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Abstract 

The applications of positioning in wireless sensor networks include patient 

monitoring, asset tracking, and intelligent transportation including air traffic control.  

Popular methods are: received-signal-strength (RSS); time-of-arrival (TOA); time-

difference-of-arrival (TDOA); and angle-of-arrival (AOA).  Estimation is based on 

nonlinear equations constructed from measurements and knowledge of the anchor node 

geometry.  

In this thesis, anchor-based line-of-sight TOA and AOA are reviewed, and new 

techniques, namely DAOA (differential-angle-of-arrival) and hybrid TOA/DAOA are 

proposed for rotating laser implementation.  

For the TOA approach, a nonlinear Least Square Estimator (LSE) is applied to 

one- and two-dimensional systems, then the equations are linearized and solved by 

unconstrained/constrained LSE.  This LSE procedure is also used for AOA.  For DAOA, 

all the anchors are placed on a circle in order to simplify the solution, and then LSE is 

used to estimate an unlocalized node.  The statistical accuracy of these methods, from 

simulation, is presented graphically for simple read-and-use application. 

Keywords:  Localization algorithms; Time-of-Arrival measurement; Angle-of-Arrival 
measurement; Differential-Angle-of-Arrival; Hybrid TOA/DAOA; Least 
Squares Estimation 
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Chapter 1: Introduction 

Estimating the physical coordinates of a mobile station (MS) or a group of sensor 

nodes is a fundamental problem in wireless sensor networks (WSNs) and is often called 

localization [1][2][7].  This problem has received significant attention in the field of 

wireless communications since the U.S. Federal Communications Commission (FCC) 

requested the accurate location of all enhanced 911 (E911) callers to be automatically 

determined in the United States [18].  Although the E911 service motivated the 

development of cellular-aided positioning in the WSN field, accurate mobile positioning 

information is one of the essential features for many other applications in third 

generation (3G) wireless systems, but this tends to use GPS data.  Some of these 

innovative navigation and tracking applications are asset tracking, monitoring an 

environment in dangerous regions, controlling traffic in streets, controlling an inventory in 

storehouses, intelligent transport systems, patient monitoring and personnel 

management in rescue operations [7][9][16].  Data gathered in most of these 

applications require information of the sensor positions.  In order to associate the data 

with their origin, localization algorithms can help establish the positions of the sensors 

[16].  Consequently, different localization algorithms have been proposed in the literature 

[16][9].  An accurate location technique is far from trivial, and the meaning of “accurate” 

in the context of location covers a wide range. 

Wireless localization mostly relies on ray theory for wave propagation.  Rays 

cannot exist by themselves, but they are a useful model for propagation effects.  The 

bandwidth of the signal,    Hz, gives a time resolution of     
 ⁄  seconds, and this in 

term governs the distance resolution through the speed of light, i.e.,     
  ⁄ .  

Accurate distance resolution requires a high bandwidth.  For wireless systems that use 

radiowaves, the wide bandwidth is a biting constraint.  However, radio waves can pass, 

at least to some extent, through optical obstacles, such as walls.  Optical systems, 

implemented with lasers, can get round the bandwidth constraint.  Rotating lasers are 
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now standard instruments for precision measurement of distance and angle for using in 

location algorithms; but their rays cannot pass through walls, etc.  

Wireless distance measurement also requires some form of time synchronization 

between the transmitter and receiver(s).  In radio systems, the synchronization is 

possible using standard communications techniques, which include the communications 

protocol.  For example, in GPS, synchronization at the receiver can take several tens of 

seconds, to several minutes, depending on the gain of the antenna.  In GPS, the location 

is calculated at the receiving terminal, and the transmissions are from multiple satellites.  

In other systems, the device to be located transmits the location-signal and the receivers 

are at known locations, and their signal reception information is coordinated so that the 

algorithm can estimate (assuming ray theory) the location of the transmitter.  This thesis 

does not deal with specific communications technology or specific hardware, because 

this itself is a specialist topic in communications.  The focus here is on the algorithms 

used for location.  In short, it is assumed that the hardware can accurately estimate the 

time of arrival of ray-like signals.  This allows the location problem to become purely 

geometric, and the algorithms use noisy distance and/or angle measurements between 

the sensors.  This is a typical approach in much of the location literature.  

A large amount of research has been undertaken for the localization problem, 

especially for indoor positioning.  In most of this literature, ultra-wideband (UWB) radio 

techniques can enable location algorithms to provide good absolute localization 

accuracy, in principle [16].  But this assumes ray theory with no ray scattering in between 

the sensors of the WSN.  Also, for indoor situations, the device to be located, typically 

the transmitter, is in close proximity to, and likely surrounded by, receiving sensors 

whose positions are known.  This configuration allows good absolute accuracy under the 

usual assumptions of negligible scattering.  But in practice, because of the ray 

scattering, the relative accuracy is poor, i.e., the location error relative to the distance 

between the other sensors.  For example, for indoor sensors whose positions are known, 

a typical spacing may be ten metres, and for a location accuracy requirement of one 

metre, the relative location accuracy is about 10%.    

For outdoor sensor networks, where the sensors can be spread widely, the 

relative accuracy must be very high.  For example, the distance between the known 3 
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sensors (base stations), may be 1km, and for a location accuracy of one metre, the 

relative accuracy of the location systems must be 0.01%.  There is still no well-accepted, 

simple, accurate, and energy efficient approach suitable for solving the localization issue 

in such WSNs [16].  Accurate positioning of a mobile station (MS) from its wireless 

communications signals, such as cellular or other wireless sensor networks, has also 

been the subject of much research owing to its usefulness and the challenges of making 

it accurate.   

Generally, large area wireless location is essentially solved with satellite 

navigation systems, but there is still a need for terminals that do not have satellite 

systems or do not have clear access to satellite signals.  Even when there is clear 

satellite access, such as for aircraft navigation, there is often a need for back-up 

navigation systems.  In commercial aircraft navigation, this need is a legal requirement.  

The most popular satellite system is GPS (Global Positioning System) [26].  For a large 

number of sensors in a WSN, GPS is considered too expensive since a WSN normally 

implies low cost terminals [17].  GPS is unreliable (unavailable, or inaccurate) in 

locations where there is no direct link with the satellite constellation or there is signal 

interference from other users of the radio spectrum [27].  The WSN alternative solution is 

to have a subset of sensor terminals, or nodes, which are aware of their own global 

coordinates a priori by using either GPS or manual configuration [2].  Such nodes are 

usually time-synchronized, and may be equipped with special capabilities such as 

directional antennas [15].  These nodes are considered as the necessary prerequisites 

of localization in a network, and are called beacons or anchor nodes [2].  Their known 

locations help to compute other individual nodes’ locations, including MSs, using 

techniques such as lateration, and angulation or a combination of these if the distances 

and angles between pairs of anchors are known [17].  Techniques which are based on 

the precise measurement of distance to three non-collinear anchors are called 

trilateration.  The use of more than three anchor receivers to locate a transmitter is 

known as multilateration.  Angulation or triangulation is based on information about 

angles instead of distance.  Here, the MS, or the unlocalized node, is the node whose 

location has not yet been determined.  The terms anchor nodes and unlocalized nodes 

are used throughout this dissertation without further elaboration.  It also should be 

mentioned that in some circumstances in which the absolute locations of the anchors are 
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not available, the system is called anchor-free [15].  A number of algorithms has been 

proposed in the literature, e.g. [25], that could locate an unknown sensor node in such a 

network.    

The most popular methods or measurements in the literature, e.g. 

[7][9][16][28][32], for estimating the position of an unknown sensor are: received-signal-

strength (RSS); time-of-arrival (TOA); time-difference-of-arrival (TDOA); and angle-of-

arrival (AOA).  The estimation is based on a set of nonlinear equations which is 

constructed from these measurements, with knowledge of the BS geometry.  Basically, 

there exist two approaches for solving these nonlinear equations.  One approach is to 

solve them using nonlinear least squares (NLS).  It just requires sufficiently precise initial 

estimates for global convergence because the corresponding cost functions are 

multimodal.  However, the optimum estimation performance can be obtained from this 

approach [7].  The second approach to solve nonlinear equations is to reorganize the 

nonlinear equations into a set of linear equations and then use LS or WLS.  In this case, 

the real-time implementation is easier and global convergence is ensured [7].    

Above, a ubiquitous classification has been used between indoor and outdoor 

situations.  An alternative classification is line-of-sight (LOS) and non-LOS (NLOS) 

situations.  This refers to an electrical line-of-sight, so that “LOS” implies Fresnel 

clearance for all propagation paths.  LOS is often confused with meaning an optical sight 

path, as in a path visible to the eye.  An optical sight path seldom implies that there is 

LOS for radio waves.  However, for laser frequencies, which are indeed optical, an 

eyeballed sight path normally means LOS propagation.  NLOS means that the multipath 

propagation, or ray scattering, is significant.  Here, signal energy arrives at the receiver 

via the different paths, and usually there is no direct (LOS) path.  As a consequence, the 

“as the crow flies” distance is hard to relate to the derived time-of-flight of signals.  NLOS 

is often associated with indoor propagation, where walls, etc., form the multipath 

scatterers.  NLOS is also associated with many outdoor links, where buildings, etc., 

similarly form scatterers.  For example, a direct path is seldom found in a cellphone link, 

even if the cellphone is outdoors.  On the other hand, in dealing with location within a 

single indoor space, it is possible to have a clear direct path, i.e., LOS.  For radio 

signals, there will be reflections, or multipath, from the indoor structure as well, and this 

can be difficult to suppress.  If optical technology, i.e., lasers, is used, then the multipath 
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can be more easily suppressed, and a situation of essentially pure LOS is possible.  

Rotating lasers are used for LOS indoor and outdoor location. 

The remainder of this thesis deals with the LOS case.  However, new work 

undertaken by the author on NLOS location estimation, has contributed to a research 

paper [24], but this is still under review and is not included in this thesis.  The LOS is 

normally a bad assumption in any radio link, but laser systems get round this problem, 

as noted above.  One application of motivating interest for this thesis is exactly this case: 

a large indoor environment where 2D positioning is required on the floor to within 

millimetres. 

Similar to the traditional triangle positioning algorithms, LOS propagation from 

reference stations is assumed.  (Most LOS algorithms are feasible for use in suburban 

environments with few obstacles, and these algorithms remain the basis for NLOS 

positioning algorithms [8][13][33].) 

The geometric positioning problem is well known, and has two main steps, viz., 

ranging and localization.  In the ranging step, for example, in the TOA approach, the 

distances between an unlocalized node and different anchor nodes are measured.  The 

localizing step means computing the unlocalized node coordinates based on distance 

estimates [13].  Figure 1-1 illustrates these two steps of localization. 
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Figure 1-1. General concept of localization (adapted from [13]). 

1.1. One Categorization of 
Sensor Network Localization Algorithms 

Localization schemes can be categorized from different aspects.  One category 

depends on the mechanism used for the localization, so in this case localization 

schemes can be divided into two general categories, according to [13], [21].  Normally, 

the localization methods are referred to as 

• Range-based (uses a direct range or angle measurement of some sort.) 

• Range-free (does not use a direct measurement of range or angle, etc.) 

 

Such a broad classification restricts classification to hardware requirements of 

the localization schemes.  The first category is based on calculating either distances or 

angles of the anchors with their neighbors by using technologies such as TOA, TDOA, 

RSS, and AOA.  In the second category, only indirect distance measurements are used 

sometimes called proximity sensing, allows the approximate localization [21]. 
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1.1.1. Range-Based 

In this category the concept of measuring the range of wireless signal 

transmissions is important.  Additional devices such as timers, signal strength receivers, 

directional antennas, and antenna arrays are used.  Range-based localization relies on 

the availability of point-to-point distance or angle information.  The obtained 

measurements of different ranging techniques such as TOA, TDOA, RSS, and AOA are 

the keys for range-based schemes for locating an unknown node [20][13].  Range-based 

localization will normally produce higher localization accuracy than range-free. 

1.1.2. Range-Free 

Range-free does not require specialist hardware to directly measure distances or 

angles among nodes in the system.  Proximity detection (to sensors with known 

postions) without a range estimation, serves to coarsely locate the device 

[1][6][10][13][35].  This technique can be divided into two sub-categories: the local 

technique and the so-called hop-counting techniques [15].  In the local techniques, a 

node with unknown coordinates collects the proximity information of its neighbor anchor 

nodes with known coordinates to estimate its own coordinate.  In hop-counting, each 

unknown node gathers the number of hops between its neighboring anchor nodes and 

then seeks the smallest hop count to its neighboring anchor nodes using the designated 

routing protocol [15].  The range-free category is included here for completeness, but is 

not taken further in this thesis, because it is not accurate enough. 

1.2. Different Measurements of the Location Metrics   

A number of methods, e.g. AOA, TOA, and RSSI (received signal strength 

indicator); have been published extensively for wireless positioning.  In this section these 

most popular methods are briefly reviewed.   

RSS: The RSS approach (or Signal Attenuation-Based method) attempts to 

calculate the mathematical model of signal path loss due to propagation [3].  This 

method is not pursued after this section though, because it is seldom accurate enough 

compared to the other methods [13].  The RSSI is a voltage at an anchor node receiver 
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representing the power of a known signal (a pilot for example) sent by the unlocalized 

node.  By using at least three anchors to resolve ambiguities (in a free space type 

propagation model), the unlocalized node location can be estimated [13].  So, 

mathematically, the RSS method does not have the technical complexities of TOA or 

TDOA.  However, any real-world radio propagation model does not give good sensitivity 

for mapping RSSI to range and multipath makes the situation almost impossible for 

reasonable accuracy [3].  It is intuitively obvious that narrowband channel RSS cannot 

contribute reasonable relative accuracy from standard multipath propagation 

considerations, and even in idealized LOS situations, an excessively high signal-to-noise 

ratio (SNR) - i.e., one not found in typical mobile communications – would be required for 

modest accuracy.  Wideband RSS is also problematic, and again, an excessively high 

SNR would be needed to gain reasonable relative distance estimation accuracy.  Finally 

the RSSI is the summation of all received power in the radio band of interest, so that 

interference – signals from other users of the spectrum – will be included.  In the ISM 

(industrial, scientific and medical) bands, where the spectrum is unregulated, the 

interference would cause havoc, even in perfect LOS propagation conditions.  

Nevertheless, this has not stopped researchers attempting RSSI techniques for 

localization, perhaps because of the conceptual simplicity.  The RSSI signal, 

corresponding to the total power in a frequency bound, is available on most receiver 

chips, so it does not require additional complexity.  In free-space, the inverse-square law 

allows an estimate of the range.    

The basic (without the several efficiency factors such as polarization mismatch, 

impedance mismatch) Friis transmission equation relates the path gain to the received 

power [14]: 

                                 (1-1) 

where   is the distance between the transmitter and the receiver.  In free space, the 

received power–distance relationship is from the path gain (inverse of path loss) 

equation,                 , where   is the wavelength.  For multipath situations, a 

reference distance,  𝑟, is used.  By setting the reference distance to the wavelength, a 
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larger exponent,   , than for the free space path loss is applied to the excess distance, 

so the mean multipath gain is:   

    (
    

 
)
  

(
 

  
)
   

        (
 

 
)
   

  (1-2) 

The second equality follows from the choice       [14].  In log terms, the model of (1-1) 

is often expressed in a different form, as [5] 

                          
 

  
      (1-3) 

where        is the free-space power at the reference distance (between the transmitter 

and the receiver).  In (1-3),     is introduced as a statistical variation.     is modelled as 

a zero mean log normal random variable, which represents the so-called shadow fading 

caused by electrically large obstacles (buildings etc.).  The short-term or Rayleigh-like 

fading from the multipath is not explicitly in these propagation equations, although it 

could be included in the log normal term.  So, an RSSI voltage (averaged over the short-

term fading and the shadow fading), representing measurement       , allows, in 

principle, the range to be estimated by: 

       
            

       (1-4) 

Figure 1-2 describes the distance calculation using RSS.  It shows that RSS 

decreases proportionally to the inverse of squared distance between two nodes (for 

example, the unlocalized node and an anchor).  So, this is the reason that RSS method 

does not have an accurate result for far distances even in free space. 
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Figure 1-2. Representation scheme of RSS approach for distance estimation 
(adapted from [21]).  D=distance between two nodes. 

TOA: In the measurement of absolute TOA, the distance between the MS (or 

unlocalized node) and BS is taken as directly proportional to the LOS propagation time.  

The time is determined from the measured one-way, or sometimes two-way (c.f. radar) 

propagation time [7], [3].  For two-dimensional positioning, this provides a circle centered 

at the BS on which the MS must lie.  By using at least three BSs to resolve ambiguities 

arising from multiple crossings of the lines of position, the MS location estimate is 

determined by the intersection of circles [7].  Using TOA requires that all the participating 

anchors and unlocalized node clocks be synchronized [13]. 

TDOA: The idea of TDOA is to determine the relative position of the mobile 

transmitter by examining the difference in time at which the signal arrives at multiple 

measuring units (BSs), rather than the absolute arrival time, TOA [3].  In principle, it does 

not require a synchronization of all the participating anchors and unlocalized node - the 

uncertainty between the reference time of the anchors and that of the unlocalized node 

can be removed by a differential calculation.  Therefore, only the anchors involved in the 

location estimation process must be synchronized [13].  Each TDOA measurement 

defines a hyperbolic locus on which the MS must lie and the position estimate is given by 

the intersection of two or more hyperbolas [7].  So, an unknown target can be estimated 

in 2D plane from the two intersections of two or more TDOA measurements [3][34]. 
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AOA: The AOA estimation method (also called Angulation Technique) requires 

the BSs to have multi element antenna arrays for measuring the arrival angles of the 

transmitted signal from the MS at the BSs.  From each AOA estimate, a line of bearing 

(LOB) from the BS to the MS can be drawn and the position of the MS is calculated from 

the intersection of a minimum of two LOBs [7].  The advantages of AOA are that a 

position estimate may be determined with as few as three measuring units for 3D 

positioning or two measuring units for 2D positioning, and no time synchronization 

between measuring units is required. 

The disadvantages include the need for relatively large and complex receiving 

antenna arrays and proper direction of arrival (DOA) estimation algorithms at the 

anchors, and location estimate degradation as the mobile target moves farther from the 

measuring units.  For accurate positioning, the angle measurements need to be 

accurate.  In order to get high accuracy measurements in wireless networks, influences 

of shadowing, multipath reflections arriving from misleading directions, or by the 

changing directivity of the antennas  must be minimized or discarded [3].  Recently, laser 

techniques have enabled reliable and accurate angle measurement, and this makes 

AOA feasible, at least for LOS situations.  

1.3. The Field of Interest and Contribution of This Thesis 

As mentioned earlier, different applications of localization in wireless sensor 

networks make this problem scientifically interesting and many algorithms for positioning 

have been proposed in the literature.  This thesis considers a wireless sensor network 

with a known number of anchors and one unlocalized node, and the whole system is 

static for the duration of the location estimation. 

Three cases are considered.  First, only noisy distances of the anchors to the 

unlocalized node are known.  The popular TOA algorithm can be considered for this 

case.  Second, only noisy angles subtending the anchors from the unlocalized node are 

known.  Using the idea of AOA algorithm, a new technique, here named DAOA, is 

proposed.  DAOA is new and has not been discussed in the literature before as far as 

the author is aware.  Third, both noisy distances and noisy differential angles are known.  
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This case is similar to the popular hybrid TDOA/AOA method.  However, the known 

angles are the angles between the anchors not the AOAs and the distances between the 

nodes are calculated from TOA.  This latter case is feasible using laser technology, at 

least for LOS situations.  It has not been discussed in the literature before, to the best 

knowledge of the author.  

Besides reviewing TOA, AOA, and hybrid TDOA/AOA technique, a new 

contribution of this thesis is a technique which uses DAOA measurements for location 

estimation.  The other new contribution is applying angle and distance measurements in 

a hybrid technique named TOA/DAOA.  This latter technique turns out to perform better, 

but only slightly better, than TOA method.  LSE is used throughout this thesis.  Also, as a 

check, nonlinear LS is used for the estimation using TOA measurements and the results 

are consistent with those from unconstrained/constrained LS presented in the literature.   

1.4. Summary 

Geometric range-based techniques for localization using distances (distance-

based) and angles measurements (angle-based) are investigated in this thesis.  The first 

goal of this thesis is to understand and implement an estimator (algorithm) for the 

location in 2D where the distances (TOA) of the unknown node to known locations 

(anchors) are given with known statistical accuracy.  As an example to fix ideas, the 2D 

area is square, with length 100 units.  The accuracy will be expressed in these units, say 

metres.  Since the equations obtained from the measurements are nonlinear, the first 

guess for the position estimation would be Nonlinear Least Squares Estimator (NLSE).  

The nonlinear estimators were introduced for 1D and 2D localization.  Also, the 

unconstrained and constrained LS approach using TOA measurements is adapted from 

the literature.  The results from the simulations for both the nonlinear and the linear 

unconstrained approach are consistent.  So, the first goal has been attained.  

 A second goal is to introduce geometric localization techniques in 2D using 

angular measurements of the bearing to the known sensors from the unknown sensor, 

and specifically using differential-angle-of-arrival (DAOA) estimates.  DAOA is a new 

technique and there are no results from the literature that can be compared to the results 
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presented here.  It is motivated by the availability of rotating lasers which provide these 

measurements.  The location accuracy is presented graphically, and these serve as 

reference performance nomograms, allowing, for example, the reader to get a feel for 

the number of anchors required for a given accuracy, etc.  The form of these graphs 

seems to make sense, but they cannot be checked against existing results since no 

previous results have been published.  The calculations are for statistical ensembles of 

randomly positioned anchors and unknown nodes.  LS estimation is used.  For DAOA, a 

specific system configuration that anchor nodes are on a circle around the unknown 

node is used.  The circle configuration is not typical or realistic, but allows a simple 

solution using the cosine law.  It offers a feel for the DAOA accuracy, even if the 

configuration is restricted.  The formulation and solution of a general configuration for 

DAOA is left for future work.  The second goal has therefore been partially attained.  The 

design nomograms offer a statistically-derived feel for the performance of the new 

technique, and they are a new and useful contribution to this relevant location problem.  

However, these nomograms are restricted to the configurations that have reasonably 

simple solutions. 

The algorithms for these new techniques are kept simple because the 

computation time becomes important for a dynamic situation, i.e., one where the sensors 

are moving, and a finite time is available to get the location estimation completed.  All the 

location algorithms presented here all converge within a few milliseconds using a 

standard PC.  If brute force algorithms are used, the non-linear solutions may take 

several minutes, and this would be too slow for most applications.  

In the hybrid method, both distances and angles measurements are used 

together.  TDOA/AOA method is reviewed briefly and the new TOA/DDAOA method is 

formulated.  Therefore, the third goal has been attained. 
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Chapter 2: Localization Algorithms Using the 
Distances Data (TOA Measurements) 

This chapter includes some geometric linear techniques for the localization of an 

unknown sensor node using distances measurements between that node and anchors.  

The new nonlinear Least Squares approaches for 1D and 2D and the Cramer-Rao-

Lower-Bound for 1D are then developed.  LOS propagation is assumed, following the 

approach of much of the literature, to establish geometric equations for position 

determination.  In addition, TOA requires that all the participating anchors and 

unlocalized node clocks to be synchronized [13].   

This chapter is organized as follows.  Section 2.1 introduces more detail about 

TOA.  Section 2.2 describes different estimators for a general case of using   anchors 

for localization.  Section 2.3 presents new nonlinear algorithms using distance 

measurements in 1D and 2D.  In section 2.4 the nonlinear equations are reorganized 

into a set of linear equations.  So, the constrained and unconstrained Least Squares 

location algorithms using TOA measurements are reviewed.  In order to evaluate the 

localization algorithm performances, simulation results are provided.  Conclusions are 

drawn in section 2.5. 

2.1. Introduction of TOA 

As mentioned earlier, some nodes could be equipped with their location, e.g. 

through GPS [18].  These nodes become anchors, which play important roles in a 

wireless sensor network.  One major role is aiding the location calculation of the 

unlocalized nodes, and the other role is to present the static coordinates of the WSN.  

However, some research, e.g. [31], shows the use of mobile anchors in localizing nodes 

can reduce the costs of hardware and deployment effort.  The idea of using a mobile 

anchor is that more nodes get access to the anchor’s signal and position, and that would 
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increase the location accuracy.  In fact, a mobile anchor broadcasts its accurate location 

in the same way as a static anchor, but it represents many virtual static anchor positions.  

According to [19], one issue about using mobile anchors is that the anchor needs to 

follow the best path to maximize the improvement in location-estimation accuracy.  In 

this thesis, the anchors are static. 

In sensor networks, TOA measurements are made between each anchor and the 

unknown node, in order to locate the unknown node [18].  Figure 2-1 describes the 

distance calculation using TOA with two nodes.  It shows that the distance between two 

nodes (for example, the unlocalized node and an anchor) is directly proportional to the 

one-way propagation time of the signal traveling between two nodes [3][7].   

 

Figure 2-1. Representation scheme of TOA approach for distance estimation  
(adapted from [21]).  D=distance between two nodes, 

c=signal (light) speed in free space,   =propagation time. 

So, for   anchors (or BSs), the TOA measured at the  -th one, is (here without 

noise)  

    
  

 
                      (2-1) 

where    is the range between the  -th BS and a node, and   is the speed of light.  The 

time is estimated using a timer at the synchronized terminals.  The synchronization is 

often part of existing hardware in a wireless network, with the clocks being stiff phase- 

locked-loops which are updated via the wireless protocol.  If no such protocol exists, 

then the synchronization must be arranged by introducing it, and this is a difficult task.  
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The only alternative is to have frequency/time standards at each end of the link (such as 

expensive Rubidium standards).  This thesis does not consider the details of the 

synchronization.  In the presence of noise (but no multipath), the range measurement 

based on     is denoted by 𝑟     , modeled as [29]: 

𝑟                   √      
         

               

                 

(2-2) 

where        is the range error in 𝑟     ,       and         are the coordinates of 

unlocalized node and the  -th anchor respectively.  In two-dimensional (2D) positioning, 

the range 𝑟      provides a circle centered at the  -th BS on which the unlocalized node 

must lie.  In the vector form, equation (2-2) can be expressed as [7]: 

                       (2-3) 

where 

      𝑟      𝑟       𝑟          (2-4) 

                                (2-5) 

         

[
 
 
 
 √      

         
  

√      
         

 

 

√                ]
 
 
 
 

   (2-6) 

where        . 

The estimation of the unlocalized node is determined by the intersection of circles 

centered at the anchors.  By using at least three anchors as shown in Figure 1-1, the 
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ambiguities arising from multiple crossings of the lines of position is resolved [7].  

Section 2.1.1 also reviews a closed form algorithm for the case of using three anchors.  

As mentioned in the beginning of this chapter, using TOA in this thesis is based on the 

assumption of the synchronization of all the participating anchors and unlocalized node 

clocks.  Now another assumption is invoked, which holds throughout this chapter, that 

the distances of the anchors to the unknown point are known with known statistical 

errors.   

2.1.1. Closed Form for Two-Dimension LocalizatioUsing Three 
Anchors 

It is recalled that the geometry of the distances using TOA measurements is a 

circle centered at the  -th anchor.  In order to locate the unlocalized node, the circles of 

different anchors need to cross.  At least three anchors are needed for resolving the 

ambiguities arising from multiple crossings of the circles.  Suppose in Figure 2-2,   ,   , 

and    represent the range measurements or in other words distances between anchors 

to the unknown node.  The geometry of these distances result in three circles passing 

through the unlocalized node. 

 

Figure 2-2. Localization of a target using three anchors (adapted from [4]). 

The closed form for the location can be obtained if the following three equations 

solve jointly [4]: 

    √                           (2-7) 
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where         is the known position of the  -th anchor, and       is the position of the 

unknown node.  By solving equation (2-7),   and   can be obtained as follows 

   
                   

                                
   (2-8) 

  
                   

                                
   (2-9) 

where  

      
     

     
     

     
     

    (2-10) 

      
     

     
     

     
     

    (2-11) 

For the problem addressed in this thesis,        and    are known and they are 

not dependent on the position of the unknown point.  Therefore, equations (2-8) and 

(2-9) can be considered as the closed form for the unlocalized node [4].  For a general 

case of having   anchors, an estimator should be used to localize the unknown node.   

2.2. Estimators for Localization Using Different 
Measurement Techniques 

The general idea for an estimator in the range-based schemes, for example, for 

using TOA is [18]: 

 ̂    𝑟     ∑   𝑟  ‖    ‖ 

   

              (2-12) 

where          and           
  are the coordinates of the unknown and the  -th 

anchor nodes respectively.    is the total number of the anchors or the BSs.  ̂ is the 
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estimation of the    and ‖      ‖ denotes the norm operation over a vector which is the 

distance between the unknown node and an anchor.  𝑟  is the noisy range measurement 

from the unlocalized node to  -th anchor.  According to [18], 𝑟  ‖     ‖ is called the  -

th residual for a particular  .       is the objective (cost) function.  For different criteria, 

different estimators can be used in order to minimize this cost function.  For example, 

when the posterior conditional probability density function (PDF) of the location, given 

the measurement (     |  ) is known, the minimum mean square error (MMSE) 

estimator is used (  is a random variable): 

 ̂        |   ∫       |  
 

     (2-13) 

where vector   is the range measurement and   is the region in which the unknown node 

would reside, in other words it corresponds to all the possible values of   [18]. 

Using a maximum likelihood estimator (MLE) without a priori information about 

the distribution of the range or range difference measurements in (2-12), a probability 

model for (2-12) can be considered.   ̂    is an estimation of location which is calculated 

as [18]: 

 ̂     𝑟          |     (2-14) 

where     |   is the conditional probability density function (PDF) of the measurements 

given the location  . 

Taking the residual as Gaussian for simplicity, MLE has a similar result as the 

least square (LS) estimator which can solve      for the optimal solution.  In addition, 

there is still no need for a priori information about the distribution of the range or range 

difference measurements in (2-12) [18].   

Examples of other proposed localization algorithms include Bayesian techniques 

and Kalman filtering, but since LSE is a common and reliable technique for the current 

case study, it is used throughout this thesis.   
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2.3. Nonlinear Localization Algorithms 
Using Distance Measurements 

2.3.1. Localization in One-Dimension 
Using Nonlinear Least Squares Estimator 

In order to estimate the position of the unknown node from a set of nonlinear 

equations featuring the TOA measurements, more attention is now directed to 

minimizing the sum of squares of nonlinear equations.  One of the approaches to tackle 

this problem is the least-squares algorithm [3].  Below, the estimation of the unlocalized 

node is proposed to be undertaken using nonlinear least squares (NLS).  For 

simplification the procedure is applied to the one-dimensional case first and then TO the 

two-dimensional case.  

Procedure  

The noisy distance between two points in 2D coordinates is: 

      
        

    
       (2-15) 

where       and         are the location of unknown node and  -th anchor respectively, 

   is the distance between them and    is the additive Gaussian noise.  So, the one-

dimensional topology is that all the anchors and the unknown node are on a straight line.  

It is assumed that the distances between the known points (anchors) and the unknown 

one are measurements.  In one-dimensional case, the noise is: 

         
    

  . (2-16) 

The Least Squares Estimation can be used to estimate the unknown node in the 

following form: 
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 ̂     𝑟           ∑       
    

   
 

   

 (2-17) 

The expansion of   can be found in Appendix A (see (A.1)-(A.6)).  In order to 

minimize   , its derivative with respect to   (see (A.7)) should be set to zero.  The 

calculation ends up with a cubic equation of   which has one real root.  The solution of 

this root is used for the simulation: 

   
 

  
  

              

   
 

 

       
    (2-18) 

where   is: 

                  √                                        (2-19) 

The parameters of (2-18) and (2-19) are defined in Table 2-1.  ((A.8) and (A.9) show   

and   with the substituted parameters.) 

It is obvious that if the system was noiseless, the estimated result would be the 

exact position of the unknown node.  Now noise is added, and it is taken as zero-mean 

Gaussian with variance of    because of convenience rather than any underlying 

physical mechanism.  A closed form geometric solution could be obtained for the one-

dimensional case.  However, the cubic equation makes it hard to calculate the 

expectation of error for evaluating the performance of the estimator.  Therefore the 

Cramér–Rao Lower Bound (CRLB) is derived as a benchmark of the location accuracy.  

It provides a lower bound on the variance of the unbiased estimator with which the 

algorithms can be compared [9].  The Cramér–Rao lower bound has the lowest possible 

mean squared error and there is no lower error variance among all unbiased methods.  

Appendix B provides the details on the derived CRLB for the one-dimensional case of 

the problem.   
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Table 2-1. Definitions of the parameters in equations (2-18) and (2-19) 

Parameter Definition 

    : Number of anchors 

  

     
     : 

where    [

  

 
  

] ;    is the   coordinate of  -th anchor. 

  

           
    –     : 

  is the same as above,   [
  

 

 
  

 
], and   [

  

 
  

] ;    is the distance of  -th anchor 

to the unknown node. 

  

          –      : 

 ,   and   are the same as above and   is an element-by-element multiplication 
operator. 

 

Simulation Results 

The Mean Square Error (MSE) is used to study the estimator’s accuracy.  Figure 

2-3 shows the decreasing MSE with increasing number of anchors from 4 to 20.  (The 

MSE for 3 anchors is also calculated and it is 0.057.)  For the simulation, the anchors are 

placed randomly along 100 units line.  The number of realizations for the estimation is 

104 and the Gaussian noise variance is 0.1.  According to the derived formula (see 

Appendix) for the CRLB in 1D  
  

 
 , the number of anchors and the noise variance are 

important for the CRLB.  The distance between the empirical curve and the CRLB gives 

the performance of the estimator.  
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Figure 2-3. Mean square error vs. number of anchors in 1D 
using nonlinear LS estimator.   

For example, for 10 anchors, MSE is around 0.018 and 0.01, for the empirical LS 

and the CRLB, respectively.  It is also shown that for using more anchors, the 

performance of the estimator would be closer to the CRLB.   

Another way to study the accuracy is the comparison of MSE versus SNR 

(signal-to–noise-ratio).  A distance-to-noise-ratio (DNR) is introduced here which is the 

ratio between the squared mean of the distance,   
  , and the noise variance   

 .  So, 

DNR is calculated from      
  

 

  
  .  Figure 2-4 shows the MSE versus DNR (dB) in one-

dimensional case for 10 and 20 anchors and variance noise of 0.1 to 10.  The figure 

gives a feel for the accuracy.  For example, for          , if 10 anchors are used, the 

MSE is 0.5.  Similarly if an accuracy of 0.3% is required, then for 20 anchors, DNR must 

be about 24.  Note that the “range noise” variance,   
 , does not depend on the distance 

(range), so physically its value is governed by the receiver noise process, and not a 

decrease of range sensing signal strength.   

4 6 8 10 12 14 16 18 20
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Number of Anchors

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 

LS

CRLB



 

24 

 

Figure 2-4. Mean square error vs. DNR (dB) in 1D using nonlinear LS estimator. 
The “Distance” is from the squared mean distance between 

 the unlocalized node and the anchors averaged over 
 an ensemble of 104 uniformly anchors distributions 

 along a 100 units line. 

Comparing the estimator performance to the CRLB reveals that by decreasing 

the noise variance, the empirical curve becomes closer to the CRLB. 

2.3.2. Localization in Two Dimensions Using NLSE 

In the 2D case, all the anchors and the unknown node are in the     plane.  All 

the steps mentioned for the one-dimensional localization can be repeated for the 

proposed two-dimensional case using nonlinear LS as well.  Again, the noisy distances 

between the node to be located, and the anchors, are the observations.  The only 

difference of the 2D case with the 1D is that now there are two cubic equations after 

taking derivatives of   with respect to   and  . 
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Procedure 

Consider   as the coordinates of the unknown node            , the cost 

function     for 2D becomes: 

 ̂   𝑟              ∑[      
         

    
 ]

 
         

 

 

 (2-20) 

After some vector calculations (details can be found on (A.10)-(A-14) in Appendix A), the 

derivations with respect to   and   are derived (see (A-15)-(A-18) for details).  Then   

and   can be obtained by finding the roots of the following two simultaneous equations: 

          
          

              
                     (2-21) 

          
          

              
                     (2-22) 

where      and      are: 

              
                                 

             (2-23) 

              
            

               

                  (2-24) 

where   and   are the position of the target or unknown node.  Other parameters are the 

same as defined in Table 2-1.  In addition   is a column vector consists of   coordinates 

of the anchors (  [

  

 
  

] . 
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Apparently there is no closed form solution for the 2D equations (2.21) and 

(2.22).  Numerical solution is required, and standard MTLAB routines are used here to 

solve both equations simultaneously.  

Simulation Results 

For each observation in the simulations, the anchors are located uniformly in 

    plane in a 100 by 100 square area.  For example, Figure 2-5 shows one realization 

of 10 anchors and the unlocalized node.  A random constellation of anchors is 

considered with random noises for the distances, in each simulation run.   

 

Figure 2-5. One realization of 10 anchors and the unlocalized node 
 in a 100 by 100 square area. 

Figure 2-6 shows the performance of the estimator (i.e., the numeric solution 

above) for 2D by applying different number of anchors from 4 to 20 anchors for 104 

observations.  (The MSE for 3 anchors is also calculated to be 0.49.) 

 For each observation, the anchors are uniformly distributed in a 100 by 100 

square and the Gaussian noise variance is 0.1.  
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Figure 2-6. Mean square error vs. number of anchors in 2D using nonlinear LS 
estimator.  Noise variance is 0.1, and DNR=41 dB.   

The figure shows that using more than about 10 anchors sees diminishing 

returns for the location accuracy.  As sample tie-points, 4 anchors give an MSE of 0.28, 

and 7 anchors give an MSE of less than 0.1.  (10 anchors give MSE about 0.07, and 20 

give 0.03.) 

As mentioned earlier, another way to view the accuracy is to plot MSE versus 

DNR (dB).  The result is shown in Figure 2-7 for 104 observations and the noise variance 

varies from 0.1 to 10.  For the same DNR, the estimator using 20 anchors has a lower 

MSE.  
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Figure 2-7. Mean square error vs. DNR (db) in 2D using nonlinear LS estimator. 
The “Distance” is from the squared mean distance between 

 the unlocalized node and the anchors averaged over 
 an ensemble of 104 uniformly anchors distributions 

 in a 100 by 100 square. 

The range of MSE in 2D case is larger than MSE range in 1D, because there are 

noises in both   and   directions.  By increasing DNR to around 41 MSE decreases to 

zero.  This point corresponds to the lowest amount of noise variance which is 0.1. 

The reason is that the approach in much of the literature is to work with linear 

formulations.  This is perhaps because these are faster in implementation and 

simulation.  A nonlinear estimator could not be found by the author for comparison with 

the nonlinear LS estimator proposed in this thesis.  

2.4. An Unconstrained/Constrained Least Squares 
Approach for Positioning Using TOA Measurement 

In this section the nonlinear equations are reorganized into a set of linear 

equations and then the LS estimator is used.  The development of unconstrained and 

constrained LS location algorithms using TOA measurements in this section (2.4) is 
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adapted from [29].  The distance between the unlocalized node and the  -th anchor is 

denoted by 𝑟      from equation (2-2), and without considering the noise, this would be: 

              
        

  
 
               (2-25) 

Recalling that       is the position of the unlocalized node and the known coordinates of 

the  -th anchor is        . 

2.4.1. Algorithm Development 

Squaring both sides of (2-25) yields [29]: 

      
                    (  

    
 )  (2-26) 

An intermediate variable,  , is used here to linearize (2-26) in terms of  ,   and    [29]. 

   √      (2-27) 

It is clear that   is the distance between       and the reference origin.  So, by using this 

intermediate variable, (2-26) will change to: 

                   
 

 
 (  

    
        

 )                 (2-28) 

(2-28) can be represented in matrix-vector form as: 

       (2-29) 
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where  

   [
        
   

        
]          [

 
 

  
]         

 

 
 [

  
    

  𝑟     
 

 
  

    
  𝑟     

 
]   (2-30) 

Since the third element of  ,   , is the function of the first two elements, so   should be 

estimated by Constrained Least Squares (CLS) (which is suggested by [29] and will be 

discussed later in this section).  However, if   is considered as an unknown parameter, 

for the linear model     ,   can be estimated (unconstrained) as:  

 ̂                (2-31) 

where the cost function is [29]:  

                   (2-32) 

The simulation results for this unconstrained approach are shown in Figure 2-8 

and Figure 2-9.  In general, the CLS estimate of   is obtained by minimizing the cost 

function subject to the following constraint in (2-33).  The constraint is a matrix 

characterization of the relation in (2-27): 

                  (2-33) 

such that  

     [
   
   
   

]           [
 
 

  
]   (2-34) 
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Now the method of Lagrange multipliers is used to minimize a function subject to a 

constraint.  The cost function is  

                                        (2-35) 

where   is the corresponding Lagrange multiplier.  In order to minimize  , its derivative 

with respect to   is taken, 

  

  
                            (2-36) 

and its root should be found which leads to: 

                     . (2-37) 

So, the constrained estimated of   is: 

  ̂                          . (2-38) 

The parameter   is still unknown in the  ̂.  So, (2-38) is substituted into (2-33): 

                           

                                                     

(2-39) 

   can be determined numerically from equation (2-39) and then it is substituted in (2-38) 

in order to find  ̂.  

So far all the elements of the minimization algorithm in the LS estimator are 

considered with the same weight.  In some literature, e.g. [29], a weighting matrix is used 
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to get a better performance.  The estimates of   based on the WULS (weighted 

unconstrained least squares) are obtained by: 

 ̂                        (2-40) 

where the weighted cost function is [29]: 

                         (2-41) 

For the WCLS (weighted constrained leas squares), the estimates of   are 

computed by minimizing the (2-41) subject to (2-33).  In fact (2-40) and (2-41) are similar 

to (2-31) and (2-32) respectively with     as their corresponding weighting matrix.  

According to [7] the optimum value of this weighting matrix is determined based on the 

BLUE (best linear unbiased estimator) as follows.  For sufficiently small measurement 

errors, the value of       
  in (2-15) can be approximated as 

      
               

      
         

                                (2-42) 

The difference between the estimate of the squared distances and the true value 

squared is defined as the disturbance [7] (same as the error energy): 

    𝑟     
     

                                        (2-43) 

In vector form,      is expressed as 

                                                (2-44) 

The optimum weighting matrix uses the covariance matrix of the disturbance in the form 

of 
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                            (2-45) 

where 

                     , (2-46) 

where the distances      are known.  Since all the measurement errors are considered 

uncorrelated, the covariance matrix of that would be a diagonal matrix: 
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]
 
 
 
 

  (2-47) 

So, the ideal weighting matrix for the TOA-based algorithm is: 

               

[
 
 
 
 

  

  
       

  

     
       

 
         
          

  

                
                  

   
      
     

       
 

  

]
 
 
 
 

  (2-48) 

Considering (2-35) and (2-38) with the corresponding weighting matrix: 

                                            (2-49) 

 ̂                   (          )  (2-50) 

where   is the corresponding Lagrange multiplier and can be determined from the  

equation of (2-39). 



 

34 

Simulation Results 

In this section the simulation results of the algorithms are provided.  Figure 2-8 

presents the performances of the unconstrained, weighted unconstrained and 

constrained least square estimators for different number of anchors from 4 to 20.  (The 

MSE for 3 anchors is also calculated for ULS, WULS, and CLS which are 6.37, 5.41, and 

0.51 respectively.)  

 

Figure 2-8. MSE vs. number of anchors in 2D using ULS/WULS and CLS 
estimators.  Noise variance=0.1 and DNR=41dB.   

The constrained algorithm compared to the unconstrained algorithm, has a lower 

MSE for 4 to 8 anchors.  For 8 to 12 anchors the performance shows a slightly lower 

MSE, and for more than 12 anchors, these two algorithms have the same performance.  

This difference is not significant, especially considering the greater computational 

complexity of the constrained algorithm.  Therefore for simplicity is preferred to apply the 

weighting matrix to the unconstrained form.  As expected, the weighted unconstrained 

estimator results in a lower MSE compared to the constrained, and the unweighted, 
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unconstrained estimators.  It turns out that the latter two have very similar performance 

for large number of anchors. 

Figure 2-9 shows MSE of the unconstrained, weighted unconstrained and 

constrained least square estimators versus DNR (dB) in 2D using TOA measurements 

for 10 and 20 anchors. 

 

Figure 2-9. MSE vs. DNR (dB) in 2D using ULS/WULS and CLS estimator. 
The “Distance” is from the squared mean distance between 

 the unlocalized node and the anchors averaged over 
 an ensemble of 104 uniformly anchors distributions 

 in a 100 by 100 square. 

The LS estimator using more anchors results in a lower MSE.  As seen above, 

the constrained and the unconstrained estimator have similar performance and the 

weight matrix improves the result of the estimator.  The 104 realizations are on a 100 by 

100 square and the noise variance varies 0.1 to 10. 
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2.5. Conclusions 

In this chapter Least Squares was used as the estimator for the positioning.  

Computer simulations using MATLAB were conducted to evaluate the performance of 

the localization algorithm using TOA-based information.  First, based on intuition, a new 

Nonlinear Least Squares Estimator (NLSE) was developed to estimate the position of an 

unknown node among some anchors.  The Cramer-Rao lower bound (CRLB) was 

derived for the 1D case and the simulation result showed that for small levels of 

uncorrelated noise, the algorithm could attain almost zero bias, and the empirical curve 

became closer to the CRLB.  Then, the algorithm was extended for the 2D case too.  

The NLSE takes longer than the LS estimator because of the need to solve two 

equations simultaneously, but it could get lower MSE. 

The main idea of LS is to linearize the equations obtained from the TOA 

measurements.  Then, constrained least squares (CLS) and weighted unconstrained 

least squares (WULS) were considered in order to solve the linear equations in an 

optimum manner.  Lagrange multipliers were also used during this problem solving.  It 

was suggested in the literature to apply the weight matrix to the constrained LS which 

would provide better performance than the unconstrained approach.  However, the 

improvement of the constrained over the unconstrained algorithm was not that 

substantial, especially in view of its increased complexity.  For simplicity the weighting 

matrix was applied to the unconstrained algorithm.  

Comparison of these algorithms showed that weighted unconstrained LS could 

have lower MSE than the constrained, and the unconstrained LS.  Also, the proposed 

nonlinear estimators could get similar results as the unconstrained estimator which was 

adapted from the literature.  
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Chapter 3: Localization Algorithms 
Using the Angular Data  
(AOA and DAOA Measurements) 

Angle-of-arrival is another common location metric which is described and used 

for location estimation in many papers.  In recent years, mainly due to the improvements 

and more presence of the antenna arrays using in the BSs of wireless communication 

networks, AOA measurements have attracted more attention in positioning problems 

[16][11].  Unfortunately, antenna arrays are not electrically compact devices.  Optical 

frequencies (lasers) allow physically compact wireless AOA arrays.  

In this chapter geometric techniques are reviewed for the localization of an 

unlocalized node using AOA information.  Besides, a new angular measurement named 

DAOA is introduced in this chapter and a geometric algorithm is proposed for that.  LOS 

propagation is assumed from the reference stations in order to establish geometric 

equations for position determination.  All the clock of the anchors and the unlocalized 

node are synchronized. 

This chapter is organized as follows.  Section 3.1 introduces more detail about 

angle-based localization.  Section 3.2 presents a closed form algorithm for AOA 

localization using two anchor nodes.  In section 3.3, the unconstrained and weighted 

unconstrained least squares location algorithms using absolute AOA measurements are 

reviewed.  In section 3.4, a new algorithm using differential AOA measurement is 

proposed to locate the unlocalized node.  In order to evaluate the localization algorithm 

performances, simulation results are provided with each algorithm.  Conclusions are 

drawn in section 3.5.   
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3.1. Introduction of Angle-Based Localization 

Generally, AOA is the angle between the propagation direction of a signal and a 

reference direction, which is known as orientation [10][36].  The angle measurement 

indicates either the angle between two anchors from a reference node or the angle to a 

reference direction, or axis [20].  Both categories are considered in this chapter.   

Angular measurements can support a TOA localization process or allow the 

nodes to be localized solely based on the angle information [20].  One common 

approach to obtain AOA measurement is to equip each sensor node with an antenna 

array or multiple receivers [10].  These requirements increase the cost of measurement.   

Figure 3-1, represents three BSs and their axes.  It shows that the AOA of the 

transmitted signal, for example, by C (or A) to B is   (or  ).    is the heading angle or the 

orientation of the system that is formed by the sensor axis and North, in a clockwise 

direction.    defines a fixed direction against which the AOAs are measured [10][17].  In 

other words, this orientation or   is the angular displacement of the sensor-based 

coordinate system and the geographic coordinates.  The AOA is called absolute AOA 

whenever the orientation is zero or pointing to North, otherwise, it is called relative [10]. 
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Figure 3-1. Definition of AOA (adapted from [17]).  (Node B with its heading and 
incoming angles from A and C). 

The position of the unlocalized node can be estimated by using at least two lines 

of bearing (LOB) which are drawn from the anchor node to the unlocalized node.  This 

estimate is undertaken for each AOA measurement [7][20]. 

There is also an option to combine the angle information from AOA with 

knowledge of distances from TOA measurements.  This is called a hybrid technique 

which should increase the accuracy of the localization and is reviewed in the next 

chapter of this thesis.  This improved accuracy makes AOA technique an attractive 

positioning method despite its cost and difficulty of deploying large (i.e., directional) 

antennas [20].   

Requirement of large and complex antenna arrays and direction of arrival 

estimation at the BSs are some of the disadvantages of AOA algorithms.  In order to 

have an accurate positioning, the angle measurement needs to have consummate 

accuracy.  Therefore, using optical technology can be an option for angular 

measurements. 
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3.2. Closed Form for AOA Localization Using Two Anchors 

For AOA measurements, two anchors are sufficient to determine the position of 

the unlocalized node by intersecting two lines, which is called triangulation (Figure 3-2) 

[4][36].  

 

Figure 3-2. Definition of triangulation (adapted from [4]).  The angles measured 
by the reference nodes (black nodes) determine two lines, 

the intersection of which yields the target position.  

Let    and    denote the angles measured by anchors 1 and 2 to the same axis, 

respectively.  Then, the following two equations are solved for the position of the target 

[4]: 

         
      

    
                 

        

    
 (3-1) 

which yields the   and   position of the unknown point: 

   
                               

             
 (3-2) 
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 (3-3) 

So, just having the position information of two anchor nodes leads to a closed form of 

localization of the third node. 

3.3. Using Absolute Bearing Measurement of AOA for More 
than Two Anchor Nodes 

In this section, the sensor coordinates are aligned with geographic coordinates.  

So, the absolute bearing refers to geographic coordinates.  In the previous section, the 

AOA localization algorithm was considered using just two anchors.  However, in general, 

in order to present a formula for the AOA of the transmitted signal from the MS at the  -th 

BS, equation (3-1) can be used, and for   BSs is: 

         
    

    
                 (3-4) 

Equation (3.4) shows that     is the angle between the line of bearing (LOB) from the  -th 

anchor to the unlocalized node and the  -axis, and it is recalled that with the sensor 

coordinates aligned with geographic coordinates, then the sensor axis is also along the 

 -axis [7].  The measurement of AOA is denoted by {      } which is modeled with 

additive noise [7]: 

                        ( 
    

    
)                         (3-5) 

where        is the noise in       . 
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Equation (3-5) can also be expressed in vector form as: 

                       (3-6) 

where 

                                (3-7) 
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]
 
 
 
 
 
 

   (3-8) 

where         . 

For the development and analysis of the proposed (in [7]) location algorithm 

using AOA, an assumption is now made about the measurement error, viz., that it is 

sufficiently small (i.e., high SNR case) and modeled as zero mean Gaussian.  The noise 

covariance matrix is denoted        [7].    

3.3.1. Algorithm development [7] 

In order to make the calculations simpler, the        measurements are 

considered, for now, without noise [7], i.e. 

   (      )  
   (      )

   (      )
 

    

    
                (3-9) 

Rearranging the above equation yields 
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    (      )      (      )       (      )       (      )  

           

(3-10) 

The same matrix-vector form as for TOA in the previous chapter is used here for AOA: 

       (3-11) 

where  

  [
   (      )     (      )

  
   (      )     (      )

]   (3-12) 

  [
     (      )       (      )

 
     (      )       (      )

]  (3-13) 

Location of the unlocalized node (       ) can be estimated using LSE.  At 

this point, all the measurement elements are equally weighted.  However, the LS 

estimator will perform better if different weights are used.  The performance, with and 

without a weighting matrix (i.e., WLS), is shown here [7].  The LS estimator is 

 ̂   𝑟                              (3-14) 

Equation (3-14) is similar to equation (2-31) which was the solution in [7] for the 

unconstrained approach for using TOA measurements in the previous chapter.   

Finding an optimum weighting matrix,    , is determined in [7] based on the 

BLUE technique.  The estimated position of the unlocalized node is 
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 ̂   𝑟                      

                       

(3-15) 

Following [7], by considering small errors, and expanding     and     functions in 

(3-10) such that    (      )          and    (      )   , the equation reduces to 

    (         )       (         )    

      (        )        (         )    

            

(3-16) 

In order to determine the optimum  , the residual error in        is required [7], i.e.  

                                                       . (3-17) 

In vector form,      is 

  

[
 
 
 

 

                                      

                                      

 
                                      ]

 
 
 

. (3-18) 

Thus the inverse of the optimum weighting matrix is: 

                        . (3-19) 
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where 

  [

                             
                             

 
                             

]   [

  

  

 
  

]. (3-20) 

  is determined as (3-20) because           
      

  
 and         

      

  
  [7].   

In summary, the various measurements of angle are weighted inversely to their 

noise power.  This means that those measurements with high SNR are emphasised, and 

those with low SNR are de-emphasized.  The combination technique is also called 

maximum ratio combining, which gives the best resultant SNR of all linear combinations.  

The output SNR is the sum of the measurement SNRs. 

Simulation Results 

In this section simulation results are provided.  Figure 3-3 shows the behaviors in 

the form of MSE of the LS estimator and the weighted LS, versus number of anchors.  

Since matrix   in AOA has dimension     , in order to have full rank matrix,   should 

be greater than or equal to 2.  (The MSE for using 3 anchors is 5.6 and 5.2 for LS and 

WLS respectively.)  Noise is Gaussian with variance of 2 degrees2 and the anchors are 

uniformly distributed over a 100 by 100 square area. 
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Figure 3-3. MSE vs. number of anchors for LS/WLS using AOA measurements. 
A square of 100 by 100 contains the uniformly distributed anchors. 

Angle noise is Gaussian with variance of 2 degrees2.  

Figure 3-3 shows how increasing the number of anchors, up to 12, lowers the 

MSE, for this geometry.  Diminishing returns cut in when more than about 12 anchors 

are used and, as expected, WLS has better performance than the LS estimator for the 

same noise variance.  This is akin to maximum ratio combining of the observations and 

equal gain combining of the observations. 

Figure 3-4 shows the MSE of the LS estimator and the WLS, using 20 anchors, 

versus angle noise variance. 
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Figure 3-4. MSE vs. angle noise variance (in degrees2) for 
LS/WLS using AOA measurements.  

It illustrates how increasing the angle noise variance causes a larger estimation error. 

3.4. Differential Angle of Arrival measurement (DAOA) 

In some systems, a new scenario of using angular information can be described 

for localization of the unknown node.  In the previous sections of this chapter, algorithms 

for using AOA measurements were reviewed.  In this section, a new algorithm is 

proposed using DAOA.  The unlocalized node is supposed to be at the centre of a 

circular locus of anchors.  The estimation of the unlocalized node’s location is studied 

here by using the angle subtending two anchors from the unlocalized node.  These 

angles can be considered as the differential AOA between two anchors which is why it is 

called DAOA.  DAOA has the advantage of not needing to know the absolute angles 

(i.e., orientation, cf., Figure 3-1) of the sensors.  The DAOA measurement is motivated 

by using rotating laser technology. 
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By using the triangulation technique (cosine law), the distances between nodes 

(nodes A and B in Figure 3-5) which are not in the same transmission direction, can be 

computed.  From Figure 3-5, the cosine law is: 

                                       (3-21) 

 

Figure 3-5. Representation of DAOA.  A and B are the anchors, and C is the 
unlocalized node.    is the  DAOA.  In order to solve in closed form, 

“a” should equal “b”.  

For a closed form solution, a circular configuration must be assumed for the 

anchors, i.e., the anchors are all on a circle with the unlocalized node at the centre.  For 

node C (with       coordinates) being the unknown node in Figure 3-5, and a=b, then 

                  , (3-22) 

which leads to   

   
  

            
   (3-23) 
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If (     ) is considered as the coordinates of node B, for more nodes, the coordinates of 

node A would be denoted by (         ) and the  -th point has the coordinates 

of        .  So, (3-23) becomes 

      
        

  
      

 

 (             )
   (3-24) 

where        and        denoted the angle and distance between  -th and      -th anchor 

node respectively.  Expanding the left side of equation (3-24) gives: 

                (  
    

 )  
      

 

 (              )
   (3-25) 

Rearranging (3-25) gives: 

              
 

 
(  

    
 )  

 

 
(

      
 

             
)   

              
 

 
(  

    
  

      
 

                
)  

        . 

(3-26) 

Now, (3-26) has a familiar form, viz., like equation (2-28) for TOA measurement.  So, 

matrix-vector form of       in (2-29) is useful here again.  Vector    [

 
 

  
] is the same 

as before, but matrix   and the vector   change to:  
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    [
        
   

            
]    
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                ]
 
 
 
 
 

  (3-27) 

Similar to TOA, the DAOA can be solved by unconstrained LS similar to (2-31) 

with   and   in (3-27).  Since it was shown in the previous chapter that constrained LS 

had almost the same simulation result with higher complexity, it is not considered as an 

option in this section and unconstrained LS is used as the estimator here. 

Figure 3-6 shows the MSE against the number of anchors for the simulation 

result of the unconstrained LS using DAOA measurements.  The angle noise is 

Gaussian with variance of 4 degrees2.  Since matrix   in DAOA has         

dimension, in order to have full rank matrix,       should be greater than or equal to 3.  

Thus, M should be greater than or equal to 4. 
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Figure 3-6. MSE vs. number of anchors for unconstrained least square 
estimator using DAOA measurements.  Anchors are on a circle 

with radius 10 around the unknown node, and angular noise 
variance of 4 degrees2.  

 This figure shows that adding more than 8 anchors to the system would change 

the performance only slightly. For example, when 10 anchors are used, the MSE is 

about 0.05, and for 20 anchors, the MSE is about 0.02. It is emphasized that these 

results stem from a specific arrangement for the anchors.  
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Figure 3-7. MSE vs. angle noise variance for unconstrained least squares 
estimator using DAOA.  Anchors are on a circle 

with radius 10 around the unknown node.  

In Figure 3-7, angle noise variances of 2 to 16 degrees2 are used to show the 

impact on the accuracy. Tie points are: for a noise variance of 8, the MSE is about 0.1 

and 0.03 for LS estimator using 10 and 20 anchors respectively.  

3.5. Conclusions 

In this chapter, localization of an unknown node in a wireless sensor network 

using angle-based observations was presented.  The unknown sensor was assumed to 

be capable of detecting angles of the incidence signal from the anchors.  Least Squares 

used as the estimator and computer simulations using MATLAB were used to evaluate 

the algorithms.   
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The algorithm which was reviewed for AOA measurement used unconstrained 

and weighted unconstrained LS estimator.  WLS could achieve a better result compared 

to LS.   

A new DAOA-based positioning method has been introduced in this chapter.  The 

remarkable feature of this method was its capability of accurate localization from purely 

DAOA information, which is a new concept.  The significance is that DAOA can be easier 

to obtain than AOA in some situations.  The algorithm was evaluated using a specific 

deployment (circular) of the anchors; however this is not a fundamental limitation.  But 

this specific situation also provided a closed-form solution to the location problem.  

Simulation results showed that applying more than 8 anchor nodes on a circle sees 

diminishing returns for the location accuracy. 
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Chapter 4: Localization Algorithms 
Using Hybrid Technique 

The combination of different positioning techniques should be able to improve 

accuracy and loosen constraints on the physical layout of the localization problem.  In 

the literature this type of combination of techniques is also called data fusion or hybrid 

technique [18].  Another motivation of employing a hybrid technique is to reduce the 

number of required anchors for a given localization performance [22].   

In this chapter, the TDOA/AOA hybrid technique is reviewed and a new 

TOA/DAOA technique is introduced.  Since TDOA measurement and its formulations 

have not described in the previous chapters of this thesis, in section 4.1 it is briefly 

reviewed.  In section 4.2 and 4.3, hybrid localization techniques comprising TDOA/AOA 

and TOA/DAOA are discussed respectively.  Hybrid localization in three-dimensions is 

an interesting problem which is reviewed in section 4.4.  Finally, conclusions are drawn 

in section 4.5. 

4.1. Review of TDOA Algorithm 

The idea of TDOA is to determine the relative position of the unknown node by 

examining only the difference in time at which the transmitted signal arrives at different 

anchors, rather than the absolute arrival time of TOA [3].  (Clearly if the pairs of absolute 

TOAs are known, then their TDOAs can be calculated.)  The unknown sensor does not 

need to be synchronized with the anchors, but the anchors must be tightly synchronized 

[13].  There are methods, e.g. [3][23], for measuring the TDOA.  Each TDOA 

measurement defines a hyperbolic locus on which the unlocalized node must lie.  A 2D 

target location estimate is given by the intersection of two or more locii as shown in 

Figure 4-1 [3]. 
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Figure 4-1. Positioning based on TDOA Measurements (adapted from [3]).  A, B, 
and C are anchors and P is the unknown node. 

The intersection of two hyperbolas formed from TDOA measurements of three 

anchors (A, B, and C), gives the location of the unknown node (for example, node P in 

Figure 4-1). 

4.1.1. TDOA Formulation 

TDOA is the difference in TOAs of the transmitted signal from the unknown 

sensor at a pair of anchors.  So, if the first anchor is assigned as a reference point, the 

range measurements based on the TDOAs are of the form [3][7] 

𝑟                       

 √      
        

  √      
        

          

           

(4-1) 

where the range error,         , can be obtained from the difference of two TOA noise.  

So,          is                                   In vector form, the range 

measurements in (4-1) become [7]: 
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                          (4-2) 

where  

       𝑟        𝑟        𝑟           (4-3) 

                                     (4-4) 

          

[
 
 
 
 √      

         
  √      

         
 

√      
         

   √      
         

 

 

√                 √      
         

 ]
 
 
 
 

   (4-5) 

where        . 

4.1.2. Algorithm Development 

For high SNR, the corresponding nonlinear equations which are obtained from 

TDOA measurements can be linearized.  The technique is commonly called spherical 

interpolation (SI) that solves the linear equations using LS estimator [30].  The procedure 

is the same as what was described for TOA measurements in chapter 2. 

In order to develop the CLS/ULS mobile positioning estimator using the TDOA 

data as it is discussed in [7], equation (4-1) can be considered without noise.  

𝑟       √      
         

  √      
         

 . (4-6) 

Rearranging the above equation leads to 
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𝑟       √      
         

  √      
         

  

           (4-7) 

An intermediate variable,   , is introduced here which has the form 

      √      
         

   (4-8) 

Squaring both sides of (4-7) and using    , then rearranging the equation gives the 

following set of linear equations [7] 

                              𝑟                             

         
 

 
[       

         
  𝑟      

 ]            

(4-9) 

(4-9) in matrix form is 

      (4-10) 

where 

  [

          𝑟      

   
          𝑟      

]  

  
 

 
[

       
         

  𝑟      
 

 
       

         
  𝑟      

 
]     

(4-11) 

also   is the parameter vector which consists of the unlocalized node location as well as 

   (                    
 ).   
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LS is used to solve (4-10) in the presence of noise, and to estimate the location 

of the unlocalized node [30]: 

 ̂   𝑟                                (4-12) 

where 

   [

      

      

  

] (4-13) 

without utilizing the known relationship between  ,  , and    [7].   

In order to improve the SI estimator, the LS cost function in (4-12) can be solved 

subject to the constraint [7]:  

         (4-14) 

where   is             . 

As mentioned earlier in the previous chapters, using WLS helps to improve the 

estimation.  So, using     as a symmetric weighting matrix changes the LS to [7] 

 ̂   𝑟                        (4-15) 

Finding the optimum weighting matrix procedure is similar to TOA and AOA 

mentioned in the previous chapters and it is not mentioned here again. 

4.2. Hybrid TDOA/AOA 

It has been mentioned in the literature, e.g. [23], that combining different 

techniques can improve location performance and/or reduce the number of receiving 
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anchors in the system.  Among various hybrid schemes, the most popular one is to use 

the TDOA and AOA measurements simultaneously [17][22][23].   

To perform TDOA/AOA mobile positioning, (3-10) is now rewritten by adding 

                                on both sides [7]: 

         (      )           (      )                                      

                                  (      )            (      )                    

(4-16) 

Combining (4-9) and (4-16) into a single matrix-vector form yields [7] 

      (4-17) 

where [7] 

  [
 

   
]             [

 
 
]  (4-18) 

  

[
 
 
 

 
          (      )            (      )

 
          (      )            (      )]

 
 
 
   (4-19) 

where    is an     column vector with all zeros and   and   are the same matrix and 

vector as defined in (4-11) and     defines in (3-12).  Then   is solved by  

 ̂   𝑟                                          , (4-20) 

where     is the weighting matrix.  The constrained LS estimate of    is obtained by 

minimizing the cost function in (4-20), subject to [7] 
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        (4-21) 

Parameters   and   are the same as defined before.  The details on this 

technique are similar to the TDOA or TOA techniques.  

4.3. Hybrid TOA/DAOA 

In this section, a new hybrid algorithm is developed for localization. The noisy 

distances between the anchors to the unknown node (TOA measurements) and the 

DAOA measurements, are used for this algorithm. Figure 4-2 depicts the situation.  

The distances between the anchors to the unknown node are found from 

propagation time measurement.  The angles between the anchors would be measured 

using a laser.  In fact, the DAOA and hybrid TOA/DAOA are introduced in this thesis 

motivated by using rotating laser technology.  

The cosine law (3-21) is again used. Similar to the previous chapters, all the 

anchors are assumed to be distributed uniformly over a 100 by 100 square.  The 

measurement noises are zero-mean Gaussian with variance of 0.1 for distances, and 

angular variance of 2 degrees2.   
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Figure 4-2. Representation of an unknown node and some randomly distributed 
anchors.       is DAOA and      is the distance between i-th and j-th 

anchor.     is the distance of i-th anchor to the unknown node.  

The distances between two consecutive random anchors (      ) can be 

calculated as below 

      
        

        
          

          
  

          (      )                
(4-22) 

where       and         are the unknown node and an anchor coordinates respectively.  

   is the noisy distance of the  -th anchor to the unknown node and        is the noisy 

DAOA between  -th and    -th anchor.  Expanding (4-22) and rearranging it shows in 

(4-23),(4-24), and (4-25).  
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                                      (4-23) 

      
      (  

      
    

      
 )                         

                               (4-24) 

where         .  The purpose of these manipulations is to find a familiar form from 

earlier chapters.  Rearranging (4-24), 

 

                       

       (  
      

    
      

 )                    
      

 

 
     

           

(4-25) 

Equation (4-25) is the matrix-vector form like      in chapter 2,, where   is a vector 

consisting of unknown node coordinates (          ), and   and   matrices are: 

        [
            

   
                

]   

       
 

 
[

      
    

    
    

    
                 

 
        

    
      

    
    

                    
]   

(4-26) 

The advantage of this hybrid technique compared to DAOA is that no specific 

layout of the anchors is required, i.e., it means that there is no need to have the anchors 

specifically on a circle around the unknown node for a closed form solution.  
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An unconstrained LS estimator is used now to estimate the unknown node 

position. This estimator (  ̂               ) is the same as that used in the previous 

chapters.  The simulation result for the hybrid technique is shown in Figure 4-3. It is 

compared against the TOA technique which was used in chapter 2. The reason that the 

DAOA is not included in this comparison is that its anchor nodes do not have the same 

constellation as the other two algorithms (TOA and proposed hybrid TOA/DAOA).  Fair 

comparison is only possible with identical anchor constellations. The simulations are 

undertaken for 104 observations and the results are averaged.  Distance noise variance 

is the same as it was for TOA (0.1), and the angle noise variance is 2 degrees2. 

 

Figure 4-3. MSE vs. number of anchors in hybrid TOA/DAOA comparing to TOA. 
Distance noise variance=0.1, and angle variance=2 degrees2.  

The figure shows that the purely TOA technique has better performance than the 

hybrid.  But any extra measurements, here the angle measurements, should improve the 

hybrid technique according estimation principles.  The current algorithm – the LS - does 

not account for the different noise variances of the different (TOA and DAOA) 

measurements.  The above figure is for the LS estimator which does not have prior 
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knowledge of the noise (noise covariance matrix), and this is why the results for the 

hybrid technique are less accurate than those for the purely TOA technique. 

Having essentially noiseless angle measurements (very low angular noise 

variance) is not out of reach these days because of laser techniques. When the angle 

noise is zero, the proposed hybrid TOA/DAOA has a slightly better result than TOA 

technique for using more than eight anchors, as illustrated in Figure 4-4.  

 

Figure 4-4. MSE vs. number of anchors in hybrid TOA/DAOA comparing to TOA. 
DNR=41, distance noise variance=0.1, and angle variance=0. 

The results are presented here are to assist with future work for the case when 

the noise covariance is known. (Here the noise variance is known for the numerical 

experiments of the simulations, but it is not assumed to be known in the estimator, and 

this is also the case used in the cited literature.) 
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4.4. Considering the Localization Problem in 
Three-Dimensions 

So far the localization problem is described in 2D.  Positioning in 3D is also 

demanding.  In this section 3D localization is briefly reviewed.  The localization algorithm 

is the same as previous chapters except adding the third dimension to the calculations of 

the linear LS estimation algorithm.  Figure 4-5 shows the notation for the position of the 

anchors and the unlocalized node in 3D.  Here,         is the unknown node’s 

coordinates, while (          is the known coordinates of the  -th anchor.     and    

denote the azimuth and zenith angles, respectively.  In the other words,    is the 

azimuth angle of the projection of the unknown node on the     plane, and    is the 

zenith angle of the unlocalized node.  They can be shown as 

        ( 
    

    
)          (

    

  
)     (4-27) 

where    is the distance between the unknown node and the  -th anchor.  The 

calculation for    is similar to the 2D case in (2-7): 

    √      
        

        
                     (4-28) 

In the presence of noise, the distance and angles measurements become [12] 

 ̂       ̂ 
  ̂       ̂ 

   ̂       ̂ 
    (4-29) 

where   ̂ 
,  ̂ 

 and   ̂ 
 are the measurement errors of   ,  , and    respectively. 
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Figure 4-5. Representation of an unknown node and the anchor positions 
in 3D space. 

4.4.1. Linear LS Method 

Recalling from the previous chapters, the estimator for positioning the unlocalized 

node is LS.  In order to develop this algorithm for the 3D case, only distance information 

is considered first.  Then, the estimation algorithm is derived for the hybrid 

measurements when both the distance and angle measurements are available.  

Estimation Based on Distance Measurements 

Equation (4-28) has a nonlinear form, so in order to apply the LS estimator using 

only distances information, the equations are linearized.  Squaring both sides of (4-28) 

and considering low noise in distances yields [12] 

      
        

        
   ̂ 

 
               (4-30) 

In order to produce a familiar form of the matrix-vector, the first anchor is taken as a 

reference node.  Now a new element is introduced as follow [12]: 
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                                               (4-31) 

where      is: 

        [   
    

    
      

    
    

    ̂ 
   ̂ 

 ]  (4-32) 

Equation (4-31) can be written in a matrix-vector form as: 

                        (4-33) 

where  

         [

               

   
               

]         [
 
 
 
]         [

    

 
    

]  (4-34) 

Now the linear LS estimator is used to define the estimate of the position of the 

unknown node.  It minimizes the sum of the squares of the difference between the two 

sides of each equation in (4-31).  That is, [12] 

 ̂   𝑟     ∑                                      
  

 

   

 (4-35) 

where      are the weights which emphasize different elements of the measurements.  

The weighting concept is giving larger weights to the parameter measurements which 

are more reliable.  For example, larger weights are assigned to the parameters of the 

anchors with a higher received signal power (the higher signal-to-noise).  In some cases 

when a priori information on the distance estimation is not available, the weights may be 

chosen to be unity.  The weighted LS (WLS) solution to (4-33) is given by 
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 ̂                     (4-36) 

where   should be full column rank (i.e., three in this case), to have a inverse matrix 

and the diagonal weighting matrix is  

                                  (4-37) 

Hybrid Estimation Based on Distance and Angle Measurements 

When both distance and angle measurements are available, equations (4-27) 

and (4-28) change to [12]: 

            ̂     ̂     ̂              ̂     ̂     ̂ , 

      ̂     ̂                   
(4-38) 

where the approximation is for the high SNR case.  The interesting point when both the 

distance and angle measurements are available is that the unknown node can be 

localized by using only one anchor.  When the LS estimation is applied to localize the 

unknown node’s coordinate, the same form as (4-36) can be used, but with the following 

matrices [12]: 

                      

                          

           ̂     ̂     ̂        ̂     ̂     ̂   

       ̂     ̂     ̂        ̂     ̂     ̂    

    ̂     ̂         ̂     ̂       

(4-39) 
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4.5. Conclusions 

In this chapter, the hybrid TDOA/AOA was reviewed.  The same LS approach as 

previous algorithms discussed in chapters 2 and 3 is used.  This hybrid technique is 

considered in the literature as a better algorithm with higher accuracy for localization.  

However, the goal of this thesis was to use an algorithm using TOA/DAOA as the 

measurements.  This new proposed hybrid localization algorithm was undertaken in a 

similar manner of previously discussed algorithms.    

The simulation result for the proposed TOA/DAOA technique was compared to 

the unconstrained TOA technique obtained in chapter 2.  The noise variance of the 

distance measurements were the same (0.1) for both techniques.  DAOA noise in this 

hybrid algorithm was 2 degrees2.  With this level of angle noise, the performance of the 

hybrid could not beat the TOA method.  However, for the second comparison, the angle 

noise was set to zero and the result showed the slightly better performance for hybrid 

algorithm than the TOA algorithm. 
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Chapter 5: Conclusions and Future Work 

5.1. Summary and Conclusions  

Accurately positioning an unknown node in a wireless sensor network is very 

difficult.  All the nodes are equipped with the transmitters and receivers to communicate 

between each other.  Based on the positioning application, this problem can be 

categorized.  One category is range-based localization in a static sensor network, and 

this is the subject of this thesis.  Various measurement techniques (such as RSS, TOA, 

TDOA, AOA, hybrid TDOA/AOA) have been proposed and discussed in the literature.  

The focus here was on TOA, AOA, DAOA and hybrid TOA/DAOA.   

In chapter 2, the focus was on localization algorithms using TOA measurements. 

A new nonlinear estimation method was presented in order to apply to a one-

dimensional network topology. This estimator had a good performance compared to the 

derived Cramer-Rao bound. The nonlinear least squares estimator was presented in 

order to use for two-dimension case as well. The simulation results were presented 

graphically as useful design information. A Distance-to-Noise-Ratio (DNR) was 

introduced as a parameter in chapter 2 in order to evaluate the performance of the 

estimators. DNR is the ratio between the squared mean of the distance,   
 , and the 

noise variance,   
 , and it calculated from      

  
 

  
  .  So, this is the obvious analogy of 

SNR as used in other signal processing disciplines.  Also in chapter 2, the nonlinear 

equations were reorganized into a set of linear equations in order to reduce the 

complexity (of NLSE).  The constrained and unconstrained Least Squares (ULS) location 

algorithm using TOA measurements were reviewed.  The simulation results for ULS 

were essentially the same as those of NLSE, and the weighted ULS having a slightly 

lower MSE. 
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In chapter 3, angular measurements of the nodes were considered for the 

localization algorithms.  The unconstrained and weighted unconstrained least squares 

location algorithms using absolute AOA are also reviewed.  A goal of this thesis was to 

develop a localization algorithm which considers the angles between the anchors and 

the unlocalized node, i.e., the Differential-Angle-of-Arrival.  This was a new 

measurement technique developed in this thesis motivated by using rotating lasers.  

Triangulation (cosine law) was used to calculate the distances between nodes.  For 

simplicity in the simulations, the anchors were confined to being on a circle around the 

unlocalized node, and LS estimation was used for the unlocalized node location.  

Simulations showed that using more than 8 anchors had reached diminishing returns. 

 In chapter 4, localization algorithms using hybrid technique were investigated.  A 

short review on TDOA measurement was provided.  In addition, TOA and DAOA 

techniques from the previous chapters were incorporated to develop a new hybrid 

technique.  Least Squares was used for the estimation of the unknown node.  The 

simulations for the proposed TOA/DAOA technique were compared to unconstrained 

TOA technique obtained in chapter 2.  With the chosen simulation noise variances (0.1 

for the distance noise variance, and 2 degrees2
 for the DAOA noise variance) the LS 

estimator used in the hybrid method could not beat the LS estimator that used purely 

TOA.  With zero angular noise, the hybrid algorithm was essentially the same as the 

pure TOA for more than 8 anchors.  

5.2. Future Work 

Throughout this thesis, LOS signal propagation was assumed in a static sensor 

network consisting of for example, 10 to 20 anchors.  There was one unlocalized node 

among these anchors. There were also two other assumptions throughout this thesis. In 

chapter 2, the distances between the anchors and the unlocalized node were given with 

a certain noise variance. In chapter 3, the angle subtending two anchors from the 

unlocalized node was known with a certain noise variance.  For the hybrid algorithm, 

both noises were considered.  So, this thesis did not deal with the real experimental 

measurements and the presented results were all based on the simulations.  With these 

assumptions in mind, the following directions beckon: 
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• Considering NLOS signal propagations:  

LOS propagation is not always available in the systems. Due to reflections and 

diffractions of the signals, one of the major error sources in mobile location is 

NLOS error propagation. It degrades the localization or tracking accuracy 

significantly.  Therefore, algorithms which could discard the NLOS 

measurements or formulate the positioning and tracking problem with NLOS 

are required.  Positioning with NLOS propagations is a major challenge, and is 

a fertile area for more research. 

 

• Knowing the exact coordinates of just a few number of anchors and 

calculate the other anchors positions:  

In some situations the exact coordinates of some of the anchors is not 

available.  Finding these anchors’ coordinates from the known coordinates of 

the other anchors is a good direction for future work.  Also, Investigation of 

anchor-free localization schemes remains a major challenge, e.g. [25]. 

 

• Considering DAOA for generalized constellations of anchors: 

The DAOA simulations were confined to a specific, circular configuration for 

simplicity.  The obvious extension here is to generalize this layout and 

determine the sensitivity to the geometric situation. 

 

• Extension of the localization algorithms for estimating of more than one 

unlocalized node:  

Localization of one static node can be used iteratively in order to locate more 

unknown nodes. Whenever an unknown node is localized, it can be 

considered as a new anchor for the system and helps to improve the accuracy 

of localizing other unknown nodes.  Such iterative schemes can be an 

extension to this research. 
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• Extension of the localization algorithms for estimating of a mobile 

unlocalized node:  

The unknown node was static in this thesis.  However, localizing a mobile 

station is an interesting problem. Positioning a mobile target (tracking) is 

another extension to this research.  A trajectory can be determined and 

different algorithm can be applied for the localization.  Kalman filtering has 

been a traditional choice, but the sensitivity to the non-gaussian noise 

compromises this approach. 

 

• Extension of the localization algorithms for N dimensional localization: 

N-dimensional location where N is greater than the usual cartesian 

coordinates is possible in a mathematical sense.  This type of calculation is 

not applicable to physical situations, but may have applications in multi-

dimensional systems such as data bases. 
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Appendix A.  
 
Mathematical Calculations of NLSE 

In one-dimension localization, expanding the cost function ( ) in equation (2-17) is as follows: 

  ∑       
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   (A.2) 

For convenience, the summations can be considered as multiplications of two vectors.  So, the 
following vectors are introduced here to use in the calculations: 
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In terms of multiplications, (A.2) changes to 
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where   means the inner product of corresponding elements of two vectors.  So, the derivative 

of   with respect to   would be: 

   
  

  
                 

          
                       

            
              

                           

(A.7) 

Since the cost function must be minimized, this derivative is set to zero.  The real root of this 
cubic equation is: 
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 where   equals: 
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In two-dimension localization, expanding the cost function ( ) in equation (2-20) is as follows: 
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Derivations of   with respect to   and   are: 
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where      and      are as below: 
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Appendix B.  
 
Calculation of CRLB for 1D Localization 

From estimation theory, suppose   is an unknown deterministic parameter which is to be 

estimated from measurements   with the conditional probability density function of    |  .  The 

variance of any unbiased estimator,  ̂ , is then bounded by the inverse of the Fisher information 
function     : 

  𝑟 ̂    
 

    
   (B.1) 

where  

      [(
        |  
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]    [
        |  

   
]  (B.2) 

Now,   𝑟 ̂    needs to be determined for NLSE in 1D case.  Suppose    as the distance 

measurement between unknown node and an anchor in 1D case: 

   |    |       (B.3) 

where   is the coordinates of unknown node,    is the anchor, and    the Gaussian noise.  

Distribution of    is the same as its noise: 
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where     is the noise variance.  Then for   anchors the distribution would be: 
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Knowing that                     taking        from both sides of (B.5) changes it to: 
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http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Multiplicative_inverse
http://en.wikipedia.org/wiki/Fisher_information
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In order to obtain the Fisher information function, second derivative of (B.6) must be taken.  

Recalling 
 

  
| |  

 

| |
   , the first derivative of (B.6) with respect to   is:  
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      (B.7) 

By taking another derivate from (B.7) with respect to  , first and third terms would be zero: 
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(B.8) 

So, 
     

    has the form 
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   (B.9) 

Now, as (B.2) shows the expectation of (B.9) has to be taken     [
     

   ]    [
  

  ] .  Then 

substituting it in (B.1) determines a bound for the variance of the estimation.  So, 
  

 
 is considered 

as the CRLB in 1D case, where   is the number of known points or anchors and    is variance of 
the noise. 


