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Abstract

The high throughput sequencing (HTS) platforms generate unprecedented amounts of data

that introduce challenges for the computational infrastructure. Currently, most HTS data

is compressed through general purpose algorithms such as gzip. These algorithms are not

designed for compressing data generated by the HTS platform, as they do not take advantage

of the specific nature of genomic sequence data.

Here we present SCALCE, a “boosting” scheme based on Locally Consistent Parsing

technique which reorganizes the reads in a way that results in a higher compression speed

and compression rate, independent of the compression algorithm in use and without using a

reference genome. Our tests indicate that SCALCE improves compression rate and time of

gzip significantly. We also showed that reordering problem can be considered as an instance

of set-cover problem, and that Locally Consistent Parsing is practically good as the best

known approximation of set-cover problem.

keywords: FASTQ, Genome Sequence Compression, High Throughput Sequencing Tech-

nology, Lempel-Ziv Techniques, Locally Consistent Parsing, Boosting
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Chapter 1

Introduction

The recent introduction of high throughput sequencing (HTS) platforms enabled the fast

and cheap sequencing of genomes of various species and individuals. This technology ad-

vancement enabled us to perform much broader genomic analysis in a shorter amount of

time. On the other side, these platforms generate unprecedented amounts of data that in-

troduce challenges for the computational infrastructure, such as data management, storage,

and analysis.

Although the vast majority of HTS data is compressed through general purpose methods,

in particular gzip and its variants, the need for improved performance has recently lead to

the development of a number of techniques designed specifically for HTS data. Available

compression techniques for HTS data either exploit the similarity between the reads and

a reference genome, or the similarity between the reads themselves. Once such similarities

are established, each read is encoded by the use of techniques derived from classical lossless

compression algorithms such as Lempel-Ziv-77 [40] (which is the basis of gzip and all other

zip formats) or Lempel-Ziv-78 [41].

Compression methods that exploit the similarity between individual reads and the ref-

erence genome use the reference genome as a “dictionary” and represent individual reads

with a pointer to one mapping position in the reference genome, together with additional

information about whether the read has some differences with the mapping loci. As a result,

these methods [21, 24] require both the availability of a reference genome and the mapping

of the reads to the reference genome. Unfortunately, genome mapping is a time-wise costly

step, especially when compared to the actual execution of compression (i.e. encoding of the

reads) itself. Furthermore, these methods necessitate the availability of a reference genome

1



CHAPTER 1. INTRODUCTION 2

both for compression and decompression. Finally, many large-scale sequencing projects such

as the Genome 10K Project [19] focus on species without reference genomes.

Compression methods that exploit the similarity between the reads themselves simply

concatenate the reads to obtain a single sequence. For example, [6] apply modification of

Lempel-Ziv algorithm, [36, 12] use Huffman Coding while [22] and [11] employ Burrows

Wheeler transformation [7]. In particular, the Lempel-Ziv methods (e.g gzip and deriva-

tives) iteratively go over the concatenated sequence and encode a prefix of the uncompressed

portion by a “pointer” to an identical substring in the compressed portion. This general

methodology has three major benefits: (i) Lempel-Ziv based methods (e.g. gzip and deriva-

tives) have been optimized through many years and are typically very fast; in fact the

more “compressible” the input sequence is, the faster they work, both in compression and

decompression; (ii) these methods do not need a reference genome; and (iii) since these

techniques are almost universally available, there is no need to distribute a newly developed

compression algorithm.

Interestingly, the availability of a reference genome can improve the compression rate

achieved by standard Lempel-Ziv techniques. If the reads are first mapped to a reference

genome and then reordered with respect to the genomic coordinates they map to before they

are concatenated, they are not only compressed more due to increased locality, but also in

less time. This, mapping first compressing later approach, combines some of the advantages

of the two distinct sets of methods above: (a) it does not necessitate the availability of a

reference genome during decompression (compression is typically applied once to a data set,

but decompression can be applied many times), and (b) it only uses the re-ordering idea

as a front end booster (for example, Burrows Wheeler transform – BWT – is a classical

example for a compression booster. It rearranges input symbols to improve the compression

achieved by Run Length Encoding and Arithmetic Coding. Further boosting for BWT is

also possible: see [17, 16, 15]). Any well-known, well-distributed compression software can

be applied to the re-ordered reads. Unfortunately, this strategy still suffers from the need

for a reference genome during compression.

In this thesis we introduce a novel HTS genome (or transcriptome, exome, etc.) sequence

compression approach that combines the advantages of the two types of algorithms above.

It is based on re-organization of the reads so as to ”boost” the locality of reference. The

re-organization is achieved by observing sufficiently long “core” substrings that are shared

between the reads, and clustering such reads to be compressed together. This reorganization
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acts as a very fast substitute for mapping based reordering (see above); in fact the first step

of all standard seed and extend type mapping methods identify blocks of identity between

the reads and the reference genome.

The core substrings of our boosting method are derived from the Locally Consistent

Parsing (LCP) method devised by Sahinalp and colleagues [32, 10, 5]. LCP is a combi-

natorial pattern matching technique that aims to identify “building blocks” of strings. It

has been devised for pattern matching, and provides faster solutions in comparison to the

quadratic running time offered by the classical dynamic programming schemes. As a novel

application, we introduce LCP to genome compression, where it aims to act as a front end

(i.e. booster) for commonly available data compression programs. For each read, LCP sim-

ply identifies the longest core substring (there could be one or more cores in each read).

The reads are “bucketed” based on such representative core strings and within the bucket,

ordered lexicographically with respect to the position of the representative core. We com-

press reads in each bucket using Lempel-Ziv variants or any other related method without

the need for a reference genome.

As can be seen, LCP mimics the mapping step of the mapping-based strategy described

above in an intelligent manner: on any pair of reads with significant (suffix-prefix) overlaps,

LCP identifies the same core substring and subsequently buckets the two reads together.

For a given read, the recognition of the core strings and bucketing can be done in time linear

with the read length. Note that the “dictionary” of core substrings is devised once for a

given read length as a pre-processing step. Thus, the LCP-based booster we are proposing

is very efficient. LCP provides mathematical guarantees that enable highly efficient and

reliable bucketing that captures substring similarities.

In this study, we apply the LCP-based reordering scheme for (i) short reads of length 51

bp obtained from bacterial genomes and (ii) short reads of length 100 bp from one human

genome. We achieve significant improvements in both compression rate and running time

over alternative methods.

We also provide a theoretical insight into the general string reordering problem by re-

ducing it to the set cover problem. In fact, we devise an alternative algorithm for the core

substring finding, based on the well-known approximation algorithm for set cover [8]. We

analyse the performance of LCP-based method in comparison to the alternative proposed

method , and show that LCP version offers competitive or better results in practice, while

requiring smaller computational resources.



Chapter 2

Preliminaries

This section provides a short introduction to the basic terminology and methods which

will be employed later. In particular, the introduction to HTS technology, as well as the

introduction to some compression techniques will be provided.

2.1 High-throughput sequencing

DNA sequencing is a process of precisely determining the order of nucleotides within a

given DNA molecule. The ultimate goal of DNA sequencing is to precisely identify the

content of the genome within various species and individuals. With the current sequencing

technologies, only small chunks of DNA molecule (called reads) are extracted at a given

time. In order to reconstruct the original DNA molecule from the given reads, methods

such as de novo assembly are utilized. High-throughput sequencing is a technology where

multiple reads can be extracted at once in a parallel manner. Usually, the magnitude of

extracted reads in the same time is measured in thousands. There are different technologies

which deal with high throughput sequencing, and in this work we will mainly focus on

Illumina sequencing technologies. In aforementioned technologies, sequencing machine will

provide a bunch of short reads of the same length. Currently, read lengths are usually

spanned from 50 to 250 nucleotides (also called basepairs, abbreviated as bp). As these

sequencing technologies are not yet error-prone, each basepair is assigned a quality score,

which describes the accuracy level of the given basepair call. Because of the possible errors,

each location in the DNA molecule is usually sequenced multiple times. The average number

of reads covering the same location within a given DNA molecule is called coverage. Coverage

4



CHAPTER 2. PRELIMINARIES 5

is variable which depends on the equipment and the settings used during the sequencing

process. Obviously, higher coverage will result in higher number of sequenced reads. While

it will provide a higher accuracy, it will also yield the increased storage requirements. Thus,

for sequencing of the human individual (whose genome size is approximately 3 GB) with

40x coverage, we will need around 300 GB of storage space in order to store the reads and

their corresponding qualities. Such storage requirements are simply impractical for most

purposes, which naturally yields the question of reducing the size of HTS data.

2.2 LZ77 family of compression algorithms

LZ77 is a lossless data compression algorithm developed by A. Lempel And J. Ziv [40]. It

is representative of the dictionary-based compression algorithm family.

Let us denote the input sequence as S. In LZ77 algorithm, dictionary is dynamic, and

it is represented by a sliding window W of size n. For each input symbol Si which is about

to be encoded, the window W consists of n input symbols occurring before the symbol Si;

i.e. W = Si−n, . . . , Si−1. The main idea of LZ77 is to find the largest number k such that a

sequence of the symbols Si, . . . , Si+k is found in the dictionary W . In other words, there is

an index j such that sequences Si, . . . , Si+k and Wj , . . . ,Wj+k are equal. For each symbol,

LZ77 will output the triple (k, j, c), where c is the symbol Si+k+1, i.e. the symbol after the

encoded subsequence.

The LZ77 algorithm is proven to be asymptomatically optimal algorithm for stationary

ergodic sources. From the discussion above, it is clear that the performance of LZ77 is

affected by the sliding window length n, as well as by the similarity of neighbouring subse-

quences in the input. Due to the speed concerns and performance of the triplet encoding,

most practical implementations use a small dictionary of size 32 KB. Thus, possible reorder-

ing of the input sequence in a way that similar or equal subsequences are clustered together

can drastically improve the performance of LZ77 algorithm.

2.3 A theoretical exposition to the LCP technique.

The simplest form of the LCP technique works only on reads that involve no tandemly

repeated blocks (i.e. the reads can not include a substring of the form XX where X is a

string of any length ≥ 1; note that a more general version of LCP that does not require
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this restriction is described in [31, 32, 5], so that in practice LCP works on any string of

any length). Under this restriction, given the alphabet {0, 1, 2, . . . , k − 1}, LCP partitions

a given string S into non-overlapping blocks of size at least 2 and at most k such that

two identical substrings R1 and R2 of S are partitioned identically, except for a constant

number of symbols on the margins. LCP achieves this by simply marking all local maxima

(i.e. symbols whose value is greater than its both neighbours) and all local minima which do

not have a neighbour already marked as a local maxima – note that beginning of S and the

ending of S are considered to be special symbols lexicographically smaller than any other

symbol. LCP puts a block divider after each marked symbol and the implied blocks will

be of desirable length and will satisfy the identical partitioning property mentioned above.

Then, LCP extends each block residing between two neighbouring block dividers by one

symbol to the right and one symbol to the left to obtain core substrings of S. Note that two

neighbouring core substrings overlap by two symbols.

Example. Let

S = 21312032102021312032102;

in other words S = X0X, where X = 21312032102. The string S satisfies the above

condition; i.e. it contains no identically and tandemly repeated substrings. When the above

simple version of LCP is applied to S, it will be partitioned as

|213|12|03|2102|02|13|12|03|2102|.

Clearly, with the exception of the leftmost blocks, the two occurrences of X are partitioned

identically. Now LCP identifies the core substrings as

2131, 3120, 2032, 321020, 2021, 2131, 3120, 2032, 32102.

Observe that:

1. the two occurrences of string X are partitioned by LCP the same way except in the

margins.

2. if a string is identified as a core substring in a particular location, it must be identified

as a core substring elsewhere due to the fact that all symbols that lead LCP to identify

that block as a core substring are included in the core substring.
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3. as a result, all core substrings that entirely reside in one occurrence of X should be

identical to those that reside in another occurrence of X

4. the number of cores that reside in any substring X is at most 1/2 of its length and at

least 1/k of its length

The above version of LCP can return core substrings with length as small as 4. Length

4 substring is clearly not specific enough for clustering an HTS read, so we have to ensure

that the minimum core substring length c is a substantial fraction of the read length. LCP

as described in [31, 32, 5] enables to partition S into non-overlapping blocks of size at least

c and at most 2c − 1 for any user defined c. These blocks can be extended by a constant

number of symbols to the right and to the left to obtain the core substrings of S.

We show here how to increase the minimum core substring length to some 2i for any

desired i on any string that includes no tandemly repeated substrings. Although this version

of LCP is not the most general one (the upper bound on the core length will not be 2i+1−1,

but rather 3i and the restriction of tandemly repeated substrings is substantial), it will be

sufficient in developing a practical version of LCP explained later.

Given a sufficiently long string (HTS read) S that includes no tandemly repeated sub-

strings, LCP aims to identify all core substrings of length 2i to 3i by building an edge

ordered 2-3 tree. An edge ordered 2-3 tree is one in which all leaves have the same distance

from the root and each internal node has either 2 or 3 children - which are ordered. Each

leaf of this 2-3 tree is labelled by one of the symbols of the read; in fact the ordered list

of leaf labels of the 2-3 tree gives (at least a significantly long substring of) the read itself.

Each internal node n of the 2-3 tree is also labelled, not by the DNA alphabet in use but

rather by novel symbols, in a way to reflect the substring represented by the leaves of the

subtree rooted at n: two internal nodes of the 2-3 tree have the same labels if and only if

the substrings of their leaf level descendants represent are the same.

Given the leaves of the 2-3 tree to be constructed, the parents of the leaf nodes are

obtained as follows (note that this procedure will be iteratively applied to any level of the

2-3 tree after all nodes and their labels are obtained at that level). For any symbol s of a

leaf, LCP determines whether to put a block divider after it. To be able to do that, LCP

uses the two right neighbours and max(log∗(d) − 1; 5)1 left neighbours of that symbol -

1log∗(d), usually read as “log star”, is the iterated logarithm of d that is the number of times the logarithm
function must be iteratively applied before the result is less than or equal to 1
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where d is the number of unique node labels. A property of LCP is that the block dividers

partition the sequence into blocks whose size is always 2 or 3. Now, the algorithm proceeds

as follows:

1. for each symbol in the sequence, LCP computes its tag. The tag of a symbol is the

index of the least significant bit that differs between the binary representations of the

symbol and its left neighbour.

2. each symbol is replaced by a number obtained by the concatenation of two binary

numbers: (i) the tag of the symbol and (ii) the value of the bit of the symbol whose

index is tag. If the initial range of symbols are 0, . . . , d, they will be replaced by

numbers selected from 0, . . . , 2 log d.

LCP applies the same procedure for log∗(d) − 1 times. In the first iteration the range

of symbols would be reduced from 0, . . . , d − 1 to 2 log d − 1, in the second iteration, to

0, . . . , 2 log(log d)− 1 + 2, and in the last iteration to 0, . . . , 5.

Following this final iteration, we will end up with a string S′ composed of symbols from

the alphabet of size 6. Furthermore S′, as per S, will have no tandemly repeated substrings.

Thus we can apply the simple version of LCP described above to partition S′ into blocks of

size 2 to 6. We further partition any block of size 4 to two blocks of size 2 each, any block

of size 5 to blocks of size 2 and 3 and any block of size 6 to two blocks of size 3 each. As

mentioned above, once the blocks of length 2 or 3 are obtained, a parent node is obtained

for each block and it is given a label such that two parent nodes have the same labels if and

only if they represent the same block.

Notice that LCP decides to put a block divider after a symbol or not, by looking at only

log∗(d)− 1 left neighbors of that symbol. This implies that two identical substrings would

be partitioned identically except in the very left and right margins of the sequences as per

Lemma 1 below.

Lemma 1 (Consistent Parsing Lemma). Let Si,i+k and Sj,j+k be identical substrings of

S. We call substring Si+log∗ d,i+k−3, the interior of Si,i+k. Similarly, Sj+log∗ d,j+k−3 is the

interior of Sj,j+k. Then, LCP will derive the same blocks from the interiors of Si,i+k and

Sj,j+k.

Proof. Consider the symbol Si+log∗ d−1. LCP needs log∗ d−2 iterations for deciding to put a

block divider after this symbol. The tags of this symbol are a function of Si+log∗ d−2,i+log∗ d
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in the first iteration, Si+log∗ d−3,i+log∗ d in the second iteration and Si+1,i+log∗ d in the last

iteration. However Si,i+log∗ d is identical with Sj,j+log∗ d. Hence, LCP should work identically

for symbols Si+log∗ d and Sj+log∗ d, and those symbols that are to their right.

It is possible to improve the running time of LCP to O(1) per symbol: after the first

iteration of LCP, one could emulate its remaining iterations in one step by using a table of

size O(2 loglog
∗ d d) which keeps the results of applications of LCP to all possible sequences

of size log∗ d, selected from the range 0, . . . , 2 log d− 1.

As can be seen, the above version of LCP guarantees that each internal node of level k of

the 2-3 tree represents a substring of length in the range
[
2k, 3k

]
. Furthermore each string

of length ` is guaranteed to have a 2-3 tree with at least one node at level log3 `−O(log∗ d)

- which is guaranteed to cover at least 2log3 `−O(log∗ d) symbols of the string. The substrings

represented by the nodes of this level of the 2-3 tree are thus called the core substrings of

the input.

Batu et al. introduced a much improved variant of LCP to compute core substrings of an

input string of length 4c− 8, where the core substrings have lengths in the range [c, 2c− 1].

This variant also allows the presence of tandemly repeated substrings in the input string.

Unfortunately because it is highly complex and only works for sufficiently large values of c,

it is only of theoretical interest.

In the context of compressing HTS reads, if c is picked to be a significantly long fraction

of the read size, LCP applied on the HTS reads will guarantee that each read will include

at least one and at most three of these core substrings.

2.4 Arithmetic encoding

Arithmetic encoding [30, 38, 33] is a lossless entropy encoding scheme, whose main idea is

to represent the whole input sequence as a fraction n, where 0 ≤ n ≤ 1. For each input

symbol, arithmetic encoding algorithm needs to know a probability assigned to that symbol

in order to successfully create the output fraction n. In order for data to be decoded, both

encoder and decoder have to use same probability distributions for the input symbols. The

technique of assigning probabilities to the symbols is usually referred as data modelling.

Arithmetic encoder’s performance directly depends on the underlying data model. In

fact, it is well known result that arithmetic encoder can achieve optimal compression perfor-

mance (i.e. the compressed size is close to the entropy of the input data) with appropriate
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model. Unfortunately, modelling problem is not uniform, since different data sources usually

have different optimal models. The most commonly used models are simple order-n models,

where for calculating the probability of the input symbol pi, we also take into account the

last n symbols which occurred before pi, namely pi−1, . . . , pi−n. These symbols are also

known as a context of the symbol pi. These models can be either stationary or adaptive.

For stationary models, probabilities of input symbols are calculated and known in advance

of the encoding process, while in the case of adaptive models, probabilities are constantly

being updated as the new symbols arrive to the coder. Obviously, for the streaming data

applications, adaptive models are the only viable choice.

2.5 FASTQ files

Currently, the industry standard for storing HTS data is FASTQ format [9], which is based

on a previous FASTA format [29]. It is a plain text based format, in which each HTS read

is represented with the four plain ASCII lines, where:

1. first line represents the unique read name, and it always starts with the symbol @

2. second line represents the nucleotide sequence (usually with letters A,C, T,G,N ,

where N stands for an unidentified nucleotide)

3. third line represents the comment, and it always starts with the symbol + or -

4. fourth line represents the quality score, which is a sequence of printable ASCII char-

acters

HTS data is usually stored in a FASTQ libraries, where each FASTQ file usually contains

a fixed number of reads. Some HTS sequencers produce paired-end data, where each FASTQ

file is associated with another FASTQ file which contains the same read names, and have

the same number and order of the reads (i.e. only the sequences and qualities differ).

According to the FASTQ specification [9], order of the reads does not matter at all.

Also, currently available sequencers do not produce reads in any usable order (in fact, the

reads are produced in a random fashion). This implies that reordering of the FASTQ files

is completely harmless operation. Only thing which has to be taken care of during the

reordering is that, in the case of the paired-end FASTQ files, both ends should be reordered

in the same way (as stated, second file has to be ordered exactly as the first file).
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As for the compression purposes, comment line is usually redundant and can be safely

removed. In most practical uses, even the names can be omitted, as long as we can distin-

guish the different reads uniquely. In the case of paired-end libraries, if we want to drop

the names, we need to ensure that both ends will still have the same read names after

decompression (as the only criteria of knowing which reads are paired is the read name

equality).



Chapter 3

Methods

3.1 Problem definition

The main goal of our method is to improve the compression performance of Lempel-Ziv

family of algorithms through reordering of the reads. The purpose of reordering is to cluster

highly related reads (in fact those reads that ideally come from the same region and have

large overlaps) so as to boost gzip and other Lempel-Ziv-77 based compression methods. If

one concatenates reads from a donor genome in an arbitrary order, highly similar reads will

be scattered over the resulting string. Because Lempel-Ziv-77 based techniques compress

the input string iteratively, from left to right, replacing the longest possible prefix of the

uncompressed portion of the input string with a pointer to its earlier (already compressed)

occurrence, as the distance between the two occurrences of this substring to be compressed

increases, the binary representation of the pointer also increases. As a result gzip and other

variants only search for occurrences of strings within a relatively small window, as explained

before. Thus reordering reads for purpose of bringing together those reads with large (suffix–

prefix) overlaps is highly beneficial to gzip and other similar compression methods. For this

purpose, it is possible to reorder the reads by sorting them based on their mapping loci on the

reference genome. Alternatively it may be possible to find similarities between the reads

through pairwise comparisons [39]. However each one of these approaches are time-wise

costly.

Thus, as previously mentioned, we opt for the reordering based on shared core substrings.

The key problem is to find a set of core substrings S containing the minimal number of strings

of limited size (at least SL and at most SH), such that each read contains at least one core

12
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substring from set S. This represents the maximum parsimony principle, and the intuition

behind this choice is that each new cluster of reads with the same core substring will yield a

”dictionary reset” of LZ method, which will result in lower compression rate. Thus selecting

fewer core substrings will yield fewer dictionary resets. We can formally define this problem

as follows:

Problem 1. Let Σ be an alphabet, R set of input strings on Σ, and let SL ≤ SH be

two integers where SH ≤ minr∈R |r|. Find a subset S of the set of all substrings x of size

SL ≤ |x| ≤ SH on the alphabet Σ such that:

• for any r ∈ R, r contains a substring from the S

• there does not exist a smaller set S′ which satisfies the conditions above

The condition SL ≤ |x| ≤ SH from the problem 1 is redundant, since we can always

select strings of size SL which will satisfy the conditions above. In order to allow larger

core sizes, we can assign each core substring si a weight w(si). In that way we introduce

a “weighted” version of the problem 1, where the objective is to minimize the total sum

of weights of elements in the resulting set S. Note that we can also filter various highly

repeated core substrings (like poly-As) by using appropriate weights.

3.2 Set cover approach for identifying the core substrings

We can reduce the problem 1 to an instance of the set cover problem. Let the universe be

a set of all reads U = {r1, . . . , rN}. Let the set S represent a set of all core subsets, where

by core subset of string s we define a set of all reads which contain s as a substring. It

becomes clear that the cores obtained from the minimal subset of S whose union “covers”

U will satisfy the conditions as stated in the definition of problem 1.

Set cover problem is known to be NP-Hard [28], but fortunately this problem can be

solved by using a simple greedy algorithm from [8], which has the best known approximation

of factor O(log |S|). Note that this approach does not only detect the core substrings based

on the optimal set cover, but it also immediately provides an optimal clustering scheme, as

it assigns each read to its representative core.

Unfortunately, the construction of the sets S and U is memory-expensive operation,

since the number of input reads in HTS datasets is measured in tens of millions. Thus, in
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this thesis we utilized a different approach, based on Locally Consistent Parsing, which we

used for finding of the core substrings.

3.3 A practical implementation of LCP for reordering reads.

As we stated previously, the general version of LCP is too complex to be of practical interest.

Thus, we have developed a practical variant of LCP described below to obtain core substrings

of each HTS read with minimum length 8 and maximum length 20. Interestingly we observed

that in practice more than 99% of all HTS reads of length 50 or more include at least one core

of length 14 or less. As a result, we are interested in identifying only those core substrings

of lengths in the range [8, 14]. Still there could be multiple such core substrings in each HTS

read; we will pick the longest one as the representative core substring of the read (if there

are more than one such substring, we may break the tie in any consistent way). Then, this

read will be clustered with other reads that have the same representative core substring.

As previously stated, our goal here is to obtain a few core substrings for each read so

that two highly overlapping reads will have common core substrings. The reads will be

reordered based on their common core substrings which satisfy the following properties:

1. each HTS read includes at least one core substring.

2. each HTS read includes at most a small number of core substrings.

This would be achieved if any sufficiently “long” prefix of a core substring can not be a

suffix of another core substring (this assures that two subsequent core substrings can not

be too close to each other).

We first extend the simple variant of LCP described above so as to handle strings from

the alphabet Σ = {0, 1, 2, 3} (0=A, 1=C, 2=G, 3=T) that can include tandemly repeated

blocks. In this variant we define a core substrings as any 4-mer that satisfies one of the

following rules:

• (Local Maxima) xyzw where x < y and z < y

• (Low Periodicity) xyyz where x 6= y and z 6= y

• (Lack of Maxima) xyzw where x 6= y and y < z < w

• (Periodic Substrings) yyyx where x 6= y
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We computed all possible 4-mers (there are 256 of them) from the 4 letter alphabet Σ

and obtained 116 core substrings that satisfy the rules above. The reader can observe that

the minimum distance between any two neighbouring cores will be 2 and the maximum

possible distance will be 6.1. This ensures that any read of length at least 9 includes one

such core substring.

In order to capture longer regions of similarity between reads, we need to increase the

lengths of core substrings. For that purpose we first identify the so called marker symbols

in the read processed as follows. Let x, y, z, w, x, v ∈ Σ, then:

• y is a “marker” for xyz, when x < y and z < y

• y is a “marker” for xyyz, when x < y and z < y

• y is a “marker” for xyyyz, when x 6= y and z 6= y

• yy is a “marker” for xyyyyz, when x 6= y and z 6= y

• y is a “marker” for xwyzv, when y < w ≤ x and y < z ≤ v

Now on a given read, we first identify all marker symbols. We apply LCP to the sequence

obtained by concatenating these marker symbols to obtain the core substrings of the marker

symbols. We then map these core substrings of the marker symbols to the original symbols

to obtain the core substrings of the original read.

Example Given read R = 0230000300, we identify its marker symbols as follows: 3 is

the marker for 230, 00 is the marker for 300003, and 3 is the marker for 030 as per the

marker identification rules above. The sequence obtained by concatenating these markers

is 3003, which is itself (4-mer) core substring according to the LCP description above. The

projection of this core substring on R is 23000030, which is thus identified as a core substring

(actually the only core substring) of the read.

For the 4 letter alphabet Σ, we computed all (approximately 5 million) possible core

substrings of length {8, . . . , 14} according to the above rules.2 These rules assure that the

minimum distance between two subsequent core substrings is 4 and thus the maximum

1Note that this implementation of LCP is not aimed to satisfy any theoretical guarantee; rather, it is
developed to work well in practice.

2This is about 1% of all substrings in this length range.
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number of core substrings per read is at most 11 per each HTS read of length 50. Further-

more we observed that more than 99.5% of all reads have at least one core substring (the

other reads have all cores of length 15 to 20). Although this guarantee is weaker than the

theoretical guarantee provided by the most general version of LCP, it serves our purposes.

3.4 A data structure for identifying core substrings of reads.

We build a trie data structure representing each possible core substring by a path in the trie

to efficiently place reads into the corresponding bucket. First we find all core substrings of

each read and place the read in the bucket associated with the largest found core substring.

If there are multiple largest core substrings, we choose the one whose bucket contains the

maximum number of reads (if there are two or more such buckets, we pick one arbitrarily

in a consistent way).

If one simply uses the trie data structure, finding all core substrings within a read would

require O(cr) time where r is the read length, and c is the length of all core substrings in that

read. To improve the running time we build an automaton implementing the Aho-Corasick

dictionary matching algorithm [2]. This improves the running time to O(r + k), where k

is the number of core substring occurrences in each read. Since the size of the alphabet

Σ is very small (4 symbols), and the number of core substrings is fixed, we can further

improve the running time by pre-processing the automaton such that, for a given state of

the automaton, we calculate the associated bucket in O(1) time, reducing the total search

time to O(r). This was done by analysing the original Aho-Corasick trie and redirecting

the backward (also called failure) edges to the ultimate source edges (and thus reducing the

number of steps for failure look-up), as shown in figure 3.4.

In order to improve the compression of the reads even more, we apply cyclic shifting

based on the core position in each read, and then sort each bucket alphabetically, in order

to boost the similarity between the neighbouring sequences even more.

3.5 Compressing the quality scores.

Note that the HTS platforms generate additional information for each read that is not

confined to the 4 letter alphabet Σ. Each read is associated with a secondary string that
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Figure 3.1: Aho-Corasick trie preprocessing. Red edges indicate original failure edges, while
green edges indicate preprocessed failure edges. Note that we need to perform only one
jump by using green edges to reach the destination, contrary to the two jumps needed by
red edges.
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contains the base calling phred [14] quality score. Quality score of a base defines the proba-

bility that the base call is incorrect, and it is formulated as Q = −10× log10(P (error)) [14]

in Illumina platforms. The size of the alphabet for the quality scores is typically |Σ| = 40 for

the Illumina platforms, yielding much lower compression rate for quality scores compared

to the actual reads compression rate.

As mentioned in previous studies [37], lossy compression can improve the quality scores

compression rate. We provide an optional controlled lossy transformation approach based

on the following observation. In most cases, for any basepair b, the quality scores of its

“neighbouring” basepairs would be either the same or within some small range of b’s score

(see Figure 3.2). Based on this observation, we provide a lossy transformation scheme to

reduce the alphabet size. We calculate the frequency table for the alphabet of quality scores

from a reasonable subset of the qualities (100,000 quality scores, although this number can

be further tuned by the user). Then we use a simple greedy algorithm to find all the local

maxima within this table. Afterwards, we reduce the variability among the quality scores in

the vicinity of local maxima up to some error threshold e (i.e. such that each quality value

within e% of the local maxima is replaced with a quality assigned to that local maxima). At

the end, quality scores are encoded with the arithmetic encoding, which uses simple order-2

model.

Note that, by default, lossy option is not used, and it is completely left for the user

to choose the lossy compression level. The reason behind this is that some downstream

analysis applications can misbehave if the quality scores are changed.
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Figure 3.2: Original (left) and transformed (right) quality scores for two random reads that
are chosen from NA18507 individual. The original scores show much variance, where the
transformed quality scores are smoothened except for the peaks at local maxima, that help
to improve the compression ratio.
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Figure 3.3: Frequency plot before (red) and after (blue) applying the greedy transformation
method with different error thresholds. Increased lossiness threshold shows more smoothing
(i.e. smaller alphabet size) in quality scores.
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Results

All of the mentioned ideas are gathered together in the compression tool named SCALCE,

which was implemented in C++. We evaluated the performance of the SCALCE algorithm

for boosting gzip on a single core 2.4GHz Intel Xeon X5690 PC (with network storage and

6GB of memory).

We used four different data sets in our tests:

1. P. aeruginosa RNA-Seq library (51 bp, single lane)

2. P. aeruginosa genomic sequence library (51 bp, single lane)

3. whole genome shotgun sequencing (WGS) library generated from the genome of the

HapMap individual NA18507 (100 bp reads at 40x genome coverage), and

4. a single lane from the same human WGS data set corresponding to approximately

1.22x genome coverage (SRA ID: SRR034940).

We removed any comments from name section (any string that appears after the first space).

Also the third row should contain a single character (+/-) separator character.

The reads from each data set were reordered and compressed through SCALCE and

three separate files were obtained for:

1. the reads themselves,

2. the quality scores and

3. the read names.

21
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Table 4.1: Input data statistics and compression rates achieved by gzip only and SCALCE +
gzip on reads from the P. aeruginosa RNA-Seq library. File sizes are reported in megabytes.

Original size 4,327
Number of reads 89 million

gzip size 1,071
gzip rate 4.04
gzip time 13m 18s

SCALCE+gzip size 256
SCALCE + gzip rate 16.92
SCALCE boosting factor 4.19x
gzip time after reordering 53s
SCALCE+gzip time 6m 21s

Each of the files maintains the same order of the reads.

Note that LCP reordering is useful primarily for compressing the reads themselves

through gzip. The quality scores were compressed via the scheme described above. Fi-

nally the read names were compressed through gzip as well.

The compression rate and run time achieved by gzip software alone, only on the reads

from the P. aeruginosa RNA-Seq library (data set 1) is compared against those achieved by

SCALCE followed by gzip in Table 4.1.

The compression rates achieved by the gzip software alone in comparison to gzip following

SCALCE on the combination of reads, quality scores and read names are presented in

Table 4.2.

The run times for the two schemes (again on reads, quality scores and read names all

together) are presented in Table 4.3.

When SCALCE is used with arithmetical coding of order 2 with lossless qualities, it

boosts the compression rate of gzip between 1.42−2.13-fold (when applied to reads, quality

scores and read names), significantly reducing the storage requirements for HTS data. When

arithmetical coding of order 2 is used with 30% loss – without reducing the mapping accuracy

– improvements in compression rate are between 1.86−3.34. In fact, the boosting factor can

go up to 4.19 when compressing the reads only. Moreover, the speed of the gzip compression

step can be improved by a factor of 15.06. Interestingly the total run time for SCALCE +

gzip is less than the run time of gzip by a factor of 2.09. Furthermore, users can tune the

memory available to SCALCE through a parameter to improve the run time when a large

main memory is available. In our tests, we limited the memory usage to 6GB.
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Table 4.2: Input data statistics and compression rates achieved by gzip only and SCALCE
+ gzip + AC on complete FASTQ files. File sizes are reported in megabytes.

P. aeruginosa
RNAseq

P. aeruginosa
Genomic

NA18507
WGS

NA18507
Single Lane

Original size 10,076 9,163 300,337 7,708
Number of reads 89 million 81 million 1.4 billion 36 million

gzip performance

Size 3,183 3,211 113,132 3,058
Rate 3.17 2.85 2.65 2.52

SCALCE performance with lossless qualities

Size 1,496 1,655 76,890 2,146
Rate 6.74 5.54 3.91 3.59
Boosting factor 2.13x 1.94x 1.47x 1.42x

SCALCE performance with 30% lossy setting applied

Size 953 1,126 58,031 1,639
Rate 10.58 8.14 5.18 4.70
Boosting factor 3.34x 2.85x 1.95x 1.86x

Our tests showed that SCALCE (when considering only reads) outperforms BEETL [11]

combined with bzip2 by a factor between 1.09− 2.07, where running time is improved by a

factor between 3.60− 5.17 (see Table 4.5). SCALCE (on full FASTQ files) also outperforms

DSRC [12] compression ratio on complete FASTQ files by a factor between 1.09− 1.18 (see

Table 4.4).

Note that our goal here is to devise a very fast boosting method, which in combination

with gzip gives compression rates much better than gzip alone. It is possible to get better

compression rates through mapping based strategies but these methods are several orders

of magnitude slower than SCALCE+gzip.

Thus, as a final benchmark, we compared the performance of SCALCE with mapping

based reordering before gzip compression. We first mapped one lane of sequence data

from the genome of NA18507 (same as above) to human reference genome (GRCh37) using

BWA [25], and sorted the mapped reads using samtools [26], and reconverted the map-sorted

BAM file back to FASTQ using Picard (http://picard.sourceforge.net), resulting in

raw FASTQ files of size 7, 964 MB. We then used the gzip tool to compress the map-sorted

file to 3, 091.5 MB, achieving 2.57-fold compression rate. The preprocessing step for mapping

and sorting required 18.2 CPU hours, and FASTQ conversion required 30 minutes, while

compression was completed in 28 minutes. Moreover, the mapping based sorting did not
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Table 4.3: Run time for running gzip alone and SCALCE + gzip + AC on complete FASTQ
files.

P. aeruginosa
RNAseq

P. aeruginosa
Genomic

NA18507
WGS

NA18507
Single Lane

gzip 20m 20m 10h 52m 18m

SCALCE+gzip+AC, single thread

SCALCE reordering 7m 6m 3h 5m
gzip+AC 6m 5m 3h 1m 5m
Total 13m 11m 6h 1m 10m

SCALCE+gzip+AC, 3 threads

Total 9m 9m 4h 28m 7m 32s

Table 4.4: Comparison of single-threaded SCALCE with DSRC. DSRC was tested using the
-l option except on the WGS sample, where it crashed. Instead we had to use a faster but
less powerful setting for this data set.

P. aeruginosa
RNAseq

P. aeruginosa
Genomic

NA18507
WGS

NA18507
Single Lane

DSRC size 1,767 1,846 94,707 2,341
DSRC time 12m 6m 3h 16m 4m

SCALCE size 1,496 1,655 76,890 2,146
SCALCE time 13m 11m 6h 1m 10m

improve the compression run time even if we do not factor in the preprocessing. In contrast,

SCALCE+gzip generated a much smaller file in less amount of time, with no mapping based

preprocessing. We then repeated this experiment on the entire WGS data set (NA18507).

The mapping based preprocessing took 700 CPU hours for BWA+samtools, and 10 CPU

hours for Picard; gzip step was completed in 11 CPU hours, resulting in a compression rate

of 4.93x. On the other hand, gzip needed only 6.5 CPU hours to compress the same data set

(1.69x faster) after the preprocessing by SCALCE which took 8 CPU hours, and achieved

a better compression rate (6-fold, Tables 4.2 and 4.3).

The run time of mapping based preprocessing step can be improved slightly through the

use of BAM-file-based compressors such as CRAM tools [21], but this would reduce the time

only by 10 CPU hours for the Picard step. Thus, in total, SCALCE+gzip is about 45 times

faster than any potential mapping based scheme (including CRAM tools) on this data set.
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Table 4.5: Comparison of single-threaded SCALCE with BEETL. Here, the data sets con-
tained only reads from the FASTQ file, as BEETL supports only FASTA file format.

P. aeruginosa
RNAseq

P. aeruginosa
Genomic

NA18507
Single Lane

BEETL size 197 257 448
BEETL time 29m 31m 51m

SCALCE size 95 137 412
SCALCE time 8m 6m 10m

4.1 Lossy compression effects

We tested the effects of the lossy compression schemes for the quality scores, employed by

SCALCE as well as CRAM tools, to single nucleotide polymorphism (SNP) discovery. For

that, we first mapped the NA18507 WGS data set with the original quality values to the

human reference genome (GRCh37) using the BWA aligner [25], and called SNPs using

the GATK software [13]. We repeated the same exercise with the reads after 30% lossy

transformation of the base pair qualities with SCALCE. Note that the parameters for BWA

and GATK we used in these experiments were exactly the same. We observed almost perfect

correspondence between two experiments. In fact, > 99.95% of the discovered SNPs were

the same (Table 4.6); not surprisingly most of the difference was due to SNPs in mapping

to common repeats or segmental duplications. We then compared the differences of both

SNP callsets with dbSNP Release 132 [35] in Table 4.6.

In addition, we carried out the same experiment with compressing/decompressing of the

alignments with CRAM tools. As shown in Table 4.6, quality transformation of the CRAM

tools introduced about 2.5% errors in SNP calling (97.5% accuracy) with respect to the calls

made for the original data (set as the gold standard).

One interesting observation is that 70.7% of the new calls after SCALCE processing

matched to entries in dbSNP where this ratio was only 62.75% for the new calls after CRAM

tools quality transformation. Moreover, 57.95% of the SNPs that SCALCE “lost” are found

in dbSNP, and CRAM tools processing caused removal of 18.4 times more potentially real

SNPs than SCALCE.
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Table 4.6: Number of SNPs found in the NA18507 genome using original qualities and trans-
formed qualities with 30% noise reduction. Also reported are the number and percentage
of novel SNPs in regions of segmental duplication or common repeats (SD+CR).

# SNP Count dbSNP v132 Novel
Total in SD+CR

Original Qualities 4,296,152 4,092,923 (95.26%) 203,229 192,114 (94.53%)
Qualities

using SCALCE
4,303,140 4,098,875(95.25%) 204,265 192,976 (94.47%)

Lost 7,931 4,596 (57.95%) 3,335 2,963 (88.84%)
New 14,919 10,548 (70.70%) 4,371 3,825 (87.51%)

Qualities
using CRAM tools

4,202,298 4,013,401 (95.50%) 188,897 179,875 (95.22%)

Lost 101,957 84,607 (82.98%) 17,350 15,036 (86.66%)
New 8,103 5,085 (62.75%) 3,018 2,797 (92.67%)

4.2 Set cover approach

We also conduct comparison between the LCP-based method and the set cover technique for

core substring finding. We evaluate a simplified version of the problem 1, in which SL = SH

and where w(si) = 1. This experiment is conducted on a single lane of NA18507 data (1.44x

coverage), which is the only dataset we were able to utilize for this test, due to the high

memory requirements. Note that we focus here only on HTS reads (not full FASTQ files).

In the first test, we evaluate the performance of the offline read assignment, in which

reads are assigned to the respective cores by the greedy set cover algorithm, compared to

the LCP-based approach. The results are shown in the table 4.7. Reordered reads are

encoded with 2/8 encoding (i.e. each DNA symbol is encoded with 2 bits) and afterwards

compressed with gzip.

In the second test, we provide the cores generated from the set cover experiment to

SCALCE. In this case, read-to-core assignment is done by the SCALCE heuristics (in which,

in addition to the 2/8 encoding, cyclic shifts and bucket sorting is applied as well). We will

denote this as the online approach. Additionally, we use NA18507 generated cores with

SCALCE for compressing the Illumina HiSeq sequenced human individual (4 lanes with

56x coverage, totalling 727,782,180 101bp reads), in order to see the performance of the

generated human cores on a high-coverage human dataset. The results are shown in the

table 4.8.

As we can see, LCP provides almost the same performance as the set cover method in
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Table 4.7: Performance of the offline set cover approach, in which reads are assigned to the
cores by the greedy set cover algorithm. LCP performance is provided as well. File sizes
are reported in megabytes.

gzip time Size

LCP 26s 362

Set cover

Core size 10 31s 374
Core size 11 31s 368
Core size 12 29s 364
Core size 13 28s 362
Core size 14 27s 360
Core size 15 26s 360

Table 4.8: Performance of the online set cover approach, in which reads are assigned to the
cores by the SCALCE based on set cover generated core substrings. LCP performance is
provided as well. File sizes are reported in megabytes.

NA18507 HiSeq

LCP 347 17,201

Set cover

Core size 10 353 19,998
Core size 11 350 19,906
Core size 12 339 19,587
Core size 13 340 18,962
Core size 14 341 18,829
Core size 15 343 19,224

the case of compressing single NA18507 lane. LCP uses much less memory and time, and

its cores need to be generated only once, while set cover approach requires a new set of cores

for every new genome (or set of input files).

Surprisingly, LCP cores completely outperform the set cover cores on the high-coverage

HiSeq data. The possible reasons for this include the inability of our formulation of the

problem 1 to cope with the repeated regions in the genome (which, in the case of human

genome, appear quite often) and the simplicity of the weight function used for this experi-

ment (for example, not allowing the variable core length). Also note that LCP is designed

to work on any string on the given alphabet, while set cover cores are explicitly generated

for the given reference genome, which might pose as a problem in a case when sequenced

data contains a lot of sequencing errors or multiple genomic aberrations.



Chapter 5

Conclusion

The rate of increase in the amount of data produced by the HTS technologies is now faster

than the Moore’s Law [3]. This causes problems related to both data storage and transfer of

data over a network. Traditional compression tools such as gzip and bzip2 are not optimized

for efficiently reducing the HTS data files to manageable sizes in a short amount of time.

To address this issue, several compression techniques have been developed with different

strengths and limitations. For example, pairwise comparison of sequences can be used to

increase similarity within “chunks” of data, thus increasing compression ratio [39], but this

approach is also very time consuming. Alternatively, reference-based methods can be used,

such as SlimGene [24] and CRAM tools [21]. Although these algorithms achieve very high

compression rates, they have three major shortcomings. First, they require pre-mapped (and

sorted) reads along with a reference genome, and this mapping stage can take very long time

depending on the size of the reference genome. Second, speed and compression ratio are

highly dependent on the mapping ratio since the unmapped reads are handled in a more

costly manner (or completely discarded), which reduces the efficiency for genomes with high

novel sequence insertions and organisms with incomplete reference genomes. Finally, the

requirement of a reference sequence makes them unusable for de novo sequencing projects

of the genomes of organisms where no such reference is available, for example, the Genome

10K Project [19].

The SCALCE algorithm provides a new and efficient way of reordering reads generated

by the HTS platform to improve not only compression rate but also compression run time.

Although it is not explored here, SCALCE can also be built into specialized alignment

algorithms to improve mapping speed. We note that the names associated with each read do
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not have any specific information and they can be discarded during compression. The only

consideration here is that during decompression, new read names will need to be generated.

These names need to be unique identifiers within a sequencing experiment, and the paired-

end information must be easy to track. In fact, the Sequence Read Archive (SRA) developed

by the International Nucleotide Sequence Database Collaboration adopts this approach to

minimize the stored metadata, together with a lossy transformation of the base pair quality

values similar to our approach [23]. However, in this paper we demonstrated that lossy

compression of quality affects the analysis result, and although the difference is very small

for SCALCE, this is an optional parameter in our implementation, and we leave the decision

to the user.

Additional improvements in compression efficiency and speed may help ameliorate the

data storage and management problems associated with high throughput sequencing [34].

5.1 Future work

SCALCE is mainly designed to tackle the compression rates of nucleotide sequences. Boost-

ing the compression of quality scores is still an open problem and further investigation might

yield a better performance. Compression of read names can also be improved by further

analysis of the read name tokens, since in practice all read names in the same dataset share

a common pattern. As the advancements of HTS technology focus mainly on the read size

increase, we will need to devise novel methods for finding a longer core susbtrings, as well

as methods for improved bucketing of the large reads.

The base problem 1 is also subject to further investigation. Designing the efficient set

cover driven approach which utilises acceptable computational resources is still challenging.

Also note that finding the optimal weight function for the problem 1 is an open problem,

and that the role of repeats in the genome and their effect on the core generation needs

to be further understood, as it might yield a deeper understanding why LCP offers better

performance in some cases compared to the set cover approach.
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