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Abstract

Ultracold trapped atomic systems are ideal model systems to investigate physical phenomena in the
quantum regime. In this work we studied instabilities in spin dynamics of a sample of nondegenerate
trapped 87Rb gas. This is the first experimental investigation of the so-called Castaing instability
in such systems. The Castaing instability is an instability in the spin dynamics of spin-polarized
systems as a result of introducing sharp spin gradients in their spin profile.

We used an optical technique via the ac Stark effect to initialize arbitrary spin profiles in a
sample of evaporatively cooled nondegenerate 8"Rb gas. The experimental results manifest evi-
dence for the presence of the Castaing instability in both transverse and longitudinal spin channels.
The results agree reasonably well with theoretical studies and results of a numerical solution to the
spin transport equation. Some imperfection in the longitudinal spin gradient due to the spin-state
preparation technique makes the signature of the instability less clear in the transverse channel. We

propose another preparation technique to overcome this shortcoming in future experiments.
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Chapter 1

Introduction

The experimental realization of Bose-Einstein condensation in 1995 [1, 2] led to the Nobel prize
for E. A. Cornell, C. E. Wieman and W. Ketterle in 2001. Bose-Einstein condensation (BEC) is a
phase transition of an ensemble of bosons below a critical temperature 7., in which a macroscopic
population of particles occupies a single quantum state. This phase transition was predicted by Bose
and Einstein in the early 1900s but it took experimental physicists nearly a century to condense the
first BEC of a trapped Alkali-metal gas.

Aside from this huge scientific achievement, the experimental efforts to reach condensation in
Alkali-metal atomic gases turned out to be a robust foundation for a whole new field of research,
which provides physicists with a number of novel advantages. In trapped ultracold atomic gas sys-
tems the experimental parameters are highly controllable. These systems are also easy to manipulate
and image. The aforementioned properties make these systems ideal model systems to investigate
physical problems in the quantum regime.

While most studies in this field are involved with BECs such as quantum magnetism in spinor
BECs [3], quantum information [4] and precision measurements [5] to name a few, observation
of unexpected collective behavior in noncondensed spinor gases opened up a somewhat different
playground for atomic physicists [6]. Using an analogy between a two-component gas and a spin—%
system, the observed collective behavior was explained as pseudo-spin oscillations (spin waves) due
to a spin rotation effect [ 7] occurring during collisions between indistinguishable particles [8, 9, 10,
11]. Although these systems are nondegenerate, quantum scattering effects can occur as a result of
indistinguishablity and symmetrization properties of wave functions [12], given that the thermal de

Broglie wavelength (A\;p) of the particles is comparable to the scattering length between them.



CHAPTER 1. INTRODUCTION 2

Theoretical studies by A. Kuklov and A. E. Meyerovich proposed that this analogy between a
two-component gas and a spin—% system is more fundamental [13]. They predicted the presence of
other types of dynamics in these systems such as the Castaing instability, the experimental study
of which is the subject matter of this thesis. The Castaing instability is a phenomenon occurring in
the spin dynamics of a system in the presence of a nonequilibrium spin gradient, which results in
spontaneous generation of spin waves in the system. The work presented in this thesis is the first ex-
perimental study investigating the presence of the Castaing instability in a trapped ultracold atomic
gas system. In the Castaing experiments in spin polarized 3He-*He samples the observed signal was
averaged over the whole sample. The advantages trapped atomic systems provide, specifically the
spatial resolution, allows us to investigate the localized behavior of the instability.

The organization of this thesis is as follows. Chapter 2 is devoted to a mathematical descrip-
tion of a two-level (pseudo-spin %) system, followed by a theoretical discussion of spin dynamics
predicting the potential for the Castaing instability to arise in trapped ultracold atomic systems.
Chapter 3 presents the experimental apparatus as well as the procedure used to create and detect
an ultracold atomic sample. Chapter 4 focuses on the experimental pseudo-spin system and the
spin-state preparation techniques. The spin profile created for investigating the Castaing instability
is then presented and characterized at the end of that chapter. Finally, experimental results revealing

evidence for the presence of the Castaing instability are presented in Chapter 5.



Chapter 2

Spin dynamics theory

In this chapter a brief description of the spin dynamics theory in ultracold noncondensed atomic
samples is given. I will start by describing a two-level system coupled to an electromagnetic field,
which is analogous to a spin—% system. I will then present the spin transport equation and discuss

the situation relevant to the Castaing instability.

2.1 A two-level system coupled to an electromagnetic field

A two-level system is conceptually the same physical object as a spin—% doublet. This analogy can
be extended to interactions with electromagnetic fields. The Hamiltonian of a two-level system

coupled to an electromagnetic field is

1wt
B Qe

H= , 2.1
Qpe™7 Mg

where w is the frequency of the coupling field, wy is the atomic resonance frequency and {2y, is the
Rabi frequency, which characterizes the coupling strength between the field and the atoms.

Solving the time-dependent Schrédinger’s equation gives the probability of finding the atoms in
the ground or excited state denoted by | 1) and |2) respectively as a function of time. Starting with

the system in the ground state (P;(0) = 1 and P»(0) = 0), the probability of finding the system in
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the excited state at time ¢ is [14]

2 l
Py(t) = <$R> sin? (%%) : (2.2)
R

The effective Rabi frequency, QIR, is

Op = /0% + 62, (2.3)

where § = w — wy is the detuning of the coupling field from the atomic transition.

This population oscillation between the two states is referred to as Rabi flopping. The energy
splitting between the two energy levels in a two-component system can be measured using the
detuning dependence of Rabi flopping. However, as the atomic energy splitting is altered by a
radiation field due to the ac Stark effect, the measured effective Rabi frequency depends on the
power of the coupling field. This power dependence limits the accuracy with which the energy

splitting can be measured.

2.1.1 Bloch-sphere representation and optical resonance

The Bloch-sphere representation is a pictorial method for representing the Rabi problem, in which
the system is described as a state vector 77!_)' (Bloch vector) in a three-dimensional space (U, V, W)
(Fig. 2.1). The vertical axis (W) represents S|, the longitudinal spin component. The horizontal
plane (U — V) corresponds to .S, the transverse spin component, where the azimuthal angle ¢
indicates the relative superposition phase.

The interaction between a two-level system and an electromagnetic coupling field can be con-
sidered as a torque vector with components (2, 0, ) acting on the state vector of the system. In
order to reach this simplification, a transformation to a frame rotating at the coupling field’s fre-
quency w and implementation of the rotating-wave approximation is needed [15]. The motion of
the Bloch vector described by .

W _axy 2.4)
is confined to the surface of a sphere (Fig. 2.1).
When the electromagnetic coupling field is close to resonance, the field’s torque vector lies close

to the equator. As a result the Bloch vector (’(E) that is precessing around the field’s torque vector
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O
|

Figure 2.1: Bloch-sphere representation of the state vector 1; of a two-level system. The North pole
corresponds to the excited state |2) and the South pole corresponds to the ground state |1). The
azimuthal angle ¢ represents the relative phase of the superposition state.

() oscillates between the two pure states |1) and |2) (Fig. 2.2a). When the field is detuned from
the atomic resonance, the field’s torque vector approaches one of the poles (depending on the sign
of the detuning). In this case the Bloch vector undergoes rapid precession with a small radius about

the torque vector, nearly staying in its initial state (Fig. 2.2b).

2.2 Spin dynamics and the Castaing instability

The thermal de Broglie wavelength (\;p) of particles with mass m at temperature 7" is given by

2.5

where £ is the reduced Planck constant and kp is the Boltzmann constant. When this wavelength
is small compared to other typical length scales in a system, quantum effects can be neglected [16].
For example for liquid “He at 7' = 4 K the thermal de Broglie wavelength is ;5 ~ 0.4 nm, which
is larger than interatomic distances (typically d ~ 0.27 nm). Thus we expect liquid *He typically to
behave quantum mechanically.

Although in noncondensed ultracold atomic gas samples the system is nondegenerate, the ther-
mal de Broglie wavelength \;p is typically comparable to the scattering length. For 87Rb atoms

at T = 600 nK, the thermal de Broglie wavelength is \gyp ~ 240 nm, which is much larger than
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a) b)

Figure 2.2: Bloch-sphere representation of Rabi flopping. The black dashed vector represents the
coupling field torque vector 0, the blue vector represents the state vector (J) and the dotted line
represents the path of the oscillation of the Bloch state-vector. The coupling field is (a) in resonance
with the atomic transition and (b) detuned from resonance.

the s-wave scattering length, a = 5.3 nm. As a result, quantum properties of particles such as in-
distinguishably and symmetrization properties of wave functions dominate the dynamics, and thus
collisions occur in a quantum regime, leading to a number of interesting quantum phenomena. One
such phenomenon is the Castaing instability in the spin dynamics of spin-polarized systems, the
experimental study of which is the subject matter of this thesis. In this section I will present a short
background description of spin dynamics in noncondensed ultracold atomic systems, followed by a
discussion of the predictions of the Castaing instability.

Collective behavior in noncondensed two-component trapped atomic gases was first observed in
2002 [6], when the two components (spin states) of a trapped 3’Rb gas sample became segregated
spatially, a situation that could not be described by thermal energy considerations. Theoretical
descriptions of this experiment made an analogy between a two-component gas and a spin-polarized
gas. This phenomenon was explained as manifestation of pseudo-spin oscillations (spin waves)
arising from a spin rotation (the identical spin rotation effect [ 7] or Legget-Rice rotation [17]), which
occurs in collisions between indistinguishable particles in the quantum regime (see Section 2.2.2).

A. Kuklov and A. E. Meyerovich proposed that this analogy is richer and predicted that other
phenomena observed in the dynamics of spin-polarized gases, including the Castaing instability,
ought to be observable in trapped ultracold atomic systems [13]. J. N. Fuchs et al. [18] stud-

ied the presence of the Castaing instability quantitatively considering system parameters similar to
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the experiment described in [6]. Based on these theoretical studies we designed an experiment to

investigate the Castaing instability in a trapped two-component 8"Rb gas experimentally.

2.2.1 Quantum Boltzmann transport equation

Spin dynamics in spin-polarized systems are described using a quantum Boltzmann transport equa-
tion [8, 9, 10, 11]. As the trapped atomic cloud in our experiment is highly elongated along one
axis (z) and the radial trap frequency is high compared to other relevant experimental time scales,
we average the sample over the radial dimensions of the sample and treat the dynamics as being
one-dimensional (1D).

The one-dimensional time evolution of the phase-space spin distribution function &(p, z,t) is

described by the quantum Boltzmann transport equation

0G  p G Ui dG ~ _ 0F
o Tmo: 0: ap V7T wl, 20

where the first three terms represent the total time derivative of &'(p, z, t), Uext is the external mag-
netic trapping potential, and p and z are momentum and position, respectively [9]. The collisional
damping term on the right-hand side is proportional to the scattering probability, which is quadratic
in scattering length. Q x & is the spin rotation term, where Q is the coupling field that contains the
spin interaction term

G = % (Udiﬁlfv + g§) . @2.7)
Uyir is the differential potential between the spin states and g = 4ﬂh2aij /m for an atom with mass
m and scattering length a;;, which is the s-wave scattering length between atoms in states |) and
l7) G,j = 1,2). For 87Rb the scattering lengths are approximately equal. S(z,t) is the spatial
distribution of the total spin

1 -
S(z,t) = Py dp &(p, z,1), (2.8)

which is the experimentally measurable quantity. It is clear that due to the spin interaction term in

Eq. 2.6 the spin dynamics are nonlinear in these systems.
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2.2.2 Collective behavior in atomic collisions

The spin rotation term in the transport equation (Eq. 2.6) is due to a quantum mechanical effect
occurring during collisions between indistinguishable particles. This rotation is due to the exchange
symmetry in collisions between indistinguishable particles in a quantum gas with different spin
orientation. While this effects would work for a Fermi gas as well, we study a Bose gas in our
experiments (see Chapter 3). The symmetrization of the scattered wave function between forward
and backward scattering results in the rotation of the spin of each interacting particle around the
combined total spin [7]. Figure 2.3 shows (a) the forward and (b) the backward scattering events
in a collision between two indistinguishable particles, which leads to the rotation of the spins as
demonstrated in Fig. 2.4. This rotation is referred to as the identical spin rotation effect (ISRE) in
[7]. The ISRE for a spin-% system can be considered as a rotation of the spin around an effective
magnetic field.

Theoretical studies used the ISRE to explain the spin-state segregation in the JILA experiment
[6], describing it as an initial onset of a spin wave oscillation [8, 9, 10, 11]. The situation in that
experiment is such that a coherent superposition of the two spin states, corresponding to a uniform
transverse pseudo-spin profile in the Bloch representation, is prepared by applying a 7/2 pulse to
the system initialized in state |1). Because of the inhomogeneity in the trapping differential potential
the transverse spin precession rate depends on the position of the atoms in the trap. As a result an
inhomogeneity in the transverse spin profile is created across the sample (Fig. 2.5). The atoms are
moving in the trap, and due to the inhomogeneity in the transverse spin profile they enter regions
with a different transverse spin orientation compared to their transverse spin, leading to the ISRE in
the collisions between these atoms. Since the net spin is in the transverse plane, the ISRE rotates the
spin of particles out of the transverse plane generating longitudinal spin components. These spin
components have opposite signs for atoms with opposing velocities [8], leading to the subsequent
separation of the two internal states. It should be noted that this separation is not a spatial separation

of atoms in fixed internal states.

2.2.3 Spin waves and the Castaing instability

Quantitative studies for spin polarized helium systems in the hydrodynamic regime using the spin
transport equation (Leggett equation) [13] demonstrate that in a system with a homogeneous longi-

tudinal spin distribution, S ﬁ, a smoothly varying transverse inhomogeneity § S| leads to the gener-
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Figure 2.3: Schematic depiction of two identical atoms colliding with each other. As the thermal
de Broglie wavelength (\gp) is larger than the scattering length (a), the two scattering events, (a)
forward and (b) backward scattered events are indistinguishable.
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Figure 2.4: Schematic illustration of the spin rotation in a collision between two indistinguishable
particles, using the Bloch sphere representation. The two Bloch spheres on the left represent two
particles with slightly different transverse spin colliding with each other. As a result of the ISRE,
the spin of each particle rotates around the total spin during the collision, which is conserved.

' ' ‘ ‘ ‘/d)m

X

Inhomogeneous
potential

Axial position

Figure 2.5: The inhomogeneous differential potential Ugig in the trap leads to spatially dependent
precession rates for the transverse spin. The atoms in different positions in the trap are represented as
Bloch spheres with spatially dependent transverse spin phase ¢. As a result of the varying transverse
spin precession rate, an inhomogeneity is created in the transverse spin profile.
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ation of spin waves. In reference [13] an initial spin profile given as
S = S)W + 68 e/t (2.9)

in which the transverse perturbation is considered as a plane wave with wave vector k, is substituted
in the transport equation. Assuming that the the sample has a uniform density distribution (which is
a good assumption for spin polarized He samples) and short range interactions leads to the following

spectrum for spin waves
DFk?

= 1+,u25|(|)2

where D = kpT'7/m is the spin diffusion coefficient (T is the temperature and 7 is the diffusive

w (i — nS)), (2.10)

spin relaxation time), and p = 2gn(0)7/h is the spin rotation parameter for an atomic cloud with
the peak density n(0). p is the parameter that characterizes the ISRE strength.

B. Castaing in his studies of spin-polarized *He gas in [19] showed that a small transverse inho-
mogeneity (§ S 1) added to a purely longitudinal spin distribution with a nonequilibrium longitudinal
gradient (VS| # 0), as shown in Fig. 2.6, results in an instability in the transverse spin component

due to an additional term in the imaginary part of the dispersion relation, which now becomes

D u2s0°
Im(w) = ——— | ¥ —2uk - V50— @.11)
1+ ,uQSﬁ) 1+ ’u2SI(|)
In Eq. 2.11, for wave vectors satisfying
2 ¢02
- o u:S
K2 < 2k V) (2.12)
1 + M2SO

the imaginary part of the dispersion relation has a negative sign, resulting in an instability in the
transverse spin channel manifested as a rise in the magnitude of the initial transverse perturbation.
This instability is called the Castaing instability after his work.

It should be noted that trapped atomic samples are different from spin polarized He systems,
mainly due to the presence of a trapping potential and nonuniform density distribution, and the
aforementioned analytical discussion does not exactly match trapped atomic systems. However,

numerical studies of the quantum Boltzmann transport equation, Eq. 2.6, carried out by J. N. Fuchs
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Figure 2.6: Schematic illustration of a longitudinal spin profile containing a gradient. (a) Side
view showing the longitudinal spin gradient V.S in the middle. (b) Top view showing the small
transverse perturbation 05