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Abstract

The high throughput sequencing (HTS) platforms generate unprecedented amounts of data

that introduce challenges for processing and downstream analysis. While tools that report

the “best” mapping location of each read provide a fast way to process HTS data, they are

not suitable for many types of downstream analysis such as structural variation detection

where it is important to report multiple mapping loci for each read. In fact, multi-mapping is

the main bottleneck in genomic structural variation detection, RNA-Seq data analysis, etc.

For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner

that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves

mrsFAST, the first cache oblivious read aligner capable of handling multi-mappings, through

new and compact index structures that reduce both the memory usage and number of CPU

operations per alignment. The size of the index generated by mrsFAST-Ultra is 10 times

smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such

as being able to (1) obtain the best mapping loci for each read, and (2) return mapping

locations for all reads that have at most k mapping loci (within an error threshold), for

any user specified k. Furthermore mrsFAST-Ultra is SNP-aware, i.e., it can map reads to

reference genome while discounting the mismatches that occur at common SNP locations

provided by db-SNP; this significantly increases the number of reads that can be mapped

to the reference genome. Finally mrsFAST-Ultra utilizes the presence of multiple cores and

can be tuned for different memory settings.

Our results show that mrsFAST-Ultra is up to 4.5-times faster than its predecessor

mrsFAST. In comparison to newly enhanced popular tools such as BWA and Bowtie2, it is

more sensitive (it can report 60 times or more mappings per read) and much faster (5 times

or more) in the multi-mapping mode.

iv



To my beloved mother and father.

v



“Ignorance more frequently begets confidence than does

knowledge: it is those who know little, and not those

who know much, who so positively assert that this or

that problem will never be solved by science.”

— Charles Darwin
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Chapter 1

Introduction

High Throughput Sequencing (HTS) technologies have changed the way genomics research

is conducted since their inauguration in 2005 [21], and they continue to evolve with the

introduction of single molecule sequencing and more recently the nanopore sequencing. Al-

though the HTS technologies have proven their power in cataloging normal human genome

variation [1, 2], finding disease causing mutations [23], and building de novo genome assem-

blies [9], the computational analysis of the data they generate is far from being perfect.

Aside from de novo sequencing projects, all HTS-based studies start with mapping the

reads to a reference genome (of the same or closely related species). The importance of read

mapping was recognized by the field, and various computational tools have been developed

for different purposes and constraints. Aligners based on the Burrows Wheeler Trans-

form (BWT) [6] and the Ferragina Manzini (FM) index [7], such as BWA [18], Bowtie [17],

Bowtie2 [16], SOAP2 [19] and GEM [20] try to achieve high mapping speed with some reduc-

tion in mapping sensitivity, where hash based mappers such as mrFAST [5], mrsFAST [11],

drFAST [14], RazerS [26], RazerS3 [27], SHRiMP [24], SRmapper [10] and GSNAP [28] aim

full sensitivity at the cost of run time. Typically, the advantages and disadvantages of a

read mapper is determined by the project needs, and the “best” aligner should be selected

depending on the biological question in hand [8]. For example, in order to accurately detect

structural variants in HTS data, especially in the repeat regions of a genome, one needs

to obtain all mapping loci for each of the reads - which provides the main computational

bottleneck [12].

Note that, even when fully sensitive mappers are used, many reads remain unmapped,

primarily due to the sequencing errors associated with HTS platforms. In addition to these
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CHAPTER 1. INTRODUCTION 2

errors, some reads also involve real sequence variants such as SNPs [25], indels [22], and

splits [15] or mapping ambiguity [4] due to structural variation. Available mapping tools

require a (typically user defined) upper bound on the number of “errors” it can tolerate per

read mapping, and treat real variants and sequencing errors identically - this reduces the

mappability of a significant number of reads substantially. A mapper capable of distinguish-

ing real variants from sequencing errors, will be able to map more reads to the reference,

effectively providing an increased accuracy and sensitivity. Unfortunately, as each read is

mapped independently from the others, and the genomic variants are detected only after the

mapping process is complete, real variants cannot be known a priori. However, many of the

3 to 4.5 million SNPs in a human genome (in comparison to a reference genome) are shared

among individual genomes [2], and have been collected and indexed in the dbSNP database.

Therefore, a read mapper which utilizes the common SNP information in dbSNP (or any

other genomic variation databases) can improve the signal-to-noise ratio in alignments.

In this project we introduce a new SNP-aware read mapper developed for the Illumina

platform, that we call mrsFAST-Ultra, which improves the (1) mappability, (2) mapping

accuracy, and (3) sensitivity by tolerating common, previously reported sequence variants

and distinguishing them from likely sequencing errors. Given a user defined error threshold,

mrsFAST-Ultra reduces the number of reads that could NOT be mapped by any available

mapper by 19%. mrsFAST-Ultra achieves this while providing full sensitivity, i.e. it guar-

antees to find all mapping loci of each read within a user defined error threshold, as per its

predecessors [5, 11, 14]. As mentioned earlier, this feature is essential for accurate structural

variant detection techniques (e.g. VariationHunter [12, 13]). As a result, mrsFAST-Ultra

has a significantly higher sensitivity compared to Bowtie 2 and BWA (the latest version)

in the ”all mapping mode” where mrsFAST-Ultra reports at least 30 times more mappings

per read.

mrsFAST-Ultra introduces several additional improvements over its predecessors, such

as (i) requiring a substantially smaller reference genome index file (which also improves its

cache performance), (ii) introducing new filters to improve search space, and (iii) supporting

multithreading. More specifically, mrsFAST-Ultra improves on the storage requirement of

the original mrsFAST, the first cache-oblivious HTS read mapper, by a factor of 10. The

index size was one of the limiting factors of the original mrsFAST in large scale sequencing

projects. As mentioned above, the compactness of mrsFAST-Ultra’s index structure also

reduces the overall number of CPU operations and the I/O needs, resulting in a factor of
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4.5 improvement in the running time in comparison to the original mrsFAST.

Finally, mrsFAST-Ultra introduces new features such as (1) the ability to retrieve the

single best mapping loci, (2) the ability to retrieve all reads which map to at most (a user

defined) k unique loci (within a user defined number of mismatches), and (3) automatic

parallelization if multiple cores are available in the computing environment.



Chapter 2

Background

To get familiar with the working mechanism of mrsFAST-Ultra and the set of options and

improvements it provides, we first introduce mrsFAST, the cache-oblivious seed and extend

mapping tool which has been the basis of development for mrsFAST-Ultra. mrsFAST is a

hash based multi-mapper that guarantees to find all mapping locations of a set of short reads

from a donor genome in the reference genome within a user-specified number of mismatches.

mrsFAST performs alignments by indexing both the reference genome and the input reads,

and executing a cache-oblivious all-to-all comparison algorithm on the reference and read

indexes.

2.1 Indexing the Reference Genome

mrsFAST creates an index array (figure 2.1) of the reference genome in a way that for

any unique subsequence of size k = l/(e + 1) in the reference genome (where l is read

length and e is the user defined error threshold e), there is an entry in the index. For each

entry of this table, the list of all starting positions of each occurrence of this k-mer in the

genome is stored. The items of this table are stored lexicographically with respect to these

subsequences of size k.

2.2 Indexing the Donor Genome

To create an index of the donor genome, mrsFAST partitions reads of size l into e + 1 non-

overlapping blocks of size k. The pigeonhole principle guarantees that if a read is mapped

4



CHAPTER 2. BACKGROUND 5

Figure 2.1: Sample snapshot of a hash index for the reference genome [11].

to a location in the reference genome within the error threshold e, then at least one of these

blocks should map to the reference genome location with no mismatches.

mrsFAST creates an index array for the reads in a similar fashion to the reference index

as follows. First mrsFAST partitions each read to non-overlapping blocks of size k and for

each such block, then it creates an index entry where it stores every occurrence of this block

in the reads by storing the read number as well as the block position. Figure 2.2 depicts a

snapshot of such a read index.

Figure 2.2: Sample snapshot of a read index for reads of length 21, and the error threshold
2 [11].
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2.3 Search

To find all locations in the reference genome where each read can be mapped to within error

threshold e, mrsFAST compares the entries of the reference index and the read index. For

each block of a read, it finds all locations in the reference genome that have a matching

subsequence. According to the position of the matching block within each corresponding

read, mrsFAST extends that matching subsequence in the genome to the left and to the

right so as to establish a full alignment between the read and the extended subsequence.

If this alignment involves fewer than e mismatches (Hamming errors), then that particular

location is returned as a match.

To perform a complete search for each read in the entire genome, mrsFAST needs to do an

all-to-all comparison between the list of genome locations and the list of reads corresponding

to each block. This all-to-all search is done with a recursive divide and conquer strategy that

guarantees cache-obliviousness, meaning that the number of cache misses during this costly

all-to-all comparison is minimum within a factor 2 approximation. As a result, mrsFAST

guarantees to find all mapping locations of the input reads in the reference genome with

high efficiency in terms of both cache performance and the CPU usage.



Chapter 3

Methods

mrsFAST-Ultra is a seed and extend aligner in the sense that it works in two main stages:

(i) it builds an index from the reference genome for exact ”anchor” matching and (ii) it

computes all anchor matchings for each of the reads in the reference genome through the

index, extends each match to both left and right and checks if the overall alignment is within

the user defined error threshold.

3.1 Indexing

In the indexing step, mrsFAST-Ultra slides a window of size k = l/(e + 1) (where l is read

length and e is the user defined error threshold e) through the reference genome and identifies

all occurences of each k-mer present in the genome. For small values of k, mrsFAST-Ultra’s

genome index is an array of all possible k-mers in lexicographic order. For each k-mer, the

index keeps an array of all locations the k-mer is observed in the reference genome. In case

the value of k is prohibitively large, only a prefix of user defined size ` (for each k-mer)

is used for indexing. For each such `-mer, its locations on the reference genome are then

sorted with respect to the k − `-mers following it. (In fact, for most applications, even

keeping track of all k − `-mers following a particular `-mer is not necessary: we just hash

these k − `-mers via a simple checksum scheme.)

For further compacting the index, the reference genome itself is first converted to a

3 bit per base encoding. The genome sequence is stored in 8 byte long machine words

implying that each machine word contains 21 bases. In addition, the index of the reference

genome actually does not keep every occurence of each k-mer, but rather keeps how many

7



CHAPTER 3. METHODS 8

occurences of each k-mer is present in the genome. Everytime we perform a search in the

reference genome, the locations are computed on the fly. This reduces the I/O requirements

of mrsFAST-Ultra significantly. One may think that such a set up would increase the overall

running time of the search step but the savings from I/O reduction significantly offsets the

cost of recalculating the k-mer locations on the fly. Overall, the storage requirement of

the index we construct for the reference genome is 2GB, including the reference genome

sequence itself. This represents a 10 fold improvement in the index storage requirement of

the original mrsFAST.

3.2 Search

In this step, mrsFAST-Ultra processes the reads from an input HTS data set and com-

putes “all” locations on the reference genome that can be aligned to each read within the

user-defined error threshold e. mrsFAST-Ultra is a fully sensitive aligner meaning that it

guarantees to find and report all mapping locations of a given read within e mismatches.

mrsFAST-Ultra achieves this by partitioning the read into e+ 1 non-overlapping fragments

of length k for a given error threshold e. Due to the pigeonhole principle, at least one of

these fragments should have an exactly matching k-mer of the reference genome in each

location the read can be mapped to. The search step then validates whether each location

of the reference genome with an exact k-mer match of the read is indeed a mapping location.

In order to perform the search step as fast as possible, mrsFAST-Ultra loads the genome

index (see above) to the main memory and computes the locations of each k-mer on-the

fly - for significant savings in I/O. For each k-mer, the number of locations in the reference

genome is already stored in the index, thus we can preallocate the required memory for

each array that keeps the locations of a given k-mer. Once this extended reference genome

index is set up in the main memory, the remaining memory is allocated for the reads. At

each subsequent stage, mrsFAST-Ultra retrieves sufficiently many (unprocessed) reads that

can fit in the main memory and searches them in the reference genome simultaneously.

(Alternatively, the user can specify an upper bound on the memory usage.) These reads

are also indexed with respect to the e + 1 non-overlapping fragments of size k it extracts

from each read. Basically, for each possible fragment of length k, the read index keeps the

read ID, the fragment number and the direction the fragment is observed in the read. Once

the read index is set, it is compared to the reference genome index, in a divide and conquer
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fashion as per mrsFAST, in order to achieve cache obliviousness. In other words, for each

possible k-mer, the list of its occurences in the reference genome is compared against the

list of its occurecens among the reads in a divide-and-conquer fashion (rather than linear

fashion) to ensure an optimal cache performance at any level of the cache structure, within

a factor 2 [11].

Because mrsFAST-Ultra aims to be fully sensitive, it needs to verify whether each refer-

ence genome location and each corresponding read that have the same k-mer have indeed an

alignment within the user defined error tolerance. Note that, the value of k, set to l/(e+ 1)

can be too big for creating an index that has an entry for every possible k-mer from the 4

letter DNA alphabet. Thus the primary indexing is performed on a prefix of length ` = 12

for each k-mer and all locations/reads that share this prefix are further sorted according to

the k−`-mer succeeding this prefix. This is achieved by hashing the k−`-mer through a sim-

ple checksum scheme. As a result, the divide-and-conquer comparison of reference genome

locations and reads is performed on those entries that have the same `-mer and the same

checksum value for the succeeding k−`-mer. The comparison for each genomic location and

a read involves the calculation of the Hamming distance between the read and the k-mer

location in the genome, extended by the appropriate length towards left and right. Before

calculating the Hamming distance, mrsFAST-Ultra applies another filter that compares the

number of As, Cs, Gs and T s in the read and the genomic locus; if the total number of

symbol differences is more than 2e, then we do not need to compute the Hamming distance

explicitly as it will be at least e+1 - above the error threshold. In comparison to the original

mrsFAST, our new search strategy reduces the number of Hamming distance calculations,

the main bottleneck for the search step, by a factor of 5. When combined with reduced I/O

(due to compact index representation), a two stage index (for both the reference genome

and the reads), and the introduction of new filters, this implies a 4.5 factor reduction in the

overall running time of search.

3.3 SNP awareness

The user has the option of setting mrsFAST-Ultra to tolerate known SNP locations in the

mappings: i.e. in this mode, SNPs in an alignment location simply do not contribute to the

error count in the Hamming distance computation. For that, mrsFAST-Ultra parses dbSNP

and generates a compact structure that it uses for mapping. Although conceptually simple,
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this feature is highly desired by users as it significantly reduces the number of reads that can

not be mapped to anywhere in the reference genome. In this mode mrsFAST-Ultra reports

the number of SNPs in addition to the number of mismatches per each mapping location.

3.4 Limited mapping

mrsFAST-Ultra provides the user the option of returning a single best mapping locus per

read - which it performs much faster than computing all mapping loci. As per BWA,

Bowtie2, SRmapper and others, a best mapping location (on the reference genome) is con-

sidered to be one which has the smallest number of differences with the read. In addition,

mrsFAST-Ultra has the option to return only mapping loci of reads which map to at most

n locations within the user defined error threshold. These features help the users to control

the mapping multiplicity - which can grow prohibitively for further downstream analysis.

3.5 Parallelization

mrsFAST-Ultra is designed to utilize the parallelism offered by contemporary multicore

architectures. The mapping task is simply partitioned into independent threads each of

which is executed by a single core. For efficiency purposes, the only locks used by the

threads are for allocating memory and I/O.



Chapter 4

Results

We report on experiments we performed on a single PC, equipped with an Intel(R) Xeon(R)

CPU with 4 cores and 12GB of RAM.

4.1 Comparison with mrsFAST

The following experiments show how mrsFAST-Ultra has improved its predecessor mrsFAST

in terms of speed, and that how different parameters of the input data affect the running

times of these two versions.

First we investigate whether the number of input reads influences the time improvements

provided by mrsFAST-Ultra. Table 4.1 shows the running times of mrsFAST and mrsFAST-

Ultra on two datasets with different number of reads. As observed, by increasing the number

of reads from 1 million to 2 million, the running times of both versions are approximately

increased by a factor of 2, and in both cases mrsFAST-Ultra is almost 4.5 times faster

than mrsFAST. Therefore the number of input reads is not an important factor regarding

mrsFAST-Ultra’s performance.

In the second experiment we show how the given error threshold changes the running

times. Table 4.2 shows that on a set of 100 base pair reads, with error threshold 3, mrsFAST-

Ultra is almost 10 times faster than mrsFAST, while the time improvement ratio is only 4.5

when error threshold is set to 6. This is due to the fact that by setting the error to 3, the

size of read blocks k = l/(e + 1) is longer, and therefore the checksum filter works far more

effectively on these blocks.

11
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Table 4.1: Comparing running times on 1M and 2M reads of length 100, with error threshold
6.

Software 1M reads 2M reads

mrsFAST 180m 34s 362m 36s
mrsFAST-Ultra 41m 58s 78m 57s

Table 4.2: Comparing running times on reads of length 100, with error thresholds 3 and 6.

Software e = 3 e = 6

mrsFAST 153m 10s 362m 36s
mrsFAST-Ultra 15m 30s 78m 57s

To observe how the read lengths affect the running time improvements of mrsFAST-

Ultra, in the third experiment two datasets with different read lengths (50 and 100 base

pairs) are mapped to the reference genome. In both cases the dataset contains 2 million

reads and error threshold is set to 3. As seen in table 4.3, when the read length is shorter

the size of the read partitions k = l/(e + 1) gets smaller and therefore the checksum filter

looses its effectiveness. With read length 50, mrsFAST-Ultra performs only 2 times faster

than mrsFAST, while it is about 10 times faster when the read length is 100.

4.2 Comparison with Other Mapping Tools

We benchmarked a number of read mapping software with parameters set as below, unless

otherwise stated.

• mrsFAST v2.5.0.4 (-e 6, for error threshold)

• mrsFAST-Ultra v3.0.0 (-e 6, for error threshold, –threads 1 for using a single CPU)

• BWA v0.6.2 (-n 6 for error threshold; -N for disabling iterative search and reporting

all mapping locations where required)

• Bowtie2 v2.0.2 (-k 100 for reporting up to 100 mappings for each read, -a for reporting

all mapping locations where required 1)

1It was impractical to run Bowtie2 for all mapping location
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Table 4.3: Comparing running times on reads of length 50 and 100, and error thresholds 3.

Software l = 50 l = 100

mrsFAST 216m 6s 153m 10s
mrsFAST-Ultra 109m 31s 15m 30s

• GEM v1.367.beta (-m 6 for error threshold 6; -d for reporting all mapping locations

where required)

• RazerS3 v3.1.1 (-i 94, provides %94 similarity for allowing 6 errors in reads of length

100, -rr 100 for full sensitivity)

• GSNAP 2013-01-23 release (-m 6 for error threshold 6)

• SRmapper v0.1.5 (-m 6 for error threshold 6)

Our results below are based on mapping 2 million Illumina reads of length 100bp from

NA18507 (SRA ID: SRR034939) individual genome to the “hg19” version of the human

reference genome. We carried out a few experiments to evaluate the performance of the

above software. In the first experiment, we mapped the reads with an error threshold of

6% (i.e. 6bp). Table 4.4 depicts the results of this experiment. As can be seen, mrsFAST-

Ultra reports about 308M mapping locations for these reads, which is at least 30-times

more than the number of mapping locations reported by any of the competing methods. In

the SNP-aware mode where we provided mrsFAST-Ultra with dbSNP32, the percentage of

reads which could not be mapped drops by 19% (roughly 3% of all reads).

In the second experiment, we set the appropriate parameters in each method to report

100, 1000 and all mappings locations per read. Table 4.5 shows the running time of all four

methods. Although the running time for GEM is better than the other methods, it misses

many mapping locations as per BWA and Bowtie2.

In the third experiment, we ran all the tools in the ”best mapping” mode with various

error thresholds. Although mrsFAST-Ultra is not as fast as some of the other tools, it has

higher sensitivity than the others as shown in Table 4.6.

In the final experiment, we compare mrsFAST-Ultra and GSNAP in their SNP-tolerant

best mapping mode. The results are given in Table 4.7.

Table 4.8 demonstrates the memory footprint of all tools we benchmarked on 2M reads.

mrsFAST-Ultra occupies 2.5 GB by default settings. Though it could be set to work with



CHAPTER 4. RESULTS 14

Table 4.4: Mapping 2M reads from NA18507 to hg 19 with e ≤6.

Software Time # mappings % of reads
(millions) mapped

mrsFAST 6h 2m 308.302 90.55
mrsFAST-Ultra 1h 18m 308.302 90.55
mrsFAST-Ultra (SNP-aware)a 1h 52m 354.691 93.17
BWA 7h 16m 4.133 91.57
Bowtie2b 2h 52m 5.130 91.52
GEM 16m 9.078 90.78
RazerS3c 10h 17m 10.631 92.00
GSNAP 3h 11m 5.388 86.37

SRmapperd 7m 0.32 10.46

BWA and GEM are set to report all mapping locations. Bowtie2 is
impractical to run if it is set to report all mappings; other mappers do
not provide such option. a The SNP-aware mrsFAST-Ultra employs
dbSNP32 for this task; b For Bowtie2, we report the time when it is
set to return at most 100 mappings per read; without this bound it
does not complete the task in 24 hours. c RazerS3 cannot finish the
task within 12hrs and its sensitivity is reduced to 99% (i.e. setting
parameter -rr to 99); d SRmapper crashes on the full human genome.
Results are shown only for mapping the reads to chr1.

a lower user-specified memory limit, which may lead to slower mapping time.

Finally, we show the effectiveness of mrsFAST-Ultra filters. In Figure 4.1, we calculated

the expected number of the locations that should be verified given varying k-mer values. As

expected, when the length of k-mer increases the expected number of locations that should

be verified descreases. We also plot the average number of locations verified by mrsFAST-

Ultra for various k-mer + checksum length values. As shown in the figure, using checksum

filtration mimics the use of longer k-mer. In the figure we demonstrate the average number

of the locations verified after we incorporated the 1-gram filtration method.
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Table 4.5: Running time for reporting n map-
ping locations per read.

Software n=100 n=1000 n=∞

mrsFAST-Ultra 53m 57m 78m
BWA 438m 436m 436m
Bowtie2a 172m NA NA
GEM 14m 13m 16m
RazerS3 538m 604m 617m
GSNAP 196m 191m 191m

SRmapperb 7m 7m 7m

a Bowtie2 can not complete the task in 24
hours for n≥1000. b SRmapper crashes on
full human genome. Results are shown only
for mapping the reads to chr1.

Table 4.6: Mapping of 2M reads in the best mapping mode, with an error threshold
of 2, 4 and 6. No indels/gaps allowed in any method. We report on both the
running time and the percentage of reads mapped.

Software e ≤ 2 e ≤ 4 e ≤ 6

% of reads % of reads % of reads
Time mapped Time mapped Time mapped

mrsFAST-Ultra 12m 80.97 21m 87.63 61m 90.55
BWA 4m 80.97 11m 87.52 18m 90.22
Bowtie2 10m 80.97 10m 87.52 10m 89.77
GEM 4m 80.97 6m 87.18 13m 89.33
RazerS3 13m 80.97 59m 87.63 325m 90.55
GSNAP 156m 77.78 180m 83.70 184m 86.16

SRmapper∗ 3m 7.29 5m 8.89 7m 10.46

∗ SRmapper only running on chr1
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Table 4.7: Comparing mrsFAST-Ultra and GSNAP in SNP-tolerant best mapping mode.

Software time % of reads

mrsFAST-Ultra 82m 93.17
GSNAP 207m 85.30

Table 4.8: Memory footprint of the tools on
2M reads.

Software Memory Footprint (GB)

mrsFAST-Ultra 2.5
BWA 3.2
Bowtie2 3.2
GEM 4.1
razerS 1.4
GSNAP 4.6
SRmapper∗ 0.2

∗ SRmapper footprint only on chr1

Figure 4.1: Average Number of locations verified per k-mer extracted from each read, as a
function of k-mer length.



Chapter 5

Conclusion

As the first step of almost all High Throughput Sequencing applications (such as struc-

ture variation detection) reads from a donor genome need to be mapped to a reference

genome. In addition to the human genome diversity caused by single-nucleotide variations

and larger-sized structural variations such as insertions, deletions, inversions and segmental

duplications, presence of sequencing errors associated with HTS platforms requires the align-

ment techniques to allow a user specified error threshold in the mappings. Since mapping

is a time consuming step, and because the accuracy of many structural detection discov-

ery tools largely depends on finding all mapping locations of the input reads, efficient and

accurate multi-mapping of reads is of great importance in these applications.

In this report we introduced mrsFAST-Ultra, a new SNP-aware read mapper which

improves accuracy and sensitivity by tolerating single nucleotide polymorphisms (SNPs).

While maintaining full sensitivity, mrsFAST-Ultra significantly improves its predecessor in

terms of running time, memory, disk usage, CPU and I/O operations. It also introduces

several new features such as multithreading, limited mapping, best mapping, and adjustment

to user-specified memory limits.

5.1 Future Work

mrsFAST-Ultra is specifically designed for Illumina generated reads and requires all the

reads in an input set to have exactly the same length. Supporting reads with arbitrary

lengths in a single data set could improve the flexibility of the software. In addition,

17
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mrsFAST-Ultra is designed for mapping short reads (up to approximately 500 bp). Run-

ning the current version of mrsFAST-Ultra for mapping reads of considerably higher lengths

(up to 1Mbp) will be inefficient due to the proportionally small size of hash seeds in the

search step. Accordingly, mrsFAST-Ultra can be extended to support such longer reads.

For this purpose, “split read mapping” is required. In the split read mapping problem,

long reads should broken into smaller segments which need to be separately mapped to the

reference genome. Then these smaller segments are compared and combined in order to

obtain possible mappings for the original long reads.

Another possible addition to mrsFAST-Ultra is the option of supporting chimeric align-

ments. Chimeric alignment allows opposite sides of long reads to be mapped to far apart

locations in the genome which could even fall in different chromosomes. Note that such

mappings imply occurrence of structural variation events in the donor genome. Again, split

mapping is the key to implementation of chimeric alignments.
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