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Abstract

Background: Computational prediction of functionally related groups of genes (functional modules) from large-scale data is
an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-
scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when
analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the
interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained
unclear and methods by which to exhaustively search for such constellations had not been presented.

Methodology/Principal Findings: We provide an algorithmic framework, referred to as Densely Connected Biclustering
(DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to
the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from
human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules,
comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which
adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced
output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive
output by predicting functional relationships using two examples.

Conclusion/Significance: We demonstrate that the computation of all densely connected and co-expressed regions in
interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled
hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up
novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and
largely available large-scale datasets.
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Introduction

On the cellular level, life is driven by chemical compounds

acting in concert, in response to internal and external signals. The

ultimate goal of investigating the underlying complex molecular

patterns is to draw detailed maps of cellular mechanisms, such as

metabolic pathways, and their interplay. However, the challenges

behind a comprehensive computational and experimental explo-

ration of these mechanisms seem to be daunting, due to the

tremendous complexity of living organisms.

The modularity paradigm [1] provides a key insight how to

computationally overcome the inherent difficulties in a first

important step. This paradigm states that functional subunits of

the cellular maps are encoded as modules, i.e. groups of functionally

related genes. As a most relevant example of practical interest,

knowledge about a module facilitates to assign functions to not yet
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annotated genes modularly associated with fully annotated

functional ‘‘collaborators’’. Therefore, the design of biologically

sound as well as computationally tractable models for inferring

modules has been at the core of functional genomics throughout

the post-genomic era.

When searching for modules, approaches that integrate several

types of data promise to be superior. Well-known general aspects

which support combined analyses are increased robustness with

respect to the ubiquitous noise in large-scale data, the global

correlation between the ‘omic’ data types [2,3] and that single data

types provide only partial information. In particular, when jointly

analyzing gene expression and interaction data one should

consider that:

N Many cellular processes cannot be monitored by studying gene

expression alone. For example, several cell-cycle related

protein complexes in Yeast contain predominantly housekeep-

ing gene products such that the functional coherence of the

genes of these complexes is not visible on the transcriptional

level [4]. However, when defined appropriately, co-expressed

groups of genes tend to reliably reflect functional modules.

N Subgroups of genes, inferred by screening interaction network

data, exhibit quite the opposite behavior. While many more

cellular functionalities are reflected by connected subnetworks,

the likelihood that a connected subnetwork reflects a functional

module is comparatively low. This is due to the fact that

interaction networks provide only static pictures of the cell

such that the edges in a connected subgraph might not be

simultaneously present.

N Based on these two insights we hypothesized that to combine a

rather strict network metric (here: dense connectivity) with a

more relaxed gene expression metric (our definition of co-

expression is little restrictive) may result in an excellent, while

at the same time computationally manageable definition of a

functional module.

In the meantime, a variety of reliable and sound approaches to

module discovery has been provided to the related communities.

However, some open questions had remained. In particular, none

of the established approaches which integrate both network and

gene expression data fully resolves the following issues. (There are

non-integrated approaches which address the issues from below.)

N They only provide heuristic solutions to the biologically well-

motivated (e.g. [5–9]), albeit computationally hard problem of

searching for densely connected biclusters (in the sense of

densely interconnected regions in interaction networks whose

participating genes are co-expressed under sufficiently many

cellular conditions). Note that density, in addition to connec-

tivity, is a recurring theme in approaches based on network

data alone (see [10] for a summary).

N They tend to partition the datasets. However, overlap among

the modules is desirable since genes can participate in several,

sometimes substantially different, functional contexts.

N While large collections of modules are usually of no immediate

practical use, they can be flexibly transformed into smaller

outputs of particular interest since they cover the maximum

amount of functionalities that can be inferred from the

underlying datasets. None of the existing approaches outlines

such strategies since they do not find large collections in the

first place.

N Gene expression modules tend to reliably reflect functional

modules in terms of GO term enrichment, but they do not

cover many functionalities since many functionalities do not

show on the mRNA level. Network modules show the opposite

effect—they achieve good coverage of functionalities since an

interaction network usually covers all genes independent of

tissue, condition etc. However, network modules often are false

positives precisely due to that one cannot ensure that two

interactions are active under the same conditions. Combined

approaches aim at yielding balanced combinations of enrich-

ment and coverage. However, approaches yielding both

enrichment which is on par with methods based on gene

expression data alone and coverage comparable with ap-

proaches based on network data alone had not been presented

yet.

Approach
The major purpose of this study was to outline ways to

exhaustively search for densely connected biclusters in biomolec-

ular network and gene expression data and to elucidate the

advantages of such an approach in the light of the four points from

above. We do this by employing a search strategy which was

recently presented to the data mining community [11] and

tayloring it to the particular requirements when performing

functional module discovery. As an illustration see Figure 1. An

exhaustive search for maximal densely connected biclusters among

the genes (A,B,C,D,E,F ,G,H,K ,L,M) results in two subgroups:

(B,C,E,F ,K) and (D,F ,G,H,L) both of which are connected and

contain at least 7 of the possible
5

2

� �
~10 edges in the interaction

subnetwork (which translates to density §0:7). These two groups

of genes also form biclusters since all of the genes are co-expressed

in at least 3 conditions (Con-1, Con-5, Con-6 for (B,C,E,F ,K)
and Con-3, Con-4, Con-7 for (D,F ,G,H,L)). See the Methods

section for a formal introduction of the related theory.

The basic idea behind the strategy is to examine all subnetworks

of the interaction network for forming a densely connected

bicluster but those which can be neglected based on a theorem

which was presented in [11]. Hereby, the theoretical advance is to

observe that this renders the computational search problem

tractable when screening interaction in combination with gene

expression data. The search proceeds in a breadth-first fashion

which translates to first screening all subnetworks of size 2 and

proceeding with subnetworks of size n when having enumerated

those of size n{1. Based on the theorem from [11], we can neglect

subnetworks of size n whenever all subnetworks of size n{1
contained in the subnetwork of size n are not densely connected

biclusters. The theorem ensures that we will not miss a densely

connected bicluster. See the Results section, subsection ‘‘Tracta-

bility: Runtime Analysis’’ for a runtime analysis which shows that

our method has reasonable runtimes on the real-world instances

considered.

After subsequent application of a novel merging and a novel

statistical ranking procedure, we obtain a collection of modules of

great quality where modules possibly overlap. The quality of our

modules is documented by performing highly favorably in a

benchmarking competition. Most importantly, our approach is the

only one to achieve top-ranked enrichment and top-ranked

coverage simultaneously. Furthermore, we can demonstrate that

the overlap among the modules can help to discover different

functions of the same gene supported by that a gene may

participate in different modules reflecting different functionalities.

We also show that the comprehensiveness of our output can be

used to perform function specific module discovery which will be

addressed in the Results section, subsection ‘‘’’Advantage of

Exhaustive Searches’’.

Module Discovery
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Related Work
Non-Integrative Approaches. In large-scale gene expression

data, a module is usually defined as a group of co-expressed genes.

Several approaches have demonstrated that co-expression

significantly increases the likelihood for a group of genes to have

similar function (see e.g. [12–14] for seminal papers). Recently, a

large variety of inference and clustering algorithms have been

presented, often specializing in more specific problem domains. A

class of methods that is related to ours are biclustering algorithms.

Since the definition of a bicluster is that of a cluster of both genes

and cellular conditions, this class of algorithms is particularly

suitable when it comes to simultaneously analyzing gene

expression data resulting from experiments referring to various

different cellular conditions [15,16]. Here, SAMBA [17] proved to

be a superior approach in a recent comparative study [18].

Network-based methods for function prediction have been

comprehensively reviewed [10]. Various network-clustering algo-

rithms and related approaches have been presented since the

availability of large-scale network data (e.g. [19–22], see also the

citations in [10]). In an independent comparative study [23], MCL,

a Markov chain based method [24,25] performed most favorably

on the suggested benchmarking datasets. Apart from the fact that

modules are reflected by connected subgraphs in interaction

networks, it is well-established that they usually are also dense in

terms of above-average edge content. This applies in particular for

protein-protein interaction networks (e.g. [8,9]) since the physical

interaction of two gene products is vital for the two genes to

commonly exert function. Note that [9] is the only approach

which tries to exhaustively mine for densely connected subnet-

works. However, they can only prove to find all dense, but not

necessarily connected subnetworks. As a consequence, the devised

search strategy can provably miss certain densely connected

constellations. Moreover, they do not address how to integrate

gene expression data.

Integrated Approaches. A recurring theme in earlier

approaches is to infer modules as connected subnetworks where

genes are co-expressed. In the two seminal approaches, Ideker

et al. [26] find connected subnetworks which yield a high score

Figure 1. This figure refers to the definition of a densely connected bicluster (see Methods section, definition 1) referring to the
parameters a~0:7 (density) and hd~3,hexp~0 (co-expression constraints). The input for the core algorithm is the interaction network of the
organism (here, as a toy example, genes A,B,C,D,E,F,G,H,I,J and K) together with gene expression dataset containing (logarithmic) fold changes of
genes across a set of experimental conditions (here: the table below the interaction network). On the right, we display the set of densely connected
biclusters which refer to the datasets on the left. The densely connected biclusters contain at least 0:7(~a) times the amount of possible edges and
its genes are co-expressed in at least 3 different experimental conditions (hd~3) with a difference of at most 0 (hexp~0).
doi:10.1371/journal.pone.0013348.g001

Module Discovery
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measured in P-values obtained from gene expression experiments

whereas Hanisch et al. [27] define distance functions, based on

both expression and network information, which are subsequently

integrated into standard clustering procedures. Segal et al. [28]

provided probabilistic graphical models with which to perform

combined analysis of interaction network and gene expression

data, thereby establishing the first unifying statistical approach to

the issue.

Recently, integrated methods aim at inferring modules as densely

connected regions in interaction networks that is regions which are

not only connected but also contain a high amount of edges,

certainly inspired by the successes of approaches based on network

data alone which made use of this idea. In fact, it is well-

established that when combining interaction network and gene

expression data, modules are often reflected by densely connected

biclusters, that is, dense and connected regions in the interaction

networks where the participating genes are co-expressed under a

sufficient number of cellular conditions [8]. However, the

tractability of the corresponding computational search problem

had never been demonstrated and all of the previous approaches

present related heuristics.

In the most recent approach, Ulitsky and Shamir [29] compute

connected subnetworks which, according to a statistical hypothesis

test, are significantly co-expressed. Ulitsky and Shamir [29] also

report that they outperform state-of-the-art approaches in terms of

GO term enrichment and coverage (for definitions see Results

section, subsection ‘‘Module Assessment’’). The modules inferred

in [29] are relatively dense (see Table 1 and 2) which can be taken

as an additional indicator of that functional modules are associated

with densely connected, co-expressed subnetworks. Note as well

that [29] employ a heuristic, the ‘‘heaviest-subnet algorithm’’

which computes densely connected interaction subnetworks to be

used as seeds in the subsequent main algorithm. However, their

method does not solve the problem of exhaustively searching all

such subnetwork patterns. See the supplementary materials File S1

for a more detailed description. Note also that there are recent

approaches addressing how to reliably make use of confidence-

scored interaction networks (e.g. [30]). In the following, we do not

compare with such methods since confidence scores require a

substantial amount of annotations to be trustworthy. Therefore,

such approaches refer to a different, though related, problem

domain. Here, we would like to focus on module discovery

approaches which do not intrinsically rely on annotations.

Interaction Data. Beyond being applicable for physical

interaction networks, the definition of dense connectivity also

makes sense when screening genetic interaction networks for

modules [5]. While the correlation of genetic interaction

subnetwork patterns with functional entities has not yet been

fully explained, a densely connected region in a genetic interaction

network usually gives rise to a module. Note, however, that there

are exceptions, such as bridge genetic interactions that exist

between pathways as compared to within pathway interactions [7].

These cases do not necessarily form a dense region in a genetic

interaction network. In summary, finding densely connected

regions in genetic interaction networks alone should yield that

the modules are quite trustworthy while not necessarily all

modules are discovered. Note also that genetic interaction data

and physical protein-protein interaction data are often

complementary [7]. For example, this was made use of for

understanding gene interaction modules in C. elegans early

embryogenesis [6] as well as LIN-12-Notch signalling and the

actin cytoskeleton pathways [31]. Therefore, combining those two

data types can be advantageous.

Results

First, we computed all densely connected biclusters in both

Yeast and Human according to definition 1. We then distinguish

between two methods which result from further processing the

exhaustive set of all these densely connected biclusters. The output

of the first, called DECOB (DEnsely COnnected Biclustering) is

obtained by subsequently merging biclusters which share a large

dense core. This is motivated by that biclusters which substantially

overlap do not differ much in terms of their functional

interpretation. See also [32] for a related discussion. We refer to

the set of biclusters where substantially overlapping modules heve

been merged as DECOB modules in the following.

The output of the second method, DECOBRA (DECOB

RAnked), has been specifically tailored to serve the purposes of

a fair benchmarking procedure. It consists of the DECOB

modules which remain after having applied an automatized

ranking-based filtering procedure to the DECOB modules which

results in a reduced number of modules, referred to as

DECOBRA modules. See the Methods section, subsection

‘‘DECOBRA: Algorithm’’ for a full description of the ranking-

based filtering procedure.

Table 1. Benchmarking competition yeast.

Basic Statistics Quality Measures

Benchmarking Competitors #Gen. #Mod. AMS DY ER COV IC

SAMBA 876 135 25.96 .02 90 (2) 11 20

MCL 693 95 7.29 .44 88 30 (1) 33 (2)

Matisse 360 17 21.17 .31 95 (1) 6 17

COC 986 103 9.57 .06 72 19 16

Rand. Conn. 737 134 16.87 .27 84 23 4

DECOBRA 576 354 9.33 .41 95 (1) 29 (2) 41 (1)

Additional Methods #Gen. #Mod. AMS DY ER COV IC

DECOBRA Top-100 226 100 13.14 .33 100 5 18

DECOBRA Top-200 388 200 11.49 .35 97 16 31

DECOB 576 2276 9.33 .39 93 46 55

doi:10.1371/journal.pone.0013348.t001

Module Discovery
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We computed all densely connected biclusters in both Human

and Yeast, based on standard gene expression and protein-protein

/ genetic interaction network datasets (see the Methods section,

subsection ‘‘Data’’ for a more detailed explanation). In order to

demonstrate the benefits of our approach we then computed all

DECOB modules and, by means of the above mentioned filtering

procedure, the DECOBRA modules. We then

1. performed a standard benchmarking competition (see subsec-

tion ‘‘Standard Function Predictionn Benchmarking’’ below)

for which we suggest DECOBRA as a fair competitor and

2. evaluated the (unreduced) set of DECOB modules when

employed for specific function prediction tasks (see section

‘‘Advantage of Exhaustive Searches’’) which require large and

comprehensive sets of high-quality modules as a basis.

Tractability: Runtime Analysis
In order to give evidence that our approach achieves reasonable

runtimes on biological problem instances of interest we tested our

software on the Yeast dataset for varying choices of a,hexp,hd (for

exact definitions of those parameters which quantify subnetwork

density and co-expression, see the Methods section). Thereby, we

left two of the parameters a,hexp,hd fixed at a~0:65,
hexp~1:25, hd~140 according to what was found a biologically

motivated choice in Yeast and varied the third, remaining parameter.

See Figure 2 for corresponding statistics. As one can see the

combination of a~0:65,hexp~1:25,hd~140 resulted in about 15
seconds runtime to process the Yeast dataset. Changing hexp and hd

resulted in changes in runtime on the order of (up to 100) seconds

(Figure 2, top and middle). Changing a makes the most significant

effects as was to be expected due to the exponential increase in search

space size (Figure 2, bottom). As mentioned above, DCB constraints

are only loose anti-monotone for a§0:5 which requires to invoke

additional subroutines in order to find all densely connected biclusters

for choices of av0:5 (see [11,33] for details). However, even for the

most problematic choices of aƒ0:4 the runtime is only on the order

of a few minutes beyond that such choices are biologically not

necessarily well motivated in module discovery.

Standard Function Prediction Benchmarking
The general outline of the following competition has been

adopted from existing studies [29]. In the following, we refer to a

group of potentially functionally related genes as inferred by any

of the methodologies under consideration as a (functional) module.

To directly compare the predictive power of the complete output

of DECOB with those of the benchmarking competitors would be

inappropriate since the complete output of DECOB is one order

of magnitude larger than the outputs of the other methods in

terms of inferred modules. The idea behind approaches yielding

rather small outputs is to provide the experimenter with only a

small collection of modules of utmost quality. Since the

technologies behind the approaches of the competitors exclu-

sively address this idea, a direct comparison of our collection

with theirs would be misleading. Therefore, we developed a

ranking procedure, which, when applied to the output of DECOB

yields a result set that can be compared with the ones of the

existing methods in a fair comparison. As mentioned above, we

call the combined application of DECOB and the ranking-based

filtering DECOBRA. procedure which yields the sort of output

which can be incorporated into a meaningful benchmarking

procedure as DECOBRA. In general, the output of DECOBRA

can be used for common function prediction tasks in the sense of

the earlier approaches.

As benchmarking competitors, we chose four related publicly

available, state-of-the-art algorithms as well as a baseline

method. The two integrated methods are CO-Clustering (COC)

which is a seminal approach on the topic [27] and MATISSE

[29] set the current standards. We also benchmarked against two

methods that operate on single data types (either interaction

network or gene expression data). While MCL [24] operates only

on interaction network data, SAMBA [17] operates only on gene

expression data (note that SAMBA can in theory also be used to

integrate other types of data, but has not been thoroughly

evaluated for such tasks. Both methods established the gold

standard on the types of data under consideration. The baseline

method (Rand. Conn.) randomly sampled connected PPI networks

(we obtained empirical module size distributions from the output

sets of all algorithmic approaches and sampled connected

networks according to that size distribution). In the File S1 we

provide a more detailed description of the algorithmic technol-

ogies which underlie the approaches of the competitors.

Thereby, we put particular emphasis on the issues under special

consideration here, such as overlap and density. For all

algorithms, we used the recommended parameter settings if

applicable.

Table 2. Benchmarking competition human.

Basic Statistics Quality Measures

Benchmarking Competitors #Gen. #Mod. AMS DY ER COV IC

SAMBA 1709 129 48.94 .01 95 (1) 13 12

MCL 1863 312 5.94 .35 81 58 27 (2)

Matisse 1364 76 17.94 .30 93 (2) 25 18

COC 3558 271 13.12 .01 79 44 7

Rand. Conn. 1921 406 10.18 .35 88 61 (1) 3

DECOBRA 1358 758 6.52 .46 95 (1) 60 (2) 37 (1)

Additional Methods #Gen. #Mod. AMS DY ER COV IC

DECOBRA Top-100 347 100 7.12 .44 97 15 10

DECOBRA Top-200 553 200 7.08 .44 95 26 15

DECOB 1358 5979 7.12 .45 97 64 51

doi:10.1371/journal.pone.0013348.t002

Module Discovery
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Module Assessment
We measured several GO-based quantities to assess module

quality. The most important definitions of quantities have been

adopted from earlier studies [29]. For all calculations, we used the

high-throughput version of the GoMiner tool [34].

Basic Statistics (# genes, # modules, average module size (AMS), Density

(DY)). These numbers provide insights about the number of genes

covered by the inferred modules as well as the number of modules,

their average size and their average density. These basic statistics

may also assist in choosing convenient methods according to

practical considerations. Average density (see Def. 1) reveals how

density is related to module quality.

Enrichment (ER) is a standard measure and possibly the most

important one. It can be interpreted as the probability that an

inferred module is a set of functionally related genes. It is

computed as the percentage of modules that are enriched with at

least one GO term of level 7 or higher (meaning 8,9,…), as

suggested in [29] with P-values corrected for multiple hypothesis

testing, below a threshold of 0:01. In this context, level means the

length of the shortest directed path from the node associated with

the most generic GO term to the target GO term based on the

child-parent relations as induced by the topological organization of

GO.

Coverage (COV) is another standard measure (see [29]). It is the

number of GO terms that were enriched in any of the inferred

modules divided by the number of all GO terms associated with

the interaction network and gene expression datasets under

consideration.

Lastly, as genes can be associated with GO terms reflecting

different functionalities which indicates their participation in

several functional contexts, we suggest Individual Coverage (IC) as a

quantity which measures how well the functionalities of the

individual genes are covered. IC is the probability that, given a

gene and one of its associated GO terms, the GO term is enriched

in one of the inferred modules containing that gene. More

formally, if N is the number of genes, let F (G) be the number of

terms associated with gene G that are enriched in inferred modules

that contain the gene and T(G) be the total number of terms

associated with that gene then

IC~
1

N

X
G

F (G)

T(G)

where the sum ranges over all genes G. It measures how many of

the functional contexts of a gene are covered by the output. In

other words, it measures how well a method can identify multiple

functions of a gene. Therefore, methods which yield non-

overlapping modules have rather low IC (see Table 1 and 2).

In general, it is quite hard to provide a truly fair benchmarking

competition, due to different numbers of covered genes and

modules of the competitors. We suggest DECOBRA as a

competitor since the number of covered genes is roughly the

same as the one of the other methods. The output of DECOBRA

results from application of a ranking based filtering procedure to

the complete set of densely, connected and co-expressed

interaction subnetworks (DECOB modules). Recall that the set of

DECOB modules, without subsequent application of the ranking

procedure results in substantially larger number of genes and

modules (see the DECOB row in Table 1 and 2). We would finally

like to point out that the design of strategies for comparison of

clustering / module discovery methods which yield overlapping

outputs is an active area of research (e.g. [23]). As mentioned

above, we opted to have each method roughly the same amount of

Figure 2. Runtimes of our algorithm for varying, biologically
relevant choices of the parameters involved in our framework.
The most important observation is that we have runtimes of at most a
few minutes for all choices of a (density).
doi:10.1371/journal.pone.0013348.g002

Module Discovery
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genes covered which is fair with respect to have everyone a ‘‘best

bet’’ on the functions of the same amount of genes. The

subsequent results on yeast and human dataset can generally be

interpreted as the difference of having less, but usually larger, non-

overlapping modules (competitors) in contrast to our approach

which yields more, but smaller and overlapping modules.

Yeast. Table 1 displays the statistics, as defined in the Results

section, subsection ‘‘Module Assessment’’, that were achieved by

the comparison partners on both yeast and human datasets (see

Methods section, subsection ‘‘Data’’). In each column of the table,

the methods that perform best or second best (position in

parentheses) are highlighted.

DECOBRA is first in ER and IC and second in COV. MCL wins

COV, one obvious reason being that it assigns each gene to a

module, thereby achieving high coverage rates. However, MCL’s

performs rather poorly (relative to the baseline established by Rand.

Conn.) in ER, which is considered to be the measure of individual

module quality. This is likely due to yielding subnetworks as

modules where edges are not simultaneously present since it does

not consider gene expression data and confirms the intuitive idea

about the limitations of static network data when it comes to

function prediction. Nevertheless, recall that MCL proved to

perform very favorably among the methods that consider network

data alone [23] in an independent comparative study [23]. At any

rate, it is interesting to observe the high density of the modules

inferred by MCL. We would also like to mention the high

enrichment value of Matisse. The relatively high density of the

output modules (although this is not explicitly part of its underlying

module definition) might come as no surprise. Clearly, a general

explanation for Matisse’s module quality is that it is an integrated

approach. Note that the only method which achieves both top-

ranked enrichment as well as top-ranked coverage is DECOBRA.

Human. Table 2 displays the statistics defined in the Results

section, subsection ‘‘Module Assessment’’, that were achieved by

the comparison partners on the human datasets (see Methods

section, subsection ‘‘Data’’). DECOBRA finishes shared first in ER,

second in COV and first in IC. The baseline method Rand. Conn.

wins COV. This points out that to use COV as the only quantity

to measure coverage of function for a module discovery program is

questionable. More appropriate quality measures are required.

Note, for example, that Rand. Conn. performs suboptimal, if not

poorly in the non-standard measures IC which we had suggested

for further evaluation since they convey meaning of obvious

interest in function prediction. In this context, note also that MCL

performs slightly worse in COV, but superior (being second best)

in IC. This further supports that coverage of functionalities is hard

to assess and that novel ways for doing so are needed.

The high ER achieved by SAMBA is remarkable (sharing the

first position with DECOBRA) which confirms that biclustering is a

highly valuable approach when considering gene expression data

alone. Moreover, it confirms that co-expression, if appropriately

defined, is a strong indicator of functional relationships. However,

SAMBA’s COV and IC are rather poor reflecting that not every

functional relationship becomes visible in terms of co-expression

SAMBA modules. DECOBRA employs a rather relaxed definition of

co-expression whose predictive power comes from combining it

with the retrieval of interaction relationships. Both MCL and COC

achieve relatively good coverage values, again an obvious reason

being that they assign each gene to a module. However, for both of

them, ER is even worse than that of the baseline method (Rand.

Conn. ). Last, note that Matisse achieves top-rated ER values also on

the human dataset. In conclusion, note that DECOBRA is the only

method to achieve both top-ranked ER and COV among all

competitors.

DECOB
In Table 1 and 2 we display results for the full set of DECOB

modules. We also show the results for the top 100 and top 200
DECOB modules that result from stopping the filtering procedure

after having filtered out 100 resp. 200 DECOB modules

(DECOBRA Top-100 resp. DECOBRA Top-200). DECOB’s high

ER, in particular in Human (ER = 98) is quite remarkable since it

can be related to that, in Human, 98% of all densely connected,

co-expressed subnetworks are GO term enriched which under-

scores the applicability of the widely believed idea that such

constellations reflect cellular functional entities. Furthermore, all of

the top 100 DECOB modules in Yeast are enriched. Last, note that

DECOB achieves overall best values in COV and IC in both

Human and Yeast. In accordance with the definitions of COV and

IC, these demonstrates the benefits of DECOB when performing

more specific function prediction tasks where large amounts of

high quality modules are needed as a ground set. This will be

described in subsection ‘‘Advantage of Exhaustive Searches’’

below.

Advantages of Overlapping Modules
The benefits of allowing for overlap among modules are

documented by the good IC values of DECOBRA (recall the

definition of IC as the probability that a gene / GO term

combination is reflected by a module containing the gene and

being enriched relative to the GO term), in both Yeast and

Human. Overlapping modules reflect different functional contexts

where genes being part of the overlap play a role in all contexts

affected. Note that the unreduced output of DECOB achieves even

better IC values which gives evidence of the benefits of an

exhaustive approach in this respect.

In Table 3 we have further evaluated how well the individual

methods perform with respect to revelation of the different

functionalities of the genes. It is obvious that overlap is a crucial

necessity to properly reflect the different functionalities of a single

gene. To further examine this we have counted all module pairs

(M1,M2) (OMPSDF = Overlapping Module Pairs Supporting

Different Functionalities) in Table 3 such that

1. The intersection of M1 and M2 is not empty.

2. M1 and M2 do not share (in terms of enrichment) a GO term

at level 3. This translates to that they reflect different cellular

core processes.

3. Among the genes which are shared by M1 and M2 there is a

gene which is annotated with two GO terms of level 3 or below

(4,5,6,:::) where one of the terms is enriched in M1 (hence not

in M2, since M1 and M2 do not share such terms) and the

other term is enriched in M2 (hence not in M1). This means

that the gene supports two functionalities which are essentially

different.

The number of such pairs of modules produced by the different

methods are shown in Table 3. As expected, none of the methods

Table 3. Statistics on overlapping module pairs supporting
different functionalities (OMPSDF).

Organism SAMBA MCL Matisse COC DECOBRA

Yeast 4 0 0 0 1264

Human 208 0 0 0 194

doi:10.1371/journal.pone.0013348.t003
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which partition the datasets (MCL, Matisse, COC), in particular

none of the existing combined ones (Matisse, COC) infers such

module pairs. The only method apart from DECOBRA which

outputs such configurations is SAMBA, which operates on gene

expression data alone. The differences between the numbers in

Yeast and Human are due to the peculiarities of the gene

expression datasets under consideration. Note that the 1264 pairs

reported correspond to 2% of the
354

2

� �
possible pairs where

354 is the number of modules output by DECOBRA (see Table 1)

which means that in Yeast 2% of the DECOBRA module pairs

support the desirable idea of finding constellations where genes

interact in different cellular functional contexts. Only DECOBRA

reports substantial amounts of such overlapping configurations.

Advantage of Exhaustive Searches
In the following, we demonstrate the advantages of an

exhaustive module search by describing an experimental scenario

of practical interest. The idea is to provide one or several

functionalities of specific interest and then to select all modules

from the output of a module discovery method which are enriched

with functionalities under consideration. This aims at integrating

partial knowledge in terms of functionalities in order to more

specifically predict gene and protein function in rather sparsely

annotated organisms. The resulting collections of modules should

reflect functionalities which are related to the functionality

specified. Since it is desirable to be able to add or combine

functionalities interactively and not to have to recompute module

collections upon modification of specification of functionalities, an

advantageous workflow of such studies would be to

1. first compute a large collection of high quality modules and

2. then to interactively select collections of specific interest by

simple filtering procedures.

Clearly, in order to support such an advantageous workflow, the

initial collection should be both comprehensive and rich in terms

of functionalities covered and reliable in terms of module quality.

Revisiting the statistics of Table 1 and 2 reveals that the exhaustive

collection of DECOB modules meets these criteria since it achieves

superior module quality and superior coverage of functionalities,

unlike the approaches with reduced outputs. We would like to

mention that none of these approaches have been designed to

support such workflows in the first place (see the supplementary

materials File S1 for a detailed description of their methodologies)

and that it would be interesting to see whether their module

definitions can be used for such exhaustive searches when attuned

accordingly. Here, we compare the specific DECOB collections

with the specific collections that result from filtering the output of

the benchmarking competitors for modules which are enriched

with a GO term of particular interest in order to demonstrate that

reduced, unspecific collections are not appropriate. The reliability

of the DECOB output for GO term specific modules is not only

provided by its excellent ER and COV, but also its superior IC

values (see the DECOB row in Table 1 and 2). The IC value in

particular gives evidence that more functionalities per gene will be

covered in general. Hence our specific collections will give rise to

comprehensive predictions of very high reliability.

We display a detailed analysis of the collection of modules which

resulted from two GO term specific function prediction perfor-

mances, one in Human and one in Yeast. In Yeast, we focused on

GO term ‘‘GO:0006333, chromatin assembly’’ whereas in Human

we focused on GO term ‘‘GO:0060070, Wnt receptor signaling

pathway through beta-catenin’’. Our choice of GO terms was

motivated by our own research interests. While ‘‘Wnt receptor

signaling pathway through beta-catenine’’ plays an important role

in development, ‘‘chromatin assembly’’ is critical for regulating

gene expression. We collected modules from all methods under

consideration, by selecting only those which were enriched with

one of the two GO terms. Subsequently, we analyzed these

collections.

Yeast: GO:0006333, Chromatin Assembly. DECOB

provided us with 56 modules which were enriched with genes

associated with chromatin assembly. These 56 modules contained

on average 11 genes and had an average overlap of 25%.

As a first point, our analysis revealed interesting interrelationships

in the DECOB modules. Note that we can compute a ranking of the

modules, as is described in the Methods section, subsection

‘‘DECOBRA: Algorithm’’. We found that the module which was

top-ranked among the 56 modules carried particularly interesting,

potentially novel, information about chromatin assembly, see Figure 3.

In more detail, this module presents 13 members that function

in chromatin structural modification. Five members encode

histone subunits: HTB2 (YBL002W), HTA1 (YDR225W),

HTA2 (YBL003C), HHF1 (YBR009C), and HHF2 (YNL030W).

Recall that histones are core proteins that DNA wraps around to

form nucleosomes. Histones, especially the tails, can be modified

to form euchromatin or heterochromatin structures which are

commonly associated with transcriptionally active region and

transcriptionally silent region, respectively. HST3 (YOR025W) is

an example of deacetylase that removes acetyl groups from

histones (specifically H3K56) to promote formation of heterochro-

matin [35,36]. HST3 works in concert with RTT107 (YHR154W)

and other proteins to establish transcriptional silencing in locus

such as HMR, HML, and telomeres [37]. ASF1 (YJL115W) also

facilitates gene silencing by promoting nucleosome assembly by

chromatin assembly factor I (CAF-I) [38,39]. This notion is

supported by yeast strains with mutation in ASF1 show defects in

heterochromatic gene silencing [40]. ASF1 binds acetylated form

of histones and stimulates nucleosome assembly in an HIR and

POL30 (YBR088C) dependent manner [39]. The mechanism and

interaction between ASF1, HIR proteins, and POL30 is still

unclear. Heterochromatin assembly, kinetochore formation, and

chromosome segregation is a tightly linked process. SWI6 in S.

pombe functions in gene silencing, kinetochore assembly, and

microtubule attachment to kinetochores [41,42]. Similarly, CAF-I

and HIR proteins in S. cerevisae, which are important for

heterochromatin assembly, also function in kinetochore assembly

[43]. Other proteins that have a role in this coordinated process

include SMC5 and SMC6 (YLR383W). SMC5-SMC6 complex

are localized to centromeres and are crucial for proper

chromosome segregation both in S. pombe [44,45] and in S.

cerevisae [46,47]. It is therefore no surprise that kinesins CIN8

(YEL061C) and CIK1 (YMR198W) are also members of the

module where they are crucial for structural integrity of mitotic

spindle during mitosis when chromosomes segregate [48]. CIN8

and CIK1 are readily degraded by CDH1. CLB2 (YPR119W)

activates a mitotic kinase CDC28 to inhibit CDH1 to allow

accumulation of CIN8 and CIK1 [49]. Taken together, all 13

members of this module are reasonably grouped. Our study here

suggests histone and histone modification proteins work in a

concerted effort with kinetochore proteins and kinesins during

mitosis. This has been shown to some extent with CAF-I and HIR

proteins [43]. According to our module, ASF1, which functions

together with CAF-I and HIR, may also function in kinetochore

formation and chromosome segregation during mitosis.

An analysis of the modules of the other methods revealed that

DECOB is the only method that makes such prediction. In general,
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the modules generated by DECOB are not found by any of the

other methods. Moreover, the modules from other programs with

GO-term enrichment in chromatin assembly/disassembly show

limited overlap with the DECOB modules.

Conversely, the other methods predict genes to be associated

with chromatin assembly or related processes which cannot be

found in any of the DECOB modules. The COC modules contain

18 genes where 4 are Histone genes, 10 are ribosomal proteins,

and the rest are membrane associated or membrane transport

protein. The relationship between the members of this module in

terms of chromatin assembly/disassembly does not become

obvious. Similarly, the Matisse modules do not present obvious

relationships in terms of chromatin assembly/disassembly. Here,

out of 24 genes in total, 5 are histone genes, 9 are ribosomal

proteins, and some genes involved in RNA processing and amino

acid degradation. Apart from DECOB, the MCL module presents

the most plausible predictive quality. It consists of polymerase,

topoisomerase, and DNA repair genes. However, MCL only

generates one module, consisting of 6 genes. The histone genes are

clearly missing in this module. Lastly, one SAMBA module (cluster

72) shows high overlap (among all enriched SAMBA modules) with

the top-ranked DECOB module we analyzed. However, while

being of high overlap, it also has genes not directly related to

chromatin assembly/disassembly such as genes involved in nuclear

export, mRNA localization, Golgi membrane protein, and zinc

transporter protein.

Last, the DECOB modules are generally better enriched in terms

of p-values.

Human: GO:0060070, Wnt Receptor Signaling Pathway

through Beta-Catenin. DECOB delivered 17 modules which

were enriched with genes associated with GO term GO:0060070.

These 17 modules contained 8 genes on average and had an

average overlap of 13%. In the following, we focus on analyzing

the DECOB module which was most significantly enriched since it

carried particularly interesting interrelationships. We will

comment on its contents in more detail in the following, before

turning our attention to the modules of the other methods. See the

right of Figure 3 for a picture. Note already now that only COC

and MCL returned modules which were enriched with

GO:0060070.

The selected DECOB module consists of 7 genes: COBRA1,

CTNNB1, ERBP, ESR1, GSK3B, MNAT1, and SMAD2.

CTNNB1 and GSK3B are known members in b-catenin signaling.

CTNNB1 (also known as b-catenin) is a key component in Wnt

signaling that is able to translocate to the nucleus to modify many

transcription factors such as lymphoid enhancer factor (LEF) [50]

and FOXO transcription factors [51]. GSK3B regulates CTNNB1

level by phosphorylating CTNNB1 for degradation [52]. SMAD2

is a member of the TGF-b signaling pathway. The remaining 4

genes (COBRA1, ERBP, ESR1, and MNAT1) are part of the

estrogen receptor pathway. ESR1 (estrogen receptor 1) is a ligand-

activated transcription factor that binds to the estrogen-response

element (ERE) while ERBP (estrogen receptor binding protein)

binds to and enhances ESR1 activity. ESR1 activity is regulated by

a number of factors. COBRA1 interacts with ESR1 and is also

able to inhibit ESR1 target gene activation upon estrogen

stimulation [53]. Similarly, MNAT1 also interacts and translocates

with ESR1 upon estrogen activation [54]. It is suggested that

ESR1 activity may be influenced by MNAT1 via chromatin

remodeling [54]. It is only recently that we begin to see some

evidence suggesting the convergence of the estrogen receptor

pathway and Wnt signaling pathway. Kouzmenko et al. showed in

Drosophila that ERb (ESR1) functionally interacts with b-catenin

and that b-catenin can be recruited to EREs [55]. Mendez et al.

similarly showed that GSK3 positively regulate estrogen receptor

activity in N2a cells by enhancing transcription of target genes

Figure 3. Two real case examples of a Yeast (left) and a Human (right) module as inferred by application of DECOB and further
filtering by GO terms of specific interest. The Yeast module on the left was obtained by screening the output of DECOB for modules which are
enriched with the GO term ‘‘Chromatin Assembly’’ (GO:0006333). The Human module on the left was obtained by screening the output of DECOB for
modules which are enriched with the GO term ‘‘Wnt Receptor Signaling Pathway through Beta-Catenin’’ (GO:0060070).
doi:10.1371/journal.pone.0013348.g003
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[56]. Having this in view, the DECOB module under consideration

presents some interesting predictions of potential novel interac-

tions between Wnt signaling pathway and estrogen receptor

pathway.

Another interesting feature was to observe that overlap, ESR1

was found to participate in DECOB modules, different from the

one under consideration here, which were enriched with the GO

term ‘‘Estrogen receptor pathway’’, but not with the GO term

under consideration here (‘‘Wnt signalling pathway through b-

catenine’’). This is a concrete example of the benefits of

overlapping modules, which, in this example, share ESR1 as a

member, but reflect different functionalities.

None of the modules of the other methods make such

predictions. Aside from DECOB, COC and MCL are the only

two programs that return a module which is enriched with GO

term GO:0060070. None of the above methods generates a

module from the DECOB output. The only COC module contains

8 genes. While some of them are for DNA repair (MRE11A,

POLI, RUVBL2), one is associated with microtubule regulation

(MAPRE1). It is not obvious at the point if any cross talk occurs

between Wnt signaling pathway and DNA repair. MCL on the

other hand yields a 17 gene module that is highly enriched in cell

adhesion and junction proteins such as cadherins (4 genes), catenin

(3 genes), desmosomes (2 genes), and their associated proteins (4
genes). Some of these genes, like b-catenin, have a membrane

associated form functioning in cell-cell contact and a cytoplasmic

form to function in signaling pathway but the idea that all

adhesion molecules also play a role in Wnt signaling is currently

not supported by the literature. At any rate, there are similar

DECOB modules, predicting similar contexts as the MCL module.

Note, however, that the DECOB modules show higher significance

in GO terms relating to cell-cell junction than Wnt signaling.

In summary, our analysis reveals that the GO-term specific

collection of DECOB modules possesses the better predictive

power, since it reveals well-known, relevant and predicts plausible,

interesting relationships that other methods miss.

Discussion

In the Introduction, we outlined that despite the great advances

in the area of functional module discovery which were made in the

post-genomic era, a few issues whose overcoming promised further

potentially significant improvements had remained unresolved.

First, the tractability of the computational problem to

exhaustively search for densely connected biclusters, that is, dense and

connected regions in interaction networks where genes are

sufficiently co-expressed had remained an unresolved issue.

However, the idea that densely connected biclusters reliably

reflect functional modules was widely supported and well-

established (e.g. [5,6,8,9]). Beyond the cited evidence, it is

interesting to notice that MCL which operates on network data

only and performed quite favorably in a comparative study [23],

employs a definition which is akin to that of densely connected

regions in the interaction networks (see the supplementary

materials File S1 for a detailed description of MCL). However,

none of the approaches which operate on both interaction network

and gene expression data, explicitly addresses this objective. Also,

while there is evidence in the literature that dense connectivity

gives rise to reliable modules in genetic interaction networks [5,7],

none of these approaches were evaluated on such data.

Second, combined approaches tend to partition the datasets,

thereby establishing one-to-one correspondences between genes

and functionalities although it is well-known that genes can

participate in several functional contexts. Note that methods which

operate only on gene expression data can infer overlapping

modules [57–59] which underscores the benefits of this idea.

Third, there were no approaches which generated large,

comprehensive collections of high-quality modules resulting from

exhaustive screens of the modular organization of organisms. The

idea behind such exhaustive searches is to subsequently tailor the

resulting large collections to more specific needs, by means of fast

filtering strategies. Apart from convenience in such annotation-

specific module discovery tasks, exhaustive collections may also

provide a global picture of the modular organization of an organism.

In this article, we presented an algorithmic framework with which

to resolve the outlined issues. The framework is centered around the

problem of exhaustively searching for densely connected biclusters using

the property of antimonotonicity. The framework outputs a

collections of densely connected overlapping biclusters. No densely

connected bicluster is missed by our procedure which results in a

large, comprehensive collection of high-quality modules.

In order to demonstrate the benefits of our approach, we tested

two module discovery methods, DECOB and DECOBRA, which

arise from our framework. The output of DECOB results from

merging densely connected biclusters which share a significantly

large overlapping core. The output of DECOBRA results from

further reducing the output of DECOB according to a ranking-

based filtering procedure. This procedure serves the purposes of a

fair competition—the output of DECOBRA is comparable to the

outputs of existing approaches in terms of numbers of modules and

of genes covered. We then employed DECOBRA in a standard

benchmarking procedure. The comprehensive output of DECOB

was employed to predict functional relationships of particular

interest using two examples. For this purpose, the output of

DECOB was filtered according to the particular interests as

specified by two GO terms.

In the benchmarking competition, DECOBRA proved to be

superior over the state-of-the-art approaches under consideration.

While this is good evidence of that densely connected biclusters

indeed reliably reflect functional modules, we observed some

further interesting phenomena:

1. Our baseline method, which operates on interaction network

data only, achieved respectable enrichment (ER) values (see

Table 1 and 2), which underscores that connectivity is a

valuable concept when screening interaction network data.

This also shows that achieving enrichment up to 90% does not

require elevated levels of sophistication. However, the fact that

it also achieves respectable coverage values is quite disturbing

and casts certain doubts on enrichment and coverage as the

only measures to assess the performance of module discovery

programs. As a first attempt to mend these deficiencies we

introduced IC which reflects how many functionalities per gene

are covered on average. It is interesting to observe that the

baseline method achieves only poor values here, whereas the

sophisticated module finder MCL, which also operates on

interaction network data only, achieves superior values in these

novel categories while being at most on a par with the baseline

method in the standard values.

2. We observed that MCL achieved good coverage values (COV

and IC) while achieving only relatively low (below 90%)

enrichment (ER). This reflects that, on one hand, quite a

substantial percentage of functional contexts is reflected by

interaction data. However, on the other hand, still a significant

amount of dense and connected regions do not reflect modules,

likely due to the fact that the underlying combinations of edges

are not simultaneously present within cellular contexts. In other

words, interaction network data is static.
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3. SAMBA, which operates only on gene expression data, achieves

good (even superior enrichment values in the human data set)

without achieving good overall coverage. This reflects that

coherent expression patterns indicate modular arrangements

when co-expression is appropriately modeled. However, not all

modular arrangements become visible at the transcriptional

level which is a well-known fact [4].

4. The essence of the previous points is that a good idea for

module discovery approaches is to employ the comprehensive

predictive power of interaction network data while using gene

expression as a control element. Thereby, one must be aware of

that state-of-the-art definitions of co-expression (such as the one

of SAMBA) could rule out too many network patterns, which

would again result in low coverage values. Note that the

definition of co-expression of our approach is a rather relaxed

one. To our understanding, the combination of network and

expression criteria as per our approach explains both the

superior enrichment and superior coverage.

Note finally that, independent of the fairness issues (DECOB’s

output is larger by one order of magnitude than the outputs of the

benchmarking competitors), DECOB achieves the best values in all

benchmark measures. We filtered the output of DECOB by

specifying GO terms of interest and studied the resulting real case

examples of module collections. By doing so, we aimed at

demonstrating that the large output of DECOB can be employed to

more conveniently tackle more specific function prediction tasks. A

thorough analysis of the specific collection of DECOB modules and

the (much smaller) collections of the prior approaches revealed

that the DECOB modules possess the greatest predictive power,

since it reveals well-known, relevant and predicts plausible,

interesting relationships that other methods miss. It would be

interesting to see how related approaches perform when being

tailored to address such tasks. However, it remains unclear to what

extent the comparison partners considered here (see the

supplementary materials File S1 for detailed descriptions of the

approaches) can be modified to support such tasks.

In summary, we have provided evidence of the substantial

benefits of our module discovery framework when it comes to

resolving the issues outlined in the Introduction. Future work will

be concerned with adapting our methodology to confidence-

scored interaction data, which has received considerable attention

in the recent past. Moreover, we are planning to explore the

applicability of gene co-expression constraints which are different

from that of Definition 1. For example, there usually is a negative

correlation between genetic interacting genes belonging to

alternative pathways. As such, order preserving submatrix analysis

is a promising direction as it can handle both positive and negative

correlation [16]. Last, mining modules with density thresholds that

are related to module size in the style of [60] should be beneficial.

Note that in [60], the determination of significance thresholds for

subgraph size dependent density is incorporated into a mining

algorithm which, in contrast to our approach, partitions the

networks into a fragmentary collection of subgraphs hence outputs

an incomplete, non-overlapping collection of modules. Combining

a subgraph size significance analysis with an exhaustive search for

densely connected biclusters should yield further improvements in

module discovery.

Methods

Data
Yeast. We extracted the interaction network, containing both

PPI and GI interactions from multiple publicly available datasets

from the BioGRID database [61]. Gene expression data was given

by the yeast compendium dataset [62]. It reports fold changes of

experiment against control in as many as 300 cDNA experiments.

We discarded genes whose ratios were to be found in a 1.5 times

variance interval around the mean over all conditions, hence

nowhere exhibited significant expression levels. This amounted to

1043 differentially expressed genes with 2664 interactions in the

resulting network.

Human. Again, the PPI/GI network was downloaded from

the BioGRID database [61]. For the gene expression data, we used

the comprehensive human tissue expression dataset [63], which lists

fold changes over 115 cDNA experiments across 35 different tissue

types. In order to account for activity, we only retained variably

expressed genes which were with at least 2-fold ratio variation from

the mean in at least two samples, as suggested by the authors of [63].

As a result, the human dataset contained 3628 genes connected by

8924 interactions in the respective network.

General Strategy
On a high level, our method consists of the following steps:

1. Infer the entirety of all densely interconnected subgraphs

whose genes are co-expressed (definitions see subsection

‘‘Densely Connected Biclustering: Problem Definition and

Properties’’ below), DECOB algorithm, see subsection ‘‘DE-

COBRA: Algorithm’’ below.2.

N In order to provide specific collections of modules, specify

the functionality of interest and filter the (comprehensive)

output accordingly (results see Results section, subsection

‘‘Advantage of Exhaustive Searches’’)

N In order to obtain a small and reliable collection of

modules which is independent of choices of GO terms, we

apply a ranking procedure that ranks the modules

according to density and coherence in expression. We

then select modules using these rankings as a guide, without

that numbers of modules have to be specified beforehand

(DECOBRA, see subsection ‘‘DECOBRA Algorithm’’

below).

Densely Connected Biclustering: Problem Definition and
Properties

In order to formally introduce our problem definition, we will

employ the following terminology.

A profile network is defined as an undirected graph

G~(V ,E,F) consisting of a node (gene) set V , an edge set E
and a profile function

F : V ? RK

v . (F1(v),:::,FK (v)):

F assigns a fold change expression profile to each node of an

interaction network. For K ’5f1,:::,Kg, we will refer to RK ’, the

projection of RK onto the dimensions specified by K ’, as a profile
subspace. We are interested in the following three properties of

an induced subnetwork G’~G½V ’�~(V ’,E’,F ): co-expression,

density and connectedness, which are summarized in the following

definition.

Definition 1 (Densely connected Biclustering)
Let G’~G½V ’�~(V ’,E’,F) be an induced subnetwork of a profile

network G~(V ,E,F ).

2.
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1. G’ is co-expressed wrt. (with respect to) hd ,hexp if there is a profile

subspace RK ’, DK ’D§hd such that for all k[K ’

max
v,v’[V ’

DFk(v){Fk(v’)Dƒhexp:

This translates to that the expression levels of genes v’ of the subgraph

G½V ’� do not differ by more than hexp under the at least hd many cellular

conditions indexed by K ’. Note that a set of correspondingly co-expressed

genes can be viewed as a bicluster of genes and conditions in the sense of

the usual definition of a bicluster.

2. The density of d(G’) of G’ is defined as the ratio of the number of edges

in G’ over the number of possible edges in G’,

d(G’)~
DE’D
DV ’D
2

� �~
2DE’D

DV ’D(DV ’D{1)
:

We say that G’ is a-dense if

d(G’)§a:

3. G’ is connected if there exists a path in G’ between any pair of nodes

in V ’.
4. G’ is called a densely connected bicluster (DCB) or,

equivalently, satisfies the DCB constraints wrt. a,hd ,hexp if G’ is

connected, co-expressed wrt. hexp and hd and a-dense. A DCB G’ is

maximal if it is not a proper subgraph of another densely connected

bicluster.

See Figure 1 for an example of a densely connected bicluster.

Biological Instances. In the instances of profile networks

G~(V ,E,F ) considered, V is a set of genes/gene products and

edges E correspond to both PPI and GI interactions. F can be

identified with fold change expression profiles of the genes.

Accordingly, a DCB will be a set of genes that are co-expressed

within a hexp fold-change neighborhood of each other across at

least hd experimental conditions and whose associated nodes form

a densely connected interaction subnetwork (see Figure 1).

Definition 2 (Densely Connected Biclustering (DCB)
Problem)

Input. Profile network G~(V ,E,F ), density threshold a, homogeneity

threshold hexp and minimum number of dimensions hd .

Output. All maximal DCBs of G satisfying the DCB constraint

specified by a,hexp and hd .

The DCB problem is NP-hard. Its decision version is NP-

complete, shown by a simple reduction from the max-clique

problem [64]. As a straightforward observation note that naive

approaches to the DCB problem would require an exhaustive

enumeration of all 2N subnetworks of G, which is infeasible in

general (here, N will be on the order of the number of genes in an

organisms hence on the order of several thousands). In case of

PPI/GI networks, tractability is provided based on the following

observation.

Definition 3 (Loose Anti-Monotonicity)
A constraint is called loose anti-monotone if for each network G of

size n that satisfies the constraint, one can find at least one induced subnetwork

G’5G of size n{1 satisfying the constraint.

The crucial observation for rendering the search problem

tractable is that the DCB constraints are loose anti-monotone if

a§0:5. Below we provide a proof sketch for this to hold. Detailed

definitions and fully elaborated proofs can be found in [33] and

[11].

Proof Sketch. Clearly, the co-expression constraint holds for

all induced subnetworks of size n{1 of a DCB G’ of size n. We

can therefore restrict our attention to dense connectivity. To

obtain a DCB of size n{1 of G’, one tries to remove the node (and

with it its edges) whose degree is smallest. We will be done if the

resulting network is still connected. If the network is disrupted into

two sets of nodes, then the smaller one of the components,

including the disrupting node, contains at most half of the nodes of

the original network. This translates to that the degree of these

nodes, divided by the number of possible incident edges (~n{1)

is at most 0:5. Therefore, some straightforward computations

reveal that one can remove all these nodes without violating the

density constraint. It remains to observe that removing a node in

the smaller component that is farthest away (in terms of shortest

paths) from the disrupting node will not disrupt the network.

We would finally like to point out that for 1=3ƒav0:5 the

DCB constraints are not loose anti-monotone. By means of further

theorems and, based on them, additional subroutines that follow

the core routine from below, we would have been able to infer all

a-dense DCBs also for 1=3ƒav0:5 (see [11,33] for details).

In order to have an appropriate choice of a we examined the

densities of the Yeast protein complexes and pathways. See

subsection ‘‘Choice of Parameters’’ below for a more detailed

description.

Related Work. A most recent approach whose theoretical

framework supports inference of all dense, but not necessarily

connected subgraphs in interaction networks (without particularly

addressing gene expression) is [9]. While they employ their

methodology to only search for connected, dense subnetworks, the

algorithmic strategy does not guarantee to do this exhaustively and

one can show that they miss certain dense and connected

subnetworks. The idea of mining for densely interconnected

subgraphs was also successfully applied to co-expression networks

where edges connect genes when they are significantly co-

expressed across a range of different cellular conditions. In this

case, several specifically adapted heuristics were devised to tackle

the corresponding search problems [65,66].

DECOB Algorithm
The core strategy of DECOB is to narrow down the huge search

space consisting of the 2N (where N is the number of the nodes of

the network, i.e. the number of genes in an organism) subnetworks

of the original network by means of the loose anti-monotonicity of

the DCB constraint. See Figure 4 for an example. In a

preprocessing step, we remove edges whose nodes refer to genes

that are not sufficiently co-expressed, that is edges between genes

whose expression profiles do not meet the co-expression

constraint, as such edges cannot participate in any DCB (note

that the co-expression constraint, taken by itself, is strongly anti-

monotone which means that none of the children of such gene

pairs can meet the co-expression constraint). Then we conceptu-

ally organize all connected subnetworks in a hierarchical structure

(formally a lattice) where a subnetwork is a child of another one if

it can be obtained by adding exactly one gene (and the

corresponding edges) that is connected to the parent subnetwork.

Note that a child is larger than its parent which may be a bit

counterintuitive.

We then traverse this structure top-down, in a breadth-first

search. This means that subnetworks of size n are only checked

upon having produced all DCBs of size n{1. The point is that

when it comes to examining subnetworks of size n, we can restrict
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ourselves to checking children of DCBs of size n{1, as the loose

anti-monotonicity of the DCB constraints guarantees that every

DCB of size n necessarily has a DCB of size n{1 as a parent. For

example, in Figure 4 only children of the DCBs A-B-D and B-C-D

are examined further whereas other subnetworks (e.g. A-B-C-E)

are not checked as they have no DCB as a parent. If a DCB cannot

be expanded by a node (i.e. it is maximal) it is returned as an output.

The only maximal DCB in Figure 4 is A-B-C-D.

In order to both increase and adequately evaluate the biological

quality of our modules we subsequently employ a refinement

procedure. Its biological motivation is that, in biomolecular

networks, functional subunits often consist of a dense core in

combination with genes which are ‘‘attached’’ to the core (e.g.

[32]). The following refinement procedure will merge DCBs when

they overlap to a high degree. Ensembles of genes resulting from

this merging procedure reflect such ‘‘core-attachment’’ constella-

tions. In addition to such motivation, missing data is another issue

that we address by the refinement procedure.

We iteratively merge pairs of DCBs if they overlap in at least

75% of their members as well as in at least 80% of their associated

co-expression subspaces (referring to the gene expression condi-

tions under which they are sufficiently co-expressed). This is

because currently available PPI/GI networks are far from being

complete as well as that gene expression experiments contain a

high amount of noise. These issues result in significant amounts of

modules that are split up into fractions. The refinement step

alleviates this problem by relaxing the density and co-expression

constraints in such cases. Note that the refinement procedure

implies that, despite our choice of a density threshold of 0:65 (see

below), the density of the inferred modules can be lower than 0:65.

Throughout the article, we refer to the modules which result

from merging DCBs as described above as DECOB modules.

Choice of Parameters
In order to choose a appropriately we examined the average

density of the Yeast protein complexes and the pathways as

downloaded from the SGD database [31]. See Figure 1 in File S1

for corresponding statistics. While the mean density of those

complexes was found to be 0:79, we found that the average density

of the annotated modules was reduced upon combination of the

two datasets and subsequent removal of nodes which referred to

genes with missing gene expression data. Therefore, we chose

a~0:65 as a biologically well motivated density threshold and,

based on the underlying biological inspiration and the good results

Figure 4. Illustration of the DECOB algorithm on a simplified example consisting of six genes and three gene expression conditions.
DECOB constraints are specified by: a~0:8 (density), hexp~0:5 (maximum difference in expression) and hd~2 (number of expression conditions). The
algorithmic strategy is to traverse the lattice of all subnetworks in a breadth-first fashion. Any subnetwork which is not a densely connected biclusters
can be discarded due to that every densely connected bicluster necessarily has a densely connected bicluster as a parent ( = subnetwork contained in
the original one, see definitions 1 and 3 and the surrounding discussions). For esthetical reasons, we have omitted B-C-D-E although, as a child of the
densely connected bicluster B-C-D, it is also examined. B-C-D-E, just as A-B-D-E will be discarded since it violates the density constraint.
doi:10.1371/journal.pone.0013348.g004
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we obtain, we suggest this choice of parameter as a default value.

Note that the density of our modules can become lower than 0:65
upon treatment in the postprocessing step.

Similarly, based on the distributions of the number of co-

expressed dimensions of the annotated modules, we further chose

hexp~1:25 and hd~140 (out of 300) for the yeast dataset.

Contrary to yeast, there is no comprehensive true human module

dataset. With regard to the fact that the human expression dataset

contains a high amount of missing values (w25%) which adverts to

a high amount of noise, we used more relaxed thresholds

(hexp~1:4, hd~10 (out of 115)).

DECOBRA Algorithm
In order to provide a competitor which meets the purposes of

the standard benchmarking procedure, we developed a filtering

procedure which is based on a ranking of the output of DECOB.

Thus, the output of DECOBRA (DEnsely COnnected Biclustering

RAnked) results from subsequent filtering of the output of DECOB,

as described below.
Ranking: Co-expression Ranking. To assess the

significance of the co-expression encountered in the output

modules, we randomly sampled 2000 connected networks from

the instances at hand (see the Results section). We fitted the

resulting statistics on numbers of co-expressed conditions to a

truncated normal distribution which provided us with a p-value for

the DECOB under consideration.
Ranking: Dense Connectivity Ranking. Let N be the

number of nodes and K be the number of edges in the complete

network under consideration. We interpret the probability that a

subnetwork of size n, sampled randomly from the network, has k
edges as the corresponding probability of the hypergeometric

distribution (which, as a toy description, refers to sampling
n

2

� �

red balls from an urn with
N

2

� �
balls K of which are red). We are

aware of that counting subgraphs in biomolecular networks and/

or respective statistics are areas of active research (e.g. [67–69]).

The hypergeometric distribution is in accordance with the analyses

displayed in [60] hence represents a reasonable choice

Overall Ranking and Filtering. We ranked the modules

according to both co-expression and dense connectivity separately

and used the average of the rankings as an overall ranking. This

yields a ranked list of the output of DECOB. In order to filter

DECOB’s output accordingly, we traversed the ranking list from

top to the bottom and removed all modules whose genes were

contained in the modules higher up in the ranking list. The

remaining modules are the output of DECOBRA. In order to

obtain even smaller outputs we suggest to select only the K best

ranked modules from the output of DECOBRA since this yields

both high-quality and non-redundant collections of modules. See

also Table 1 and 2 for module statistics on such smaller collections

(K~100 and K~200).

Supporting Information

File S1 Detailed description of the algorithms / algorithmic

methodologies of the benchmarking competitors of the main paper

for better evaluation of the results in the main paper.

Found at: doi:10.1371/journal.pone.0013348.s001 (0.08 MB

PDF)

Changes compared to our original PLOS One submission

Found at: doi:10.1371/journal.pone.0013348.s002 (0.44 MB

PDF)
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