
LIST MATRIX PARTITIONS OF SPECIAL GRAPHS

by

Payam Valadkhan

M.Sc., Simon Fraser University, 2009

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

c© Payam Valadkhan 2013

SIMON FRASER UNIVERSITY

Summer 2013

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Payam Valadkhan

Degree: Doctor of Philosophy

Title of Thesis: List matrix partitions of special graphs

Examining Committee: Dr. Ramesh Krishnamurti

Chair

Dr. Pavol Hell, Senior Supervisor

Dr. Gabor Tardos, Co-Supervisor

Dr. Andrei A. Bulatov, Supervisor

Dr. Binay Bhattacharya, SFU Examiner

Dr. Kathie Cameron, External Examiner,

Professor, Mathematics,

Wilfrid Laurier University

Date Approved:

ii

lib m-scan3
Typewritten Text
3 June 2013

Partial Copyright Licence

iii

Abstract

Let M be a symmetric m ×m matrix with entries from the set {0, 1, ∗}. The M -partition

problem asks whether the vertices of a given graph G can be partitioned into m parts

V0, V1 · · ·Vm−1 such that any two distinct vertices in (possibly equal) parts Vi and Vj are

adjacent if M(i, j) = 1, and non-adjacent if M(i, j) = 0. This problem generalizes k-coloring

and H-coloring problems, as well as many other well-known graph problems. In its list ver-

sion, which is called the list M -partition problem, a list is assigned to each vertex to restrict

its placement into certain parts. An open problem, called the dichotomy problem, asks

whether each (list) M -partition problem is polynomial or NP-complete. The difficulty of

this problem led to the study of restrictions on the input graphs. A secondary goal was to

identify the well-known graph classes for which all (list) M -partition problems are polyno-

mial. Several graph classes including perfect graphs, chordal graphs, etc. have been studied

so far. In this thesis we continue this line of research, focusing mainly on the list version.

We identify certain graph classes defined in terms of geometric configurations, and we prove

that for these classes all list M -partition problems are polynomial. These classes include

such well-known classes as interval and circular arc graphs. We also consider other standard

graphs classes including some generalizations of the aforementioned classes, line graphs and

their extensions to quasi-line graphs and claw-free graphs, and some special cases of H-free

graphs. For these classes we provide a positive answer to the dichotomy problem for certain

kinds of matrices M .

Keywords: list M -partition problem; graph partitions; homomorphism; special graph

classes; perfect graphs; interval graphs; line graphs; H-free graphs; dichotomy

Subject Terms: Graph Theory; Graph Coloring; Graph Partitions; Graph Algorithms

iv

To my parents, Ali and Najmeh.

v

Peace

vi

Acknowledgments

I express my gratitude for the help of my supervisors, Pavol Hell and Gabor Tardos, who

provided many insightful comments and much practical advice on this research.

vii

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Dedication v

Quotation vi

Acknowledgments vii

Contents viii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Overview . 1

1.2 Definitions . 10

1.3 Clique-Width and Courcelle’s Theorem . 14

2 History of Partition Problems 21

2.1 Graph Coloring . 22

2.2 Graph Homomorphisms . 23

2.3 Constraint Satisfaction Problems (CSPs) . 25

2.4 Partition Problems in the Study of Perfect Graphs 26

viii

2.5 Other Partition Problems . 30

2.6 The M -Partition Problem and its Variations 33

2.7 The Dichotomy and Characterization Problems 34

2.8 Restriction to the Subclasses of Perfect Graphs 38

2.8.1 Perfect Graphs . 38

2.8.2 Chordal Graphs . 39

2.8.3 Cographs . 40

2.8.4 Split Graphs . 41

3 The Graph Classes Considered in this Thesis 42

3.1 Intersection and the Containment Graphs of Geometric Objects 43

3.1.1 Interval Graphs . 45

3.1.2 Circular Arc Graphs . 45

3.1.3 Comparability Graphs . 46

3.1.4 Interval Containment (Permutation) Graphs 47

3.1.5 Circular Arc Containment (Circular Permutation) Graphs 48

3.1.6 Interval and Interval Containment Bigraphs 48

3.2 Line, Quasi-line and Claw-free Graphs . 49

3.3 H-free Graphs . 50

4 Tools 55

4.1 Definitions and Assumptions . 55

4.2 Breaking an Instance and the Separation Property 57

4.3 Some Techniques to Prove the Separation Property 59

4.4 A General Tool Related to 0-diagonal 1-free Matrices 64

5 Graphs Representing Geometric Configurations 66

5.1 The Main Techniques . 67

5.2 The Intersection and Containment Graphs of Intervals 71

5.3 Circular Arc and Circular Arc Containment Graphs 72

5.4 Comparability Graphs . 75

5.5 Other Intersection Graphs . 78

ix

6 Line, Quasi-Line and Claw-free Graphs 82

6.1 Line Graphs . 84

6.2 Quasi-Line Graphs . 101

6.3 Claw-free Graphs . 107

7 Graph Classes with Forbidden Subgraphs 113

7.1 H-free Graphs . 114

7.2 P5-free Graphs . 115

7.3 Bull-free Graphs . 123

Bibliography 125

x

List of Tables

1.1 The main complexity and characterization results in the literature. Recall

that by default M is a symmetric matrix with entries from the set {0, 1, ∗}.
Each result imposes some extra restrictions on M as shown in the table. . . . 5

1.2 The main complexity and characterization results for special graph classes in

the literature. 7

1.3 A summary of the main results in this thesis. 8

xi

List of Figures

1.1 The matrix M for some special problems. 2

1.2 The blocks A,B,C, S∗ and C∗ for a sample matrix M 4

2.1 The matrix M for some special problems. 28

2.2 The matrix M for some special problems. 29

2.3 The matrix M for some special problems. 30

2.4 The matrix M for some special problems. 32

2.5 The matrix M for some special problems. 36

3.1 One vertex extensions of P4. 51

5.1 Let H be the complement of the depicted graph. Then the list H-coloring

problem is NP-complete for circle graphs. 79

5.2 The configuration of a circle graph G based on an instance of the NAE 3-SAT

problem. 80

6.1 The trigraph notations with an example. 83

6.2 Additional NP-complete patterns for line graphs. 85

6.3 A group of patterns such that all the minimal forbidden sets of any matrix

M avoiding these patterns have size 1. 93

6.4 The gadget which forbids the edges a,a′ and a′′ (as its inputs) from all having

the color 0 at the same time. Here the vertices x, y and z belong to V1 and

other vertices (excluding the free endpoints of the inputs edges) belong to V2. 96

xii

6.5 Some examples of the patterns which have D = {0, 1, 2} as a minimal for-

bidden set, along with the corresponding instances shown below each pattern

(where D is a minimal forbidden set for the vertex v and other vertices are

the centers). 97

6.6 The gadgets CH1, CH2 and CH3 for (a) s = 4, and (b) s = 5. 99

xiii

Chapter 1

Introduction

1.1 Overview

The M -partition problem was first formulated and introduced by Feder et al. in [129].

The main motivation was the fact that many important combinatorial problems involve

partitioning the vertices of a given graph into parts satisfying certain constraints on adja-

cencies between or among vertices in different parts [48, 129]. For example, consider the

classic problem of 3-coloring the vertices of a given graph G. This is equivalent to finding

a partition of the set V (G), the vertex set of G, into three parts V0, V1, V2 such that any

two distinct vertices in the same part are non-adjacent. As another example, consider the

well-known clique cutset problem ([267]), which is equivalent to asking whether V (G) can

be partitioned into three non-empty parts V0, V1, V2 such that any two distinct vertices in

V0 are adjacent and any vertex in V1 is non-adjacent to any vertex in V2.

To formulate a common generalization for this kind of problem, Feder et al. [129]

introduced a general framework as follows: let M be a symmetric m × m matrix with

entries from the set {0, 1, ∗} (the rows and columns are indexed starting at 0), an M -

partition of a graph G is a partition of the set V (G) into parts V0, V1 · · ·Vm−1 such that

any two distinct vertices in (possibly equal) parts Vi and Vj are adjacent if M(i, j) = 1, and

non-adjacent if M(i, j) = 0, while M(i, j) = ∗ signifies no restriction. Note that the case of

i = j implies that the part Vi is a clique when M(i, i) = 1, a stable set when M(i, i) = 0

and an arbitrary set when M(i, i) = ∗. The M -partition problem asks whether the input

graph G has an M -partition. Based on these definitions, the 3-coloring and the clique cutset

problems can be formulated as M -partition problems using the matrices shown in Figure

1

CHAPTER 1. INTRODUCTION 2

1.1(a) and (b), respectively. Note that for the clique cutset problem, the corresponding

M -partition problem ignores the condition that all parts must be non-empty. We will get

back to this point later.  0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

  1 ∗ ∗
∗ ∗ 0
∗ 0 ∗


(a) 3-coloring (b) clique cutset

Figure 1.1: The matrix M for some special problems.

The M -partition problem generalizes the k-coloring and the H-coloring problems, as well

as many other well-known graph problems if we ignore possible side conditions related to the

maximum or minimum number of vertices in each part (e.g., the non-emptiness of each part

in the clique cutset problem). These problems include the split graphs recognition problem

([164]), the (a, b)-graphs recognition problem ([28]), the clique cutset problem ([267, 277]),

the stable cutset problem ([266]), the skew cutset problem ([56]), the clique-cross problem

([116]), the homogeneous set problem ([236]) and many types of problems involving joins

([53]). In Chapter 2 we will define many of these problems along with their background

and applications. Thus the M -partition problem provides a unifying framework for many

important graph problems.

To capture the side conditions ignored by the M -partition problem (e.g., certain parts

have to be non-empty, or have a fixed number of vertices), the list version of the M -partition

problem, called the list M -partition problem, is introduced ([129]) as follows: given a graph

G with a list L(v) ⊆ {0, 1, · · ·m− 1} assigned to each vertex v ∈ V (G), the list M -partition

problem asks whether there is an M -partition of G such that v ∈ Vi only if i ∈ L(v), for all

v ∈ V (G). In Section 2.6 we explain in detail how we can use the list version to model the

typical side conditions (e.g., each part has to be non-empty). We use the term non-list or

basic version to emphasize that an M -partition problem is not in the list version.

One of the main objectives in studying the M -partition problem and its list version is

to identify the (list) M -partition problems which can be solved in polynomial time [180]. It

can be easily seen that all (list) M -partition problems belong to the class NP (i.e., decision

problems solvable in non-deterministic polynomial time). We recall that a problem in the

class NP is called NP-complete if any NP problem can be reduced to it in polynomial time.

The question of whether an NP-complete problem can be solved in polynomial time is a big

CHAPTER 1. INTRODUCTION 3

challenging open problem in theoretical computer science, with many researchers believing

that NP-complete problems cannot be solved in polynomial time. So proving a problem to

be NP-complete can be taken as a serious suggestion that there might not be a polynomial-

time algorithm to solve this problem. Thus, moving along the main objective, it is relevant

to ask whether all (list) M -partition problems can be classified into those which can be

solved in polynomial time and those which are NP-complete. This problem is known as

the dichotomy problem for (list) M -partition problems. It is worthwhile to mention that

according to [219], unless P = NP , there are problems in NP that are neither polynomial nor

NP-complete. Affirmative answers to the dichotomy problem for (list) M -partition problems

are known when the matrix M is restricted to certain classes. The most notable example

is the class of 1-free matrices (i.e., matrices which have no entry with value 1), for which

the dichotomy problems for M -partition problems and for list M -partition problems are

both proved to be affirmative [118, 187]. Results of this type are called complete dichotomy,

as they declare each (list) M -partition problem (for all matrices M in the given class of

matrices) to be polynomial or NP-complete. This is in contrast to partial dichotomy, where

the classification into polynomial and NP-complete cases does not cover all possible choices

for the matrix M . These dichotomy results, along with some links to the Feder-Vardi

dichotomy conjecture [138, 120], motivated Feder et al. in [129] to ask whether the answer

to the dichotomy problem for (list) M -partition problems is affirmative. This question is

still open, and marks a direction in studying the M -partition problem. Another approach

to the main objective (i.e., identifying the polynomial-time (list) M -partition problems) is

through characterizing the M -partitionable graphs, i.e., those graphs which have at least

one M -partition. Formally, a minimal obstruction, or MO, for a matrix M is a graph which

is not M -partitionable, while any of its proper induced subgraphs is M -partitionable. It is

a simple exercise to see that the M -partition problem is polynomial when M has finitely

many MOs. Thus, the characterization problem aims at identifying all matrices M which

have finitely many MOs. Such identification, even when M is restricted to a certain class,

is called a complete characterization. In Section 2.7 we give a more detailed account of the

underlying motivations and the current results for the dichotomy and the characterization

problems. For now, we offer a summary of the current main results for these two problems

in Table 1.1.

To understand the results in Table 1.1 and other tables, we need to define some key

concepts. Define the block A (block B, respectively) of the matrix M as the sub-matrix (of

CHAPTER 1. INTRODUCTION 4

M) consisting of the rows and the columns with 0 (1, respectively) on the main diagonal.

Define the block C of M as the sub-matrix consisting of the intersection of the rows with 0

on the main diagonal and the columns with 1 on the main diagonal. Refer to Figure 1.2 for

a graphical display of these blocks. A matrix is said to be 01-diagonal if its main diagonal

consists of only 0 and 1 entries (i.e., no * is allowed on the main diagonal).

Figure 1.2: The blocks A,B,C, S∗ and C∗ for a sample matrix M .

From Table 1.1 we can deduce that the dichotomy and characterization problems are

both difficult to settle in general. This is evident from the number of restrictions that the

author had to impose on the matrix M to make the problems tractable. It is also proved

in [121] that proving a complete dichotomy for the M -partition problem will imply the

Feder-Vardi dichotomy conjecture (introduced in [138]), which is a prominent open question

(see [138, 44, 120, 121]). This link may serve as an additional evidence for the difficulty of

answering the dichotomy problem in general. We do not have such evidence for the difficulty

of the characterization problem though [180].

As a way to mitigate these difficulties, the dichotomy and the characterization problems

were studied under the assumption that the input graph is restricted to certain graph

classes such as the class of perfect graphs [119, 121], and its well-known subclasses including

chordal graphs [130, 131, 242, 133], cographs [123] and recently, split graphs [134]. The main

CHAPTER 1. INTRODUCTION 5

Matrix M Characterization
Result

Complexity Result Ref.
Sec.

1 any partial characteri-
zation for several
classes of matrix
M [137]

complete quasi-dichotomy
(list version), i.e., each
problem is quasi-polynomial
(of order 2O((logn)c)) or
NP-complete [120]

2.7

2 0-free or 1-free complete charac-
terization [180]

complete dichotomy, for both
basic [187] and list [125] ver-
sions

2.2,2.7

3 *-free finitely many
MOs [122]

polynomial (list version) [129] 2.7

4 01-diagonal, A and
B are both *-free,
C is *-free or all *

complete charac-
terization [137]

polynomial (list version) [129] 2.7

5 01-diagonal, A
and B are both
*-free and do not
contain indices
i < i′ < i′′ with
M(i, i)=M(i, i′)=
M(i′, i′′)=M(i′′, i)

N/A polynomial (basic version)
[137]

2.7

6 size ≤ 4 complete charac-
terization [137]

complete dichotomy (basic
and list versions) [129, 48, 78]

2.7

7 size ≤ 5 complete charac-
terization [137]

N/A 2.7

Table 1.1: The main complexity and characterization results in the literature. Recall that
by default M is a symmetric matrix with entries from the set {0, 1, ∗}. Each result imposes
some extra restrictions on M as shown in the table.

CHAPTER 1. INTRODUCTION 6

motivation for choosing these graph classes was the fact that in several special cases of the

M -partition problem, mainly k-coloring and H-coloring problems, the affirmative answer

to the dichotomy problem was known when the input graph was restricted to these graph

classes. Thus the researchers hoped that the dichotomy and the characterization problems

may also be tractable for these graph classes. In Section 2.8 we introduce these graph classes

and give a background of M -partition problems restricted to them. For now we just give a

summary of the main results in this direction in Table 1.2.

As it is clear from Table 1.2, even restriction to graph classes such as chordal graphs

(for which many combinatorial problems are polynomial) did not help finding a complete

dichotomy as it was hoped. Due to this failure, studying the dichotomy and characterization

problems for some other smaller subclasses are proposed as future work [180]. This is exactly

the focus of this thesis, namely finding dichotomy results for special graph classes.

The class of interval graphs (defined in Section 3.1.1) is a subclass of chordal graphs.

Studying the M -partition problem for interval graphs (particularly the dichotomy problem)

is posed in the preliminary version of [180] as a relevant open problem, with the hope that

this restriction could further simplify the dichotomy problem in the case of chordal graphs

as evident from Table 1.2, rows 2-10. (This open problem was removed in the final version

of [180] as it was settled in this thesis.) We study the list M -partition problem for interval

graphs in Chapter 5, and then shift our focus to other related graph classes which are

studied in Chapter 5 and other subsequent chapters. Table 1.3 shows a summary of our

main dichotomy results for each of these graph classes. Note that in contrast to the current

results which mainly consider 01-diagonal matrices (see Tables 1.1 and 1.2), we also consider

the cases in which * is allowed on the main diagonal. For this reason, following the model of

defining blocks A,B,C, we introduce two additional blocks, namely S∗ and C∗ (see Figure

1.2), where S∗ is the sub-matrix consisting of the rows and the columns with * on the main

diagonal (analogous to the blocks A and B), and C∗ is the sub-matrix consisting of the

intersection of the rows with 0 or 1 on the main diagonal and the columns with * on the

main diagonal (analogous to the block C). Our results also include some more technical

statements not included in the table. (Refer to the individual chapters for more details.)

In the rest of this chapter, after introducing some basic notation and definitions in

Section 1.2 we introduce a very relevant technique in Section 1.3, which helps proving many

graph theoretical problems, including the M -partition problem and its list version, to be

polynomial when restricted to graph classes having a certain property. In Chapter 2 we give

CHAPTER 1. INTRODUCTION 7

Graph
Class

Matrix M Result(s)

Perfect
Graphs [121]

1 01-diagonal, none of the
blocks A,B or C contains
both a * entry and an
off-diagonal non-* entry

finitely many MOs
(⇒ polynomial complexity for
the basic version)

Chordal
Graphs
[131, 133]

2 0-diagonal linear complexity (list version)
3 1-diagonal polynomial complexity

(list version)
4 01-diagonal, A or B is *-free,

C is 1-free or 0-free
complete dichotomy
(list version)

5 01-diagonal, A or B is *-free complete quasi-dichotomy
(list version)

6 01-diagonal, C contains a set
of rows and columns without
* that together cover all the
entries of C different from *

polynomial complexity
(list version)

7 many examples NP-complete (basic version)
8 01-diagonal, all off-diagonal

entries are *
there is only one MO
(⇒ polynomial complexity for
the basic version)

9 size ≤ 4 polynomial complexity
(basic version)

10 size ≤ 3 complete characterization

Cographs
[123]

11 any finitely many MOs,
polynomial complexity
(list version)

Split Graphs
[134]

12 any finitely many MOs
(⇒ polynomial complexity for
the basic version), but there are
NP-complete matrices M for the
list version

Table 1.2: The main complexity and characterization results for special graph classes in the
literature.

CHAPTER 1. INTRODUCTION 8

Graph Class Matrix M Complexity
Result
(list version)

Ref.
(Theorem or

Corollary)

Interval Graphs any polynomial 5.2.4

Circular Arc Graphs any polynomial 5.3.3

Permutation Graphs any polynomial 5.2.4

Circular Permuta-
tion Graphs

any polynomial 5.3.3

Interval & Inter-
val Containment
Bigraphs

any polynomial 5.2.4

Comparability
Graphs

01-diagonal, A is 1-free complete dichotomy 5.4.6

Circle Graphs some examples NP-complete 5.5.1

Line Graphs

01-diagonal complete dichotomy 6.1.1
*-diagonal, 1-free complete dichotomy 6.1.2
B,S∗ and C∗ are 0-free,
1-free and all *, resp.

complete dichotomy 6.1.3

B has size ≥ m− 2 polynomial 6.1.4
some new examples NP-complete 6.1.5

Quasi-Line Graphs
B is 0-free, C is 0-free
or *-free

complete dichotomy 6.2.4

1-diagonal, 0-free polynomial (basic
version)

6.2.5

Claw-free Graphs B is 0-free, C is 0-free
or *-free

complete dichotomy 6.3.6

H-free Graphs
0- or 1-diagonal (based
on some condition)

complete dichotomy
(for all but a few ex-
ceptional graphs H)

7.1.1 and
7.1.2

some examples, except
when H is an induced
subgraph of P4

NP-complete 7.1.4

P5-free Graphs 01-diagonal, B is 0-free,
C is *-free or all *

complete dichotomy 7.2.4

{P5, P5}-free Graphs 01-diagonal, C is *-free
or all *

complete dichotomy 7.2.5

Bull-free Graphs A is 1-free, B is 0-free complete dichotomy 7.3.2

Table 1.3: A summary of the main results in this thesis.

CHAPTER 1. INTRODUCTION 9

a history of the M -partition problem and its related directions and results. In Chapter 3 we

introduce the graph classes shown in Table 1.3, and explain why studying the M -partition

problem for these graph classes is relevant. In Chapter 4 we introduce some technical tools

needed throughout this thesis. The remaining chapters are dedicated to proofs of our main

results as outlined in Table 1.3. (Refer to this table for more details on the contents of each

chapter.)

Before closing this overview, we would like to justify the restrictions that our results

impose on the matrix M (as evident from Table 1.3). In choosing these restrictions, we

were guided by the restrictions imposed on M in the existing results as shown in Tables

1.1 and 1.2. The general trends are to restrict certain values for the entries on the main

diagonal, or the blocks A,B,C defined above (see Figure 1.2), or the whole matrix. We

follow these trends and extend them to the blocks S∗ and C∗ (see Figure 1.2), as we also

consider matrices M with * on the main diagonal.

CHAPTER 1. INTRODUCTION 10

1.2 Definitions

For an integer n ≥ 0, denote by [n] the set {0, 1, · · ·n − 1}. Given an arbitrary set X, an

n-tuple of X is any vector (x1, x2, · · ·xn) with xi ∈ X, for i = 1, 2, · · ·n. A 2-tuple of X is

commonly called a pair of X. The set of all n-tuples of X is denoted by Xn.

A digraph G is a pair (V,E), where V is the set of vertices (also called the vertex set),

and E ⊆ V 2 is the set of arcs. So each arc e ∈ E is a pair (u, v) of vertices, and we call the

vertices u and v the endpoints of the arc e. If u = v then e is called a loop at the vertex

u. For the sake of clarity, in this thesis we use the notations V (G) and E(G) instead of V

and E to emphasize that they belong to the description of the digraph G. In the graphical

representation of G, we assign a point in the plane to each vertex v ∈ V , and for any arc

(u, v) ∈ E, we draw an arc (an arrow) directed from the point u to the point v. Based on

this view, we write u → v to denote that there is an arc directed from u to v (in G). A

|V (G)| × |V (G)| matrix AG, known as the adjacency matrix of G, is defined as follows: for

each vertex v ∈ V (G), there is exactly one row rv and one column cv in AG corresponding

to this vertex, and we define AG(ru, cv) = 1 if (u, v) ∈ E(G), otherwise AG(ru, cv) = 0 (for

any two not necessarily distinct vertices u, v ∈ V (G)).

An undirected pair from a set X consists of two (not necessarily distinct) elements

x, y ∈ X, and is denoted by xy. Note that two undirected pairs xy and x′y′ are identical

whenever the sets {x, y} and {x′, y′} are identical. A graph is a pair (V,E), where V is the

set of vertices (also called the vertex set), and E is a set consisting of undirected pairs of

V (G). Each element uv ∈ E is called an edge between u and v (or equivalently, between v

and u). In the graphic representation of G, we assign a point in the plane to each vertex

v ∈ V , and for any edge uv ∈ E, we draw a segment connecting the points corresponding to

the vertices u and v. The adjacency matrix of a graph G is a |V (G)| × |V (G)| matrix AG

such that for each vertex v ∈ V (G), there is exactly one row rv and one column cv in AG

corresponding to this vertex, and AG(ru, cv) = 1 if uv ∈ E(G), otherwise AG(ru, cv) = 0 (for

any two not necessarily distinct vertices u, v ∈ V (G)). In this thesis, we assume that the

set V (G) (both for graphs and digraphs) is always finite, and all the graphs and digraphs,

as the inputs of our algorithms, are encoded using the adjacency matrix.

Let G be a graph. A graph G′ is called a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆
E(G). If V (G′) 6= V (G) or E(G′) 6= E(G) then G′ is called a proper subgraph. Additionally,

we say that the subgraph G′ is induced if it has all the possible edges, namely E(G′) =

CHAPTER 1. INTRODUCTION 11

E(G) ∩ V (G′)2. For a subset D ⊆ V (G), the induced subgraph of D, denoted by G[D], is

the induced subgraph G′ in which V (G′) = D. By removing a set D (from G) we mean

forming the induced subgraph G[V (G)−D].

Two vertices u and v in a graph G are called adjacent, or neighbors whenever uv ∈
E(G), otherwise they are called non-adjacent, or independent. Given two non-empty subsets

X,Y ⊆ V (G), we say that X is fully adjacent (fully non-adjacent, respectively) to Y if any

vertex in X is adjacent (non-adjacent, respectively) to any vertex in Y . For any vertex u,

denote by N(v) the set of its neighbors, i.e., the set of all vertices in V (G) adjacent to v.

Similarly, denote by N(v) the set of non-neighbors of v, i.e., the set of all vertices in V (G)

non-adjacent to v. Note that for any v ∈ V (G), either v ∈ N(v) or v ∈ N(v) depending

on whether there is a loop at v or not, respectively. The value |N(v)| is called the degree

of v (in G). Two sets X and Y are called disjoint if X ∩ Y = ∅. Given two graphs G and

H with disjoint vertex sets, we define the disjoint union of G and H, denoted by G + H,

as a graph with the vertex set V (G) ∪ V (H) and the edge set E(G) ∪ E(H). Two graphs

G and H are called isomorphic if there exists a bijective mapping f : V (G) → V (H) such

that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H).

A path with n vertices is a graph with n vertices v0, v1, · · · vn−1 and edges vivi+1, for

i = 0, 1, · · ·n− 2. If we add the edge vn−1v0 as well then it is called a cycle with n vertices.

We may use the term “of order n” instead of “with n vertices”. A path (cycle, respectively)

in a graph G is a subgraph G′ of G which is isomorphic to a path (cycle, respectively).

Additionally, if G′ is an induced subgraph of G then G′ is called a chordless path (cycle,

respectively). To be more specific, suppose a path P in G consists of vertices v0, v1, · · · vt−1
(and the edges vivi+1, for i = 0, 1, · · · t − 2). Then we say that P is a path of order t from

v0 to vt−1. A graph G is called connected if for any two distinct vertices u, v ∈ V (G), there

exists a path in G from u to v. A graph is called disconnected if it is not connected. It is

well-known in graph theory that any graph G is a disjoint union of several connected graphs

C1, C2, · · ·Cr known as the connected components of G (see [25]). A graph which has no

cycle is called a forest. Any connected forest is called a tree. The smallest value t for which

a graph G has a chordless cycle of order t is called the girth of G. It is defined to be infinite

if G has no cycle.

A graph G is called a complete graph if any two distinct vertices in it are adjacent. We

denote by Kt the complete graph with t vertices and no loops. A set D ⊆ V (G) is called

a clique if any two distinct vertices in D are adjacent. A set D ∈ V (G) is called stable

CHAPTER 1. INTRODUCTION 12

or independent if any two distinct vertices in D are non-adjacent. The order of the largest

clique in G is called the clique number of G and is denoted by ω(G). The order of the largest

stable set in G is called the stability number of G and is denoted by α(G). The problems

of finding the values of ω(G) and α(G) are called the maximum clique problem and the

maximum stable set problem, respectively.

The complement of G, denoted by G, is the graph with same vertices as G in which

two vertices u and v are adjacent if and only if they are not adjacent in G. Note that this

definition includes the case of u = v (namely the loops). We use the prefix co- before the

graph name to denote the complement. For example, co-K3 represents a graph which is the

complement of K3 (which is a graph with three pairwise non-adjacent vertices with a loop

at each vertex), or co-bipartite graphs are the complements of bipartite graphs.

A coloring of graph G is a mapping f : V (G)→ N ∪ {0}, where N is the set all natural

numbers (i.e., {1, 2, · · ·}). Each value in the range of f is called a color. A coloring f (of G)

is called proper if for any two distinct adjacent vertices u, v ∈ V (G) we have f(u) 6= f(v).

A proper coloring f whose number of colors (i.e., the size of the range of f) is bounded by

an integer k > 0 is called a k-coloring of G. Note that any k-coloring of G corresponds to a

partition of V (G) into k stable sets (possibly empty) V0, V1, · · ·Vk−1, where Vi is defined to

be the set of vertices u for which f(u) is the i-the color in the range of f . (Recall that our

definition of stable set allows loops inside a stable set.) If such partition exists, we say that

G admits a k-coloring or is k-colorable. The minimum value of k for which G is k-colorable

is called the chromatic number of G and is denoted by χ(G). We call the problem of finding

this number the minimum coloring problem. A graph G is called bipartite if it is 2-colorable,

i.e., V (G) can be partitioned into two stable sets X and Y (possibly empty). If X and Y

are fully adjacent then G is called a complete bipartite graph.

As a counterpoint of proper coloring, a clique-covering of a graph G is a coloring f such

that for any two non-adjacent vertices u, v ∈ V (G) we have f(u) 6= f(v). A clique-covering

f whose number of colors is bounded by an integer l > 0 is called an l-clique-covering of

G. As in the case of k-coloring, we can show that any l-clique-covering of G corresps to a

partition of V (G) into l cliques (possibly empty) V0, V1, · · ·Vl−1. Note that this partition is

indeed covering V (G) with cliques, which explains why it is called a clique-covering. The

minimum value of l for which G has an l-clique-covering is called the clique-covering number

of G and is denoted by θ(G). Note that any l-clique-covering for G is an l-coloring for G,

and thus we have the relation θ(G) = χ(G).

CHAPTER 1. INTRODUCTION 13

A graph class is a set of graphs (e.g., the class of bipartite graphs). We typically use

the capital letters with tilde to denote a graph class (e.g., G̃), while we use capital letters

to denote a graph (e.g., G). We say that a graph class G̃′ is a subclass of a graph class

G̃ if G̃′ ⊆ G̃. In this case, we say that G̃ is a superclass or an extension of G̃′. A graph

class G̃ is called hereditary if it includes any induced subgraph of any of its members. The

complement of G̃ is defined as a graph class whose members are the complements of the

graphs in G̃, e.g., the class of co-bipartite graphs is the complement of the class of bipartite

graphs.

In this thesis, we assume that all matrices are symmetric with their entries in the set

{0, 1, ∗}, unless explicitly stated otherwise. Also, we always denote by m the size of the

matrix M , which should be clear from the context. We index the rows and columns of

M with integers starting at 0. Denote by M(i, j) the entry of M in the i-th row and the

j-column (0 ≤ i, j < m). By the main diagonal of the matrix M we mean the set of

entries M(i, i), for i = 0, 1, · · ·m− 1, and by the off-diagonal entries we mean the set of all

other entries (i.e., those not on the main diagonal). Given a subset X ⊆ {0, 1, ∗}, we say

that M is X-free if it does not contain any entry from X. We also say it is X-diagonal if

all entries on the main diagonal are from X. To simplify the notation, in writing X-free

and X-diagonal, we may drop the brackets and commas related to the set X, e.g., 1-free

stands for {1}-free, and 1*-diagonal stands for {1, ∗}-diagonal. We say that M contains

another m′ ×m′ matrix M ′ if M ′ is a principal sub-matrix of M , i.e., there exists a one to

one mapping f : [m′] → [m] such that M ′(i, j) = M(f(i), f(j)) for all (i, j) ∈ [m′]2. We

construct the complement of the matrix M , denoted by M , by turning 1 entries to 0 and

vice versa (leaving the * entries intact). Recall that earlier in Section 1.1, we defined the

blocks A,B,C, S∗ and C∗ of the matrix M (see Figure 1.2). Note that the matrices A,B

and S∗ are 0-diagonal, 1-diagonal and *-diagonal, respectively. A matrix M is said to be

the corresponding matrix of a graph G if M is obtained from the adjacency matrix of G

by turning all 1 entries to *. In this case, G is said to be the corresponding graph of the

matrix M . Note that such matrix M is a 1-free matrix, and if G is without loops then M

is 0-diagonal as well.

For a graph class G̃, the (list) M -partition problem for, or restricted to, G̃ is defined as

the (list) M -partition problem when the input graph is restricted to the class G̃. The same

definition also applies to any other graph problem, e.g., the maximum stable set problem

for G̃.

CHAPTER 1. INTRODUCTION 14

Given a decision problem which takes a graph as input, by saying that this problem

is polynomial (of order O(nt), for some constant t > 0) we mean that this problem can

be solved (using some algorithm) in polynomial time (of order O(nt), where n denotes the

number of vertices of the input graph). We use the term pattern as synonym to matrix. We

say that a matrix M is a polynomial (NP-complete, respectively) pattern, or matrix, for a

graph class G̃ if the decision problem of the list M -partition problem for G̃ (assuming M

to be fixed) is polynomial (NP-complete, respectively). Quasi-polynomial is defined as the

running time complexity of order 2O((logn)c), for some fixed constant c > 0.

Given a finite set D and an integer n ≥ 1, an n-ary relation R over D is a set of n-

tuples of D (i.e., R ⊆ Dn). The terms binary and unary are conventionally used for 2-ary

and 1-ary, respectively. We write R(d1, d2, · · · , dn) to mean that (d1, d2, · · · , dn) ∈ R. A

vocabulary τ is a (finite or infinite) set of pairs (R, l) where R is a relation symbol and l is

a positive integer. A structure H over the vocabulary τ , or in short a τ -structure, consists

of a finite set DH , called the domain of H, and a collection of l-ary relations RH over DH ,

corresponding to each pair (R, l) ∈ τ .

1.3 Clique-Width and Courcelle’s Theorem

In this section we introduce an existing technique to develop efficient algorithms to solve

a group of graph problems, including (list) M -partition problems, when the input graph is

restricted to special graph classes. Note that this technique is very relevant as this thesis

is dedicated to studying the (list) M -partition problem for special graph classes (see Table

1.3). The fact that this technique applies to (list) M -partition problems is based on a simple

argument. Since this argument does not use any of the techniques that we introduce in this

thesis, we include it here in this section.

The concept of clique-width was first introduced by Courcelle et al. in [67]. Let us

define this concept first. A labeled graph is a graph in which any vertex v has an integer

label l(v) > 0 assigned to it. A labeled graph which uses at most p different labels is called

a p-graph. We treat any (unlabeled) graph as a 1-graph by assigning label 1 to each of its

vertices. Similarly, any 1-graph is treated as a graph by removing all its labels. For this

reason, we use the terms graph and 1-graph interchangeably throughout this section. We

define the following operations for the labeled graphs:

1. i(v): creating a new labeled graph with only one vertex v which has label i,

CHAPTER 1. INTRODUCTION 15

2. G ⊕ H: the disjoint union of two labeled graphs G and H with disjoint vertex sets,

which is defined as the labeled graph with the vertex set V (G) ∪ V (H) (keeping the

labels intact) and the edge set E(G) ∪ E(H),

3. ηi,j(G), where i 6= j: drawing an edge between each vertex labeled i and each vertex

labeled j in a labeled graph G,

4. ρi→j(G): replacing all the labels i with the label j in a labeled graph G.

Any algebraic expression which is made solely by the above operations and uses at most

k > 0 different labels is called a k-expression. Note that any k-expression constructs a

labeled graph (by applying the operations as defined above). An example of a 2-expression

constructing a complete graph on three vertices v0, v1, v2 (each having label 1) is given

below:

ρ2→1(η1,2(2(v0)⊕ ρ2→1(η1,2(2(v1)⊕ 1(v2)))))

Note that the labels used in a k-expression are not bound to any specific range, the only

important thing is that the number of distinct labels should not exceed k.

Given a labeled graph G, the smallest number k for which G can be constructed by a k-

expression is called the clique-width of G, and denoted by cwd(G). A similar concept existed

before the introduction of clique-width, namely tree width (see [69, 255]). In general, no

efficient algorithm is known to find a k-expression which constructs a given labeled graph G

with clique-width upper-bounded by k, even by assuming k to be a fixed constant. However,

such algorithms are known for special cases of G as we will explain later in this section.

For a constant k > 0, we say that a class G̃ of labeled graphs is of bounded clique-width

by k if the clique-width of any labeled graph G ∈ G̃ is bounded by (i.e., less than or equal

to) k. An underlying graph of a p-graph G is a graph G′ obtained by removing all the

labels from the vertices of G. It is not hard to see that if cwd(G) ≤ k then cwd(G′) ≤ k,

and if cwd(G′) ≤ k then cwd(G) ≤ pk. Furthermore, a k-expression constructing G′ can

be obtained from a k-expression constructing G in O(1) time. Conversely, a pk-expression

constructing G can be obtained from a k-expression constructing G′ in linear time (in terms

of the number of operations in the k-expression which constructs G′). These facts lead to

the following observation:

Observation 1.3.1. Given a fixed integer p > 0, a class G̃ of p-graphs G is of bounded

clique-width if and only if the class G̃′ of graphs G′, in which G′ is the underlying graph

CHAPTER 1. INTRODUCTION 16

of G, is of bounded clique-width. Furthermore, there is an efficient algorithm to find the

k-expressions constructing the graphs in G̃ if and only if there is an efficient algorithm to

find the k′-expressions constructing the graphs in G̃′ (k and k′ are upper-bounds on the

clique-widths of the corresponding classes.)

Courcelle et al. [68] identified a class of graph problems called LinEMSOL(τ1,p), and

proved the following result:

Theorem 1.3.2. ([68]) Let p > 0 be a fixed integer and G̃ a class of p-graphs of bounded

clique-width by k. Suppose we are given an order O(f(n)) algorithm (for some function

f) which, for any labeled graph G ∈ G̃, outputs a k-expression constructing G. Then any

LinEMSOL(τ1,p) problem can be solved in O(f(n)) time when restricted to G̃.

The class of LinEMSOL(τ1,p) problems includes many well-known decision and op-

timization problems such as the k-coloring, the minimum clique-covering, the maximum

clique and the maximum stable set problems. (Refer to [68] for a more extensive list.)

Many of these problems are known to be NP-hard for general graphs. The main relevance

of this result to this thesis is the fact that each M -partition problem can be modeled as a

LinEMSOL(τ1,1) problem for graphs, and each list M -partition problem can be modeled

as a LinEMSOL(τ1,2m) problem for 2m-graphs (These facts are also mentioned with less

details in [137].) We will prove these statements shortly in this section. Before doing so, let

us state their implication (considering Observation 1.3.1):

Corollary 1.3.3. Let G̃ be a graph class with bounded clique-width k. Suppose we are given

an order O(f(n)) algorithm (for some function f) which, for any graph G ∈ G̃, outputs a

k-expression constructing G. Then the list M -partition problem can be solved in O(f(n))

time when restricted to G̃.

We should mention that in addition to LinEMSOL(τ1,p) problems, some other graph

problems are also proved to be polynomial when restricted to graph classes with bounded

clique-width. We refer to [155] for another set of problems of this kind. These results made

the concept of clique-width the subject of much study. Many graph classes with bounded

clique-width k have been identified and polynomial-time (and often linear) algorithms have

been developed to find k-expressions constructing their graphs (see [69, 29, 166] for many

examples). Clearly, applying Corollary 1.3.3 yields polynomial-time algorithms to solve

the list M -partition problem restricted to these graph classes. The most well-known and

CHAPTER 1. INTRODUCTION 17

perhaps the earliest graph class of this kind is the class of cographs (see Section 2.8.3 for

more details on cographs). It has been proved that cographs are exactly those graphs which

have clique-width at most 2, and a 2-expression for them can be found in linear time [69].

Thus, the implication of Corollary 1.3.3 for us is that, in studying the M -partition

problem and its list version for special graph classes, we only have to focus on those graph

classes which either have unbounded clique-width or have bounded clique-width k but no

efficient algorithm is known to find k-expressions constructing their graphs (As for other

graph classes, we already know that all list M -partition problems are polynomial thanks to

Corollary 1.3.3 above.) We note that the boundedness of clique-width and the complexity

of finding a k-expression is known for almost all the standard graphs classes (see [97]). In

Chapter 3 we will explain that all the graph classes we consider in this thesis (i.e., those in

Table 1.3) have unbounded clique-width.

Now let us define LinEMSOL(τ1,p) problems in more detail and explain why they

include (list) M -partition problems. We denote by τ1 the vocabulary consisting of a binary

relation E (see the last paragraph of Section 1.2 for the definitions of vocabulary and

structures). Any graph can be represented as a τ1-structure by defining the domain of

the structure to be V (G), and the relation E to be representing the adjacencies in G (i.e.,

E(u, v) if and only if u and v are adjacent in G). Note that the reverse is not true, i.e., not

every τ1-structure corresponds to a graph (for E may not be symmetric). For a fixed integer

p > 0, the vocabulary τ1,p is an extension of τ1, and it consists of a binary relation E and

p unary relations U1, U2, · · · , Up. Let G be a p-graph which uses distinct labels l1, l2, · · · , lp
for its vertices. Then G can be represented as a τ1,p-structure by defining the domain of the

structure to be V (G), the relation E to be representing the adjacencies in G, and Ui(u) if

and only if the vertex u has the label li (i = 1, 2, · · · , p). Note that the reverse is not true,

i.e., not every τ1,p-structure corresponds to a p-graph (for E may not be symmetric, or Uis

may not represent a partition of V (G) into p parts). From now on in this section, we treat

graphs and p-graphs as τ1-structures and τ1,p structures, respectively.

We assume that the reader is familiar with first-order logic, as is a well-known topic.

(We refer to [253, 5] for extensive expositions of this topic.) Here we briefly mention that,

given a vocabulary τ , a first-order logic formula over τ consists of the following features:

variables ranging over the domain of discourse (shown by small Latin letters), the atomic

predicate u = v (returns TRUE if and only if both u and v refer to the same object), the

predicates corresponding to the relations in the vocabulary τ , logical connectives (AND ∧,

CHAPTER 1. INTRODUCTION 18

OR ∨, NOT ¬ and IMPLY →) and quantifiers (for all ∀ and there exist(s) ∃). Monadic

second-order logic, or MSOL, is an extension of first-order logic with the extra feature of

having variables which range over sets of the objects in the domain of discourse. These

variables are called set variables, and shown by capital Latin letters. For any set variable

X and variable x, the atomic predicate X(x) returns TRUE if and only if the object x

belongs to the set X. In any MSOL formula, a free variable (free set variable, respectively)

is a variable (set variable, respectively) which is not used by any quantifier. We write

φ(x1, x2, · · · , xq, X1, X2, · · ·Xr) to specify that the formula φ has free variable x1, x2, · · · , xq
and free set variables X1, X2, · · ·Xr. An MSOL formula which has no free variable and

no free set variable is called closed. An example of a closed MSOL formula over τ1 is

∃D(∀v1, v2(D(v1) ∧ ¬D(v2) → E(v1, v2))), which means: “there exists a set D of vertices

such that for any two vertices v1 and v2, if v1 is in D and v2 is not in D then v1 and v2 are

adjacent” (More informally: “there exists a set of vertices D which is fully adjacent to the

rest of the vertices.”) We refer to [246, 107, 66] for more details on MSOL.

Let φ(x1, x2, · · · , xq, X1, X2, · · ·Xr) be an MSOL formula based on a vocabulary τ (pos-

sibly q = r = 0, which means φ is closed). Given a τ -structure H and d1, d2, · · · dq ∈ DH ,

D1, D2, · · ·Dr ⊆ DH , we write H |= φ(d1, d2, · · · dq, D1, D2, · · ·Dr) to mean that the formula

φ returns the value TRUE when the free variables xi and Xj are replaced by the values di

and Dj , respectively (for i = 1, 2, · · · q and j = 1, 2, · · · , r), and each predicate R is defined

as the relation RH (for all relation symbols R in the vocabulary τ).

A decision problem P is said to be a MSOL(τ) problem if there exists a closed MSOL

formula φ based on the vocabulary τ and a class (i.e., a set) H̃ of τ -structures such that

the problem P can be expressed by the following statement: given a τ -structure H ∈ H̃

as input, does H |= φ hold? We call this statement an MSOL(τ) statement expressing

the problem P . We note that the problem instance consists only of H, whereas φ and H̃

are part of the problem description. In fact, H̃ is the input set of P , which is supposed

to be clear from the description of P . For example, when expressing graph problems such

as the 3-coloring problem, H̃ is the set of those τ1-structures which correspond to graphs.

(Recall that not all τ1-structures correspond to graphs.) The class of LinEMSOL(τ) is an

extension of MSOL(τ) problems which includes optimization problems as well. Given a set

X and a function f : X → R, we define f(X) as
∑

x∈X f(x). An optimization problem P is

said to be a LinEMSOL(τ) problem if there exists an MSOL formula φ(X1, X2, · · · , Xr)

based on the vocabulary τ , a class H̃ of τ -structures, a fixed integer t > 0 and fixed

CHAPTER 1. INTRODUCTION 19

constants aij (i = 1, 2, · · · r, j = 1, 2, · · · t) such that the problem P can be expressed by

the following statement: given a τ -structure S ∈ H̃ and t functions f1, f2, · · · ft : DH → R
as input, find an assignment z of the free set variables of φ (i.e., z : {X1, X2, · · · , Xr} →
2D

H
) which maximizes the value

∑r
i=1

∑t
j=1 aijfj(z(Xi)), subject to the condition H |=

φ(z(X1), z(X2), · · · z(Xr)). We note that the problem instance consists of H and t functions

f1, f2, · · · ft, whereas φ, H̃, the constants r, t and aijs (i = 1, 2, · · · r, j = 1, 2, · · · t) are part

of the problem description.

Having completed the description of LinEMSOL(τ) problems, now we show that all

(list) M -partition problems are LinEMSOL(τ1,p). Given a matrix M , the M -partition

problem can be expressed by an MSOL(τ1) statement in which H̃ is the set of all τ1-

structures corresponding to graphs, and the formula φ is defined as follows:

φ ≡ ∃V0, V1, · · ·Vm−1(partition(V0, V1, · · ·Vm−1) ∧
∧

(i,j)∈[m]2

ad(i, j))

where partition(V0, V1, · · ·Vm−1) is defined by

∀u(
m−1∨
i=0

Vi(u)) ∧ ¬∃v(
∨
i 6=j

(Vi(v) ∧ Vj(v)))

and ad(i, j) is defined by

ad(i, j) =


∀u, v(¬(u = v) ∧ (Vi(u) ∧ Vj(v))→ ¬E(u, v)) if M(i, j) = 0

∀u, v(¬(u = v) ∧ (Vi(u) ∧ Vj(v))→ E(u, v)) if M(i, j) = 1

1 if M(i, j) = ∗

This means M -partition problems are MSOL(τ1), and thus LinEMSOL(τ1,p) for any

integer p > 0. As for the list M -partition problem, we need to figure out how to represent

an instance I = (G,L) of this problem by a labeled graph. We describe one way to do

this. Given a list L ⊆ [m], define ‖L‖ =
∑

i∈L 2i. We represent the instance I = (G,L)

by a labeled graph G′ which is obtained from G by assigning the label ‖L(v)‖ to each

vertex v ∈ V (G). This means G′ is a 2m-graph. It is easy to see that I and G′ can be

uniquely obtained from each other in linear time (in terms of n = |V (G)|). Now the list

M -partition problem can be expressed by an MSOL(τ1,2m) statement in which H̃ is the set

of all τ1,2m-structures corresponding to 2m-graphs, and the formula φ is defined as follows:

CHAPTER 1. INTRODUCTION 20

φ ≡ ∃V0, V1, · · ·Vm−1(partition(V0, V1, · · ·Vm−1) ∧
∧

(i,j)∈[m]2

ad(i, j)

∧ ∀u(
m−1∧
i=0

(Vi(u) −→
∨

i∈L⊆[m]

U‖L‖(u))))

This means list M -partition problems are MSOL(τ1,2m), and thus LinEMSOL(τ1,2m).

Chapter 2

History of Partition Problems

The main incentive for introducing the M -partition problem stems from the observation

that many well-known graph problems can be formulated as M -partition problems [129].

We first introduce some of the most notable problems of this kind in Sections 2.1 to 2.5.

These problems arise in different areas of graph theory (prior to the introduction of the

M -partition problem), mostly in the study of perfect graphs. The size of the matrix M for

these problems rarely exceeds four, and yet it yields non-trivial and important problems.

To have a straightforward exposition as to how these problems can be modeled using the

M -partition problem, we assume that the input graphs of the problems described in this

chapter are without loops. The case in which some vertices of the input graph have loops can

still be modeled, though at the expense of some more elaborate (but still easy) arguments

involving the list version. We assume that the reader is be able figure this out.

Our aim of introducing these problems is to offer a clear idea with regard to the relevance

and significance of the M -partition problem as a common generalization of many important

graph problems. After introducing some of these graph problems, we give in Section 2.6 an

account regarding the emergence of the M -partition problem and its list version. In Sections

2.7 and 2.8 we introduce the main research directions of studying the M -partition problem

relevant to this thesis. We refer to the survey [180] for other directions and variations of

the M -partition problem.

21

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 22

2.1 Graph Coloring

Graph coloring is one of the oldest and most studied problems in graph theory [159, 215].

In its general form, which is called the vertex coloring problem, a graph G and an integer

k > 0 are given as inputs, and the question is whether the graph G is k-colorable (see

Section 1.2 for the definition of k-colorable.) In many algorithmic settings, the parameter

k is considered to be a fixed constant (i.e., not part of the input). In this case, we call the

problem k-coloring. And the third problem, is the minimum coloring problem, which seeks

to find the chromatic number of a given graph G (i.e., the minimum value of k for which

G is k-colorable). Note that any l-clique-covering of a graph G is also an l-coloring of the

complement of G. Thus by applying all these definitions to the complement of the input

graphs, we can define the problems of vertex clique-covering, l-clique-covering and minimum

clique-covering. To keep the terms short, we will use the term clique-covering instead of

vertex clique-covering from now on.

While the vertex coloring and the minimum coloring problems cannot be modeled as

M -partition problems, for the k-coloring problem we can define M to be the 0-diagonal

matrix of size k with * everywhere off-diagonal. Then the (list) M -partition problem is

equivalent to the (list) k-coloring problem. The k-coloring problem is a classic example of

the M -partition problem. Similarly, we can model l-clique-covering by defining M to be the

1-diagonal matrix of size l with * everywhere off-diagonal.

An early problem related to graph coloring was posed in 1852 by Francis Guthrie asking

whether any map of countries can be colored using four colors such that no two neighbor

countries have the same color. Using modern terminology, this is equivalent to asking

whether any planar graph is 4-colorable. This problem, titled the Four-Color Theorem, was

the subject of much early research until its final settlement in 1976 [6].

As a simple observation we have χ(G) ≥ ω(G). (Recall that ω(G) is the order of the

largest clique in G.) An early research direction involved finding more in-depth relations

between the functions χ and ω (see [252] for a survey of these results). This led to the birth

of the perfect graph theory which we will detail in Section 2.4.

The list version of graph coloring problems (e.g., the list k-coloring problem) was intro-

duced independently by Vizing [275] and Erdös et al. [113]. These problems were subject of

much study and many real-world applications have been found (see [252, 270, 3, 270, 3, 204]).

The coloring problems belong to the first identified NPcomplete problems. In fact, the

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 23

k-coloring problem is proved to be NP-complete for k ≥ 3, and polynomial for k ≤ 2 [208].

This led many authors to study specific graph classes for which the (list) k-coloring problems

(for k ≥ 3) can be proved to be polynomial. We will give a more detailed discussion of this

topic for many graph classes in Chapter 3. For now, we just mention that the coloring

problems, in particular the (list) k-coloring problem (as special case of the M -partition

problem), have been studied for almost all standard graph classes (see [97]).

2.2 Graph Homomorphisms

Let H be an arbitrary graph. A (graph) homomorphism of a graph G to the graph H is a

mapping f : V (G) → V (H) such that uv ∈ E(G) requires f(u)f(v) ∈ E(H). Homomor-

phism have been studied in various contexts [2, 22, 139, 173, 177, 178, 186, 84, 214, 223,

233, 234, 243, 244, 233]. Here we focus on the aspects related to the M -partition problem.

Given a fixed graph H (with possible loops), the H-coloring problem asks whether there

is a homomorphism from the input graph G to the graph H. The first study of this problem

was carried out in [187]. The H-coloring problem is a special case of the M -partition

problem: let M be the corresponding matrix of H (obtained from the adjacency matrix

of H by replacing 1 entries with *), then it is easy to see that the M -partition problem is

equivalent to the H-coloring problem. Note that in this case the matrix M is 1-free. In other

words, H-coloring problems are exactly those M -partition problems in which M is 1-free.

Also, if H is the complete graph on k vertices (which has no loops) then H-coloring will be

equivalent to k-coloring (So the H-coloring problem generalizes the k-coloring problem.)

The complexity of the H-coloring problem was studied by several authors and some

partial results were obtained [2, 22, 200, 223, 234, 243]. Hell and Nes̃etr̃il [187] unified all

these results and filled the gaps to obtain a complete complexity result as follows:

Theorem 2.2.1. ([187]) The H-coloring problem is polynomial if H has a loop or is a

bipartite graph, and otherwise it is NP-complete.

As for the list version of the H-coloring problem, the technical advantage of the lists,

which enables one to perform recursions, led to several strong complexity results (see [129]).

The case in which every vertex in H has a loop is called reflexive list H-coloring. This is

equivalent to the list M -partition problem in which M is a *-diagonal 1-free matrix. We have

the following complete dichotomy (see Section 3.1.1 for the definition of interval graphs.)

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 24

Theorem 2.2.2. ([118]) The reflexive list H-coloring problem is polynomial if H is an

interval graph, and otherwise it is NP-complete.

Next, the case in which H has no loops was considered. This is called irreflexive list

H-coloring, which is equivalent to the list M -partition problem when M is a 0-diagonal

1-free matrix. As in the previous case, a complete dichotomy is known (see Section 3.1.2

for the definition of circular arc graph.)

Theorem 2.2.3. ([124]) The irreflexive list H-coloring problem is polynomial if H is a

bipartite co-circular arc graph, and otherwise it is NP-complete.

Later on, even a broader dichotomy result was obtained covering all graphs H (equiva-

lently, all 1-free matrices M):

Theorem 2.2.4. ([125]) The list H-coloring problem is polynomial if H is a bi-arc graph,

and otherwise it is NP-complete.

We note that bi-arc graphs form a graph class containing both interval and co-circular

arc graphs. We refer to [125] for its formal definition.

The H-coloring problem was also studied for special graph classes. Enright et al. [112]

proved that the list H-coloring problem can be solved in polynomial time for interval and

permutation graphs (see Chapter 3 for the definition of these graph classes). Several papers

studied the H-coloring problem and its list version for bounded-degree graphs (i.e., the

graphs in which the degree of each vertex is ≤ c, for some fixed constant c ≥ 0) [120, 127,

126, 148, 188].

Several generalizations and variations of H-coloring are known in the literature. The

digraph version is the one in which H and input graph G are both digraphs, and the question

is whether there exists a homomorphism from G to H, i.e., a mapping f : V (G) → V (H)

such that (u, v) ∈ E(G) requires that (f(u), f(v)) ∈ E(H). This problem is called the

digraph H-coloring problem or the H-coloring problem for digraphs. The list version of

this problem (defined similarly to the case of graphs) is called the digraph-list H-coloring

problem or the list H-coloring problem for digraphs. Many partial results are obtained for

the complexity of the digraph H-coloring problem [10, 11, 9, 12, 15, 179]. The dichotomy for

all digraph-list H-coloring problems (i.e., each such problem is polynomial or NP-complete)

is proved in [44, 14] . Hell et al. [191] gave the characterizations of those graphs H for

which the digraph-list H-coloring problem is polynomial. More importantly, there is a link

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 25

between the complexity of the digraph H-coloring problem and another deep question in

complexity theory, namely the Feder-Vardi conjecture [138]. We will explore this link in

more detail in the next section.

We should also mention that the M -partition problem can be seen as H-coloring with H

being a more general structure than graphs, known as trigraphs. Such concept are treated

in [135, 136, 50].

2.3 Constraint Satisfaction Problems (CSPs)

Constraint Satisfaction Problems, or CSPs, form an important class of problems which

generalizes graph homomorphism. Not all M -partition problems are CSPs, nor can every

CSP be modeled as an M -partition problem [120, 121, 129]. However, CSPs and M -partition

problems share some important problems such as the H-coloring problem. We will explore

the link between CSPs and M -partition problems in more detail in Section 2.7, where we

will see how this link inspired the study of the dichotomy problem for (list) M -partition

problems. For this reason, in this section we introduce and briefly discuss CSPs and their

relevant results.

In a CSP, we are given a set of variables and constraints on different subsets of these

variables. The goal is to find an assignment of values to the variables which satisfies all

the constraints. Formally, let τ be a vocabulary (see the last paragraph of Section 1.2

for the definitions of vocabulary and structures) and H a fixed τ -structure, then CSP(H)

is the problem asking whether there is a homomorphism from a given τ -structure G (as

input) to H, namely a mapping f : DG → DH such that if (x1, x2, · · ·xl) ∈ RG then

(f(x1), f(x2), · · · f(xl)) ∈ RH , for all (R, l) ∈ τ and x1, x2, · · ·xl ∈ DG.

The complexity of the CSP(H), when H is a fixed structure, has been studied for

many special classes of H (see [44]). Many of these studied classes exhibited a dichotomy

property, i.e., each CSP(H) (for any choice of H within the class) was polynomial or NP-

complete. Recall that such dichotomy is not trivial, as there are NP problems that are

neither polynomial nor NP-complete, unless P = NP [219]. Some notable results related

to this dichotomy property are as follows: Schaefer [260] identified the polynomial cases for

Boolean CSPs (namely, CSPs in which DH is a 2-element set), and proved the rest to be

NP-complete. Hell et al. [187] offered a similar dichotomy result for the CSPs corresponding

to H-coloring problems (see Theorem 2.2.1). This type of dichotomy result attracted much

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 26

attention and was proved for several other special cases [44] (see [43, 73, 138]). Feder and

Vardi in [138] conjectured that the dichotomy property holds in general, i.e., for each fixed

structure H, the CSP(H) is polynomial or NP-complete. After their names, this conjecture

is known as the Feder-Vardi conjecture.

Additionally, Feder and Vardi identified several classes of CSPs(H) which have the ex-

pressive power of the whole set of CSPs(H). In other words, they identified several classes

H̃ of structures H with this property: for an arbitrary structure H, there exists another

structure H ′ ∈ H̃ (which can be found in polynomial time) such that CSP(H) and CSP(H ′)

are polynomially equivalent (i.e., each problem can be reduced in polynomial time to the

other problem). One such class is those CSPs(H) which are equivalent to digraph H-coloring

problems (introduced in the previous section).

Despite much effort, establishing the Feder-Vardi conjecture for general CSP(H) remains

as an outstanding open problem until present [120, 129]. However, it was validated in several

special cases of H. Bulatov [43] proved the conjecture for the CSP(H) when |DH | = 3. Much

progress was made to handle the case of bigger domains [45, 46, 80, 138, 187, 203, 202, 213].

Yet the failure to settle it completely is taken as evidence that this problem could be very

hard [44]. Bulatov [44] proved the dichotomy property for a certain class of the CSP(H)

called conservative, which generalizes the list H-coloring problem for general graphs and

digraphs. A shorter and more digestible proof for this result is presented in [14]. Hell

and Rafiey [191] gave a structural characterization for this dichotomy result (analogues to

the undirected version as presented in Theorem 2.2.4). Note that the non-list version of

this dichotomy result (i.e., the dichotomy property for digraph H-coloring problems) will

actually imply the Feder-Vardi conjecture as mentioned earlier. Feder et al. [120] further

generalized Bulatov’s result to some broader class of structures. A possible criteria for a

CSP(H) to be polynomial is suggested in [46]. A short survey of dichotomy results related

to CSPs is given in [73].

2.4 Partition Problems in the Study of Perfect Graphs

Perfect graphs are one of the most studied graph classes in the history of graph theory.

The study of perfect graphs includes several special M -partition problems. Also, the M -

partition problem itself was studied when the input graph is restricted to perfect graphs.

For this reason, in this section we introduce perfect graphs and give a brief account of the

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 27

M -partition problems appeared in their literature. The other aspect, namely the study of

the M -partition problem restricted to perfect graphs, is detailed in Section 2.8.

A graph G is called perfect if the chromatic number of any of its induced subgraph G0

equals the size of the largest clique of that subgraph (i.e., χ(G0) = ω(G0) [19]). Perfect

graphs contain many important graphs classes, such as bipartite graphs, the line graphs of

bipartite graphs (see Section 3.2), chordal graphs (see Section 2.8), split graphs (see Section

2.5), interval graphs (see Section 3.1.1) and comparability graphs (see Section 3.1.3).

The study of perfect graphs was initiated in a 1960 paper of Claude Berge [19]. Since

then, many different problems and properties related to perfect graphs were studied. One

of the important discoveries was that, a graph is perfect if and only if its complement is

perfect. This property, sometimes called the Perfect Graph Theorem, was conjectured by

Berge and later settled by Lovasz [226]. Berge also made another conjecture, stating that

the only minimal non-perfect graphs are cycles with odd number of vertices larger than four

(later called odd holes) and their complements (later called odd anti-holes). An equivalent

statement is that, a graph is perfect if and only if it has no induced subgraph isomorphic

to an odd hole or an odd anti-hole. A graph with this last condition was later called Berge

graph. So, in today’s language, Berge’s second conjecture stated that perfect graphs are

precisely Berge graphs. This conjecture, which was later called the Strong Perfet Graph

Conjecture, remained open and became one of the most studied directions in graph theory

until its final settlement in 2006 by Chudnovsky et al. in [53]. Additionally, in a different

paper, Chudnovsky et al. provided a polynomial-time algorithm to recognize perfect graphs

[52]. The study of Strong Perfet Graph Conjecture, including the works of Chudnovsky et

al. settling the conjecture and finding efficient algorithm to recognize Berge graphs, involved

many deep structural results with some of them related to several special cases of the M -

partition problem. Now we briefly introduce these M -partition problems in the remainder

of this section. Please refer to the cited references for more detail concerning each problem.

A cutset of graph G is a non-empty proper subset X of V (G) whose removal makes the

graph disconnected (i.e., the graph G[V (G)−X] is disconnected). When X is a stable set,

it is called a stable cutset. The stable cutset problem asks whether a given graph G has a

stable cutset. This problem can be modeled as an M -partition problem for the matrix M

shown in Figure 2.1(a), with the extra condition that each part must be non-empty. The

importance of this problem in studying perfect graphs was first demonstrated by Tucker

in [266]. This problem was shown to be NP-complete [212]. Later on, it was proved to be

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 28

NP-complete even when the input graph is restricted to line graphs (see Section 3.2) [30].

 0 ∗ ∗
∗ ∗ 0
∗ 0 ∗



∗ ∗ 0 ∗
∗ 1 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ 1



∗ ∗ 0 ∗
∗ ∗ ∗ 1
0 ∗ ∗ ∗
∗ 1 ∗ ∗


(a) stable cutset (b) 2-clique cutset (c) skew cutset

Figure 2.1: The matrix M for some special problems.

A cutset which is a clique is called a clique cutset. We will discuss this concept in Section

2.5. A 2-clique cutset is a cutset that is the union of two cliques (i.e., the complement of the

graph induced by the cutset is a bipartite graph). The 2-clique cutset problem asks whether

a given graph G has a 2-clique cutset. This problem can be modeled as an M -partition

problem for the matrix M shown in Figure 2.1(b), with the extra condition that the parts

V0,V2 and the union of parts V1 and V3 must be non-empty. The application of this problem

in the study of perfect graphs was demonstrated in [176, 1]. The first sub-exponential

algorithm to solve this problem was introduced in [129]. A polynomial-time algorithm was

later found in [48].

A skew cutset is a cutset which can be partitioned into two non-empty parts X0 and

X1 which are fully adjacent (i.e., any vertex in X0 is adjacent to any vertex in X1). The

skew cutset problem asks whether a given graph G has a skew cutset. This problem is

equivalent to an M -partition problem for the matrix M shown in Figure 2.1(c), with the

extra condition that each part must be non-empty. Skew cutsets was first introduced by

Chvátal [56] in his study of perfect graphs, in which analyzing the complexity of the skew

cutset problem was posed as an open problem. Determining the complexity of the skew

cutset problem (as an M -partition problem) was open for many years, until the first sub-

exponential time algorithm to solve the list version of this problem was provided in [129],

followed by a polynomial-time algorithm in [85]. A more efficient solution, for the basic

version, was later presented in [209]. Skew cutsets also played an important role in proving

the Strong Perfect Graph conjecture by Chudnovsky et al. [53].

A non-empty proper subset X ⊆ V (G) is called a homogeneous set, or a module, if any

vertex v ∈ V (G) −X is either adjacent to all vertices in X or is adjacent to none of them

(i.e., N(v) ∩ X is either X or ∅). For a graph G, a pair (X0, X1) of disjoint non-empty

subsets of V (G) is called a homogeneous pair if: 1) for every v /∈ X0 ∪ X1, N(v) ∩ X0 is

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 29

either empty or equal to X0 and N(v) ∩X1 is either empty or equal to X1, 2) |X0| ≥ 2 or

|X1| ≥ 2, and 3) |V (G) − X0 ∪ X1| ≥ 2. The homogeneous pair problem asks whether a

given graph G has a homogeneous pair. This problem can be modeled as an M -partition

problem for the matrix M shown in Figure 2.2(a), with the extra condition that the part X0

or X1 has at least two vertices, and the union of other parts also has at least two vertices.

An application of this problem was first described by Chvátal and Sbihi [59] in validating

a special case of the Strong Perfect Graph conjecture. A homogeneous pair in which the

parts X0 and X1 are both cliques is called a homogeneous pair of cliques. The problem

of asking whether a given graph G has a homogeneous pair of cliques can be modeled as

an M -partition problem for the matrix M shown in Figure 2.2(b), with the same extra

conditions as the homogeneous pair problem. As we will see in Section 6.2, this problem

has a role in describing the structure of claw-free graphs. The homogeneous pair problem is

shown to be polynomial in [115]. The homogeneous pair of cliques problem is also proved to

be polynomial in [115]. A faster algorithm to solve some special cases is presented in [210].



∗ ∗ 1 0 1 0
∗ ∗ 1 0 0 1
1 1 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗





1 ∗ 1 0 1 0
∗ 1 1 0 0 1
1 1 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗





∗ 1 ∗ 0 ∗ 0 1
1 ∗ 0 ∗ 0 ∗ 1
∗ 0 ∗ 1 ∗ 0 1
0 ∗ 1 ∗ 0 ∗ 1
∗ 0 ∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0 ∗ ∗
1 1 1 1 ∗ ∗ 1


(a) homogeneous pair (b) homogeneous pair of cliques (c) 2-amalgam

Figure 2.2: The matrix M for some special problems.

Several other partitions (or decompositions, as there are typically called) appeared in the

study of perfect graphs. They include join-decomposition, 2-join-decomposition [77, 64], and

their more general cases known as amalgam and 2-amalgam decompositions. The problems of

deciding whether a graph has these decompositions can be modeled asM -partition problems.

The matrix M corresponding to the 2-amalgam decomposition is shown in Figure 2.2(c).

The matrices corresponding to other decompositions can be obtained from this matrix by

removing certain rows and columns [129]. All these M -partition problems can be solved in

polynomial time [75, 76, 47, 64]. We refer to [21, 47, 267, 278] for the applications of these

problems.

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 30

2.5 Other Partition Problems

In this section we describe some other special cases of the M -partition problem studied in

the literature of graph theory. A graph G is a split graph if V (G) can be partitioned into

a stable set and a clique [164]. Split graphs are a well-known subclass of perfect graphs

with many interesting properties (see [164, 32]). The recognition problem of split graphs

(deciding whether a given graph is a split graph or not) can be modeled as an M -partition

problem with the matrix M shown in Figure 2.3(a). It is known that split graphs can be

characterized by finitely many forbidden subgraphs [143]. More precisely, a graph is a split

graph if and only if it does not contain any induced subgraph isomorphic to C4, C4 or C5

(Ct is a cycle with t vertices). This easily yields a polynomial-time algorithm to recognize

split graphs (which is an M -partition problem). In fact, even a linear time algorithm is

known for solving this problem [143, 185].

[
0 ∗
∗ 1

] 
0 ∗ ∗ ∗
∗ 0 ∗ ∗
∗ ∗ 1 ∗
∗ ∗ ∗ 1




0 1 ∗ ∗
1 0 ∗ ∗
∗ ∗ 1 0
∗ ∗ 0 1




0 ∗ ∗ ∗ ∗
∗ 0 1 0 0
∗ 1 0 0 0
∗ 0 0 0 1
∗ 0 0 1 0


(a) split graph (b) (2, 2)-graph (c) (2, 2)-polar graph (d) 2-bisplit

Figure 2.3: The matrix M for some special problems.

There are several generalizations and variations of split graphs which lead to similar M -

partition problems. One natural generalization is the concept of (k, l)-graph, defined as any

graph G whose vertices can be partitioned into k > 0 stable sets and l > 0 cliques [28]. The

recognition problem of (k, l)-graphs is an M -partition problem in which M is a (k+l)×(k+l)

matrix with k 0s and l 1s on the main diagonal, and * everywhere off-diagonal. An example

of such matrix for k = l = 2 is given in Figure 2.3(b). When k, l ≤ 2, the recognition problem

is shown to be polynomial [27]. Some new and more efficient algorithms were demonstrated

later [37, 129]. On the other hand, if at least one of the parameters k or l is at least three

then the recognition problem is proved to be NP-complete [28, 37]. Converting these results

into the framework of the M -partition problem, we can deduce the following dichotomy

result for 01-diagonal matrices M with * everywhere off-diagonal: the M -partition problem

is polynomial if the number of 0s and the number of 1s on the main diagonal are both less

than three, and otherwise it is NP-complete. The (k, l)-graph recognition problem has also

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 31

been studied when the input graph is restricted to cographs (see Section 2.8.3) and chordal

graphs (see Section 2.8.2).

Another generalization of split graphs is (k, l)-polar graphs, introduced in [49]. A graph

G is a (k, l)-polar graph if V (G) can be partitioned into two parts Vr and Vb such that the

graphs G[Vr] and G[Vb] are the disjoint union of k > 0 and l > 0 cliques, respectively. In

other words, it is equivalent to partitioning V (G) into a complete k-partite graph and a

disjoint union of l cliques. The recognition problem, which is introduced in [49], can be

modeled as an M -partition problem where the matrix M is a 01-digonal matrix of size k+ l

with its k×k block A having 1 everywhere off-diagonal, its l×l block B having 0 everywhere

off-diagonal and its block C being all *. An example of the matrix M for k = l = 2 is given

in Figure 2.3(c). This problem is proved to be polynomial in [49]. It has also been studied

for some special graph classes including cographs [111] and chordal graphs[110], for which

efficient polynomial-time algorithms were demonstrated.

Brandstädt et al. [32] introduced bisplit graphs, as those graphs whose vertex set can

be partitioned into a stable set and a complete bipartite graph. They also introduced a

generalized version, namely k-bisplit graphs, defined as any graph G whose vertices can be

partitioned into a stable set and a disjoint union of k > 0 complete bipartite graphs. The

recognition problem of k-bisplit graphs can be modeled as an M -partition problem in which

M is a 0-diagonal matrix of size 2k+1 with the 0-th row corresponding to the stable set and

the rows 2i−1 and 2i corresponding to one of the complete bipartite graphs (i = 1, 2, · · · k).

The entries are defined as M(2i− 1, 2i) = 1, for i = 1, 2, · · · k (to indicate that the biparite

graphs are complete), and M(i, j) = 0, for 1 ≤ i < j ≤ 2k and j > i + 1 (to indicate the

disjointness of bipartite graphs), and all other entries are *. An example of such matrix for

k = 2 is given in Figure 2.3(d). When the parameter k is fixed, the recognition problem is

proved to be polynomial in [32]. A similar polynomial result is also obtained in [132].

The clique cutset problem asks whether a given graph G has a clique cutset [267]. This

problem can be modeled as anM -partition problem for the matrixM shown in Figure 2.4(a),

with the extra condition that each part must be non-empty. This problem has applications

in designing efficient algorithms to solve many optimization problems (see [267]). Many

efficient algorithms are provided to solve this problem [164, 267, 277, 278].

The problem of asking whether a given graph G has a module (see Section 2.4) can be

modeled as an M -partition problem for the matrix M shown in Figure 2.4(b), with the

extra condition that the 0-th part and the union of the other two parts must be non-empty.

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 32

 1 ∗ ∗
∗ ∗ 0
∗ 0 ∗

  ∗ 0 1
0 ∗ ∗
1 ∗ ∗




1 ∗ 0 ∗
∗ 1 ∗ 0
0 ∗ 1 ∗
∗ 0 ∗ 1



∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗


(a) clique cutset (b) homogeneous set (c) clique-cross (d) Winkler’s partition

Figure 2.4: The matrix M for some special problems.

This problem is part of a well-known decomposition, known as the modular decomposition

(see [70, 164, 237, 238]). Several efficient algorithms are developed to solve this problem

[70, 164, 227].

A clique-cross partition is a partition of V (G) into four cliques V0, V1, V2, V3 such that

V0 and V2, as well as V1 and V3 are fully non-adjacent. The clique-cross problem asks

whether a given graph G has a clique-cross partition. This problem can be modeled as

an M -partition problem for the matrix M shown in Figure 2.4(c), and it can be solved in

linear time [116]. Note that the matrix corresponding to the clique-cross problem can be

obtained from the adjacency matrix of C4 (the cycle of order 4) by setting all 1 entries

to * and setting all the entries on the main diagonal to 1. This suggests a generalization

to the so-called H-clique problem by replacing C4 with an arbitrary graph H (So it is an

M -partition problem where M is obtained from the adjacency matrix of H by setting all 1

entries to * and setting all the entries on the main diagonal to 1.) The H-clique problem

(which is also an M -partition problem) is studied in [229] for which a complete dichotomy

is obtained as follows: the H-clique problem is polynomial if H has no clique of size 3, and

otherwise it is NP-complete.

A similar problem is posed by Peter Winkler asking whether V (G) can be partitioned

into four non-empty parts V0, V1, V2, V3 such that V0 and V2, as well as V1 and V3 are

completely non-adjacent, and there is at least one edge between V0 and V1, between V1 and

V2, between V2 and V3, and between V3 and V0. This is an M -partition problem with some

extra conditions on the number of vertices and edge between the parts. Its corresponding

matrix M is shown in Figure 2.4(d). We refer to [180] for the applications of this partition

problem.

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 33

2.6 The M-Partition Problem and its Variations

As we saw in previous sections, many prominent problems in combinatorics and graph theory

are special cases of the M -partition problem. The study of the M -partition problem in its

general form began by Feder el al. in [129]. Their aim was to unify all such problems into

a single framework.

They noticed that many of these problems contain requirements not addressed in the

formulation of the M -partition problem. Take the example of the clique cutset problem

(see Section 2.5), which requires all parts to be non-empty, or consider Winkler’s partition

problem (see Section 2.5) which, in addition to the non-emptiness of each part, requires at

least one edge between some certain parts. Other problems described in previous sections,

implicitly or explicitly, contain similar requirements. To capture these requirements, Feder

et al. also introduced the list version of the M -partition problem (see Section 1.1 for its

formal definition).

Let us explain how we can model the clique cutset problem (namely its extra condition

for the non-emptiness of each part) using the list version. Since each part Vi, i = 0, 1, 2, 3

has to be non-empty, in any solution of the problem there must be distinct vertices vi ∈ Vi
(i = 0, 1, 2, 3). Note that total number of choices of vis is at most 4!

(
n
4

)
. We consider

all these choices. For a given choice, we need to place vi in the part Vi. We can model

this requirement by defining the list L(vi) = {i} for i = 0, 1, 2, 3. We define the list of

other vertices as containing all the parts (i.e., the list [m]). Thus, for each choice of vis, we

created an instance of the list M -partition problem (where M is the matrix corresponding

to the clique cutset problem). It is easy to see that any solution of the original clique cutset

problem is a solution of one of these instances and vice versa. Thus, solving the original

problem is equivalent to solving at most 4!
(
n
4

)
(that is polynomially many) instances of the

list M -partition problem . In the case of Winkler’s partition problem, note that in any

solution of the problem there must be edges ei = uivi between the part Vi and Vi+1 (where

ui ∈ Vi and vi ∈ Vi+1, i = 0, 1, 2, 3, all index calculations are modulo 4). The total number

of choices for the vertices ui and vi (i = 0, 1, 2, 3) is at most O(n8). Again, we consider all

such choices and fix a choice for the edges ei = uivi (i = 0, 1, 2, 3). This requires the vertices

ui and vi−1 to be placed in the part Vi, which can be modeled by defining their lists to be

{i}. We define the list of other vertices as containing all the parts. Now, as in the case of

the clique cutset problem, it is easy to see that solving the original problem is equivalent to

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 34

solving O(n8) (that is polynomially many) instances of the list M -partition problem (where

M is the matrix corresponding to Winkler’s partition problem). Using these examples as

a guide, the reader should be able to see how different restrictions on vertices and edges

inside or between the parts can be modeled using the list version.

We should mention that other than the basic version (i.e., the original version without

lists) and the list version, there are other variations of the M -partition problem, which have

been studied for special cases the matrix M . These variations include: 1) the retraction

version ([118, 128, 192]): a special case of the list version in which each list consists of

either one single part or all the parts, and 2) the surjective version ([23, 82, 161, 232, 274]):

same as the non-list version, with the extra restriction that each part must be non-empty.

Using a similar approach as in the case of list version, one can convert these variants into

(polynomially many) instances of the list version. This makes the list version the dominant

variant, particularly in studying the M -partition problem. We follow the same trend in this

thesis by remaining focused on the list version. Another variation is the digraph version

defined as follows: given a (not necessarily symmetric) matrix M with entries from the

set {0, 1, ∗}), an M -partition of a digraph G is a partition of the set V (G) into parts

V0, V1 · · ·Vm−1 such that for all 0 ≤ i, j < m and any two distinct vertices ui ∈ Vi and

uj ∈ Vj , we have (ui, uj) ∈ E(G) if M(i, j) = 1, and (ui, uj) /∈ E(G) if M(i, j) = 0. The

problem which asks whether or not the input digraph G has an M -partition is called the

digraph M -partition problem or the M -partition problem for digraphs. The list version of

this problem (defined similarly to the case of graphs) is called the digraph-list M -partition

problem or the list M -partition problem for digraphs. We refer to [136, 180] for more details

on this variation. Here we just mention that the digraph (-list) H-coloring problem is

equivalent to the digraph (-list) M -partition problems for 1-free (not necessarily symmetric)

matrix M .

2.7 The Dichotomy and Characterization Problems

After introducing the M -partition problem, Feder el al. (in [129]) dedicated the rest of their

paper to analyzing its computational complexity. The main problem they considered was to

classify matrices M into those for which the M -partition problem was polynomial and those

for which it is NP-complete [48]. As mentioned earlier in Section 1.1, we call this problem the

dichotomy problem for M -partition problems. This problem is motivated by several special

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 35

cases of the M -partition problem, most notably the H-coloring problem, which exhibited

such dichotomy property. Recall from Section 2.2 that the H-coloring problem is equivalent

to the M -partition problem when M is 1-free, for which several complete dichotomy results

are known, both for the basic and the list version (see Theorems 2.2.1 and 2.2.4). Also,

a similar dichotomy result can be derived for the complement of the H-coloring problem,

namely when M is 0-free. More precisely, we make the following simple observation:

Observation 2.7.1. ([180]) Any M -partition of G is an M -partition of G.

By applying this observation, we can deduce from Theorems 2.2.1 and 2.2.4 that a

complete dichotomy holds for the M -partition problem when M is 1-diagonal 0-free, and

for the list M -partition problem when M is 0-free.

Both the H-coloring problem and its complement (i.e., when M is 1-free and 0-free,

respectively), in addition to being special cases of the M -partition problem, are also special

cases of CSP(H). We already gave a detailed account on CSPs in Section 2.3, where we

explained the Feder-Vardi conjecture regarding the dichotomy property of all the CSP(H).

Inspired by the dichotomy results for the H-coloring problem and its complement, Feder et

al. posed the dichotomy problem for M -partition problems, as well as their list version, as a

question analogous to that of the Feder-Vardi conjecture for CSPs. Validating this problem

became a direction in studying the M -partition problem.

Later on, the link to the Feder-Vardi conjecture became more fortified and meaningful

by the following result:

Theorem 2.7.2. ([121]) For every digraph H, there exists a matrix M such that the digraph

H-coloring problem is polynomially equivalent to the M -partition problem for perfect graphs.

Recall from Section 2.3 that any CSP(H) can be reduced in polynomial time to a digraph

H ′-coloring problem for some digraph H ′. Thus proving the dichotomy problem for M -

partition problems, even when the input graph is restricted to perfect graphs, will actually

yield the Feder-Vardi conjecture. This link, on one hand further motivates the study of

the dichotomy problem for M -partition problems, but on the other hand is evidence that it

may not be easy to solve this problem [180]. It was based on this difficulty that the study

of the M -partition problem (particularly the dichotomy problem) was carried out for the

cases in which the input graph was restricted to special graph classes. The details about

this direction are given in Section 2.8.

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 36

Now we give a brief description of the current results related to the complexity and the

dichotomy of M -partition problems. We already mentioned the dichotomy results when M

is 1-free or 0-free. The next natural case is when M is *-free, for which Feder et al. (in

[129]) proved that any list M -partition problem can be solved in polynomial time. They

conjectured the quasi-dichotomy property for all list M -partition problems (i.e., each prob-

lem is quasi-polynomial or NP-complete, see Section 1.2). This conjecture was later proved

in [120]. Additionally, they studied the complexity of the list version when M has size no

more than four. This study was completed by several subsequent papers, which together

yielded the following complete dichotomy result:

Theorem 2.7.3. ([129, 48, 78]) Suppose M is a matrix with size ≤ 4. Then the M -partition

problem is NP-complete if M has no * on the main diagonal and contains 3-coloring or its

complement, otherwise it is polynomial. Also, the list M -partition problem is polynomial if

M does not contain 3-coloring, stable cutset, reflexive four-cycle, stable cutset pair, or any

of their complements (shown in Figure 2.5), and otherwise it is NP-complete.

 0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

  1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

  0 ∗ ∗
∗ ∗ 0
∗ 0 ∗


3-coloring 3-coloring’s complement stable cutset


∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗



∗ ∗ 0 0
∗ 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ ∗


reflexive four-cycle stable cutset pair

Figure 2.5: The matrix M for some special problems.

In another paper, Feder et al. [137] focused on another approach to identify the ma-

trices M for which the M -partition problem was polynomial. They proposed the following

sufficient (but not necessary) condition: the M -partition problem is polynomial if all M -

partitionable graphs can be characterized by a finite set of forbidden induced subgraphs, i.e.,

M has finitely many minimal obstructions. (Recall that a minimal obstruction is a graph

which is not M -partitionable, but any of its proper induced subgraphs is M -partitionable,

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 37

see Section 1.1.) So their aim was to determine which matrices M have finitely many mini-

mal obstructions and which matrices do not. This problem is known as the characterization

problem [180], which serves as a tool helping us to find polynomial cases for the M -partition

problem. Note that, having infinitely many minimal obstruction does necessarily dismiss

the possibility of a polynomial complexity. For example, the 2-coloring problem (as an

M -partition problem) has infinitely many minimal obstructions (namely, odd cycles), while

it can solved in polynomial time. We will also see that having finitely many minimal ob-

structions will not necessarily lead to a polynomial complexity for the list version (e.g., see

Section 2.8.4).

The work of Feder et al., as well as some subsequent works, solved the characterization

problem for many different classes of matrices. We refer to Tables 1.1 and 1.2 for a summary

of these results and the survey [180] for more details.

In addition to the finiteness of the number of minimal obstructions, Feder et al. (in

[137]) also concerned themselves with estimating the size of the largest minimal obstruction

in terms of the size of the matrix M (and its blocks A and B). Similar attempts have also

been made in [122]. From the complexity point of view, the implication of upper-bounding

the size of the minimal obstructions was its effect in upper-bounding the running time of

solving the M -partition problem. More precisely, let d be an upper-bound on the size of

minimal obstructions. Then solving the M -partition problem, using the characterization

property, can be performed in O(nd+2) time. Thus, by upper-bounding the parameter d,

we upper-bound the degree of the polynomial bound on the running time. In some later

works (e.g., [121]), the author made distinctions between those matrices for which d can be

polynomially upper-bounded in terms of m and those for which we have but an exponential

upper-bound (in terms of m). One interpretation of this distinction could be that, when d is

exponentially upper-bounded (in terms of m), then the running time O(nd+2), even though

polynomial, may not be considered as very practical, while having d polynomially bounded

(in terms of m) is more acceptable. This also agrees with the common sense. Thus, in

our study in this thesis, we insist on offering polynomial running times whose degrees are

polynomially bounded by the size of M . For this reason, we included the running time of

our algorithms in the theorem statements of this thesis, as evidence for the fulfillment of

this promise.

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 38

2.8 Restriction to the Subclasses of Perfect Graphs

In the previous sections we already mentioned evidence suggesting the difficulty of solving

the dichotomy and the characterization problems in general. This motivates the study

of these problems in special cases in which the input graph is restricted to some certain

well-behaved graphs, hoping that the problem may become more tractable.

2.8.1 Perfect Graphs

The study of the M -partition problem for perfect graphs was initiated in [119] and its

revised version [121]. We already gave the definition and some background for perfect

graphs in Section 2.4, where we mentioned an important line of research dedicated to proving

the Strong Perfect Graph conjecture which led to several special cases of the M -partition

problem. In this section, we mention some other research directions relevant to the M -

partition problem restricted to perfect graphs.

Some special cases of the M -partition problem, namely the k-coloring, the l-clique-

covering and the H-coloring problems are well-studied for the class of perfect graphs and

many of its subclasses. Recall that the definition of perfect graphs implies that a perfect

graph G is k-colorable if and only if it does not contain a clique of size k + 1. This solves

the characterization problem for the k-coloring problem when restricted to perfect graphs.

It means we can solve the k-coloring problem for perfect graphs in polynomial time by

considering all possible combinations of k+1 distinct vertices of the input graph and testing

whether they form a clique or not (which can be accompolished in O(nk+3) time.) Note that

this algorithm does not provide a k-coloring of G (if one exists), but only states whether

one exists or not. Some polynomial-time algorithms to find a k-coloring (or deciding that

none exists), as well as for solving some other standard graph problems including the vertex

coloring, the clique-covering, the maximum clique and the maximum stable set problems for

perfect graphs are provided by Grötschel et al. [168]. All these algorithms are based on the

ellipsoid method for linear programming. As noted by Grötschel et al. and other researchers

(see for example [222, 198]), these algorithms are impractical and of theoretical interest only,

thus finding efficient combinatorial algorithms for these problems, in particular the vertex

coloring problem, is left as an open problem. Such algorithms are developed for many

subclasses of perfect graphs though (e.g., chordal graphs [152]). We will discuss some of

them in the subsequent sub-sections. We refer to the survey [230] for a more comprehensive

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 39

treatment of this subject. The above arguments (about the characterization and complexity

problems) also apply to the l-clique-covering problem, as it is equivalent to l-coloring the

complement of the input graph, which is again a perfect graph (according to the Perfect

Graph Theorem, see Section 2.4). As for the H-coloring problem, there is a similar single

minimal obstruction characterization: a perfect graph G is H-colorable if and only if it does

not contain a clique of size ω(H) + 1 [180].

These results motivate the study of the M -partition problem in its general form for

perfect graphs, which was first carried out in [121]. Their main result is the identification of

a group of 01-diagonal matrices M called normal matrices, for which the number of perfect

minimal obstructions (i.e., the minimal obstructions which are perfect graphs) is proved

to be finite (see Table 1.2). They also proved Theorem 2.7.2 which we already stated in

Section 2.3, and discussed how this result serves as evidence suggesting that the dichotomy

problem may not be easy to solve for M -partition problems, even when restricted to perfect

graphs. This dispels the hope that restricting to perfect graphs could simplify proving a

complete dichotomy for the M -partition problem. (This is in contrast to the special cases

of k-coloring and H-coloring problems [180].) Thus to further simplify the problem, several

subclasses of perfect graphs including chordal, cographs and split graphs were considered.

We shall discuss these classes in the following sections.

2.8.2 Chordal Graphs

A graph is chordal [104] if it has no chordless cycle of order larger than three. Chordal

graphs are a well-known subclass of perfect graphs (see [164]). Chordal graphs have a very

tractable structure and can be recognized in linear time (see [256, 170, 146]). Using these

structural properties, Gavril [152] developed efficient algorithms to solve some graph prob-

lems for chordal graphs including several M -partition problems such as the k-coloring and

the l-clique-covering problems. Additionally, the complexities of several other M -partition

problems are known when restricted to chordal graphs. The H-coloring problem can be

solved in polynomial time for chordal graphs (using the same characterization property as

in the case of perfect graphs). Also, the following characterization result is proved for the

(k, l)-graph recognition problem (another special case of the M -partition problem, see Sec-

tion 2.5): a chordal graph is a (k, l)-graph if and only if it does not contain any induced

subgraph isomorphic to a specific graph H, which consists of the disjoint union of k + 1

copies of the complete graph on l + 1 vertices [184]. Note that since H is a fixed graph,

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 40

we can check in polynomial time whether a given graph G contains an induced subgraph

isomorphic to H or not (by iterating over all order |V (H)| subsets of V (G) and check

whether it is isomorphic to H or not). This implies a polynomial-time algorithm to solve

the (k, l)-graph recognition problem for chordal graphs. All these results inspired Feder et

al. to initiate the study of the M -partition problem for chordal graphs [131], hoping that

solving the complexity (and the characterization) problem could be doable for these graphs.

However, they failed to find a complete answer, and rather offered several partial dichotomy

and characterization results (see Table 1.2). This suggested the difficulty of these problems

even when restricted to chordal graphs. Thus the study of other subclasses of perfect graphs

or chordal graphs was taken up as we will see in the subsequent sections.

Chordal graphs contain several important subclasses, including interval graphs (see Sec-

tion 3.1.1) and split graphs (see Section 2.5). Indeed, one early motivation to study chordal

graphs was due to interval graphs [152]. The study of the M -partition problem for interval

graphs is handled in Chapter 5 of this thesis. As for split graphs, they are exactly those

chordal graphs whose complement graphs are also chordal. Additionally, as the size of the

graph goes to infinity, the fraction of the chordal but non split graphs goes to zero [17]. In

other words, almost all chordal graphs are split graphs. The study of the M -partition prob-

lem for split graphs is already carried out in [134] (see Section 2.8.4). We refer to [88, 34]

for a more comprehensive list of other important subclasses of chordal graphs.

2.8.3 Cographs

Another well-known subclass of perfect graphs, beside chordal graphs, is the class of cographs

[123, 62, 63, 164, 261]. These graphs have been discovered independently by several authors

in 1970s, including Jung [205], Lerchs [221], Seinsche [261], and Sumner [265] under different

titles.

A cograph is a graph that can be generated from a single vertex by complementation and

disjoint union. More precisely, we can construct cographs using these rules: 1) any graph

with a single vertex is a cograph, 2) if G is a cograph, so is its complement G, and 3) if G1

and G2 are cographs, so is their disjoint union G = G1+G2 (i.e., V (G) = V (G1)∪V (G2) and

E(G) = E(G1)∪E(G2)). Additionally, there are several other ways to define this graph class.

For example, cographs are equivalent to P4-free graphs (i.e., graphs which do not have a

chordless path of order four) [261]. See [91] for a more comprehensive list of other alternative

definitions. Cographs have a very tractable structure (see [62, 63, 171, 158]), which allows

CHAPTER 2. HISTORY OF PARTITION PROBLEMS 41

many standard graph problems including the k-coloring and the l-clique-covering problems

to be solvable in linear time (see [91]). This fact motivated Feder et al. [123] to study the

more general case of the coloring problems, namely the M -partition problem, for cographs.

Unlike chordal graphs, cographs happened to be very tractable when it comes to the M -

partition problem. It is proved that all 01-diagonal matrices M have finitely many cograph

minimal obstructions [81, 123]. This implies that all M -partition problems can be solved

in polynomial time for cographs. We already mentioned in Section 1.3 that cographs are

exactly those graph which have clique-width at most two, and a linear algorithm is known

to generate a 2-expression constructing any cograph [69]. Thus applying Corollary 1.3.3

yields that the list M -partition problem is linear for all matrices M . The same complexity

result is also proved in [123], where a linear time algorithm is presented.

2.8.4 Split Graphs

As we mentioned earlier, split graphs form an important subclass of chordal graphs (and

hence perfect graphs). We already introduced these graphs and mentioned their importance

(see Section 2.5). As a subclass of chordal graphs, studying the M -partition problem for

split graphs may help solve the M -partition problem for chordal graphs. Such an attempt

was carried out in a recent study of [134]. It is proved that all 01-diagonal matrices M

have finitely many split minimal obstructions. Thus all M -partition problems can be solved

in polynomial time for split graphs. However, for the list version, only some NP-complete

cases are introduced. This suggests that the difficulty of obtaining a complete dichotomy

result for the list version still persists in this subclass.

Chapter 3

The Graph Classes Considered in

this Thesis

In Section 2.8 we gave the history of the M -partition problem for some special graph classes.

As we mentioned in Section 1.1, in this thesis we study the (list) M -partition problem for

some other graph classes shown in Table 1.3. For this reason, in this chapter we introduce

these graphs classes and explain why studying the M -partition problem for these graph

classes is relevant.

As a general idea, restricting the classic graph problems (e.g., the k-coloring problem,

the maximum stable set problem, etc) to special graph classes has a long history in graph

theory. Many of these classic problems are NP-complete for general graphs. This motivated

many authors to impose certain restrictions on the input graph to make it possible to solve

these problems in polynomial time (see [34]). The main sources of inspiration was the class

of cographs and perfect graphs (see for example [7, 144]). We already mentioned these

graph classes in Section 2.8. Recall that several standard graph problems such as the k-

coloring, the l-clique-covering, the maximum clique and the maximum stable set problems

are all polynomial for perfect graphs (while they are NP-complete for general graphs). For

cographs, these problems can be solved even more efficiently, sometimes in linear time.

This caused much interest for finding more graph classes similar to cographs and perfect

graphs. Following this line of research, many graph classes were proposed and different

graph problems (mainly the maximum stable set and the minimum coloring problems) were

studied for them. Describing all such classes and graph problems will be beyond the scope

42

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 43

of this thesis. We refer to the website [97] and the survey [34] for more comprehensive

references. Instead, in this chapter we introduce the graph classes which we consider in this

thesis (i.e., those in Table 1.3).

Our interest in these graph classes is based on a general trend in the literature of the

M -partition problem, in which knowing the complexity of several special cases of the (list)

M -partition problem restricted to a certain graph class is taken as a suggestion that solving

the dichotomy problem for the (list) M -partition problem (for general matrix M) restricted

to this graph class could be doable. Based on this criterion, for each graph class that we

introduce in this chapter, a brief history for the existing results (particularly complexity

results) related to special cases of the (list) M -partition problem restricted to that graph

class will be given (to justify our interest for this class). As an additional justification,

recall that in Section 2.1 we mentioned that the k-coloring problem (as a special case of

the M -partition problem) is studied for virtually all graph classes (see [97]). This implies

that studying the M -partition problem for any graph class can be seen as an extension of

the current results regarding the k-coloring problem for this graph class. In some cases,

existing results for other special cases of the M -partition problem (e.g., the stable cutset

problem for line graphs, see Section 3.2) may provide additional justification for studying

the M -partition problem for these graph classes.

Before proceeding further, we should mention one important fact. Recall from Section

1.3 that the list M -partition problem is polynomial for any class G̃ of graphs with bounded

clique-width k, for which we can efficiently find a k-expression constructing each graph in G̃.

Note that except cographs, all other graph classes studied so far for the M -partition problem

(namely perfect, chordal and split graphs) have unbounded clique-width (see [97] for the

relevant references). We will also see in this chapter that all the graph classes in Table 1.3

have unbounded clique-width too. Thus our results cannot be deduced from Corollary 1.3.3.

3.1 Intersection and the Containment Graphs of Geometric

Objects

The intersection graph of a non-empty family F̃ of sets is defined by assigning a vertex to

each set in F̃ and drawing an edge between two vertices if and only if their corresponding

sets have non-empty intersection. Also, the containment graph of F̃ is defined by assigning

a vertex to each set in F̃ and drawing an edge between two vertices if and only if one of the

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 44

corresponding sets is a subset of the other.

In Section 5.1 we introduce tools to develop efficient algorithms for solving list M -

partition restricted to graph classes which have certain conditions. We note that these

conditions hold in several graph classes defined by geometric configurations, particularly

the intersection and containment graphs of intervals on a line and arcs on a circle. Thus

we dedicate Chapter 5 to these graph classes, namely interval graphs (intersection graphs

of intervals on a line), circular arc graphs (intersection graphs of arcs on a circle), interval

containment graphs (containment graphs of intervals on a line, equivalent to permutation

graphs as we will see later) and circular arc containment graphs (containment graphs of arcs

on a circle, equivalent to circular permutation graphs as we will see later). Additionally,

in Chapter 5, we consider the bipartite version of these graph classes and some of their

extensions, including comparability graphs (which are general containment graphs). In the

following sub-sections, we give a brief introduction for each of these graphs classes, where

we will see that all these classes are subclasses of perfect graphs, except for circular arc

graphs. Thus our choice of these classes is consistent with the existing direction of studying

the (list) M -partition problem restricted to perfect graphs.

Now we explain why studying the M -partition problem for these graphs classes is inter-

esting. As mentioned in Section 2.8.2, interval graphs are one of the important subclasses

of chordal graphs, and the difficulty of proving complete dichotomy for chordal graphs mo-

tivated the study of its subclasses. The class of split graphs, another important subclass of

chordal graphs, is already studied in [134] (see Section 2.8). This leaves the case of interval

graphs, which is posed as an open problem in the preliminary version of [180]. Circular arc

graphs form a well-known superclass of interval graphs [95]. So studying the M -partition

problem for circular arc graphs can be seen as a natural extension of our interest for interval

graphs. As we will see in the following sub-sections, the k-coloring problem (as a special case

of the M -partition problem) is studied for all these graph classes and efficient algorithms

are known for solving this problem. In addition to the k-coloring problem, Enright et al.

[112] recently proved that the list H-coloring problem (another special case of the list M -

partition problem which generalizes the k-coloring problem) is polynomial for interval and

permutation graphs. These results further motivate our study of the M -partition problem

for these graph classes which is carried out in Chapter 5.

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 45

3.1.1 Interval Graphs

An interval graph is the intersection graph of a set of intervals on a fixed line. The concept

of interval graph was developed to model some real world situations in different areas of

science. Cohen [60] initially used interval graphs in population biology models. Later on,

these graphs were used for other purposes such as modeling DNA mappings in genetics

[282], resource allocation in operations research and scheduling theory [13] and temporal

reasoning [167].

We already mentioned that interval graphs form a subclass of chordal graphs, and chordal

graphs form a subclass of perfect graphs. As a characterization, interval graphs are chordal

graphs whose complements are comparability graphs (see Section 3.1.3) [140, 164]. Other

well-known generalizations of interval graphs are circular arc graphs and trapezoid graphs

[95].

Booth et al. [26] introduced a linear time algorithm to recognize interval graphs using a

complex data structure called PQ tree. A simpler algorithm is introduced by Habib et al.

[26] using lexicographic breadth-first search and the fact that interval graphs are exactly

the chordal graphs whose complements are comparability graphs (as mentioned earlier).

For interval graphs, as a subclass of chordal graphs, linear time algorithm is known to solve

several standard graph problems including k-coloring and l-clique-covering (as special cases

of the M -partition problem). The clique-width of interval graphs is known to be unbounded

[165].

3.1.2 Circular Arc Graphs

A circular arc graph is the intersection graph of a set of arcs on a fixed circle. Circular

arc graphs are first studied in 1960s by Hadwiger et al. [172] and Klee [211]. These graphs

later gained importance due to their structural properties and similarity to interval graphs,

as well as their applications in modeling many real-world systems such as genetics, traffic

control, resource allocation problems in operations research and many others. (Refer to

[225] for a list of references for these applications.)

Circular arc graphs form a natural extension of the class of interval graphs [95]. However,

not all circular arc graphs are perfect, for example all odd cycles and their complements

(which are minimal non-perfect graphs) are circular arc graphs. In general, solving graph

problems for circular arc graphs is more difficult than for interval graphs, partially because

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 46

interval graphs satisfy the Helly property (i.e., a set of pairwise intersecting intervals share

a common point), while circular arc graphs in general do not satisfy this property [225].

The first polynomial-time algorithm to recognize circular arc graphs was introduced

by Tucker [268]. Later on, a linear time algorithm (of order O(|V (G)| + |E(G)|)) was

discovered by McConnell [235]. The k-coloring problem is proved to be polynomial for

circular arc graphs, while the vertex coloring problem (where k is part of the input) is NP-

complete [151]. Other standard graph problems including l-clique-covering are proved to be

polynomial for these graphs in [153]. More efficient algorithms to solve these problems are

introduced in [169]. The clique-width of circular arc graphs is known to be unbounded, as

they contain interval graphs.

3.1.3 Comparability Graphs

A graph G is a comparability graph if there exists a partial ordering < on V (G) such that

vertices u, v ∈ V (G) are adjacent if and only if u < v or v < u. By orienting each any edge

uv ∈ E(G) from u to v whenever u < v, we obtained a digraph with this property that,

if u → v (meaning there is an arc oriented from u to v) and v → w then u → w (for all

vertices u, v, w ∈ V (G)). Any orientation (of the edges of G) with this property is called a

transitive orientation. This offers another alternative definition for comparability graphs: a

graph is comparability if and only if it admits a transitive orientation of its edges.

It is easy to see that the containment graph of any set family is a comparability graph.

The reverse is also true: any comparability graph is a containment graph of some set family.

To see this, assign to each vertex v of a comparability graph the set of all vertices u for

which u→ v (using the transitive orientation). Thus comparability graphs and containment

graphs are the same (see [271]). In other words, comparability graphs form the extension

of any graph class consisting of containment graphs, e.g., the class of permutation graphs,

the class of circular containment graphs, etc. Other notable subclasses of comparability

graphs include complete graphs, bipartite graphs and the complements of interval graphs.

Comparability graphs form a subclass of perfect graphs [164]. This means any containment

graph is perfect.

Several polynomial-time algorithms have been introduced to recognize comparability

graphs. Golumbic [164] offered a O(∆ · |E(G)|) time algorithm (where ∆ denotes the largest

degree of a vertex in the input graph G), and Spinrad [267] introduced a O(n2) time algo-

rithm for this purpose.

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 47

Many standard graph problems are shown to be polynomial when restricted to compa-

rability graphs. These problems include special cases of the M -partition problem such as

the k-coloring and the l-clique-covering problems (see [195, 163]). A transitive orientation

of a comparability graph G can be found in linear time [34, 239]. An ordering v1, v2, · · · vn
of V (G) is called a topological ordering if for no two indiced 1 ≤ i < j ≤ n we have vj → vi.

It is shown that running the greedy coloring algorithm over the topological ordering yields

an optimal coloring (in polynomial time) [230]. This implies that comparability graphs

are contained in a well-known subclass of perfect graphs called perfectly orderable graphs

(see [98]). However, note that the list k-coloring problem is NP-complete for the class of

comparability graphs (when k ≥ 3), as it contains bipartite graphs. The clique-width of

comparability graphs is known to be unbounded, since they contain permutation graphs as

subclass (see Sub-section 3.1.4).

3.1.4 Interval Containment (Permutation) Graphs

An interval containment graph is the containment graph of a set of intervals on a fixed line.

A permutation graph is the intersection graph of line segments between two fixed parallel

lines in the plane. It is known that any interval containment graph is a permutation graph

and vice versa [106].

Thus, permutation graphs are both intersection and containment graphs. For this rea-

son, they form a subclass of comparability graphs, and thus are perfect graphs. As a

characterization, permutation graphs are exactly those comparability graphs whose comple-

ment graphs are also comparability graphs [106]. Using this property, a polynomial-time

algorithm to recognize permutation graphs can be developed (by applying a comparability

graph recognition algorithm to the input graph and its complement). Permutation graphs

contain cographs (defined in Section 2.8) as subclass [99].

Permutation graphs were introduced in [114, 247], where their useful characterizations

and many applications are shown. In fact, they form an important subclass of perfect

graphs, as many important graph problems become polynomial when restricted to per-

mutation graphs [33]. These problems include the standard problems of k-coloring and

l-clique-covering (as special cases of the M -partition problem). We refer to [33] for a com-

prehensive list of references on these problems, and to [164] for a survey of permutation

graphs properties. The clique-width of permutation graphs is known to be unbounded

[165].

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 48

3.1.5 Circular Arc Containment (Circular Permutation) Graphs

A circular arc containment graph is the containment graph of a set of arcs on a fixed circle. A

circular permutation graph is the intersection graph of of paths between two fixed concentric

circles in the plane such that no two paths intersect more than once [93]. It is known that any

circular arc containment graph is a circular permutation graph and vice versa [257]. Circular

arc containment graphs are a natural generalization of interval containment (permutation)

graphs introduced in the previous sub-section. Thus, as in the case of permutation graphs,

circular permutation graphs are both intersection and containment graphs. So, they form

a subclass of comparability graphs, and thus are perfect graphs.

Circular permutation graphs, which generalize the well-studied class of permutation

graphs, are first introduced and studied in [257], where a O(∆ · |E(G)|) time algorithm was

developed to recognize them. Discovering a new characterization of circular permutation

graphs in [263] led to a more efficient recognition algorithm in O(|V (G)|+ |E(G)|) time.

Many standard graph problems, including k-coloring, l-clique-covering are studied for

circular permutation graphs and efficient algorithms are developed (see [245]). The clique-

width of circular permutation graphs is known to be unbounded, as they contain permutation

graphs.

3.1.6 Interval and Interval Containment Bigraphs

Both interval graphs and interval containment graphs have bipartite versions. A graph G is

an interval bigraph (interval containment bigraph, respectively) if it is a bipartite graph with

parts X and Y such that the adjacency between the vertices of X and Y follows the rule

of intersection graphs (containment graphs, respectively) of intervals, i.e., a vertex x ∈ X
is adjacent to a vertex y ∈ Y if and only if the corresponding interval of x intersects with

(contains or is contained in, respectively) the corresponding interval of y.

Interval bigraphs are first introduced and studied in [174]. An equivalent definition of

these graphs, using digraphs, is presented in [83]. Müller [241] introduced a polynomial

recognition algorithm for interval bigraphs and made a conjecture for characterization of

these graphs in terms of forbidden subgraphs. This conjecture was proved in a special case

in which the interval bigraphs are trees [42]. Further characterizations of interval bigraphs

were found in [183], where it is shown that the complement of interval bigraphs are exactly

those circular arc graphs which have the clique-covering number ≤ 2 and contain no two arcs

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 49

covering the whole circle. The clique-width of interval bigraphs is known to be unbounded

[35]. We refer to [34, 42, 41, 40, 224, 259, 83, 276, 182] for more characterizations of interval

bigraphs.

The class of interval containment bigraphs contains interval bigraphs as subclass, and is

contained in the class of comparability graphs [94]. It is conjectured that these two classes

(namely the class of interval containment bigraphs and the class of interval bigraphs) are

possibly equal (see [94]). The clique-width of interval containment bigraphs is known to be

unbounded, as they contain interval bigraphs. Note that any bipartite graph is a perfect

graph, and thus both graph classes are subclasses of perfect graphs.

3.2 Line, Quasi-line and Claw-free Graphs

In Chapter 6 we will study the M -partition problem for line graphs and its extension to

quasi-line and claw-free graphs. In this section we give the definitions and some background

for these graph classes.

Given a graph G, the line graph of G, denoted by L(G), is defined as a graph whose

vertices correspond to the edges of G and two distinct vertices are adjacent if and only if

their corresponding edges share one endpoint in G. Throughout this thesis, by line graph

we mean the line graph of some graph. Line graphs were used as early as 1932 in several

works including [279] and [217] (see [193]) under different names. The name “line graph”

first appeared in 1960 in [175].

Several works [16, 217, 272] studied the structural properties of line graphs including the

characterization using nine forbidden subgraphs (see [16] for all such results). These results

became the basis for a linear recognition algorithm for line graphs [258].

Many standard graph problems have been studied for line graphs (see [96] for a com-

prehensive list of these problems and their results). As far as the M -partition problem is

concerned, the classic problem of 3-coloring is shown to be NP-complete for line graphs

[197]. Another M -partition problem, namely the stable cutset problem (defined in Section

2.4) is studied in [30] for line graphs and is proved to be NP-complete. Additionally, from

M -partition’s point of view, restricting the input graph to line graphs is equivalent to M -

partition the edges of general graphs. In other words, it leads to the edge version of the

M -partition problem, which increases our interest for studying this class.

A graph is claw-free if it does not contain any induced subgraph isomorphic to a certain

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 50

graph called claw, which is composed of three independent vertices fully adjacent to a

fourth vertex (i.e., a complete bipartite graph in which one part has one vertex and the

other part has three vertices). Note that line graphs are claw-free. This simple observation

formed the initial motivation for studying claw-free graphs as an interesting generalization

of line graphs [54, 117]. Later on, various properties of claw-free graphs were discovered (see

[108, 109, 117]), which drew much attention to these graphs. Our study of the M -partition

problem for claw-free graphs can be seen as an extension of our study for line graphs. We

refer to [117] for a comprehensive survey of important results for claw-free graphs.

We already mentioned in Section 2.4 that the Strong Perfect Graph conjecture was

settled by Chudnovsky et al. in [53]. Their proof is based on many decomposition techniques.

Applying similar techniques to claw-free graphs led to a complete structural characterization

of these graphs by Chudnovsky et al. in [54]. Unfortunately, their structural theorem is

long and complicated for general claw-free graphs. For this reason, they introduced an

intermediate graph class between the class of line and the class of claw-free graphs (i.e.,

a class that contains the former class and is contained in the latter class), which is called

quasi-line graphs. They are defined as the graphs in which the set of neighborhood of each

vertex can be partitioned into two cliques. For quasi-line graphs, the structural theorem

becomes simpler and more digestible. So we included quasi-line graphs along with line and

claw-free graphs in our study. Using this structural theorem, we derive some dichotomy

result for quasi-line graphs in Section 6.2 (Theorem 6.2.5).

3.3 H-free Graphs

Given a family H̃ of graphs, a graph G is said to be H̃-free if it contains no member of

H̃ as induced subgraph. When H̃ has only one member H, we may use the notation H-

free instead of H̃-free. To avoid confusion, we assume that all the graphs in this section

are without loops. More precisely, we assume that all the graphs in the family H̃ are

without loops, and we only consider the H̃-free graphs which are without loops. One early

motivation of studying H̃-free graphs stemmed from the class of cographs (see [29, 144]).

As we mentioned earlier in Section 2.8.3, efficient (and even linear) algorithms have been

developed to solve many standard graph problems when restricted to cographs. Recall that

cographs are the same as P4-free graphs. (Recall that P4 is the path with four vertices, see

Section 2.8.) This fact made it interesting to consider the class of H-free graphs when H is

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 51

a one-vertex extension of P4, i.e., a graph with five vertices which contains P4 as induced

subgraph [29, 36]. All such graphs are shown in Figure 3.1, along with the titles used for

them in the literature. More generally, the class of H-free graphs and H̃-free graphs were

also considered in the literature, when H and H̃ are a general graph and a general graph

family, respectively [228, 215]. Studying the graph problems for H-free graphs, both for

general graphs H and one-vertex extensions of P4, were subject to much study targeting

several standard graph problems. We now give a brief overview for each direction with the

main focus on the coloring and other graph problems related to the M -partition problem.

Figure 3.1: One vertex extensions of P4.

For any graph H, Král et al. [215] determined the complexity of the vertex coloring

problem restricted to H-free graphs. They show that it is polynomial when H is an induced

subgraph of P4 or P1 +P3 (i.e., disjoint union of a vertex and the path P3 on three vertices),

and NP-complete otherwise. Recall that in the vertex coloring problem we have a graph

G and an integer k > 0 as input, and our aim is to decide whether G is k-colorable or

not. Thus, the vertex coloring problem cannot be modeled as an M -partition problem in a

straightforward way as the k-coloring problem.

This result inspired two directions: first, studying the vertex coloring problem for H̃-

free graphs, where H̃ is a family containing more than one graph [162, 160], and second,

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 52

studying the k-coloring problem for H-free graphs. Some partial results are obtained for

the first question. We refer the reader to [249, 162, 160] for a complete list of known results

for this question.

Now we focus on the second problem, namely studying the k-coloring problem (which

is a special case of the M -partition problem) for H-free graphs. Note that our complexity

results for the M -partition problem restricted to H-free graphs in Section 7.1 (Theorems

7.1.1, 7.1.2, and Corollary 7.1.4) can be seen as along this direction. In contrast to the vertex

coloring problem, analyzing the k-coloring problem for H-free graphs is an open problem

[160, 71]. The k-coloring problem is easily solved in polynomial time when k ≤ 2, as it is

equivalent to deciding if the input graph is bipartite. So from now on we assume k ≥ 3.

For any fixed constant g ≥ 3, the 3-coloring problem is known to be NP-complete for the

class of all graphs whose girth is larger than g [206]. This result can be extended easily to

the k-coloring problem as well (assuming k ≥ 3). Note that if H contains a chordless cycle

of order g ≥ 3 then any graph with girth larger than g is H-free. This implies that the

k-coloring problem is NP-complete for H-free graphs when H contains a cycle. This brings

down our task to studying H-free graphs when H has no cycle, namely when H is a forest.

In this case we use the notation F instead of H, to indicate its being a forest.

The problem of k-coloring for F -free graphs has been studied in many papers [79, 196,

206, 207, 215, 216, 220, 251, 270, 280]. We mentioned in Section 3.2 that the 3-coloring

problem is proved to be NP-complete for claw-free graphs. The implication of this result is

that if F contains a vertex with degree at least three then F -free graphs will contain claw-

free graphs as subclass, and thus the k-coloring problem becomes NP-complete for F -free

graphs. This further brings down our task to studying forests F which have no vertex of

degree ≥ 3. It is easy to see that this condition implies that F is a union of disjoint paths,

which is called a linear forest.

In [38], the 3-coloring problem is proved to be polynomial for F -free graphs when F is

a linear forest with at most six vertices, except when F = 2P3 (i.e., the disjoint union of

two paths on three vertices). This last case is later proved to be also polynomial in [39].

These results yield a complete dichotomy in the case that H has at most six vertices as

follows: the 3-coloring problem for H-free graphs is polynomial if H is a linear forest, and

otherwise it is NP-complete. A similar complexity result is proved in [162] for the 4-coloring

problem and graphs H which have at most five vertices. Some other special types of larger

linear forest are also considered. We refer to [72] (Theorem 3) for an extensive list of linear

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 53

forests for which the complexity of the k-coloring problem (for certain values of k ≥ 3) is

known. Denote by Pt the path with t > 0 vertices. Note that Pt (for any t > 0) is a special

linear forest. Several graph problems have been studied for Pt-free graphs, particularly

determining the complexity of the k-coloring problem (and some of its variations including

the list and the retraction versions) for Pt-free graphs has been the subject of extensive

investigations, and it is known for many pairs of k and t (see [71] for a comprehensive list

of such results). Other pairs of k and t are still under investigation (see [199] for a very

recent result). Our study of the list M -partition problem for P5-free graphs (in Section 7.2)

can be seen as an extension of these works. We refer to [250] for a survey of the 3-coloring

problem when restricted to H̃-free graphs.

Now we focus on the case in which the set of forbidden subgraphs (i.e., the set H̃)

consists of the one-vertex extensions of P4 (shown in Figure 3.1). Brandstädt et al. [29],

along the line of several previous related works, classified the clique-width of many such

graph classes into bounded and unbounded. Using this classification, we may conclude that

all list M -partition problems can be solved in polynomial time for those graph classes which

are proved to have bounded clique-width and to have an efficient algorithm to generate the

k-expression for every graph belonging to them (see Corollary 1.3.3). For other classes,

much effort has been made to determine the complexity of several graph problems including

the k-coloring problem (see [228, 36, 156, 24, 154]). In this thesis we focus on two particular

one-vertex extensions of P4, namely P5 and the bull (as shown in Figure 3.1). Now we give

some background for each class.

The class of P5-free graphs and its subclasses have been the subject of much study in

the last two decades (see [196, 7, 199]). The subclasses considered so far are H̃-free graphs

where P5 ∈ H̃. In most cases, H̃ is a finite set consisting of some one-vertex extensions of

P4. Fouquet et al. [145] characterized the structure of {P5, P5}-free graphs (i.e., the P5-free

graphs whose complements are also P5-free), and offered a polynomial-time algorithm to

solve the vertex coloring problem restricted to these graphs. The k-coloring problem for

P5-free graphs has been studied by several authors as part of the more general direction of

studying the k-coloring problem for Pt-free graphs (as mentioned earlier). Finally, Hoàng

et al. [196] provided the first polynomial-time algorithm to this problem (for any k > 0).

Our dichotomy result of the list M -partition problem for P5-free and {P5, P5}-free graphs

(Theorems 7.2.4 and 7.2.5) can be seen as extension of these results. Many other subclasses

of P5-free graphs have been studied for different graph problems, e.g., the vertex coloring

CHAPTER 3. THE GRAPH CLASSES CONSIDERED IN THIS THESIS 54

and clique-covering problems for {P5, P5, fork}-free graphs [144], and {P5, diamond}-free

graphs [7].

As for bull-free graphs, note that the bull contains a triangle (i.e., a clique of size 3). Thus

bull-free graphs contain the class of triangle-free graphs as subclass, for which the 3-coloring

problem is known to be NP-complete [231]. This implies that the k-coloring problem for

bull-free graphs is NP-complete (k ≥ 3). In addition to the motivations we stated earlier

(that the bull is a one-vertex extension of P4), bull-free graphs received much attention due

to their connection with perfect graphs (see [51]). Recall that in Section 2.8 we mentioned

that finding a polynomial time combinatorial algorithm to solve the k-coloring problem for

perfect graphs is an open problem, and bull-free perfect graphs are one of the subclasses

(of perfect graphs) for which some success was made in this direction [86, 87, 222]. The

structure of bull-free graphs is studied and completely characterized in [51].

Chapter 4

Tools

In this chapter we introduce some general definitions, assumptions and tools which will be

used frequently throughout this thesis. After introducing some general notation in Section

4.1, we introduce two main tools in Section 4.2, which include breaking an instance of the

(list) M -partition problem and applying the separation property. These tools allow us to

reduce a list M -partition problem into smaller sub-problems which have simpler structures

than the original one in terms of the matrix and/or the input graph. In the next section we

provide some techniques which allow us to apply these tools. The last section is dedicated

to a very useful auxiliary result related to classifying the complexity of the list M -partition

problem for 0-diagonal matrices M . This result will be used again and again throughout

this thesis.

4.1 Definitions and Assumptions

To prove several NP-complete results in this thesis, we make use of a problem known as not-

all-equal 3-satisfiability, denoted by NAE 3-SAT. We only consider the NAE 3-SAT problem

without negated variables ([150]), defined as follows: an instance of this problem consists of

variables x1, x2, · · ·xn and clauses Cl1, Cl2, · · ·Clr. Each clause is a set consisting of three

distinct variables called the variables or literals of that clause. The problem asks whether

there is an assignment of TRUE or FALSE to each variable such that each clause does not

have the same value assigned to all its literals. This problem is known to be NP-complete

[150]. An M -partition V0, V1, · · ·Vm−1 of a graph G corresponds to a coloring f of G defined

as f(v) = i if v ∈ Vi. Based on this, we call each index i ∈ [m] a color. We typically identify

55

CHAPTER 4. TOOLS 56

an M -partition with its corresponding coloring functions. For example, the statement that

“G has an M -partition f” means: “G has an M -partition whose corresponding coloring

function is f .” Using this coloring representation, we identify the i-th row (and column) of

the matrix M with the color i (i ∈ [m]). As an example, we may say “the color i in the

matrix M ,” which refers to the i-th row (or column) of M . Also, by saying that a vertex

u is colored with i (in some M -partition), we mean that u is placed in the part Vi (in that

M -partition). A color c is called 0-color if it has entry 0 on the main diagonal in M (i.e.,

M(c, c) = 0). Similarly, we define the notations of 1-color and *-color.

Given a matrix M , a list function of a graph G is a function L : V (G) → 2[m] which

assigns a list L(u) ⊆ [m] (of the colors of M) to each vertex u ∈ V (G). Recall that we

defined the list M -partition problem in Section 1.1. An instance I = (G,L) of the list

M -partition problem consists of a graph G and a list function L of G. A solution of I is any

M -partition f of G which respects the list L, i.e., f(u) ∈ L(u) for each u ∈ V (G). Again,

we would identify any solution of I with its corresponding coloring f (e.g., we would say:

“a solution f of I ...”). An instance I ′ = (G′, L′) is called a sub-instance of I = (G,L)

(both using the same matrix) when G′ is an induced subgraph of G and L′(v) ⊆ L(v) for

any v ∈ V (G′).

When no matrix is mentioned, by default we assume I is an instance of the list M -

partition problem, where M should be clear from the context. We always denote by m the

size of the matrix M . Since the case of m = 1 is trivial, throughout this thesis we always

assume that m ≥ 2. In some cases, we may construct instances with some lists being empty

(i.e., L(v) = ∅ for some v ∈ V (G)). We call such instance invalid, and they should be treated

as instances which have no solution (since no coloring option exists for those vertices having

empty list). To express the running time of any algorithm whose input consists of a graph

G or an instance I = (G,L), the parameter n always denotes the number of vertices of G.

By saying that the running time, or complexity, of an algorithm is polynomial, we mean

that the running time is polynomial in n.

In an instance I, we say that a color c1 ∈ L(u) conflicts with a color c2 ∈ L(v) if coloring

u and v with the colors c1 and c2, respectively, violates the definition of the M -partition

problem, i.e., either M(c1, c2) = 1 and uv /∈ E(G), or M(c1, c2) = 0 and uv ∈ E(G). A list

L(v) is said to be singleton if it contains only one color (i.e., |L(v)| = 1). Let V0 be a subset

of V (G) consisting only of vertices with singleton list. A procedure called updating the lists

based on V0 acts as follows: for any vertex v0 ∈ V0 and v ∈ V (G), any color in L(v) which

CHAPTER 4. TOOLS 57

conflicts with the only color in L(v0) is eliminated. Let L′ be the new list function (once

all these eliminations have taken place). Note that this procedure neutralizes the effect of

the set V0 in the final solution of I. In other words, we can color each vertex v ∈ V0 with

the unique color in L(v), and to color the rest of vertices we have to solve the sub-instance

(G[V (G)− V0], L′).
By pre-coloring a vertex v ∈ V (G) with a color c ∈ L(v) we mean replacing the list L(v)

with the singleton list {c}. This creates a new sub-instance of I which is different from I

only for the list of the vertex v. For technical convenience, we also define the pre-coloring

when c /∈ L(v). In this case, we replace the list L(v) with the empty set (which leads to an

invalid sub-instance). We can extend the definition of pre-coloring to any subset V0 ⊆ V (G)

as follows: let f0 be an M -partition of the subgraph G[V0]. Then by pre-coloring V0 based

on f0 we mean replacing each list L(v) with the singleton list {f0(v)} or the empty set,

depending on whether f0(v) ∈ L(v) or not (for all v ∈ V0).

4.2 Breaking an Instance and the Separation Property

We say that an instance I = (G,L) of the list M -partition problem is broken into sub-

instances IJ = (G,LJ) of I, for J ∈ J̃ where J̃ is some index set, if any solution of I is a

solution of some sub-instance IJ . Note that since the sub-instances IJ use the same graph

G, any solution of any sub-instance IJ is also a solution of I. For the sake of completeness,

we define breaking I into zero instances (when J̃ = ∅) as equivalent to saying that I has

no solution. By breaking an instance I into sub-instances IJ = (G,LJ) of I, for J ∈ J̃ , we

mean generating (using some algorithm) the sub-instance IJ = (G,LJ) of I (J ∈ J̃) into

which I is broken.

Throughout this thesis, the following break-up scheme is used frequently: we find some

polynomial-time algorithm to break an instance I into (polynomially many) sub-instances,

and then we repeat this process for each of these sub-instances. We continue this repeated

breaking until we arrive at sub-instances which are easier to solve. During this process,

we will make sure that the total number of sub-instances remains polynomial. Similar

techniques of repeatedly breaking an instance are used in [131, 196] as well.

Given a set Ĩ of instances of the list M -partition problem, by having oracle access for

these instances we mean the assumption that we can solve any instance I ∈ Ĩ in O(1)

time. In this definition, solving means either returning a solution for I or declaring that no

CHAPTER 4. TOOLS 58

solution exists. Let M be an arbitrary 01-diagonal matrix. An instance I = (G,L) of the

list M -partition problem is said to be homogeneous if the set ∪v∈V (G)L(v) consists entirely

either of 0-colors or of 1-colors. Let G̃ be an arbitrary hereditary graph class. We say that

a matrix M has the separation property for the class G̃ if there exists a polynomial-time

algorithm ALG to solve any instance I = (G,L) of the list M -partition problem with G ∈ G̃,

provided that we have oracle access for any homogeneous sub-instance of I. The algorithm

ALG is said to be giving the separation property.

Observation 4.2.1. The separation property is hereditary, i.e., if M has the separation

property for a hereditary class G̃ then it has the separation property for any hereditary

subclass H̃ of G̃. Furthermore, any algorithm giving the separation property for G̃ also gives

the separation property for H̃.

Proof. Let I = (G,L) be an instance of the list M -partition problem for H̃. Suppose we

have oracle access for any homogeneous sub-instance of I. Note that I can be considered

as an instance for the class G̃ as well, and the fact that M has the separation property for

G̃ implies that I can be solved in polynomial time using the oracle access.

A conventional application of the separation property used throughout this thesis is

given in the following observation

Observation 4.2.2. Let M be a 01-diagonal matrix with blocks A and B (see Figure 1.2).

Suppose M has the separation property for a hereditary graph class G̃. Assume the list A-

partition and the list B-partition problems, restricted to G̃, are both polynomial. Then the

list M -partition problem, restricted to G̃, is also polynomial. Moreover, suppose there exists

an O(nd) time algorithm ALG1 to solve the list A-partition or the list B-partition problems

when restricted to G̃, and an O(nt) time algorithm ALG2 giving the separation property for

G̃. Then the list M -partition problem, restricted to G̃, can be solved in O(ntd) time.

Proof. Let I = (G,L) be an instance of the list M -partition problem with G ∈ G̃. Since M is

01-diagonal, any homogeneous sub-instance of I uses either only 0-colors or only 1-colors in

its lists. Thus, such sub-instance is an instance of either the list A-partition problem or the

list B-partition problem, and so it can be solved in O(nd) time using the algorithm ALG1.

Now by using ALG1 instead of the oracles in the algorithm ALG2, we get an algorithm

(without oracles) to solve I in O(ntd) time.

CHAPTER 4. TOOLS 59

Thus, proving the separation property reduces the task of studying the list M -partition

problem for 01-diagonal matrix M to studying the list A-partition problem and the list B-

partition problem, which are supposed to be simpler. This is one of our the main approaches

in this thesis, particularly in Chapter 7. In the next section we will provide some sufficient

conditions for M to have the separation property.

Before closing this section, we have to mention that the running time analysis in Obser-

vation 4.2.2 is rather rough: the bound td in the observation can be replaced by remarkably

smaller values. However, as we stated earlier (see Section 2.7), in this thesis the main focus

is on polynomial vs. NP-complete complexities, and not optimizing the algorithms. Also

for polynomial-time algorithms, our only purpose is to keep the degree (of the polynomial

bound of the running time) bounded by a polynomial in terms of m. The running time

analysis in Observation 4.2.2 is good enough for this purpose. A more accurate analysis of

the running times and further optimizing the polynomial-time algorithms are left as future

research direction.

4.3 Some Techniques to Prove the Separation Property

In an instance I = (G,L), two distinct vertices u, v ∈ V (G) are called separated if no

color in L(u) conflicts with any color in L(v). We say that two disjoint non-empty subsets

U, V ⊆ V (G) are separated if any u ∈ U and v ∈ V are separated. Note that if we break I

into sub-instances, and the sets U and V are separated in I, then they remain separated in

each sub-instance as well.

The concept of sparse-dense partition is defined in [129] as follows: given two graph

classes S̃ and D̃, we call (S̃, D̃) a sparse-dense pair with respect to a constant d > 0 if no

two graphs G ∈ S̃ and H ∈ D̃ can share more than d vertices (i.e., there is no induced

subgraph G′ of G with d + 1 vertices which is isomorphic to an induced subgraph H ′ of

H). In this case, we call the members of S̃ and D̃ sparse and dense graphs, respectively.

Although this definition is symmetric, in most applications the first class (i.e., S̃) consists

of graphs much sparser than the second class (i.e., D̃), and thus we call them sparse, while

we call the members of the second family dense graphs. A sparse-dense partition (V A, V B)

of a graph G is a partition of its vertices into sets V A and V B which induce sparse and

dense subgraphs, respectively.

CHAPTER 4. TOOLS 60

Theorem 4.3.1. ([129]) Given a sparse-dense pair of graph classes with respect to a con-

stant d > 0, any graph G on n vertices has at most n2d different sparse-dense partitions.

Furthermore, all these partitions can be found in O(n2d+2) time, provided that we have

oracle access for deciding whether a subgraph of G is sparse or dense.

Let M be an arbitrary 01-diagonal matrix. An instance I = (G,L) of the list M -partition

problem is called list-homogeneous if each list L(v) consists entirely either of 0-colors or of 1-

colors. In other words, the instance I is list-homogeneous if there is a partition (V A, V B) of

V (G) such that the instances (G[V A], L) and (G[V B], L) are both homogeneous instances.

We call such partition the homogeneous partition of I. The following useful tool can be

derived from Theorem 4.3.1:

Lemma 4.3.2. Suppose M is a 01-diagonal matrix with blocks A and B of size k and

l, respectively (see Figure 1.2). Then any instance of the list M -partition problem can be

broken into n2kl many list-homogeneous sub-instances. Furthermore, we can generate all

these sub-instances in O(n2kl+3) time, provided that we have oracle access for solving any

homogeneous sub-instance of I.

Proof. Let I = (G,L) be an instance of the list M -partition problem. Define S̃ and D̃ as

the set of A-partitionable and B-partitionable graphs, respectively. Note that any graph in

S̃ is k-colorable and any graph in D̃ can be partitioned into l cliques. Thus no graph with

more than kl vertices can be isomorphic to a member of both sets. This means (S̃, D̃) is a

sparse-dense pair with respect to the constant kl. Thus by Theorem 4.3.1, we may conclude

that we have at most n2kl many sparse-dense partitions P = (V A, V B) of G, which can be

found in O(n2kl+2) time. For each sparse-dense partition P = (V A, V B) of G, obtain the

sub-instance IP (of I) by applying the following changes to I: remove any 1-color from the

list of any vertex in V A, and remove any 0-color from the list of any vertex in V B. These

changes can be performed in O(n) time. It is easy to see that IP is a list-homogeneous

sub-instance, with (V A, V B) as its homogeneous partition. Now we claim that I is broken

into the sub-instances IP , for all sparse-dense partitions P of G. Let f be a solution of I.

Define the set V Af (V Bf , respectively) as the set of all vertices having a 0-color (1-color,

respectively) in the solution f . Note that Pf = (V Af , V Bf) is a sparse-dense partition of the

graph G, since G[V AA] and G[V AB] are A-partitionable and B-partitionable, respectively.

This means f is also a solution of the sub-instance IPf
, which satisfies the definition of

breaking.

CHAPTER 4. TOOLS 61

Now we use the above lemma to derive two important tools related to the separation

property:

Theorem 4.3.3. Suppose M is a 01-diagonal matrix in which the block C is either *-free

or all *. Then M has the separation property for the class of all graphs. Moreover, there

exists an algorithm giving the separation property with running time O(n2kl+4), where k and

l are the sizes of the blocks A and B of M , respectively.

Proof. Let I = (G,L) be an instance of the list M -partition problem. Suppose we have

oracle access for any homogeneous sub-instance of I. By using this oracle access and applying

Lemma 4.3.2, we can break I into list-homogeneous sub-instances in O(n2kl+3) time. Now we

show how to solve each of these sub-instances. Let I ′ = (G,L′) be one of these sub-instances

and let (V A, V B) be its homogeneous partition. Suppose we can break I ′ in polynomial

time into sub-instances in which the sets VA and VB are separated. Then solving each

sub-instance I ′′ = (G,L′′) of these sub-instances will consist of solving the list M -partition

problem for each set VA and VB independently. In other words, we shall solve the instances

(G[VA], L′′) and (G[VB], L′′) independently. Note that these instances are both homogeneous

sub-instances of I, and thus can be solved in O(1) time using oracle access. So it is sufficient

to show how to break each sub-instance I ′ in such a manner.

In the case of block C being entirely made of *, the sets V A and V B are already separated

and we are done. The case of C being *-free can be handled by an approach similar to that of

Corollary 7.1 in [129]. We explain the approach in full detail here. Let V A1, V A2, · · ·V Ak′

(V B1, V B2, · · ·V Bl′ , respectively) be a partition of V A (V B, respectively) into non-empty

classes such that two vertices belong to the same class if and only if they have the same

set of neighbourhood in V B (V A, respectively). Let us call these classes the neighborhood

classes of V A (V B, respectively). An important property of these partitions is that for any

pair (i, j) ∈ {1, 2, · · · k′} × {1, 2, · · · l′}, the classes V Ai and V Bj are either fully adjacent

(i.e., any two vertices u ∈ V Ai and u ∈ V Bj are adjacent) or fully non-adjacent (i.e., any

two vertices u ∈ V Ai and u ∈ V Bj are non-adjacent). Now we define several parameters

for any solution f of I ′ as follows: define SAf (SBf , respectively) as a function in which

for i = 1, 2, · · · k′ (j = 1, 2, · · · l′, respectively), SAf (i) (SBf (j), respectively) is the set of

colors used by f for at least one vertex in the class V Ai (V Bj , respectively). Let Jf be

the pair (SAf , SBf) of functions. The fact that the block C is *-free implies that the sets

SAf (i), i = 1, 2, · · · k′, are pairwise disjoint. To prove this, suppose to the contrary, a color c

CHAPTER 4. TOOLS 62

belongs to two sets SAf (i) and SAf (j) for some indices 1 ≤ i 6= j ≤ k′. Let u ∈ SAf (i) and

v ∈ SAf (j) be vertices colored with c (by f). Since u and v belong to different neighborhood

classes, there must be vertex w ∈ V B which is adjacent to exactly one of the vertices u and

v. This implies that the entry M(c, f(w)) is * which is a contradiction, as this entry is in

the block C. A similar argument shows the sets SBf (j), j = 1, 2, · · · l′, are also pairwise

disjoint. Another important property is that, for any pair (i, j) ∈ {1, 2, · · · k′}× {1, 2, · · · l′}
of indices and any color c ∈ SAf (i) and c′ ∈ SBf (j), the entry M(c, c′) is 1 or 0 depending

on whether the class V Ai is fully adjacent or fully non-adjacent to the class V Bj . So let J̃

be the set of all pairs (SA, SB) in which:

1. SA : {1, 2, · · · k′} → 2[m] (SB : {1, 2, · · · l′} → 2[m], respectively) is a function in

which sets SA(i), i = 1, 2, · · · k′, (SB(j), j = 1, 2, · · · l′, resp) are pairwise disjoint and

non-empty,

2. For any pair (i, j) ∈ {1, 2, · · · k′} × {1, 2, · · · l′} of indices and any color c ∈ SA(i) and

c′ ∈ SB(j), the entry M(c, c′) is 1 or 0 depending on whether the class V Ai is fully

adjacent or fully non-adjacent to the class V Bj .

Note that J̃ contains the pairs Jf for all possible solutions f of I (However, it may contain

tuples not corresponding to any solution.) If k′ > k or l′ > l then J̃ = ∅. Otherwise, for

each 0-color (1-color, respectively) we have k′ + 1 (l′ + 1, respectively) choices to be placed

in one of the classes V Ai (V Bj , respectively) or none of them. This implies that we have

at most (k′ + 1)k · (l′ + 1)l = O(1) many choices for the pairs in J̃ . So, the total number of

elements in J̃ is O(1).

For each pair J = (SA, SB) ∈ J̃ , define I ′J as a sub-instance of I ′ which is obtained

from I ′ by removing from the list of any vertex in V Ai (V Bj , respectively) any color which

is not in SA(i), for i = 1, 2, · · · k′ (SB(j) j = 1, 2, · · · l′, respectively). Due to the properties

of the functions SA and SB, it is easy to see that in each sub-instance I ′J , the sets V A

and V B are separated. Also, it is easy to see that any solution f of I ′ is a solution of the

sub-instance I ′Jf as well. This implies that I ′ is broken into sub-instances I ′J , for J ∈ J̃ .

Moreover, we can construct each sub-instance I ′J in O(n) time, as either k′ ≤ k and l′ ≤ l

or J̃ = ∅. Thus all such sub-instances can be generated in O(n) time and we are done.

Now we introduce another tool to prove the separation property, which constitutes the

main tool used in this thesis. Given an instance I = (G,L) of the list M -partition problem,

CHAPTER 4. TOOLS 63

a pair (VQ, VS) of two disjoint non-empty subsets of V (G) is said to be a split pair in I if VQ

(VS , respectively) is a clique (stable set, respectively) and the list of any vertex in VQ (VS ,

respectively) consists entirely of 1-colors (0-colors, respectively). Note that this definition

implies that G[VQ ∪ VS] must be a split graph (see Section 2.5) which explains why we use

the term split for such pairs.

Theorem 4.3.4. Suppose M is a 01-diagonal matrix and G̃ is a hereditary graph class.

Suppose there exists a polynomial-time algorithm ALG which takes as input an instance

I = (G,L) of the list M -partition problem with G ∈ G̃ and a split pair (VQ, VS) in I,

and breaks I into sub-instances in which the sets VQ and VS are separated. Then M has

the separation property for G̃. Moreover, assuming that the running time of the algorithm

ALG is upper-bounded by O(nd) (d ≥ 1), there exists an algorithm giving the separation

property with running time O(n6kld), where k and l are the sizes of the blocks A and B of

M , respectively.

Proof. Let I = (G,L) be an instance of the list M -partition problem with G ∈ G̃. Suppose

we have oracle access for any homogeneous sub-instance of I. By using this oracle access

and applying Lemma 4.3.2, we can break I in O(n2kl+3) time into list-homogeneous sub-

instances. Now we show how to solve each of these sub-instances. Let I ′ = (G,L′) be one of

these sub-instances and let (V A, V B) be its homogeneous partition. Suppose we can break

I ′, in polynomial time, into sub-instances in which the sets V A and V B are separated. Then

solving each sub-instance I ′′ = (G,L′′) of these sub-instances will consist of solving the list

M -partition problem for each set V A and V B independently. In other words, we have to

solve the instances (G[V A], L′′) and (G[V B], L′′) independently. Note that both of these

instances are homogeneous sub-instances of I, and thus can be solved in O(1) time using

oracle access. So it is sufficient to show how to break each sub-instance I ′ in such a manner.

A necessary condition for I ′ to have a solution is that the graphs G[V A] and G[V B] must be

A-partitionable and B-partitionable, respectively. This can be checked in O(1) time using

oracle access. Suppose this necessary condition holds (otherwise I ′ will have no solution).

Let V A = X1∪· · ·∪Xk and V B = Y1∪· · ·∪Yl be the A-partition and B-partition for graphs

G[V A] and G[V B], respectively, given by oracle access. Let P1, P2, · · ·Pr be an arbitrary

ordering of all the pairs (Xi, Yj), i = 1, 2, · · · k, j = 1, 2, · · · l, for which both sets Xi and Yj

are non-empty. Note that each pair Pi is indeed a split pair. So by repeatedly applying the

algorithm ALG to each pair Pi, i = 1, 2, · · · r, we can break I ′ into sub-instances in which

CHAPTER 4. TOOLS 64

the sets V A and V B are separated. More precisely, we perform the following procedure to

break I ′:

1. Initially define Ĩ = {I ′},

2. For i = 1, 2, · · · r do as follows: for each instance I ′′ ∈ Ĩ, use the algorithm ALG to

break I ′′ into sub-instances in which the sets in the pair Pi are separated, and replace

I ′′ with these sub-instances (in the set Ĩ).

It is easy to see that after this procedure, for any sub-instance in Ĩ, the sets V A and V B

are separated. Also note that I ′ has been broken into the sub-instance in Ĩ (as a result of

repeatedly breaking each member in the above procedure).

To analyze the running time of breaking I ′, let ai be the number of sub-instances in Ĩ in

the i-th iteration (i.e., when we are considering the pair Pi). We have ai+1 = O(nd · ai), for

i = 1, 2, · · · r−1, which implies that ai = O(nd.(i−1)), and thus the running time of breaking

I ′ is O(nrd) = O(nkld).

4.4 A General Tool Related to 0-diagonal 1-free Matrices

Theorem 4.4.1. Suppose G̃ is a graph class which contains all the bipartite graphs. Let

M be a 0-diagonal 1-free matrix. Then the list M -partition problem, restricted to G̃, can be

solved in polynomial time (of order O(n2)) if M corresponds to a bipartite co-circular arc

graph, and otherwise it is NP-complete.

Proof. Let H be the graph corresponding to M . Recall that the list M -partition problem

is equivalent to the list H-coloring problem. If H contains an odd cycle then we claim that

the list H-coloring problem for bipartite graphs is NP-complete. To prove this, let t be the

smallest value for which H contains an odd cycle of order t, which we denote by C2t+1. This

implies that C2t+1 must be actually a chordless cycle (i.e., an induced subgraph of H). Now

we introduce a reduction from the list 3-coloring problem for bipartite graphs (known to be

NP-complete) to the list C2t+1-coloring problem for bipartite graphs as follows: given an

instance of the former problem with the bipartite graph G and lists L(v) ⊆ [3] assigned to

each of its vertices, replace each edge of G with a path of order 2t − 1 and assign the list

[2t + 1] to each new vertex (if there is any). Assume, without loss of generality, that the

colors 0, 1 and 2 represent three successive vertices in the cycle C2t+1. Then it is easy to see

CHAPTER 4. TOOLS 65

that the new graph G has a list C2t+1-coloring if and only if the original graph G has a list

3-coloring.

Now assume H has no odd cycle, and thus is a bipartite graph. Given an instance

I = (G,L) of the list H-coloring problem for an arbitrary graph G, if G is not bipartite

then clearly there is no solution for I, otherwise G has to be a bipartite graph. This suggest

a polynomial reduction from the list H-coloring problem for general graphs to the list H-

coloring problem for bipartite graphs. Feder et al. in [124] proved that the former problem

(i.e., the list H-coloring problem for general graphs) is NP-complete when H is not a co-

circular arc graph, and otherwise it is polynomial. The polynomial case can be inferred

(from their proof) to be square in degree. Thus the theorem follows.

Recall that when the matrix M is 0-diagonal 1-free, the list M -partition problem is

equivalent to the H-coloring problem. Thus the above theorem can be equivalently formu-

lated as follows: suppose G̃ is a graph class which contains all the bipartite graphs, and H

is a graph without loops. Then the list H-coloring problem for G̃ can be solved in poly-

nomial time (of order O(n2)) if H is a bipartite co-circular arc graph, and otherwise it is

NP-complete.

Chapter 5

Graphs Representing Geometric

Configurations

Certain properties of graphs representing geometric structures (e.g., interval graphs, circular

arc graphs, permutation graphs, etc) can be exploited to solve the M -partition problem

efficiently in polynomial time. In this chapter we introduce some properties of this type

and some tools to benefit from them. These tools are introduced in Section 5.1. In the

subsequent sections we show how they can be applied to a variety of graph classes, mostly

those classes consisting of intersection or containment graphs of certain geometric objects,

in particular intervals on a line and arcs on a circle.

In Section 5.2 we focus on the intersection and containment graphs of intervals (namely

interval and permutation graphs), as well as their bipartite versions (namely interval and

interval containment bigraphs). Using our tools, we show that all list M -partition problems

are polynomial for these classes (Theorem 5.2.4).

Next, we consider the natural extension of these classes by using arcs on a circle instead

of intervals on a line. Intersection graphs of arcs on a circle (namely circular arc graphs) and

containment graphs of arcs on a circle (namely circular arc containment graphs) are both

studied in Section 5.3. Using the same techniques as the previous section, but in a more

elaborate way, we show that all list M -partition problems for these classes can be solved in

polynomial time (Theorem 5.3.3). We also take a brief look at several natural extensions

of these classes, and for each of them we introduce some NP-complete list M -partition

problem(s).

66

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 67

In Section 5.4 we consider comparability graphs. Recall (from Section 3.1.3) that this

class not only is a natural extension of the class of circular arc containment graphs, it is also

an extension of any graph class consisting of containment graphs. For this class, we prove

the dichotomy (for the list version) in several special cases of the matrix M (particularly in

Theorem 5.4.6).

In the last section, we briefly discuss other classes of intersection graphs. They include

the class of circle graphs (the intersection graphs of chords in a circle), which have a structure

similar to permutation graphs and are tightly connected to circular arc and circular arc

containment graphs. However, unlike these graphs, we find an NP-complete list M -partition

problem (which is actually a list H-coloring problem) for circle graphs (Theorem 5.5.1).

We already gave detailed accounts (see Chapter 3) for each of the graph classes considered

in this chapter, and we explained that all these classes have polynomial-time recognition

algorithms. Thus, in this chapter we always assume that the intervals or arcs (or any

other geometric objects) corresponding to the vertices of the input graph, or the transitive

orientation of the edges (in the case of comparability graphs), are all given as part of the

input. Also, without loss of generality, using a simple argument, we may assume that all

interval and arcs (used in intersection and containment graphs) are closed (i.e., the endpoints

are part of the interval/arc). When the context is clear, we would identify a vertex with its

corresponding geometric object. For example, we may say “the arc v,” which means “the

arc corresponding to the vertex v.”

5.1 The Main Techniques

Suppose an instance I = (G,L) of the list M -partition problem and an arbitrary subset

D ⊆ V (G) are given. In general, the number of solutions for the instance (G[D], L) may

be exponential in n = |V (G)|. We introduce an alternate way to represent these solutions

for which we have polynomially many choices (in terms of n) in many cases of G and D.

Given an M -partition f of the graph G[D] (the subgraph of G induced by D), we introduce a

function NCf
D : V (G)−D → 2[m] by defining NCf

D(v) to be the set of colors which occur, in

the coloring f , in the neighborhood of v in D (i.e., NCf
D(v) = {f(w)|w ∈ D, vw ∈ E(G)}).

Similarly, we introduce a function NCD
f

: V (G) − D → 2[m] by defining NCD
f
(v) to be

the set of colors which occur, in the coloring f , in the non-neighborhood of v in D (i.e,

NCD
f
(v) = {f(w)|w ∈ D, vw /∈ E(G)}). For both functions, when the context is clear, we

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 68

may drop the superscript f and the subscript D. The pair P = (NCf
D, NCD

f
) of functions

is called the profile of the M -partition f of G[D]. We say that a color c ∈ [m] for a vertex

v ∈ V (G) −D conforms with the profile P if M(c, c′) 6= 0 for each color c′ ∈ NCD(v) and

M(c, c′) 6= 1 for each color c′ ∈ NCD(v). In the case of D = ∅, we define NCD(v) and

NCD(v) to be the empty set for all vertices v ∈ V (G), and we call such a profile an empty

profile.

Note that the profile P completely represents the effect of pre-coloring the set D (based

on the coloring f) on all vertices in V (G)−D. In other words, given an instance I = (G,L)

of the list M -partition problem and a vertex v ∈ V (G) − D, a color c ∈ L(v) does not

conform with the profile P if and only if there exists a vertex u ∈ D such that the color

c ∈ L(v) conflicts with the color f(u) ∈ L(u). This implies that, instead of storing the

full details of the coloring f , we may store only its profile without the loss of necessary

information needed by the M -partition problem. The advantage of this representation is

that, as we shall see later, for certain graph classes the total number of profiles (for certain

subsets D) is polynomially bounded (in terms of n = |V (G)|), while the number of M -

partitions of G[D] could be exponential in n. This is the main ingredient for designing

polynomial-time algorithms in this chapter. The following result demonstrates how to use

the profile representation. Throughout this chapter, for an ordering v1, v2, · · · vn of V (G)

(which is clear from the context), we denote by Di (0 ≤ i ≤ n) the set {v1, v2, · · · vi} (which

implies that D0 = ∅).

Theorem 5.1.1. There exists an algorithm to solve any instance I = (G,L) of the list

M -partition problem, provided that an ordering v1, v2, · · · vn of V (G) is provided as part

of input. Furthermore, the algorithm runs in O(n ·
∑n

i=0 n
2
i) time, where ni, 0 ≤ i ≤ n,

is the number of distinct profiles of all the solutions of the instance (G[Di], L) of the list

M -partition problem. (Recall Di = {v1, v2, · · · , vi}.)

Proof. For each 0 ≤ i ≤ n, we want to build a set P̃i consisting of the (distinct) profiles of all

the solutions of the instance (G[Di], L). For i = 0, the set Di is empty, and thus P̃0 contains

only one empty profile. Suppose the set P̃i−1 is already constructed for some 1 ≤ i ≤ n. We

now show how to construct the set P̃i. We iterate over all profiles P ∈ P̃i−1. Suppose P is

the profile of a solution f of (G[Di−1], L). The solution f can be extended to a solution of

the instance (G[Di], L) by defining f(vi) = c only if the color c for vi conforms with P . This

can be checked in O(1) time. The total choices for c is also O(1). Having fixed a color c for

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 69

f(vi), the profile P ′ of the solution f (of the instance (G[Di], L)) can be derived from the

profile P = (NC,NC) by the following procedure: for each vertex v ∈ V (G)−Di, add the

color c to the set NC(v) if v is adjacent to vi, and to the set NC(v) if v is non-adjacent to vi.

Having constructed P ′, the next step is to add this profile to the set P̃i. To do so, we need

to check whether P ′ is already in this set, and add it if it is not so. This can be checked in

O(n · ni) time by simply comparing P ′ to any existing profile in P̃i (comparing two profiles

can be accomplished in O(n) time). We note that by a more elaborate algorithm which

uses sorted lists, we can do this checking much faster. However, we adhere to the simple

algorithm as in this thesis we are mainly concern about our algorithms to be polynomial

rather than optimal. Thus P̃i can be constructed in O(n · ni−1 · ni) time, and the whole

process (until i = n) can be accomplished in O(n ·
∑n

i=0 ni−1 · ni), which is O(n ·
∑n

i=0 n
2
i).

If P̃i = ∅, for some 0 < i ≤ n then it means there is no solution for the instance I, otherwise

there is a solution. Furthermore, to generate a solution of I (if one exists), we may keep

track of the values f(vi) and the path which leads us from the empty profile in P̃0 to the

final profile in P̃n.

An ordering v1, v2, · · · vn of V (G) is called an M -profile-bounding ordering of degree t if

the total number of (distinct) profiles of all the M -partitions of G[Di] is upper-bounded by

nt, for i = 1, 2, · · ·n. Using this ordering as input in the algorithm of Theorem 5.1.1 yields

the following corollary:

Corollary 5.1.2. Suppose an arbitrary matrix M and a constant t > 0 are given. There

exists a polynomial-time algorithm (of order O(n2t+2)) to solve any instance I = (G,L) of

the list M -partition problem, provided that G has an M -profile-bounding ordering of degree

t which is given as part of the input.

Using this corollary as the main tool, in this chapter our general approach to solve the list

M -partition problem is to find an M -profile-bounding ordering of some constant degree for

the input graph G. Now we introduce some tools for finding such an ordering. A sequence

S1, S2, · · ·Sn of sets is called inclusive if Si ⊆ Si+1 for i = 1, 2, · · ·n− 1. A key (but simple)

observation is as follows:

Observation 5.1.3. The number of inclusive sequences S1, S2, · · ·Sn in which Si ⊆ [m] is

a set of colors (i = 1, 2, · · ·n), is exactly (n+ 1)m.

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 70

Proof. Any inclusive sequence S1, S2, · · ·Sn can be uniquely characterized by a function

f : [m] → {1, 2, · · · , n + 1} where f(c) is defined as the smallest index 1 ≤ i ≤ n + 1 for

which c ∈ Si, and define i = n + 1 if c does not belong to any set in the sequence. Note

that we have n + 1 choices for each index f(c), and consequently (n + 1)m many different

choices for the function f .

Our general approach in this chapter is based on the fact that for many graph classes (es-

pecially those representing some geometric configuration), the profiles related to set Di can

be broken into several inclusive sequences (for which we have polynomially many choices).

This implies that we have polynomially many choices for the profiles and it leads to the fact

that we have an M -profile-bounding ordering. To describe this approach more formally, we

need to define some technical concepts. Given a graph G and a constant t > 0, we say that

an ordering v1, v2, · · · vn of V (G) is t-bounding if for any 1 ≤ i ≤ n, the set V (G)−Di can

be partitioned into at most t parts such that for any two vertices u, v in the same part,

one of the two sets N(u) ∩Di and N(v) ∩Di is a subset of the other. Such a partition of

V (G)−Di is called a t-bounding partition.

Theorem 5.1.4. Given a matrix M and a graph G, any t-bounding ordering of V (G) is an

M -profile-bounding ordering of degree 2mt.

Proof. Let v1, v2, · · · vn be a t-bounding ordering of V (G). Given 1 ≤ i ≤ n, let U1, U2, · · ·Ut

be a t-bounding partition of V (G) − Di (some parts may be empty). Being a t-bounding

ordering implies that there exists an ordering w1, w2, · · ·w|Uj | of Uj (for j = 1, 2, · · · t) such

that N(wp)∩Di ⊆ N(wp+1)∩Di (1 ≤ p < |Uj |). This implies that, given an M -partition f

of G[Di], the sequence {NCf
Di

(wp)}
|Uj |
p=1 is inclusive. Thus according to Observation 5.1.3, we

have at most (|Uj |+1)m many choices for this sequence, which is representing the restriction

of the function NCDi to the set Uj . By considering all indices 1 ≤ j ≤ t, we may conclude

that the total number of choices for the function NCDi is at most
∏t

j=1(|Uj |+1)m, which is

upper-bounded by nmt. A similar argument, by reversing the ordering of wis, implies that

the total number of choices for the function NCDi is also upper-bounded by nmt. Thus the

total number of choices for the profiles of all the M -partitions of G[Di] is upper-bounded

by n2mt.

Note that Corollary 5.1.2 and Theorem 5.1.4 together introduce the following chain of

implications: being a t-bounding ordering implies being an M -profile-bounding ordering,

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 71

and the latter implies a polynomial-time algorithm to solve all list M -partition problems.

Based on this relation, our main approach in this chapter is to find a t-bounding ordering,

for some constant t > 0, for the graphs we are studying. In the next section we will start

applying this technique to interval graphs and other similar graph classes.

5.2 The Intersection and Containment Graphs of Intervals

We recall that we assume all intervals to be closed. For a closed interval v on a line, we

denote by r(v) and l(v) its right and left endpoints, respectively. Also, we may treat the

points on a line as real numbers. Thus, for two points p1 and p2 on the line, the statement

p1 ≤ p2 means the point p1 does not lie on the right side of the point p2.

Lemma 5.2.1. There exists a O(n log n) time algorithm to find a 1-bounding ordering for

any interval graph G.

Proof. Let v1, v2, · · · vn be an arrangement of V (G) based on non-decreasing order of r(vi),

i = 1, 2, · · ·n. Such an ordering can be found in O(n log n) time using any standard sorting

algorithm (e.g., the Heap Sort). We claim that this is a 1-bounding ordering. Given 1 ≤ i ≤
n, assume u, v ∈ V (G) − Di are two distinct vertices. Without loss of generality, suppose

l(v) ≤ l(u). Assume an interval w ∈ Di intersects the interval u, but not the interval v. The

fact that r(w) ≤ r(v) (due to the non-decreasing order of r(vi)s) implies that r(w) < l(v).

Combined with the assumption l(v) ≤ l(u), we obtain r(w) < l(u) which contradicts the

assumption that w intersects u. This means N(u) ∩ Di ⊆ N(v) ∩ Di, which proves our

claim.

Recall that interval containment graphs are identical with permutation graphs (see Sec-

tion 3.1.4 for details).

Lemma 5.2.2. There exists a O(n log n) time algorithm to find a 1-bounding ordering for

any interval containment (or permutation) graph.

Proof. Let v1, v2, · · · vn be an arrangement of V (G) based on non-decreasing order of r(vi),

i = 1, 2, · · ·n (which can be found in O(n log n)). Using a similar argument as in the proof

of Lemma 5.2.1 above, one can prove that this ordering is a 1-bounding ordering.

Now we handle the case of interval and interval containment bigraphs, which are the

bipartite version of interval and interval containment graphs, respectively (see Section 3.1.6):

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 72

Lemma 5.2.3. There exists a O(n log n) time algorithm to find a 2-bounding ordering for

any interval or interval containment bigraph G.

Proof. The definition of interval or interval containment bigraph requires that G is a bi-

partite graph with parts V1 and V2. Let v1, v2, · · · vn be an arrangement of V (G) based on

non-decreasing order of r(vi), i = 1, 2, · · ·n. Such an ordering can be found in O(n log n)

time. We claim that this is a 2-bounding ordering. Given 1 ≤ i ≤ n, partition the set

V (G) − Di into two parts X1 = (V (G) − Di) ∩ V1 and X2 = (V (G) − Di) ∩ V2. By a

similar argument as in the proof of Lemma 5.2.1 above, one can show that this partition is

a 2-bounding partition.

Combining all these lemmas along with Corollary 5.1.2 and Theorem 5.1.4, we obtain

the following result:

Theorem 5.2.4. For any matrix M , the list M -partition problem can be solved in poly-

nomial time when restricted to the following graph classes: interval graphs (in O(n4m+2)

time), interval containment (permutation) graphs (in O(n4m+2) time), interval bigraphs (in

O(n8m+2) time) and interval containment bigraphs (in O(n8m+2) time).

We close this section by mentioning that recently Enright et al. [112] showed that the

list H-coloring problem (a special case of the list M -partition problem) can be solved in

polynomial time for interval and permutation graphs. This result is a special case of the

above theorem. Moreover, our result offers a running time of O(nd) with d = 4m + 2,

whereas the algorithm in [112] has d = O(m4). However, their approach may work for other

graph classes.

5.3 Circular Arc and Circular Arc Containment Graphs

We recall that we assume all arcs to be closed. For an arc v on a circle, define the right

and left endpoints of v with respect to the counter-clockwise direction, and denote them by

r(v) and l(v), respectively. In the proofs given in this section, we fix a reference point p on

the circle. We say that a point p1 is on the right (left, respectively) side of another point p2

if moving in the counter-clockwise direction (the clockwise direction, respectively) starting

from p, we encounter p2 before we encounter p1. Given two points p1, p2, denote by [p1, p2]

the closed arc between p1 and p2 in the counter-clockwise direction.

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 73

Lemma 5.3.1. There exists a O(n log n) time algorithm to find a 2-bounding ordering for

any circular arc graph G.

Proof. All the points and arcs in this proof are assumed to be on the circle containing the

arcs of G. We fix a reference point p as an arbitrary point on the circle which is not the

endpoint of any arc in V (G). For each vertex v ∈ V (G), define q(v) as the right endpoint

or the left endpoint of v, depending on whether v contains the point p or not, respectively.

Let v1, v2, · · · vn be an ordering of V (G) in which q(vi) is not on the right side of q(vi+1)

(1 ≤ i < n). Such an ordering can be found in O(n log n) time. We claim that this is a

2-bounding ordering. Fix a value for 1 ≤ i ≤ n. We partition the set V (G)−Di into parts

V1 and V2 consisting of the arcs which contain the point p and the arcs which do not contain

the point p, respectively. Let u, v ∈ V (G) − Di be two distinct vertices. We consider two

cases:

1. Suppose u, v ∈ V1. Without loss of generality, assume that the point r(u) is not

on the right side of r(v). This implies that the arc [p, r(u)] is contained in the arc

[p, r(v)]. Assume x ∈ Di is adjacent to u. We show that it has to be adjacent to v

too. This is obvious if x contains p. So assume that it does not. Since l(u) ∈ [q(vi), p]

and r(x) /∈ [q(vi), p], the only way that the arc x could intersect the arc u is that x

intersects the arc [p, r(u)]. Recalling that [p, r(v)] contains [p, r(u)], we may conclude

that x also intersects v. This implies that N(u) ∩Di ⊆ N(v) ∩Di.

2. Suppose u, v ∈ V2. Without loss of generality, assume that the point l(u) is not on

the left side of l(v). We claim that N(u) ∩ Di ⊆ N(v) ∩ Di. To prove so, note that

any arc x ∈ Di which contains the point p intersects both u and v. This is due to

the fact that l(x) ∈ [p, q(vi)] which implies that x contains the whole arc [q(vi), p]

including both r(u) and r(v). Now assume that the arc x ∈ Di does not contain p

and intersects u. Since r(u) ∈ [q(vi), p] and l(x) /∈ [q(vi), p], the only way that the

arc x could intersect the arc u is that x intersects the arc [l(u), q(vi)], assuming that

q(vi) ∈ u (otherwise there is no intersection). Note that [l(u), q(vi)] is contained in

the arc [l(v), q(vi)] (since we assumed l(u) is not on the left side of l(v)), which is

contained in the arc v.

The arguments above imply that the partition of V (G)−Di into V1 and V2 is a 2-bounding

partition.

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 74

Lemma 5.3.2. There exists a O(n log n) time algorithm to find a 2-bounding ordering for

any circular arc containment graph.

Proof. Fix a reference point p as an arbitrary point on the circle different than the endpoints

of the arcs in V (G). For each vertex v ∈ V (G), define q(v) as in the proof of Lemma 5.3.1

above. Let v1, v2, · · · vn be an ordering of V (G) in which q(vi) is not on the right side of

q(vi+1), 1 ≤ i < n. (Such ordering can be found in O(n log n).) Using a similar argument

as in the proof of Lemma 5.3.1 above, one can prove that this ordering is a 2-bounding

ordering.

Combining these two lemmas with Corollary 5.1.2 and Theorem 5.1.4, we obtain the

following result:

Theorem 5.3.3. For any matrix M , the list M -partition problem, restricted to circular arc

and circular arc containment graphs, can be solved in polynomial time (of order O(n8m+3)).

One natural direction to further extend the scope of our results would be to consider

extensions of the class of circular arc and the class of circular arc containment graphs.

This is partially inspired by our successful extension of the polynomial results for interval

and interval containment graphs to circular arc and circular arc containment graphs (as

we saw in Theorem 5.3.3 above). The reference site [97] lists four graph classes as well-

known minimal extensions of circular arc graphs, namely: 1) balanced 2-interval graphs,

2) polygon-circle graphs, 3) spider graphs, 4) upper domination perfect graphs. Now we

show that for each of these classes, there are NP-complete list M -partition problems. The

first class (namely, balanced 2-interval graphs) is defined as the intersection graphs of two

equal length intervals on a line [74, 149]. This class contains line graphs as subclass ([149]),

and thus the 3-coloring problem is NP-complete when restricted to this class (see [197]).

The next two classes both contain circle graphs (the intersection graphs of chords on a

circle) as subclass. In Section 5.5 we introduce one NP-complete list M -partition problem

restricted to circle graphs (Theorem 5.5.1). As for the class of upper domination perfect

graphs, it is known (see [97]) that this class contains {P5, C6}-free graphs as subclass. It is

sufficient to find some NP-complete list M -partition problem for the class of complements of

the graphs in this class, namely {P5, C6}-free graphs which contain {C3, C6}-free graphs as

subclass. Note that any graph with girth larger than 6 is {C3, C6}-free, and the 3-coloring

problem is known to be NP-complete when restricted to graphs with girth larger than 6

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 75

[206]. As for circular arc containment graphs, the only minimal extension suggested by the

reference site [97] is the class of comparability graphs. This class is studied in the next

section, in which we show that there are NP-complete list M -partition problems restricted

to comparability graphs (see Corollary 5.4.1). The conclusion is that, any natural minimal

extension of circular arc and circular arc graphs, as listed in the website [97], contain at least

one NP-complete list M -partition problem, while for the class of circular arc and circular

arc containment graphs all list M -partition problems are polynomial.

5.4 Comparability Graphs

The class of comparability graphs contains bipartite graphs as subclass. Thus applying

Theorem 4.4.1 yields the following corollary:

Corollary 5.4.1. Suppose M is a 0-diagonal 1-free matrix. Then the list M -partition

problem, restricted to comparability graphs, can be solved in polynomial time (of order O(n2))

if M corresponds to a bipartite co-circular arc graph, and otherwise it is NP-complete.

It is open to find a similar dichotomy result when M is not 1-free. One implication of the

above result is that, our tools using profiles (introduced in Section 5.1) are not likely to work

for comparability graphs and arbitrary matrices M (as there are NP-complete problems).

However, by restricting the clique-covering number (see Section 1.2) of the input graph, we

can apply our tools. More precisely we have the following result:

Lemma 5.4.2. Given a constant t > 0, there exists a O(n2) time algorithm to find a t-

bounding ordering for any comparability graph G with clique-covering number upper-bounded

by t.

Proof. We recall that we assume a transitive orientation of the edges of G is given as part

of input (In fact such orientation can be found in linear time, see Section 3.1.3.) It is easy

to see that, having a transitive orientation, a topological ordering v1, v2, · · · vn of G can be

found in O(n2) time (So vi → vj only if i < j.) We claim that this is a t-bounding ordering.

Suppose 1 ≤ i ≤ n is given. Since the clique-covering number of G is upper-bounded by

t, the set V (G)−Di can be partitioned into t cliques Q1, Q2, · · ·Qt (some cliques could be

empty). Let u, v ∈ V (G) − Di be two distinct vertices belonging to the same clique Qp.

Without loss of generality, suppose u → v. Assume a vertex w ∈ Di is adjacent to u. The

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 76

fact that v1, v2, · · · vn is a topological ordering of V (G) and that w ∈ Di, u /∈ Di imply that

w → u. Now the fact that u→ v and the transitive property of G imply that w → v. This

means N(u)∩Di ⊆ N(v)∩Di, which implies that the partition Q1, Q2, · · ·Qt is a t-bounding

partition.

Combining this lemma with Corollary 5.1.2 and Theorem 5.1.4, we obtain the following

result:

Theorem 5.4.3. For any matrix M , the list M -partition problem, restricted to compara-

bility graphs with clique-covering number upper-bounded by a constant t > 0, can be solved

in polynomial time (of order O(n4mt+2)).

If M is a 1-diagonal matrix then a necessary condition for a graph G to have an M -

partition is that its clique-covering number should not exceed m. This condition can be

checked in O(n3) time for comparability graphs G [163]. If this condition does not hold

then G has no M -partition, otherwise the clique-covering number of G is bounded by m,

which allows us to apply Theorem 5.4.3 above. This leads to the following corollary:

Corollary 5.4.4. Suppose M is a 1-diagonal matrix. Then the list M -partition problem,

restricted to comparability graphs, can be solved in polynomial time (of order O(n4m
2+2)).

In order to connect our results for 0-diagonal and 1-diagonal matrices, we prove the

separation property (see Section 4.2):

Lemma 5.4.5. Any 01-diagonal matrix M has the separation property for comparability

graphs. Moreover, there exists an algorithm giving the separation property with running

time O(n30klm), where k and l are the sizes of the blocks A and B of M , respectively (see

Figure 1.2).

Proof. By applying Theorem 4.3.4, it is enough to find a polynomial-time algorithm ALG

which takes as input an instance I = (G,L) of the list M -partition problem in which G is a

comparability graph and a split pair (VQ, VS) in I, and breaks I into sub-instances in which

the sets VQ and VS are separated. We assume that the edges of G are transitively oriented.

Let v1, v2, · · · v|VQ| be a topological ordering of the set VQ. Note that vi → vj if i < j,

since VQ is a clique. For each v ∈ VS , define pv (qv, respectively) as the largest (smallest,

respectively) index 1 ≤ i ≤ |VQ| for which vi → v (v → vi, respectively). If no such index

pv (qv, respectively) exists then set it to 0 (|VQ|+ 1, respectively). The transitive property

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 77

implies that vi → v for 1 ≤ i ≤ pv and v → vi for qv ≤ i ≤ |VQ|. This also implicitly implies

that pv < qv and v is non-adjacent to all vertices vi with pv < i < qv. Suppose for two

vertices u, v ∈ VS , the intervals [pu, qu] and [pv, qv] are disjoint. Without loss of generality,

assume that qu < pv. Then we have u → qu and qu → v. Then the transitive property

implies that u → v which is a contradiction, since u and v are non-adjacent (as they both

belong to the stable set VS). This means that all the intervals [pv, qv] (v ∈ VS) are pairwise

intersecting, and thus they all share a common element which is an integer. We denote this

element by s.

Now for any solution f of I, let rf1 , r
f
2 , r

f
3 , r

f
4 be the functions such that for each color

c ∈ [m]:

• rf1 (c) (rf2 (c), respectively) is the largest value 0 ≤ t ≤ |VQ| such that for each i ∈ [1, t]

(i ∈ [|VQ| − t+ 1, |VQ|], respectively), we have f(vi) 6= c.

• rf3 (c) (rf4 (c), respectively) is the largest value 0 ≤ t ≤ |VQ| such that for each i ∈
[s− t, s− 1] (i ∈ [s+ 1, s+ t], respectively), we have f(vi) 6= c.

Let Jf be the tuple (f(vs), r
f
1 , r

f
2 , r

f
3 , r

f
4) and J̃ be the set of all possible choices for such

tuples. More precisely, to generate all tuples (cs, r1, r2, r3, r4) in J̃ we consider all colors

cs ∈ [m] and all integers 0 ≤ r1(c), r2(c), r3(c), r4(c)) ≤ |VQ|, for c ∈ [m]. Thus J̃ can be

generated in O(|VQ|4m) time. Note that J̃ contains the tuples Jf for all possible solutions

f of I.

Now for each tuple J = (cs, r1, r2, r3, r4) ∈ J̃ , define IJ as a sub-instance of I which is

obtained by applying the constraints imposed by the tuple J . More precisely, pre-color the

vertex vs with cs and for each color c ∈ [m], remove c from the list of all vertices vj for

j ∈ [1, r1(c)] ∪ [|VQ| + 1 − r2(c), |VQ|] ∪ [s − r3(c), s − 1] ∪ [s + 1, s + r4(c)]. Note that for

any solution f of I we have the following property: for any two (not necessarily distinct)

colors c and c′ with M(c, c′) = 0 (M(c, c′) = 1, respectively) and any vertex v ∈ VS , if either

pv > rf1 (c) or |VQ|+1−rf2 (c) > qv (qv > rf4 (c)+s+1 or s−rf3 (c)−1 > pv, respectively) then

f(v) 6= c′. Now based on this property we apply the following changes to each sub-instance

IJ (where J = (cs, r1, r2, r3, r4) ∈ J̃): for any two (not necessarily distinct) colors c and c′

with M(c, c′) = 0 (M(c, c′) = 1, respectively) remove c′ from the list of any vertex v ∈ VS
if either pv > r1(c) or |VQ| + 1 − r2(c) > qv (qv > r4(c) + s + 1 or s − r3(c) − 1 > pv,

respectively). Additionally, we update the lists based on the pre-colored vertex vs (which

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 78

makes this vertex separated from the set VS). It is easy to see that after these changes,

the sets VQ and VS are separated in each sub-instance IJ , and that any solution f of I is a

solution of the sub-instance IJf as well. This implies that I is broken into sub-instances IJ ,

for J ∈ J̃ . Moreover, we can construct each sub-instance IJ in O(n) time. Thus all such

sub-instances can be generated in O(n4m+1) time.

Combining this lemma with Observation 4.2.2 and Corollaries 5.4.1 5.4.4 leads to the

following dichotomy:

Theorem 5.4.6. Suppose M is a 01-diagonal matrix in which the block A is 1-free. Then

the list M -partition problem, restricted to comparability graphs, can be solved in polynomial

time (of order O(n150m
5
)) if A corresponds to a bipartite co-circular arc graph, and otherwise

it is NP-complete.

5.5 Other Intersection Graphs

Theorems 5.2.4 and 5.3.3 show that the technique of profiles (as formulated in Corollary

5.1.2) can successfully handle the intersection graphs of intervals on a line, arcs on a circle

and chords between two parallel lines (i.e., the case of permutation graphs). During our

research, we considered some other classes of intersection graphs including point-interval,

trapezoid, disk, etc (see [97] for general references of these graph classes). The attempts to

apply the technique of profiles to these classes did not meet with success, mostly because

there is no obvious reason for the existence of an M -profile-bounding ordering. So these

classes are not included in this thesis.

A more formal indication that the technique of profiles may not work is that, for some

of these classes, there exist NP-complete list M -partition problems. For example, consider

the class of balanced 2-interval graphs which we introduced in Section 5.3. Recall that the

graphs in this class are intersection graphs (of two equal length intervals on a line), and

that the 3-coloring problem is NP-complete when restricted to this class. Another example

is the class of circle graphs, defined as the intersection graphs of chords in a circle (see [89]

for general reference). We particularly chose this class because its structure is similar to

permutation graphs (as the intersection graphs of chords between two parallel lines), and as

we saw at the end of Section 5.3, the class of circle graphs was used to find some examples

of NP-complete list M -partition problems for several extensions of the class of circular arc

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 79

graphs including polygon-circle graphs and spider graphs. For circle graphs, we introduce

one NP-complete list M -partition problem, which is actually a list H-coloring problem:

Theorem 5.5.1. Let H be the complement of the graph shown in Figure 5.1. (So based on

our definition of complement in Section 1.2, the only vertices with loops in H are t and f .)

Then list H-coloring problem is NP-complete even when restricted to circle graphs.

Figure 5.1: Let H be the complement of the depicted graph. Then the list H-coloring
problem is NP-complete for circle graphs.

Proof. Note that, for the sake of clarity of the proof, we labeled the vertices of H using

small Latin letters (with possibly subscripts and accents) rather than index numbers. Our

aim is to reduce the NAE 3-SAT problem without negated variables (see Section 4.1 for

its definition) to the list H-coloring problem for circle graphs. Suppose an instance of the

NAE 3-SAT problem (without negated variables) with the variables x1, x2, · · ·xn and the

clauses Cl1, Cl2, · · ·Clr is given. We introduce an instance I = (G,L) of the list H-coloring

problem with G being a circle graph constructed as follows: move in the clockwise direction

on the circle and for each clause Cli (i = 1, 2, · · · r), draw three successive non-intersecting

chords vi1, v
i
2, v

i
3 in the clockwise direction, each corresponding to a different literal of Cli.

(Recall that Cli has exactly three literals.) Refer to Figure 5.2(a) for an example of such

chords when we have three clauses. Recall that by color we mean the vertices of H which

are labeled as shown in Figure 5.1. The colors fj are called false colors and the colors tj

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 80

are called true colors (j = 1, 2, 3). Assign the list {fj , tj} to each chord vij (1 ≤ i ≤ r,

1 ≤ j ≤ 3). This means any chord corresponding to a literal x can take either a false color

or a true color. In the former case we define the value of x to be FALSE and in the latter

case to be TRUE.

Figure 5.2: The configuration of a circle graph G based on an instance of the NAE 3-SAT
problem.

One problem which arises from this configuration is that, two distinct chords u and v

may correspond to the same literal, and thus we have to make sure that they both either

take a false color or a true color. To handle this problem, we draw a chord connecting

the midpoints of u and v, and assign the list {t, f} to it. This guarantees that in any list

H-coloring of G, any two chords corresponding to the same literal must either both have a

false color or both have a true color (otherwise the chord connecting their midpoints cannot

take any color from its list).

The next step is to forbid the literals in each clause from all taking false or all taking

true colors at the same time. To do so, for each clause Clp (1 ≤ p ≤ r), we draw two

intersecting chords xp0 and yp0 such that, among all the chords vij (1 ≤ i ≤ r, 1 ≤ j ≤ 3),

xp0 intersects only the chords vp1 and vp2 , and yp0 intersects only the chords vp2 and vp3 . (see

Figure 5.2(b)). We assign the list {f ′1, f ′2, c} and {f ′2, f ′3, c} to xp0 and yp0 , respectively. It

CHAPTER 5. GRAPHS REPRESENTING GEOMETRIC CONFIGURATIONS 81

is easy to see that this configuration forbids the chords vp1 , v
p
2 and vp3 from all having false

colors at the same time in any list H-coloring of G. Similarly, we draw two intersecting

chords xp1 and yp1 such that, among all the chords vij , x
p
1 intersects only the chords vp1 and

vp2 , and yp1 intersects only the chords vp2 and vp3 . We assign the list {t′1, t′2, c} and {t′2, t′3, c} to

xp1 and yp1 , respectively. This configuration forbids the chords vp1 , v
p
2 and vp3 from all having

true colors at the same time in any list H-coloring of G. This way, the chords vp1 , v
p
2 and vp3

cannot all have false colors or all have true colors at the same time in any list H-coloring of

G. Thus, any list H-coloring of G corresponds to a solution of the NAE 3-SAT instance and

vice versa. This defines a polynomial-time reduction from the NAE 3-SAT problem without

negated variables to the list H-coloring problem restricted to circle graphs.

It would be interesting to see whether there exists a graph H without loops for which

the list H-coloring problem is NP-complete when restricted to circle graphs.

Chapter 6

Line, Quasi-Line and Claw-free

Graphs

In this chapter we study the (list) M -partition problem for the class of line graphs and

its extensions to the class of quasi-line graphs and then to the class of claw-free graphs.

In Section 3.2 we gave the definition of these classes and discussed their importance and

relevance in studying the M -partition problem. Recall that these three classes are also

important in the structural theory of graphs (see Section 6.1).

In the first section, we offer some partial dichotomy results for the class of line graphs.

Unlike the graphs based on geometric representations (which we studied in the previous

chapter), we introduce some NP-complete list M -partition problems for line graphs. The

well-known examples are the 3-coloring [197] and the stable cutset problems (see Section

2.4) [30]. We will introduce some additional NP-complete list M -partition problems for line

graphs (Theorem 6.1.5). Thus, having dispelled the hope for a polynomial complexity for

all list M -partition problems, we focus on the dichotomy problem for several special cases

of the matrix M (Theorems 6.1.1 to 6.1.2).

In Section 6.2 we consider quasi-line graphs. They are even more difficult than line

graphs, as we introduce a group of list M -partition problems which are NP-complete for

this class but polynomial for line graphs (see Observation 6.2.3). For these graphs, we prove

a partial dichotomy result for the list M -partition problem with M being restricted to 01-

diagonal matrices (Theorem 6.2.4). However, for the non-list version, using the structural

theorem of Chudnovsky and Seymour, we prove that the M -partition problem can be solved

82

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 83

in polynomial time when M is a 1-diagonal 0-free matrix (Theorem 6.2.5).

The last section is dedicated to claw-free graphs, for which we offer a partial dichotomy

result for 01-diagonal matrices (Theorem 6.2.4). Extending any of these dichotomies is a

definite direction for future work.

In this section we use a graphic model to facilitate the representation of matrices. In

this model, for each color i we draw a vertex vi whose appearance depends on the value of

M(i, i). Then for each pair (i, j) of distinct colors, we draw an edge ei,j whose appearance

depends on the value of M(i, j). The details of this notation are given in Figure 6.1 along

with an example. Note that some of our symbols for vertices and edges represent more than

one possibility (e.g., the black vertex with a white X within). This allows one diagram to

represent a group of matrices. We should mention that a similar symbolic representation of

matrices, called trigraphs, have been used in several papers (see for example [129]), in which

alternative symbols were used for vertices vi and ei,j . A notable feature of trigraphs is that,

ei,j is a non-edge if M(i, j) = 0, an edge if M(i, j) = ∗ and a double-edge (two parallel line)

if M(i, j) = 1. Since most of the matrices used in this section contain many * entries, using

trigraphs may result in drawing so many edges which reduces the clarity. For this reason,

we introduced our own version to have a more clear graphic representation.

Figure 6.1: The trigraph notations with an example.

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 84

6.1 Line Graphs

In this section we focus on line graphs. As far as the M -partition problem is concerned,

restricting the input graph to line graphs is equivalent to partitioning the edges of general

graphs. For this reason, we use the term edge-partition of the graph G interchangeably with

the term “partition of the line graph of G” throughout this section. When talking about

the complexity of an M -edge-partition problem, the notation n still stands for the number

of vertices of the input graph. We say that an instance I ′ = (G′, L′) of the list M -edge-

partition problem is a sub-instance of another instance I = (G,L) (of the list M -edge-

partition problem) when G′ is a subgraph (not necessarily induced) of G and L′(e) ⊆ L(e)

for any edge e ∈ E(G′) .

A 1-free *-diagonal matrix is said to be a non-interval pattern if its corresponding graph

is not an interval graph. The main dichotomy results proved in this section are listed below:

Theorem 6.1.1. Suppose M is a 01-diagonal matrix. Then the list M -partition problem.

restricted to line graphs, can be solved in polynomial time (of order O(n8m
2
)) if M does not

contain 3-coloring, and otherwise it is NP-complete.

Theorem 6.1.2. Suppose M is a 1-free *-diagonal matrix. Then the list M -partition prob-

lem, restricted to line graphs, can be solved in polynomial time (of order O(n2)), unless M

is a non-interval pattern, in which case it is NP-complete.

Theorem 6.1.3. Suppose M is a matrix in which the blocks B,S∗ and C∗ (see Figure 1.2)

are 0-free, 1-free and all *, respectively. Then the list M -partition problem, restricted to

line graphs, can be solved in polynomial time (of order O(n8m
2
)) if M does not contain

3-coloring, stable cutset or any non-interval pattern, and otherwise it is NP-complete.

Theorem 6.1.4. Suppose M is a matrix in which the block B has size ≥ m− 2 (i.e., there

are at most two non 1-colors). Then the list M -partition problem, restricted to line graphs,

can be solved in polynomial time (of order O(n8m
2
)).

Next we offer a set of additional NP-complete patterns for line graphs:

Theorem 6.1.5. The list M -partition problem, restricted to line graphs, is NP-complete

when M is any of the matrices shown in Figure 6.2.

Note that some of the matrices shown in Figure 6.2 do not contain the well-known NP-

complete patterns of 3-coloring, stable set or non-interval patterns. Thus they constitute

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 85

new NP-complete patterns for line graphs which are not included in the aforementioned

dichotomy results.

Figure 6.2: Additional NP-complete patterns for line graphs.

The proofs of these results are based on some auxiliary tools which we explain shortly.

The proof of each theorem will be given once the necessary concepts are explained. Suppose

an arbitrary instance I = (G,L) of the list M -edge-partition problem is given. Our aim is

to break I into sub-instances which have simpler structure. The intuition is, if a 1-color c is

used for at least four edges in a solution of I then all the edges having this color must share

a common endpoint. We use this fact to construct sub-instances of I in which the 1-colors

(and some other colors contributing to 1 entries in M) appear only in the list of the edges

incident with a fixed vertex.

To put it formally, we define several parameters for any solution f of I: define Df as

the set of colors used by f for at most three edges (So all the colors in [m]−D are used for

at least four edges.) Define gf : Df → 2E(G) as a function in which gf (c) is the set (possibly

empty) of edges e colored with c, for c ∈ Df (So f(e) = c.) Obviously for any two distinct

colors c, c′ ∈ Df we have gf (c)∩ gf (c′) = ∅. Given an arbitrary subset D ⊆ [m] of colors, we

say that a color c ∈ D is a centralized color of D if M(c, c′) = 1 for some color c′ ∈ D (not

necessarily distinct from c). Let c be a centralized color of the set [m]−Df .The fact that c

is used by f for at least four edges (as c /∈ Df) implies that all the edges having the color c

in f must share a common endpoint which we call the center of the color c in f . Note that

any two centralized colors c, c′ of [m] −Df with M(c, c′) = 1 will have the same center in

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 86

f . Define hf as the function from the set of centralized colors of [m]−Df to the set V (G),

where hf (c) is the center of the color c in f .

Let Jf be the tuple (Df , gf , hf) and J̃ be the set of all possible choices for such tuples.

More precisely, to generate all tuples J = (D, g, h) in J̃ we consider:

1. All subsets D ⊆ [m],

2. All functions g : D → 2E(G) with |g(c)| ≤ 3 and g(c) ∩ g(c′) = ∅ for any two distinct

colors c, c′ ∈ D,

3. All functions h mapping each centralized color of [m]−D to a vertex of G in such a

way that h(c) = h(c′) whenever M(c, c′) = 1.

Note that J̃ contains the tuples Jf for all possible solutions f of I (However, it may contain

tuples not corresponding to any solution.) Nevertheless, the total number of elements in

J̃ is polynomially bounded. More precisely, we have O(1) many choices for the subset D,

O(|E(G)|3) many choices for each value g(c) which implies having O(n6m) many choices for

the function g, and O(nm) many choices for the function h. Thus J̃ can be generated in

O(n7m) time.

Now for each tuple J = (D, g, h) ∈ J̃ , define IJ as a sub-instance of I which is obtained

by applying the constraints imposed by the tuple J . More precisely, apply the following

procedure to the instance I to obtain IJ :

1. For each color c ∈ D, pre-color all the edges in g(c) with c and remove c from the

lists of all other edges, i.e., those not in the set g(c). (This can be done in O(|E(G)|)
time.)

2. For any centralized color c of [m]−D, remove c from the lists of all edges not incident

with the vertex h(c). (This can be done in O(|E(G)|) time.)

It is easy to see that any solution f of I is a solution of the sub-instance IJf as well. This

implies that I is broken into sub-instances IJ , for J ∈ J̃ . Moreover, we can construct each

sub-instance IJ in O(n2) time (see the procedure above). Thus all such sub-instances can be

generated in O(n7m+2) time. Note that some sub-instances IJ may be invalid (i.e., some of

their lists could be empty). This means that they have no solution and thus we can ignore

them and only focus on the valid ones.

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 87

The sub-instances IJ have some good structural properties. To describe them, let us

fix a tuple J = (D, g, h) ∈ J̃ . We call the vertices h(c), for c ∈ D, the centers of IJ . We

typically denote the centers by v1, v2, · · · vr (So r is a constant no greater than m.) Note that

the colors in the set D only appear in the singleton lists. So we can get rid of these colors by

updating the lists based on the edges having these singleton lists and then eliminating these

edges. More precisely, given an arbitrary instance I ′ = (G′, L′) of the list M -edge-partition

problem, we define the simplification of I, as a sub-instance obtained from I ′ as follows:

update the lists based on the set of the edges having singleton list in I, and then eliminate

all these edges. It should be clear how a solution of I ′ can be converted to a solution of

its simplification and vice versa. For any instance of the list M -edge-partition problem,

the set of available colors is the set of colors which appears in at least one list. Also, by

centralized colors of an instance (of an arbitrary list M -partition problem) we mean the

centralized colors of the set of the available colors of that instance. Let I ′J = (G,L′) be

the simplification of IJ . Clearly the set of the available colors of I ′J is a subset of [m]−D.

Thus the function h maps each centralized color c of I ′J to some center (a vertex vi for some

1 ≤ i ≤ r) which we call the center of the color c. Now the structural properties of I ′J can

be described as follows:

1. There is a subset {v1, v2, · · · vr} of V (G) called the centers (of I ′J), where r ≤ m.

2. Any centralized color c (of I ′J) is present only in the list of the edges incident with a

fixed center, known as the center of c.

3. Any two centralized colors c and c′ (of I ′J) with M(c, c′) = 1 have the same center.

The above properties are exploited extensively in this section. So let us call any instance

of the list M -edge-partition problem with the above properties a regular instance. Our

arguments can be summarized in the following lemma:

Lemma 6.1.6. Any instance I = (G,L) of the list M -edge-partition problem can be broken

in polynomial time (of order O(n7m+2)) into sub-instances such that the simplification of

each sub-instance is a regular instance.

Using this lemma, our task of solving the general instances of the list M -edge-partition

problem is reduced to solving regular instances. So let I = (G,L) be a regular instance.

The residue instance of I, denoted by Ires = (Gres, L), is obtained from I by removing all

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 88

its centers from G. We define the residue matrix of I, denoted by Mres(I), as the matrix

obtained from M by deleting the rows and colomns corresponding to the colors that are not

the available colors of Ires. Note that any available color of Ires is a non-centralized color

of I, and thus the matrix Mres(I) is 1-free. This is an important property, since Ires is an

instance of the list Mres(I)-edge-partition problem. Thus, to solve Ires, we have to deal with

a 1-free principal sub-matrix of M which, as we will see later, is a major contributing factor

in simplifying the original problem of solving I. Obviously any solution of I is also a solution

of Ires, but the reverse may not always be the case. A solution of Ires is called extendable

to I if it can be extended to a solution of I by defining a coloring for edges incident with

the centers of I. This means solving I is equivalent to finding an extendable solution of

Ires. So we shift our focus to studying the extendable solutions of Ires. In particular, we

are interested in converting the problem of finding an extendable solution of Ires to solving

an instance of the list Mres(I)-edge-partition problem, as the matrix Mres(I) is 1-free and

presumably easier to handle than M .

Let D ⊆ [m] be a set of colors consisting of non-centralized colors of a regular instance

I such that for every two distinct colors c, c′ ∈ D we have M(c, c′) = ∗. In the instance I,

the set D is called acceptable for a non-center vertex v if there is a list M -edge-partition f

of the edges between v and the centers of I such that it does not forbid any color c ∈ D
for the vertex v (i.e., M(c, f(e)) 6= 0 for any edge e between v and a center). If D is not

acceptable then it is called forbidden (for the vertex v). Note that the decision of whether

D is acceptable or forbidden for a non-center vertex v depends only on solving an instance

of the list M -edge-partition problem limited to the vertex v and all the centers of I (whose

number is O(1)), and thus it can be decided in O(1) time. Given a solution fres of Ires, we

say that fres is locally extendable for a vertex v ∈ V (Gres) if the set of colors fres(e), for

all edges e ∈ E(Gres) incident with v, is acceptable for v. Note that a necessary condition

for fres to be extendable is that it should be locally extendable for all non-center vertice.

This condition is not necessarily sufficient. In order to make it sufficient, we impose another

constraint: I is said to be strictly regular if (in addition to being regular) for any center of

I, any two distinct edges e and e′ incident with this center are separated (i.e., M(c, c′) 6= 0

for any color c ∈ L(e) and c′ ∈ L(e′)). Recall that determining whether a set is acceptable

or not can be decided in O(1) time. Thus we obtain the following observation:

Observation 6.1.7. Given a strictly regular instance I, a solution fres of Ires is extendable

to I if and only if it is locally extendable for any vertex v ∈ V (Gres). Additionally, we can

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 89

extend the solution fres to a solution of I or decide that it is not extendable in O(n) time.

Proof. The forward direction is trivial as stated before. Now suppose fres is locally extend-

able for any vertex v ∈ V (Gres). Thus for any vertex v ∈ V (Gres) there must be a list

M -edge-partition fv of the edges connecting v to any center of I which does not conflict

with the coloring fres. The coloring fv can be found in O(1) time, since the number of

centers is O(1). Note that we can put together the coloring functions fv, for v ∈ V (Gres),

without any conflict, since I is strictly regular. By doing so we will obtain a coloring for the

edges incident with the centers of I which can be used to extend fres to a solution of I.

The next lemma shows that the cost of having strictly regular instances is polynomial:

Lemma 6.1.8. Any regular instance I = (G,L) of the list M -edge-partition problem can be

broken in polynomial time (of order O(n2m
2
)) into strictly regular sub-instances.

Proof. Let v1, v2, · · · vr be the centers of I. We define several parameters for any solution

f of I: define Df as a function in which Df (i), for i = 1, 2, · · · r, is the set of colors used

by f in at least one edge incident with the center vi. Note that for any two distinct colors

c, c′ ∈ Df (i) we have M(c, c′) 6= 0. Each 0-color in each set Df (i) must be used for exactly

one edge incident with vi. So we define the function gf in which, for any 0-color c ∈ Df (i),

i = 1, 2, · · · r, gf (i, c) is the (only) edge incident with vi which is colored with c.

Let Jf be the pair (Df , gf) and J̃ be the set of all possible choices for such pairs. More

precisely, to generate all the pairs J = (D, g) in J̃ we consider:

1. All subsets D(i) ⊆ [m] in which M(c, c′) 6= 0 for any two distinct colors c, c′ ∈ D(i),

for i = 1, 2, · · · r,

2. All functions g which map any pair (i, c) ∈ {1, 2, · · · r} × [m] in which c is a 0-color in

D(i) to an edge e incident with the center vi.

Note that J̃ contains the pairs Jf for all possible solutions f of I (As before, it also may

contain pairs not corresponding to any solution.) Nevertheless, the total number of pairs

in J̃ is polynomially bounded. More precisely, for i = 1, 2, · · · r, we have O(1) many choices

for the set D(i) and O(n) many choices for the edge g(i, c). Thus J̃ can be generated in

O(nmr) time.

Now for each pair J = (D, g) ∈ J̃ , define IJ as a sub-instance of I which is obtained

by applying the constraints imposed by the pair J . More precisely, apply the following

procedure to the instance I to obtain IJ :

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 90

1. Remove from the list of any edge incident with the center vi any color which is not in

D(i), for i = 1, 2, · · · r. (This can be done in O(|E(G)|) time.)

2. For any 0-color c ∈ D(i), pre-color the edge g(i, c) with c, for i = 1, 2, · · · r. (This can

be done in O(1) time.)

It is easy to see that any solution f of I is a solution of the sub-instance IJf as well. This

implies that I is broken into sub-instances IJ , for J ∈ J̃ . Moreover, we can construct each

sub-instance IJ in O(n2) time (see the procedure above). Thus all such sub-instances can be

generated in O(nm
2+2) time. It is easy to see that any sub-instance is strictly regular.

This lemma further simplifies our task by reducing it to solving strictly regular instances.

Now we can give the proofs for two of our main results:

Proof. (Theorem 6.1.4) By applying Lemmas 6.1.6 and 6.1.8 we may assume I is strictly

regular. Note that we have at most two non 1-colors which implies we have at most two

non-centralized colors of I. This means Ires has at most two available colors. Thus find-

ing an extendable solution for Ires can be easily formulated as a 2-SAT problem by using

Observation 6.1.7. It is easy to see that this 2-SAT problem can be solved in O(n2) time.

The following straightforward observation is used in several proofs in the rest of this

section:

Observation 6.1.9. Suppose M is a 1-free matrix. Then an instance I = (G,L) of the list

M -edge-partition problem has a solution if and only if, for each connected component G′ of

G, the instance (G′, L) has a solution.

Now we give the proof of Theorem 6.1.1:

Proof. It is known that the 3-coloring problem for line graphs is NP-complete ([197]). So

assume that M does not contain 3-coloring. Suppose an instance I = (G,L) of the list

M -edge-partition problem is given. By applying Lemmas 6.1.6 and 6.1.8 we may assume

that I is strictly regular. So it is sufficient to find an extendable solution of Ires = (Gres, L).

Recall that Ires is an instance of the list Mres(I)-edge-partition problem in which the matrix

Mres(I) is 1-free. Suppose a vertex v in Gres has degree at least three. Let e1, e2 and e3 be

three distinct edges incident with v. If Ires has any solution f (not necessarily extendable)

then colors f(ei) for i = 1, 2, 3 will induce a pattern identical to 3-coloring (since Mres(I) is

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 91

1-free), which is a contradiction! So we may terminate the algorithm by giving a negative

answer if such a vertex v exists. Otherwise, Gres will be a union of disjoint paths and

cycles. Note that Mres(I) is 1-free, and thus according to Observation 6.1.9, we can reduce

the task of finding an extendable solution of Ires to finding an extendable solution for each

path and cycle in Gres. In the case of cycle, by considering all the pre-colorings of an

arbitrary edge of the cycle, we can break the problem to (constantly many) sub-instances

for the path obtained by removing that edge. So we may assume that Gres is indeed a path

w1, w2, · · ·wt. Note that according to Observation 6.1.7, finding an extendable solution for

Ires is equivalent to finding a solution of Ires which is locally extendable for each vertex

wi, i = 1, 2, · · · t. We introduce a dynamic programming algorithm to solve this problem.

For i = 1, 2, · · · t − 1 and color c ∈ L(wiwi+1), define P (c, i) as the sub-problem of finding

a solution for the path w1, · · ·wi+1 (i.e., a solution for the instance (Gi, L), in which Gi is

the graph induced by vertices w1, w2, · · ·wi+1) which is locally extendable for all vertices

wj , j = 1, 2, · · · i + 1, and the edge wiwi+1 has color c. Solving P (c, i) for i > 1 involves

deciding a color c′ for edge wi−1wi. This color must obey rules imposed by matrix Mres(I),

list L and forbidden sets of wi (More precisely, the set {c, c′} should not be a forbidden

set for wi.) Since we have a bounded number of choices for c′, we may come up with all

possible choices for the colors c′ in O(1) time. Coloring the rest of the path is equivalent

to solving the sub-problem P (c′, i − 1) (since Mres(I) is 1-free). This scheme produces a

dynamic programming algorithm which can be performed in O(t) = O(n) time.

To prove the other results, we need to describe some more concepts. Let I = (G,L) be a

regular instance and let D ⊆ [m] be a subset of colors consisting of non-centralized colors of

I such that for every two distinct colors c, c′ ∈ D we have M(c, c′) = ∗. The set D is called

a minimal forbidden set for a non-center vertex v (of I) if D is forbidden for v while every

proper subset of D is acceptable for v. Now assume I is strictly regular. Using Observation

6.1.7, we can further reduce I to Ires at the cost of introducing some forbidden sets for each

vertex of Ires. To analyze the situation better, we define the concept of minimal forbidden

set without reference to any particular instance: we say that D is a minimal forbidden

set for the matrix M if there exists a strictly regular instance I such that D is a minimal

forbidden set for a non-center vertex v of I. In this case, we say that the instance I is an

instance corresponding to the set D.

It is important to note that the instance I can be limited only to a single non-center

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 92

vertex v and at most m centers. This is because other non-center vertices will have no effect

on a set being acceptable or forbidden for v. So we have a bounded number of choices for

I, and thus the set of minimal forbidden sets of M can be generated in O(1) time. As we

will see later in this section, the structure of the set of minimal forbidden sets has a role

in determining the complexity of the list M -edge-partition problem. The following lemma

provides one example of such a role:

Lemma 6.1.10. Let M be a 1*-diagonal matrix which does not contain any non-interval

pattern. Suppose all minimal forbidden sets of M (if there is any) have size one. Then the

list M -edge-partition problem can be solved in polynomial time (of order O(n8m
2
)).

Proof. By applying Lemmas 6.1.6 and 6.1.8 we can assume that I is strictly regular. Ac-

cording to Observation 6.1.7 it is sufficient to find an extendable solution of Ires. For any

non-center vertex v of I, let Dv be the set of colors c for which the set {c} is a minimal

forbidden set for v (in I). The fact that M does not have any minimal forbidden set of

size more than one implies that for any non-center vertex v of I, a set D is forbidden if

and only if it contains a color c ∈ Dv. So we construct a new instance I ′ from Ires by

removing any color in Dv from the list of all the edges incident with v, for any non-center

vertex v. It is easy to see that any extendable solution of Ires is a solution of I ′ and vice

versa. Note that I ′ is an instance of the list Mres(I)-edge-partition problem and Mres(I) is

a 1-free principal sub-matrix of M which does not contain any non-interval pattern. Thus

by applying Theorem 6.1.2 (which will be proved later in this section) we conclude that

I ′ can be solved in O(n2) time. Note that constructing I ′ (from I) can be done in O(n2)

time.

The following lemma offers a sufficient (but not necessary) condition for a matrix to

have no minimal forbidden set of size more than 1:

Lemma 6.1.11. Let M be a 1*-diagonal matrix which contains none of the patterns shown

in Figure 6.3. Then any minimal forbidden set of M has size 1.

Proof. Suppose to the contrary for some 1*-diagonal matrix M containing none of the

matrices in Figure 6.3 there exists a strictly regular instance I = (G,L) consisting of centers

v1, v2, · · · vr and vertex v for which D = [d], for some d ≥ 2, is a minimal forbidden set. This

means the set D − {1} is an acceptable set for v. This implies that there exists a solution

f0 of I for which M(0, f0(vvi)) 6= 0, i = 1, 2, · · · r. Let S0 be the set of indices 1 ≤ i0 ≤ r for

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 93

which M(1, f0(vvi0)) = 0. Note that S0 must be non-empty, otherwise the coloring f0 will

have no conflict with the color 1 for v, which defies the definition of D as a forbidden set for

v. Similarly, by exchanging the role of the color 1 and the color 0, define the coloring f1 and

the set S1. Suppose for some index i0 ∈ S0 and i1 ∈ S1 we have M(f0(vvi0), f1(vvi1)) 6= 0.

Then it is easy to see that the colors 0, 1, c0 = f1(vvi) and c1 = f0(vvi) induce in the

matrix M one of the patterns represented in Figure 6.3(a), which is a contradiction! Thus

for all indices i0 ∈ S0 and i1 ∈ S1 we have M(f0(vvi0), f1(vvi1)) = 0. This implies that

S0 ∩ S1 = ∅, for otherwise if i ∈ S0 ∩ S1 then for colors c0 = f1(vvi) and c1 = f0(vvi) we

must have M(c0, c1) = 0 which contradicts with the fact that I is strictly regular (Note that

c0 and c1 both belong to the list of edge vvi.) Let f be the M -edge-partition obtained from

f0 by replacing the color of any edge vvi0 with f1(vvi0), for i0 ∈ S0. Note that for any color

c ∈ D we have M(c, f(vvi)) 6= 0, i = 1, 2, · · · r. The fact that D is a forbidden set for v

implies that f could not be a solution for I. This means for some index i0 ∈ S0 and j /∈ S0
we must have M(c′1, c

′′
1) = 0 where c′1 = f1(vvi0) and c′′1 = f0(vvj). Now define c1 = f0(vvi0)

and c0 = f1(vvi) for some arbitrary index i ∈ S1. A simple argument shows that the colors

0, 1, c0, c1, c
′
1, c
′′
1 are distinct and induce in the matrix M one of the patterns represented

in Figure 6.3(b) or (c) (depending on whether M(c0, c
′′
1) is equal to 0 or not, respectively).

This is again a contradiction.

Note that the matrices represented in Figure 6.3(a) and (b) each has a two-element

minimal forbidden set, but this is not the case for the matrices in part (c). Thus the above

Lemma is not offering a complete characterization of the patterns having only singleton

minimal forbidden sets. Further extending the above lemma to a complete characterization

could be an interesting future work.

Figure 6.3: A group of patterns such that all the minimal forbidden sets of any matrix M
avoiding these patterns have size 1.

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 94

By using these lemmas we give the proof of Theorem 6.1.3:

Proof. It is known that the list M -edge-partition problem is NP-complete when M is 3-

coloring, stable cutset ([197, 30]) or a non-interval pattern (see Theorem 6.1.2). So assume

that M is a matrix free of these patterns. Suppose first that M contains at least one 0-

color c0. Then not containing stable cutset implies that for any two distinct *-colors c1

and c2, we must have M(c1, c2) = ∗, for otherwise the fact that the block S∗ is 1-free

will yield M(c1, c2) = 0 which means colors c0, c1, c2 will induce a stable cutset, which is

a contradiction. Since block C∗ is entirely ∗, we may conclude that for any *-color c1 we

have M(c1, c) = ∗ for any color c ∈ [m]. This means in solving any instance I = (G,L) of

the list M -edge-partition problem, without loss of generality, we can pre-color any edge e

with any *-color which is in L(e) (if there is any). Thus the task of solving I is reduced

(after updating the lists based on the set of pre-colored edges) to coloring the rest of the

edges whose lists do not contain any *-color. This is equivalent to solving a sub-instance I ′

of the list M ′-edge-partition problem where M ′ is obtained from M by removing the block

S∗. So M ′ is a 01-diagonal matrix and Theorem 6.1.1 implies that solving I ′ is polynomial,

since M (and thus M ′) does not contain 3-coloring. Now suppose M has no 0-color. Thus

it is a 1*-diagonal matrix. It is easy to see that M cannot contain any of the matrices in

Figure 6.3. The argument goes as follows: suppose M contains one of these patterns, then

the fact that block C∗ is entirely ∗ implies that c0 and c1 are both *-colors. Now if M

contains one of the patterns shown in (a), then M(c0, c1) can be neither * (for then colors

0, 1, c0, c1 form a non-interval pattern) nor 1 (since S∗ is 1-free), which is a contradiction.

Now suppose M contains one of the patterns shown in (b). Then the restrictions of M

implies that M(c1, c
′
1) = M(c0, c

′′
1) = ∗, and that colors c′1 and c′′1 are either both *-colors or

1-colors. The former case leads to forming a non-interval pattern by colors c0, c1, c
′
1, c
′′
1, and

the latter case contradicts the fact that the block B is 0-free. Next, suppose M contains

one of the patterns shown in (c). Then again the fact that block C∗ is entirely * implies

all colors used for the pattern to be *-colors. Also we must have M(c1, c
′
1) = ∗, since S∗ is

1-free. But then colors 1, c1, c
′
1, c
′′
1 form a non-interval pattern. The conclusion is that M

does not contain any of these patterns, and thus by Lemma 6.1.11 and 6.1.10 the theorem

follows.

To prove Theorem 6.1.5 we need the following two lemmas as tools:

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 95

Lemma 6.1.12. Let M be a matrix which has a minimal forbidden set D of size at least

three consisting only of *-colors. Then the list M -edge-partition problem is NP-complete

even when restricted to strictly regular instances.

Proof. Without loss of generality, we may assume D = [d] for some 3 ≤ d ≤ m. Let

ID = (GD, LD) be the instance corresponding to the minimal forbidden set D. As discussed

before, we may assume that GD consists of the centers w1, w2, · · ·wr and the vertex w for

which D is a (minimal) forbidden set. Suppose an arbitrary graph G is given with partition

V1 ∪ V2 of V (G) and a list L(v) ⊆ [3] assigned to any of its vertices. Build a new graph G′

by adding r new vertices v1, v2, · · · vr to G, and for each v ∈ V1 make a copy of instance ID

in G′ with the vertex w and wis in V (H) identified with the vertex v and vis (i = 1, 2, · · · r),
respectively (i.e., add a new edge between each vi and v with the list LD(wwi) assigned

to it). Next for each v ∈ V1 (in G′) add d − 3 pendant edges to it (i.e., edges with v as

one endpoint and a new vertex as the other endpoint) with the lists {c} (c = 3, 4, · · · d− 1)

assigned to them (Each list is assigned to exactly one pendant edge.) This construction

yields an instance I = (G′, L) of the list M -edge-partition problem. Note that I is strictly

regular with centers v1, v2, · · · vr. The fact that the instance ID is strictly regular implies

that solving I is equivalent to list 3-coloring the edges of the graph G (with respect to the

lists L(u), u ∈ V (G)) with the (only) condition that for any vertex v ∈ V1 not all the three

colors 0,1 and 2 must appear among the edges incident with this vertex. Note that in this

problem two adjacent edges can have the same color, since the colors 0,1 and 2 are *-colors.

Let us call this problem not all different (NAD) list 3-coloring.

We show this problem to be NP-complete by reducing the NAE 3-SAT problem without

negated variables (see Section 4.1 for its definition) to it. Suppose an instance of the NAE

3-SAT problem (without negated variables) with the variables x1, x2, · · ·xn and the clauses

Cl1, Cl2, · · ·Clt is given. We construct an instance of the NAD list 3-coloring as follows:

to each literal xi assign a set of 2t edges, each one called a copy of xi, and all have list

{0, 1} assigned to them and share a common endpoint in V1 (These common endpoints are

distinct for different variables.) We add a pendant edge to each common endpoint with list

{2}. This construction guarantees that in any NAD list 3-coloring of G, the copies of the

variable xi (i = 1, 2, · · ·n) are either all colored with 0 or all colored with 1. We interpret

this common color as the value of the variable xi (0 for FALSE and 1 for TRUE). To enforce

the restrictions posed by NAE 3-SAT we use the gadget shown in Figure 6.4.

This gadget has three input edges a, a′ and a′′ (with the list {0, 1}). A simple argument

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 96

Figure 6.4: The gadget which forbids the edges a,a′ and a′′ (as its inputs) from all having
the color 0 at the same time. Here the vertices x, y and z belong to V1 and other vertices
(excluding the free endpoints of the inputs edges) belong to V2.

shows that there is a NAD list 3-coloring of this gadget for any pre-coloring combination of

the input edges except when they are all colored with 0. Thus for each clause Clj we make

a new copy of the gadget with the input edges a, a′ and a′′ identified with a copy of each of

the literals in Clj (Each copy of any variable is used in at most one gadget.) This way, we

make sure that the variables in any clause do not all assume the value FALSE at the same

time. By exchanging the role of the color 0 and 1, we make another gadget which forbids

only the case when all input edges are colored with 1. Again by a similar construction we

can use this gadget to make sure that the variables in any clause do not all assume the

value 1 at the same time. Note that we use each copy of any variable in at most one gadget,

which explains why we made 2t copies of each variable. This construction implies that the

instance of the NAE 3-SAT has a solution if and only if our graph has a NAD list 3-coloring.

This completes our reduction.

Lemma 6.1.13. Given a matrix M , let M ′ be the matrix obtained from M by applying one

of these operations: 1) turning some 1 entries to *, 2) turning each 1 entry to 0 or *. Then

the list M -edge-partition problem restricted to regular instances can be reduced in O(n) time

to the list M ′-edge-partition problem.

Proof. Let I = (G,L) be a regular instance of the list M -edge-partition problem with

the centers v1, v2, · · · vr. The definition of regular instances implies that for any entry

M(c1, c2) = 1, all the edges which have c1 or c2 in their lists share a common center

vi, and thus are pairwise adjacent. This implies that any solution for the instance (G,L)

of the list M ′-edge-partition problem, where M ′ is obtained from M by the first operation,

is also a solution for instance I and vice versa. This implies an O(1) time reduction in the

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 97

case of the first operation. Now as for the second operation, do the following changes to

I: for each center vi and each edge e = vvi incident with vi, replace e with a new edge

vve (having the same list as e), in which ve is a new vertex used only by e. After all these

changes, remove all the centers vi, i = 1, 2, · · · r. Call the new instance I ′. This modification

can be done in O(|E(G)|) time and it guarantees that in I ′, for any entry M(c1, c2) = 1, all

the edges having the color c1 or c2 in their lists are pairwise non-adjacent. This means any

solution of I is a solution for the instance I ′ of the list M ′-edge-partition problem and vice

versa.

Now we give the proof of Theorem 6.1.5:

Proof. The patterns shown in Figure 6.2 are exactly the closure of the patterns shown in

Figure 6.5. So, by applying Lemma 6.1.13, it is enough to prove that the patterns shown

in Figure 6.5 are NP-complete patterns. To do so, for each of these patterns we display (in

Figure 6.5) an instance below it which implies the set D = {0, 1, 2} is a minimal forbidden

set for that pattern. Thus, by Lemma 6.1.12 the theorem follows.

Figure 6.5: Some examples of the patterns which have D = {0, 1, 2} as a minimal forbidden
set, along with the corresponding instances shown below each pattern (where D is a minimal
forbidden set for the vertex v and other vertices are the centers).

To prove Theorem 6.1.2 we need a different set of tools. Let M be a 1-free *-diagonal

matrix, and let H be the corresponding graph of M ′. Note that every vertex of H has a loop.

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 98

Thus, the list M -partition problem is equivalent to the reflexive list H-coloring problem (see

Section 2.2). For this problem, when the input graph is restricted to line graphs, we use the

term of reflexive list H-edge-coloring.

A chooser (edge-chooser, respectively) is a path P with the starting vertex (edge, respec-

tively) a and the ending vertex (edge, respectively) b, and lists L(p) ⊆ [m] assigned to each

vertex (edge, respectively) p, and the following properties:

1. L(a) = {c1, c2} and L(b) = S1 ∪ S2, for two distinct colors c1 and c2 and two subsets

S1, S2 of [m],

2. In any list M -partition (M -edge-partition, respectively) f of P , if f(a) = c1 then we

must have f(b) ∈ S1, and if f(a) = c2 then we must have f(b) ∈ S2,

3. The reverse property (2) above, namely: for i = 1, 2 and any color c′ ∈ Si, there exists

a list M -partition (M -edge-partition, respectively) f of P such that f(a) = ci and

f(b) = c′.

To describe the above properties, we say that the chooser P takes c1 to S1 and c2 to S2.

The vertice (edges, respectively) a and b are called the input and the output vertex (edge,

respectively), respectively. The idea of chooser has been used (with slight modifications) in

several proofs related to the NP-completeness of some H-coloring problems (see for example

[118, 190]) in which the choosers were used for vertex coloring. However, in our case we

modify them for edge-coloring, which makes only a little change as the line graph of a path

is again a path.

Denote by Hs, s ≥ 3, the graph obtained from the cycle with s vertices by adding a loop

at each vertex.

Lemma 6.1.14. The reflexive list Hs-edge-coloring problem is NP-complete for s ∈ {4, 5}.

Proof. Assume the vertices of Hs are named 0, 1, · · · s− 1 in the circular order. We reduce

the NAE 3-SAT problem without negated variables to the reflexive list Hs-edge-coloring

problem. Suppose an instance of the NAE 3-SAT problem (without negated variables) with

the variables x1, x2, · · ·xn and the clauses Cl1, Cl2, · · ·Clt is given. We construct an instance

I of the reflexive list Hs-edge-coloring problem as follows: to each literal xi we assign a set

of 2t edges, each one called a copy of xi, and all have the list {0, 1} assigned to them and

share a common endpoint (These common endpoints are distinct for different variables.)

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 99

We add a pendant edge with the list {2, s−1} to each common endpoint. This construction

guarantees that in any solution of I, the copies of xi (i = 1, 2, · · ·n) are either all colored

with 0 or all colored with 1. We interpret this common color as the value of the variable xi

in the NAE 3-SAT problem (0 for FALSE and 1 for TRUE).

Let CH1, CH2 and CH3 be the edge-choosers such that CH1 takes 0 to {1} and 1 to

{1, 2}, CH2 takes 0 to {2} and 1 to {1, 2} and CH3 takes 0 to {0, 3} and 1 to [s− 1]− {1}.
Figure 6.6(a) and (b) shows their detailed structures (The reader can easily check that they

are edge-choosers.)

Figure 6.6: The gadgets CH1, CH2 and CH3 for (a) s = 4, and (b) s = 5.

We construct a gadget called 0-clause by connecting the output edges of the edge-chooser

CH1, CH2 and CH3 to a common endpoint. We denote these output edges of CH1, CH2

and CH3 by b, b′ and b′′ and the input edges by a, a′ and a′′, respectively. We claim that this

gadget satisfies the following property: for all pre-coloring combinations of the input edges,

except when all have the color 0, the gadget has a reflexive list Hs-edge-coloring, otherwise

(when all have the color 0) it does not. To prove this claim, note that if a and a′ are both

pre-colored with 0 then b and b′ must have the color 1 and 2, respectively. Thus the only

permitted colors for b′′ are 1 and 2. This implies that a′′ assumes the color 1 (otherwise

there is no such coloring). Now if at least one of the edges a and a′ takes the color 1, then

we can have b and b′ having the same color. If this common color is 1 then we can color b′′

with 0 (regardless of the color of a′′), and if it is 2 then we can color b′′ with either 3 or 2

(depending on the color of a′′).

Now for each clause we make a new 0-gadget with its input edges identified with copies

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 100

of the variables in that clause (using each copy of every variable in at most one gadget).

This construction guarantees that the literals of Clj will not all assume the value FALSE at

the same time. We can define the 1-gadget similar to 0-gadget by changing the role of the

color 0 and s − 1 with the color 1 and 2, respectively. Using a similar construction (using

the 1-gadget instead of the 0-gadget) we can make sure that the variables of every clause

will not all assume the value TRUE at the same time. This suggests that the NAE 3-SAT

instance is satisfiable if and only if I has a solution. It is easy to see that this reduction is

polynomial.

An asteroidal triple of H is a stable set consisting of three vertices in V (H) such that

for any two of them there exists a path between them which contains no vertex adjacent to

the third vertex.

Lemma 6.1.15. The reflexive list H-edge-coloring problem is NP-complete when H contains

an asteroidal triple.

Proof. Suppose the asteroidal triple in H consists of the vertices 0, 1, 2. We reduce the

NAE 3-SAT problem without negated variables to the reflexive list H-edge-coloring prob-

lem. Suppose an instance of the NAE 3-SAT problem (without negated variables) with the

variables x1, x2, · · ·xn and the clauses Cl1, Cl2, · · ·Clr is given. We construct an instance I

of the reflexive list H-edge-coloring problem as follows: to each literal xi we assign a set of

2t edges, each one called a copy of xi, and all have the list {0, 1} assigned to them and share

a common endpoint (These common endpoints are distinct for different variables). This

construction and the fact that the colors 0 and 1 are non-adjacent in H guarantees that in

any solution of I, the copies of xi (i = 1, 2, · · ·n) are either all colored with 0 or all colored

with 1. We interpret this common color as the value of the variable xi (0 for FALSE and 1

for TRUE).

Feder et al. in [118] (see Theorem 2.3) construct the following choosers, assuming that

the vertices 0, 1, 2 form an asteroidal triple in H: P which takes 0 to {0, 1} and 1 to {1, 2},
P ′ which takes 0 to {1, 2} and 1 to {2, 0} and P ′′ which takes 0 to {2, 0} and 1 to {0, 1}.
By turning vertices to edges in these choosers we can easily turn them to edge-choosers (as

any chooser is a path). Let T be a gadget obtained from the edge-choosers P, P ′ and P ′′ by

identifying their last vertices (i.e., the degree 1 endpoints of the output edges). In T , the

input edges of P, P ′ and P ′′ are called a, a′ and a′′, respectively. It is easy to see that T

has a reflexive list H-edge-coloring for all pre-coloring combinations of edges a, a′, a′′ except

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 101

when they all have either color 0 or color 1. Thus by making a copy of T for each clause

and identifying its input edges with the copies of variables of that clause (using each copy

of every variable in at most one gadget), we have a polynomial-time reduction of the NAE

3-SAT problem without negated variables to the reflexive list H-edge-coloring problem.

Now we are in a position to give the proof for the final theorem:

Proof. (Theorem 6.1.2) Feder et al. in [118] proved that the reflexive list H-coloring problem

is polynomial when H is an interval graph. The exact running time can be inferred from

their proof to be O(n2). Note that this result includes the reflexive list H-edge-coloring

problem as a special case and thus it clearly proves the forward direction of the theorem.

Now to prove the backward direction, a result in [164] states that if H is not an interval

graph then it must contain either a chordless cycle with 4 or 5 vertices, or an asteroidal

triple as induced subgraph. In the former case Lemma 6.1.14 and in the latter case Lemma

6.1.15 imply that the reflexive list H-edge-coloring problem is NP-complete.

6.2 Quasi-Line Graphs

We consider the case of 0-diagonal matrices first. A result proved in the next section

(Theorem 6.3.1) offers a complete dichotomy for the list M -partition problem, for any 0-

diagonal matrix M , when the input graphs are restricted to any subclass of claw-free graphs

for which the 3-coloring problem is NP-complete (see Observation 6.3.2). This condition

holds for quasi-line graphs, since they contain line graphs for which the 3-coloring problem

is NP-complete. Thus as a special case of Theorem 6.3.1 we have the following corollary:

Corollary 6.2.1. Suppose M is a 0-diagonal k × k matrix. Then the list M -partition

problem, restricted to quasi-line graphs, can be solved in polynomial time (of order O(n2k+3))

if M does not contain 3-coloring, and otherwise it is NP-complete.

The case of 1-diagonal matrices for quasi-line graphs is more challenging. Let M be

a 1-diagonal matrix. Then solving the list M -partition problem for quasi-line graphs is

equivalent to solving the list B-partition problem for co-quasi-line graphs (see Observation

2.7.1). Note that bipartite graphs are co-quasi-line. Thus, if M is 1-free (equivalently when

M is 0-free) then we can apply Theorem 4.4.1 to obtain the following corollary:

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 102

Corollary 6.2.2. Suppose M is a 1-diagonal 0-free matrix. Then the list M -partition

problem, restricted to quasi-line graphs, can be solved in polynomial time (of order O(n2))

if B corresponds to a bipartite co-circular arc graph, and otherwise it is NP-complete.

It is still open to find a similar dichotomy result for the case when M is not necessarily 0-

free. Recall that according to Theorem 6.1.1, any 1-diagonal matrix is a polynomial pattern

for line graphs. Thus the above corollary introduces patterns which are NP-complete for

quasi-line graphs while polynomial for line graphs:

Observation 6.2.3. For any 1-diagonal 0-free matrix M , for which B does not correspond

to a bipartite co-circular arc graph, the list M -partition problem is NP-complete for quasi-

line graphs, but polynomial for line graphs.

As for the separation property, Theorem 6.3.5 in the next section states that any matrix

M , in which the block C is 0-free, has the separation property for claw-free graphs. This

conclusion applies to quasi-line graphs as well, since the separation property is hereditary

(see Observation 4.2.1). Also recall that Theorem 4.3.3 offers the separation property when

the block C is *-free (for all graphs). Thus combining these facts with Observation 4.2.2

and the last two corollaries leads to the following dichotomy result:

Theorem 6.2.4. Suppose M is a 01-diagonal matrix in which the block B is 0-free and the

block C is 0-free or *-free. Then the list M -partition problem, restricted to quasi-line graphs,

can be solved in polynomial time (of order O(n72m
4
)) if M does not contain 3-coloring and

the complement of a matrix corresponding to a graph which is not a bipartite co-circular arc

graph, and otherwise it is NP-complete.

As we will see in the next section, the same dichotomy also holds for claw-free graphs.

But an extra advantage of quasi-line graphs is that, the structural theorem of Chudnovsky

and Seymour for claw-free graphs ([54]) becomes simple and tractable when limited to quasi-

line graphs. We use this structural theorem to derive a result analogous to Corollary 6.2.2

for the non-list version:

Theorem 6.2.5. Suppose M is a 1-diagonal 0-free l × l matrix. Then the M -partition

problem (the non-list version), restricted to quasi-line graphs, can be solved in polynomial

time (of order O(n13l+1)).

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 103

Due to the complexity of the structural theorem in general (i.e., to describe the structure

of claw-free graphs), we were not able to follow the same approach for the class of claw-free

graphs. The rest of this section is dedicated to proving the above theorem. We explain the

structural theorem first.

A strip (S,X, Y) is a claw-free graph S with two cliques X and Y such that for any u ∈ X
(v ∈ Y , respectively), the set N(u)−X (N(v)− Y , respectively) is a clique in S. Suppose

S is a unit interval graph, i.e., an interval graph in which the length of each interval is one

unit. Let v1, v2, · · · vn be the vertices of S in the increasing order based on the mid-point of

the corresponding intervals. Suppose the sets X = {v1, · · · vp} and Y = {vn−q+1, · · · vn} (for

some integers 0 ≤ p, q ≤ n) both induce cliques in S. Then it is easy to see that (S,X, Y) is

a strip. This special type of strip is called unit interval strip. The concept of multi-digraph

generalizes the concept of digraph by allowing more than one arc to be drawn between any

pair of vertices. Suppose a multi-digraph H with strips (Se, Xe, Ye) associated to each arc

e ∈ E(H) are given. For each v ∈ V (H), define Cv as the union of the sets Xe, for all

arcs e coming out of v, and the sets Ye′ , for all arcs e′ coming into v. Construct a graph G

from the disjoint union of the graphs Se, e ∈ E(H), and making each set Cv, for v ∈ V (H),

a clique (by drawing an edge between any two distinct vertices in Cv). In this case, G is

called a composition of strips, and H is called its underlying multi-digraph. The structural

theorem of Chudnovsky and Seymour for quasi-line graphs is as follows:

Theorem 6.2.6. ([54]) Any quasi-line graph containing no homogeneous pair of cliques

(defined in Section 2.4) is either a proper circular arc graph or a composition of unit interval

strips.

We use the above theorem to prove Theorem 6.2.5. Before doing so, we need to introduce

some tools and lemmas. The general approach should be clear: these tools help to handle

the case of G having a homogeneous pair of cliques and the case when G is a composition

of unit interval strips. Note that the case of G being a proper circular arc graph is already

handled by Theorem 5.3.3 in Chapter 5.

Lemma 6.2.7. Suppose M is a 1-diagonal 0-free l × l matrix. Given a quasi-line graph G

with a homogeneous pair of cliques (X,Y), let G′ be the (quasi-line) graph obtained from G

by contracting each set X and Y into a single vertex x and y, respectively, and joining x and

y if and only if X ∪ Y is a clique (in G). Then G has a M -partition if and only if G′ has

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 104

a M -partition. Furthermore, we can obtain a M -partition for G from a given M -partition

for G′ in O(n) time.

Proof. If x and y are not adjacent in G′, then there must be at least one vertex vx ∈ X which

is not adjacent to some vertex vy ∈ Y . For the other case in which x and y are adjacent in G′,

simply let vx and vy be arbitrary vertices in X and Y , respectively. Suppose a M -partition

f of G is given. Define a coloring f ′ of G′ as follows: f ′(u) = f(u) for u ∈ V (G′)− {x, y},
f ′(x) = f(vx) and f ′(y) = f(vy). It is easy to check that f ′ is a M -partition for G′. Now

suppose a M -partition f ′ for G′ is given. Define the coloring f for G as follows: f(u) = f ′(u)

for u ∈ V (G) − X ∪ Y , f(u) = f ′(x) for u ∈ X and f(u) = f ′(y) for u ∈ Y . Again it is

easy to check that f is a M -partition for G (Note that M(f ′(x), f ′(y)) = ∗ if x and y are

non-adjacent in G′.)

The above lemma allows us to remove the homogeneous pairs of cliques by contracting

each clique into a vertex. A result of Everett et al. [115] provides an O(n5) time algorithm

to find a homogeneous pair of cliques in any graph or decide that none exists. Using this

algorithm and applying the above lemma repeatedly to the homogeneous pair of cliques

in each step, we will be able to make the graph free from such pairs. Thus we have the

following tool:

Lemma 6.2.8. Suppose M is a 1-diagonal 0-free l × l matrix. Given a graph G, we can

obtain an induced subgraph G′ of G in O(n6) time with no homogeneous pair of cliques such

that G has a M -partition if and only if G′ has a M -partition. Furthermore, we can obtain

a M -partition for G from a given M -partition for G′ in O(n) time.

This way we can get rid of homogeneous pairs of cliques in a quasi-line graph, and this

paves the way for applying Theorem 6.2.6. So now we discuss how to handle the case in

which G is a composition of unit interval strips.

A unit interval strip (S,X, Y) is called a bi-interval strip if V (S) = X ∪ Y . Suppose

a multi-digraph H is composed of two vertices u and v and r ≥ 0 arcs ei from u to v

(1 ≤ i ≤ r). To each arc ei we assign a bi-interval strip (Si, Xi, Yi). Then the strip

(S,X, Y), where S is the composition of bi-interval strips (Si, Xi, Yi) (i = 1, 2, · · · r) with

the underlying multi-digraph H and X = ∪ri=1Xi and Y = ∪ri=1Yi, is called a multi-interval

strip.

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 105

Lemma 6.2.9. Suppose for some fixed integer l > 0, a graph G does not contain any stable

set of size l + 1. If G is a composition of unit interval strips with the underlying multi-

digraph H then it is also a composition of unit interval and multi-interval strips with an

underlying multi-digraph H∗ which has at most (l+ 2)2 + l arcs. Furthermore, both H∗ and

its corresponding strips can be found in O(n2) time, assuming that the digraph H and the

unit interval strips corresponding to G are given as part of the input.

Proof. Without loss of generality, assume that V (Se) 6= ∅ for any e ∈ E(H), for otherwise

we can remove e from H. Let E1 be the set of arcs e ∈ E(H) with (Se, Xe, Ye) not being a

bi-interval strip. Note that |E1| ≤ l, for otherwise by picking an arbitrary vertex from each

set V (Se)− V (Xe) ∪ V (Ye) (e ∈ E1), we will produce a stable set larger than l in G, which

contradicts our assumptions.

Let H2 be the multi-digraph obtained from H by removing the arcs in E1. Add two new

vertices uX and vY to H2 and replace any arc e = (u, v) ∈ E(H2) in which Xe = ∅ (Ye = ∅,
respectively) with the arc e′ = (uX , v) (e′ = (u, vY), respectively), and define Se′ = Se. Call

the new multi-arc digraph H3. Clearly H3 has the same number of arcs and the same strip

composition as H2, and it has the additional property that all arcs e ∈ E(H2) with Xe = ∅
(Ye = ∅, respectively) will begin with (end in, respectively) the vertex uX (vY , respectively).

Note that any isolated vertex in H3 will have no effect in its strip composition, and thus we

may remove all such vertices. Now each vertex v ∈ V (H3)−{vX , uY } will be the end point

of some arc ev, and thus, in the strip composition, we will have Xev or Yev as a subset of

Cv. This implies that Cv 6= ∅. Now picking an arbitrary vertex from each set Cv produces

a stable set in G of size |V (H3)| − 2. The fact that G has no stable set of size l+ 1 implies

that |V (H3)| ≤ l + 2.

For any two vertices u, v ∈ V (H3) define A(u, v) as the set of of arcs from u to v.

Replace all arcs (if any) in A(u, v) with a new arc e∗ (from u to v) with the correspond-

ing multi-interval strip (Se∗ , Xe∗ , Ye∗) where Se∗ is the induced graph of ∪e∈A(u,v)Se in

G, Xe∗ = ∪e∈A(u,v)Xe and Ye∗ = ∪e∈A(u,v)Ye. Let H4 be the multi-digraph obtained by

these replacements. Again it is easy to check that the final strip composition of H4 is

the same as H3, however H4 has no multi-arcs, i.e., two distinct arcs with the same end-

points and orientation. This implies that |E(H4)| ≤ |V (H4)|2 ≤ (l + 2)2. Add E1 to H4

along with their original corresponding unit interval strips. Call the new multi-digraph

H∗. Note that H∗ has the same strip composition as H (namely the graph G), and also

|E(H∗)| ≤ |E(H4)|+ |E1| ≤ (l + 2)2 + l. All these steps take O(n2).

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 106

Lemma 6.2.10. Suppose M is a 1-diagonal 0-free l×l matrix. Let (S,X, Y) be an arbitrary

multi-interval strip whose unit interval strips are given, and let L be a list function for S

defined as follows: L(u) = L1 for any vertex u ∈ X and L(u) = L2 for u ∈ Y , where

L1, L2 ⊆ [l] are two arbitrary sets of colors. Then the instance I = (S,L) of the list M -

partition problem can be solved in O(n2) time.

Proof. Suppose there are non-adjacent vertices x0 ∈ X and y0 ∈ Y . Then there must be

colors c1 ∈ L1 and c2 ∈ L2 such that M(c1, c2) = ∗, otherwise we cannot color x0 and y0

in any list M -partition. In this case, the coloring f defined as f(x) = c1 for all x ∈ X and

f(y) = c2 for all y ∈ Y , is an obvious solution of I and we are done. So suppose there are

no non-adjacent vertices x0 ∈ X and y0 ∈ Y . (This can be checked in O(n2) time.) This

means S is a clique, and thus a cograph, and all list M -partition problems can be solved in

linear time for cographs [123].

Now we show how to solve the M -partition problem for compositions of unit interval

strips:

Lemma 6.2.11. Suppose M is a 1-diagonal 0-free l × l matrix. Then the M -partition

problem for the graphs which are the compositions of unit interval strips can be solved in

polynomial time (of order O(n2l+2)).

Proof. Let G be a composition of unit interval strips. The underlying multi-digraph of G

and the unit interval strips corresponding to each arc can be found in O(n5) time according

to [210]. We can check in O(nl+3) time whether G contains a stable set of size l + 1. If

so then G has no M -partition and we can terminate the algorithm right away. Otherwise

according to Lemma 6.2.9, G will be a composition of unit interval and multi-interval strips

with an underlying multi-digraph H∗ such that |E(H∗)| ≤ (l+ 2)2 + l = O(1), and both H∗

and strips Se (for e ∈ E(H∗)) can be found in O(n2) time. Suppose a M -partition f of G

is given. For each strip Se (e ∈ E(H∗)) define L1
e, L

2
e and L3

e as the set of colors used by f

for at least one vertex in the set Xe, Se −Xe ∪ Ye and Ye, respectively. These sets have the

following properties:

Condition 1: For any e ∈ E(H∗), the instance Ie = (Se, Le) of the listM -partition problem

has a solution, where Le(u) is either L1
e, L

2
e or L3

e depending on whether u is in Xe, Se−
Xe ∪ Ye or Ye, respectively.

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 107

Condition 2: for any two distinct arcs e1, e2 ∈ E(H∗), any two indices i, j ∈ {1, 2, 3} and

any two colors c1 ∈ Li
e1 and c2 ∈ Lj

e2 , we must have M(c1, c2) = ∗, except the following

cases for which there is no restriction on M(c1, c2):

1. i = j = 1, and e1 and e2 have a common starting vertex.

2. i = j = 3, and e1 and e2 have a common end vertex.

3. i = 1, j = 3, and the start vertex of e1 is the same as the end vertex of e2.

4. i = 3, j = 1, and the end vertex of e1 is the same as the start vertex of e2.

It is easy to check that the reverse is also true. In other words, given the sets L1
e, L

2
e, L

1
e ∈

[l] assigned to each arc e ∈ E(H∗), if the above two conditions hold then we can construct a

M -partition for G by solving the instances Ie = (Se, Le) independently, for e ∈ E(H∗). Thus

the task of finding a M -partition for G is reduced to finding the sets L1
e, L

2
e, L

1
e (e ∈ E(H∗))

with the above conditions. Since |E(H∗)| = O(1), the total number of choices for all sets

Li
e, i = 1, 2, 3, e ∈ E(H∗), is O(1). We branch over all possible choices. For each choice,

we have to make sure that the above two conditions hold: for the first condition, note that

the strip (Se, Xe, Ye) (e ∈ E(H∗)) is either a unit interval or a multi-interval strip. In the

former case apply Theorem 5.2.4 and in the latter case apply Lemma 6.2.10 to conclude

that that the first condition can be checked in O(n2l+2) time. The second condition can be

checked easily in O(1) time. The solutions that we found by solving the instances Ie (when

checking the first condition) will constitute the final solution.

Now we can give the proof of Theorem 6.2.5:

Proof. By Lemma 6.2.8, we can obtain a quasi-line graph G′ in O(n6) time which has no

homogeneous pair of cliques. Thus based on Theorem 6.2.6, G′ is either a proper circular

arc graph or a composition of unit interval strips. We can check in O(n) time whether G

is a proper circular arc graph ([103]). If so then by applying Theorem 5.3.3 we can find

a M -partition for G (or decide its non-existence) in O(n13l) time, otherwise, we can apply

Lemma 6.2.11 and the theorem follows.

6.3 Claw-free Graphs

For the 0-diagonal matrices we offer the following complexity result:

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 108

Theorem 6.3.1. Suppose M is a 0-diagonal k×k matrix which does not contain 3-coloring.

Then the list M -partition problem, restricted to claw-free graphs, can be solved in polynomial

time (of order O(n2k+3)).

Proof. Let I = (G,L) be an instance of the list M -partition problem, in which G is a

claw-free. Here is the intuitive framework of this proof: observe that if M(c, c′) = 1, for

two distinct colors c and c′, then in any solution of I, at least one of these colors should

be used for at most two vertices (otherwise G will contain a claw which is contrary to our

assumption). Using this observation, we break I into sub-instances in order to get rid of

all the colors which are used at most twice. This way, in each sub-instance we will also get

rid of 1 entries in M which simplifies the problem to a great extent. To put it formally,

we define several parameters for any solution f of I: define Df as the set of colors used

by f for at most two vertices. Define gf : Df → 2V (G) as a function in which gf (c) is the

set of vertices v (possibly empty) colored with c (so, f(v) = c), for c ∈ Df . Obviously

gf (c)∩gf (c′) = ∅ for any two distinct colors c, c′ ∈ Df . Note that for any two distinct colors

c, c′ /∈ Df we must have M(c, c′) 6= 1, otherwise the vertices colored by c and c′ will contain

an induced subgraph isomorphic to a claw as each color c and c′ is used for at least three

vertices. But this is contrary to our assumption that G is claw-free.

Let Jf be the pair (Df , gf) and J̃ be the set of all possible choices for such pairs. More

precisely, to generate all the pairs J = (D, g) in J̃ we consider:

1. All subsets D ⊆ [m] such that M(c, c′) 6= 1 for any two distinct colors c, c′ /∈ D,

2. All functions g : D → 2V (G) with |g(c)| ≤ 2 and g(c) ∩ g(c′) = ∅ for any two distinct

colors c, c′ ∈ D.

Note that the set J̃ contains the pairs Jf for all possible solutions f of I, and it can be

generated in O(n2k) time (since we have O(1) many choices for the subset D and O(n2)

many choices for each value g(c)).

Now for each pair J = (D, g) ∈ J̃ , define IJ as a sub-instance of I which is obtained

by applying the constraints imposed by the pair J . More precisely, for each color c ∈ D,

pre-color all the vertices in g(c) with c (in the instance I) and remove c from the lists of all

other vertices (i.e., those not in the set g(c)). It is easy to see that any solution f of I is a

solution of the sub-instance IJf as well. This implies that I is broken into sub-instances IJ ,

for J ∈ J̃ . Moreover, we can construct each sub-instance IJ in O(n) time. Thus all such

sub-instances can be generated in O(n2k+1) time.

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 109

Now we show how to solve a sub-instance IJ . We first attempt to get rid of the pre-

colored vertices (i.e., the vertices in ∪c∈Dg(c)). We do so by updating the lists based on

the set of the pre-colored vertices and then eliminate these vertices from IJ . Call the new

instance I ′ = (G′, L′). Note that I ′ is an instance of the list M ′-partition problem, where

M ′ is the principal sub-matrix of M obtained by considering only the colors in [m] − D.

Note that M ′ is 1-free due to the condition we imposed on the set D. We can check in

O(n3) time whether G′ contains a triangle with vertices v1, v2, v3. If it does then I ′ has no

solution, since any solution f ′ requires that the colors f ′(vi) (i = 1, 2, 3) induce a sub-matrix

identical to 3-coloring in M ′ which contradicts our assumption. Thus we may assume that

G′ is triangle-free. Recall that G′ is also claw-free. This implies that G′ cannot contain any

vertex with degree more than two, and thus it is a union of paths and cycles. Since M ′ is 1-

free, by applying Observation 6.1.9, we can further reduce solving I ′ to solving the instances

(G′′, L′) of the list M ′-partition problem for all connected components G′′ of G′ which is

either a path or cycle. It is easy to see that the clique-width of any path or cycle is ≤ 3, and

the k-expression constructing it can be found in linear time. Thus by applying Corollary

1.3.3, each instance (G′′, L′) can be solved in linear time and the theorem follows.

Observation 6.3.2. Theorem 6.3.1 yields a dichotomy result for the list M -partition prob-

lem when M is a 0-diagonal k×k matrix and the input graph is restricted to claw-free graphs

or any subclass of claw-free graphs for which the 3-coloring problem is NP-complete. The

dichotomy is as follows: the problem can be solved in polynomial time (of order O(n2k+3))

if M does not contain 3-coloring, and otherwise it is NP-complete.

Considering the special case of the irreflexive list H-coloring problem (of the list M -

partition problem) leads to the following dichotomy result for H-coloring of claw-free graphs:

Corollary 6.3.3. Suppose H is a graph without loops on k vertices. If H contains no

triangle then the list H-coloring problem for claw-free graphs can be solved in polynomial

time (of order O(n2k+3)).

The list M -partition problem when M is a 1-diagonal matrix is equivalent to the list

M -partition problem for co-claw-free graphs (see Observation 2.7.1). Note that all bipartite

graphs are co-claw-free. Thus if M is 1-free (equivalently when M is 0-free) we can apply

Theorem 4.4.1 to obtain the following result:

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 110

Corollary 6.3.4. Suppose M is a 1-diagonal 0-free matrix. Then the list M -partition prob-

lem for claw-free graphs can be solved in polynomial time (of order O(n2)) if B corresponds

to a bipartite co-circular arc graph, and otherwise it is NP-complete.

It is still open to find a similar dichotomy result for the case when M is not necessarily

0-free.

Now we focus on the separation property for claw-free graphs. We conjecture that any

matrix not containing 3-coloring has the separation property for claw-free graphs. We prove

this conjecture with the additional assumption that the block C (see Figure 1.2) is 0-free:

Theorem 6.3.5. Let M be a 01-diagonal matrix which does not contain 3-coloring and its

block C is 0-free. Then M has the separation property for the class of claw-free graphs. More-

over, there exists an algorithm giving the separation property with running time O(n18klm),

where k and l are the sizes of the blocks A and B, respectively.

Proof. By applying Theorem 4.3.4, it is enough to find a polynomial-time algorithm ALG

which, given any instance I = (G,L) of the list M -partition problem with G being a claw-

free and a split pair (VQ, VS) in I, breaks I into sub-instances in which the sets VQ and VS

are separated. The intuition of this proof is very similar to that of Theorem 6.3.1: observe

that if M(c, c′) = 1 for a 0-color c and a 1-color c′ then in any solution of I either the color c

is used at most twice or the color c′ is not used at all (otherwise G will contain a claw which

is contrary to our assumption). Using this observation, we break I into sub-instance in order

to get rid of all the colors which are used at most twice. This way, in each sub-instance we

will also get rid of 1 entries in the block C which makes it all *, and clearly implies that

the sets VQ and VS are separated. To put it formally, we define several parameters for any

solution f of I: define Sf as the set of 0-colors used by f for at most two vertices in VS .

Define Qf as the set of 1-colors used by f for at least one vertex in VQ. Define gf : Sf → 2VS

as a function in which gf (c) is the set of vertices v ∈ VS (possibly empty) colored with c

(so, f(v) = c), for c ∈ Sf . Obviously gf (c)∩ gf (c′) = ∅ for any two distinct colors c, c′ ∈ Sf .

Suppose for a color c /∈ Sf and c′ ∈ Qf we have M(c, c′) = 1. Then any three distinct

vertices colored with c and any vertex colored with c′ (in f) will induce a claw in G (note

that VS is a stable set), which is a contradiction. Keeping in mind that the block C is 0-free,

we may conclude the important property that for any color c /∈ Sf and c′ ∈ Qf we have

M(c, c′) = ∗.

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 111

Let Jf be the tuple (Sf , Qf , gf) and J̃ be the set of all possible choices for such tuples.

More precisely, to generate all tuples J = (S,Q, g) in J̃ we consider:

1. All subsets S,Q ⊆ [m] such that M(c, c′) = ∗ for all colors c /∈ S and c′ ∈ Q,

2. All functions g : S → 2VS with |g(c)| ≤ 2 and g(c) ∩ g(c′) = ∅ for any two distinct

colors c, c′ ∈ S.

Note that the set J̃ contains the tuples Jf for all possible solutions f of I, and it can be

generated in O(n2k) time (since we have O(1) many choices for each subset S,Q, and we

have O(n2) many choices for each value gf (c), c ∈ S).

Now for each tuple J = (S,Q, g) ∈ J̃ , define IJ as a sub-instance of I which is obtained

by applying the constraints imposed by the tuple J . More precisely, apply the following

procedure to the instance I to obtain IJ :

1. For each color c ∈ S, pre-color all the vertices in g(c) with c and remove c from the

lists of all other vertices, i.e., those not in the set g(c). (This can be done in O(n)

time.)

2. For any vertex v ∈ VQ, remove from the list L(v) any color which is not in Q. (This

can be done in O(n) time.)

In order to get rid of the pre-colored vertices (i.e., vertices in ∪c∈Sg(c)) we update the lists

based on these vertices. This way, any pre-colored vertex becomes separated from all other

vertices. As for other vertices, note that the property that M(c, c′) = ∗ for any color c /∈ S
and c′ ∈ Q implies that any vertex in VS which is not pre-colored is separated from any

vertex in VQ. Thus the sets VQ and VS are separated in the sub-instance IJ . Also note

that any solution f of I is a solution of the sub-instance IJf , which implies that I is broken

into sub-instances IJ , for J ∈ J̃ . Moreover, we can construct each sub-instance IJ in O(n2)

time. Thus all such sub-instances can be generated in O(n2k+2) time.

Recall that Theorem 4.3.3 offers the separation property when the block C is *-free (for

all graphs). Combining this fact, Theorem 6.3.5 above, Observation 4.2.2, Theorem 6.3.1

and Corollary 6.3.4, we obtain the following dichotomy:

Theorem 6.3.6. Suppose M is a 01-diagonal matrix in which the block B is 0-free and the

block C is 0-free or *-free. Then the list M -partition problem, restricted to claw-free graphs,

CHAPTER 6. LINE, QUASI-LINE AND CLAW-FREE GRAPHS 112

can be solved in polynomial time (of order O(n72m
4
)) if M does not contain 3-coloring or

the complement of a matrix corresponding to a graph which is not a bipartite co-circular arc

graph, and otherwise it is NP-complete.

Observe that the above dichotomy is the same as the one given in Theorem 6.2.4 for

quasi-line graphs. This suggests that for the family of matrices M studied in these two

theorems, the extension from quasi-line graphs to claw-free graphs does not change the

dichotomy of list M -partition problems. It would be interesting to further investigate if this

is the case for other matrices as well. In other words, if there is any matrix M for which the

list M -partition problem is polynomial for quasi-line graphs, but NP-complete for claw-free

graphs.

Chapter 7

Graph Classes with Forbidden

Subgraphs

In this chapter we study the M -partition problem for the graph classes which can be charac-

terized by a set of forbidden subgraphs. Following the literature, we assume that all graphs

in this chapter are without loops. (Refer to Section 3.3 for more detail on the literature of

these graphs.) Here we should mention that the class of bipartite graphs is one example of a

class defined by a set of infinitely many forbidden subgraphs, namely odd cycles. We already

gave a partial dichotomy result for this class in Chapter 4, which covers 0-diagonal 1-free

matrices (see Theorem 4.4.1). For the same group of matrices, the same dichotomy holds

for general graphs according to [124]. This observation makes us suspect that analyzing the

list M -partition problem for general bipartite graphs could be as difficult as solving this

problem for general graphs. Thus we mainly focus on the case when the set of forbidden

subgraphs is finite, particularly when it has a single member H (namely, the class of H-free

graphs).

In the first section we consider the class of H-free graphs for arbitrary graph H. First,

we prove some partial dichotomy results which indicate that many M -partition problems for

H-free graphs have the same complexity as when limited to bipartite graphs (Theorems 7.1.1

and 7.1.1). These results will be used in the subsequent sections. Also recall that all list M -

partition problems are polynomial for the class of P4-free graphs (= cographs), according

to [180, 123]. We prove that for all graphs H different from P4 and its induced subgraphs,

there are some NP-complete M -partition problems for the class of H-free graphs (Corollary

113

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 114

7.1.4). Recall that identifying graph classes for which all list M -partition problems are

polynomial is an existing research direction (see Section 1.1).

In Section 7.2 and 7.3 we focus on two special cases of H-free graphs, namely P5-free

and bull-free graphs. Recall that both the P5 and the bull are one-vertex extensions of P4,

and the importance of these graph classes in studying the vertex coloring and the k-coloring

problems has been discussed in Section 3.3. We offer some partial dichotomy results for

these classes (Theorems 7.2.4 and 7.2.5 for P5-free graphs, and Theorem 7.3.2 for bull-free

graphs). We recall that, in Section 6.3, we have already studied another example of H-free

graphs, namely claw-free graphs. (Refer to that section for more details.)

7.1 H-free Graphs

In this section we study the complexity of the list M -partition problem for the class of H-

free graphs, mainly focusing on identifying those classes for which all M -partition problems

are polynomial.

Note that if H is non-bipartite then H-free graphs will contain bipartite graphs as

subclass. So applying Theorem 4.4.1 yields the following result:

Theorem 7.1.1. Let H be a non-bipartite graph. Suppose M is a 0-diagonal 1-free matrix.

Then the list M -partition problem, restricted to H-free graphs, can be solved in polynomial

time (of order O(n2)) if M corresponds to a bipartite co-circular arc graph, and otherwise

it is NP-complete.

Similarly, when H is non-co-bipartite, by applying Theorem 4.4.1 to the complement we

obtain the following dichotomy:

Theorem 7.1.2. Let H be a non-co-bipartite graph. Suppose M is a 1-diagonal 0-free

matrix. Then the list M -partition problem, restricted to H-free graphs, can be solved in

polynomial time (of order O(n2)) if B corresponds to a bipartite co-circular arc graph, and

otherwise it is NP-complete.

Theorems 7.1.1 and 7.1.1 are useful tools for analyzing the complexity of the list M -

partition problem for H-free graphs. They will be used in the next sections for studying

P5-free and bull-free graphs. Another implication of the above theorems is that there are

NP-complete patterns for H-free graphs when H is either non-bipartite or non-co-bipartite.

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 115

Therefore, we now focus on those graphs H not included in these theorems, namely when

both H and its complement are bipartite. A simple application of Ramsey theorem (see

[25]) along with some elementary arguments imply that such graphs H are limited to a few

specific graphs, namely C4, P4, P3, P2 and the complement of these graphs. The cases of

P2, P3, P4 and their complements all lead to subclasses of cographs, as cographs are P4-free.

Thus the list M -partition problem is polynomial for these classes according to [123]. As for

C4, note that its complement is an induced subgraph of P5. Using a result proved in the

next section (Lemma 7.2.1), we obtain the following corollary:

Corollary 7.1.3. Suppose M is a 1-diagonal l×l matrix. Then the list M -partition problem,

restricted to C4-free graphs, can be solved in polynomial time (of order O(nl
6
)).

The case of the list M -partition problem for C4-free graphs when M is a 0-diagonal

matrix, is left as an open problem. Nevertheless recall that the 3-coloring problem is NP-

complete for this class (according to [206]). So as a corollary of this analysis we may conclude

that:

Corollary 7.1.4. Let H be an arbitrary graph. If H is not P4 or any of its induced

subgraphs then there exist NP-complete list M -partition problems, even when restricted to

H-free graphs, otherwise all list M -partition problems, restricted to H-free graphs, are poly-

nomial.

7.2 P5-free Graphs

Since the graph P5 is non-co-bipartite, Theorem 7.1.2 offers a complete dichotomy for the

list M -partition problem for P5-free graphs when M is a 1-diagonal 0-free matrix. Now

we focus on the case of 0-diagonal matrices. Hoàng et al. [196] proved that the k-coloring

problem can be solved in polynomial time for P5-free graphs. Their approach can be easily

extended to any 0-diagonal matrix:

Lemma 7.2.1. Suppose M is a 0-diagonal k×k matrix. Then the list M -partition problem,

restricted to P5-free graphs, can be solved in polynomial time (of order O(nk
6
)).

Before proving this result, we need the following two lemmas as tools:

Lemma 7.2.2. Let G̃ be a hereditary graph class. Suppose we are given an algorithm to

solve any list M -partition problem, restricted to the connected graphs in G̃, in f(n) time.

Then the list M -partition problem, restricted to G̃, can be solved in O(n · f(n) + n2) time.

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 116

Proof. Let I = (G,L) be an arbitrary instance of the list M -partition problem with G ∈
G̃. Let C1, C2, · · ·Cr be the connected components of G. We can find these connected

components in O(|E(G)|) time (see [25]). For i = 1, 2, · · · r and a non-empty subset S ⊆ [m],

define I(i,S) as the instance (G[Ci], LS) of the list M -partition problem where LS(u) =

L(u) ∩ S (u ∈ V (Ci)). Let f be a solution of I, and Si be the set of colors used by f for at

least one vertex in the component Ci. It is easy to see that these sets satisfy the following

two conditions:

1. For any two indices 1 ≤ i 6= j ≤ r, there are no colors c ∈ Si and c′ ∈ Sj with

M(c, c′) = 1,

2. The instance I(i,Si) has a solution for i = 1, 2, · · · r (which is the solution f).

Note that the reverse is also true, i.e., given subsets Si ⊆ [m] satisfying the above conditions,

we can find a solution for I by putting the solutions of the instances I(i,Si) together. This

can be performed in O(n · f(n)) time. This reduces our task to finding such subsets Si.

To do so, let M ′ be a (2m − 1) × (2m − 1) symmetric matrix whose rows and columns

correspond to non-empty subsets of [m]. For any two non-empty subsets S, T ⊆ [m], the

entry M(S, T) is defined to be * if and only if for any two colors c ∈ S and c′ ∈ T we have

M(c, c′) 6= 1, otherwise it is defined to be 0. Denote by Kr the complete graph on r vertices

w1, w2, · · ·wr. Define the list L′ for Kr as follows: L′(wi) is the set of all subsets S ⊆ [m]

for which the instance I(i,S) has a solution. An easy argument shows that the sets Si have

the aforementioned two conditions if and only if they induce a solution for the instance

I ′ = (Kr, L
′) of the list M ′-partition problem (by defining Si to be the color of the vertex

wi). Thus it is sufficient to solve the instance I ′.

Note that the matrix M ′ can be constructed in O(1) time. Also each list L′(wi) can be

constructed by solving the instances I(i,S) for all non-empty subsets S ⊆ [m], which can be

performed in O(f(n)) time. Thus the instance I ′ can be constructed in O(n · f(n)) time.

Note that Kr is a complete graph which is a special type of cographs. Recall that any list

M ′-partition problem can be solved in linear time for the class of cographs ([180, 123]).

Thus I ′ (once constructed) can be solved in O(n) time and the lemma follows.

The concept of chain graph was first defined in [281]. We say that a pair (X,Y) of two

disjoint non-empty subsets of V (G) induces a chain graph in G if there exists an ordering

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 117

y1, y2, · · · y|Y | of Y such that the set of neighborhood of yi in the set X contains the neigh-

borhood of yi+1 in the set X (so, N(yi+1) ∩ X ⊆ N(yi) ∩ X), i = 1, 2, · · · |Y | − 1. This

ordering of Y is called the chain ordering of the set Y with respect to the set X.

Lemma 7.2.3. There exists a polynomial-time algorithm (of order O(n2m+1)) which, given

an instance I = (G,L) of the list M -partition problem and a pair (X,Y) inducing a chain

graph in G as input, breaks I into sub-instances in which the sets X and Y are separated.

Proof. Let y1, y2, · · · y|Y | be a chain ordering of Y with respect to X. The definition of

chain graph implies that the neighbourhood of any vertex x ∈ X in Y consists of vertices

y1, y2, · · · ydx for some integer 0 ≤ dx ≤ |Y |. The case of dx = 0 is interpreted as x being

adjacent to no vertex in Y . We define a set of ranges for each color in any solution f

of I as follows: let pf , qf be the functions such that for each color c ∈ [m], pf (c) (qf (c),

respectively) is the largest index r ≥ 0 for which the color c does not occur in the first (the

last, respectively) r vertices of Y (So f(yi) 6= c for i ∈ [1, pf (c)] and i ∈ [|Y |+1−qf (c), |Y |].)
Let Jf be the pair (pf , qf) and J̃ be the set of all possible choices for such pairs. More

precisely, to generate all the pairs (p, q) in J̃ , we consider all integers 0 ≤ p(c), q(c) ≤ |Y |,
for c ∈ [m]. Note that J̃ contains the pairs Jf for all possible solutions f of I (However,

it may contain pairs not corresponding to any solution.) Nevertheless, we can generate all

pairs of functions in J̃ in O(|Y |2m) time. Now for each pair J = (p, q) ∈ J̃ , define IJ as

a sub-instance of I which is obtained by applying the constraints imposed by the pair J .

More precisely, for each color c ∈ [m], remove c from the list of the first p(c) vertices and

the last q(c) vertices of the set Y , which can be done in O(|Y |) time. Note that for any

solution f of I, we have the following property: for any two (not necessarily distinct) colors

c and c′ with M(c, c′) = 0 (M(c, c′) = 1, respectively) and any vertex x ∈ X with c′ ∈ L(x),

if dx > pf (c) (|Y | − dx > qf (c), respectively) then f(x) 6= c′. Now based on this property

we apply the following changes to any sub-instance IJ , J = (p, q) ∈ J̃ : for any two (not

necessarily distinct) colors c and c′ with M(c, c′) = 0 (M(c, c′) = 1, respectively) and any

vertex x ∈ X with c′ ∈ L(x), if dx > p(c) (|Y |−dx > q(c), respectively) then remove c′ from

the list L(x). All these changes can be performed in O(|X|) time. It is easy to see that

after these changes, the sets X and Y are separated in the sub-instance IJ , and that any

solution f of I is a solution of the sub-instance IJf as well. This implies that I is broken

into sub-instances IJ , for J ∈ J̃ . Moreover, we can construct each sub-instance IJ in O(n)

time. Thus all such sub-instances can be generated in O(n2m+1) time.

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 118

This lemma is similar to Lemma 2 in [196], in which the same conclusion is made for the

case of the k-coloring problem (a special case of the M -partition problem). So the above

lemma is in fact a generalization of this result, however, we employed a different approach

to prove it.

Now we are ready to present the proof of Lemma 7.2.1 which is based on the same

approach and methods used in [196]:

Proof. Let I = (G,L) be an arbitrary instance of the list M -partition problem, in which G

is P5-free. By applying Lemma 7.2.2, we may assume that G is connected. A set D ⊆ V (G)

is called a dominating set if any vertex v ∈ V (G) −D is adjacent to at least one vertex in

D. It is known that every connected P5-free graph has either a clique or an an induced P3

subgraph which is a dominating set (Theorem 8 in [8]). Let k be the size of the matrix M .

Note that if G contains a clique of size k + 1 then clearly I has no solution. This can be

checked in O(nk+1) time. Otherwise we may deduce that G has a dominating set D with

size ≤ k, which can be found in O(nk+1) time.

Let d1, d2, · · · d|D| be an arbitrary ordering of set D. Define F1 as the set of the neigh-

borhood of the vertex d1 in the set V (G)−D. Then define F2 as the neighborhood of the

vertex d2 in the set V (G) −D − F1, and continue this process where in step 1 < i ≤ |D|,
define Fi as the set of the neighborhood of the vertex di in the set V (G)−D−∪i−1j=1Fj . Note

that the sets Fi form a partition of the set V (G)−D, and can be found in O(n) time.

The instance I can be broken into all possible pre-colorings of the set D. Note that since

|D| ≤ k, all these pre-colorings can be generated in O(1) time. For this reason, without the

loss of generality, we may assume that in the instance I, the set D is already pre-colored

(So the lists of all the vertices in D are singleton.) We also update the lists based on D

(i.e., for any vertex v0 ∈ D and v ∈ V (G), any color in L(v) which conflicts with the only

color in L(v0) will be removed, see Section 4.1). This ensures that the set D and V (G)−D
are separated in the instance I. This updating can be done in O(n) time.

Note that by limiting any solution f of I to the set Fi, we get an M -partition for the

graph G[Fi]. On the other hand, since the single color in the list L(di) is not used in this

M -partition, we may conclude that I has a solution only if each graph G[Fi], i = 1, 2, · · · |D|,
has a list Mi-partition, where Mi is obtained from M by removing the color in the list L(di)

from it. Since Mi has a smaller size than M , we can handle the Mi-partition problem using

recursion: define f(n, k) (n, k ≥ 1) as the running time needed to solve any instance of the

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 119

list M -partition problem for any 0-diagonal matrix M of size k and any P5-free graph with

n vertices. This implies that for each graph G[Fi], we find an Mi-partition or decide that

none exists in O(f(n, k− 1)) time. If some graph G[Fi] has no Mi-partition then I also will

have no solution and we can terminate the algorithm right away. Otherwise, each set Fi

is partitioned into classes Xi
1, X

i
2, · · ·Xi

k−1 such that each class is a (possibly empty) stable

set.

An important property of these classes is that any two non-empty classes Xi
p and Xj

q

(1 ≤ i < j ≤ |D|, 1 ≤ p, q < k) belonging to two distinct sets Fi and Fj induce a chain graph

in G. To prove this, suppose (Xi
p, X

j
q) does not induce a chain graph in G. This implies

that there exist distinct vertices u, v ∈ Xi
p and distinct vertices u′, v′ ∈ Xj

q such that u is

adjacent to u′, but not to v′, and v is adjacent to v′ but not to u′. Recall that the definition

of the sets Fi implies that the vertex di is adjacent to u and v but not to u′ and v′. This

means the vertices di, u, v, u
′, v′ induce a P5 in G which is contrary to the assumption that

G is P5-free.

Let P1, P2, · · ·Pr be an arbitrary ordering of all the pairs (Xi
p, X

j
q), for 1 ≤ i < j ≤

|D|, 1 ≤ p, q ≤ k− 1, for which both classes Xi
p and Xj

q are non-empty. Note that each pair

Pi induces a chain graph in G. So by repeatedly applying Lemma 7.2.3 to each pair Pi,

i = 1, 2, · · · r, we can break I into sub-instances in which the sets in each pair are separated.

More precisely, we perform the following procedure to break I:

1. Initially set Ĩ = {I},

2. For i = 1, 2, · · · r do as follows: for each instance I ′ ∈ Ĩ, apply Lemma 7.2.3 to break

I ′ into sub-instances in which the sets in the pair Pi are separated, and replace I ′ with

these sub-instances (in the set Ĩ).

It is easy to see that after this procedure, for any sub-instance in Ĩ, the sets in each pair Pi

(1 ≤ i ≤ r) are separated. This implies that any two distinct sets Fi and Fj are separated.

Also note that I is broken into the sub-instance in Ĩ (as a result of repeatedly breaking

each member in the above procedure). To analyze the running time of breaking I, let ai

be the number of sub-instances in Ĩ in the i-th iteration (i.e., when we are considering the

pair Pi). Recall that the running time of the algorithm given in Lemma 7.2.3 is bounded

by O(n2k+1). Thus we have ai+1 = O(n2k+1 · ai), for i = 1, 2, · · · r − 1, which implies that

ai = O(n(i−1)(2k+1)). Note that r ≤
(
k
2

)
· (k − 1)2. Thus the running time of the above

procedure is O(nk
5
).

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 120

Let I ′ = (G,L′) be a sub-instance in Ĩ. Since the sets Fi are pairwise separated in I ′,

solving I ′ consists of solving the list M -partition problem for each sub-instance (G[Fi], L
′)

independently. Now as the single color in the list L(di) should not be used for any vertex

in Fi, each sub-instance (G[Fi], L
′) is actually an instance of the list Mi-partition problem

(where Mi is obtained from M by removing the row and the column corresponding to the

color in the singleton list L(di)). Thus we can solve all these sub-instances in O(f(n, k−1))

time. In conclusion we obtain the following recursion for the running time f(n, k) (keep in

mind that we applied Lemma 7.2.2 in the beginning of this proof):

f(n, k) = O(nk+2 + n(nk
5

+ 1) · f(n, k − 1) + n2)

This implies that f(n, k) = O(nk
6
)

Having studied the cases of 0-diagonal and 1-diagonal matrices for P5-free graphs, we

now study the separation property for these graphs. Recall that when the block C is either

*-free or all * then the separation property holds for general graphs (Theorem 4.3.3). So

applying Observation 4.2.2 along with the results of this section leads to the following

dichotomy results:

Theorem 7.2.4. Suppose M is a 01-diagonal matrix in which the block B is 0-free and

the block C is either *-free or all *. Then the list M -partition problem, restricted to P5-free

graphs, can be solved in polynomial time (of order O(n12m
8
)) if B corresponds to a bipartite

co-circular arc graph, and otherwise it is NP-complete.

Theorem 7.2.5. Suppose M is a 01-diagonal matrix in which the block C is either *-free

or all *. Then the list M -partition problem, restricted to {P5, P5}-free graphs, can be solved

in polynomial time (of order O(n6m
8
)).

Recall that the class of {P5, P5}-free graphs, mentioned in Theorem 7.2.5, is an important

subclass of P5-free graphs, partially since it is a self-complementary class (see Section 3.3

for more details).

Note that in both theorems above, some restrictions are imposed on the block C. To

justify these restrictions, we introduce many 01-diagonal matrices M with blocks A and

B for which the list A-partition and the list B-partition problems are both polynomial for

P5-free graphs, while the list M -partition problem itself is NP-complete for P5-free graphs.

This serves as a strong evidence that without any restriction on the block C, the separation

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 121

property does not always hold for P5-free graphs, unless P = NP . To analyze the situation,

we define the *-clique number of any 0-diagonal matrix M as the maximum cardinality of

a subset S ⊆ [m] of colors such that the principal submatrix of M whose rows and columns

are corresponding to the colors in S is 1-free. We also define the *-clique number of any 1-

diagonal matrix M as the *-clique number of its complement. The following theorem offers

many matrices M for which the separation property even for {P5, P5}-free graphs does not

hold, unless P = NP .

Theorem 7.2.6. Let A′ and B′ be a 0-diagonal k × k and a 1-diagonal l × l matrices,

respectively. Suppose both A′ and B′ have *-clique number ≥ 3. Then there exists a 01-

diagonal matrix whose blocks A and B are identical to A′ and B′, respectively, and the list

M -partition problem is NP-complete even when restricted to {P5, P5}-free graphs.

Proof. The proof is similar to Theorem 3.2 in [131]. The definition of *-clique number

implies that there must be three colors c0, c1, c2 in A′ such that A′(ci, cj) 6= 1, 0 ≤ i 6= j ≤ 2.

Similarly, there must be three colors c′0, c
′
1, c
′
2 in B′ such that B′(c′i, c

′
j) 6= 0, 0 ≤ i 6= j ≤ 2.

Let H be a graph with six vertices c0, c1, c2, c
′
0, c
′
1, c
′
2. To facilitate the exposition, call the

vertices in the first part white vertices and the vertices in the second part black vertices. The

adjacencies of H will be defined later. Let I = (G,L) be an instance of the list H-coloring

problem with this condition: G is a bipartite graph and the lists of all the vertices in the

first part of G consist only of the white vertices (of H), and the lists of all the vertices in the

second part of G consists only of the black vertices (of H). Feder el al. [124] showed that

solving the instances of the list H-coloring problem with the aforementioned condition is

NP-complete if H is not a co-circular arc graph. So let us define the adjacency of H in such

a way that it becomes a non co-circular arc graph. For example, we could take H to have

the edges cic
′
i−1 and cic

′
i+1 for i = 0, 1, 2 (index calculations are all modulo 3). To prove

that the graph H is not a co-circular arc graph, we need a few definitions. Suppose a graph

F with clique-covering number at most two is given. The auxiliary graph F ′ is constructed

by assigning a vertex to each edge of F such that two distinct edges of F are adjacent in

F ′ if and only if their endpoints form a chordless cycle of order 4 in F . A result of P. Hell

et al. [181] states that F is a circular arc graph if and only if F ′ is bipartite. To use this

result, let F be the complement of H. Note that V (F) can be partitioned into two cliques

(namely the sets {c0, c1, c2} and {c′0, c′1, c′2}), and the three edges cic
′
i, for i = 0, 1, 2, induce

a triangle in F ′. Thus F ′ cannot be bipartite, and it implies that H is not a co-circular arc

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 122

graph.

Let M be a matrix whose blocks A and B are indentical to A′ and B′, respectively, and

whose block C is defined as follows: for i, j = 0, 1, 2, let C(ci, c
′
j) = ∗ if the vertices ci and

c′j are adjacent in H, define all other entries of C to be 0. Now we show how to reduce

the list H-coloring problem for the instances I = (G,L) with the aforementioned condition

to the list M -partition problem for {P5, P5}-free graphs. Obtain the graph G′ from G by

adding all edges between the pairs of vertices in the second part of G. Now it is easy to see

that I has a solution if and only if the instance (G′, L) of the list M -partition problem has

a solution. This completes our reduction. Note that graph G′ is a split graph, and thus is

{P5, P5}-free.

In the above theorem, note that the list A-partition and the list B-partition problems

for {P5, P5}-free graphs both can be solved in polynomial time (see Theorem 7.2.5). Thus

for the matrices M introduced in the above theorem, the separation property is not likely

to hold for P5-free graphs (unless P = NP). But on the other hand, by bringing the

*-chromatic number down to 2, we can prove the separation property:

Theorem 7.2.7. Suppose M is a 01-diagonal matrix in which the blocks A and B both

have *-chromatic number ≤ 2. Then the list M -partition problem, restricted to {P5, P5}-
free graphs, can be solved in polynomial time (of order O(n2m

6
)).

Proof. Let I = (G,L) be an instance of the list M -partition problem, in which G is

{P5, P5}-free. Using Lemmas 4.3.2 and Lemma 7.2.1, we can break I into list-homogeneous

sub-instances in O(nm
6+2kl+3) time. Let I ′ = (G,L′) be one of these sub-instances. Let

(V A, V B) be the homogeneous partition of I ′. A necessary condition for I ′ to have a solu-

tion is that the subgraph G[V A] and G[V B] should be A-partitionable and B-partitionable,

respectively. Given that G is {P5, P5}-free, according to Lemma 7.2.1, we can find such

partitions or declare their non-existance in O(nm
6
) time. Suppose these partitions exist

(otherwise I ′ has no solution). Let V A1, V A2, · · ·V Ak and V B1, V B2, · · ·V Bl be the A-

partition and the B-partition of G[V A] and G[V B], respectively. The fact that A has

*-chromatic number ≤ 2 implies that in any solution of I, the vertices in each part V Ai,

i = 1, 2, · · · k, cannot take more than two colors. The same conclusion also holds for each

part V Bj , j = 1, 2, · · · l. Based on this observation, define D̃ as the set of all functions

D : [m] → 2[m] with |D(i)| ≤ 2, for i ∈ [m]. For each function D ∈ J̃ , define the sub-

instance I ′D by applying the following changes to I ′:

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 123

1. For i ∈ [k], remove from the list of any vertex in V Ai+1 any color which is not in the

set D(i). (This can be done in O(n) time.)

2. For i ∈ [m] − [k], remove from the list of any vertex in V Bi−k+1 any color which is

not in the set D(i) (can be done in O(n) time.)

It is easy to see that I ′ is broken into sub-instances I ′D, for D ∈ D̃. Note that we can

construct each sub-instance I ′D in O(n) time (see the procedure above). Thus all such sub-

instances can be generated in O(n) time (since the total number of functions in D̃ is O(1)).

Note that for any sub-instance I ′D, each list will have at most two members, and thus we

can reduce the problem of solving I ′D to an instance of the 2-SAT problem which can be

solved in O(n2) time. Thus I ′ can be solved in O(n2) time.

Finding similar complexity results for the case in which one of the blocks (A or B) has

*-chromatic number ≤ 2 and the other ≥ 3 is an open problem.

7.3 Bull-free Graphs

Recall that the bull is a graph consisting of a triangle with two pendant edges (See Figure

3.1, and refer to Section 3.3 for the historic background.) The bull is a non-bipartite graph

and its compliment is isomorphic to the bull again (i.e., it is self-complementary). So by

using Theorems 7.1.1 and 7.1.2, we can deduce a complete dichotomy for the list M -partition

problem restricted to bull-free graphs when M is 0-diagonal 1-free or 1-diagonal 0-free. The

additional advantage of the class of bull-free graphs is that, it has the separation property:

Lemma 7.3.1. Any 01-diagonal matrix M has the separation property for bull-free graphs.

Moreover, there exists an algorithm giving the separation property with running time O(n30klm),

where k and l are the sizes of the blocks A and B of M , respectively.

Proof. By applying Theorem 4.3.4, it is enough to find a polynomial-time algorithm ALG

which, given any instance I = (G,L) of the list M -partition problem with G being a bull-

free and a split pair (VQ, VS) in I, breaks I into sub-instances in which the sets VQ and

VS are separated. We claim that the set VQ can be partitioned into two sets Q0 and Q1

such that the pair (VS , Qi), for i = 0, 1, induces a chain graph in G. To prove this, suppose

the pair (VQ, VS) does not induce a chain graph, otherwise the claim is proved by defining

Q0 = VQ and Q1 = ∅. This implies that there exist two distinct vertices u0, u1 ∈ VS and

CHAPTER 7. GRAPH CLASSES WITH FORBIDDEN SUBGRAPHS 124

two distinct vertices u′0, u
′
1 ∈ VQ such that ui is adjacent to u′i but not to u′i+1, for i = 0, 1

(index calculations are modulo 2). This means any vertex u ∈ VQ − {u′0, u′1} together with

vertices u0, u1, u
′
0, u
′
1 induce a bull in G, unless u is adjacent to u0 or u1 (or both). This

implies that set VQ can be partitioned into sets Q0 and Q1 such that any vertex in Qi is

adjacent to ui, for i = 0, 1. Now suppose for some 0 ≤ i ≤ 1, the pair (VS , Qi) does not

induce a chain graph in G. This implies that there exist distinct vertices v0, v1 ∈ VS and

distinct vertices v′0, v
′
1 ∈ Qi such that vj is adjacent to v′j but not to v′j+1, for j = 0, 1. Now

vertices v0, v1, v
′
0, v
′
1 and ui together induce a bull in G, which is a contradiction. Thus the

partition VQ = Q0 ∪Q1 proves the claim.

Let P0 and P1 be the pair (Q0, VS) and (Q1, VS), respectively. Recall that each pair Pi

induces a chain graph in G. In the first step, we apply Lemma 7.2.3 for the instance I and

the pair P0 to break I into sub-instances in which the sets Q0 and VS are separated. In the

second step, for each sub-instance I ′ of these sub-instances, we apply Lemma 7.2.3 for I ′

and the pair P1 to break I ′ into sub-instances in which the sets Q1 and VS are separated.

Let Ĩ be the set of all sub-instances produced in the second step. Note that in any of

these sub-instances the sets VQ and VS are separated. Also note that I is broken into

the sub-instance in Ĩ. To analyze the running time of breaking I, note that in the first

step we produce O(n2m+1) many sub-instance, and in the second step we break each sub-

instance into O(n2m+1) many sub-instances. Thus |Ĩ| = O(n4m+2). Note that the partition

VQ = Q0 ∪ Q1 can be found in O(n4) time. Thus the total running time of breaking I

is O(n4m+2). According to Theorem 4.3.4, there exists an algorithm giving the separation

property with running time O(n30klm).

Using these results, along with Observation 4.2.2, we can deduce the following dichotomy:

Theorem 7.3.2. Suppose M is a 01-diagonal matrix in which the block A and B are 1-free

k × k and 0-free l × l matrices, respectively (see Figure 1.2). Then the list M -partition

problem, restricted to bull-free graphs, can be solved in polynomial time (of order O(n60klm))

if both A and B correspond to bipartite co-circular arc graphs, and otherwise it is NP-

complete.

Bibliography

[1] American institute of mathematics. The perfect graph conjec-
ture workshop, october 30-november 3, 2002. Available online at
http://www.aimath.org/WWN/perfectgraph. Accessed: 16 June 2013.

[2] Albertson, M. O., Catlin, P. A., and Gibbons, L. Homomorphisms of 3-
chromatic graphs, ii. Congressus Numerantium 47 (1985), 19–28.

[3] Alon, N. Restricted colorings of graphs. Surveys in combinatorics 187 (1993), 1–33.

[4] Alon, N., and Tarsi, M. Colorings and orientations of graphs. Combinatorica 12
(1992), 125–134.

[5] Andrews, P. B. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, 2nd ed. Kluwer Academic Publishers, Berlin, 2002.

[6] Appel, K., and Haken, W. Every planar map is four colourable. Illinois Journal
of Mathematics 21, 3 (1977), 429–567.

[7] Arbib, C., and Mosca, R. On (P5, diamond)-free graphs. Discrete Mathematics
250 (2002), 1–22.

[8] Bacso, G., and Tuza, Z. Dominating cliques in P5-free graphs. Periodica Mathe-
matica Hungarica 21, 4 (1990), 303–308.

[9] Bang-Jensen, J., and Hell, P. The effect of two cycles on the complexity of
colouring by directed graphs. Discrete Applied Mathematics 26 (1990), 1–23.

[10] Bang-Jensen, J., Hell, P., and MacGillivray, G. The complexity of colourings
by semi-complete digraphs. SIAM Journal on Discrete Mathematics 1 (1988), 281–
298.

[11] Bang-Jensen, J., Hell, P., and MacGillivray, G. On the complexity of colour-
ing by superdigraphs of bipartite graphs. Discrete Mathematics 109 (1992), 27–44.

[12] Bang-Jensen, J., Hell, P., and MacGillivray, G. Hereditarily hard h-colouring
problems. Discrete Mathematics 138 (1995), 75–92.

125

BIBLIOGRAPHY 126

[13] Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., and Schieber, B. A
unified approach to approximating resource allocation and scheduling. Journal of the
ACM 48, 5 (2001), 1069–1090.

[14] Barto, L. The dichotomy for conservative constraint satisfaction problems revisited.
In Logic in Computer Science (LICS), 2011 26th Annual IEEE Symposium on (2011),
pp. 301–310.

[15] Barto, L., Kozik, M., and Niven, T. The csp dichotomy holds for digraphs with
no sources and sinks (a positive answer to a conjecture of bang-jensen and hell). SIAM
Journal on Computing 38 (2008), 1782–1802.

[16] Beineke, L. W. Characterizations of derived graphs. Journal of Combinatorial
Theory 9 (1970), 129–135.

[17] Bender, E. A., Richmond, L. B., and Wormald, N. C. Almost all chordal
graphs split. J. Austral. Math. Soc. 38, 2 (1985), 214–221.

[18] Benzaken, C., and Hammer, P. L. Linear separation of dominating sets in graphs.
Annals of Discrete Mathematics 3 (1978), 1–10.

[19] Berge, C. Les problemes de coloration en theorie des graphes. Publ. Inst. Statist.
Univ. Paris 9 (1960), 123–160.

[20] Berge, C. Graphs and Hypergraphs. Amsterdam: North-Holland, 1973.

[21] Bixby, R. A composition for perfect graphs. North-Holland mathematics studies 88
(1984), 221–224.

[22] Bloom, G., and Burr, S. On unavoidable digraphs in orientations of graphs.
Journal of Graph Theory 11 (1987), 453–462.

[23] Bodirsky, M., Kára, J., and Martin, B. The complexity of surjective homomor-
phism problems – a survey. CoRR abs/1104.5257 (2011).

[24] Boliac, R., and Lozin, V. V. An augmenting graph approach to the stable set
problem in P5-free graphs. Discrete Applied Mathematics 131 (2003), 567–575.

[25] Bondy, J. A., and Murty, U. S. R. Graph theory with applications, vol. 290.
Macmillan London, 1976.

[26] Booth, K. S., and Lueker, G. S. Testing for the consecutive ones property,
interval graphs, and graph planarity using pq-tree algorithms. Journal of computer
and system sciences 13, 3 (1976), 335–379.

[27] Brandstädt, A. Partitions of graphs into one or two stable sets and cliques.
Informatik-Berichte Nr. 105, 1/1991, FernUniversitat Hagen Technical Report, Ha-
gen, Germany, 1991.

BIBLIOGRAPHY 127

[28] Brandstädt, A. Partitions of graphs into one or two independent sets and cliques.
Discrete Mathematics 152, 1 (1996), 47–54.

[29] Brandstädt, A., Dragan, F. F., Le, H. O., and Mosca, R. New graph classes
of bounded clique-width. Theory of Computing Systems 38, 5 (2005), 623–645.

[30] Brandstädt, A., Dragan, F. F., Le, V. B., and Szymczak, T. On stable
cutsets in graphs. Discrete Applied Mathematics 105, 1 (2000), 39–50.

[31] Brandstädt, A., and Hammer, P. L. On the stability number of claw-free P5-free
and more general graphs. Discrete Applied Mathematics 95 (1999), 163–167.

[32] Brandstädt, A., Hammer, P. L., Le, V. B., and Lozin, V. V. Bisplit graphs.
Discrete Mathematics 299 (2005), 11–32.

[33] Brandstädt, A., and Kratsch, D. On the restriction of some np-complete graph
problems to permutation graphs. In Fundamentals of Computation Theory (1985),
pp. 53–62.

[34] Brandstädt, A., Le, V. B., and Spinrad, J. Graph Classes: A Survey. SIAM
Monographs on Discrete Mathematics and Applications, 1999.

[35] Brandstädt, A., and Lozin, V. V. On the linear structure and clique-width of
bipartite permutation graphs. Ars Combinatoria 67, 1 (2003), 273–281.

[36] Brandstädt, A., and Mosca, R. On the structure and stability number of p5-
and co-chair-free graphs. Discrete Applied Mathematics 132 (2004), 47–65.

[37] Brandstädt, A., and V. Le, T. S. The complexity of some problems related to
graph 3-colorability. Discrete Applied Mathematics 89 (1998), 59–73.

[38] Broersma, H., Golovach, P. A., Paulusma, D., and Song, J. Narrowing down
the gap on the complexity of coloring Pk-free graphs. In Graph Theoretic Concepts in
Computer Science (2010), pp. 63–74.

[39] Broersma, H., Golovach, P. A., Paulusma, D., and Song, J. On coloring
graphs without induced forests. In Algorithms and Computation. Springer, 2010,
pp. 156–167.

[40] Brown, D. E. Several characterizations for unit interval bigraphs. manuscript (2005).

[41] Brown, D. E., Lundgren, J. R., and Flink, S. C. Characterizations of interval
bigraphs and unit interval bigraphs. Congressus Numerantium 157 (2002), 79–93.

[42] Brown, D. E., Lundgren, J. R., and Miller, C. Variations on interval graphs.
Congressus Numerantium 149 (2001), 77.

BIBLIOGRAPHY 128

[43] Bulatov, A. A dichotomy theorem for constraints on a three-element set. In Foun-
dations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium
on (2002), pp. 649–658.

[44] Bulatov, A. Tractable conservative constraint satisfaction problems. In Logic
in Computer Science, 2003. Proceedings. 18th Annual IEEE Symposium on (2003),
IEEE, pp. 321–330.

[45] Bulatov, A., and Jeavons, P. Algebraic structures in combinatorial problems.
Technical Report MATH-AL-4-2001.

[46] Bulatov, A., Krokhin, A., and Jeavons, P. Constraint satisfaction problems
and finite algebras. In Automata, languages and programming. 2000, pp. 272–282.

[47] Burlet, M., and Fonlupt, J. Polynomial algorithm to recognize a meyniel graph.
North-Holland mathematics studies 88 (1984), 225–252.

[48] Cameron, K., Eschen, E. M., Hoàng, C. T., and Sritharan, R. The complex-
ity of the list partition problem for graphs. SIAM Journal on Discrete Mathematics
21, 4 (2007), 900–929.

[49] Chernyak, Z. A., and Chernyak, A. A. About recognizing (α, β) classes of polar
graphs. Discrete Mathematics 62 (1986), 133–138.

[50] Chudnovsky, M. Berge trigraphs. Journal of Graph Theory 53 (2006), 1–55.

[51] Chudnovsky, M. The structure of bull-free graphs ithree-edge-paths with centers
and anticenters. Journal of Combinatorial Theory, Series B 102 (2012), 233–251.

[52] Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., and Vus̃kovic, K.
Recognizing berge graphs. Combinatorica 25, 2 (2005), 143–186.

[53] Chudnovsky, M., Robertson, N., Seymour, P., and Thomas, R. The strong
perfect graph theorem. Annals of Mathematics 164 (2006), 51–229.

[54] Chudnovsky, M., and Seymour, P. The structure of claw-free graphs. Surveys in
Combinatorics (2005), 153–171.

[55] Chvátal, V. Website on perfect graph problems.

[56] Chvátal, V. Star-cutsets and perfect graphs. Journal of Combinatorial Theory,
Series B 39, 3 (1985), 189–199.

[57] Chvátal, V., and Hammer, P. L. Aggregation of inequalities in integer program-
ming. Annals of Discrete Mathematics 1 (1977), 145–162.

[58] Chvátal, V., Hoáng, C. T., Mahadev, N. V. R., and de Werra, D. Four
classes of perfectly orderable graphs. Journal of Graph Theory 11 (1987), 481–495.

BIBLIOGRAPHY 129

[59] Chvátal, V., and Sbihi, N. Bull-free berge graphs are perfect. Graphs and Com-
binatorics 3 (1987), 127–139.

[60] Cohen, J. E. Food webs and niche space. Monographs in Population Biology. Prince-
ton University Press, 1978.

[61] Cook, K., Dantas, S., Eschen, E. M., Faria, L., De-Figueiredo, C. M. H.,
and Klein, S. 2K2 partitions into non-empty parts. Discrete Mathematics 310
(2010), 1259–1264.

[62] Corneil, D. G., Lerchs, H., and Burlingham, L. S. Complement reducible
graphs. Discrete Applied Mathematics 3 (1981), 163–174.

[63] Corneil, D. G., Perl, Y., and Stewart, L. K. A linear recognition algorithm
for cographs. SIAM Journal on Computing 14 (1985), 926–934.

[64] Cornuéjols, G., and Cunningham, W. H. Compositions for perfect graphs.
Discrete Mathematics 55 (1985), 245–254.

[65] Cornuéjols, G., and Reed, B. Complete multi-partite cutsets in minimal imper-
fect graphs. Journal of Combinatorial Theory, Series B 59 (1993), 191–198.

[66] Courcelle, B. The expression of graph properties and graph transformations in
monadic second-order logic. In Handbook of Graph Grammars and Computing by
Graph Transformations, G. Rozenberg, Ed., vol. 1. 1997, pp. 313–400.

[67] Courcelle, B., Engelfriet, J., and Rozenberg, G. Handle-rewriting hyper-
graph grammars. Journal of computer and system sciences 46 (1993), 218–270.

[68] Courcelle, B., Makowsky, J. A., and Rotics, U. Linear time solvable opti-
mization problems on graphs of bounded clique width. Theory of Computing Systems
33 (2000), 125–150.

[69] Courcelle, B., and Olariu, S. Upper bounds to the clique-width of graphs.
Discrete Applied Mathematics 101 (2000), 77–114.

[70] Cournier, A., and Habib, M. A new linear algorithm for modular decomposition.
In Trees in Algebra and Programming-CAAP’94. 1994, pp. 68–84.

[71] Couturier, J. F., Golovach, P. A., Kratsch, D., and Paulusma, D. List
coloring in the absence of a linear forest. In Graph-Theoretic Concepts in Computer
Science (2011), pp. 119–130.

[72] Couturier, J. F., Golovach, P. A., Kratsch, D., and Paulusma, D. On the
parameterized complexity of coloring graphs in the absence of a linear forest. Journal
of Discrete Algorithms (2012), 56–62.

BIBLIOGRAPHY 130

[73] Creignou, N., Khanna, S., and Sudan, M. Complexity Classifications of Boolean
Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and
Applications, 2001.

[74] Crochemore, M., Hermelin, D., Landau, G. M., and Vialette, S. Approxi-
mating the 2-interval pattern problem. In Algorithms–ESA 2005. 2005, pp. 426–437.

[75] Cunningham, W. H. A Combinatorial Decomposition Theory. Ph.D. thesis, Univer-
sity of Waterloo, 1973.

[76] Cunningham, W. H. Decomposition of directed graphs. SIAM Journal on Algebraic
and Discrete Methods 3 (1982), 214–228.

[77] Cunningham, W. H., and Edmonds, J. A combinatorial decomposition theory.
Canad. J. Math. 32 (1980), 734–765.

[78] Cygan, M., Pilipczuk, M., Pilipczuk, M., and Wojtaszczyk, J. The stubborn
problem is stubborn no more: a polynomial algorithm for 3-compatible colouring and
the stubborn list partition problem. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms (2011), pp. 1666–1674.

[79] Dabrowski, K., Lozin, V. V., Raman, R., and Ries, B. Colouring vertices
of triangle-free graphs. In Graph Theoretic Concepts in Computer Science (2010),
pp. 184–195.

[80] Dalmau, V. Constraint satisfaction problems in non-deterministic logarithmic space.
In Automata, Languages and Programming. 2002, pp. 414–425.

[81] Damaschke, P. Induced subgraphs and well-quasi-ordering. Journal of Graph Theory
14, 4 (1990), 427–435.

[82] Dantas, S., De-Figueiredo, C. M. H., Gravier, S., and Klein, S. Finding
h-partitions efficiently. Informatique théorique et applications 39, 1 (2005), 133–144.

[83] Das, S., Sen, M., Roy, A. B., and West, D. B. Interval digraphs: An analogue
of interval graphs. Journal of Graph Theory 13, 2 (1989), 189–202.

[84] David, S. J. The np-completeness column: an ongoing guide. Journal of Algorithms
6 (1985), 434–451.

[85] De-Figueiredo, C. M. H., Klein, S., Kohayakawa, Y., and Reed, B. A.
Finding skew partitions efficiently. Journal of Algorithms 37, 2 (2000), 505–521.

[86] De-Figueiredo, C. M. H., and Maffray, F. Optimizing bull-free perfect graphs.
SIAM Journal on Discrete Mathematics 18 (2004), 226–240.

[87] De-Figueiredo, C. M. H., Maffray, F., and Porto, O. On the structure of
bull-free perfect graphs. Graphs and Combinatorics 13 (1997), 31–55.

BIBLIOGRAPHY 131

[88] de Ridder, H. N., e. a. Information system on graph
classes and their inclusions (chordal graphs). Available online at
http://www.graphclasses.org/classes/gc 32.html. Accessed: 28 October 2012.

[89] de Ridder, H. N., e. a. Information system on graph classes and their inclusions
(circle graphs). Available online at http://www.graphclasses.org/classes/gc 132.html.
Accessed: 28 October 2012.

[90] de Ridder, H. N., e. a. Information system on graph classes
and their inclusions (circular arc graphs). Available online at
http://www.graphclasses.org/classes/gc 133.html. Accessed: 28 October 2012.

[91] de Ridder, H. N., e. a. Information system on graph classes and their inclusions
(cographs). Available online at http://www.graphclasses.org/classes/gc 151.html. Ac-
cessed: 28 October 2012.

[92] de Ridder, H. N., e. a. Information system on graph classes
and their inclusions (comparability graphs). Available online at
http://www.graphclasses.org/classes/gc 72.html. Accessed: 28 October 2012.

[93] de Ridder, H. N., e. a. Information system on graph classes and
their inclusions (containment graphs of circular arcs). Available online at
http://www.graphclasses.org/classes/gc 136.html. Accessed: 28 October 2012.

[94] de Ridder, H. N., e. a. Information system on graph classes and
their inclusions (interval containment bigraphs). Available online at
http://www.graphclasses.org/classes/gc 891.html. Accessed: 28 October 2012.

[95] de Ridder, H. N., e. a. Information system on graph classes and their inclusions (in-
terval graphs). Available online at http://www.graphclasses.org/classes/gc 234.html.
Accessed: 28 October 2012.

[96] de Ridder, H. N., e. a. Information system on graph classes and their inclusions
(line graphs). Available online at http://www.graphclasses.org/classes/gc 249.html.
Accessed: 28 October 2012.

[97] de Ridder, H. N., e. a. Information system on graph classes and their inclusions
(main page). Available online at http://www.graphclasses.org/classes. Accessed: 28
October 2012.

[98] de Ridder, H. N., e. a. Information system on graph classes
and their inclusions (perfectly orderable graphs). Available online at
http://www.graphclasses.org/classes/gc 4.html. Accessed: 28 October 2012.

[99] de Ridder, H. N., e. a. Information system on graph classes
and their inclusions (permutation graphs). Available online at
http://www.graphclasses.org/classes/gc 288.html. Accessed: 28 October 2012.

BIBLIOGRAPHY 132

[100] de Ridder, H. N., e. a. Information system on graph classes
and their inclusions (proper interval bigraphs). Available online at
http://www.graphclasses.org/classes/gc 882.html. Accessed: 28 October 2012.

[101] de Souza-Francisco, R., Klein, S., and Nogueira, L. T. Characterizing (k,l)-
partitionable cographs. Electronic Notes in Discrete Mathematics 22 (2005), 277–280.

[102] Demange, M., Ekim, T., and de Werra, D. Partitioning cographs into cliques
and stable sets. Discrete Optimization 2 (2005), 145–153.

[103] Deng, X., Hell, P., and Huang, J. Linear time representation algorithms for
proper circular-arc graphs and proper interval graphs. SIAM Journal on Computing
25 (1996), 390–403.

[104] Dirac, G. A. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg (1961), vol. 25, pp. 71–76.

[105] Duchet, P. Classical perfect graphs. Annals of Discrete Mathematics 21 (1984),
67–96.

[106] Dushnik, B., and Miller, E. W. Partially ordered sets. American Journal of
Mathematics 63, 3 (1941), 600–610.

[107] Ebbinghaus, H., and Flum, J. Finite Model Theory. Perspectives in Mathematical
Logic. Springer- Verlag, New York, 1995.

[108] Edmonds, J. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
Research of the National Bureau of Standards B 69 (1965), 125–130.

[109] Edmonds, J. Paths, trees and flowers. Canad. J. Math 17 (1965), 449–467.

[110] Ekim, T., Hell, P., Stacho, J., and de Werra, D. Polarity of chordal graphs.
Discrete Applied Mathematics 156 (2008), 2469–2479.

[111] Ekim, T., Mahadev, N. V. R., and de=Werra, D. Polar cographs. Discrete
Applied Mathematics 156, 10 (2008), 1652–1660.

[112] Enright, J., Stewart, L., and Tardos, G. On list colouring and list homomor-
phism of permutation and interval graphs. CoRR abs/1206.5106 (2012).

[113] Erdös, P., Rubin, A. L., and Taylor, H. Choosability in graphs. Congressus
Numerantium 26 (1979), 125–157.

[114] Even, S., Pnueli, A., and Lempel, A. Permutation graphs and transitive graphs.
Journal of the ACM 19, 3 (1972), 400–410.

[115] Everett, H., Klein, S., and Reed, B. An algorithm for finding homogeneous
pairs. Discrete Applied Mathematics 72 (1997), 209–218.

BIBLIOGRAPHY 133

[116] Everett, H., Klein, S., and Reed, B. An optimal algorithm for finding clique-
cross partitions. In Proceedings of the Twenty-ninth Southeastern International Con-
ference on Combinatorics, Graph Theory and Computing (1998), vol. 135, pp. 171–177.

[117] Faudree, R., Flandrin, E., and Ryjác̃ek, Z. Claw-flee graphs - a survey. Discrete
Mathematics 164 (1997), 87–147.

[118] Feder, T., and Hell, P. List homomorphisms to reflexive graphs. Journal of
Combinatorial Theory, Series B 72, 2 (1998), 236–250.

[119] Feder, T., and Hell, P. Matrix partitions of perfect graphs. Claude Berge Memo-
rial Volume (2004).

[120] Feder, T., and Hell, P. Full constraint satisfaction problems. SIAM Journal on
Computing 36, 1 (2006), 230–246.

[121] Feder, T., and Hell, P. Matrix partitions of perfect graphs. Discrete Mathematics
306, 19 (2006), 2450–2460.

[122] Feder, T., and Hell, P. On realizations of point determining graphs and obstruc-
tions to full homomorphisms. Discrete Mathematics 308 (2008), 1639–1652.

[123] Feder, T., Hell, P., and Hochstättler, W. Generalized colourings (matrix
partitions) of cographs. In Graph Theory in Paris. 2007, pp. 149–167.

[124] Feder, T., Hell, P., and Huang, J. List homomorphisms and circular arc graphs.
Combinatorica 19, 4 (1999), 487–505.

[125] Feder, T., Hell, P., and Huang, J. Bi-arc graphs and the complexity of list
homomorphisms. Journal of Graph Theory 42, 1 (2003), 61–80.

[126] Feder, T., Hell, P., and Huang, J. List homomorphisms of graphs with bounded
degrees. Discrete Mathematics 307 (2007), 386–392.

[127] Feder, T., Hell, P., and Huang, J. Extension problems with degree bounds.
Discrete Applied Mathematics 157 (2009), 1592–1599.

[128] Feder, T., Hell, P., Jonsson, P., Krokhin, A., and Nordh, G. Retractions
to pseudo-forests. SIAM Journal on Discrete Mathematics 24 (2010), 101–112.

[129] Feder, T., Hell, P., Klein, S., and Motwani, R. List partitions. SIAM Journal
on Discrete Mathematics 16, 3 (2003), 449–478.

[130] Feder, T., Hell, P., Klein, S., Nogueira, L. T., and Protti, F. List matrix
partitions of chordal graphs. Lecture Notes in Computer Science 2976 (2004), 100–
108.

BIBLIOGRAPHY 134

[131] Feder, T., Hell, P., Klein, S., Nogueira, L. T., and Protti, F. List matrix
partitions of chordal graphs. Theoretical Computer Science 349, 1 (2005), 52–66.

[132] Feder, T., Hell, P., Král, D., and Sgall, J. Two algorithms for general list
matrix partitions. In Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms (2005), Society for Industrial and Applied Mathematics, pp. 870–
876.

[133] Feder, T., Hell, P., and Nekooei-Rizi, S. Partitioning chordal graphs. Electronic
Notes in Discrete Mathematics 38 (2011), 325–330.

[134] Feder, T., Hell, P., and Shklarsky, O. Partitions of generalized split graphs.
manuscript (2012).

[135] Feder, T., Hell, P., Stacho, J., and Schell, G. Dichotomy for tree-structured
trigraph list homomorphism problems. Discrete Applied Mathematics 159 (2011),
1217–1224.

[136] Feder, T., Hell, P., and Tucker-Nally, K. Digraph matrix partitions and
trigraph homomorphisms. Discrete Appl. Mathematics 154 (2006), 2458–2469.

[137] Feder, T., Hell, P., and Xie, W. Matrix partitions with finitely many obstruc-
tions. Electronic Notes in Discrete Mathematics 28 (2007).

[138] Feder, T., and Vardi, M. Y. The computational structure of monotone monadic
snp and constraint satisfaction. SIAM Journal on Computing 28 (1999), 57–104.

[139] Fellner, W. D. On minimal graphs. Theoretical Computer Science 17 (1982),
103–110.

[140] Fishburn, P. C. Interval orders and interval graphs: A study of partially ordered
sets. Wiley-Interscience Series in Discrete Mathematics, New York, 1985.

[141] Fleischner, H., Mujuni, E., Paulusma, D., and Szeider, S. Covering graphs
with few complete bipartite subgraphs. Theoretical Computer Science 410 (2009),
2045–2053.

[142] Fleischner, H., and Stiebitz, M. A solution to a colouring problem of P. Erdös.
Discrete Mathematics 101 (1992), 39–48.

[143] Foldes, S., and Hammer, P. Split graphs. Congressus Numerantium 19 (1977),
311–315.

[144] Fouquet, J. L., and Giakoumakis, V. On semi-P4-sparse graphs. Discrete Math-
ematics 165 (1997), 277–300.

[145] Fouquet, J. L., Giakoumakis, V., Maire, F., and Thuillier, H. On graphs
without P5 and P5. Discrete Mathematics 146 (1995), 33–44.

BIBLIOGRAPHY 135

[146] Fulkerson, D. R., and Gross, O. A. Incidence matrices and interval graphs.
Pacific Journal of Mathematics 15 (1965), 835–855.

[147] Gallai, T. Maximum-minimum sätze über graphen. Acta Mathematica Hungarica
9, 3 (1958), 395–434.

[148] Galluccio, A., Hell, P., and Nes̃etr̃il, J. The complexity of h-colouring of
bounded degree graphs. Discrete Mathematics 222 (2000), 101–109.

[149] Gambette, P., and Vialette, S. On restrictions of balanced 2-interval graphs. In
Graph-Theoretic Concepts in Computer Science (2007), pp. 55–65.

[150] Garey, M. R., and Johnson, D. S. Computers and Intractability. Freeman, San
Francisco, 1979.

[151] Garey, M. R., Johnson, D. S., Miller, G. L., and Papadimitriou, C. H. The
complexity of coloring circular arc and chords. SIAM Journal on Algebraic Discrete
Methods 1, 2 (1980).

[152] Gavril, F. Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM Journal on
Computing 1, 2 (1972).

[153] Gavril, F. Algorithms on circular-arc graphs. Networks 4, 4 (1974), 357–369.

[154] Gerber, M. U., Hertz, A., and Schindl, D. P5-free augmenting graphs and the
maximum stable set problem. Discrete Applied Mathematics 132 (2004), 109–119.

[155] Gerber, M. U., and Kobler, D. Algorithms for vertex-partitioning problems on
graphs with fixed clique-width. Theoretical Computer Science 299 (2003), 719–734.

[156] Gerber, M. U., and Lozin, V. V. On the stable set problem in special P5-free
graphs. Discrete Applied Mathematics 125 (2003), 215–224.

[157] Giakoumakis, V., and Rusu, I. Weighted parameters in (P5, P5)-free graphs. Dis-
crete Applied Mathematics 80, 2-3 (1997), 255–261.

[158] Gioan, E., and Paul, C. Split decomposition and graph-labelled trees: char-
acterizations and fully-dynamic algorithms for totally decomposable graphs. coRR
abs/0810.1823 (2008).

[159] Golovach, P. A., and Heggernes, P. Choosability of P5-free graphs. In Mathe-
matical Foundations of Computer Science 2009. 2009, pp. 382–391.

[160] Golovach, P. A., Paulusma, D., and Song, J. Coloring graphs without short cy-
cles and long induced paths. In Fundamentals of Computation Theory (2011), pp. 193–
204.

BIBLIOGRAPHY 136

[161] Golovach, P. A., Paulusma, D., and Song, J. Computing vertex-surjective
homomorphisms to partially reflexive trees. In Computer Science–Theory and Appli-
cations. 2011, pp. 261–274.

[162] Golovach, P. A., Paulusma, D., and Song, J. 4-coloring H-free graphs when H
is small. Discrete Applied Mathematics (2012).

[163] Golumbic, M. C. The complexity of comparability graph recognition and coloring.
Computing 18 (1977), 199–208.

[164] Golumbic, M. C. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

[165] Golumbic, M. C., and Rotics, U. On the cliquewidth of perfect graph classes. In
Graph-Theoretic Concepts in Computer Science (1999), pp. 135–147.

[166] Golumbic, M. C., and Rotics, U. On the clique-width of some perfect graph
classes. International Journal of Foundations of Computer Science 11, 3 (2000), 423–
443.

[167] Golumbic, M. C., and Shamir, R. Complexity and algorithms for reasoning about
time: A graph-theoretic approach. Journal of the ACM 40, 5 (1993), 1108–1133.

[168] Grötschel, M., Lovász, L., and Schrijver, A. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica 1 (1981), 169–197.

[169] Gupta, U. I., Lee, D. T., and Leung, J. Y. T. Efficient algorithms for interval
graphs and circular-arc graphs. Networks 12, 4 (2006), 459–467.

[170] Habib, M., McConnell, R., Paul, C., and Viennot, L. Lex-bfs and partition
refinement, with applications to transitive orientation, interval graph recognition, and
consecutive ones testing. Theoretical Computer Science 234 (2000), 59–84.

[171] Habib, M., and Paul, C. A simple linear time algorithm for cograph recognition.
Discrete Applied Mathematics 145 (2005), 183–197.

[172] Hadwiger, H., Debrunner, H., and Klee, V. Combinatorial Geometry in the
Plane. Holt Rinehardt and Winston, New York, 1964.

[173] Häggkvist, R., Hell, P., Miller, D. J., and Lara, V. N. On multiplicative
graphs and the product conjecture. Combinatorica 8, 1 (1988), 63–74.

[174] Harary, F., Kabell, J. A., and McMorris, F. R. Bipartite intersection graphs,
comment. Math Universitatis Carolinae 23 (1982), 739–745.

[175] Harary, F., and Norman, R. Z. Some properties of line digraphs. Rendiconti del
Circolo Matematico di Palermo 9, 2 (1960), 161–169.

BIBLIOGRAPHY 137

[176] Hayward, R., and Reed, B. A. Forbidding holes and antiholes. Perfect Graphs.
John Wiley & Sons (2001), 113–137.

[177] Hedrĺın, Z., and Pultr, A. Symmetric relations (undirected graphs) with given
semigroups. Monatshefte für Mathematik 69, 4 (1965), 318–322.

[178] Hell, P. Absolute planar retracts and the four color conjecture. Journal of Combi-
natorial Theory, Series B 17, 1 (1974), 5–10.

[179] Hell, P. Algorithmic aspects of graph homomorphisms. In Surveys in Combinatorics
(2003), pp. 239–276.

[180] Hell, P. Graph partitions with prescribed patterns. manuscript (2012).

[181] Hell, P., and Huang, J. Two remarks on circular arc graphs. Graphs and Combi-
natorics 13 (1997), 65–72.

[182] Hell, P., and Huang, J. Certifying lexbfs recognition algorithms for proper interval
graphs and proper interval bigraphs. SIAM Journal on Discrete Mathematics 18, 3
(2004), 554–570.

[183] Hell, P., and Huang, J. Interval bigraphs and circular arc graphs. Journal of
Graph Theory 46 (2004), 313–327.

[184] Hell, P., Klein, S., Nogueira, L. T., and Protti, F. Partitioning chordal
graphs into independent sets and cliques. Discrete Applied Mathematics 141, 1 (2004),
185–194.

[185] Hell, P., Klein, S., Protti, F., and Tito, L. On generalized split graphs.
Electronic Notes in Discrete Mathematics 7 (2001), 98–101.

[186] Hell, P., and Nes̃etr̃il, J. Cohomomorphisms of graphs and hypergraphs. Math-
ematische Nachrichten 87, 1 (1979), 53–61.

[187] Hell, P., and Nes̃etr̃il, J. On the complexity of h-coloring. Journal of Combina-
torial Theory, Series B 48, 1 (1990), 92–110.

[188] Hell, P., and Nes̃etr̃il, J. Counting list homomorphisms for graphs with bounded.
In Graphs, Morphisms, and Statistical Physics: Dimacs Workshop Graphs, Morphisms
and Statistical Physics, March 19-21, 2001, Dimacs Center (2004), vol. 63, pp. 105–
112.

[189] Hell, P., and Nes̃etr̃il, J. Graphs and Homomorphisms. Oxford University Press,
2004.

[190] Hell, P., Nes̃etr̃il, J., and Zhu, X. Duality and polynomial testing of tree
homomorphisms. Transactions of the American Mathematical Society 348, 4 (1996),
1281–1297.

BIBLIOGRAPHY 138

[191] Hell, P., and Rafiey, A. The dichotomy of list homomorphisms for digraphs. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms (2011), pp. 1703–1713.

[192] Hell, P., and Rival, I. Absolute retracts and varieties of reflexive graphs. Canad.
J. Math. 39 (1987), 544–567.

[193] Hemminger, R. L., and Beineke, L. W. Line graphs and line digraphs. Selected
Topics in Graph Theory, Academic Press, New York (1978), 271–305.

[194] Hoáng, C. T. Ph.D. thesis. Montreal, 1985.

[195] Hoàng, C. T. Efficient algorithms for minimum weighted colouring of some classes
of perfect graphs. Discrete Applied Mathematics 55 (1994), 133–143.

[196] Hoàng, C. T., Kaminski, M., Lozin, V. V., Sawada, J., and Shu, X. Deciding
k-colorability of P5-free graphs in polynomial time. Algorithmica 57, 1 (2010), 74–81.

[197] Holyer, I. The np-completeness of edge-coloring. SIAM Journal on Computing 10,
4 (1981), 718–720.

[198] Hsu, W. L. The coloring and maximum independent set problems on planar perfect
graphs. Journal of the ACM 35 (1988), 535–563.

[199] Huang, S. Improved complexity results on k-coloring Pt-free graphs. CoRR
abs/1304.5808 (2013).

[200] Irving, R. W. Np-completeness of a family of graph-colouring problems. Discrete
Applied Mathematics 5 (1983), 111–117.

[201] Ito, T., Kaminski, M., Paulusma, D., and Thilikos, D. M. On disconnected
cuts and separators. Discrete Applied Mathematics 159 (2011), 1345–1351.

[202] Jeavons, P. On the algebraic structure of combinatorial problems. Theoretical
Computer Science 200 (1998), 185–204.

[203] Jeavons, P., Cohen, D., and Gyssens, M. Closure properties of constraints.
Journal of the ACM 44 (1997), 527–548.

[204] Jensen, T. R., and Toft, B. Graph Coloring Problems. Wiley Interscience, Hobo-
ken, 1995.

[205] Jung, H. A. On a class of posets and the corresponding comparability graphs. Journal
of Combinatorial Theory, Series B 24, 2 (1978), 125–133.

[206] Kaminski, M., and Lozin, V. V. Coloring edges and vertices of graphs without
short or long cycles. Contributions to Discrete Mathematics 2 (2007), 61–66.

BIBLIOGRAPHY 139

[207] Kaminski, M., and Lozin, V. V. Vertex 3-colorability of claw-free graphs. Algo-
rithmic Operations Research 21 (2007).

[208] Karp, R. M. Reducibility among combinatorial problems. In Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, Eds. New York: Plenum, 1972,
pp. 85–103.

[209] Kennedy, W. S., and Reed, B. Fast skew partition recognition. In Computational
Geometry and Graph Theory. 2008, pp. 101–107.

[210] King, A. Claw-free graphs and two conjectures on omega, Delta, and chi. Ph.D.
thesis, McGill University, 2009.

[211] Klee, V. What are the intersection graphs of arcs in a circle? American Mathematical
Monthly 76 (1976), 810–813.

[212] Klein, S., and De-Figueiredo, C. M. H. The np-completeness of multi-partite
cutset testing. Congressus Numerantium 119 (1996), 217–222.

[213] Kolaitis, P., and Vardi, M. Conjunctive-query containment and constraint satis-
faction. Journal of Computer and System Sciences 61, 2 (2000), 302–332.

[214] Komárek, P. Some new good characterizations for directed graphs. Časopis pro
pěstováńı matematiky 109, 4 (1984), 348–354.

[215] Král, D., Kratochv́ıl, J., Tuza, Z., and Woeginger, G. J. Complexity of
coloring graphs without forbidden induced subgraphs. Lecture Notes in Computer
Science 2204 (2001), 2–54.

[216] Kratochv́ıl, J. Precoloring extension with fixed color bound. Acta Math. Univ.
Comen 62 (1993), 139–153.

[217] Krausz, J. Dmonstration nouvelle d’un thorme de whitney sur les rseaux. Mat. Fiz.
Lapok 50 (1943), 75–85.

[218] Kun, G., and Nes̃etr̃il, J. Np for combinatorialists. Electronic Notes in Discrete
Mathematics 29 (2007), 373–381.

[219] Ladner, R. E. On the structure of polynomial time reducibility. Journal of the ACM
22 (1975), 155–171.

[220] Le, V. B., Randerath, B., and Schiermeyer, I. On the complexity of 4-coloring
graphs without long induced paths. Theoretical Computer Science 389 (2007), 330–
335.

[221] Lerchs, H. On cliques and kernels. Tech. Report, Dept. of Comp. Sci., Univ. of
Toronto, 1971.

BIBLIOGRAPHY 140

[222] Lévéque, B., and Maffray, F. Coloring bull-free perfectly contractile graphs.
SIAM Journal on Discrete Mathematics 21 (2007), 999–1018.

[223] Levin, L. A. Universal sequential search problems. Problemy Peredachi Informatsii
9, 3 (1973), 115–116.

[224] Lin, I. J., Sen, M. K., and West, D. B. Classes of interval digraphs and 01-
matrices. Congressus Numerantium 125 (1997), 201–209.

[225] Lin, M. C., and Szwarcfiter, J. L. Characterizations and recognition of circular-
arc graphs and subclasses: A survey. Discrete Mathematics 309 (2009), 5618–5635.

[226] Lovász, L. Normal hypergraphs and the perfect graph conjecture. Discrete Mathe-
matics 2, 3 (1972), 253–267.

[227] Lovász, L. Communication complexity: a survey. Paths, flows, and VLSI-layout 9
(1990), 235–265.

[228] Lozin, V. V. Stability in P5- and banner-free graphs. European Journal of Operational
Research 125 (2000), 292–297.

[229] MacGillivray, G., and Yu, M. L. Generalized partitions of graphs. Discrete
Applied Mathematics 91 (1999), 143–153.

[230] Maffray, F. On the coloration of perfect graphs. In Recent Advances in Algorithms
and Combinatorics. 2003, pp. 65–84.

[231] Maffray, F., and Preissmann, M. On the np-completeness of the k-colorability
problem for triangle-free graphs. Discrete Mathematics 162 (1996), 313–317.

[232] Martin, B., and Paulusma, D. The computational complexity of disconnected cut
and 2K2-partition. In Principles and Practice of Constraint Programming–CP 2011.
2011, pp. 561–575.

[233] Maurer, H. A., Salomaa, A., and Wood, D. Colorings and interpretations:
A connection between graphs and grammar forms. Discrete Applied Mathematics 3
(1981), 119–135.

[234] Maurer, H. A., Sudborough, J. H., and Welzl, E. On the complexity of the
general coloring problem. Information and control 51, 2 (1981), 128–145.

[235] McConnell, R. M. Linear-time recognition of circular-arc graphs. Algorithmica 37,
2 (2003), 93–147.

[236] McConnell, R. M., and Spinrad, J. Linear-time modular decomposition and
efficient transitive orientation of comparability graphs. In Proceedings of the fifth
annual ACM-SIAM symposium on Discrete algorithms (1994), Society for Industrial
and Applied Mathematics, pp. 536–545.

BIBLIOGRAPHY 141

[237] McConnell, R. M., and Spinrad, J. Linear-time modular decomposition and
efficient transitive orientation of comparability graphs. In Proceedings of the fifth
annual ACM-SIAM symposium on Discrete algorithms (1994), pp. 536–545.

[238] McConnell, R. M., and Spinrad, J. Linear-time modular decomposition and
efficient transitive orientation of comparability graphs. In Proceedings of the fifth
annual ACM-SIAM symposium on Discrete algorithms (1994), pp. 536–545.

[239] McConnell, R. M., and Spinrad, J. Linear-time transitive orientation. In Pro-
ceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms (1997),
pp. 19–25.

[240] Montanari, U. Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences 7 (1974), 95–132.

[241] Müller, H. Recognizing interval digraphs and interval bigraphs in polynomial time.
Discrete Applied Mathematics 78 (1997), 189–205.

[242] Nekooei-Rizi, S. Matrix partitions of chordal graphs. M.Sc. thesis, Simon Fraser
University, 2010.

[243] Nešetřil, J. Representations of graphs by means of products and their complexity.
In Mathematical Foundations of Computer Science 1981. 1981, pp. 94–102.

[244] Nes̃etr̃il, J., and Pultr, A. On classes of relations and graphs determined by
subobjects and factorobjects. Discrete Mathematics 22 (1978), 287–300.

[245] Nirkhe, M. V. Efficient algorithms for circular-arc containment graphs. M.Sc. thesis,
University of Maryland College Park, 1987.

[246] Papadimitriou, C. Computational Complexity. Addison-Wesley, 1994.

[247] Pnueli, A., Lempel, A., and Even, S. Transitive orientation of graphs and iden-
tification of permutation graphs. Canad. J. Math 23 (1971), 160–175.

[248] Puech, J. Irredundance perfect and P6-free graphs. Journal of Graph Theory 29
(1998), 239–255.

[249] Randerath, B. 3-colourability and forbidden subgraphs. Electronic Notes in Discrete
Mathematics 5 (2000), 270–273.

[250] Randerath, B. 3-colorability and forbidden subgraphs. i: Characterizing pairs.
Discrete Mathematics 276 (2004), 313–325.

[251] Randerath, B., and Schiermeyer, I. 3-colorability ∈ P for P5-free graphs. Dis-
crete Applied Mathematics 136 (2004), 299–313.

BIBLIOGRAPHY 142

[252] Randerath, B., and Schiermeyer, I. Vertex coloring and forbidden subgraphs -
a survey. Graphs and Combinatorics 20, 1 (2004), 1–40.

[253] Rautenberg, W. A Concise Introduction to Mathematical Logic, 3rd ed. Springer,
New York, 2010.

[254] Reed, B., and Sbihi, N. Recognizing bull-free perfect graphs. Graphs and Combi-
natorics 11 (1995), 171–178.

[255] Robertson, N., and Seymour, P. Graph minors v, excluding a planar graph.
Journal of Combinatorial Theory, Series B 41 (1986), 92–114.

[256] Rose, D., Lueker, G., and Tarjan, R. E. Algorithmic aspects of vertex elimina-
tion on graphs. SIAM Journal on Computing 5, 2 (1976), 266–283.

[257] Rotem, D., and Urrutia, J. Circular permutation graphs. Networks 12 (1982),
429–437.

[258] Roussopoulos, N. D. A max m,n algorithm for determining the graph h from its
line graph g. Information Processing Letters 2, 4 (1973), 108–112.

[259] Sanyal, B. K., and Sen, M. K. New characterizations of digraphs represented by
intervals. Journal of Graph Theory 22 (1996), 297–303.

[260] Schaefer, T. J. The complexity of satisfiability problems. In Proceedings of the
tenth annual ACM symposium on Theory of computing (1978), vol. 14, pp. 216–226.

[261] Seinsche, S. On a property of the class of n-colourable graphs. Journal of Combi-
natorial Theory, Series B 16 (1974), 191–193.

[262] Shannon, C. The zero error capacity of a noisy channel. Information Theory, IRE
Transactions on 2, 3 (1956), 8–19.

[263] Sritharan, R. A linear time algorithm to recognize circular permutation graphs.
Networks 27 (1996), 171–174.

[264] Stacho, J. Complexity of Generalized Colorings of Chordal Graphs. Ph.D. thesis,
Simon Fraser University, 2008.

[265] Sumner, D. P. Dacey graphs. J. Austral. Math. Soc. 18, 4 (1974), 492–502.

[266] Tarjan, R. E. Coloring graphs with stable cutsets. Journal of Combinatorial Theory,
Series B 34, 3 (1983), 258–267.

[267] Tarjan, R. E. Decomposition by clique separators. Discrete Mathematics 55 (1985),
221–232.

[268] Tucker, A. An efficient test for circular-arc graphs. SIAM Journal on Computing
9, 1 (1980), 1–24.

BIBLIOGRAPHY 143

[269] Tucker-Nally, K. List M-partitions of digraphs. M.Sc. thesis, Simon Fraser Uni-
versity, 2003.

[270] Tuza, Z. Graph colorings with local constraints - a survey. Discuss. Math. Graph
Theory 17 (1997), 161–228.

[271] Urrutia, J. Partial orders and euclidean geometry. In Algorithms and Order. 1988,
pp. 387–434.

[272] van Rooij, A. M., and Wilf, H. S. The interchange graph of a finite graph. Acta
Mathematica Hungarica 16, 3 (1965), 263–269.

[273] Vikas, N. Computational complexity of compaction to reflexive cycles. SIAM Journal
on Computing 32 (2003), 253–280.

[274] Vikas, N. Algorithms for partition of some class of graphs under compaction. In
Computing and Combinatorics. 2011, pp. 319–330.

[275] Vizing, V. G. Coloring the vertices of a graph in prescribed colors. Diskret. Anal 29
(1976), 3–10.

[276] West, D. B. Short proofs for interval digraphs. Discrete Mathematics 178 (1998),
287–292.

[277] Whitesides, S. An algorithm for finding clique cut-sets. INFO. PROC. LETT. 12,
1 (1981), 31–32.

[278] Whitesides, S. A method for solving certain graph recognition and optimization
problems, with applications to perfect graphs. North-Holland mathematics studies 88
(1984), 281–297.

[279] Whitney, H. Congruent graphs and the connectivity of graphs. American Journal
of Mathematics 54 (1932), 150–168.

[280] Woeginger, G. J., Sgall, J., et al. The complexity of coloring graphs without
long induced paths. Acta Cybernetica 15, 1 (2001), 107–117.

[281] Yannakakis, M. The complexity of the partial order dimension problem. SIAM
Journal on Algebraic and Discrete Methods 3 (1982), 351–358.

[282] Zhang, P., Schon, E. A., Fischer, S. G., Cayanis, E., Weiss, J., Kistler, S.,
and Bourne, P. E. An algorithm based on graph theory for the assembly of contigs
in physical mapping of dna. Computer applications in the biosciences: CABIOS 10,
3 (1994), 309–317.

