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Abstract

Ultracold trapped atomic systems are ideal model systems to investigate physical phenomena in the

quantum regime. In this work we studied instabilities in spin dynamics of a sample of nondegenerate

trapped 87Rb gas. This is the first experimental investigation of the so-called Castaing instability

in such systems. The Castaing instability is an instability in the spin dynamics of spin-polarized

systems as a result of introducing sharp spin gradients in their spin profile.

We used an optical technique via the ac Stark effect to initialize arbitrary spin profiles in a

sample of evaporatively cooled nondegenerate 87Rb gas. The experimental results manifest evi-

dence for the presence of the Castaing instability in both transverse and longitudinal spin channels.

The results agree reasonably well with theoretical studies and results of a numerical solution to the

spin transport equation. Some imperfection in the longitudinal spin gradient due to the spin-state

preparation technique makes the signature of the instability less clear in the transverse channel. We

propose another preparation technique to overcome this shortcoming in future experiments.
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Chapter 1

Introduction

The experimental realization of Bose-Einstein condensation in 1995 [1, 2] led to the Nobel prize

for E. A. Cornell, C. E. Wieman and W. Ketterle in 2001. Bose-Einstein condensation (BEC) is a

phase transition of an ensemble of bosons below a critical temperature Tc, in which a macroscopic

population of particles occupies a single quantum state. This phase transition was predicted by Bose

and Einstein in the early 1900s but it took experimental physicists nearly a century to condense the

first BEC of a trapped Alkali-metal gas.

Aside from this huge scientific achievement, the experimental efforts to reach condensation in

Alkali-metal atomic gases turned out to be a robust foundation for a whole new field of research,

which provides physicists with a number of novel advantages. In trapped ultracold atomic gas sys-

tems the experimental parameters are highly controllable. These systems are also easy to manipulate

and image. The aforementioned properties make these systems ideal model systems to investigate

physical problems in the quantum regime.

While most studies in this field are involved with BECs such as quantum magnetism in spinor

BECs [3], quantum information [4] and precision measurements [5] to name a few, observation

of unexpected collective behavior in noncondensed spinor gases opened up a somewhat different

playground for atomic physicists [6]. Using an analogy between a two-component gas and a spin-1
2

system, the observed collective behavior was explained as pseudo-spin oscillations (spin waves) due

to a spin rotation effect [7] occurring during collisions between indistinguishable particles [8, 9, 10,

11]. Although these systems are nondegenerate, quantum scattering effects can occur as a result of

indistinguishablity and symmetrization properties of wave functions [12], given that the thermal de

Broglie wavelength (λdB) of the particles is comparable to the scattering length between them.

1



CHAPTER 1. INTRODUCTION 2

Theoretical studies by A. Kuklov and A. E. Meyerovich proposed that this analogy between a

two-component gas and a spin-1
2 system is more fundamental [13]. They predicted the presence of

other types of dynamics in these systems such as the Castaing instability, the experimental study

of which is the subject matter of this thesis. The Castaing instability is a phenomenon occurring in

the spin dynamics of a system in the presence of a nonequilibrium spin gradient, which results in

spontaneous generation of spin waves in the system. The work presented in this thesis is the first ex-

perimental study investigating the presence of the Castaing instability in a trapped ultracold atomic

gas system. In the Castaing experiments in spin polarized 3He-4He samples the observed signal was

averaged over the whole sample. The advantages trapped atomic systems provide, specifically the

spatial resolution, allows us to investigate the localized behavior of the instability.

The organization of this thesis is as follows. Chapter 2 is devoted to a mathematical descrip-

tion of a two-level (pseudo-spin 1
2 ) system, followed by a theoretical discussion of spin dynamics

predicting the potential for the Castaing instability to arise in trapped ultracold atomic systems.

Chapter 3 presents the experimental apparatus as well as the procedure used to create and detect

an ultracold atomic sample. Chapter 4 focuses on the experimental pseudo-spin system and the

spin-state preparation techniques. The spin profile created for investigating the Castaing instability

is then presented and characterized at the end of that chapter. Finally, experimental results revealing

evidence for the presence of the Castaing instability are presented in Chapter 5.



Chapter 2

Spin dynamics theory

In this chapter a brief description of the spin dynamics theory in ultracold noncondensed atomic

samples is given. I will start by describing a two-level system coupled to an electromagnetic field,

which is analogous to a spin-1
2 system. I will then present the spin transport equation and discuss

the situation relevant to the Castaing instability.

2.1 A two-level system coupled to an electromagnetic field

A two-level system is conceptually the same physical object as a spin-1
2 doublet. This analogy can

be extended to interactions with electromagnetic fields. The Hamiltonian of a two-level system

coupled to an electromagnetic field is

H =


~ω0

2 ΩRe
iωt
2

ΩRe
− iωt

2 −~ω0
2

 , (2.1)

where ω is the frequency of the coupling field, ω0 is the atomic resonance frequency and ΩR is the

Rabi frequency, which characterizes the coupling strength between the field and the atoms.

Solving the time-dependent Schrödinger’s equation gives the probability of finding the atoms in

the ground or excited state denoted by |1〉 and |2〉 respectively as a function of time. Starting with

the system in the ground state (P1(0) = 1 and P2(0) = 0 ) , the probability of finding the system in

3



CHAPTER 2. SPIN DYNAMICS THEORY 4

the excited state at time t is [14]

P2(t) =

(
ΩR

Ω
′
R

)2

sin2

(
Ω

′
R

2
t

)
. (2.2)

The effective Rabi frequency, Ω
′
R, is

Ω
′
R =

√
Ω2
R + δ2, (2.3)

where δ = ω − ω0 is the detuning of the coupling field from the atomic transition.

This population oscillation between the two states is referred to as Rabi flopping. The energy

splitting between the two energy levels in a two-component system can be measured using the

detuning dependence of Rabi flopping. However, as the atomic energy splitting is altered by a

radiation field due to the ac Stark effect, the measured effective Rabi frequency depends on the

power of the coupling field. This power dependence limits the accuracy with which the energy

splitting can be measured.

2.1.1 Bloch-sphere representation and optical resonance

The Bloch-sphere representation is a pictorial method for representing the Rabi problem, in which

the system is described as a state vector ~ψ (Bloch vector) in a three-dimensional space (U, V,W )

(Fig. 2.1). The vertical axis (W ) represents S‖, the longitudinal spin component. The horizontal

plane (U − V ) corresponds to S⊥, the transverse spin component, where the azimuthal angle φ

indicates the relative superposition phase.

The interaction between a two-level system and an electromagnetic coupling field can be con-

sidered as a torque vector with components (ΩR, 0, δ) acting on the state vector of the system. In

order to reach this simplification, a transformation to a frame rotating at the coupling field’s fre-

quency ω and implementation of the rotating-wave approximation is needed [15]. The motion of

the Bloch vector described by
d~ψ

dt
= ~Ω× ~ψ (2.4)

is confined to the surface of a sphere (Fig. 2.1).

When the electromagnetic coupling field is close to resonance, the field’s torque vector lies close

to the equator. As a result the Bloch vector (~ψ) that is precessing around the field’s torque vector
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Figure 2.1: Bloch-sphere representation of the state vector ~ψ of a two-level system. The North pole
corresponds to the excited state |2〉 and the South pole corresponds to the ground state |1〉. The
azimuthal angle φ represents the relative phase of the superposition state.

(~Ω) oscillates between the two pure states |1〉 and |2〉 (Fig. 2.2a). When the field is detuned from

the atomic resonance, the field’s torque vector approaches one of the poles (depending on the sign

of the detuning). In this case the Bloch vector undergoes rapid precession with a small radius about

the torque vector, nearly staying in its initial state (Fig. 2.2b).

2.2 Spin dynamics and the Castaing instability

The thermal de Broglie wavelength (λdB) of particles with mass m at temperature T is given by

λdB =

√
2π~2

mkBT
, (2.5)

where ~ is the reduced Planck constant and kB is the Boltzmann constant. When this wavelength

is small compared to other typical length scales in a system, quantum effects can be neglected [16].

For example for liquid 4He at T = 4 K the thermal de Broglie wavelength is λdB ≈ 0.4 nm, which

is larger than interatomic distances (typically d ≈ 0.27 nm). Thus we expect liquid 4He typically to

behave quantum mechanically.

Although in noncondensed ultracold atomic gas samples the system is nondegenerate, the ther-

mal de Broglie wavelength λdB is typically comparable to the scattering length. For 87Rb atoms

at T = 600 nK, the thermal de Broglie wavelength is λdB ≈ 240 nm, which is much larger than
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a) b)
  

U

W

V

|2〉

|1〉 

ψ⃗
Ω⃗

Figure 2.2: Bloch-sphere representation of Rabi flopping. The black dashed vector represents the
coupling field torque vector ~Ω, the blue vector represents the state vector (~ψ) and the dotted line
represents the path of the oscillation of the Bloch state-vector. The coupling field is (a) in resonance
with the atomic transition and (b) detuned from resonance.

the s-wave scattering length, a = 5.3 nm. As a result, quantum properties of particles such as in-

distinguishably and symmetrization properties of wave functions dominate the dynamics, and thus

collisions occur in a quantum regime, leading to a number of interesting quantum phenomena. One

such phenomenon is the Castaing instability in the spin dynamics of spin-polarized systems, the

experimental study of which is the subject matter of this thesis. In this section I will present a short

background description of spin dynamics in noncondensed ultracold atomic systems, followed by a

discussion of the predictions of the Castaing instability.

Collective behavior in noncondensed two-component trapped atomic gases was first observed in

2002 [6], when the two components (spin states) of a trapped 87Rb gas sample became segregated

spatially, a situation that could not be described by thermal energy considerations. Theoretical

descriptions of this experiment made an analogy between a two-component gas and a spin-polarized

gas. This phenomenon was explained as manifestation of pseudo-spin oscillations (spin waves)

arising from a spin rotation (the identical spin rotation effect [7] or Legget-Rice rotation [17]), which

occurs in collisions between indistinguishable particles in the quantum regime (see Section 2.2.2).

A. Kuklov and A. E. Meyerovich proposed that this analogy is richer and predicted that other

phenomena observed in the dynamics of spin-polarized gases, including the Castaing instability,

ought to be observable in trapped ultracold atomic systems [13]. J. N. Fuchs et al. [18] stud-

ied the presence of the Castaing instability quantitatively considering system parameters similar to
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the experiment described in [6]. Based on these theoretical studies we designed an experiment to

investigate the Castaing instability in a trapped two-component 87Rb gas experimentally.

2.2.1 Quantum Boltzmann transport equation

Spin dynamics in spin-polarized systems are described using a quantum Boltzmann transport equa-

tion [8, 9, 10, 11]. As the trapped atomic cloud in our experiment is highly elongated along one

axis (z) and the radial trap frequency is high compared to other relevant experimental time scales,

we average the sample over the radial dimensions of the sample and treat the dynamics as being

one-dimensional (1D).

The one-dimensional time evolution of the phase-space spin distribution function ~σ(p, z, t) is

described by the quantum Boltzmann transport equation

∂~σ

∂t
+
p

m

∂~σ

∂z
− ∂Uext

∂z

∂~σ

∂p
− ~Ω× ~σ =

∂~σ

∂t

∣∣∣∣
1D

, (2.6)

where the first three terms represent the total time derivative of ~σ(p, z, t), Uext is the external mag-

netic trapping potential, and p and z are momentum and position, respectively [9]. The collisional

damping term on the right-hand side is proportional to the scattering probability, which is quadratic

in scattering length. ~Ω× ~σ is the spin rotation term, where ~Ω is the coupling field that contains the

spin interaction term
~Ω =

1

~

(
UdiffŴ + g~S

)
. (2.7)

Udiff is the differential potential between the spin states and g = 4π~2aij/m for an atom with mass

m and scattering length aij , which is the s-wave scattering length between atoms in states |i〉 and

|j〉 (i, j = 1, 2). For 87Rb the scattering lengths are approximately equal. ~S(z, t) is the spatial

distribution of the total spin
~S(z, t) =

1

2π~

∫
dp ~σ(p, z, t), (2.8)

which is the experimentally measurable quantity. It is clear that due to the spin interaction term in

Eq. 2.6 the spin dynamics are nonlinear in these systems.
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2.2.2 Collective behavior in atomic collisions

The spin rotation term in the transport equation (Eq. 2.6) is due to a quantum mechanical effect

occurring during collisions between indistinguishable particles. This rotation is due to the exchange

symmetry in collisions between indistinguishable particles in a quantum gas with different spin

orientation. While this effects would work for a Fermi gas as well, we study a Bose gas in our

experiments (see Chapter 3). The symmetrization of the scattered wave function between forward

and backward scattering results in the rotation of the spin of each interacting particle around the

combined total spin [7]. Figure 2.3 shows (a) the forward and (b) the backward scattering events

in a collision between two indistinguishable particles, which leads to the rotation of the spins as

demonstrated in Fig. 2.4. This rotation is referred to as the identical spin rotation effect (ISRE) in

[7]. The ISRE for a spin-1
2 system can be considered as a rotation of the spin around an effective

magnetic field.

Theoretical studies used the ISRE to explain the spin-state segregation in the JILA experiment

[6], describing it as an initial onset of a spin wave oscillation [8, 9, 10, 11]. The situation in that

experiment is such that a coherent superposition of the two spin states, corresponding to a uniform

transverse pseudo-spin profile in the Bloch representation, is prepared by applying a π/2 pulse to

the system initialized in state |1〉. Because of the inhomogeneity in the trapping differential potential

the transverse spin precession rate depends on the position of the atoms in the trap. As a result an

inhomogeneity in the transverse spin profile is created across the sample (Fig. 2.5). The atoms are

moving in the trap, and due to the inhomogeneity in the transverse spin profile they enter regions

with a different transverse spin orientation compared to their transverse spin, leading to the ISRE in

the collisions between these atoms. Since the net spin is in the transverse plane, the ISRE rotates the

spin of particles out of the transverse plane generating longitudinal spin components. These spin

components have opposite signs for atoms with opposing velocities [8], leading to the subsequent

separation of the two internal states. It should be noted that this separation is not a spatial separation

of atoms in fixed internal states.

2.2.3 Spin waves and the Castaing instability

Quantitative studies for spin polarized helium systems in the hydrodynamic regime using the spin

transport equation (Leggett equation) [13] demonstrate that in a system with a homogeneous longi-

tudinal spin distribution, S0
‖ , a smoothly varying transverse inhomogeneity δ~S⊥ leads to the gener-
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Figure 2.3: Schematic depiction of two identical atoms colliding with each other. As the thermal
de Broglie wavelength (λdB) is larger than the scattering length (a), the two scattering events, (a)
forward and (b) backward scattered events are indistinguishable.
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 Collision

During 
collision

Figure 2.4: Schematic illustration of the spin rotation in a collision between two indistinguishable
particles, using the Bloch sphere representation. The two Bloch spheres on the left represent two
particles with slightly different transverse spin colliding with each other. As a result of the ISRE,
the spin of each particle rotates around the total spin during the collision, which is conserved.

  

Axial position

Inhomogeneous 
potential

Figure 2.5: The inhomogeneous differential potential Udiff in the trap leads to spatially dependent
precession rates for the transverse spin. The atoms in different positions in the trap are represented as
Bloch spheres with spatially dependent transverse spin phase φ. As a result of the varying transverse
spin precession rate, an inhomogeneity is created in the transverse spin profile.



CHAPTER 2. SPIN DYNAMICS THEORY 11

ation of spin waves. In reference [13] an initial spin profile given as

~S = S0
‖Ŵ + δ~S⊥e

i(kz−ωt), (2.9)

in which the transverse perturbation is considered as a plane wave with wave vector k, is substituted

in the transport equation. Assuming that the the sample has a uniform density distribution (which is

a good assumption for spin polarized He samples) and short range interactions leads to the following

spectrum for spin waves

ω =
Dk2

1 + µ2S0
‖

2 (i− µS0
‖), (2.10)

where D = kBTτ/m is the spin diffusion coefficient (T is the temperature and τ is the diffusive

spin relaxation time), and µ = 2gn(0)τ/~ is the spin rotation parameter for an atomic cloud with

the peak density n(0). µ is the parameter that characterizes the ISRE strength.

B. Castaing in his studies of spin-polarized 3He gas in [19] showed that a small transverse inho-

mogeneity (δ~S⊥) added to a purely longitudinal spin distribution with a nonequilibrium longitudinal

gradient (∇S‖ 6= 0), as shown in Fig. 2.6, results in an instability in the transverse spin component

due to an additional term in the imaginary part of the dispersion relation, which now becomes

Im(ω) =
D

1 + µ2S0
‖

2

k2 − 2µ~k · ~∇S0
‖

µ2S0
‖

2

1 + µ2S0
‖

2

 . (2.11)

In Eq. 2.11, for wave vectors satisfying

k2 < 2µ~k · ~∇S0
‖

µ2S0
‖

2

1 + µ2S0
‖

2 , (2.12)

the imaginary part of the dispersion relation has a negative sign, resulting in an instability in the

transverse spin channel manifested as a rise in the magnitude of the initial transverse perturbation.

This instability is called the Castaing instability after his work.

It should be noted that trapped atomic samples are different from spin polarized He systems,

mainly due to the presence of a trapping potential and nonuniform density distribution, and the

aforementioned analytical discussion does not exactly match trapped atomic systems. However,

numerical studies of the quantum Boltzmann transport equation, Eq. 2.6, carried out by J. N. Fuchs
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1 

𝛻𝑆∥ (side view) 

𝛿𝑆⊥ sin 𝑘𝑧 (top view) 

a) 

b) 

Figure 2.6: Schematic illustration of a longitudinal spin profile containing a gradient. (a) Side
view showing the longitudinal spin gradient ∇S‖ in the middle. (b) Top view showing the small
transverse perturbation δS⊥ sin kz .

et al. [18], using experimental parameters of trapped atomic gases, such as density, scattering length,

spin rotation strength, etc., showed that the instability can develop in such systems.

The spin-state segregation observed in [6] did not involve the Castaing instability since there

was a large transverse spin component present after initializing the system, as a result of the first

π/2 pulse applied. However, if there is a sufficient nonuniformity in the initial transverse spin

profile, an instability in the longitudinal spin component can also occur, which results in a faster

component separation compared to [6]. We examined this condition experimentally by imprinting

a sharp spin gradient in the transverse spin profile.

According to discussions in [13], the Castaing instability in the longitudinal spin component

can be described as the time reversal of the spin-state segregation in [6]. In that situation, the initial

nonuniform transverse spin profile leads to the separation of the two components, but in the Castaing

phenomenon, transverse spin is created as a result of the instability during the component mixing.

In a trapped atomic system the wave vectors k are bounded by the presence of the trap. That

is, the size of the system (L) constrains the allowed wave vectors, imposing k > π/L. For a fully

polarized system, the homogeneous region away from any gradient has S0
‖ = ±1. The spin rotation

parameter in our system is µ ∼ 6 (for T = 600 nK and a = 5.18 × 10−9 m). Starting from
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Eq. 2.11, considering that
(
µS0
‖)

2 � 1 and the dynamics are one dimensional, sets the criterion for

the observability of the Castaing instability as

2µ∇S0
‖ >

π

L
. (2.13)

We are capable of creating longitudinal spin gradients with a length scale of l∇S‖ ' 1.1wz (see Sec-

tion 4.2.2), where wz is the Gaussian half-width of the trapped atomic cloud in the axial dimension

(i.e. L = 2wz). It is clear that these parameters, i.e. ∇S‖ = 1
l∇S‖

and µ ∼ 6, are consistent with the

instability criterion (Eq. 2.13); therefore it is conceivable to observe the Castaing instability in the

spin configuration we prepare. The results of the Castaing instability experiment in both transverse

and longitudinal spin channels are presented in Chapter 5.



Chapter 3

Experimental design

This chapter gives an overview of the experimental setup used in this research. We are working

with a Bose-Einstein condensation apparatus, but for these experiments we studied nondegenerate

samples rather than condensates. For the experiments presented in this thesis we work with samples

of a quantum gas, trapped ultracold 87Rb atoms (a composite boson) at a temperature of 600 nK

(T = 1.1 Tc).

Different systems are used to create Bose-Einstein condensates of different atomic species using

various sorts of trapping and cooling techniques. Our apparatus is designed based on the work of

H. J. Lewandowski et al. [20], which was an attempt to create a simplified BEC machine designed

to "consistently produce a stable condensate even when it is not well optimized", as they claimed. I

will start by giving an overview of our BEC system and then proceed with describing different parts

in more detail.

For creating a BEC we first trap and cool 87Rb atoms in a magneto-optical trap (MOT), and

then transfer them to an ultra-high vacuum (UHV) science cell, where the atoms are confined in

the harmonic potential of an Ioffe-Pritchard magnetic trap. In the science cell, evaporative cooling

cools the atoms into quantum degeneracy. The condensate is finally imaged using a shadow imaging

technique. These images are used to extract the atomic cloud properties such as spatial distribution,

number and temperature.

This procedure requires using lasers of different frequencies. We need two lasers to trap the

atoms in the MOT (cooling laser and repumper laser), and then we image the condensate with

another one (probe laser). We use three different external cavity diode lasers (ECDLs) for these

tasks.

14
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3.1 Magneto-optical trap (MOT)

A combination of laser cooling and inhomogeneous magnetic fields can be used to trap neutral

atoms [14]. The idea of laser cooling is to use a laser beam tuned below an atomic resonance

transition. During the process of absorption and reemission of a photon from this off-resonant beam,

atoms experience a momentum kick. The atoms moving towards the beam see the laser frequency

closer to the transition resonance due to the Doppler shift, which leads to a higher scattering rate.

Since the photon reemission is isotropic, the whole process will lead to slowing down the atoms that

are moving towards the laser beam, as they scatter photons at a higher rate.

By means of laser cooling, atoms can be cooled and confined in three dimensions in an optical

molasses (OM) setup by shining six laser beams that are counter-propagating to each other, with

each pair along one of the spatial dimensions. An OM setup is not a trap for neutral atoms since

there is no restoring force for the atoms displaced from the center [14]. Position-dependent forces

can be added using inhomogeneous magnetic fields. A magnetic field shifts the atomic energy

levels due to the Zeeman effect. These energy shifts depend on the Zeeman sublevel labeled by mf

(mf is the magnetic quantum number), and conservation of angular momentum makes the photon

absorption polarization dependent.

In a MOT, a pair of electromagnetic coils in an anti-Helmholtz configuration produces a quadru-

pole magnetic field. This magnetic field creates a linear potential that is zero in the center of the

trap, as shown in Fig. 3.1. By shining two counter-propagating laser beams with opposite circular

polarization the atoms are pushed towards the center of the trap, where the magnetic field is zero.

Using six counter propagating beams instead of two, this trapping scheme can be expanded to three

dimensions (Fig. 3.2).

MOTs are very robust traps with easy operation, which can be used to produce atomic sam-

ples with µK temperatures. Commercially available diode lasers have appropriate frequencies for

trapping most Alkali atoms, including Rb.

The number of trapped atoms in a MOT is limited by reabsorption of spontaneously emitted

photons. Due to this process the density in a MOT is limited to ∼ 1011 cm−3. We trap 3 × 109

atoms in our MOT at a temperature of T = 300 µK.
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m f=0

m f=+1

h νσ+ σ-

m f=0
Ground state

Excited states

Figure 3.1: Trapping process in a 1D MOT. The atomic excited state is Zeeman-shifted in the
magnetic field. The dashed line indicated on the diagram represents the energy of the incoming
photon (hν) detuned from ground-to-excited state transition. On the right side, the incident laser
frequency is closer to the transition from the ground state to the mf = −1 excited state, as the
mf = −1 state is shifted down due to the Zeeman shift. Therefore the transition with ∆m = −1
is closer to be resonant with the illuminating laser and the atoms on that side scatter σ− photons at
a higher rate than the σ+ photons. Choosing the right polarization of the incident beams leads to
driving the atoms towards the center of the trap.

Figure 3.2: MOT setup. A pair of electromagnetic coils in anti-Helmholtz configuration produces a
quadrupole magnetic field. Counter-propagating laser beams with opposite polarization are used to
confine the atoms in three dimensions.
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3.2 Lasers and locks

Figure 3.3 shows the hyperfine structure of the D2 transition (52S1/2 → 52P3/2) of 87Rb in zero

magnetic field [21]. We use different transitions to achieve different goals. We tune our cooling laser

in the MOT to the F = 2 → F ′ = 3 transition, where the prime notation refers to an excited state

and F denotes the the total angular momentum of a hyperfine level. Due to off-resonant transitions

some atoms can be excited to the F ′ = 2 state and decay back to the F = 1 hyperfine level, which is

not in the trapping cycle. A different laser (repumper laser) tuned to the F = 1→ F ′ = 2 transition

is used to force the atoms back into the cooling cycle.

In our experimental setup, two different methods are used to lock lasers to the desired transitions.

We use the saturated absorption spectroscopy (SAS) method to lock the MOT beams. A phase-

locked loop (PLL) setup is used to lock our probe laser for imaging atoms as well as the phase

imprinting laser for driving spin dynamics. I will briefly explain the principles of these locking

techniques in the following sections.

3.2.1 Saturated absorption spectroscopy

Saturated absorption spectroscopy is a technique used to remove Doppler line-broadening effects

on an atomic transition by velocity-selective absorption. The sub-Doppler spectral lines generated

using this technique can be applied in stabilizing the laser frequency [22].

In this technique, two almost counter-propagating beams from the same laser, a weak probe

beam and a strong pump beam, pass through a vapor cell as indicated in Fig. 3.4. The probe beam’s

spectrum has a Doppler-broadened absorption profile. Far from a resonance, the absorption of the

pump beam does not affect the probe absorption, as they address different velocity groups of atoms

due to the Doppler effect. But at resonance the strong pump beam excites many atoms into the upper

atomic level, decreasing the absorption of the probe beam (hole burning). Using this procedure we

can locate the resonant frequency by looking for the intensity variations of the probe beam on a

photodiode.

Figure 3.4 shows the schematic of our saturated absorption spectroscopy setup. Spectral lines

can be viewed by scanning the laser frequency across the atomic transitions. In a SAS spectrum for

multi-level atoms, some extra peaks occur at frequencies halfway between two transitions (cross-

over resonances). These peaks are usually better signals to lock to, as they are stronger. We lock the

MOT’s cooling laser to the 3
′−2

′
cross-over resonance halfway between the F = 2→ F

′
= 2

′
and



CHAPTER 3. EXPERIMENTAL DESIGN 18

Figure 3.3: Schematic representation of the hyperfine structure of the D2 transition (52S1/2 →
52P3/2) of 87Rb in zero magnetic field. The cooling transition (F = 2 → F

′
= 3) and repumper

transition (F = 1→ F
′

= 2) are indicated on the diagram.
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3
′

transitions. Figure 3.5a [23] shows absorption spectral lines for 87Rb. Modulating the frequency

of the pump beam with an acousto-optical modulator (AOM) allows us to produce an error signal

(Fig. 3.5b), which can then be used in stabilizing the laser frequency.

  

laser

Lock-in

AOM

AOM

Modulation RF

Beam
splitter

To experiment

Reference

Probe

Pump

Photodiodes

Rb cell

Figure 3.4: Schematic of our SAS setup. Counter-propagating pump and probe beams from the
same laser separated by a beam splitter pass through a Rb vapor cell. The absorption profile of the
probe beam is compared to a reference beam. An error signal is sent back to the laser controller.
Arrows show the beam directions.

3.2.2 Phase-locked loop

In this locking technique a laser is stabilized by comparing its frequency to a fixed reference fre-

quency using a phase-frequency detector. Electronic devices cannot process optical frequencies;

therefore to apply this technique for stabilizing a laser we mix our laser beam with another beam

with a fixed frequency. Mixing the two laser beams results in beatnotes at frequencies of the sum

and difference of the two mixed beams. This stage of the locking procedure allows us to stabilize

the laser frequency to another optical frequency with a desired detuning.

Figure 3.6 shows the PLL setup schematically. The beatnote signal is mixed with an rf signal

from a local oscillator (LO), and the high frequency component of the mixed signal is removed using

a low-pass filter. A phase-frequency detector compares this signal to a fixed reference frequency
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Figure 3.5: (a) Absorption spectral lines of 87Rb for the F = 2→ F
′

= 1
′
, 2

′
and 3

′
and cross-over

transitions. (b) Error signal for the F = 2 → F
′

= 1
′
, 2

′
and 3

′
and cross-over transitions. Image

courtesy of R. Thomas.
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Figure 3.6: Schematic of our PLL setup. The laser beam is mixed with another laser beam with a
known fixed frequency. Some arrows indicate beam direction. The resulting beatnote is collected on
a photodiode and mixed with a local oscillator (LO) signal. The phase-frequency detector compares
this signal to a reference, and the error signal is sent back to the laser controller to modify the laser
frequency. The locked laser’s linewidth is well below the transition linewidth of 6 MHz.
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and generates an error signal that is sent back to the laser controller. This technique gives us the

flexibility to select the laser frequency simply by adjusting the frequency of the local oscillator.

3.3 Magnetic trap

After being cooled in the MOT, the atomic sample is transferred to a purely magnetic trap for further

cooling via radio frequency (rf) induced evaporative cooling. Magnetic trapping of neutral atoms

requires an interaction between the atomic magnetic moment and inhomogeneous magnetic fields.

In an inhomogeneous magnetic field ~B, an atom with dipole moment ~µ experiences a force equal to

~F = ~∇
(
~µ · ~B

)
. (3.1)

Appropriate magnetic field configurations can be used to create a minimum in the magnetic potential

in order to trap neutral atoms. Various magnetic trap configurations for neutral atoms have been

studied, some of which are discussed in [24].

3.3.1 Ioffe-Pritchard trap

The magnetic trap in our experiment is slightly different than a standard Ioffe-Pritchard trap [25].

Our trap consists of a pair of permanent magnets and four electromagnetic coils. This trap is referred

to as a hybrid Ioffe-Pritchard (HIP) trap (Fig. 3.7). In this configuration instead of Ioffe bars the

permanent magnets provide radial confinement without any power consumption. They produce a

radial quadrupole field in the center of the trap (Fig. 3.8). Axial confinement is then produced by two

pairs of electromagnetic coils. There are two pinch coils (outer pair) that produce axial curvature in

magnetic field. Two bias coils (inner pair) in a Helmholtz configuration produce a uniform magnetic

field B0 in the center. The magnitude of the resulting magnetic field | ~B| is

| ~B| ≈

√
(ηρ)2 +

(
B0 +

β

2
z2

)2

, (3.2)

where η is the radial field gradient produced by the permanent magnets (ρ is the radial position) and

β is the axial curvature produced by the pinch coils (z is the axial position). At low magnetic fields

the magnetic trapping potential near the center of the trap can be approximated as a cylindrically
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symmetric anisotropic harmonic potential [25]

U ≈ m

2

(
ωr

2ρ2 + ωz
2z2
)
. (3.3)

The radial frequency ωr and the axial frequency ωz are

ωr =

√
mfgfµB

mB0

η (3.4)

and

ωz =

√
mfgfµBβ

m
, (3.5)

where gf is the Landé g-factor, µB is the Bohr magneton and m is the mass of Rb atoms. In our

experiment the trap frequencies are ωz = 6.7 Hz and ωr = 247 Hz (Fig 3.9). The trapped atomic

cloud has a ellipsoidal geometry that is highly elongated along the axial direction with typical gaus-

sian widths of 10× 10× 380 µm; therefore this atomic sample can be treated as a one-dimensional

system.

Figure 3.7: Hybrid Ioffe-Pritchard trap. Opposite currents pass through the pinch and bias coils.
The bias coils are in a Helmholtz configuration, producing a uniform magnetic field in the center of
the trap.
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Figure 3.8: HIP trap end-on view. This configuration of permanent magnets produces a radial
quadrupole field and no field along the axial direction.

3.3.2 From the MOT to the HIP trap

Using a moving magnetic trap we transfer the atoms collected in the MOT to the UHV science cell,

where they are trapped in the HIP trap. In order to accomplish this task we first load the atoms into a

"tight" quadrupole trap, which holds the trapped atoms during the mechanical transfer between the

MOT cell and the science cell. This tight confinement is attained by increasing the magnetic field

gradient relative to its value in the MOT, which in turn increases the Zeeman shift of the atomic

energy sublevels as one moves away from the trap center. In other words, the quadrupole magnetic

field energy increases linearly with radial position, and so atoms near the edge of the atomic cloud

have the largest Zeeman shifts. Most of the resultant energy for the trapped atoms in a magnetic trap

comes from the potential energy due to this Zeeman shift [20]. This effect would add less energy to

the system for a smaller cloud; therefore it is desirable to reduce the size of the trapped atomic cloud

prior to loading the atoms into the quadrupole trap. This task is accomplished in a stage referred to

as compressed MOT (CMOT) subsequent to trapping in the MOT.

During the CMOT stage the atomic cloud is made smaller by detuning the cooling and the

repumper light [26]. The time that atoms spend in the upper hyperfine ground state (F = 2, resonant

with the cooling light) is reduced by detuning the repumper frequency. Furthermore, increasing the
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Figure 3.9: (a) Axial and (b) radial trap frequency measurement data. Using an extra electromag-
netic coil placed near the trap, axial or radial oscillations are induced in the trap. The position of the
center of the trapped atomic cloud is measured as a function of time to extract the trap frequencies.
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detuning of the cooling laser decreases the absorption and reemission of light, leading to a reduction

of the radiation pressure and a smaller cloud size.

We also need to optically pump the atoms into a magnetically trappable hyperfine state. These

are the states whose energy increases as the magnetic field is increased. The magnetically trap-

pable hyperfine sublevels for the ground state of 87Rb in low magnetic fields (B ≤ 1000 G) are

|1,−1〉, |2, 1〉 and |2, 2〉 (Fig 3.10 [21]). |F,mf 〉 denotes a hyperfine quantum state with total angu-

lar momentum F and magnetic quantum number mf . All the atoms will be pumped into the F = 2

state if the cooling light is turned off. However, in the F = 2 hyperfine state the population of the

atoms would be divided between the five Zeeman-shifted mf sublevels. The atoms will be pumped

into the F = 1 hyperfine state if the repumper light is turned off and the cooling light is left on.

To obtain higher population in each state we turn off the repumper light to pump the atoms into the

F = 1 hyperfine state. The atoms in the |1,−1〉 sublevel will be trapped in the HIP trap after being

transferred to the science cell.

𝑚𝑓 = -1 

𝑚𝑓 = 1 

𝑚𝑓 = 2 

F=2 

F=1 

E/
h

 (
G

H
z)
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Figure 3.10: Zeeman-shiftted 87Rb hyperfine splitting in a magnetic field. It is evident that in low
magnetic fields, the energy of the |1,−1〉 state increases with magnetic field.
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3.4 Evaporative cooling

We use rf-induced evaporative cooling to cool the atoms confined in the HIP trap near or into

quantum degeneracy. The principle of evaporative cooling is to remove atoms with higher energies

than the average energy of the atomic sample and allow the sample to rethermalize through elastic

collisions to a lower temperature [14].

In our experiment we use transitions to untrapped Zeeman levels to remove atoms from the trap

in order to evaporatively cool the sample. Atoms with lower energies are on average closer to the

center of the trap and have smaller Zeeman shifts. The high energy atoms can reside in regions

with higher magnetic fields, farther from the center of the trap where the Zeeman shift is larger. By

applying rf radiation tuned to transitions from the |1,−1〉 state to the untrapped |1, 0〉 state, atoms

are ejected from the trap carrying away energy. Thus, by sweeping the rf frequency from high to

low we can target atoms selctively from high to low energies and cool the atomic cloud. As long

as the atom-loss rate is not too fast, this process will lead to an increase in the phase-space density

since the atoms with lower energies occupy the space closer to the center of the trap.

We use a single-loop rf coil placed below the science cell to deliver rf radiation to the trapped

atoms, and sweep the rf frequency from 60 MHz to around 3 MHz. We use an exponentially

decreasing frequency ramp with the functional form [20]

ν(t) = (νstart − ν0) e−t/τ + ν0, (3.6)

where νstart is the initial rf frequency at the start of the evaporation, ν0 is the trap bottom frequency

and τ is the time constant of the exponential ramp.

As the elastic collision rate varies during evaporation because of changes in density and temper-

ature of the atomic cloud, the evaporation process needs to be carried out in several stages with an

accordingly modified time constant for each stage. The total time of all ramps is 1 minute. To opti-

mize the evaporation process, we modify the rf power and the time constant of the exponential ramp

for each stage of the evaporation. The time constant needs to be longer than the elastic collision

time in order for the sample to remain in thermal equilibrium. A higher rf power level increases the

probability of a transition, yet it causes power broadening, which decreases the energy selectivity

of the process. Thus we start with higher powers and decrease the power by 20 dB for the last steps

of the evaporation.
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3.5 Imaging

We measure the population of the atoms trapped in the |1,−1〉 state using an absorption imaging

technique. In this procedure the atomic cloud is illuminated by a resonant probe beam tuned to

an atomic transition. The atoms absorb the probe’s light, producing a shadow of the atomic cloud,

which is focused on a CCD camera. The optical density (OD) of the atoms can then be calculated

using Beer’s law

OD = ln(I0/I), (3.7)

where I0 is the probe beam intensity and I is the measured intensity when atoms are present. The

number and temperature of the atoms are calculated using the spatial profile obtained from measured

OD.

The atoms are trapped in the |1,−1〉 state in the HIP trap, but there is no cycling transition to the

excited state for this state. It is preferable to use a cycling transition for imaging, as it increases the

signal-to-noise ratio. Therefore, first we coherently transfer the atoms from |1,−1〉 → |2,−2〉 using

an adiabatic rapid passage (ARP) technique [14], and then the |2,−2〉 → |3,−3〉 cycling transition

is used for imaging.

Several systematic effects are important to consider during the imaging process. The atomic

energy splitting changes across the atomic cloud due to the inhomogeneity in the trapping magnetic

field. Thus the probe light cannot be resonant with the entire cloud. Imaging the atoms in a more

uniform magnetic field minimizes this effect. To image the atoms we also need to expand the atomic

cloud beyond the resolution limit of our CCD camera. Expanding the atomic cloud is also important

to avoid high absorption [26]. We expand the atomic cloud in the anti-trapped |2,−2〉 state after

being transferred from the |1,−1〉 state.

Figure 3.11 shows the Zeeman-shifted ground and excited states in 87Rb in low magnetic fields

and the imaging transitions. We start with the atoms in the |1,−1〉 state. The atoms are then

transferred to the |2,−2〉 state in tARP = 0.65 ms. In the |2,−2〉 state, the cloud is expanded in an

intermediate 50 G magnetic field. We do not perform the expansion in the initial 3 G field because

the atoms will expand too quickly into inhomogeneous regions of the trap. We do not perform the

expansion in the 100 G imaging field because the atoms will expand too slowly. The intermediate

50 G bias field is chosen because it allows us to keep the atomic cloud within the homogeneous

region of the potential during the expansion. After proper expansion the bias field value is increased

to 100 G and imaging pulses are applied.
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Figure 3.11: Schematic representation of the Zeeman-shifted ground (5S1/2) and excited (5P3/2)
states of 87Rb in low magnetic fields. The ARP (|1,−1〉 → |2,−2〉) and imaging (|2,−2〉 →
|3′
,−3〉) transitions are shown on the diagram as solid arrows. The dashed arrows indicate the

transitions for the mf = 0 levels.
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We take three images for normalization purposes. First, a shadow image is taken when the

atoms are present (Ishadow). Second, while the probe light is on, a normalization image is taken

without the atoms (Inorm). Finally a dark image (Idark), which is subtracted from both the shadow

and normalization images, is taken with no probe light present. The OD, which we denote ODmeas,

is then calculated using

ODmeas = ln

(
Inorm − Idark

Ishadow − Idark

)
, (3.8)

We also take into account the effects of systematic errors associated with absorption imaging.

The first of these is that there is a maximum observable OD, which could be either due to scattered

probe light that reaches the CCD camera but does not pass through the atomic cloud, or off-resonant

probe light that passes through the atomic cloud but is not absorbed by the atoms. Using the PLL

setup described in Section 3.2.2 to obtain a tight lock for the probe beam, we can decrease the

amount of off-resonant light. To correct for any remaining effect we do the following. After mea-

suring the maximum observable OD by imaging a very dense cloud expanded only for a short

expansion time, we calculate a modified OD by

ODmod = ln

(
1− e−ODsat

e−ODmeas − e−ODsat

)
. (3.9)

There is a second saturation effect related to saturation of the imaging transition because of the

probe beam intensity. To correct for this effect we use

ODactual = ODmod + (1− e−ODmod)
I

Isat
, (3.10)

where Isat is 1.67 mW/cm2. Even with the corrections it is desirable to work away from saturation

limits; therefore we expand the atomic cloud to avoid observing a saturated OD and set the probe

intensity to I ∼ 1
10Isat.

We fit the image to three different functions depending on the degeneracy of the atoms in order

to infer the atomic cloud properties. For normal clouds a 2-D Gaussian is fit to the image to extract

the number, temperature and phase-space density using the fit parameters. We use the procedures

described in [26]. More details on calculations of cloud parameters can be found in the aforemen-

tioned reference. Although we are capable of producing BECs with the described apparatus, for the

experiments presented in this thesis we stop the evaporation above degeneracy. We use near degen-
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erate atomic clouds with 7× 106 atoms, peak density n = 8.6× 1019 m−3 and typical temperatures

T ' 600 nK (T ' 1.1 Tc).



Chapter 4

Spin-state preparation

In the first part of this chapter I will first describe the experimental spin system. The experimental

procedures used in preparing desirable spin profiles via the ac Stark effect will then be discussed.

Finally the spin profile created in order to search for the Castaing instability will be presented and

characterized at the end of this chapter.

4.1 The experimental pseudo-spin 1
2 system

The Rabi two-level problem describes the behavior of a two-level system coupled via an oscillating

electromagnetic field as previously discussed in Chapter 2. We consider two of the magnetically

trapped hyperfine levels of the ground state 87Rb atom, |1,−1〉 and |2, 1〉, as a two-level (pseudo-

spin 1
2) system (|1〉 ≡ |1,−1〉 and |2〉 ≡ |2, 1〉). A two-photon microwave transition (a 6.8 GHz

microwave photon and a 3 MHz rf photon) couples the two states. The transition cannot be induced

by a single photon, as the two states are different by two units of angular momentum. Both tran-

sitions are detuned from the |2, 0〉 state by 700 kHz to avoid transitions to the intermediate state.

Figure 4.1 shows the Zeeman-shifted hyperfine structure of the ground state in 87Rb in low magnetic

fields, the sublevels taken as the pseudo-spin system and the related transitions.

The state of the system in an equal coherent superposition of the two spin states is given by

ψ =
1√
2

(
|1〉+ eiφ|2〉

)
. (4.1)

The relative phase of the two spin states (φ), which gives the orientation of the transverse spin

31
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Figure 4.1: Zeeman-shifted ground state hyperfine levels of 87Rb in low magnetic field. The pseudo-
spin 1

2 system consists of the two trapped states (|1,−1〉 and |2, 1〉) coupled via a two-photon tran-
sition. The coupling fields are detuned from the intermediate |2, 0〉 state to avoid real transitions.

component in the Bloch representation [27, 28], increases over time in proportion to the energy

splitting between the two states E12:

φ =
E12t

~
. (4.2)

By controlling the energy splitting between the two states, or in other words the differential

potential experienced by the two spin states (|1〉 and |2〉), we control the phase relationship and

can initialize the system with desirable spin-state profiles in order to generate different types of spin

dynamics, such as spin waves [26, 29] or instabilities.

4.1.1 Differential potential

The trapped atoms in states |1〉 and |2〉 experience a differential potential Udiff that is a result of

two competing mechanisms: the Zeeman shift and a mean-field collisional shift. The Zeeman

shift caused by the trapping magnetic field scales with axial position approximately as z2 (see
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Section 4.1.2). The mean-field collisional shift due to interactions between the atoms is given by

∆MF =
4π~2

m
[2a22n2 − 2a11n1 + 2a12(n1 − n2)], (4.3)

where m is the mass of a 87Rb atom, aij is the s-wave scattering length between states |i〉 and |j〉
(i, j=1,2), and ni is the density of atoms in state i [26]. This energy shift scales directly with the

density; therefore it has a Gaussian profile across the cloud.

By adjusting the magnetic field or the density of the atomic cloud, we can roughly cancel out

these two effects to create an approximately uniform differential potential (Fig. 4.2) and then intro-

duce arbitrary differential potentials using external fields. We use the optical field of a laser to alter

atomic energy levels via the ac Stark effect in our experiment. This technique allows us to produce

differential potentials with adjustable geometry and magnitude.

Figure 4.2: Schematic representation of the cancellation of the differential mean-field and Zeeman
shifts. The mean-field differential potential is a Gaussian, while the Zeeman shift approximately
scales as z2. The total differential potential is roughly uniform across the atomic cloud.

4.1.2 Differential Zeeman shift measurement

The presence of an external magnetic field lifts the degeneracy in energy between the states with

different mf values. For the case of J = 1
2 which applies to the S1/2 ground state, the Breit-
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Rabi formula gives the dependence of the energy shift of each mf level, E
(
F = I ± 1

2 ,mf

)
, as a

function of magnetic field [30]

E(F = I ± 1

2
,mf) =

−∆Ehf

2(2I + 1)
− gimfµBB ±

∆Ehf

2

√
1 +

4mf

2I + 1
x+ x2 , (4.4)

with

x =
(gi + gj)µBB

∆Ehf

. (4.5)

Here ∆Ehf is the hyperfine splitting between the two states (F = 1 and F = 2) at zero magnetic

field, I is the nuclear spin (I = 3
2 for 87Rb), µB is the Bohr magneton, gj is the Landé g-factor and

gi is the nuclear g-factor.

The Breit-Rabi formula predicts a minimum for the transition frequency between the two states

(ν12 = E12/h) at B0 = 3.23 G, indicating that at B = B0 the differential potential between the

two states is first-order independent of the magnetic field. The differential shift near B0 can be

approximated by ν12 = νmin +α (B −B0)2. It is desirable to choose the magnetic field value close

to B0 to reduce the spatial inhomogeneity of ν12 across the cloud.

To calibrate the magnetic field we measure ν12 as a function of the trapping magnetic field. We

adjust the magnetic field by changing the voltage across the bias coils in the HIP trap. This in turn

modifies the magnetic field in the center of the trap B = BPinch − aVBias. Then the differential shift

is measured by means of Ramsey spectroscopy (see Section 5.1.2). Figure 4.3 effectively shows the

measured magnetic field dependence of the transition frequency.

4.1.3 Cancellation of the differential shifts and uniform differential potential

To reach the magnetic field and the density conditions under which the differential potential is uni-

form, we keep the magnetic field constant and change the collisional energy shift by varying the

density of the atomic cloud. We work close to B0 at a cancellation magnetic field BC that pro-

duces a differential Zeeman shift with a quadratic spatial dependence and an opposite sign to that

produced by the collisional shift; otherwise cancellation is not possible. We measure the differen-

tial potential experienced by atoms using Ramsey spectroscopy. The uniform differential potential

created using this procedure is presented in Fig. 4.4. Adding arbitrary differential potentials to this

uniform potential is possible by applying external fields such as a laser field.
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Figure 4.3: Differential Zeeman shift 1
h [E12 − Ehf(B = 0)], for the |1,−1〉 → |2, 1〉 transition in

low magnetic fields. The red curve is a fit to the quadratic approximation of the Breit-Rabi equation
for scale parameter a in B = BPinch − aVBias.
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Figure 4.4: Uniform differential potential is achieved by cancellation of the differential Zeeman
shift and the collisional mean-field shift. We measure differential energy shifts by means of Ramsey
spectroscopy (Section 5.1.2). We obtain spatially resolved data by dividing the atomic cloud axially
into 23 bins across the cloud and radially averaging over each bin.

4.1.4 The ac Stark effect and the light shift

The oscillating electromagnetic field of an off-resonant laser alters the atomic energy levels via the

ac Stark effect. The electric field of the laser induces an atomic electric dipole moment. According

to [31] the resulting interaction potential between this induced dipole moment and the electric field

is

Udip(z) = −3πc2

2ω3
0

(
Γ

ω0 − ωL
+

Γ

ω0 + ωL

)
I (z) , (4.6)

where Γ is the excited state spontaneous decay rate, ω0 is the transition frequency, ωL is the applied

laser frequency and I(z) is the laser intensity spatial distribution.

When the laser frequency is tuned close to resonance, i.e. |∆| = |ωL−ω0| � ω0, implementing

the rotating wave approximation leads to a simplified expression for Udip,

Udip(z) =
3πc2

2ω3
0

(
Γ

∆

)
I(z). (4.7)

By producing different laser intensity distributions across the atomic cloud, we can create differ-



CHAPTER 4. SPIN-STATE PREPARATION 37

ential potentials with arbitrary geometries in order to produce spin profiles appropriate to drive

different types of spin dynamics.

4.1.4.1 The Stark laser

We use a 180 mW external cavity diode laser with a center wavelength at 780 nm to Stark shift the

energy levels. To stabilize the frequency of this laser, we use the PLL lock setup discussed earlier

in Section 3.2.2. We detune the laser frequency 3 GHz below the cooling transition by tuning the

frequency of the local oscillator (Fig 3.6). This locking procedure gives us the flexibility to adjust

the laser detuning. By illuminating the atomic cloud with the laser beam at 3 GHz detuning and

130 W/m2 intensity, we produce differential light shifts of the order of h×10 kHz. We can modify

the magnitude of the differential light shift by either adjusting the intensity of the laser beam or

varying the laser detuning.

4.2 Spin-profile initialization

To create and subsequently observe the Castaing instability we need to initialize the atomic cloud

with a gradient in its spin profile. We designed two different methods to create these spin gradients;

both methods require the same optical setup but then involve different spin initialization sequences.

4.2.1 Optical setup and beam shaping

To create a longitudinal spin gradient we need the atomic cloud to be in a state where spatially

half of the cloud is in state |1〉 and the other half in state |2〉. We use a step optical potential to

produce the spin-profile gradient. We illuminate the atomic cloud with a masked off-resonant laser

beam from our Stark laser, as shown schematically in Fig. 4.5. Thereby we shift the energy levels

on one side of the cloud and leave the other half of the atomic cloud unperturbed, creating a step

optical potential across the atomic cloud. In the next section I will describe how we use this optical

potential in preparing the spin profiles.

Figure 4.6 shows the optical setup used to create the step optical potential presented in Fig. 4.7.

We use a pair of cylindrical lenses to expand a collimated laser beam axially, mask the expanded

beam using a dark blade and finally image the mask onto the atomic cloud by means of a single

spherical lens.
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Figure 4.5: A step optical potential is produced by masking the off-resonant laser beam (schematic
representation).
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Figure 4.6: Optical setup used in producing the step optical potential presented in Fig. 4.7. The
collimated beam from the laser is expanded axially using a pair of cylindrical lenses. The dark
mask is imaged on the atomic cloud by a single spherical lens.
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Figure 4.7: Step optical potential (•) with dUdiff/dz ' h× 500 Hz/mm created by illuminating the
atomic cloud with a masked laser beam. The black data points (�) shows the uniform differential
potential with no laser field applied. Udiff is measured by means of Ramsey spectroscopy.

4.2.2 Spin-state preparation

At this point we choose between two different approaches to initialize the longitudinal spin profile.

If we initialize the atomic cloud in a superposition of the two spin states, subsequent illumination

with the masked beam from the Stark laser imprints a phase profile onto the transverse spin compo-

nent, producing a gradient in the spin profile (∇S⊥). Figure 4.8 shows the experimental sequence

used for producing a longitudinal spin gradient in this way. First the atomic cloud is initialized in

a coherent superposition of the two spin states by applying a π/2 pulse. Next the Stark laser is

turned on for the phase imprinting time tφ, to create a π phase shift between the two sides of the

atomic cloud. The second π/2 pulse then maps the transverse spin into longitudinal spin. As a

result of the imprinted phase profile, the second π/2 pulse transfers the atoms on one side of the

atomic cloud into state |2〉 and the atoms in the other half return to state |1〉. This procedure leads

to a nonequilibrium longitudinal spin gradient across the sample. The phase imprinting happens in

a few milliseconds, which is much faster than the trap and spin dynamics.

Figure 4.9a presents typical data showing the initialized longitudinal spin profile across the

atomic cloud. We measured the spatial distribution of the numbers N1 and N2 of atoms in states
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(𝑡𝜙 ) 

Figure 4.8: The longitudinal spin gradient initialization sequence. Turning on the Stark laser when
the system is in a superposition of the states |1〉 and |2〉 (i.e. after the first π/2 pulse) imprints a
phase profile onto the transverse spin component. A second π/2 pulse maps the transverse spin into
the longitudinal component.

|1〉 and |2〉 after applying the spin-initialization sequence (see Section 5.1). The population of the

atoms is symmetrically distributed between the two states along the axial extent of the cloud, and

thus a gradient in the longitudinal spin component is established. The longitudinal spin presented

in Fig. 4.9b is extracted as S‖ = 1
2 (N2 −N1) / (N1 +N2). The maximum linear longitudinal spin

gradient implied by these data is ∇S‖ = 1/200 µm−1. This corresponds to a gradient length scale

l∇S‖ ' 1.1 wz , where wz = 180 µm is the Gaussian half-width of the atomic distribution in the

axial dimension.

The method described above has several limitations. The most important one is that in the

process of creating the longitudinal spin gradient some non-zero transverse spin component is left

in the middle of the atomic cloud. This initial transverse spin component makes the signature

of the instability less clear as will be discussed in more detail in Section 5.2.2. Also the gradient

preparation process is sensitive to the pulse durations and frequencies used to induce the two-photon

transition. Any imperfections in the optical potential will also affect the spin gradient initialization.

Using the same phase imprinting method, we can produce transverse spin profiles with sharp

gradients to investigate the Castaing instability in the longitudinal spin channel. To create these

transverse spin profiles we eliminate the second π/2 pulse in the sequence presented in Fig. 4.8, i.e.

we create a transverse spin gradient by illuminating the cloud with the step optical potential but no

mapping to the longitudinal spin component is performed. We use these transverse spin gradients
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Figure 4.9: (a) Population distribution between states |1〉 (•) and |2〉 (�) along the axial extent
of the atomic cloud, demonstrating the presence of a longitudinal spin gradient. The longitu-
dinal spin profile is obtained by directly measuring the populations N1 and N2 of the atoms
in the two states immediately after the spin-profile initialization. (b) The longitudinal spin,
S‖ = 1

2 (N2 −N1) / (N1 +N2). The gradient length scale implied by this data is l∇S‖ ' 1.1 wz ,
where wz is the Gaussian half-width of the atomic distribution in the axial dimension.
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to study the behavior of the Castaing instability in the longitudinal spin channel.

The second method of initializing a longitudinal spin gradient does not use phase imprinting

on the transverse spin component. As discussed earlier, illuminating the sample with the masked

laser beam alters the energy levels on one side of the cloud. If this light shift is large compared

to the resonant Rabi frequency (3.2 kHz in our experiment), then the atomic energy levels on the

bright side of the cloud are shifted enough such that a π pulse resonant with the atoms on the dark

(unperturbed) side of the cloud is far detuned for the atoms on the bright side of the atomic cloud,

and thus will not transfer the atoms between the two states.

Figure 4.10 illustrates this procedure using the Bloch sphere representation of a two-level sys-

tem. On the perturbed side (Fig. 4.10a) a state vector initially in the |1〉 state does not transfer to the

|2〉 state but on the unperturbed side (Fig. 4.10b) the state vector oscillates between the two states.

To implement the second spin gradient initialization procedure we start with the whole sample

in the |1〉 state. Then we apply a π pulse resonant with the unperturbed atoms while the Stark laser

is on. This process transfers the atoms on the dark side of the sample to the state |2〉 while the atoms

on the perturbed side remain in the initial state |1〉, resulting in a longitudinal spin gradient across

the cloud. Using this approach we expect to have less transverse spin component left in the middle

of the atomic cloud. We are planning to use this method in future experiments.
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Figure 4.10: (a) The Bloch sphere representation of an atom on the bright (perturbed) side of the
sample. The state vector ~ψ (blue arrow) undergoes a small precession around the field’s torque
vector ~Ω (dashed arrow) which is far detuned from resonance. (b) The Bloch sphere representation
of an atom on the dark (unperturbed) side of the sample. The state vector ~ψ oscillates between the
two states, precessing around the field’s torque vector ~Ω which is on resonance.



Chapter 5

Experimental results

The presence of smoothly varying inhomogeneities in the transverse spin component will lead to

generation of spin wave oscillations in a spin-polarized system [6, 29]. As discussed in Chapter 2,

introducing sufficiently sharp gradients in the spin profile alters the spin dynamics dramatically,

resulting in the generation of instabilities. In this chapter I will describe the experimental method

used to extract the spin components, or in other words reconstruct the Bloch vector evolution in time.

Finally, I will present the experimental results extracted using this method, manifesting evidence for

the presence of the Castaing instability.

To investigate the Castaing instability we first initialize a spin profile containing a gradient, as

described in Section 4.2.2. We then allow the system to evolve for some period of time, and finally

the atomic cloud is imaged in order to measure the transverse and longitudinal spin components as a

function of space and time. To achieve spatially resolved measurements we divide the image of the

atomic cloud into 23 equally sized axial bins and average radially over each bin. These measurement

methods will be discussed in the following section.

5.1 The experimental method for reconstructing spin

We use two different methods to measure the transverse and longitudinal spin components. These

methods are described in the following sections.

44
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5.1.1 Longitudinal spin

The longitudinal spin component is extracted from image data by directly measuring the popula-

tion of atoms N1 and N2 in the two states, |1〉 and |2〉, subsequent to the evolution of the system.

The population in each state is measured in separate experimental shots with the same initial con-

ditions. Typical longitudinal spin distribution data are presented in Fig. 5.1. The longitudinal spin

component is determined from N1 and N2 using

S‖ =
1

2
(N2 −N1)/(N1 +N2) . (5.1)

The population difference N2 − N1 is normalized to the total population in each bin N1 + N2 in

order to obtain the longitudinal spin component.
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Figure 5.1: Population of atoms in the two states, |1〉 (•) and |2〉 (�). The population in each state
is measured in separate experimental shots. As described earlier the cloud is divided axially into
23 bins for spatial resolution; here each data point corresponds to one bin. These data are used to
reconstruct the longitudinal spin component.

5.1.2 Transverse spin

We use the Ramsey spectroscopy method to reconstruct the transverse spin component. The ampli-

tude of the Ramsey fringes gives the transverse spin amplitude (coherence), and the phase of these
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oscillations gives the transverse spin orientation relative to the initial orientation.

5.1.2.1 Ramsey spectroscopy

The Ramsey method consists of two π/2 microwave pulses detuned from the two-photon transition

by δ = ω − ω0 and separated by a varying free evolution time T as indicated in Fig. 5.2. The

probability of finding the atoms in the excited state P2 after the two-pulse sequence for δ � ΩR

and pulse length τ � T is [26]

P2(T, δ) =
1

2
+

1

2
cos(δT ). (5.2)

  

Evolution time (T)
 

π/2π/2

time

¿

τ τ

Figure 5.2: Ramsey spectroscopy sequence.

The first π/2 pulse places the atoms in a coherent superposition of the two spin states. Dur-

ing the evolution time, the relative phase between the two states evolves proportional to the energy

difference between them (Eq. 4.2). The second π/2 pulse recombines the two states interferomet-

rically, depending on their relative phase. As a result, an oscillation of the population between

the two states is observed as a function of the evolution time. Figure 5.3 illustrates this process

schematically in the Bloch sphere representation. This first π/2 pulse applied in the spin gradient

initialization sequence in Fig. 4.8 is the reference pulse (the first π/2 pulse) in Ramsey spectroscopy

sequence.

Typical Ramsey spectroscopy experimental data are presented in Fig. 5.4. The frequency of

Ramsey oscillations depends only on the detuning from resonance and characterizes the energy
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splitting of the two states. Measuring the number of atoms in state |1〉 after the second π/2 pulse is

equivalent to measuring the transverse spin (S⊥) before the second π/2 pulse is applied. Thus the

amplitude of the Ramsey fringes gives the transverse spin magnitude.

5.2 Results

5.2.1 Castaing instability with a longitudinal spin gradient

The first observations of the Castaing instability during the 1990s, as was initially predicted by

B. Castaing in 1984 [19], were made in connection with longitudinally spin-polarized liquid 3He-
4He samples in which a gradient in the spin profile had been imprinted [27, 32, 33]. According to

theoretical predictions a purely longitudinal spin profile with a sharp gradient leads to spontaneous

generation of transverse spin waves in the presence of a small transverse perturbation. The initial

longitudinal spin gradient in these spin-polarized systems was produced by applying a π pulse on

one side of the sample, and the resulting instability led to NMR ringing on free induction decay

[27, 32, 33].

Despite the fact that trapped atomic samples of Alkali-metal gases are different than condensed

spin-polarized liquids insofar as a number of experimental parameters are concerned (e.g. smaller

sizes and nonuniform density distributions) numerical simulations performed by J. N. Fuchs et

al. [18] confirmed that observation of the Castaing instability ought to be feasible in such systems

(see Chapter 2). In this work we present the results of the first experimental investigation of the

Castaing instability in a trapped 87Rb gas.

To study the instability in the transverse spin channel we first initialize a longitudinal spin gra-

dient as illustrated in Fig. 4.9b, using the first method described in Section 4.2.2. Following the

spin-state preparation, the atomic cloud is allowed to evolve and is then imaged to extract the spin

components, using the methods outlined in Section 5.1. According to the theoretical studies summa-

rized in Chapter 2, a rise in the magnitude of the transverse spin component at the initial stage of the

evolution of dynamics is the signature for the Castaing instability. Theoretical estimates of the time

required for the development of the instability with our experimental parameters is tinst ∼ 200 ms

[18]. This rise in the transverse spin magnitude is the sign we expect to see in the experimental data.

Figure 5.5 shows Ramsey oscillation data measured up to T = 350 ms for a bin at z = 250 µm

from the center of the atomic cloud. It is clearly seen that the initial Ramsey fringe amplitude is
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a) b) c)

Figure 5.3: Schematic representation of Ramsey oscillations in the Bloch sphere representation,
showing two π/2 pulses detuned by δ = ω − ω0 and separated by an evolution time T . The blue
dashed arrow indicates the initial state. (a) When δT = 0 the two-pulse sequence is equivalent to
a π pulse. (b) When δT = π

2 the second π/2 pulse does not transfer the atoms into state |2〉 as the
state vector is along the field’s torque vector (U -axis). (c) When δT = π the second π/2 transfers
the atoms back into the initial state |1〉.

Figure 5.4: Typical Ramsey oscillation data. The curve represents a sine wave fit to the data.
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small, indicating that the initial transverse spin component is also small. But at around T = 50 ms

a rapid rise in the magnitude of the transverse spin is observed. The behavior observed in the center

of the atomic cloud is different. A large initial transverse spin component is present (Fig. 5.6).

This large initial spin component in the middle of the cloud is due to our spin-state initialization

technique, and makes the signature of the instability less clear.

To extract the time evolution of the magnitude and phase of the transverse spin, we fit a sine

wave with a fixed frequency but a time varying amplitude and phase to Ramsey oscillations. As

illustrated in Fig 5.7 to do this we choose a window with a size larger than one oscillation. For

example, the running window used for extracting the data presented in Fig. 5.8 encompasses 15

data points, i.e. the window size is 50 ms. We extract the amplitude and phase of the oscillations in

this window. This window is moved in time through the data set to extract the time evolution of the

amplitude and phase.

Data characterizing the magnitude of the transverse spin component extracted from the Ramsey

oscillation raw data is summarized in Fig. 5.8, showing the evolution of the transverse spin mag-

nitude (the Ramsey fringe amplitude) as a function of time. The red and black curves show the

behavior observed at the center and edge of the sample, respectively. The edge of the atomic cloud

is initially in a nearly pure longitudinal spin state (small transverse spin component), but after a

short time a rapid rise in the magnitude of the transverse spin is observed (also see Fig. 5.5). In the

center of the cloud the transverse spin magnitude decreases gradually without showing any evidence

for anomalous behavior.

The time evolution of the transverse spin phase extracted from different Ramsey oscillation data

is presented in Fig. 5.9. The system initially starts with a gradient in the transverse spin phase across

the cloud. This situation is then stable (no observable dynamics) for hundreds of milliseconds. At

T = 280 ms a sudden inversion in the orientation of the transverse spin is observed. Longitudi-

nal spin evolution measurement show that this time scale is coincident with the inversion time of

the longitudinal spin gradient. This time scale is different from the trap frequency; therefore this

inversion is due to the dynamics occurring associated with the spin degree of freedom in the sys-

tem. The observed dynamics get damped by elastic collisions between the atoms that randomize the

spin. Also dipolar relaxation that leads to loss from the |2〉 state causes longitudinal relaxation. The

damping time for the dynamics is of the order of 400 ms, and therefore no further inversions could

be observed in these experiments.
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Figure 5.5: Ramsey oscillations for a bin at z = 250 µm from the center of the atomic cloud. The
initial fringe amplitude is small, but is followed by a rapid rise. The solid line represents a fit to a
damped sine wave to guide the eye.
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Figure 5.6: Ramsey oscillations in the middle of the atomic cloud. There is a large initial transverse
spin component due to the spin-state preparation technique. The solid line represents a fit to a
damped sine wave to guide the eye.
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Figure 5.7: A sine wave with a fixed frequency but a time varying amplitude and phase is fit to the
data points in a window with a width that encompasses more than one oscillation. This window is
moved in time through the data set to extract the time evolution of the amplitude and phase of the
Ramsey oscillations. The solid line is a fit of a damped sine wave to guide the eye.

5.2.2 Castaing instability with a transverse spin gradient

As was discussed in Chapter 2 and as previously observed in [6, 29], spin waves are excited in

systems with smoothly varying inhomogeneities in their transverse spin profile. To investigate how

the presence of the Castaing instability alters spin dynamics in such systems, we also studied an

atomic cloud initialized with a gradient in its transverse spin profile. In order to imprint a transverse

spin gradient, we first initialize the system in a coherent superposition of states |1〉 and |2〉 by

applying a π/2 pulse to a system initially in the |1〉 state. The atomic cloud is then illuminated

by the masked off-resonant laser, imprinting a sharp gradient in the transverse spin profile (see

Section 4.2.2). Following the spin-profile preparation we allow the system to evolve in time and

finally measure the transverse spin component using Ramsey spectroscopy.

Figure 5.10 shows Ramsey oscillations measured up to T = 300 ms for (a) a bin in the center

and (b) a bin at z = 250 µm from the center of the atomic cloud. In the center of the cloud we

observe the Ramsey oscillations damping gradually due to elastic collisions (Fig. 5.10a). On the

contrary, on the edge of the cloud at around T = 180 ms (Fig. 5.10b) a collapse in coherence is

observed similar to the collapse and revival of coherence observed in [34].
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Figure 5.8: Time evolution of the magnitude of the transverse spin in a cloud initialized with a
longitudinal spin gradient. These results are extracted from raw Ramsey oscillation data by fitting a
sine wave with a time varying amplitude and phase to Ramsey oscillations. The extracted amplitude
of the Ramsey oscillations is normalized with the mean value of the Ramsey oscillations in each
bin. The black curve (•) indicates data acquired at z = 250 µm from the center of the atomic
cloud (Fig. 5.5) where the initial condition corresponds to a nearly pure longitudinal spin state with
a small initial transverse spin component. After a short delay a rapid rise in the magnitude of the
transverse spin is observed. The red curve (�) corresponds to the center of the cloud where a large
initial transverse spin component is present.
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Figure 5.9: Time evolution of the transverse spin phase in a system initialized with a longitudinal
spin gradient. The red, blue and black curves show the right, middle and left sides of the sample
respectively. At T = 280 ms a sudden inversion in the orientation of the transverse spin is observed
on the edges of the cloud.

The collapse in the coherence is associated with collisions between atoms with significantly

different phase, such that the identical spin rotation effect (see Section 2.2.2) cannot rephase the

spins into a uniform distribution. The spin profile we imprint on the transverse spin produces regions

with dramatically different phases residing close to each other, since the phase on the two sides of

the cloud differ by π. The motion of the atoms in the confining potential can lead to collisions

between atoms from the two different sides of the cloud. These collisions lead to a collapse in the

coherence observed at those regions in the cloud. Due to the gradient in the center of the cloud the

neighboring atoms in the middle have only slightly different spin orientations; therefore no dramatic

change in behavior is expected to be observed.

Figure 5.11 shows the evolution of the transverse spin orientation (phase) as a function of time

at different parts of the atomic cloud. The red, blue and black curves show the right, middle and

left sides of the sample respectively. The system starts with a π difference in the transverse spin

orientation across the cloud. It stays in its initial configuration for 150 ms without any observable

dynamics, and at around T = 180 ms the orientation of the transverse spin is suddenly inverted

by π. This behavior is quite different than the slow sinusoidal evolution that is observed for an
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Figure 5.10: Ramsey spectroscopy data (a) in the middle and (b) at z = 250 µm from the center of
the atomic cloud, for a system initialized with a gradient in the transverse spin profile. A damped
sine wave is fit to the experimental data points to guide the eye. The phase is then measured using
the running-window fit described in Section 5.2.1.
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ordinary spin wave oscillation mode. This abrupt inversion behavior observed in our experiment

distinguishes these effects from normal spin wave oscillation modes.

To quantify the effect we have observed we studied the variation of the spin inversion rate as

a function of the magnitude of the spin imprinted at the initialization stage. The time defined as

the spin inversion time is indicated on the plot in Fig 5.11 with a dashed line. This inversion time

corresponds to the time when the initial spin orientation angle passes through zero as it inverts to

an opposite value. The inverse of this quantity is taken as the spin inversion rate. We modify the

magnitude of the phase difference by changing the magnitude of the light shift via adjusting the

intensity of the applied laser.

We compare the experimental results with the predictions of a numerical solution to the spin

transport equation (Eq. 2.6). Figure 5.12 presents the experimental data along with the simulation

results. The black curve shows the numerical simulation of the quantum Boltzmann equation for an

initial transverse spin profile with a gradient distributed in the middle of the cloud with a length scale

of the order ofwz . The red curve shows the simulation results for a linear differential potential of the

same magnitude but no sharp gradient. From the simulation results, the presence of the instability

leads to dramatically increased spin inversion rates, and the experimental results (blue dots on the

plot) agree reasonably with the simulation.
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Figure 5.11: Time evolution of the transverse spin phase in a cloud initialized with a sharp gradient
in the transverse spin profile measured using the running-window fit described in Section 5.2.1. The
red, blue and black curves show the right, middle and left sides of the sample respectively. Initially
there is a π difference in the transverse spin phase across the cloud. Very little happens for the first
150 ms followed by a sudden inversion of the transverse spin phase on opposite sides of the cloud.
The time defined as the spin inversion time is indicated on the plot with a dashed line. This inversion
time corresponds to the time when the initial spin orientation angle passes through zero as it inverts
to an opposite value. The spin inversion rate inferred from these data is 5.5± 0.3 Hz.
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Figure 5.12: Experimental results along with numerical solution of the spin transport equation show-
ing the spin inversion rate as a function of the magnitude of the initial spin difference. The black
curve shows the simulation results for an initial transverse spin profile containing a sharp gradient
with a length scale on the order ofwz . The red curve shows the solution for similar initial conditions
with a linear differential potential of the same magnitude but no sharp gradient. It is evident that the
presence of the gradient leads to increased spin inversion rates. The experimental results agree with
the simulation results.
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Conclusion

In this thesis I have presented a study of spin dynamics instabilities in a nondegenerate gaseous

trapped 87Rb sample. This work represents the first experimental investigation of the so-called

Castaing instability in an ultracold atomic quantum gas. The experimental results I have presented

manifest the signature for the presence of the Castaing instability.

The Castaing instability is an instability in the spin dynamics of spin-polarized systems, which

is associated with the presence of sharp gradients in the spin profile. This instability was initially

predicted by B. Castaing in his studies of 3He samples in 1984 [19]. It was observed in experiments

on samples of spin-polarized 3He-4He mixtures [27, 32, 33]. Following the observations of spin

dynamics in trapped atomic 87Rb gas in 2002, theoretical and numerical studies carried out by A.

Kuklov et al. and J. N. Fuchs et al. proposed that this instability ought to be observed in such

systems. The advantages ultracold atomic systems provide, specifically the possibility of localized

imaging, help to study the localized behavior of the instability.

In this work we studied the Castaing instability in a cloud of nondegenerate trapped 87Rb with

7×106 atoms (peak density n = 8.6×1019 m−3) at typical temperatures T ' 600 nK (T ' 1.1 Tc).

The Castaing instability was observed and studied with two different initial spin profiles. In one case

the initial spin profile is a purely transverse spin profile containing a sharp gradient∇S⊥ across the

atomic cloud. In the other case the initial spin profile is purely longitudinal with a spin gradient

∇S‖ across the atomic cloud.

Imprinting a sharp spin gradient in the transverse spin profile alters the spin dynamics because

of the presence of the Castaing instability in the longitudinal spin channel. The experimental results

manifest altered dynamics in the form of an abrupt change in behavior of the time evolution of the
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spin vector as well as increased spin inversion rates compared to normal modes of spin wave oscil-

lations. The results observed during my experiments are in reasonable agreement with expectations

from theoretical studies and with numerical solutions to the spin transport equation we performed.

The Castaing instability experiment in the transverse channel was performed with a longitudinal

spin gradient created using the first spin-preparation method discussed in Chapter 4, which involves

phase imprinting a transverse spin gradient and then mapping the transverse spin into longitudinal

spin using microwave pulse techniques. The experimental results show a rise in the magnitude of the

transverse spin component, which is the anticipated signature of the Castaing instability. However,

the presence of an initial large transverse spin component in the middle of the atomic cloud makes

the signature of the Castaing instability less clear. This initial transverse spin component is present

because of the spin-state preparation technique we applied.

We contemplated using other preparation techniques to eliminate this initial transverse compo-

nent in the middle of the cloud. One of such techniques is the second spin-state preparation method

discussed in Chapter 4, which involves using large Stark shifts on one side of the atomic cloud to

control the transfer of the atoms between the two spin states. Due to time constraints and issues

associated with equipment failure we could not test any alternative methods.

Further evidence that the effects we observed are indeed a result of the Castaing instability lie

in the observed time scales. The timescales of the observed dynamics in this work are different

from the time scales associated with trap oscillations, thus we can conclude that the dynamics are

happening due to the spin degree of freedom. Also the spin oscillations manifest abrupt behavior,

which distinguishes these effects from normal modes of spin wave oscillations. However, more

investigation is needed to confirm all of the theoretical predictions for the Castaing instability.

Future avenues of inquiry include using alternative spin-state preparation methods to clean up

the longitudinal spin gradient through elimination of the transverse spin component in the middle of

the atomic cloud. One could also envision imprinting other types of spin profiles on the trapped gas

and observing the subsequent dynamics. Another experiment could include studying the dynamics

in the presence of such spin profiles in a Bose-Einstein condensate rather than a nondegenerate

sample.
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