wealth of an unrejected

hypothesis either stays the same, or increases by inheritance as more hypotheses are

rejected.

2. Single-step condition

Recall that the single-step condition is familywise error control for any parameter

value M when all the false null hypotheses in F(M) have been rejected and none of

the true null hypotheses in T (M) have been rejected. In Chapter 2 we saw that for a

Bonferroni-Shaffer procedure the single-step condition simplifies to

∑
H∈T (M)

αH(F(M)) ≤ α for all M ∈M. (2.13)

where αH(R) denotes the alpha wealth for hypothesis H given the set R of previously-

rejected hypotheses. Equation (2.13) says that, when F(M) is the rejection set, the

total amount of alpha wealth among hypotheses outside of F(M) (i.e., in T (M)) is

no bigger than α. For sets R of previously rejected hypotheses,

∑
H∈RC

αH(R) ≤ α (3.6)
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because, at each step of the procedure, the total alpha wealth α stays the same, and is

allocated to the currently-unrejected hypotheses in RC . That is, equation (3.6) holds

with equality for any R including F(M).

3.2 Extension to Account for Logical Implications Among

Hypotheses

In this section, we will describe how the basic inheritance procedure can be extended to

take advantage of logical implications among hypotheses. The basic inheritance procedure

made use of the structure of the tree of hypotheses, to order the testing of hypotheses and

determine which nodes should receive the alpha wealth of rejected hypotheses, but did not

exploit logical implications. We begin this section with an illustration of logical implications

between hypotheses, using Example 1. We then re-state the monotonicity and single-step

conditions, to motivate an extension of the basic procedure that exploits logical implications,

known as Shaffer improvement. Using Example 1, we illustrate how certain alpha levels for

tests of single hypotheses can be increased by a so-called Shaffer factor, without violating

the monotonicity and single-step conditions. We then present the formal definition of the

Shaffer factor. The section concludes with a note on an R package that implements the

extended inheritance procedure for tree-structured hypotheses of covariate effects.

In Example 1 from the Introduction, the linear model

Y = β0 + β1X1 + β2X2 + β3X3 + ε

described the influence of three SNPs on a quantitative trait. In this example, the first SNP

is from one candidate gene and the second and third SNPs are from another. Based on this

structure, the hypotheses were arranged on the tree in Figure 1.1, reproduced below.

N

N1 N2

N21 N22

The root node is the null hypothesis of no association between the SNPs and the trait; i.e.,

N ∶ β1 = β2 = β3 = 0. The nodes at the next level are the null hypotheses of no association
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between the trait and SNPs in the first and second genes, respectively; i.e., N1 ∶ β1 = 0

and N2 ∶ β2 = β3 = 0. The nodes in the bottom level are the null hypotheses of no trait

association with SNPs in the second gene; i.e., N21 ∶ β2 = 0 and N22 ∶ β3 = 0. The nodes are

arranged such that each parent hypothesis is the intersection of its children. Thus, false-

ness of a parent hypotheses implies falseness of at least one child hypothesis. For example,

falseness of N2 implies falseness of at least one of N21 or N22. This implication means that

a set of hypotheses that includes N2 but not N21 and N22 is only a partial list of false null

hypotheses – a so-called incongruent set of hypotheses, as defined by Goeman and Finos.

By contrast, a congruent set of hypotheses can be a complete list of false null hypotheses.

To motivate Shaffer improvement, we now re-state the monotonicity and single-step

conditions for a Bonferroni-Shaffer procedure, such as the basic inheritance procedure. The

monotonicity condition is that the test levels of unrejected hypotheses do not decrease as

more hypotheses are rejected. In the context of Shaffer improvement, the relevant implica-

tion of monotonicity is that for an unrejected hypothesis H and an incongruent rejection set

R, αH(R) ≤ αH(S) for every congruent set S that contains R but not H. The single-step

condition is that

∑
H∈F(M)C

αH(F(M)) ≤ α for all M ∈M.

where αH(R) denotes the alpha wealth for hypothesis H given the set R of previously-

rejected hypotheses. Note that the single-step condition only applies to congruent sets

of false null hypotheses; i.e., to sets that are F(M) for some parameter value M . For

incongruent rejection sets, the levels of tests of unrejected hypotheses are not constrained

by the single-step condition, and can be made as large as possible, so long as they do

not violate the monotonicity condition. The enlargement of test levels to exploit logical

implications is known as Shaffer improvement, and the factor by which each test level is

increased is known as the Shaffer factor.

We illustrate Shaffer factors using Example 1. For each of the rejection sets R that could

be obtained by applying the basic inheritance procedure to Example 1, the levels αH(R) of

the tests of unrejected hypotheses are given in Table 3.1.

Rejection sets that include a parent node and none of its children are incongruent. In the

example, these are the sets {N},{N,N2} and {N,N1,N2}, indicated in red in Table 3.1.

Shaffer improvement applies only to incongruent sets. For congruent sets, the test levels

for unrejected hypotheses are constrained by the single-step condition and are therefore not
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Table 3.1: Test levels of the basic inheritance procedure for rejection sets from Example 1.
Incongruent sets are indicated in red.

Rejection sets R
∅ N N N N N N N N N

N1 N2 N1N2 N2 N2 N2 N1N2 N1N2

N21 N22 N21N22 N21 N22

αN(R) α - - - - - - - - -
αN1(R) 0 α/3 - α/3 - α/3 α/3 α - -
αN2(R) 0 2α/3 α - - - - - - -
αN21(R) 0 0 0 α/3 α/2 - 2α/3 - - α
αN22(R) 0 0 0 α/3 α/2 2α/3 - - α -

changed. We illustrate Shaffer improvement with the incongruent rejection set {N} in the

second column of Table 3.1. For this rejection set there are four unrejected hypotheses, N1,

N2, N21 and N22. Recall that when testing unrejected hypotheses, the basic inheritance

procedure effectively only tests those with positive alpha wealth, because hypotheses with

zero alpha wealth can’t be rejected. The inheritance procedure with Shaffer improvement

also only tests hypotheses with positive alpha wealth. Thus we only compute Shaffer factors

for the hypotheses N1 and N2 because N21 and N22 have zero wealth.

We start with the hypothesis N1. The constraint on αN1({N}) that is imposed by

monotonicity is that αN1({N}) ≤ αN1(S) for any congruent set S that contains {N}, but

not N1. We find three congruent sets that contain {N} but not N1: S1 = {N,N2,N21}, S2 =
{N,N2,N22}, and S3 = {N,N2,N21,N22}. The test levels for N1, given each of these three

congruent rejection sets, are αN1(S1) = α/3, αN1(S2) = α/3 and αN1(S3) = α, respectively.

The test level αN1({N}) can be as large as the minimum of these three test levels, which

is α/3. Thus, Shaffer improvement yields a test level of α/3, which is the same as the test

level from the basic inheritance procedure. The Shaffer factor sN1({N}) for hypothesis N1

and incongruent rejection set {N} is therefore 1.

We now compute the Shaffer factor for the hypothesis N2. The constraint on αN2({N})
that is imposed by monotonicity is that αN2({N}) ≤ αN1(S) for any congruent set S that

contains {N}, but not N2. The only congruent set that meets these criteria is S1 = {N,N1}.
The test level for N2, given this congruent rejection set, is αN2(S1) = α, so that αN2({N})
can be as large as α. Thus, for the hypothesis N2 and incongruent rejection set {N}, Shaffer
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improvement yields a test level of α, which is bigger than the test level of 2α/3 from the

basic inheritance procedure by a Shaffer factor of sN2({N}) = 3/2. The complete list of

Shaffer factors for Example 1 is given in Table 3.2.

Table 3.2: Shaffer factors for Example 1.

Incongruent sets R
Hypothesis N N N

N2 N1N2

sN(R) - - -
sN1(R) 1 1 -
sN2(R) 3/2 - -
sN21(R) - 2 2
sN22(R) - 2 2

We did not use any specific features of the basic inheritance procedure when computing

Shaffer factors for Example 1, only the test levels implied by the procedure and the notions

of congruent and incongruent sets. Goeman and Finos (2012) provide a general form for

the Shaffer factor that can be used to improve any sequentially rejective procedure:

sH(R) =
min{αH(S) ∶H ∉ S ⊇R,S is congruent}

αH(R)
. (3.7)

However, as shown in Appendix B, the general formula can be rewritten for the basic

inheritance procedure as:

sH =
⎧⎪⎪⎨⎪⎪⎩

µH+wH

µH−νH+wH
if H ∉R, si(H) ⊆ L/R,

1 otherwise.
(3.8)

where µH = ∑
J∈si(H)

wJ , νH = minJ∈si(H)wJ and si(H) denotes the siblings of H.

3.2.1 The globaltest R package

Goeman et al. (2010) developed an R package globaltest for testing whether groups of

covariates are associated with a response variable. In this case, the groups of covariates

being tested for association correspond to nested hypotheses. By virtue of their nesting, the

hypotheses are logically related and so the inheritance procedure with logical implications

can be applied. The R package is available on Bioconductor and implements the inheritance

procedure for logically related hypotheses in the covariates function.



Appendix A

A.1 Derivations of the critical value function for the inheri-

tance procedure

We will develop the derivation of the αH(R) function in equation (3.2) based on step 3 of

the basic inheritance procedure and heir function hR(H) defined in equation (3.1) regardless

of the order in which hypotheses have been rejected.

Based on the basic inheritance procedure, if J = pa(H) is rejected, we can write the

amount of αJ inherited by each child H as,

αJ
wH

∑
I∈hR(H)

wI
= αJ

wH

∑
I∈ch(J)−E(R)

wI

By definition we have,

mJ(R) =
wJ

∑
I∈ch(J)−E(R)

wI

Therefore,

αJ
wH

∑
I∈ch(J)−E(R)

wI
= αJ

wH
wJ

mJ(R) = αJ
wH

wpa(H)
mpa(H)(R)

Let us use mathematical induction for the proof. Suppose for all S ⊂R, we choose some

J ∈R and some H ∉R and let S ∪ {J} =R.

1. WhenR = ∅, we have an(H) ⊈R and thus critical values both for the basic inheritance

procedure and critical value function αH(R) are identical. i.e.

αI = αH(R) = 0

26
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2. Suppose that when the current rejected set is S, the alpha-wealth allocated to H

before the rejection of J is,

αH(S) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

wH
wT

α ∏
K∈an(H)

mK(S), an(H) ⊆ S,

0 otherwise.

3. Let the wealth inherited by H after rejection of J be α̃H . Then, we need to show that,

α̃H = αH(R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

wH
wT

α ∏
K∈an(H)

mK(R), an(H) ⊆ R,

0 otherwise.

We assume that an(H) ⊆ R, and that J is not offspring of H as the offspring is tested

and rejected only after the rejection of its ancestor. We will develop the proof for the

case where J is an ancestor of H. Similar proof can be derived for other cases where

J and H have different relationships.

In general, let us assume that there are {K1,K2, ...,Kn} ancestors that are rejected, between

J and H even though J might be the parent of H in a practical sense. Here, we have

an(H) ⊈ S as S does not include J. Therefore, αH(S) = 0. We can express the amount of

wealth inherited by H after the rejection of J through rejected ancestors {K1,K2, ...,Kn}
as,

α̃H = αH(S) + αJ(S)
wK1

∑
I∈ch(K1)−E(R)

wI
∗ wK2

∑
I∈ch(K2)−E(R)

wI
∗ ... ∗ wKn

∑
I∈ch(Kn)−E(R)

wI

= αJ(S)
wK1

wpa(K1)
mJ(R) ∗

wK2

wpa(K2)
mK1(R) ∗ ... ∗

wKn

wpa(Kn)
mKn−1(R) ∗

wH
wpa(H))

mKn(R)

= αJ(S)
wK1

wJ
mJ(R) ∗

wK2

wK1

mK1(R) ∗ ... ∗
wKn

wKn−1

mKn−1(R) ∗
wH
wKn

mKn(R)

= αJ(S)
wH
wJ

∏
K∈an(H)/an(J)

mK(R) (A.1)

On the other hand, by the induction assumption the αJ(S) or the α level that assigned to

J when the current rejected set is S is equal to,

αJ(S) =
wJ
wT

α ∏
K∈an(J)

mK(S)
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after plugging in αJ(S), the equation (A.1) becomes,

= αwH
wT

⎛
⎝ ∏
K∈an(H)/an(J)

mK(R)
⎞
⎠
⎛
⎝ ∏
K∈an(J)

mK(S)
⎞
⎠

α̃H = αwH
wT

∏
K∈an(H)

mK(R)

as mK(S) =mK(R) for all K ∈ an(J).



Appendix B

B.1 The equivalence of two definitions of a Shaffer factor

Let us show the connection between the general definition in (3.7) and specific definition

in (3.8) of a Shaffer factor in the inheritance procedure through the toy example. Let

us assume, the current rejected set is R = {N,N2} and we want to calculate a Shaffer

factor for H = N21. Then, the possible congruent set which yields the minimum αH(S) is

S = {N,N2,N22}. In addition, let ancestor k1 = N and ancestor k2 = N2.

By the general definition, we know that

sH = min{ αH(S)
αH(R)

∶H ∉ S ⊇R,S congruent}

= min{αH(S) ∶H ∉ S ⊇R,S congruent}
αH(R)

Based on the αH(R) function in 3.2, we have,

sH =
min{wH

wT
α ∏
K∈an(H)

mK(S) ∶H ∉ S ⊇R,S congruent}

wH

wT
α ∏
K∈an(H)

mK(R)

=

∏
K∈an(H)

wK

∑
J∈ch(K)−E(S)

wJ

∏
K∈an(H)

wK

∑
J∈ch(K)−E(R)

wJ

=

wK1

∑
J∈ch(K1)−E(S)

wJ

wK1

∑
J∈ch(K1)−E(R)

wJ

∗

wK2

∑
J∈ch(K2)−E(S)

wJ

wK2

∑
J∈ch(K2)−E(R)

wJ

29
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For both the current rejected set and congruent set, the ancestors {N,N2} are the same

for H = N21 and thus have the same weight. Therefore, we have in further,

sH =

∑
J∈ch(K1)−E(R)

wJ

∑
J∈ch(K1)−E(S)

wJ

∑
J∈ch(K2)−E(S)

wJ

∑
J∈ch(K2)−E(R)

wJ

Moreover, when k1 = N , we have mK1(R) =mK1(S) as there is no extinct branch. Hence,

sH =
∑

J∈ch(K2)−E(R)
wJ

∑
J∈ch(K2)−E(S)

wJ

= wN2

wN2 −wN22

= wN21 +wN22

wN21 +wN22 −wN22
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