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Abstract 

This paper compares a standard GARCH model with a Constant Elasticity of Variance GARCH 

model across three major currency pairs and the S&P 500 index. We discuss the advantages and 

disadvantages of using a more sophisticated model designed to estimate the variance of variance 

instead of assuming it to be a linear function of the conditional variance. The current stochastic 

volatility and GARCH analogues rest upon this linear assumption.  We are able to confirm 

through empirical estimation that for equity returns and for some currency crosses the variance 

of variance does in fact grow at a rate which exceeds the standard linear expectations.  
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Introduction: 

This paper examines the effectiveness of the econometric modeling tools available to 

measure the variance of variance in univariate stochastic time series. Benjamin Graham, in his 

seminal work The Intelligent Investor, quotes legendary financer J.P. Morgan’s response to a 

reporter’s question, “what will the stock market do?”  His response: “It will fluctuate.” These 

fundamental fluctuations are the residuals of price discovery in a liquid market, they are the risk, 

the volatility, the uncertainty. The fundamental theories of finance are built off the foundation 

that returns in excess of the risk free rate can only be achieved in the presence of variance. Risk 

is the necessary condition for reward was the conclusion of Markowitz (1952) and economists in 

the 1950’s. It soon became apparent the fluctuations JP Morgan referenced were themselves 

fluctuating, the volatility was itself volatile, risk was proving to be risky.  

Mandelbrot (1963) was the one of the first empirical investigations into the newly 

observed phenomena of volatility clustering through his study of cotton price data. Mandelbrot 

initiated a whole field of financial study by analyzing the fractal behavior of cotton returns over 

multiple timeframes. One conclusion he drew was that after suitable renormalization the same 

distribution is maintained for all price changes over all changes in time. The draws from this 

distribution enforced randomness or difference into the equation. Mandelbrot was also able to 

demonstrate that price movements did not respect the Bachelier, and later Black-Scholes 

diffusion models which assumed Gaussian distributions. He noted volatility came in bursts and 

demonstrated varying degrees of dispersion. Heteroskedasticity, for the Greek ‘hetero’-different  

‘skedasis’-dispersion, refers to the non-constant dispersion of asset returns.  Because of the 

diffusive nature of price evolution the study of heteroskedasticity is a non-trivial pursuit in 

derivative and asset pricing theory.   
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Literature Review:  

Bachelier (1900) laid the groundwork for option pricing theory by investigating 

speculation in his doctoral dissertation which lay dormant until the late 1950’s. Paul Samuelson a 

professor at MIT was introduced to Bachelier’s work and further developed the mathematics. 

Two of his notable students were Myron Scholes and Robert Merton. Scholes collaborated with 

Fischer Black to develop a hedging formula to accurately price an option contract. The Black 

Scholes (1973) equations transformed the financial world, but they rest on a base assumption of 

uniform dispersion, homoskedasticity. Merton (1973) derived the Black Scholes formulas by 

employing tools from stochastic calculus. This initial attempt at option pricing models attributed 

all randomness to a single source, the underlying asset price. However, market crashes like that 

of 1987 and the ensuing aftermath displayed with ferocity the fact that asset returns are not 

homoskedastic, and the need for more advanced volatility models was self-evident. The variance 

of variance was being investigated as a second source of uncertainty in the process. This work 

was pioneered by Cox, Ingersoll & Ross (1985) and Hull & White (1987).   

 Heston (1993) developed one of the first closed form stochastic volatility models using a 

stochastic variable correlated to the stochastic process driving the innovation in prices. An 

appealing feature of Heston’s SV model allowed users to extract model parameters from sample 

time series of option data, and then use these parameters to compute out of sample option prices 

and hedging ratios with closed form solutions to compute delta and vega.  One limitation for 

these stochastic volatility models is their dependence on the geometric Brownian diffusion 

process. This allows for pricing in a risk neutral measure, but does limit objective measure 

modeling and risk analysis.  
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Engle (1982) approached volatility modeling with the introduction of the Auto 

Regressive Conditional Heteroskedstic (ARCH) model. Bollerslev (1986) improved the model 

by introducing a generalized parameter and published the GARCH model. Engle and Bollerslev 

(1986) collaborated and introduced nonlinear versions of the model which would later be 

developed into our Constant Elasticity of Variance Generalized Auto Regressive Conditional 

Heteroskedasticity model (CEVGARCH).  Engle and Bollerslev are responsible for the genesis 

of a vast body of literature on time varying volatility. Both authors have had their respective 

articles referenced by over 12,000 subsequent articles.   An overview of the variations has 

yielded over 50 different published modifications with some of the most prolific being EGARCH 

Nelson (1991), GJRGARCH Glosten et al. (1993), AGARCH Engle (1990), NAGARCH Engle 

& Ng (1993) , APARCH Ding et al. (1993) and HNGARCH, a closed form option pricing 

equation developed by Heston & Nandi (2000) 

Most of the modifications to the models attempt to accurately model the empirically 

observed asymmetry of asset return variance. The phenomena of asymmetry in stock return 

volatility has been documented since Nelson (1990b) and Pagan & Schewert (1990). Market 

price declines have been more highly correlated to higher future volatility than an equivalent 

market price increase. There is still much debate on precisely why this is observable; one of the 

prevailing theories attributes it to the “leverage effect”, describing the increase in leverage 

functionally experienced when a firm’s debt level remains constant while the value of the firm’s 

equity experiences a large sudden decline. The theory suggests that such a firm is currently more 

leveraged then before, so the equity is now riskier, hence more volatility. Black (1976), Christie 

(1982) and Koutmos & Saidi (1995) are proponents that the firm’s leverage ratios are the cause, 

while others like Hens & Steude (2009) suggest the phenomena is not related to a firm’s fixed 
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financing costs and can be observed in firms with no leverage at all. Whatever the reason, the 

phenomena exists but is not captured in standard GARCH models which parameterize 

conditional volatility using the squared innovations. EGARCH, NAGARCH and CEVGARCH 

are examples of modified GARCH models which have modifications to allow for varying 

quadratic impacts on future conditional variance from either positive or negative market moves.   

We conclude our literature review with a discussion of Ishida and Engle (2001) who 

developed the CEVGARCH model. They borrowed from the work of Cox (1975) who first 

described the constant elasticity of variance while describing the interest rate process. Engle and 

Lee (1996) developed a Constant Elasticity of Variance (CEV) Stochastic volatility model to 

model variance as the process instead of interest rates.   The bridge from a continuous time CEV 

stochastic volatility model to a discrete CEVGARCH model was explored by Ishida & Engle 

five years later. The value of the CEVGARCH model has been applied to the development of 

volatility derivatives like variance swaps. Javaheri et. al. (2004) demonstrates how GARCH 

models can be used to model the volatility process for the valuation and hedging of volatility 

swaps. In his PhD dissertation Javaheri (2004) confirmed the conclusions of Ishida & Engle 

when measuring the CEV exponent for the S&P 500. Ishida & Engle measure the precise value 

at 1.71 whereas Javaheri constrained his measurements to 0.5, 1.0 and 1.5 and reports 1.5 to give 

the better fit.  We seek to confirm the findings of these researchers by analyzing the 

CEVGARCH and GARCH models using current risk factor data which covers periods of high 

volatility like 2008 and 2010.  
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The Models: 

We are investigating the benefit of estimating the variance of variance in a GARCH 

process, and comparing our results to a standard model. The control model we are testing against 

is the standard GARCH(1,1) due to Bollerslev (1986). This basic symmetric model assumes that 

the response to a shock to the conditional variance is symmetric for both positive and negative 

returns. This assumption has been challenged by Nelson (1991), which has led to the 

development of family of asymmetric GARCH models such as EGARCH, NAGARCH, 

AGARCH and others mentioned above. Following the model elaborated by Bollerslev, we 

define        [  ],  

          ,                    (1.1) 

      
  ,     (1.2) 

   √     ,        (1.3) 

              
       (1.4)  

Where the   s are i.i.d., with zero mean and unit variance.  We can rearrange the conditional 

variance (Eq. 1.4) as follows:  

       (   )    (  
    ) ,   (1.5) 

             .     (1.6) 

Here             
      and         are positive constants, we require       for 

covariance stationarity of     .  Eq.1.6 is the standard GARCH model of Bollerslev. To follow 
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this model through to the development of CEV GARCH we need to first recall the stochastic 

differential equation Cox, Ingersoll and Ross presented in 1985: 

    [     ]    √      .    (1.7) 

By comparing the drift portion of this equation to Eq. 1.6, we define the rate at which the 

conditional variance reverts to its mean    [  ] as       if      Changing labels 

slightly, the stochastic process can then be written as: 

      (    )      √     .         (1.8) 

Equation 1.8 is the continuous time formulation used by Heston (1993). It can be discretized 

from continuous time into the GARCH analogue: 

          (    )   √    ,     (1.9) 

            √     ,                  (1.10) 

              

 

    .     (1.11) 

When we compare Eq. 1.6 with Eq. 1.11 we can see the only difference lies in the exponent, 1/2, 

associated with the conditional variance in the ARCH component of the equation. The standard 

GARCH model, Eq. 1.6 has an exponent value of 1 which is not displayed. To the best of our 

knowledge there is no theoretical or practical reason to restrict this exponent to be either 1 or 1/2. 

Once we accept a possible range of positive values for the exponent we arrive at the Constant 

Elasticity of Variance GARCH model:  

              
   .    (1.12) 
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The   exponent on the ARCH conditional variance modifies the way the variance of variance 

evolves with the current level of variance. The asymmetry of variance can be captured by 

defining      
        instead of      

    with      We can easily extend this 

CEVGARCH(1,1) model to allow for optimal fitting at the appropriate lags by defining a 

CEVGARCH(P,Q) model: 

        ∑     
 
    ∑     

 
  

 
       (1.13) 

Data & Methodology:  

  The foreign exchange (FX) markets are the largest markets in the world with $3.98 

trillion in notional volume trading hands daily according to the Bank of International 

Settlements. With such a large liquidity pool and twenty four hour access the FX markets are the 

closest to a continuous market available on the planet. We have selected four risk factors from 

the FX markets and have also chosen to investigate two equity indices to verify the research of 

others.  We have selected to analyze the following risk factors: USD/CAD, GBP/USD, 

EUR/USD the American S&P 500 and the Canadian S&P TSX composite index. Time series 

data for each of the risk factors has been provided by the Economic Research department of the 

Federal Reserve Bank of St. Louis and Bloomberg.  The sample time series for each of the risk 

factors extends from Jan 2000 through to Dec 2011 for a complete 12 years of daily prices. Our 

sample period was selected on the smallest sample available, the EUR/USD exchange rate. The 

other risk factors have extended time series extending back to Jan 1971, these extended series are 

used for only one of the calculations which required more data points then were available in the 

sample series.  
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We find evidence for heteroskedasticity in the sample time series by applying a Ljung 

Box test to the demeaned residuals. The test statistic from the test is defined as: 

   (   )∑
  

 

   

 
    .    (2.1) 

Here    is the sample autocorrelation at lag k. The asymptotic distribution of Q is chi-square 

with L degrees of freedom under the null hypothesis. Each of our time series tests rejected the 

null hypothesis indicating serial correlation exists in the squared residuals demonstrating 

heteroskedasticity. The results of these tests can be verified in table 1.  We can also infer 

heteroskedasticity in the sample time series by visually inspecting the autocorrelation functions. 

We can clearly see autocorrelation present in excess of the confidence interval at almost all lags 

in all time series in figure 1 - 5. The volatility graphs adjacent to the ACF graphs display the 

clustering described by Mandelbrot.   

      Table 1 

 

Q P-Value Null 

EUR/USD 645.4271 0 Reject 

GBP/USD 3.38E+03 0 Reject 

USD/CAD 1.08E+04 0 Reject 

S&P500 7.45E+03 0 Reject 

S&P TSX 5.06E +04 0 Reject 
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Figures 1 - 5 
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Now that we have evidence for heteroskedasticity, we can apply the GARCH and 

CEVGARCH models. The initial step is to calibrate the models. Model calibration occurs over 3 

different specifications. First, a static calibration is performed on a portion of the time series 

called the calibration period; second, an accumulative calibration period and finally, a rolling 

calibration period. The accumulative calibration begins at     periods through to  . As the 

time series is processed recalibration occurs at   period intervals.  The data for the recalibration 

now includes     periods through to     periods. The calibration period grows linearly 

along with the processed data to mimic the data accumulation practitioners experience in the 

world. The third calibration environment has a rolling calibration period which is limited to a   

period window. This window rolls forward through time discarding the most distant past   

period of data as every new recalibration takes place at    period intervals. 
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We employed two likelihood functions to estimate the parameters for both the GARCH 

and CEVGARCH models to capture the distributional assumptions of   . Under the Gaussian 

distribution assumption the likelihood function we seek to maximize is  

  ∏
 

√    
 
  

 
  
 

   
 
.    (2.2) 

In practice we use an algorithm to minimize the inverse logarithm of the likelihood equation. The 

log likelihood function is 

  ∑ [ 
 

 
  (  )  

 

 
  (  

 )  
 

 

  
 

  
 ]

 
      .   (2.3) 

 

Figures 5-9 below demonstrate that our risk factors returns are not normally distributed.  
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Due to the leptokurtic nature of the return distributions for our risk factors we performed our 

parameterization for both models using a standardized student-t distribution. If we assume    is 

from a heavier tailed student-t distribution, the probability density function is:  

 (  | )  (
 [

   

 
]

 (
 

 
)√(   ) 

) (  
  
 

   
)
 

   

 
           (2.4) 

Where   ( )   ∫          
 

 
        (2.5) 

We estimate   jointly with the other parameters, so the conditional log likelihood function we are 

minimizing is: 

   ∑ (  ( )  (
   

 
)   (  (   )  (

  

  
)
 
))     [((   ) )

 
 

   (
 

 
)
  

 (
   

 
)] 

   .     (2.6) 

In order to determine the significance of our model parameters we also measure the standard errors of our 

parameter estimates. The standard errors are the variance of the parameter estimates, so we require the 

variance-covariance matrix of our parameter estimates. We arrive here by inverting the information 

matrix, defined as  [ ]    [ ( )]  as per Eq. 2.7.   

   ( )  [ ( )]         (2.7) 

The H in the information matrix expectation is the hessian matrix which is composed of the second 

derivatives of the likelihood with respect to the estimated parameters. 

 ( )  
     ( )

          (2.8) 
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We can now calculate the variance by computing the square root of the diagonal terms in the variance-

covariance matrix. 

   ( )  (  [
     ( )

     ])
  

    (2.9) 

Our method of choice to calculate our hessian matrix is the Outer Product of Gradients (OPG) method. In 

this method, we first evaluate the log likelihood objective function at the MLE parameter estimates. In 

contrast to the optimization, which is interested in the single scalar objective function value logL, here we 

are interested in the log likelihoods for each observation of y(t), which sum to –logL: 

 
Next, we calculate the OPG scores matrix: 

  [        ] 
 
Where m is the number of parameter estimates and 

 

   

[
 
 
 
 
 
 
(                              )

   

(                              )

    
(                              )

   ]
 
 
 
 
 
 

 

 
n is the number of observations (ti), log likelihoodi is the likelihood for the observation y(ti) using the 

original estimates θ, Δlog likelihoodi is the likelihood for the observation y(ti) using  

 
     (   )     (2.10) 

 
And 

             (2.11) 
 
Finally, the covariance matrix of the MLE parameters is approximated by inverting the OPG scores 

matrix: 

 
   ( )  [    ]        (2.12) 
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Forecast Evaluation: 

After calibrating the model over a given period, we use the parameterized model to forecast the 

next period ahead conditional variance. The estimate is compared with the realized variance of 

the period returns to determine the accuracy of the models. We compare our results using the 

following two statistical metrics:  

1. R
2
 , the coefficient of determination from a linear regression: 

                    (3.1) 

         ,                               (3.2) 

      
∑ (     )

 
 

∑ (    ̅)  

 .    
(3.3)

 

2. Breaches of the confidence intervals, with confidence for i
th

 interval defined as: 

 
 
      (

   

 
) .    (3.4) 

 A breach is defined as | |   
 
 
   . 
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Simulation: 

Once we have a calibrated a CEVGARCH or GARCH model, we employ Monte Carlo 

simulation methods to simulate the risk factor process forward over selected time intervals. 

Returns simulated over 1 day demonstrate a Gaussian distribution. Indeed, we can see in Fig 9- 

12 that for all risk factors, both models exhibit the expected distribution.  Q-Q plots demonstrate 

visually the variation from the Gaussian distribution.   

 

 

 

 

 

 

 

 

 

 

 

 

Figures 9 - 12 
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If our models are functioning properly we would expect to see leptokurtic simulated returns as 

we move further and further through simulated time.  We measure the kurtosis of the simulated 

distributions as the standardized fourth moment. 

  
 [  

 ]

{ [  
 ]}

   .     (3.5) 

We simulate the risk factors evolving according to the GARCH and CEVGARCH models across 

time frames of 10 days, 20 days, 60 days, 90 days and 126 days.   The simulated asset paths 

follow the process described in Eq. 3.6 with the assumptions     (   )  and     [     ]:  

              (  
 

 
  

 )    (√  
     )    .      (3.6) 
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Results: 

Our initial calibration results are what we use as simulation parameters for the Monte 

Carlo simulations.  The calibration period for all of the risk factors is the same 6 year period 

spanning January 2000 through to December 2005. The calibrated parameters for both models 

are listed in tables 2 - 4.  

     Tables 2 – 4  

Risk Factor EUR 

   

GBP 

  

 

GARCH 

 

CEV GARCH GARCH 

 

CEV GARCH 

Parameter Estimate  (S.E) Estimate   (S.E) Estimate  (S.E) Estimate       (S.E) 

  
 
 

0.000142 0.00005 0.00012 0.000051 8.87E-05 0.000038 6.00E-05     0.000025 

 

 
 

4.69E-07 <1.0E-10 5.12E-08 <1.0E-10 8.59E-07 <1.0E-10 6.72E-07     <1.0E-10 
 

0.988399 0.451523 1.06114 0.366900 0.96948 0.427712 0.997           0.407357 
 

0.018733 0.007483 0.29734 0.128051 0.05174 0.021862 0.010992     0.005555 
 

  

-1.64458 0.62449 

  

-0.43884      0.18843 

 

 
 

  

1.17913 0.508746 

  

0.838571     0.324688 

 
 

 

12.344 1.037398 14.5255 2.067867 14.396 6.504646 15.5134       1.992637 

  0.006417 0.002193 5.54E-05 0.000024 0.00528 0.002704 2.44E-05     0.00001 

 Log 

Likelihood 
5481.71 

 

6342.68 

 

5793.53 

 

6659.65 
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Risk Factor CAD 

   

S&P 500 

 

 

GARCH 

 

CEV GARCH GARCH  CEV GARCH 

Parameter Estimate  (S.E)  Estimate   (S.E) Estimate   (S.E) Estimate        (S.E) 

 
 

-6.62E-05 -0.000027 -0.00013 --0.000044 0.00021 0.00008 -6.00E-05     -0.000034 

 

 
 

1.13E-07 <1.0E-10 3.27E-08 ~0.0 7.21E-07 ~0.0 8.40E-07      <1.0E-10 
 

0.994956 0.466796 1.00554 0.518187 0.99556 0.361068 0.989468      0.414689 

 

0.033564 0.015116 0.13057 0.052482 0.07462 0.031638 0.463255      0.160782 
 

  

-0.24817 0.09461 

  

-0.084525     0.03464 
 

  

1.13233 0.493900 

  

1.20573        0.411746 
 

12.246 3.345225 22.503 4.433275 7.1165 3.082957 18.4793        2.601551 

  0.00464 0.001966 9.93E-06 0.000005 0.01193 0.004996 0.00036        0.0002 

 Log 

likelihood 
6037.75 

 

6904.09 

 

4736.2 

 

5604.21 

  

Risk Factor TSX 

  

 

GARCH 

 

CEV GARCH 

Parameter Estimate  (S.E) Estimate   (S.E) 

 

 
 

0.000634 0.00025 0.00023 0.00011 

 

3.94E-07 <1.0E-10 2.66E-07 <1.0E-10 
 

0.997581 0.45846 1.05184 0.41782 
 

0.059422 0.02634 0.3196 0.11605 
 

  
-0.77 0.33905 

 

 
 

  
1.13693 0.47088 

 

12.344 4.77136 7.08336 2.63477 

  0.010532 0.00561 4.70E-04 0.00019 

Log 

Likelihood 
5051.14 

 

5963.67 

  

The estimated CEV parameter confirms the previous conclusions of prior researchers, 

Ishida & Engle as well as Javaheri, who obtained exponent estimates greater than 1 for the CEV 

specification of the conditional variance. Although we obtain different parameter estimates, we 

also obtain a CEV exponent greater than 1 for the S&P 500 as well as for the TSX. The FX risk 
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S&P500 

   

 

Table 4 Confidence 

 

Confidence 

 

Confidence 

 

  
95% R2 99% R2 99.9% R2 

Static GARCH 6.25% 28.83% 2.21% 28.83% 0.37% 19.98% 

 

CEV 6.07% 29.22% 2.39% 29.22% 0.31% 20.63% 

        A. 126 GARCH 5.96% 27.09% 2.34% 27.09% 0.43% 20.25% 

 

CEV 5.95% 28.87% 2.21% 28.87% 0.39% 20.35% 

        A. 252 GARCH 6.19% 28.56% 2.39% 28.56% 0.39% 20.40% 

 

CEV 5.95% 27.23% 2.39% 27.23% 0.42% 20.00% 

        Roll 126 GARCH 6.19% 28.30% 2.57% 28.30% 0.41% 17.45% 

 

CEV 5.89% 26.40% 2.43% 26.43% 0.38% 19.73% 

        Roll 252 GARCH 6.37% 27.37% 2.57% 27.37% 0.39% 19.91% 

 

CEV 5.43% 28.08% 2.39% 28.08% 0.43% 16.29% 

 

factors all had a CEV exponent greater than 1 except the GBP.USD which had an estimated 

value at 0.86.  

 We did not include all of the parameter estimates for each of the periods, which require 

multiple calibrations. Instead, results from multiple calibration periods were tested using the out 

of sample testing measure previously described. Results in tables 4-8 demonstrate the test 

statistics following a static period calibration, an accumulative calibration period with the 

accumulation period equal to 126 or 252 trading days, then a rolling calibration where the size of 

the calibration window stays constant but moves along adding new and subtracting old 126 and 

252 periods.  
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    EUR 

   

 

Table 5 Confidence 

 

Confidence 

 

Confidence 

 

  
95% R2 99% R2 99.9% R2 

Static GARCH 5.39% 10.11% 1.35% 10.11% N/A 6.23% 

 

CEV 5.10% 9.25% 1.46% 9.25% N/A 5.66% 

        A. 126 GARCH 5.27% 8.19% 1.41% 8.19% N/A 2.60% 

 

CEV 5.16% 8.88% 1.29% 8.88% N/A 2.60% 

        A. 252 GARCH 5.33% 8.92% 1.23% 8.92% N/A 3.07% 

 

CEV 5.10% 9.69% 1.17% 9.69% N/A 2.75% 

        Roll 126 GARCH 5.33% 8.19% 1.23% 8.19% N/A 2.67% 

 

CEV 5.51% 8.85% 1.29% 8.85% N/A 2.53% 

        Roll 252 GARCH 5.33% 9.08% 1.17% 9.08% N/A 2.86% 

 

CEV 5.21% 9.39% 1.11% 9.39% N/A 2.69% 

 

    

GBP 

   

 

Table 6 Confidence 

 

Confidence 

 

Confidence 

 

  
95% R2 99% R2 99.9% R2 

Static GARCH 5.98% 16.75% 1.87% 16.75% 0.63% 13.92% 

 

CEV 6.09% 17.22% 1.82% 17.22% 0.59% 13.75% 

        A. 126 GARCH 5.86% 11.43% 1.82% 11.43% 0.75% 13.94% 

 

CEV 6.21% 11.79% 1.70% 11.79% 0.41% 14.34% 

        A. 252 GARCH 5.80% 12.38% 1.82% 12.38% 0.75% 13.57% 

 

CEV 5.86% 13.13% 1.58% 13.13% 0.40% 13.83% 

        Roll 126 GARCH 5.68% 11.25% 1.64% 11.25% 0.70% 14.28% 

 

CEV 5.39% 9.28% 1.64% 9.28% 0.42% 4.50% 

        Roll 252 GARCH 5.62% 12.38% 1.70% 12.38% 0.73% 13.78% 

 

CEV 5.27% 11.13% 1.64% 11.13% 0.44% 10.03% 
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CAD 

   

 

       Table 7 Confidence 

 

Confidence 

 

Confidence 

 

  
95% R2 99% R2 99.9% R2 

Static GARCH 6.32% 13.76% 1.35% 13.76% 0.27% 26.55% 

 

CEV 6.26% 13.95% 1.28% 13.96% 0.29% 26.43% 

        A. 126 GARCH 6.33% 11.85% 1.58% 11.85% 0.46% 24.61% 

 

CEV 6.09% 13.10% 1.52% 13.10% 0.37% 26.70% 

        A. 252 GARCH 6.20% 13.08% 1.41% 13.07% 0.45% 26.10% 

 

CEV 5.92% 13.54% 1.28% 13.55% 0.36% 26.55% 

        Roll 126 GARCH 6.09% 12.30% 1.34% 12.30% 0.43% 26.16% 

 

CEV 5.09% 13.03% 1.05% 13.04% 0.49% 26.87% 

        Roll 252 GARCH 6.04% 13.24% 1.28% 13.24% 0.43% 26.46% 

 

CEV 5.91% 12.75% 1.40% 12.76% 0.45% 26.85% 

 

    

TSX 

   

 

       Table 8 Confidence 

 

Confidence 

 

Confidence 

 

  
95% R2 99% R2 99.9% R2 

Static GARCH 6.55% 28.20% 2.62% 28.20% 0.51% 23.54% 

 

CEV 7.18% 28.18% 2.50% 28.18% 0.54% 23.66% 

  

      

A. 126 GARCH 7.05% 18.25% 2.56% 18.25% 0.51% 12.37% 

 

CEV 6.99% 18.60% 2.31% 18.60% 0.48% 13.25% 

  

      

A. 252 GARCH 6.94% 21.70% 2.56% 21.70% 0.54% 13.53% 

 

CEV 6.99% 21.78% 2.31% 21.78% 0.67% 12.92% 

  

      

Roll 126 GARCH 7.18% 18.93% 2.75% 18.93% 0.54% 12.45% 

 

CEV 7.62% 18.17% 2.68% 18.17% 0.61% 12.77% 

  

      

Roll 252 GARCH 7.12% 22.10% 2.62% 22.10% 0.51% 13.52% 

 

CEV 7.24% 23.89% 2.62% 23.89% 0.67% 13.67% 
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We are seeking a higher value for the    to determine the quality of the out of sample fit. 

For each confidence interval measurement we can comment on the accuracy of the model by 

analyzing the breach measurement’s spread to the     confidence interval in Eq. 3.4.  The results 

demonstrate consistent superior performance along the accumulative calibration specification 

with a 126 period modifier. We can see in tables 4 -8 the A.126 tests demonstrate that the 

CEVGARCH produces a higher quality out of sample fit with a higher    as well as a breach 

percentage which is closer to the confidence interval measured. The breaches along the single 

tailed distribution at the given confidence levels can be visually inspected in Figures 13-22. We 

observe that when the current variance is large the two models produce differing estimates for 

the next period conditional variance, which reinforces the purpose and validity of modeling the 

variance of variance.  
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A result which we feel warrants further investigation is the negative   values which are 

consistent across the risk factors. This parameter acts like a degree of correlation between the 

variance shocks and returns. Ishida comments that a negative correlation may cause the smirk 

observed when graphing Black Scholes implied volatility.  As discussed earlier there are well 

debated theories regarding the asymmetric persistence of variance in equity markets, but we do 

not see any economic validity to transferring the conclusion into foreign exchange markets. Our 

results for FX risk factors do display an asymmetry biased towards negative returns independent 

of the funding currency.  

By comparing the Monte Carlo results of the GARCH model and the CEVGARCH 

model for the same risk factor we do see an increasing deviation from normality as we move 

farther into simulated time, Fig 21 - 36.  It is significant to notice that when comparing the 

GARCH model to the CEVGARCH model for the same simulated risk factor the CEVGARCH 

model produces a higher kurtosis sooner and exhibits the higher peaked fatter tailed distribution 

typical of the market.  This suggests that the sensitivity of the CEVGARCH model could be 

more accurate than the standard GARCH model in modeling the short term evolution of risk 

factors. The GARCH model has earned popularity for its ability to capture this aspect of market 

observed return dynamics, but we can see the CEVGARCH is clearly more sensitive as the 

distributions deviate from normality at earlier time steps and with increasing excess kurtosis.  

Our results for the calculated kurtosis are listed in table 9. 
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EUR/USD 

 

GBP/USD 

 

USD/CAD 

 

S&P500 

 

TSX 
Days 

Ahead 

 

GARCH  CEVGARCH GARCH  CEVGARCH GARCH  CEVGARCH GARCH  CEVGARCH GARCH  CEVGARCH 

10 

 

3.08 3.67 3.28 4.26 3.17 3.61 3.46 4.53 3.35 4.18 

20 

 

3.09 4.09 3.3 4.87 3.19 3.85 3.57 5.8 3.42 4.99 

60 

 

3.15 14.6 3.37 10.63 3.35 7.24 4.18 232.02 3.85 57.41 

90 

 

3.16 993.1 3.33 32.33 3.4 138.59 4.47 23660.03 4.03 19239.55 

126 

 

3.16 2186.44 3.28 263.94 3.45 2048.74 5.07 11275.06 4.38 19386.1 
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As the simulation horizon extends further out we see an increasing sensitivity to variance. 

Figure 29 display the simulated asset paths of the Monte Carlo trials for varying time frames. 

The visualization across time frames is useful to see how some paths can exhibit explosive 

conditions.   

EUR/USD 60 days CEVGARCH    (Fig. 29) 
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Conclusion  

 In this paper we have investigated one of the first discrete time models which attempts to 

model the sensitivity of variance at varying levels of variance. Ishida & Engle’s CEVGARCH 

models the variance of variance as a linear function of the conditional variance.  Our tests 

demonstrate the CEVGARCH model does capture the leptokurtic nature of risk factor returns 

sooner and with a greater degree of sensitivity when compared to the standard GARCH model. 

This benefit comes at the cost of the model being overly sensitive and unstable during asset path 

simulations with medium to long term durations. When using variance models to evolve risk 

factors for instrument pricing, the time frame selected for the model has a significant impact on 

the validity of the results.  Our Monte Carlo simulations demonstrate an inherent weakness of the 

CEVGARCH model’s stability in long term simulation. The model was developed with the 

intention of modeling the next period ahead variance. When allowing a risk factor to evolve 

without the economic constraints in actual markets, like central bank interventions, some of the 

asset paths take on extreme values along larger time frames.   

 When investigating equity returns our results are consistent with Ishida & Engle as well 

as Javaheri which all suggest a CEV exponent greater than 1 contrary to the standard GARCH 

model. Chacko and Viceira (1999) used spectral GMM to estimate the CEV process at 1.10 for 

the SP500 using weekly data.  This suggests to us that further study is needed to investigate the 

assumptions of stochastic volatility models like Heston’s, which use the square root of variance 

as a fixed measure of elasticity. Having an accurate model for the variance of variance will allow 

for better hedging and ultimately better pricing of financial derivative instruments.  
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