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Abstract 
 
This thesis is inspired by the article “Risk-adjusted performance attribution and portfolio optimizations 
under tracking error-constraints” by Bertrand (2008) together with some hand-on experience gained 
though managing a portfolio worth over $10 million CAD of the Simon Fraser University endowment 
Fund for one year. This paper explores the theories of attributing portfolio risk, in the form of tracking-
error volatility into asset allocation attributes and stock selection effects in accordance with the 
arithmetic performance attribution method. Then it applies the same attribution method in calculating 
the risk adjusted return (information ratio) for a normal portfolio and compare this to a TEV optimal 
portfolio. We apply the information ratio and tracking-error variance model to the SIAS Canadian 
Equity portfolio with approximately $4 million CAD in value to test the following: 
 
If the SIAS Canadian Equity portfolio sector weights remain the same, what is the expected information 
ratio? And will this be improved by optimizing the sector weights according to the tracking-error 
variance frontier? 
 
We will then test the robustness of our findings by changing the time period and perform a sensitivity 
analysis on the estimated expected returns. We will also compare the results with those derived from the 
mean-variance optimization, by applying mean-variance optimal weights and recalculate the expected 
information ratio. The findings are as follows: The TEV optimized weights does improve the expected 
information ratio for a portfolio. This finding is further verified since it gives the same result with 
different time periods. The sensitivity analysis gives us an interval that the optimized sector weights will 
be within that interval with 95% probability. Moreover, the comparison to the mean-variance optimized 
portfolio shows that the tracking-error variance optimization gives less extreme results and is easier to 
implement, while maintaining a positive expected excess return compared to the benchmark.  
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1.0 Introduction 
 

Risk has always been treated as an important component for portfolio managers when making asset 
allocation and stock selection decisions (Bertrand 2005). Therefore, how to incorporate risk attribution 
in performance measurement and trying to come up with a risk-adjusted return has been a hot topic in 
recent years (Menchero 2007, Bertrand 2008 and Mina 2003).  This paper adopts the arithmetic 
performance attribution first introduced by Brinson et al (1986) which attributes the performance to 
either asset allocation effect, meaning the strategic weighing of different asset classes or stock selection 
effect, meaning the performance of the stocks picked by portfolio managers within each sector. This 
paper uses tracking-error variance and its square root (tracking error) as the main risk parameter and 
divides it into that which can be attributed to asset allocation decisions and stock selection decisions 
respectively. 
We want to show that using the tracking-error variance as a risk factor is useful for all portfolio 
managers, even if their client focuses only on the excess return compared to a given benchmark. 
Our hypothesis is that using tracking-error variance optimization (minimize the tracking-error with 
respect to a given target excess return) to find sector weights is the optimal solution for all portfolio 
managers getting evaluated relative to a benchmark.  
 We will discuss using the information ratio as the risk adjusted return, and how we can separate the two 
traditional attribution effects, asset allocation and stock selection, for both tracking-error variance 
efficient portfolios and portfolios without consideration of tracking-error variance or mean-variance 
efficiencies. Our hypothesis is that the expected risk adjusted return will increase when adapting 
tracking-error variance optimal weights. 
We will test the model and our hypothesis on the SIAS Canadian Equity portfolio by calculating the 
expected return and information ratio with the current weights in each sector. Then we will optimize the 
weights under tracking-error variance constraint and re-calculate the numbers. We will further try to 
verify our findings by repeating the exercise on a different time period. We will also complete a 
sensitivity analysis to provide a confidence interval for the optimal sector weights. Lastly, we will 
compare the SIAS Canadian Equity portfolio with the tracking-error variance optimal weights with the 
portfolio adapting mean-variance optimal weights to see how the optimal sector weights differs between 
the traditionally used optimization method(mean-variance) and the proposed tracking-error variance 
optimization. We will also see how the information ratio will be affected. 
This paper will assist performance analysts as well as portfolio managers in the following ways: Firstly, 
we test the theory developed by Bertrand on SIAS Canadian Equity portfolio, which is the first time the 
portfolio-optimization theory under tracking error constraints is applied to an actual fund. 
Secondly, we modified the theory by applying it to a single asset group instead of a whole fund with 
various assets classes. Therefore, instead of breaking down the excess return to asset classes, we break it 
down to sector levels, which offer more details on how to implement this optimization method in depth. 
Thirdly, even for those portfolio managers whose performance is not evaluated as a risk-adjusted return 
but rather the relative return compared to a benchmark, taking into consideration of tracking-error 
variance is crucial as it offers more insight of how an investment decision will affect the portfolio 
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relative to the benchmark. It thus provides a more comprehensive picture to the portfolio managers as 
how much relative risk they are adding to the portfolio while making an investment decision.  

2.0 Denotation: 
U: the asset universe  
i: the number of assets within the universe. i= 1, … , m=#(U) 
{U1, … , Un}: a subset of n assets in set U, where i=1,…, n≤m. 
p: portfolio 
b: benchmark, where b and p have the same amount of sectors, n 
Rl: the return of sector l 
𝑅�Rl: the expected return of sectors l                                                                                   
𝜎Rkl: the covariance between the returns of sector k and sector l  
Zpl: the weight of sector l in the portfolio 
Zbl: the weight of sector l in the benchmark 
wpi: the weight of sector i in the portfolio, where wpi = Σ𝑙 ∈ 𝑈𝑖𝑧𝑝𝑙 
wbi: the weight of sector i in the benchmark, where wbi = Σ𝑙 ∈ 𝑈𝑖𝑧𝑏𝑙 
Rpi:  the return of sector i in the portfolio, where Rpi= Σ𝑙 ∈ 𝑈𝑖w(i)pl Rl 
Rbi:  the return of sector i in the benchmark, where Rbi= Σ𝑙 ∈ 𝑈𝑖w(i)bl Rl 

 

3.0 Literature review 

3.1 Performance Attribution 
 
Most industry professionals have adopted the arithmetic performance attribution method when 
evaluating a portfolio’s performance, which was first introduced in 1986 by Brinson et al (Bertrand, 
2008 and Brinson et al, 1986, 1991). This paper adopts the original method that separates the relative 
performance attribution of the fund or portfolio into asset allocation and stock selection effects, which 
explains respectively whether the value added comes from the strategic weighting of each sector (asset 
allocation) or from the superior stock picking within each sector (stock selection). Note that in this 
paper, the interaction effect, which captures the excess return that is added to the selection effect and 
therefore not explained separately. Also, this paper does not distinguish the weights and returns based on 
either ex ante or ex post results.   
The excess return of the portfolio over a certain period of time is calculated by deducting the benchmark 
return from the portfolio return, which can be broken down as the sum of the weighted portfolio return 
minus corresponding weighted benchmark return in each sector (Brinson et al, 1986 and Bertrand, 
2008). Taking the expected value, we generate the following equation: 
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𝛼 = Rp − Rb = ��wpiRbi − wbiRbi� =
𝑛

𝑖=1

��Zpl − Zbl�𝑅𝑙

𝑚

𝑙=1

 

 
                                      𝛼� =  𝑅�𝑝 − 𝑅�𝑏=∑ �wpi𝑅�𝑝𝑖 − wbi𝑅�𝑏𝑖� = ∑ (𝑍𝑝𝑙 − 𝑍𝑏𝑙)𝑚

𝑙=1
𝑛
𝑖=1 𝑅�𝑙    (1) 

 
 
Decompose the excess return to the two attributes, asset allocation and stock selection we get asset 
allocation that can be written as 
 
                                       𝐴𝐴����=∑ (wpi − wbi)( 𝑅�𝑏𝑖 − 𝑅�𝑏)𝑛

𝑖=1     (2) 
 
Breaking it down to sector level, the value added through asset allocation for each sector primarily 
comes from the difference in the weighting of each sector between portfolio and benchmark as well as 
the difference between the benchmark return of each sector and the expected benchmark return for the 
whole portfolio.  
                                       𝐴𝐴𝑖����� = (𝑤𝑝𝑖-𝑤𝑏𝑖) ( 𝑅�𝑏𝑖 − 𝑅�𝑏)              (3) 
 
Stock Selection can be expressed as  
 
                                          𝑆𝑆���=∑ wpi( 𝑅�𝑝𝑖 − 𝑅�𝑏𝑖)𝑛

𝑖=1                    (4) 
 
On a sector level analysis, we get 
 
                                          𝑆𝑆𝑖����=𝑤𝑝𝑖 ( 𝑅�𝑝𝑖 − 𝑅�𝑏𝑖)                            (5) 
 

3.2 Critics of Performance attribution: 
 
 The major criticism the arithmetic performance attribution method receives is that it leaves out the 
consideration of risks (Bertrand, 2008).   Therefore, problems may arise when a decision which helps 
reduce contributed risk to the portfolio is penalized under the attribution method, or when the portfolio 
is outperforming, but only does so because the risks associated is higher than the benchmark (ibid.). 
 
Roll (1992) made an argument that this dilemma can be solved by applying the performance attribution 
method to portfolios that are plotted on the tracking error-variance efficient frontier. This was 
overthrown by Bertrand (2005), who stated that without adopting a clear risk-adjusted return evaluation, 
some optimal decisions under return-risk trade off mechanisms can still be interpreted adversely.  
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3,3 Risk Attribution: 
 
According to Litterman’s (1996) portfolio risk management theory, tracking-error variance or tracking-
error, should be adopted as the main risk measure because of the following reasons: Firstly, tracking-
error variance evaluates the extra risks taken by a portfolio relative to its benchmark. Secondly, it can be 
decomposed in a way that reflects the risk-components resulting from either asset allocation or stock 
selection, and it is thus consistent with the arithmetic performance attribution method explained in the 
previous section. (Bertrand, 2008) 
 
Tracking error can be written as below 

                              𝑇 = 𝑇2

𝑇
= (𝑍𝑝−𝑍𝑏)′𝑉(𝑍𝑝−𝑍𝑏)
�(𝑍𝑝−𝑍𝑏)′𝑉(𝑍𝑝−𝑍𝑏)

=𝐶𝑜𝑣(𝛼,𝛼)
𝑇

    (6) 

 
Take the Equation 3, 5 into Equation 6, we get: 
 

=
1
𝑇

[𝐶𝑜𝑣 ��(wpi − wbi)(𝑅𝑏𝑖 − 𝑅𝑏), 𝛼
𝑛

𝑖=1

� + 𝐶𝑜𝑣 ��wpi(𝑅𝑏𝑖 − 𝑅𝑏), 𝛼
𝑛

𝑖=1

�

=
1
𝑇

[𝐶𝑜𝑣(𝐴𝐴, 𝛼) + 𝐶𝑜𝑣(𝑆𝑆, 𝛼)] 

 
Given that 𝐶𝑜𝑣(𝐴𝐴𝑖, 𝛼) = (wpi − wbi)𝐶𝑜𝑣(𝑅𝑏𝑖 − 𝑅𝑏, 𝑅𝑝 − 𝑅𝑏), the risk associated with asset 
allocation is reduced when: 
 

a) Wpi-Wbi is negative while Covariance is positive. - The sector is over-weighted compared to 
benchmark while ”the excess return of sector i in the benchmark over the benchmark return, co-
varies negatively with total portfolio excess return”(Bertrand, 2008 p.78) 

or 

b) Wpi-Wbi is positive while the Covariance is negative. -The sector is underweighted compared to 
benchmark while “the excess return of sector I in the benchmark and benchmark return, co-
varies positively with total portfolio excess return”(Bertrand, 2008 p.78) 
 

Given that 𝐶𝑜𝑣(𝑆𝑆𝑖, 𝛼) = 𝑤𝑝𝑖𝐶𝑜𝑣(𝑅𝑝𝑖 − 𝑅𝑏, 𝑅𝑝 − 𝑅𝑏), the risk associated with stock selection is 
reduced when “The excess return of sector i in the portfolio relative to the benchmark, co-varies 
negatively with total portfolio excess return with respect to the benchmark”(Bertrand, 2008 p.78) 

 
To further develop the equation for tracking-error in accordance with the performance attributes – asset 
allocation and stock selection, we get the following  
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𝑇 = ∑ [𝜎(𝐴𝐴𝑖)𝜌(𝐴𝐴𝑖, 𝛼) + 𝜎(𝑆𝑆𝑖)𝜌(𝑆𝑆𝑖, 𝛼)]𝑛
𝑖=1    (7) 

 
=∑ [(wpi − wbi)𝜎(𝑅𝑏𝑖 − 𝑅𝑏)𝜌(𝐴𝐴𝑖, 𝛼) + wpi𝜎(𝑅𝑝𝑖 − 𝑅𝑏𝑖)𝜌(𝑆𝑆𝑖, 𝛼)]𝑛

𝑖=1   (8) 
 
where,  

𝜎(𝐴𝐴𝑖) = 𝜎((wpi − wbi)(𝑅𝑏𝑖 − 𝑅𝑏)) 
 

𝜎(𝑆𝑆𝑖) = 𝜎�wpi(𝑅𝑝𝑖 − 𝑅𝑏)�                

                                                                 𝐶𝑜𝑣(𝑋𝑖,𝛼)
𝑇

= 𝐶𝑜𝑣(𝑋𝑖,𝛼)
𝜎(𝛼) = 𝜎(𝑋𝑖)𝜌(𝑋𝑖, 𝛼),            (9) 

𝑋𝑖 = {𝐴𝐴𝑖, 𝑆𝑆𝑖} 
 

3.4 Tracking-error Variance efficient portfolio – Roll (1992), Jorion(2003) 
  
Tracking-error efficient portfolios refer to those portfolios that are plotted on the tracking-error efficient 
frontier. It is constantly used to when there is a constraint posed on the tracking error of the portfolio as 
opposed to the benchmark (Roll, 1992). Therefore, portfolio managers are expected to minimize the 
amount of relative risks for each level of excess return.  Plotted on the same graph with total expected 
return and absolute risk as the y and x axis respectively, the tracking-error variance frontier is constantly 
to the right of the mean-variance efficient frontier, with benchmark portfolio on the former frontier and 
minimum-variance portfolio on the latter (Bertrand, 2008).  
 
Figure 1 -The Mean-Variance Efficient Frontier compared to the TEV Efficient frontier (Bertrand, 2008 p.86 Appendix) 
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Imposing tracking-error  constraint on portfolio management is introduced and widely adopted in the 
industry with the hope of bringing a more accurate frontier and better regulate the decision making 
(Jorion, 2003; Roll 1992). However, Jorion (2003) pointed out that this may also lead to inefficiency as 
portfolio managers will ignore total risk of the portfolio while concentrating on solely excess return and 
tracking error risk. Thus, there are concerns such as obtaining easy risk adjusted return by “leveraging 
up the benchmark” (Jorion, 2003).  
 
 
3.5 Information Ratio -Risk adjusted performance attribution 
 
As a widely adopted measure of risk adjusted return, the Information Ratio (IR) is calculated by dividing 
the excess return of a portfolio over its benchmark by its tracking error (Bertrand, 2005 and Menchero, 
2007). Following the method we proposed in the previous sections, we can decompose the information 
ratio into two parts, one equivalent to asset allocation and one equivalent to stock selection. In general, 
there are two ways of doing that. One way as proposed by Bertrand (2005) applies to all portfolios 
plotted on the tracking-error variance efficient frontier and one as developed by Xiang (2006) and 
Menchero (2007) that can be applied without considering the efficiency of the portfolio. 
 
Bertrand (2005) made the assumption that the benchmark against which the portfolio is evaluated is not 
mean-variance efficient, which was proved true in practice by Grinold (1992). Therefore, for all 
portfolios on the tracking-error variance efficient frontier, the standard deviation of the tracking-error 
should be considered an optimal risk attribution when decomposing the portfolio IR into allocation 
contribution and selection attribution, which is calculated as cov(AAi,α)

T
 and Cov(SSi,α)

T
 respectively. This is 

further justified that an asset allocation or stock selection decision, which results in negative excess 
return, will, in general, reduce the relative risk (Bertrand 2008). Therefore the decomposition of the 
information ratio of the tracking-error variance frontier portfolio into asset allocation contribution and 
stock selection contribution can be written as follows: 

 

                                                   𝐼𝑅(𝐴𝐴𝑖) = (wpi−wbi)(𝑅𝑏𝑖����−𝑅𝑏���)
𝐶𝑜𝑣(𝐴𝐴𝑖,𝛼)/𝑇

= 𝐼𝑅𝑝        (10) 

𝐼𝑅(𝑆𝑆𝑖) =
wpi(𝑅𝑝𝑖���� − 𝑅𝑏𝑖����)
𝐶𝑜𝑣(𝑆𝑆𝑖, 𝛼)/𝑇

= 𝐼𝑅𝑝 

Bertrand (2008) found that  
“The information ratio of each component of the risk attribution decomposition is the same and is equal 
to the information ratio of the whole portfolio” 
 Which means that there exists a Pareto efficiency in the decomposition of information ratio for 
tracking-error variance frontier portfolios, as it achieves an equilibrium in that there does not exist a way 
of improving one without hurting the other (Bertrand, 2008).  
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A more general framework of decomposing the IR in accordance with the two attributes is proposed by 
Xiang (2006) and further discussed in Menchero (2007). This approach takes away the constraint of 
portfolios being on the tracking-error variance efficient frontier and mean-variance efficient frontier. 
It uses the tracking-error (as opposed to tracking-error variance) as the risk attribution factor, and thus 
the IR for the whole portfolio can be written as  

 

𝐼𝑅𝑝 =
𝑅�𝑝 − 𝑅�𝑏

𝜎(𝑅�𝑝 − 𝑅�𝑏)
=
𝛼�
𝑇

= �(
𝐴𝐴����𝑖 + 𝑆𝑆���𝑖

𝑇
)

𝑛

𝑖=1

= ��
𝑋�𝑖𝑚
𝑇

2

𝑚=1

𝑛

𝑖=1

 

 

Menchero (2007) further developed this equation by first including the factor Cov(Xim,σ)
T

 (by multiplying 
it and dividing it at the same time) and then rearrange the equation into  

 

                                      𝐼𝑅𝑝 = ∑ ∑ (𝐶𝑜𝑣(𝑋𝑖𝑚,𝛼)
𝑇2

∗ 𝑋𝑖𝑚�����
𝐶𝑜𝑣(𝑋𝑖𝑚,𝛼)

𝑇�
)2

𝑚=1
𝑛
𝑖=1                   (11) 

 

Take Equation 9 into Equation 11, we get  

 

                                      𝐼𝑅𝑝 = ∑ ∑ (𝜎(𝑋𝑖𝑚)𝜌(𝑋𝑖𝑚,𝛼)
𝑇

𝐼𝑅(𝑋𝑖𝑚))2
𝑚=1

𝑛
𝑖=1          (12) 

 

                                              Where, IR (Xim) =(1
𝜌(𝑋𝑖𝑚, 𝛼)� ) (𝑋𝚤𝑚������

𝜎(𝑋𝑖𝑚)� ) 

 
It can be seen that the IR is composed of two parts: The first part is the risk weight, which denotes the 
relative amount of risk decision “im” to the whole portfolio; the risk weights of each sector should 
therefore add up to one.  The second part is IR (Xim), which denotes the IR decision “im” results. 
𝑋𝚤𝑚������

𝜎(𝑋𝑖𝑚)�  represents the absolute information ratio of decision “im” while the factor 1 𝜌(𝑋𝑖𝑚, 𝛼)�  

adjusts the information within the context of the whole portfolio to cater the diversification effect the 
decision brings. Thus, Bertrand (2008) proposes that in order to evaluate how a decision influences the 
information ratio of the whole portfolio, we need to go into a detailed analysis of how the three 
components interact at different levels: Firstly, the absolute IR is considered. The sign of this component 
is dependent on that of 𝑋𝚤𝑚������. Secondly, the component information ratio, is analyzed. The sign of this 
component is dependent on those of 𝑋𝚤𝑚������ and 𝜌. 
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 1 𝜌(𝑋𝑖𝑚, 𝛼)�  determines the sign of the risk weight. Thirdly, the contributed information ratio in the 

context of the whole portfolio is examined. The sign of this component is dependent on that of 𝑋𝚤𝑚������. 
(Bertrand, 2008) 
Bertrand (2008) introduced a table to illuminate the interaction of the three components: 
  

Figure 2 – Table to explain decomposed IR (Bertrand, 2008 p.79) 

 
 
Top left case: a decision that brings positive excess return while increasing the relative risk will lead to 
positive absolute, component and contributed IRs.  
 
Bottom left case: a decision that leads to negative excess return while increasing the relative risk to the 
portfolio will reflect negatively in absolute, component and contributed IRs. 
 
Top right case: a negative component IR can result from a decision that has a positive absolute IR when 
there are positive contributions to excess return together with decreases in the relative risk. However, the 
contributed IR the decision brings to the whole portfolio is positive. Therefore, it can be seen that given 

a negative risk weight, a value-adding decision can reflect poorly on IR (Xim) but positively on 𝑋𝚤𝑚������
𝑇�  

Bottom right case: a positive component IR can exist while the absolute IR a decision brings is negative 
if the decision leads to negative excess return but a decrease in relative risk. In this case, the contributed 
information ratio is negative.  
 
It can be seen that from the two cases on the right where the risk weight is negative, component IR and 
absolute IR tend to give conflicting results. It is also noticeable that with a negative risk weight, the 
absolute IR is in accordance with the contributed IR. (Bertrand 2008) For portfolio managers, the most 
optimal case would be the top right case where the risk weight is negative and the excess return is 
positive. Followed by the top left case where both risk weight and excess return are positive. The least 
desirable quadratic would be the bottom left case where the risk weight is positive and excess return is 
negative, while the second least optimal case is the bottom right case where both the risk weight and 
excess return are negative. 
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4.0 Analysis 

4.1 Methodology 
 

The analysis part of this project will test our hypothesis that applying the tracking-error variant optimal 
weights to a portfolio will improve the information ratio of the portfolio measured by applying the above 
equations. 
 
We will start with calculating the expected excess return of the portfolio, the attribution, risk attribution 
and the three levels of information ratios including the absolute, component and contributed information 
ratios for the portfolio as it is, with the current weights. Then we will perform a tracking-error variance 
optimization on the weights and with these news weights, re-calculate the different performance 
measures again and compare these finding with what we get from the current weights. The optimization 
is based on the following equation: 
 
min
𝑧𝑝

𝑇2 = (𝑧𝑝 − 𝑧𝑏)′𝑉�𝑧𝑝 − 𝑧𝑏� 

𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜: �𝑧𝑝 − 𝑧𝑏�
′
𝑅 =G 

                                �𝑧𝑝 − 𝑧𝑏�
′
𝑒 = 0 

 
Where zp is a vector of the sector weights of the portfolio, zb is a vector of the sector weights of the 
benchmark, V is the covariance matrix of the sector returns, R is a vector of the expected returns of the 
sectors, e is a unity vector and G is the sought after excess return of the portfolio compared to the 
benchmark. 
 
By optimizing the weights of the portfolio, we optimize the sector weights. The reasons that we choose 
to optimize the sector weights (as opposed to the individual holding weights) are as follows:  
Firstly, to do the optimization we need the covariance matrix of the returns. If we wanted to optimize the 
weight of the individual holdings, we would need the covariance matrix of the individual holdings, 
resulting in a need of more data than possible, because for the covariance matrix to be stable, we would 
need 𝑛(𝑛−1)

2
 numbers of observation, and with a sample of approximately 200 holdings, using monthly 

data, this would require more than 1600 years worth data. By using the sectors n is 10 and number of 
observations needed reduces to around 60 (or five years when using monthly data). 
Secondly, by using sectors, the issue of a portfolio that is very different in size compared to the 
benchmark, that being a lot larger or vastly smaller, is evaded. In our test, we assume that the holdings 
within the sector remains the same, but their weights will be adjusted so the relative weights of the 
holdings within the sector are kept intact, but the total weight off the sector will have changed.  
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The only exception is with sectors that have 0 % weight in the portfolio. Since the portfolio will not 
have any holdings within these sectors, we will use the benchmark holdings for these sectors and adjust 
them according to the overall sector weight. 
The last reason to optimize sectors has to do with Investment Policy Statements (IPS) and constraints in 
these. 
Most portfolio managers have an IPS they need to comply with when making investment decisions. 
These constraints could be no shorting, a max % holding on individual stocks, or minimum number of 
stocks that needs to be invested in. By optimizing the sector weights, the “no shorting” or the “max % 
holding” in individual stocks will not be a problem. And since we optimize by minimizing the tracking-
error, compared to the benchmark, the weightings of the portfolio compared to the benchmark, will only 
differ by the benchmark enough to achieve the required excess return, and the minimum number of 
sector constraint should not pose a problem.  
 
To ensure the most robust test results, we will test our results in three ways: 
We will use three different time periods to see if we got our results because the time period happen to be 
particularly favourable for our test or if we get the same results regardless of time period chosen. We 
will also compare our result with an optimization by the more traditional mean-variance optimization 
(Grauer et al. 1990). Since the optimization and testing in general depends greatly on the expected 
returns, we will also perform a sensitivity analysis to see how sensitive our findings are to the estimate 
of the expected return as well as to be able to provide a confidence interval for the optimal sector 
weights for the portfolio. 

 
4.2 Data 
 
To do the test, we will focus on the Canadian Equity asset class of the SIAS Fund and therefore perform 
the optimization on the sectors of the Canadian Equity portfolio. As the benchmark, we will use the 
iShares ETF that tracks the S&P/TSX Capped Composite Index, the XIC. In order to avoid the 
management fee of the ETF to affect our results, we’re using the weights and returns of the individual 
holdings in the ETF to get the overall return. Any holdings the ETF have that are traded on a foreign 
exchange, we changed to the same stock traded on the Toronto Stock Exchange to avoid currency to 
affect our results. For price data we use end-of month prices of individual stocks adjusted for dividends 
for the time period 31/5 2001 – 30/6-2011 (122 months.) We then calculate the monthly return for each 
stock and use the average of the monthly returns as the expected returns. 
 
We use a total of 195 stocks, divided into the 10 sectors based on the MSCI segregation. 
The targeted excess return for the SIAS Canadian Equity Portfolio is 150 bps as stated in the fund’s IPS 
(SIAS IPS 2009, page 22). For the portfolio there is also the constraint that it must be invested in a 
minimum of seven out of the 10 sectors, and that none of these seven sectors can have less than 50 % 
weight compared to the benchmark weight. There are also constraints regarding the individual holdings, 
but as mentioned above, when optimizing the sectors, the individual holding constraints are not an issue. 
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For calculating the different time periods, we divide the 10 year time period into two, and re-do the 
calculations for the time periods 31/5 2001 – 31/5 2006 and 30/6 2006 - 30/6 2011. For the sensitivity 
analysis, we simulate the returns with standard normal random variables to see how much the result of 
the optimization, the sector weights of the portfolio, will differ depending on the input. For benchmark 
and portfolio weights, we are using the weights of both as of June 30th 2011. This is so, in case the 
analysis shows that changes are needed in the portfolio weights, the weights are up to date.  

 
4.3 Results 

4.3.1 No optimization 
Before optimizing the portfolio, we calculated the return attribution, risk attribution and information ratio for the 
portfolio with the current weights, using the expected returns to predict how the portfolio will perform relative to 
the benchmark. 
 

Table 1 – Portfolio and benchmark sector weights as of June 30th 2011 

 Portfolio Benchmark Difference 
Consumer Discretionary 2.25 3.64 -1.39 
Consumer Staples 5.27 2.70 2.57 
Energy 27.26 24.34 2.92 
Financials 29.91 31.23 -1.32 
Health Care 0.00 1.55 -1.55 
Industrials 0.00 5.18 -5.18 
Information Technology 1.24 1.83 -0.59 
Materials 25.52 22.76 2.75 
Telecommunication Services 5.56 4.77 0.79 
Utilities 2.98 1.99 0.99 
Average absolute  difference   2.00 
 
In table 1 it can be seen that the current sector weights of the portfolio are quite different than those of 
the benchmark. In particular, notice the large underweight in the industrial sector and relatively large 
over-weights in the consumer staples, energy and materials sectors. Since these differences will increase 
the tracking error, our hypothesis before doing the optimization is that the difference in the weights will 
decrease. 
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 Table 2 – The expected performance of the portfolio if the sector weights are not changed 

Expected Return Benchmark 24.29 
Expected Return Portfolio 27.72 
Expected Excess Return  3.42 
Asset Allocation Effect 1.29 
Stock Selection Effect 2.14 
Tracking Error 17.28 
Information Ratio Portfolio 0.88 

Decomposition of the Information Ratio 
Stand alone Information Ratio 0.0041 
Contributed Information Ratio 0.0099 
 SS AA 
Component Information Ratio 0.0114 0.0001 
 
The expected excess return of the Canadian equity portfolio is positive, with both asset allocation and 
stock selection being positive as well.  

Figure 3 – The asset and selection effect of sectors 

 
 
From the chart above, it can be seen that the majority of the positive asset allocation comes from the 
zero weighting in the industrial sector, while the overweight in materials, energy and consumer staples 
contributed to a big negative asset allocation. For stock selection it’s positive for all sectors except 
industrials and health care, where the figures are zero as the portfolio doesn’t hold any stocks and 
information technology where the selection effect is negative. 
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Despite the positive expected return, the expected tracking error is 17.28, which is quite large, meaning 
that the portfolio tends to have more extreme results than the benchmark does. Thus, if there is a bad 
quarter or month, there is a higher possibility that the portfolio will significantly underperform the 
benchmark. Besides, a large tracking error also leads to a relatively small information ratio of 0.88. 
 
After performing the breakdown of information ratio into the three levels, we can see the portfolio 
without applying tracking-error variance optimal weights is located in the top left case in the quadratic 
graph introduced by Bertrand (2008), with the stand alone IR being 0.0041, component IR being 0.0114 
the majority of which comes from selection effect and contributed IR being 0.0099. 

4.3.2 The optimization 
The optimization returned the following weights for the portfolio as showcased in table 3. 

Table 3 – The weights of the portfolio before and after the optimization and the weights of the benchmark  

 

 

As anticipated, the optimized weights are more converged to the benchmark weights. This is clear when 
comparing the average of the absolute difference between the portfolio and benchmark sector weights 
for the current and optimized portfolio weights. For the optimized weights the average is 0.26 (table 3) 
compared to 2.00 (table 1) before. 
 The change is most significant for the four sectors that in the current sector weight are the most over- 
and underweight prior to the optimization. 
The optimization is based on the expected return of each sector, assuming equal weight in all stocks and 
the excess return calculated is 150 bps. using the new weight and the expected return of the sectors. 
 
However, in the portfolio, the holdings are not equally weighted within the sectors, as assumed in the 
optimization, and the actual expected return is thus a little different than what has been calculated with 
the optimization. Nevertheless, this should not affect the other calculations, as the most important 
variable is the sector weights. 
 

 
Current 
Portfolio 
weights 

Change 
TEV 

optimal 
weights 

Current 
Benchmark 

weights 

Difference between 
TEV weights and 

benchmark weights 
Consumer Discretionary 2.25 1.16 3.42 3.64 -0.22 
Consumer Staples 5.27 -2.87 2.40 2.70 -0.30 
Energy 27.26 -2.91 24.36 24.34 0.02 
Financials 29.91 1.63 31.54 31.23 0.30 
Health Care 0.00 1.74 1.74 1.55 0.19 
Industrials 0.00 5.10 5.10 5.18 -0.08 
Information Technology 1.24 0.39 1.63 1.83 -0.20 
Materials 25.52 -2.75 22.77 22.76 0.01 
Telecommunication Services 5.56 -1.29 4.27 4.77 -0.50 
Utilities 2.98 -0.21 2.78 1.99 0.78 
Average absolute  difference     0.26 
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The calculated expected performance measures if the optimized weights are applied to the portfolio can 
be seen in the table below. 

Table 4 – Expected performance, attribution and information ratio if optimized weights are applied. 

Expected Return Benchmark 24.290 
Expected Return Portfolio 24.730 
Expected Excess Return  0.440 
Asset Allocation Effect 0.075 
Stock Selection Effect 1.531 
Tracking Error 0.451 
Information Ratio Portfolio 2.278 

Decomposition of the Information Ratio 
Stand alone Information Ratio 0.013 
Contributed Information Ratio 0.178 
 SS AA 
Component Information Ratio 0.038 0.002 
 
From the table it is apparent that the optimization improves the measures. Although the expected excess 
return is slightly smaller than before, the tracking error is a lot smaller and thus the information ratio is 
much bigger. Looking at the asset allocation and selection effect, it is also obvious that the weights are 
much more similar between the portfolio and benchmark, as the asset allocation effect is a lot smaller.  

Figure 4 -The Asset Allocation and Stock Selection effects on a sector level after applying optimized weights.  
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We also calculated the three levels of the information ratio using the optimized weights. It can be seen 
that although the portfolio is not moved to a better case (top right case as explained in section 3.5 and in 
figure 2), all three levels have improved with standalone IR being 0.0132, component IR being 0.0400 
and contributed IR being 0.1780. It is also worth noting that by applying tracking-error variance optimal 
weights, the component IR that is attributed to asset allocation has improved drastically from 6.67∙10−5 
to 0.0015. 

4.3.3 Comparison with different time periods 
To further verify our findings that applying tracking-error variance optimal weights to each sectors, will 
improve the information ratio, we re-did the calculations on two sub periods of 31/5/2011-31/5/2006 and 
30/6/2006 -30/6/2011 respectively. We found that this new test supports our findings in the initial 
calculation. In the first time period from 2001 to 2006 the stand alone IR increases from 0.0038 to 
0.0267, component IR from 0.0052 to 0.0431 and contributed IR from 0.0146 to 0.5241. It also justifies 
the finding that it is the part of the component IR that is attributed to asset allocation that explains the 
majority of the improvement. 

Table 5- The decomposed information for the current and optimized weights for the time period 2001-2006 

Current Portfolio Weights time period 2001-2006 TEV optimized Portfolio Weights 2001-2006 
Stand alone IR 0.0038 Stand alone IR 0.0267 
Contributed IR 0.0146 Contributed IR 0.5241 
 SS AA  SS AA 
Component IR 0.00511 0.00004 Component IR 0.0383 0.0048 
 

The results are also supported in the second time period from 2006 to 2011, where the standalone IR 
improves from 0.0048 to 0.0113 after applying the tracking-error variance optimal weights, component 
IR from 0.0134 to 0.0327 and contributed IR from 0.0058 to 0.1096. Again, it is apparent that the 
improvement in component IR mainly comes from a better asset allocation contribution.  

Table 6- The decomposed information ratio for the current and optimized weights for the time period 2006-2011 

Current Portfolio Weights time period 2006-2011 TEV optimized Portfolio Weights 2006-2011 
Stand alone IR 0.0048 Stand alone IR 0.0113 
Contributed IR 0.0058 Contributed IR 0.1096 
 SS AA  SS AA 
Component IR 0.0132 0.0001 Component IR 0.0312 0.0015 

 
4.3.4 Sensitivity Analysis 
Since the tracking-error variance optimization is based on the estimated expected returns, we did a 
sensitivity analysis to determine how much the weights would alter with respect to the changes in 
estimated returns. To do this sensitivity analysis, we generated standard random variables for returns on 
a stock level, and then combined these to achieve an estimate for the expected sector returns. We then 
did 50 simulations in order to estimate the standard deviation. 
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In this analysis we focused solely on the change in the recommended portfolio weightings when 
changing the expected returns. The benchmark and target excess return remained the same throughout 
the simulations. 
 Via the simulation we got the following standard deviations for the change in the sector weight. 

 
Table 7 – The standard deviation of sector weights based on simulation and the standard deviation of the sector returns, based on the 
variance-covariance matrix 

 
σ of the weights 

σ of  sector returns 
(from the actual 

expected returns) 
Consumer Discretionary 0.55 0.75 
Consumer Staples 0.81 0.43 
Energy 0.32 2.84 
Financials 0.39 1.47 
Health Care 0.85 0.26 
Industrials 0.58 0.87 
Information Technology 0.97 0.52 
Materials 0.23 5.17 
Telecommunication Services 0.98 0.21 
Utilities 0.80 0.34 
 
The standard deviations for every sector are below one, however there are sectors where the optimal 
weight deviates less when the expected return changes. When comparing the standard deviations of the 
weights to the standard deviation of the sector returns (of the actual expected returns, not the simulated), 
it becomes apparent that the sectors with the highest standard deviations for the returns are the most 
‘stable’ when it comes to determining optimal weight. 
This is understandable, since it’s the tracking-error variance that is minimized, and to minimize this, the 
most volatile sectors needs to be the ones that most closely match the benchmark weight, and thus the 
weighting of these will depend less on the estimated returns. 
 The covariance matrix changes each time the simulation is run, however the three sectors with the 
highest standard deviation are the sectors with the largest number of holdings in them, it is therefore 
likely that these will be the most volatile in the estimation. 
This sensitivity analysis can also be used to pose a lower and upper bound on the weights of each sector. 
For our bounds, we used two standard deviations to create a confidence interval of 95 %, meaning that 
there is a 95 % probability that the tracking-error variance optimal weights for the SIAS Canadian 
Equity portfolio are within the intervals. 
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Table 8 – The suggested optimal weights of the SIAS Canadian Equity Portfolio  

 

Lower 
Bound  
(-2σ) 

TEV 
Optimal 
Portfolio weights 

Upper 
Bound 
(+2σ) 

Consumer Discretionary 2.32 3.42 4.52 
Consumer Staples 0.77 2.40 4.02 
Energy 23.71 24.36 25.01 
Financials 30.75 31.54 32.32 
Health Care 0.03 1.74 3.45 
Industrials 3.93 5.10 6.26 
Information Technology 0 1.63 3.58 
Materials 22.31 22.77 23.23 
Telecommunication Services 2.32 4.27 6.22 
Utilities 1.18 2.78 4.37 

 
4.3.5 Comparison to Mean-Variance Optimization 
In order to prove that tracking-error variance is a better measure to use for portfolio optimization, even 
in the case where the portfolio manager is solely concerned with the excess return, we did a traditional 
mean-variance optimization on the sector weights. 
 
The overall criterion is to maximize the expected return for each level of overall portfolio variance, 
independent of a benchmark. We used a simple mean-variance model, where the assumption is that there 
is no risk-free borrowing and lending. We didn’t apply the constraint of no-negative weights because the 
there is no such constraint in the tracking-error variance optimization.  
 
The MV optimization is performed based on the following equation (Grauer et al. 1990) 
 

max E �rp� =  �xjE�rj�
j

  

With respect to 𝜎𝑝2 = ∑ ∑ 𝑥𝑗𝑥𝑖𝜎𝑖𝜎𝑗  𝑎𝑛𝑑 ∑ 𝑥𝑗 = 1𝑗𝑖𝑗  
 
Where xi and xj are the sector weights of sector i and j respectively, E(rj) is the expected return of sector 
j, E(rp) is the expected return of the portfolio and σj is the standard deviation of sector j. 
 
The table below shows the weights of the mean-variance optimization, compared to the current weights 
of the portfolio and the tracking-error variant optimal weights. 
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Table 9 – Current benchmark and portfolio weights compared to the optimal weights from TEV and MV optimization 

 
Benchmark 

weight 
Current 
Portfolio 
Weights 

TEV optimal 
portfolio weights 

MV optimal 
portfolio weights 

Consumer Discretionary 3.64 2.25 3.42 -27.48 
Consumer Staples 2.70 5.27 2.40 -8.03 
Energy 24.34 27.26 24.36 -0.72 
Financials 31.23 29.91 31.54 21.70 
Health Care 1.55 0.00 1.74 44.07 
Industrials 5.18 0.00 5.10 -6.94 
Information Technology 1.83 1.24 1.63 -11.21 
Materials 22.76 25.52 22.77 1.01 
Telecommunication Services 4.77 5.56 4.27 18.56 
Utilities 1.99 2.98 2.78 69.04 

 
From table it is apparent that the mean-variance optimal weights are a lot more extreme, with five sector 
getting negative weights. Without looking at the expected performance or considering the benchmark 
weights, the weights given by the mean-variance optimization do not seem as easy to implement as the 
weights given by the tracking-error optimization. This has much to do with the different risk measure 
that are minimized in the optimizations.  
 
In the mean-variance universe, the risk measure is the overall variance of a sector, and the trade off is 
therefore between the absolute return and risk of the individual sectors and the portfolio as a whole. 
There is no benchmark so the optimization depends solely on the covariance matrix. For the tracking-
error variance optimal portfolios, both the return and risk are relative parameters. If the targeted excess 
return compared to benchmark was zero, the tracking-error variance optimization would return the 
benchmark weights as optimal, so it is by setting the targeted outperformance level above zero that the 
deviation from benchmark weightings will occur in the tracking-error space. However, the deviation will 
always be only just enough to achieve the targeted excess return, and the optimal weightings of a 
tracking-error variant portfolio, will therefore usually be a lot less extreme than those given by the 
mean-variance optimization.  
 
The expected performance and information ratio for the MV optimal portfolio can be seen in the table 
below 
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Table 10 – The expected performance figures for the MV optimal portfolio 

Expected Return Benchmark 24.290 
Expected Return Portfolio 13.440 
Expected Excess Return  -10.846 
Asset Allocation Effect -17.008 
Stock Selection Effect -0.218 
Tracking Error 189.174 
Information Ratio Portfolio -0.509 

Decomposition of the Information Ratio 
Stand alone Information Ratio -0.012 
Contributed Information Ratio -0.005 
 SS AA 
Component Information Ratio -0.032 -0.0001 
 
When we look at the expected performance of the portfolio applying the mean-variance optimized 
weights, then it becomes even more obvious that the mean variance optimization doesn’t do a portfolio 
manager, who is measured relative to a benchmark, any good. Even though the expected return is 
positive, everything else is negative. -The expected excess return, the asset allocation and stock selection 
effect and most importantly the information ratio.  Furthermore, the expected tracking error is large, 
suggesting more extreme relative returns compared to the benchmark. 
When decomposing the information ratio of the mean-variance optimization, we find that the portfolio is 
moved to the bottom left case in the quadratic (see figure 2) which is much less optimal than our 
portfolio as it is now or that with tracking-error variance optimal weights. It generates negative 
information ratios at three levels with stand alone IR being -0.0117, component IR being -0.0322 and 
contributed IR being -0.0046. It is derived that although mean-variance frontier offers the most efficient 
combination of absolute risk and return, it fails to provide an optimal solution when it comes to relative 
measures that most portfolio managers are evaluated by.  

5.0 Conclusion 
 
We have tested and applied the theory developed by Bertrand (2008) as expressed in the article 
“Risk-adjusted performance attribution and portfolio optimizations under tracking error-constraints”. 
We calculated the three level information ratios for the SIAS Canadian Equity portfolio using the ishares 
ETF, XIC as a benchmark and weights of both as of June 30th 2011. The calculations are based on 
expected return, which is the historical average of 10 years monthly return. We found that the portfolio 
had a positive expected excess return that was well above the targeted excess return, as per the 
investment policy statement. But the tracking-error was big and thus causing the risk-adjusted return, in 
form of the information ratio to be quite small. 
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The tracking-error variance optimization is performed on the sector weights of the portfolio and we 
recalculated the expected excess return and information ratios. The expected excess return was smaller, 
however, as the tracking-error variance is minimized, the information ratio dramatically improved. This 
is because by performing the tracking-error variance optimization we are reducing the relative risk to a 
minimum with respect to the required excess return. 
 
We repeated the exercise for two time periods of five years each. Both confirmed our finding, by 
optimizing the sector weights with respect to the tracking-error variance, the information ratio improves. 
Since the optimization is so reliant on the estimated expected returns, we simulated random return 
numbers to use those as the expected returns instead. By doing this we saw that the sectors that have 
more volatile returns’ weight changes less when the returns change than the sectors where the returns are 
less volatile. 
We used the standard deviation of the sector weights to come up with a recommended weight for each 
sector together with a 95 % confidence interval, so that with 95 % probability, the tracking-error 
variance optimal weights are within the interval. The findings can be seen in the table below. 

Table 11 – The suggested optimal weights of the SIAS Canadian Equity Portfolio  

 

Lower 
Bound 
(-2σ) 

TEV 
Optimal 

Portfolio weights 

Upper 
Bound 
(+2σ) 

Consumer Discretionary 2.32 3.42 4.52 
Consumer Staples 0.77 2.40 4.02 
Energy 23.71 24.36 25.01 
Financials 30.75 31.54 32.32 
Health Care 0.03 1.74 3.45 
Industrials 3.93 5.10 6.26 
Information Technology 0 1.63 3.58 
Materials 22.31 22.77 23.23 
Telecommunication Services 2.32 4.27 6.22 
Utilities 1.18 2.78 4.37 
 

In the end we compared the tracking-error variance findings to the mean-variance efficient weights, to 
test whether the tracking-error variance optimization is more suitable for portfolio managers in general. 
The mean-variance frontier optimizes with respect to absolute risk and not relative risk, and thus, being 
as most portfolio managers are evaluated based on their relative performance, our hypothesis was that 
tracking-error variance optimization should be adopted instead of mean-variance. 
Our findings supported this thesis. The weightings for all sectors are a lot more extreme when using the 
mean-variance optimization. The expected information ratio was also negative, as was the expected 
excess return. 
Therefore, using the tracking-error optimization will improve the expected relative performance of the 
portfolio, and it should thus be adopted. 
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Appendix 1 : Code for calculating on raw data, TEV and MV optimization 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This a script that will calculate the return of a portfolio, the excess 
% return compared to a benchmark, the risk-adjusted return - the 
% information ratio. 
% Then it performs a tracking-error variance optimization, based on a 
% constraint to outperform the benchmark - ie to achieve the required 
% outperformance while minimizing the tracking error compared to the 
% benchmark. 
% Authors: 
% Christine Jakshoj: cja22@sfu.ca 
% Meadow Wu: rwa31@sfu.ca 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% LOAD DATA 
clear all 
clear all 
close all 
clc 
format compact 
  
[prices]=xlsread('Data.xlsx','Prices'); % Load the prices 
[qp] = xlsread('Data.xlsx','Portweights'); % load portfolio individual weights 
[q] = xlsread('Data.xlsx','Benchweight'); % load benchmark individual weights 
bench_weight = q'; 
port_weight = qp'; 
  
G = 0.15; % constraint outperformance from IPS to CE portfolio 
% Turn the prices into returns 
[nobs,nsec]=size(prices); 
  
sec1 = 14; % Number of stocks in the first sector 
sec2 = 9; 
sec3 = 44; 
sec4 = 34; 
sec5 = 4; 
sec6 = 15; 
sec7 = 6; 
sec8 = 55; 
sec9 = 4; 
sec10 = 10; 
  
secs = [sec1;sec2;sec3;sec4;sec5;sec6;sec7;sec8;sec9;sec10]; 
if  sum(secs) ~= nsec 
    error('the sum number of holdings in the sectors must match the total number of 
securities'); 
end 
%% CALCULATE RETURNS 
  
returns = zeros(nobs-1,nsec); % pre-assign size for faster code 
for idx = 1:nsec 
returns(:,idx) = log(prices(2:end,idx)./prices(1:end-1,idx)); 
end 
exp_ret = mean(returns); 
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% Calculate the expected return for each sector 
ret_sec = zeros(nobs-1,10); 
for idx = 1:nobs-1  
    ret_sec(idx,:) = [sum(returns(idx,1:secs(1,1))) 
sum(returns(idx,1+secs(1,1):sum(secs(1:2,1)))) 
sum(returns(idx,1+sum(secs(1:2,1)):sum(secs(1:3,1)))) 
sum(returns(idx,1+sum(secs(1:3,1)):sum(secs(1:4,1)))) 
sum(returns(idx,1+sum(secs(1:4,1)):sum(secs(1:5,1)))) 
sum(returns(idx,1+sum(secs(1:5,1)):sum(secs(1:6,1)))) 
sum(returns(idx,1+sum(secs(1:6,1)):sum(secs(1:7,1)))) 
sum(returns(idx,1+sum(secs(1:7,1)):sum(secs(1:8,1)))) 
sum(returns(idx,1+sum(secs(1:8,1)):sum(secs(1:9,1)))) 
sum(returns(idx,1+sum(secs(1:9,1)):sum(secs(1:10,1))))]; 
end 
  
exp_ret_sec = mean(ret_sec); 
  
% Calculate the weight for each sector for portfolio and benchmark 
  
weight_sec1b = sum(bench_weight(1,1:secs(1,1))); 
weight_sec2b = sum(bench_weight(1,1+secs(1,1):sum(secs(1:2,1)))); 
weight_sec3b = sum(bench_weight(1,1+sum(secs(1:2,1)):sum(secs(1:3,1)))); 
weight_sec4b = sum(bench_weight(1,1+sum(secs(1:3,1)):sum(secs(1:4,1)))); 
weight_sec5b = sum(bench_weight(1,1+sum(secs(1:4,1)):sum(secs(1:5,1)))); 
weight_sec6b = sum(bench_weight(1,1+sum(secs(1:5,1)):sum(secs(1:6,1)))); 
weight_sec7b = sum(bench_weight(1,1+sum(secs(1:6,1)):sum(secs(1:7,1)))); 
weight_sec8b = sum(bench_weight(1,1+sum(secs(1:7,1)):sum(secs(1:8,1)))); 
weight_sec9b = sum(bench_weight(1,1+sum(secs(1:8,1)):sum(secs(1:9,1)))); 
weight_sec10b = sum(bench_weight(1,1+sum(secs(1:9,1)):sum(secs(1:10,1)))); 
  
% benchmark sector weights 
bench_weight_sec = 
[weight_sec1b;weight_sec2b;weight_sec3b;weight_sec4b;weight_sec5b;weight_sec6b;weig
ht_sec7b;weight_sec8b;weight_sec9b;weight_sec10b]; 
  
% portfolio sector weights 
weight_sec1p = sum(port_weight(1,1:secs(1,1))); 
weight_sec2p = sum(port_weight(1,1+secs(1,1):sum(secs(1:2,1)))); 
weight_sec3p = sum(port_weight(1,1+sum(secs(1:2,1)):sum(secs(1:3,1)))); 
weight_sec4p = sum(port_weight(1,1+sum(secs(1:3,1)):sum(secs(1:4,1)))); 
weight_sec5p = sum(port_weight(1,1+sum(secs(1:4,1)):sum(secs(1:5,1)))); 
weight_sec6p = sum(port_weight(1,1+sum(secs(1:5,1)):sum(secs(1:6,1)))); 
weight_sec7p = sum(port_weight(1,1+sum(secs(1:6,1)):sum(secs(1:7,1)))); 
weight_sec8p = sum(port_weight(1,1+sum(secs(1:7,1)):sum(secs(1:8,1)))); 
weight_sec9p = sum(port_weight(1,1+sum(secs(1:8,1)):sum(secs(1:9,1)))); 
weight_sec10p = sum(port_weight(1,1+sum(secs(1:9,1)):sum(secs(1:10,1)))); 
  
port_weight_sec = 
[weight_sec1p;weight_sec2p;weight_sec3p;weight_sec4p;weight_sec5p;weight_sec6p;weig
ht_sec7p;weight_sec8p;weight_sec9p;weight_sec10p]; 
  
% Calculate the returns of bencmark and portfolio and excess return  
ret_benchs = q'.*exp_ret; 
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ret_secb1 = sum(ret_benchs(1,1:secs(1,1))); 
ret_secb2 = sum(ret_benchs(1,1+secs(1,1):sum(secs(1:2,1)))); 
ret_secb3 = sum(ret_benchs(1,1+sum(secs(1:2,1)):sum(secs(1:3,1)))); 
ret_secb4 = sum(ret_benchs(1,1+sum(secs(1:3,1)):sum(secs(1:4,1)))); 
ret_secb5 = sum(ret_benchs(1,1+sum(secs(1:4,1)):sum(secs(1:5,1)))); 
ret_secb6 = sum(ret_benchs(1,1+sum(secs(1:5,1)):sum(secs(1:6,1)))); 
ret_secb7 = sum(ret_benchs(1,1+sum(secs(1:6,1)):sum(secs(1:7,1)))); 
ret_secb8 = sum(ret_benchs(1,1+sum(secs(1:7,1)):sum(secs(1:8,1)))); 
ret_secb9 = sum(ret_benchs(1,1+sum(secs(1:8,1)):sum(secs(1:9,1)))); 
ret_secb10 = sum(ret_benchs(1,1+sum(secs(1:9,1)):sum(secs(1:10,1)))); 
  
ret_sec_bench = [ret_secb1 ret_secb2 ret_secb3 ret_secb4 ret_secb5 ret_secb6 
ret_secb7 ret_secb8 ret_secb9 ret_secb10];  
  
ret_ports = qp'.*exp_ret; 
ret_secp1 = sum(ret_ports(1,1:secs(1,1))); 
ret_secp2 = sum(ret_ports(1,1+secs(1,1):sum(secs(1:2,1)))); 
ret_secp3 = sum(ret_ports(1,1+sum(secs(1:2,1)):sum(secs(1:3,1)))); 
ret_secp4 = sum(ret_ports(1,1+sum(secs(1:3,1)):sum(secs(1:4,1)))); 
ret_secp5 = sum(ret_ports(1,1+sum(secs(1:4,1)):sum(secs(1:5,1)))); 
ret_secp6 = sum(ret_ports(1,1+sum(secs(1:5,1)):sum(secs(1:6,1)))); 
ret_secp7 = sum(ret_ports(1,1+sum(secs(1:6,1)):sum(secs(1:7,1)))); 
ret_secp8 = sum(ret_ports(1,1+sum(secs(1:7,1)):sum(secs(1:8,1)))); 
ret_secp9 = sum(ret_ports(1,1+sum(secs(1:8,1)):sum(secs(1:9,1)))); 
ret_secp10 = sum(ret_ports(1,1+sum(secs(1:9,1)):sum(secs(1:10,1)))); 
  
ret_sec_port = [ret_secp1 ret_secp2 ret_secp3 ret_secp4 ret_secp5 ret_secp6 
ret_secp7 ret_secp8 ret_secp9 ret_secp10]; 
  
exp_ret_bench = sum(ret_sec_bench*bench_weight_sec); 
exp_ret_port = sum(ret_sec_port*port_weight_sec); 
alpha = exp_ret_port - exp_ret_bench; 
  
% Calculate the attribution 
  
AAi = (port_weight_sec - bench_weight_sec)'.*(ret_sec_bench - exp_ret_bench); % 
Asset allocation for each sector 
AA = sum(AAi); % overall asset allocation 
  
SSi = port_weight_sec'.*(ret_sec_port - ret_sec_bench); % Stock selection for each 
sector 
SS = sum(SSi); % total stock selection 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% RISK ATTRIBUTION 
  
% Risk asset allocation and stock selection 
%A = cov((ret_sec_bench-exp_ret_bench),(ones(1,10)* alpha)); 
%covar(AAi,alpha) =(port_weight_sec - bench_weight_sec)*A(1,1); 
%B = cov((ret_sec_bench-ret_sec_port),(ones(1,10)* alpha)); 
%covar(SSi,alpha) = port_weight_sec*B(1,1); 
  
% Calculate the variance-covariance matrix 
V = cov(ret_sec); 
  



30 
 

% Tracking error 
T =sqrt((port_weight_sec-bench_weight_sec)'*V*(port_weight_sec-bench_weight_sec)); 
  
A = cov((ret_sec_bench-exp_ret_bench),(ones(1,10)* alpha)); 
covar_AAS = (port_weight_sec - bench_weight_sec)*A(1,1); 
  
B = cov((ret_sec_port-ret_sec_bench),(ones(1,10)* alpha)); 
covar_SSS = port_weight_sec*B(1,1); 
%% INFORMATION RATIO 
  
IR_AAi = ((port_weight_sec - bench_weight_sec)'.*(ret_sec_bench-
exp_ret_bench))'/(covar_AAS/T); 
IR_SSi = (port_weight_sec'.*(ret_sec_port-ret_sec_bench))'/(covar_SSS/T); 
IR_AAi = IR_AAi(:,6); 
IR_SSi = IR_SSi(:,4); 
  
Xi = [AAi'; SSi']; 
stand_alone_IR = mean(Xi)/std(Xi); 
% component_IR = (1/(corrcoef(Xi,alpha*ones(20,1))))*stand_alone_IR; 
contributed_IR = mean(Xi)/T;  
  
C = cov(AAi,alpha*ones(1,10)); 
correlationAAS = C(1,1)/std(AAi); 
D = cov(SSi,alpha*ones(1,10)); 
correlationSSS = D(1,1)/std(SSi); 
component_IRAA = (1/correlationAAS)*stand_alone_IR; 
component_IRSS = (1/correlationSSS)*stand_alone_IR; 
  
IRp = (((std(AAi)*C(1,1))/T)*component_IRAA) 
+(((std(SSi)*D(1,1))/T)*component_IRSS); 
  
%% TR OPTIMIZATION 
e = ones(10,1); 
a = exp_ret_sec*inv(V)*exp_ret_sec'; 
b = e'*inv(V)*exp_ret_sec'; 
c = e'*inv(V)*e; 
R0 = b/c; 
R1 = a/b; 
D = G/(R1-R0); 
q0 = V\(e/c); 
q1 = V\(exp_ret_sec'/b); 
  
opt_sec_weight = bench_weight_sec + D*(q1-q0); 
  
% Adjust the holding weights of the portfolio 
opt_weight_p1 = 
(opt_sec_weight(1,1)/port_weight_sec(1,1))*port_weight(1,1:secs(1,1)); 
opt_weight_p2 = 
(opt_sec_weight(2,1)/port_weight_sec(2,1))*port_weight(1,1+secs(1,1):sum(secs(1:2,1
))); 
opt_weight_p3 = 
(opt_sec_weight(3,1)/port_weight_sec(3,1))*port_weight(1,1+sum(secs(1:2,1)):sum(sec
s(1:3,1))); 
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opt_weight_p4 = 
(opt_sec_weight(4,1)/port_weight_sec(4,1))*port_weight(1,1+sum(secs(1:3,1)):sum(sec
s(1:4,1))); 
opt_weight_p5 = 
(opt_sec_weight(5,1)/bench_weight_sec(5,1))*bench_weight(1,1+sum(secs(1:4,1)):sum(s
ecs(1:5,1))); 
opt_weight_p6 = 
(opt_sec_weight(6,1)/bench_weight_sec(6,1))*bench_weight(1,1+sum(secs(1:5,1)):sum(s
ecs(1:6,1))); 
opt_weight_p7 = 
(opt_sec_weight(7,1)/port_weight_sec(7,1))*port_weight(1,1+sum(secs(1:6,1)):sum(sec
s(1:7,1))); 
opt_weight_p8 = 
(opt_sec_weight(8,1)/port_weight_sec(8,1))*port_weight(1,1+sum(secs(1:7,1)):sum(sec
s(1:8,1))); 
opt_weight_p9 = 
(opt_sec_weight(9,1)/port_weight_sec(9,1))*port_weight(1,1+sum(secs(1:8,1)):sum(sec
s(1:9,1))); 
opt_weight_p10 = 
(opt_sec_weight(10,1)/port_weight_sec(10,1))*port_weight(1,1+sum(secs(1:9,1)):sum(s
ecs(1:10,1))); 
  
opt_qp = 
[opt_weight_p1';opt_weight_p2';opt_weight_p3';opt_weight_p4';opt_weight_p5';opt_wei
ght_p6';opt_weight_p7';opt_weight_p8';opt_weight_p9';opt_weight_p10']; 
  
opt_ret_ports = opt_qp'.*exp_ret; 
opt_ret_secp1 = sum(opt_ret_ports(1,1:secs(1,1))); 
opt_ret_secp2 = sum(opt_ret_ports(1,1+secs(1,1):sum(secs(1:2,1)))); 
opt_ret_secp3 = sum(opt_ret_ports(1,1+sum(secs(1:2,1)):sum(secs(1:3,1)))); 
opt_ret_secp4 = sum(opt_ret_ports(1,1+sum(secs(1:3,1)):sum(secs(1:4,1)))); 
opt_ret_secp5 = sum(opt_ret_ports(1,1+sum(secs(1:4,1)):sum(secs(1:5,1)))); 
opt_ret_secp6 = sum(opt_ret_ports(1,1+sum(secs(1:5,1)):sum(secs(1:6,1)))); 
opt_ret_secp7 = sum(opt_ret_ports(1,1+sum(secs(1:6,1)):sum(secs(1:7,1)))); 
opt_ret_secp8 = sum(opt_ret_ports(1,1+sum(secs(1:7,1)):sum(secs(1:8,1)))); 
opt_ret_secp9 = sum(opt_ret_ports(1,1+sum(secs(1:8,1)):sum(secs(1:9,1)))); 
opt_ret_secp10 = sum(opt_ret_ports(1,1+sum(secs(1:9,1)):sum(secs(1:10,1)))); 
  
opt_ret_sec_port = [opt_ret_secp1 opt_ret_secp2 opt_ret_secp3 opt_ret_secp4 
opt_ret_secp5 opt_ret_secp6 opt_ret_secp7 opt_ret_secp8 opt_ret_secp9 
opt_ret_secp10]; 
  
opt_alpha = sum(exp_ret_sec*opt_sec_weight) - sum(exp_ret_sec*bench_weight_sec); 
opt_alpha_dif = (opt_ret_sec_port*opt_sec_weight)- exp_ret_bench; 
  
% Calculate the attribution 
  
opt_AAi = (opt_sec_weight - bench_weight_sec)'.*(ret_sec_bench -exp_ret_bench ); % 
Asset allocation for each sector 
opt_AA = sum(opt_AAi); % overall asset allocation 
  
opt_SSi = opt_sec_weight'.*(ret_sec_port - ret_sec_bench); % Stock selection for 
each sector 
opt_SS = sum(opt_SSi); % total stock selection 
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%% RISK ATTRIBUTION 
  
% Tracking error 
opt_T =sqrt((opt_sec_weight-bench_weight_sec)'*V*(opt_sec_weight-
bench_weight_sec)); 
  
opt_A = cov((ret_sec_bench-exp_ret_bench),(ones(1,10)* opt_alpha_dif)); 
opt_covar_AAS = (port_weight_sec - bench_weight_sec)*opt_A(1,1); 
  
opt_B = cov((ret_sec_port-ret_sec_bench),(ones(1,10)* opt_alpha_dif)); 
opt_covar_SSS = opt_sec_weight*opt_B(1,1); 
%% INFORMATION RATIO 
  
opt_IR_AAi = ((opt_sec_weight - bench_weight_sec)'.*(ret_sec_bench-
exp_ret_bench))'/(opt_covar_AAS/opt_T); 
opt_IR_SSi = (opt_sec_weight'.*(opt_ret_sec_port-
ret_sec_bench))'/(opt_covar_SSS/opt_T); 
opt_IR_AAi = opt_IR_AAi(:,6); 
opt_IR_SSi = opt_IR_SSi(:,4); 
  
opt_Xi = [opt_AAi'; opt_SSi']; 
opt_stand_alone_IR = mean(opt_Xi)/std(opt_Xi); 
opt_contributed_IR = mean(opt_Xi)/opt_T;  
  
opt_C = cov(opt_AAi,opt_alpha*ones(1,10)); 
opt_correlationAAS = opt_C(1,1)/std(opt_AAi); 
opt_D = cov(opt_SSi,opt_alpha_dif*ones(1,10)); 
opt_correlationSSS = opt_D(1,1)/std(opt_SSi); 
opt_component_IRAA = (1/opt_correlationAAS)*opt_stand_alone_IR; 
opt_component_IRSS = (1/opt_correlationSSS)*opt_stand_alone_IR; 
  
opt_IRp = (((std(opt_AAi)*opt_C(1,1))/opt_T)*opt_component_IRAA) 
+(((std(opt_SSi)*opt_D(1,1))/opt_T)*opt_component_IRSS); 
  
%% MV OPTIMIZATION 
  
a = e'*inv(V)*exp_ret_sec'; 
b = exp_ret_sec*inv(V)*exp_ret_sec'; 
c = e'*inv(V)*e; 
  
MV_sec_weight =(inv(V)*e/c +(inv(V)*exp_ret_sec'-a/c*inv(V)*e))*100; 
  
MV_alpha = sum(exp_ret_sec*MV_sec_weight) - exp_ret_bench; 
  
% Calculate the attribution 
  
MV_AAi = (MV_sec_weight - bench_weight_sec)'.*(ret_sec_bench - exp_ret_bench); % 
Asset allocation for each sector 
MV_AA = sum(MV_AAi); % overall asset allocation 
  
MV_SSi = MV_sec_weight'.*(ret_sec_port - ret_sec_bench); % Stock selection for each 
sector 
MV_SS = sum(MV_SSi); % total stock selection 
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%% RISK ATTRIBUTION 
  
% Tracking error 
MV_T =sqrt((MV_sec_weight-bench_weight_sec)'*V*(MV_sec_weight-bench_weight_sec)); 
  
MV_A = cov((ret_sec_bench-exp_ret_bench),(ones(1,10)* MV_alpha)); 
MV_covar_AAS = (MV_sec_weight - bench_weight_sec)*MV_A(1,1); 
  
MV_B = cov((ret_sec_port-ret_sec_bench),(ones(1,10)*MV_alpha)); 
MV_covar_SSS = MV_sec_weight*MV_B(1,1); 
%% INFORMATION RATIO 
  
MV_IR_AAi = ((MV_sec_weight - bench_weight_sec)'.*(ret_sec_bench-
exp_ret_bench))'/(MV_covar_AAS/MV_T); 
MV_IR_SSi = (MV_sec_weight'.*(ret_sec_port-ret_sec_bench))'/(MV_covar_SSS/MV_T); 
opt_MV_IR_AAi = MV_IR_AAi(:,10); 
opt_MV_IR_SSi = MV_IR_SSi(:,10); 
  
MV_Xi = [MV_AAi'; MV_SSi']; 
MV_stand_alone_IR = mean(MV_Xi)/std(MV_Xi); 
MV_contributed_IR = mean(MV_Xi)/MV_T;  
  
MV_C = cov(MV_AAi,MV_alpha*ones(1,10)); 
MV_correlationAAS = MV_C(1,1)/std(MV_AAi); 
MV_D = cov(MV_SSi,MV_alpha*ones(1,10)); 
MV_correlationSSS = MV_D(1,1)/std(MV_SSi); 
MV_component_IRAA = (1/MV_correlationAAS)*MV_stand_alone_IR; 
MV_component_IRSS = (1/MV_correlationSSS)*MV_stand_alone_IR; 
  
MV_IRp = (((std(MV_AAi)*MV_C(1,1))/MV_T)*MV_component_IRAA) 
+(((std(MV_SSi)*MV_D(1,1))/MV_T)*MV_component_IRSS); 
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Appendix 2: Code for Sensitivity Analysis 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Sensitivity analysis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% LOAD DATA 
clear all 
clear all 
close all 
clc 
format compact 
  
[prices]=xlsread('Data.xlsx','Prices'); % Load the prices 
[qp] = xlsread('Data.xlsx','Portweights'); % load portfolio individual weights 
[q] = xlsread('Data.xlsx','Benchweight'); % load benchmark individual weights 
bench_weight = q'; 
port_weight = qp'; 
  
G = 1.500; % constraint outperformance from IPS to CE portfolio 
% Turn the prices into returns 
[nobs,nsec]=size(prices); 
  
sec1 = 14; % Number of stocks in the first sector 
sec2 = 9; 
sec3 = 44; 
sec4 = 34; 
sec5 = 4; 
sec6 = 15; 
sec7 = 6; 
sec8 = 55; 
sec9 = 4; 
sec10 = 10; 
  
secs = [sec1;sec2;sec3;sec4;sec5;sec6;sec7;sec8;sec9;sec10]; 
if  sum(secs) ~= nsec 
    error('the sum number of holdings in the sectors must match the total number of 
securities'); 
end 
%% CALCULATE RETURNS 
  
% Create random returns to check sensitivty of our analysis to the expected 
% return  
  
  
returns = randn([nobs,nsec]); 
exp_ret = mean(returns); 
% Calculate the expected return for each sector 
ret_sec = zeros(nobs-1,10); 
for idx = 1:nobs-1  
    ret_sec(idx,:) = [sum(returns(idx,1:secs(1,1))) 
sum(returns(idx,1+secs(1,1):sum(secs(1:2,1)))) 
sum(returns(idx,1+sum(secs(1:2,1)):sum(secs(1:3,1)))) 
sum(returns(idx,1+sum(secs(1:3,1)):sum(secs(1:4,1)))) 
sum(returns(idx,1+sum(secs(1:4,1)):sum(secs(1:5,1)))) 
sum(returns(idx,1+sum(secs(1:5,1)):sum(secs(1:6,1)))) 
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sum(returns(idx,1+sum(secs(1:6,1)):sum(secs(1:7,1)))) 
sum(returns(idx,1+sum(secs(1:7,1)):sum(secs(1:8,1)))) 
sum(returns(idx,1+sum(secs(1:8,1)):sum(secs(1:9,1)))) 
sum(returns(idx,1+sum(secs(1:9,1)):sum(secs(1:10,1))))]; 
end 
  
exp_ret_sec = mean(ret_sec); 
  
% Calculate the weight for each sector for portfolio and benchmark 
  
weight_sec1b = sum(bench_weight(1,1:secs(1,1))); 
weight_sec2b = sum(bench_weight(1,1+secs(1,1):sum(secs(1:2,1)))); 
weight_sec3b = sum(bench_weight(1,1+sum(secs(1:2,1)):sum(secs(1:3,1)))); 
weight_sec4b = sum(bench_weight(1,1+sum(secs(1:3,1)):sum(secs(1:4,1)))); 
weight_sec5b = sum(bench_weight(1,1+sum(secs(1:4,1)):sum(secs(1:5,1)))); 
weight_sec6b = sum(bench_weight(1,1+sum(secs(1:5,1)):sum(secs(1:6,1)))); 
weight_sec7b = sum(bench_weight(1,1+sum(secs(1:6,1)):sum(secs(1:7,1)))); 
weight_sec8b = sum(bench_weight(1,1+sum(secs(1:7,1)):sum(secs(1:8,1)))); 
weight_sec9b = sum(bench_weight(1,1+sum(secs(1:8,1)):sum(secs(1:9,1)))); 
weight_sec10b = sum(bench_weight(1,1+sum(secs(1:9,1)):sum(secs(1:10,1)))); 
  
% benchmark sector weights 
bench_weight_sec = 
[weight_sec1b;weight_sec2b;weight_sec3b;weight_sec4b;weight_sec5b;weight_sec6b;weig
ht_sec7b;weight_sec8b;weight_sec9b;weight_sec10b]; 
  
V = cov(ret_sec); 
  
%% TR OPTIMIZATION 
e = ones(10,1); 
a = exp_ret_sec*inv(V)*exp_ret_sec'; 
b = e'*inv(V)*exp_ret_sec'; 
c = e'*inv(V)*e; 
R0 = b/c; 
R1 = a/b; 
D = G/(R1-R0); 
q0 = V\(e/c); 
q1 = V\(exp_ret_sec'/b); 
  
opt_sec_weight = bench_weight_sec + D*(q1-q0); 
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Appendix 3: Results with Raw data 
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 Appendix 4: Results with TEV optimization 
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Appendix 5: Results for time period 2001-2006  

Appendix 5a – Current weights 
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Appendix 5b TEV weights 
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Appendix 6: Results for time period 2006-2011 

Appendix 6a Current weights 
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Appendix 6b: TEV weights 
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Appendix 7: Sensitivity Analysis Weights 
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Appendix 8: Current Benchmark and Portfolio Weights 
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