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Abstract

Background: Given the complex nature of the responses that can occur in host-pathogen interactions, dual transcriptomics
offers a powerful method of elucidating these interactions during infection. The gene expression patterns of Aspergillus
fumigatus conidia or host cells have been reported in a number of previous studies, but each focused on only one of the
interacting organisms. In the present study, we profiled simultaneously the transcriptional response of both A. fumigatus
and human airway epithelial cells (AECs).

Methodology: 16HBE14o- transformed bronchial epithelial cells were incubated with A. fumigatus conidia at 37uC for
6 hours, followed by genome-wide transcriptome analysis using human and fungal microarrays. Differentially expressed
gene lists were generated from the microarrays, from which biologically relevant themes were identified. Human and fungal
candidate genes were selected for validation, using RT-qPCR, in both 16HBE14o- cells and primary AECs co-cultured with
conidia.

Principal Findings: We report that ontologies related to the innate immune response are activated by co-incubation with A.
fumigatus condia, and interleukin-6 (IL-6) was confirmed to be up-regulated in primary AECs via RT-qPCR. Concomitantly, A.
fumigatus was found to up-regulate fungal pathways involved in iron acquisition, vacuolar acidification, and formate
dehydrogenase activity.

Conclusion: To our knowledge, this is the first study to apply a dual organism transcriptomics approach to interactions of A.
fumigatus conidia and human airway epithelial cells. The up-regulation of IL-6 by epithelia and simultaneous activation of
several pathways by fungal conidia warrants further investigation as we seek to better understand this interaction in both
health and disease. The cellular response of the airway epithelium to A. fumigatus is important to understand if we are to
improve host-pathogen outcomes.
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Introduction

Microarray technologies have enabled unbiased gene expression

profiling in host-pathogen interactions [1]. Using such technology,

one can interrogate both organisms at the transcriptome level,

allowing characterization of the dynamic interaction between

microbe and the host environment. This includes defining

mechanisms of microbe survival and the host’s identification of

the microbe and its subsequent clearance. Such an approach has

been successfully applied to the soybean Glycine max and its two

major parasites, Phytophthora sojae and Heterodera glycines [2,3]. With

respect to mammals, dual organism profiling was utilized

by Motley et al. to characterize E. coli infection in a murine

granulomatous pouch model [4]. Given the complex nature of the

responses that can occur in host-pathogen interactions, dual

transcriptomics offers a powerful method of elucidating the nature

of interactions during infection. It also has the potential to identify

differences between healthy and diseased tissues that may facilitate

opportunistic infections.

Aspergillus fumigatus is a ubiquitous saprophytic mold [5] that is

capable of causing a spectrum of diseases, particularly in patients

with underlying respiratory conditions or immunodeficiency. For

example, allergic bronchopulmonary aspergillosis (ABPA) is a

hypersensitivity disorder caused by A. fumigatus, affecting up to 5%

of asthmatics and 10% of cystic fibrosis patients [6,7]. Another

disease is aspergilloma, a non-invasive fungal growth in a
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pre-existing lung cavity, as may result from tuberculosis,

sarcoidosis, or other cavitary lung diseases [8], and can occur in

10–15% of patients with such cavities [9,10]. Invasive pulmonary

aspergillosis is a life-threatening condition that may occur in

immunocompromised patients, particularly those with neutrope-

nia [11]. Fungal conidiospores (conidia) enter the airways where

they germinate and undergo hyphal extension into the lung

parenchyma, often followed by systemic spread.

A. fumigatus is dispersed as 2–3 mm haploid conidia which are

estimated to be found at concentrations of 1 to 100 colony-forming

units per cubic metre of air, meaning the average human inhales

up to several hundred conidia each day [7]. The bronchial

epithelium serves as a point of first contact and structural barrier

to A. fumigatus infection, and hence represents an important site of

interaction [9]. While earlier works demonstrated the uptake by

and germination of conidia within airway cells [12,13–16], the

characterization of transcriptional responses to interaction is only

recent. Our previous work identified the transcriptional response

of the SV40 transformed human bronchial epithelial cell line,

16HBE14o-, following internalization of A. fumigatus conidia [17].

We showed that 16HBE14o- cells internalized 30–50% of bound

conidia, and had increased levels of transcripts from genes

associated with repair and inflammatory processes as a result

(e.g., matrix metalloproteinases, chemokines, and glutathione S-

transferase) [17]. In the present study, we have investigated the

interaction of conidia and the early transcriptomic response by

both A. fumigatus conidia and primary airway epithelial cells

(AECs). We hypothesize that the early cellular response of the

airway epithelium to A. fumigatus conidia (and vice versa) is

important to understand if we are to improve host-pathogen

interaction outcomes.

Methods

Ethics approval
Ethics approval (#H0-50110) was obtained from the University

of British Columbia Institutional Ethics Review Board.

Aspergillus fumigatus strain
All experiments were performed using a green fluorescent

protein (GFP) expressing strain of A. fumigatus derived from ATCC

13073, developed by Wasylnka and Moore [12]. Conidia were

stored and prepared as previously described [17].

16HBE14o- cell line
16HBE14o- transformed bronchial epithelial cells were ob-

tained from Dr. D. Gruenert (University of Vermont, Burlington,

VT, USA). Important characteristics of differentiated human

bronchial epithelium are retained in this cell line, including

directional ion transport, formation of a monolayer, and tight

junctions [18]. Cultures were maintained as previously described

by Gomez et al. [17].

Primary human airway epithelial cells (AECs)
Primary AECs were isolated from human lungs from donors

with no pulmonary disease or smoking history but deemed

unsuitable for transplantation and donated for medical research

with written family consent through the International Institute for

the Advancement of Medicine (Edison, NJ, USA). The ethic

committees of the involved institutions approved this study. AECs

were isolated as previously described [19]. Briefly, following

surgical removal, lungs were washed in Custodial HTK solution

(Odyssey Pharmaceutical Inc., East Hanover, NJ, USA) and

placed on ice. Trachea and bronchi were then dissected into short

segments and rinsed in cold PBS for blood and mucous plug

removal. Epithelium was dissociated with a Pronase (1.4 mg/ml)

and DNase (0.1 mg/ml) (Roche Diagnostics, USA) treatment in

100 ml minimal essential medium (MEM) for 16 hours at 4uC.

Dissociated clumps were strained through 70 mm nylon mesh

(Becton, Dickinson and Company, USA), incubated in MEM with

10% v/v FBS to neutralize the Pronase, and washed with MEM at

4uC. Adherent cells were grown in bronchial epithelial growth

medium (BEGM; Cambrex, Walkersville, MD, USA).

Exposure of epithelial cells to A. fumigatus conidia
16HBE14o- and AECs were seeded in 4-chamber Culture

Slides (BD Biosciences, Franklin Lakes, NJ, USA) in 1 ml DMEM

or BEGM, respectively. Cells were then grown for 3 days at 37uC
with 5% CO2 to achieve confluency. Chamber media was

replaced with 500 ml of fresh DMEM or BEGM and incubated

with 105 A. fumigatus conidia, for an average final multiplicity of

infection of one conidium per cell. The cells and conidia were co-

incubated at 37uC for 6 hours, and then washed three times in

PBS-T to remove any conidia not bound to cells. Human cells and

fungal conidia that were not exposed to each other (controls) were

incubated under the same culture medium conditions as cells and

conidia that were co-exposed. The 6 hour co-incubation permits

comparability to previous studies that have used this time-point,

and ensures that the response observed corresponds to interaction

with conidia [12,15,17]. Beyond 6 hours, conidia have been found

to germinate in culture [12].

Analysis by confocal microscopy
Cultures were treated as above and imaged as previously

described [17]. Images from all specimens were obtained using the

Multiphoton Confocal Microscope System at the Core 3 Dynamic

Cellular Imaging and Biophysics facility of the James Hogg

Research Centre. Images were acquired using a Leica AOBS SP2

laser scanning confocal microscope (Leica, Heidelberg, Germany)

with Zeiss LSM 510 software, version 3.2 (Carl Zeiss Canada Inc.,

Toronto, ON, Canada). A series of images were acquired in the Z-

plane, allowing for three dimensional reconstruction and visual-

ization of the cell monolayer and associated A. fumigatus conidia.

RNA extraction
RNA extraction was performed using an RNeasy Mini Kit with

QIAshredder (Qiagen, USA). A modification to the manufactur-

er’s protocol for ‘‘Purification of Total RNA from Plant Cells and

Tissues and Filamentous Fungi’’ was used. Briefly, samples were

spun down, immersed in liquid nitrogen for 5 minutes, and then

ground with plastic mini-pestles (DiaMed, Mississauga, ON,

Canada). Tubes were heated for 2 minutes at 56uC and passed

through the QIAshredder column. The RNA yield from each

sample was determined using a NanoDropTM ND-1000 spectro-

photometer (Thermo Scientific, Wilmington, DE, USA). RNA

integrity of the samples was determined using a 2100 Bioanalyzer

(Agilent Technologies, Stockport, Cheshire, UK). The 2100

Bioanalyzer generates an RNA integrity number (RIN) that has

been shown to reliably predict suitability of RNA samples for gene

expression analysis [20].

Transcriptome profiling
Microarray services were performed by the Prostate Centre

Microarray Facility (Vancouver, Canada), an Agilent Certified

Service Provider. Human gene expression was analyzed using

Agilent Whole Human Genome Oligo Microarrays in the 4644 K

format (product number G4112F, design ID 014850, Agilent

Fungal Spore and Airway Cell Gene Expression
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Technologies). Fungal transcriptome analysis was performed on

conidia-containing samples using JCVIGR Aspergillus fumigatus

Version 3 microarray slides (Pathogen Functional Genomics

Resource Center, Rockville, MD, USA). Eight arrays representing

4 biological replicates each of cells alone and cells plus conidia

were analyzed for each species. Human probes with a p-

value,0.05 and fold change (FC).1.5 were considered differen-

tially expressed. ANOVA was used to identify fungal probes

showing differential expression between the two conditions at a

significance of p,0.05 and FC.1.5. All microarray data are

MIAME compliant. The raw data have been deposited in a

MIAME compliant database - the Gene Expression Omnibus

(GEO) - and are accessible under Series GSE16628, GSE16630

and GSE16637.

Reverse transcription quantitative PCR (RT-qPCR)
AEC RT-qPCR was performed using 206Applied Biosystems

probe-primer mix (Table S1) and TaqManH Universal PCR

Master Mix (Roche Molecular Systems, CA, USA). A. fumigatus

RT-qPCR was performed using the 206 Integrated DNA

Technologies (Coralville, IA, USA) probe-primer mix (Table S2)

with Stratagene Brilliant II QPCR high ROX master mix. Both

reactions were performed using an ABI PrismH 7900 Sequence

Detection System. The gene glyceraldehyde 3-phosphate dehy-

drogenase (gpdA) was used as an endogenous control for A. fumigatus

to generate a normalization factor. The relative standard curve

method was applied to determine relative fold-change [21]. The

genes peptidyprolyl isomerase A (PPIA) and phosphoglycerate

kinase 1 (PGK1) were used for AECs, having been previously

shown to be the most stably expressed genes in bronchial epithelial

cells [22]. These two genes were used to generate a normalization

factor by geometric averaging, and the relative standard curve

method applied to determine relative fold-change [21,23].

Results

Confocal microscopy analysis of primary AECs and
A. fumigatus conidia in co-culture

To assess whether co-incubation would lead to the uptake of A.

fumigatus conidia by primary human AECs, co-cultures were first

visualized using incremental focal planes, to produce a Z-stack to

form a three dimensional image by confocal microscopy. As shown

in Figure 1, conidia expressing GFP co-incubated with AECs

could be seen adjacent both to the cell plasma membrane

identified by E-cadherin staining (red staining), and also to the

AEC nucleus identified by DAPI (blue staining).

Differential gene expression in AECs following exposure
to A. fumigatus conidia

We have previously demonstrated differential gene expression

in 16HBE14o- cells following direct interaction with GFP-A.

fumigatus conidia identified by fluorescence activated cell sorting

(FACS), compared to 16HBE14o- cells within the same culture

not positive for GFP- A. fumigatus conidia [17]. While these

experiments identified differentially expressed genes from

16HBE14o- cells in direct interaction with A. fumigatus conidia,

we could not determine the effect on the entire culture which

would be representative of interaction with the airway epithelium

in vivo.

In this study, microarray data was obtained from 16HBE14o-

cells following incubation with or without A. fumigatus conidia.

Eight human arrays, representing 4 biological replicates, were

derived from cells co-incubated with and without A. fumigatus

conidia. From this analysis we identified 255 human genes that

were differentially expressed, with p,0.05 and fold change 1.5 or

greater; however, no genes survived at a false discovery rate (FDR)

of 0.05 (Table S3). We compared the data sets of both the current

and previous studies to identify commonalities, but found only 17

genes that were common to 16HBE14o- cells that were either

incubated with or directly associated with A. fumigatus conidia [17].

Using Ingenuity Pathway Analysis (IPA) software, 174 of 255

genes met the criteria for further analysis. Among the top networks

identified by core analysis were those implicated in gene

expression, infection mechanism, and cellular movement. Gene

Ontology Enrichment Analysis (GOEAST) and Gene Set

Enrichment Analysis (GSEA) were also conducted to complement

and add support to the data obtained using IPA (Table 1 and data

not shown). Again looking for commonality with previous work,

we found the annotated functions and pathways of differentially

expressed genes indicate that the innate immune response is one of

the prevalent themes in both of the expression data sets [17].

To validate the changes in expression levels demonstrated by

the microarray experiments, we selected eight genes to analyze by

RT-qPCR. These genes were implicated by either pathway

analysis or directly from the array data. Samples representing

FAC sorted 16HBE14o- or unsorted AECs were used in this assay,

thereby revealing whether expression differences were consistent

between both cell types. The genes chemokine (C-C motif) ligand

3 (CCL3), chemokine (C-C motif) ligand 5 (CCL5), IL-6, colony

stimulating factor 2 (CSF2), and matrix metallopeptidase 1

(MMP1) were chosen based on their inclusion in the gene set

level data, as well as a relative strength at the single gene level.

Viewed in IPA, these genes formed distinct clusters with clear

relationships to the differentially expressed genes (Figure S1).

These nodes are also prominent components of the annotated

classifications identified in GOEAST and GSEA.

Figure 1. Localization of A. fumigatus conidia within the airway
epithelial cell monolayer. GFP-expressing A. fumigatus conidia and
primary AECs were co-incubated for 6 hours and treated with DAPI and
monoclonal E-cadherin Alexa 594 antibody before visualization by
confocal microscopy. Labeling of nuclei (blue) and the membrane tight
junctional protein E-cadherin (red) allowed visualization of AECs. Some
GFP-expressing A. fumigatus conidia (green) are found outside the cells,
while others localize within the cell monolayer, in close association with
AEC nuclei.
doi:10.1371/journal.pone.0020527.g001
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Three additional targets were chosen based on their strength as

among the most strongly differentially expressed, in a consistent

fashion, in both experiments. These genes are zinc finger 433

(ZNF433), leucine rich repeat containing 14 (LRRC14), and

DOT1-like, histone H3 methyltransferase (DOT1L). Despite

relatively little information regarding function, they may none-

theless represent genes involved in the cellular response to A.

fumigatus. The results of RT-qPCR can be seen in Figure 2. IL-6

was the only gene tested with RT-qPCR that was differentially

expressed in both cell types following co-incubation with A.

fumigatus conidia. Both MMP1 and CSF2 each achieved significant

differential expression in only one of the cell types tested. CCL3,

CCL5, ZNF433, DOT1L and LRRC14 failed to achieve

significant differential expression in either cell type following

incubation with A. fumigatus condia.

Genes showing differential expression in A. fumigatus
conidia following exposure to human bronchial epithelial
cells

To gain insight into the response of A. fumigatus to the host cell

environment, we then focused on identifying the transcriptional

response of conidia to interaction with human AECs. At a

significance of p,0.05 and fold change greater than 1.5, we found

150 genes that were up-regulated in conidia exposed to human

bronchial epithelial cells (16HBE14o-), whereas 33 were down-

regulated (Table S4). To assess any biologically relevant themes

within the up-regulated gene set, GOEAST was conducted using

annotated terms of the close fungal relative, Aspergillus nidulans.

Among the most prominent annotated functions identified

involved genes classified in vacuolar acidification and metallo-

peptidase activities. To validate the expression levels generated by

the microarray, eight genes in total were chosen for further

analysis with RT-qPCR (Table 2). Four of these genes,

metallopeptidase MepB, matrix AAA protease MAP-1, sulphur

metabolism regulator SkpA, and the vacuolar ATPase 98 kDa

subunit, were chosen as gene targets of interest based on the

significance of their GOEAST classifications. MepB and Map-1 are

part of the metallopeptidase classification, while SkpA and the

Vacuolar ATPase 98 kDa subunit are associated with the vacuolar

acidification gene set. The selection of the other four targets,

tubulin-specific chaperone C, NAD-dependent formate dehydro-

genase (fdh), b-glucosidase, and L-ornithine N5-oxygenase (SidA),

was based on significance at the single gene level. We have an

interest in iron metabolism by A. fumigatus, and siderophore-

mediated iron acquisition is critical for virulence [24,25]. These

genes were tested in two different incubation types, one involving

16HBE14o- cells and the other a co-incubation with AECs

(Figure 3). Interestingly, all genes achieved significance following

incubation with at least one cell type, with the exception of MepB.

The vacuolar ATPase 98 kDA subunit, SkpA, and MAP-1 were

significantly differentially expressed following incubations with

both 16HBE14o- and AECs. Significance was achieved only in

16HBE14o- cells for fdh and SidA, whereas the tubulin-specific

chaperone C and b-glucosidase were significant only in the AECs.

Discussion

The gene expression patterns of both A. fumigatus conidia and

host cells have been reported in a number of previous studies, but

each with a focus on only one of the interacting organisms

[17,26,27]. However, varying experimental conditions and cell

types can make it difficult to compose a representative model of

interaction that encompasses the responses of both organisms. In

the present study, we profiled the transcriptional response of both

A. fumigatus and human AECs simultaneously to better elucidate

the dynamic responses between the two interacting organisms. To

our knowledge, this is the first study to apply a dual organism

transcriptomics approach to interactions of A. fumigatus conidia and

human airway epithelial cells.

Previous studies have focused on the role of immune cells,

primarily macrophages and neutrophils, in response to A. fumigatus

exposure [26–29]. Whilst professional phagocytic cells are

important in mediating fungal clearance, the airway epithelium

Table 1. Over-represented human gene ontology (GO) terms determined by GOEAST analysis.

List of Terms Up-Regulated

Ontology GO ID Term P-value

positive regulation of glycogen biosynthetic process GO:0045725 BP 2.54E-04

epithelial structure maintenance GO:0010669 BP 1.08E-03

zinc ion homeostasis GO:0055069 BP 2.04E-03

virion transport GO:0046794 BP 7.13E-03

toxin metabolic process GO:0009404 BP 1.24E-02

C-X-C chemokine receptor activity GO:0016494 MF 2.14E-02

List of Terms Down-Regulated

Ontology GO ID Term P-value

transition metal ion binding GO:0046914 MF 9.48E-10

regulation of transcription, DNA-dependent GO:0006355 BP 1.76E-07

regulation of metabolic process GO:0019222 BP 1.58E-06

gene expression GO:0010467 BP 8.02E-06

cellular nitrogen compound metabolic process GO:0034641 BP 8.31E-06

nucleus GO:0005634 CC 5.51E-05

Differentially expressed genes from microarray analysis of 16HBE14o- cells incubated with conidia of Aspergillus fumigatus. Input lists consisted of 109 up-regulated and
146 down-regulated genes. (Terms: BP – biological process; MF – molecular function; CC – cellular compartment.).
doi:10.1371/journal.pone.0020527.t001

Fungal Spore and Airway Cell Gene Expression

PLoS ONE | www.plosone.org 4 May 2011 | Volume 6 | Issue 5 | e20527



is the first point of contact for fungal conidia within the lung and

represents an important surface of interaction [30]. Indeed many

A. fumigatus-mediated diseases such as ABPA, severe asthma with

fungal sensitization (SAFS), aspergilloma, and invasive pulmonary

aspergillosis are associated with the respiratory tract. There is

growing evidence that the airway epithelium plays a direct role in

mediating the immune response to foreign agents; therefore,

characterizing the transcriptome of the airway epithelium in

response to A. fumigatus conidia is an important step in

understanding the full host immune response to A. fumigatus.

In the present study we have shown that primary AECs are

capable of internalizing conidia of A. fumigatus. Several other

studies have shown the uptake of conidia in other non-phagocytic

cells including an alveolar type II cell line (A549) [13], primary

tracheal epithelial cells, umbilical vein endothelial cells [14], and

16HBE14o- cells [17]. It has been previously suggested that

epithelial cells may serve as reservoirs for fungal conidia during

infection [12,15,16]. Alongside the uptake of A. fumigatus conidia

by primary AECs, the current study identified 255 differentially

expressed genes in 16HBE14o- cells exposed for 6 hours to

conidia compared to non-exposed cells. The magnitude of the fold

change tended to be modest, and is consistent with an earlier study

by Zhang et al., who found only minor changes in immune

response effectors in the A549 cell line following exposure to

conidia [31]. In addition, Aimanianda et al. [32] showed that the

presence of hydrophobins on the conidial surface silenced the

immune response, at least by dendritic cells and macrophages.

Within microarray data it can often be difficult to identify any

unifying signaling pathways or networks, particularly for instances

in which the transcriptional response is only moderate. Although

no single gene may drastically change in expression, a 20% change

in members of a particular pathway may result in significant

biological outcomes [33]. To identify whether a biologically

relevant response was present, we employed GOEAST, GSEA,

and IPA which enabled the identification of curated pathways

significantly enriched within our dataset. Each of these tools

independently identified gene sets involved in an innate immune

response; chemokine activity, the defense response, and the

inflammatory response among the most highly enriched annota-

tions.

To help validate the physiological relevance of these results, we

used RT-qPCR to evaluate selected genes derived from the most

prevalent themes in the microarray set in both 16HBE14o- and

primary AECs. The RT-qPCR data confirmed that the cytokine

IL-6 was up-regulated upon exposure of either 16HBE14o- or

AECs to the fungal conidia. Transgenic mouse strains deficient in

Figure 2. Relative mRNA expression levels of human genes obtained by RT-qPCR. RNA was obtained from four co-incubations each of
16HBE14o- (grey bars) or primary normal bronchial epithelial cells (AECs) (white bars) with conidia of A. fumigatus. Height of each bar represents
expression of gene in co-incubated condition relative to cells alone control (mean 6 SE). (* p,0.05).
doi:10.1371/journal.pone.0020527.g002

Table 2. Microarray expression data for Aspergillus fumigatus genes chosen for RT-qPCR.

Locus ID Gene name (designation) P-value Fold-change

Afu6g04920 NAD-dependent formate dehydrogenase (fdh) 9.09E-02 1.55

Afu4g11300 vacuolar ATPase 98 kDa subunit 1.39E-02 2.51

Afu5g06060 sulfur metabolism regulator (SkpA) 5.44E-02 1.53

Afu2g02680 matrix AAA protease (MAP-1) 3.42E-02 2.53

Afu7g05930 metallopeptidase (MepB) 1.05E-03 2.42

Afu3g08900 tubulin-specific chaperone c, putative 4.41E-04 2.67

Afu2g07680 L-ornithine N5-oxygenase (SidA) 1.70E-02 2.38

Afu1g14710 Beta-glucosidase 8.35E-04 2.66

doi:10.1371/journal.pone.0020527.t002

Fungal Spore and Airway Cell Gene Expression
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IL-6 show an increased susceptibility to invasive pulmonary

aspergillosis [34]. Cenci et al. [34] also found that IL-6 deficiency is

associated with decreased antifungal effector functions of phago-

cytes and an impaired development of protective type 1 response.

It has also been shown that the transformed Type II epithelial cell

line, A549, secretes IL-6 in response to co-incubation with

inactivated conidia [31,35,36]. However, to our knowledge, this

is the first report of IL-6 expression by primary human AECs in

response to co-incubation with the conidia of A. fumigatus. IL-6 is a

potent pro-inflammatory cytokine, produced by a diverse set of cell

populations, and exerts inflammatory effects by activating both

leukocytes and structural cells including pulmonary epithelial cells.

IL-6 is a part of the acute phase response, and is a potent inducer

of C-reactive protein expression in the liver, which is important in

systemic inflammation. IL-6 release has been demonstrated to be

up-regulated during exacerbation periods of several respiratory

diseases including asthma, cystic fibrosis and COPD [37]. It would

be interesting to compare the relative expression of this cytokine

by normal airway epithelia to airway epithelia derived from

asthmatics following exposure to A. fumigatus conidia.

Other than IL-6, no replicable result between the responses of

16HBE14o- and AECs was observed for the human genes tested.

CSF2 and MMP1 achieved significant differential expression in

only one of the two cell types, failing to replicate in 16HBE14o-

and AECs, respectively. This suggests fundamental differences in

gene expression responses exist between the cell line and primary

cells when they are exposed to conidia. This result underlines the

necessity of replicating findings from cell lines in more physiolog-

ically-relevant model systems.

The 150 A. fumigatus genes up-regulated in response to

interaction with 16HBE14o- cells in culture (compared to conidia

incubated with media alone) were related to vacuolar acidification,

siderophore biosynthesis, metallopeptidase and formate dehydro-

genase activities. This value is comparable to the findings of Sugui

et al., who reported that 244 genes were up-regulated in conidia

exposed to neutrophils [26]. In a comparison of our data with that

of Sugui et al., we identified 13 genes that overlapped between the

two studies [26] (Table 3).

A general concordance was found between our microarray data

and RT-qPCR data (Figure 3); of the eight A. fumigatus genes

Figure 3. Relative mRNA expression levels of A. fumigatus genes as determined by RT-qPCR. RNA was obtained from four co-incubations
each of A. fumigatus conidia with 16HBE14o- (grey bars) or primary human bronchial epithelial cells (AECs) (white bars). Height of each bar represents
expression of gene in co-incubated condition relative to conida alone control (mean 6 SE). (* p,0.05).
doi:10.1371/journal.pone.0020527.g003

Table 3. List of A. fumigatus genes commonly identified by our study and by that of Sugui et al.

Locus ID Gene name (designation) P-value Fold-change

Afu7g06770 hypothetical protein 2.79E-04 1.87

Afu3g08900 tubulin-specific chaperone c, putative 4.41E-04 2.67

Afu4g10410 aspartate aminotransferase, putative 2.38E-03 2.19

Afu6g03590 methylcitrate synthase 4.21E-03 2.06

Afu6g10260 aldehyde reductase (AKR1), putative 5.83E-03 1.90

Afu8g07130 antioxidant protein LsfA 1.60E-02 1.73

Afu4g08580 antioxidant protein LsfA 1.89E-02 22.58

Afu3g10000 cAMP-dependent protein kinase regulatory subunit PkaR 2.62E-02 1.76

Afu4g12950 PX domain protein 2.74E-02 2.11

Afu2g11900 pyruvate dehydrogenase kinase 2.87E-02 2.45

Afu2g14590 MFS monosaccharide transporter, putative 3.05E-02 1.98

Afu3g00900 alpha-amylase AmyA 3.80E-02 1.62

Afu6g03730 prpd protein 4.08E-02 1.58

doi:10.1371/journal.pone.0020527.t003
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selected for validation with RT-qPCR, six remained significant

following co-incubation with 16HBE14o- and five remained

significant after incubation with primary AECs. A. fumigatus

formate dehydrogenase (fdh) was significantly up-regulated. Fdh

up-regulation was also observed by Sugui et al. [26] following

exposure of A. fumigatus conidia to neutrophils. Up-regulation of fdh

has been reported as a response of Candida albicans following

exposure to human neutrophils, and is suspected of being involved

in the detoxification of formate [38]. Fdh transcription has been

shown to increase after 48 hours of fungal biofilm development,

when compared to 24 hours [39]. Together, these data indicate

that fdh up-regulation is an early response of fungi not only to

professional phagocytes but also as a result of their interaction with

epithelial cells.

The V-ATPase 98 kDa subunit was up-regulated in A. fumigatus

incubated with AECs or 16HBE14o- cells. V-ATPases are

structurally conserved proton pumps found in all eukaryotes that

function to acidify the lumen of vacuoles [40]. In yeast, mutants

lacking the V-ATPase (vma mutants) show enhanced sensitivity to

oxidative stress, alkaline pH, metal ion stress, and high

concentrations of non-fermentable carbon sources [40]. A similar

phenotype has been observed in Aspergillus nidulans; a strain lacking

the V-ATPase subunit was unable to grow in alkaline (.pH 7.0)

conditions or high cation concentrations [41]. In fact, the

importance of V-ATPase is highlighted by a recent study

indicating that azoles mediate their toxicity by inhibiting ergosterol

biosynthesis, which in turn results in the fatal dysregulation of V-

ATPase function [42]. Although the utility of up-regulating

vacuolar acidification mechanisms in the presence of human

AECs is unknown, we hypothesize that V-ATPase up-regulation

would promote cation uptake (such as mobilized free iron),

modulate pH within the fungal cytosol, and/or assist in nutrient

degradation (e.g., stored conidial lipids) within the vacuole. A

putative sulphur metabolism regulator gene, skpA, was also up-

regulated in conidia following exposure to both AECs and

16HBE14o- cells. SkpA was shown to be up-regulated in mature

biofilms of A. fumigatus, and may represent a requirement for

methionine and cysteine-rich proteins during exposure to

epithelial cells [39].

MepB is a metallopeptidase that has been shown to hydrolyze

Type I collagen [43]. Mutants of A. fumigatus with a disruption in the

MepB gene showed no phenotype in mouse models of invasive

aspergillosis suggesting that this peptidase is not required for

virulence [43]. In our study, we found no changes in MepB

expression in conidia incubated with AECs in agreement with the in

vivo results. In contrast, SidA catalyses the first committed step of

hydroxamate-type siderophore biosysnthesis, and SidA has been

found to be absolutely essential in A. fumigatus virulence [24,25]. The

ability of A. fumigatus to survive in serum is dependent on the

removal of iron from host transferrin, indicating a role for in vivo

siderophore biosynthesis [44]. We found an up-regulation of SidA

suggesting that conidia face iron-limiting conditions when interact-

ing with bronchial epithelium. These data are in agreement with the

work of Schrettl et al. [45] who found that inhibiting siderophore

biosynthesis reduced fungal growth rate in alveolar macrophages.

This represents another example of fungal genes up-regulated in

response to professional phagocytes that were also found to have

increased expression with airway epithelial cells.

In conclusion, we have demonstrated the up-regulation of IL-6

by primary human AECs, along with several genes differentially

regulated by conidia of A. fumigatus following their interaction with

human epithelial cells. Interestingly, we found discrepancies in the

transcriptional response of the 16HBE14o- cell line and primary

human airway epithelial cells to A. fumigatus conidia. This suggests

that some of the differences between primary cells and cell lines

are relevant to interaction with A. fumigatus conidia, and caution

should be exercised when choosing a model system. As we

investigated only a subset of the differentially expressed genes of

either species, further characterization may assist in identifying

mechanisms of A. fumigatus pathogenesis. Future studies comparing

the responses of epithelial cells from normal airways with those

from individuals with diseased/abnormal airways (e.g., cystic

fibrosis, asthma) may contribute to understanding the character-

istics that make individuals with underlying respiratory conditions

vulnerable to A. fumigatus mediated diseases. Profiling temporal

changes in the expression patterns of both species will also provide

crucial insights into dynamic changes in expression anticipated to

occur during the early phases of interaction.
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