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Abstract

A Hilbert basis is defined to be a set of vectors S such that every vector in the cone and lat-

tice generated by S can also be expressed as a non-negative integer combination of vectors

in S . Goddyn (1991) conjectured that characteristic vectors of cuts of graphs form Hilbert

basis. A counterexample to this conjecture was given by Laurent in 1996. We study the

class of graphs whose cuts form a Hilbert basis and prove that the cuts of graphs formed

by uncontractions of K5 and those of K3,3-free graphs form Hilbert bases. In addition, we

repair an incorrect result of Laurent that says the cuts of all proper subgraphs of K6 form

Hilbert bases by proving that the cuts of K6 \ e do not form a Hilbert basis. We also study

the cones, lattices and Hilbert bases of contractible circuits of projective planar graphs by

looking at the cuts of their dual graphs.
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Chapter 1

Introduction

The concept of Hilbert basis was introduced to study the concept of total dual integrality

of polyhedra. Several examples of Hilbert bases arising from combinatorial objects are

introduced in [23]. In this thesis we study the Hilbert bases arising from the characteristic

vectors of cut cones of certain graphs.

1.1 Hilbert bases

Let S be a finite set of vectors in Rn. Then we can define the convex hull, cone, lattice and

integer cone of S as follows.

ConvexHull(S) :=

∑
c∈S

αcc : αc ∈ R≥0;
∑
c∈S

αc = 1


Cone(S) :=

∑
c∈S

αcc : αc ∈ R≥0


Lattice(S) :=

∑
c∈S

αcc : αc ∈ Z


IntCone(S) :=

∑
c∈S

αcc : αc ∈ Z≥0


Here, R,Z,R≥0 and Z≥0 denote the sets of real numbers, integers, non-negative real

numbers and non-negative integers respectively.

1
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It is clear that for any set of vectors S ⊆ Rn,

IntCone(S) ⊆ Cone(S) ∩ Lattice(S) (1.1)

Definition 1.1.1. A set of vectors S is called a Hilbert basis if equality holds in (1.1).

Example 1.1.2. The set S = {(1, 0), (0, 1)} ⊆ R2 clearly forms a Hilbert basis for R2. More

generally any orthogonal set will form a Hilbert basis in its vector space.

Example 1.1.3. The set S = {2, 3} ⊆ R does not form a Hilbert basis for R as 1 is both in

the cone and the lattice of S but not in the integer cone of S .

Example 1.1.4. The set S = {(1, 2), (1, 3), (2, 1)} ⊆ R2 does not form a Hilbert basis as the

vector (1, 1) is in the cone and the lattice of S but not in the integer cone of S .

Hilbert bases were first introduced in [12] to study the concept of total dual integrality.

Definition 1.1.5. A linear system Ax ≤ b is called totally dual integral if the minimum in

the LP,

max{wx : Ax ≤ b} = min{yb : yA = w, y ≤ 0}

can be achieved by an integer vector y for each integral w for which the optimum exists.

It can be proved that Ax ≤ b is totally dual integral if and only if for each minimal

nonempty face of {x : Ax ≤ b}, the set of active rows of A generates the lattice Zn and forms

a Hilbert basis.

It was proved by Hilbert [15] that every finite set of rational vectors extends to a finite

Hilbert basis. A cone C is pointed if C does not contain a 1-dimensional linear subspace.

Schrijver in [24] shows that every Hilbert basis contains a unique minimal Hilbert basis if

the cone generated by the vectors is pointed. Here the Hilbert basis is minimal if deleting

an element changes its cone or its lattice or is no longer a Hilbert basis.

Let C be a cone in Rn. As an abuse of terminology, we say that an inequality vT x ≤ 0 is

a facet of C if C is in the half-space {x ∈ Rn | vT x ≤ 0} and {x ∈ C | vT x ≤ 0} is a facet of C.

One motivation for the study of Hilbert bases comes from a family of polyhedra arising

in discrete optimization. The problem of when the perfect matchings of a graph forms a

Hilbert basis has been studied in [10], [18]. It can be proved that for the Petersen graph,
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the vector of all 1’s belongs to the cone and the lattice of characteristic vectors of perfect

matchings but it does not belong to the integer cone. Hence the characteristic vectors of

perfect matchings of the Petersen graph do not form a Hilbert basis. It is conjectured in

[18] that the perfect matchings of a graph form a Hilbert basis if it has no Petersen minor.

1.2 Cut cone and cut lattice

Let G = (V, E) be a graph. For F ⊆ E(G) we define the characteristic vector of F to be the

vector χ(F) ∈ RE(G) such that χ(F)e = 1 if e ∈ F and χ(F)e = 0 otherwise. We sometimes

write F instead of χ(F) where no confusion results. We say that χ(F) indicates the set F.

For S ⊆ V , let δ(S ) denote the set of edges with exactly one endpoint in S . We call

δ(S ) = δG(S ), the cut in G generated by S . Let CG denote the set of cuts of G. The cut cone

of G is defined as the cone generated by the characteristic vectors of cuts of G. To ease

notation we write Cone(G) instead of Cone({χ(c) : c ∈ CG}). We define ConvexHull(G),

Lattice(G) and IntCone(G) similarly.

The problem of finding a cut with the maximum number of edges is known as the

max-cut problem in combinatorial optimization. This problem is known to be NP-hard.

More generally the problem of stating whether a vector is in ConvexHull(G) is NP-hard.

Accordingly for a given graph G, it is generally difficult to find a compact description of

ConvexHull(G) in terms of facets (or else we may maximize the weight function over the

cut polytope using a linear programming to get the solution to the max cut problem in

polynomial time).

For a large class of graphs however the max cut problem is solvable in polynomial

time. It is solvable for planar graphs, [14]. More generally, Barahona in [2] proved that the

problem is solvable in polynomial time for all graphs not having K5 as a minor.

It has been proved that computing the facets of the cut cone in general is also NP-hard.

(See for example [8], [9].) Characterising the cut lattice of a graph is quite simple however.

[13]

Theorem 1.2.1. Given a simple graph G = (V, E) and x ∈ RE, x ∈ Lattice(G) if and only if

x ∈ ZE and x(C) is even for each circuit C of G.

Here we have abbreviated
∑

e∈C xe to x(C) for any C ⊆ E(G).
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Given a graph G we define the deletion of an edge e of G denoted by G\e, to be the graph

formed on the same vertex set as G with the edge set being E(G) \ e. The contraction of an

edge e = (u, v) of G, denoted by G/e, is defined as the graph on the vertex set V(G)\ {u, v}∪

{w} and edge set E(G) \ e ∪ {(w, x) | either (x, u) ∈ E(G) or (x, v) ∈ E(G) for all x ∈ V(G)}.

We say that a graph G has a G′-minor if G′ can be obtained from G by a sequence of

contractions and deletions. Describing the cut cone of a graph G is easy if G does not

contain a K5-minor [25]. We define a circuit of a graph G to be the edge set of a simple

cycle in G.

Theorem 1.2.2. Let G = (V, E) be a simple graph and x ∈ RE(G). If x ∈ Cone(G), then

x(e) ≥ 0 e ∈ E(G)

x(e) ≤ x(C \ e) C ⊆ E(G); C is a circuit of G ;e ∈ C.
(1.2)

Furthermore, the constraints completely describe the cut cone of G if and only if G does

not contain a K5 minor.

We call the constraints of the form x(e) ≤ x(C \ e), cycle constraints of the cut cone

of the graph. If C is a cycle in G, then we define cycle constraints given by C to be all

inequalities of the form x(e) ≤ x(C \ e) where e ∈ C.

The question of whether the characteristic vectors of cuts of a graph form a Hilbert basis

was asked in [13]. The conjecture was proved false in [17] where it is shown that the cuts

of K6 do not form a Hilbert basis. In fact it is proved that there exists an infinite family of

graphs whose cuts do not form a Hilbert bases.

The dual problem of when the circuits of a graph form a Hilbert basis is completely

solved in [1]. Specifically these are precisely all the graphs which do not contain a Petersen

minor. Describing the cone and the lattice of cycles of graphs however is relatively “easy”.

The constraints in Theorem 1.2.1 and 1.2.2, where C varies over the cuts of the graphs

instead of its circuits, are enough to completely describe the cycle cone and cycle lattice of

any graph.

This thesis aims to study the Hilbert basis property of the sets of (characteristic vectors

of) cuts of certain classes of graphs. We state some properties of the cut cones of Kn in

Chapter 2. Also in Chapter 2, we consider the set of graphs that are contractible to K5.

We also study the class of graphs that do not have K3,3 as a minor. Here we prove that
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the characteristic vectors of cuts of all graphs in these two classes form Hilbert bases and

present a more general result for 2-sums of graphs.

In Chapter 3, we look at subgraphs of K6 and prove that the cuts of K6 and K6 \ e do not

form a Hilbert basis. This corrects an error in [17].

Chapter 4 deals with projective planar graphs and the Hilbert bases of contractible cy-

cles and some matroidal variations.



Chapter 2

Hilbert bases of cuts

In this chapter we study the class of graphs whose cuts form Hilbert basis. We prove that

under a certain condition, the property of having cuts that form Hilbert bases is closed under

2-sums. As a corollary, we prove that the set of uncontractions of K5 and the set of graphs

with no K3,3 minor have this condition and deduce that the characteristic vectors of their

cuts form Hilbert bases.

2.1 Cut cones of complete graphs

In this section, we look at a class of facet defining inequalities for the cone of cuts of Kn.

As noted earlier, the cycle inequalities are enough to completely describe the cone of Kn for

n ≤ 4. Now consider a vector y ∈ ZE(K5) with weight of ye = 1 for all edges e in a subgraph

of K5 isomorphic to K2,3 and 2 everywhere else. Clearly y satisfies the cycle constraints.

To show that this vector is not in the cut cone of K5, consider a vector s such that se = −1

if xe = 1 and se = 1 otherwise. Then s has a positive inner product with x but has a non

positive inner product with each of the cuts of K5. Therefore we have found a hyperplane

sT x ≤ 0 in RE(K5) that separates the cone of cuts of K5 from y. Thus the cycle constraints

are not sufficient to describe Cone(K5).

Definition 2.1.1. Let b = (b1, b2, . . . bn) ∈ Zn be such that

n∑
i=1

bi = 1

6
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Then the inequality, ∑
1≤i< j≤n

bib jxi j ≤ 0

is called the hypermetric inequality defined by b and is denoted by Hypn(b).

Note that a Hypermetric inequality may be a cycle constraint. For example if b =

(1, 1,−1, 0, 0, 0), then Hyp6(b) is a cycle constraint corresponding to a triangle in K6. For

n ≥ 2, the hypermetric inequalities are valid for Cone(Kn). The hypermetric inequalities

together with (1.2) are enough to completely describe the cut cones of K5 and K6 [8]. Below

we give a complete description of the cones, Cone(K5) and Cone(K6).

• Cone(K5) has 40 facets given by

– 30 facets coming from Hyp5(1, 1,−1, 0, 0) along with all the permutation of the

vertices

– 10 facets coming from Hyp5(1, 1, 1,−1,−1) with its permutations

• Cone(K6) has 210 facets given by

– 60 facets coming from Hyp6(1, 1,−1, 0, 0, 0) along with its permutations

– 60 facets coming from Hyp6(1, 1, 1,−1,−1, 0) along with its permutations

– 30 facets coming from Hyp6(−2,−1, 1, 1, 1, 1) along with its permutations

– 60 facets coming from Hyp6(2, 1, 1,−1,−1,−1) along with its permutations

From n ≥ 7 onwards, the hypermetric inequalities are not enough to describe the cut

cones of Kn.

2.2 Hilbert bases of cuts

In this section we study the class H of graphs whose cuts form Hilbert bases. We assume

that all graphs in this section have no loops or parallel edges as loops do not belong to any

cut in a graph and an edge belongs to a cut if and only if all its parallel edges belong to it.

It follows that a given graph belongs to H if and only if the graph formed by deleting its

loops and parallel edges belongs to H .

First we state a few results about Hilbert bases of cuts of graphs.
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Proposition 2.2.1. If G ∈H , then G/e ∈H for all edges e of G.

The proof of the above statement follows from the fact that the cut cone of G/e is in

fact a face of the cut cone of G [17]. The case for deletion minors is not so simple. It is

not known whether edge deletion preserves the property G ∈ H . We quote a sufficient

condition of Laurent [17] without proof.

Proposition 2.2.2. Let G be a graph whose cut cone is given by the inequalities vT
i x ≤ 0

such that each vi ∈ {0,−1, 1}E(G) and vT
i δ(S ) ∈ 2Z for all cuts δ(S ) of G. If G ∈ H , then

G \ e ∈H for all edges e of G.

Proposition 2.2.3. (Fu, Goddyn [11]) If G is a graph such that G does not contain a K5

minor, then G ∈H .

Definition 2.2.4. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. Define G1 ∪ G2 as the

graph on V1 ∪ V2 with edge set E1 ∪ E2 and define G1 ∩ G2 as the graph on V1 ∩ V2 with

edge set E1 ∩ E2 respectively.

Definition 2.2.5. Let G1 and G2 be graphs such that G1 ∩ G2 is a complete graph on k

vertices such that G1 ∩G2 does not contain a non empty cut of either G1 or G2. Define the

k-sum of G1 and G2 to be the graph obtained from G1∪G2 by deleting the edges of G1∩G2.

If G1 ∩G2 consists of an edge f . We denote the two sum of G1 and G2 by G1 ⊕ f G2.

It can be proved that if G1 and G2 are planar and k = 0, 1 or 2, then the k-sum of G1

and G2 is also planar. We observe that a 2-sum of a graph and a cycle Cn with respect to a

particular edge is a subdivision of that edge.

The k-clique sum is defined by taking G1∪G2 without deleting the edges of G1∩G2 � Kk.

We quote two theorems relating to the cones and Hilbert bases of cuts.

Theorem 2.2.6. (Barahona [2]) Let G be the k-clique sum (k = 0, 1, 2, 3) of two graphs G1

and G2. Then a system of linear inequalities sufficient to describe Cone(G) is obtained by

juxtaposing the inequalities that define the cones of Cone(G1) and Cone(G2) and identifying

the variables associated with the common edges of G1 and G2.

Theorem 2.2.7. (Laurent [17]) Let G be the k-clique sum (k = 0, 1, 2, 3) of two graphs G1

and G2. Then G ∈H if and only if G1 ∈H and G2 ∈H .
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The aim of this section is to prove an analogue of Laurent’s result for k-sums under

additional assumptions on G1 and G2.

Definition 2.2.8. Let G be a graph and let f ∈ E(G). Define a vector x ∈ RE to be almost

in the lattice of G with respect to f if x ∈ ZE and x(C) is an even integer for all circuits C

of G such that f < C. Given sets A and B, we define A4 B := (A \ B)∪ (B \ A). We call this

the symmetric difference of A and B.

Lemma 2.2.9. Let G be a graph and f ∈ E(G). Let a vector x be almost in the lattice of G

with respect to f . If there is a circuit C of G such that f ∈ C and x(C) is an even integer,

then x is in the lattice of cuts of G.

Proof. Let C′ be a circuit different from C such that f ∈ C′. Then,

x(C′ 4C) = x(C) + x(C′) − 2x(C1 ∩C2)

Now (C′ 4 C) is a circuit in G such that f < C′ 4 C. So x(C′ 4 C) ≡ 0 (mod 2) and since

x(C) = 0 (mod 2), we have, x(C′) = 0 (mod 2). i.e. x adds up to an even integer over all

circuits of G. So x ∈ Lattice(G). �

Definition 2.2.10. Let G be a graph and x ∈ ZE(G). Define Eodd(x) to be the set of edges e

such that xe is odd.

We state a result in [4] without proof.

Proposition 2.2.11. Let G be a graph. Then B ⊆ E(G) is an edge cut of G if and only if

|B ∩C| is even for all circuits C of G.

Lemma 2.2.12. Let G be a graph. Let x ∈ ZE(G) be almost in the lattice of G with respect

to a fixed edge f . Then

(1) x ∈ Lattice(G) if and only if Eodd(x) is an edge cut of G.

(2) x < Lattice(G) if and only if Eodd(x) = B 4 { f } where B is an edge cut of G.

Proof. We prove (1) first. Let x ∈ ZE(G). Then x ∈ Lattice(G) if and only if |C ∩ Eodd(x)| is

even for every circuit C of G. Thus by Proposition 2.2.11, Eodd(x) is a cut of G.

For (2), note that x is almost in the lattice with respect to f but not in the lattice if and

only if x + χ({ f }) is in the lattice. Equivalently Eodd(x + χ({ f })) is an edge cut of G whence

Eodd(x) = B 4 { f } for some edge cut B. �
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Definition 2.2.13. Let G be a graph with a fixed edge f . Let x ∈ RE(G). Let x(γ) ∈ RE(G)

be a vector obtained by redefining the single entry x f = γ. Define the feasibility interval

I(G, x, f ) for G, x and f to be the (possibly empty) interval [γmin, γmax] such that x(γ) ∈

Cone(G) if and only if γ ∈ [γmin, γmax].

Definition 2.2.14. Let v ∈ RE(G). We say a vector y is tight for the inequality vT y ≤ 0 if

vT y = 0. We say a subset B ⊆ E(G) is tight for the inequality vT y ≤ 0 if vTχ(B) = 0. We

say that y (or B) is v-tight if y (or B) is tight for the inequality vT y ≤ 0.

Example 2.2.15. Consider K5 with a fixed edge f = (u, v). Let T be the triangle not

containing either of u, v. Let x be the vector with xe = 6 for e ∈ E(T ), and xe = 4 for

e ∈ E(K5) \ E(T ). Then I(G, x, f ) is the interval [0, 6] (Figure 2.1). The lower bound of the

interval is met by taking thrice of each of the cuts δ(v) where v ∈ V(T ) plus the cut δ(u, v).

The upper bound is met by summing six cuts δ(x, y) where x ∈ V(T ) ; y ∈ {u, v} and the

three cuts δ(v) where v ∈ V(T ). Here x is tight for the facet vT x ≤ 0 defined by v f = +1,

ve = +1 for every e ∈ E(T ), and −1 everywhere else.

6

4

I(K5, x, f ) = [0, 6]

f

Figure 2.1: The interval I(G, x, f )

Definition 2.2.16. Let G be a graph with a fixed edge f . We say that G has the lattice

endpoint property for the edge f if, for all x ∈ RE(G) that is almost in the lattice with respect

to f , we have, γ is an endpoint of I(G, x, f ) implies x(γ) is in the lattice of G.

Proposition 2.2.17. Planar graphs have the lattice endpoint property for all edges.
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Proof. Let G be a planar graph with a fixed edge f . Let x be a vector almost in the lattice

of G with respect to f and x f is equal to an endpoint of I(G, x, f ). Then x is tight to a

constraint of the form x f ≥ 0 or a cycle constraint.

If x is tight to a constraint of the form x f ≥ 0, we have x f = 0. So x is a non-negative

linear combination of cuts that do not use the edge f . Consider a graph G′ = G/ f . Then the

vector x′ ∈ RE(G′) defined by (x′)e = xe for e , f is in the cone and the lattice of G′. Since

G′ is planar, G′ ∈H and therefore x′ ∈ IntCone(G′). So we can write x′ as a non-negative

integer combination of cuts of G′. Therefore we can write x as a non-negative combinations

of cuts of G. In particular x ∈ Lattice(G).

If x is tight to a cycle constraint in G, then there exists a circuit C such that f ∈ C and

x f = x(C \ f ) for some edge f ∈ C. Since x f ∈ Z, we infer that x(C) is an even integer. So

by Lemma 2.2.9, x ∈ Lattice(G).

�

Proposition 2.2.18. K5 has the lattice endpoint property for all edges.

Proof. Let f be a fixed edge in K5. Let x ∈ RE(K5) be a vector almost in the lattice of K5

such that x f is equal to an endpoint of I(K5, x, f ). If x is tight to a constraint of the form

xe ≥ 0 or a cycle constraint, we use the fact that K5/ f is planar and argue as the proof of

Proposition 2.2.17 to conclude that x ∈ Lattice(K5). So assume x is tight to a hypermetric

constraint say vT x ≤ 0 where v ∈ {±1}E(K5).

Then vT x ≡ 0 (mod 2). So |Eodd(v)∩ Eodd(x)| is even. Since Eodd(v) = E(G), it follows that

|Eodd(x)| is even.

Now by Lemma 2.2.12, Eodd(x) = B or Eodd(x) = B 4 { f } for some edge cut B of K5. But

for all minimal1 edge cuts B of K5, |B| is even and |B4 { f }| is odd. So by Lemma 2.2.11 we

have Eodd(x) = B, and x ∈ Lattice(K5). �

Lemma 2.2.19. Let G be a graph with a fixed edge f . If G \ f ∈ H , then for every x

that is almost in the lattice with respect to f such that I(G, x, f ) is nonempty, there exists

γ ∈ I(G, x, f ) such that x(γ) is in the integer cone of G.

Proof. Let x be almost in the lattice of G with respect to f . Now consider the graph G′ = G\

f and the vector x′ ∈ ZE(G′) defined by (x′)e = xe for e , f . So x′ ∈ Cone(G′)∩ Lattice(G′).

1An edge cut is minimal if it is not properly contained in any other edge cut.
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Since G′ ∈H , we have x′ ∈ IntCone(G′). Therefore there exist αS ∈ Z≥0 such that

x′ =
∑

S⊆V(G)

αS δ(S ). (2.1)

Now consider S = {S ⊆ V(G) | | S ∩ {u, v} |= 1}. We define,

γ =
∑
S∈S

αS .

The sum in (2.1) shows that x(γ) ∈ IntCone(G). In particular γ ∈ I(G, x, f ). �

Theorem 2.2.20. Let G be a 2-sum of G1 and G2 with respect to the edge f . If each of

G1,G2 and G2 \ f is in H and G1 has the lattice endpoint property for f , then G ∈H .

Proof. Let G be the 2-sum of G1 and G2 using f = (u, v). Let x ∈ Cone(G) ∩ Lattice(G).

We write

x =
∑

S⊆V(G)

βS δ(S ) βS ∈ R
E
≥0.

For γ ∈ R and i ∈ {1, 2}, we define xi(γ) ∈ RE(Gi) as xi(γ)e = xe if e , f and xi(γ) f = γ.

Note that xi(γ) is almost in the lattice of G1 and G2 with respect to f if γ ∈ Z. Let

γ0 :=
∑

S⊆V(G) | |{u,v}∩S |=1

βS .

Now consider the intervals I1 = I(G1, x1(γ0), f ) and I2 = I(G2, x2(γ0), f ). First note that

I = I1 ∩ I2 is nonempty since γ0 ∈ I. We observe that for all γ, we have x1(γ) ∈ Lattice(G1)

if and only if x2(γ) ∈ Lattice(G2). This follows from Lemma 2.2.9, for if Ci is a circuit in

Gi for i ∈ {1, 2}, then C1 4C2 is a circuit in G. So x1(C1) + x2(C2) = x(C1 4C2) is even.

If I2 ⊂ I1, then by Lemma 2.2.19, there exists γ ∈ I such that x2(γ) ∈ Lattice(G2) for

i ∈ {1, 2}. If not, then I contains an endpoint γ1 of I1. Because G1 has the lattice endpoint

property for f we have, x1(γ1) ∈ Lattice(G1).

In either case we have found a γ1 ∈ I such that xi(γ1) ∈ Lattice(Gi) for i ∈ {1, 2}. Since

Gi ∈H we have xi(γ1) ∈ IntCone(Gi) so there exist multisets2 A and B of cuts of G1 and

G2 respectively such that

x1(γ1) =
∑
A∈A

χ(A)

2A multiset is a set in which the elements may appear more than once
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x2(γ1) =
∑
B∈B

χ(B).

Let

A0 := {δ(S ) ∈ A ; |S ∩ {u, v}| = 1}

A1 := A \A1

B0 := {δ(S ) ∈ B; |S ∩ {u, v}| = 1}

B1 := B \B1.

We have γ1 = |A0| = |B0|, so we can list members of A0 and B0 as

A0 = {A1, A2, . . . , Aγ1}

B0 = {B1, B2, . . . , Bγ1}.

Therefore we have

x =
∑
A∈A1

χ(A) +
∑
B∈B1

χ(B) +

γ1∑
j=1

χ(A j 4 B j)

where each A j 4 B j is an edge cut of G. Therefore x ∈ IntCone(G) and G ∈H .

�

2.3 Uncontractions of K5 and K3,3-free graphs

In this section, we apply Theorem 2.2.20 to the set of K3,3-free graphs and also to the set of

graphs that can be contracted down to K5.

Definition 2.3.1. Let G be a graph. Define an uncontraction of G to be a graph G′ such that

G = G′/F for some F ⊆ E(G′).

We have verified using the Normaliz software ([5], [6], See Appendix A) that K5 ∈H .

We prove that every uncontraction of K5 is in H . First we deal with the relatively simple

case of graphs having a cut-edge.

Theorem 2.3.2. Set G′ be an uncontraction of G where E(G′) \ E(G) = { f } and f is a

cut-edge of G′. If G ∈H , then G′ ∈H .
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Proof. Let S be the set of minimal cuts of G. Then the set of minimal cuts of G′ is given

by S ∪ {{ f }}. Hence the cut cone of G′ will be generated by the characteristic vectors of the

cuts of G along with the unit vector χ({ f }). Let x′ ∈ Cone(G′)∩ Lattice(G′). Since the cuts

of G form a Hilbert basis, there exist α′cs such that αc ∈ Z≥0 and x′ =
∑

c αcχ(c)+ x′n+1χ({ f })

where c ranges over the cuts of G. Since x′n+1 ∈ Z≥0, x′ ∈ IntCone(G′). Thus G′ ∈H . �

Let G be a graph and let vT x ≤ 0 be a facet of Cone(G). Let B be a tight cut of vT x ≤ 0.

Then we define w ∈ RE by we = −ve if e ∈ B and we = ve otherwise. Laurent in [17]

observed that the inequality wT x ≤ 0 also forms a facet of the cut cone of G. We say

that wT x ≤ 0 is obtained from vT x ≤ 0 by switching along the cut B. Two facet defining

inequalities are switching equivalent if one can be obtained from the other by a sequence of

switchings along tight cuts.

Let H6 be the unique 3-connected graph obtained by a single edge uncontraction of K5

labeled as in Figure 2.2. Each edge i j ∈ E(H6) is assigned the variable xi j. Then its cone of

cuts is given as follows.

1

2

34

5

6

Figure 2.2: The Graph H6

The cone of cuts of H6 has 46 facets in all [3], [17]. They are classified by the following

inequalities,

1. The inequality x16 ≥ 0 forms a facet of H6.

2. The 34 cycle inequalities given by Theorem 1.2.2 that involve the six triangles and

the four 4-circuits in the graph using the edge 16.
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3. The third class of constraints has 11 inequalities. They consist of the following in-

equality and all of its switching equivalent constraints.

wT x := 2x16 + x23 + x45 − x26 − x36 −
∑

i=1,2,3; j=4,5

xi j ≤ 0. (2.2)

The vector w from (2.2) is illustrated in Figure 2.3. Each of the other ten vectors in its

switching class is displayed in one of Figures 2.4, 2.5, or 2.6 (up to graph automorphism of

H6).

2

1 1

1

2

34

5

6

Figure 2.3: The vector w of (2.2). Unlabeled edges have weight -1.

1

-2

1

1

1

Figure 2.4: The vector obtained from w in (2.2) by switching on the w-tight cut δ{1}. Unla-

beled edges have weight −1.

Let w be the vector in (2.2). There are exactly 10 edge cuts in H6 that are w-tight. Let B0

be a w-tight cut of H6 and let 16 ∈ B0. Switching on B0 transforms w into one of the other

10 constraint vectors, say v, described in [3]. We have (v)−1(−2) = {16}. Here (v)−1(−2)

denotes the set of edges that have weight −2 in v. Let v′ be the restriction of v to the edge

set of the graph H6/16 � K5. Then v′ is one of the 10 hypermetric inequalities of K5 that

are not cyclic. There are exactly 10 v-tight cuts in H6 and B0 is the only one among them
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1

-2

1

1

1

Figure 2.5: The vector obtained from w in (2.2) by switching on the w-tight cut δ{1, 4}.

Unlabeled edges have weight −1.

1 1

1

1

-2

Figure 2.6: The vector obtained from w in (2.2) by swiching on the w-tight cut δ{1, 2, 4}.

Unlabeled edges have weight −1.

-1

-1

-1

-1

-2

1 -1 1 -1

-2

x x1 x2

B1 B1B0

B0

B1B1

x x1 x2

f

f

Figure 2.7: Modification of cuts
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that contains the edge 16. Each of the other 9 v-tight cuts is a set of edges which forms one

of the 9 v′-tight cuts in H6/16.

We consider the two cuts in H6 defined by Bi = B0 4 δ(i) for i ∈ {1, 6}. Depending on

the choice of v, either the transformation B0 7→ Bi either replaces an edge whose value in v

is −2 with two edges with value −1 in v, or replaces two edges whose value in v is −2 and 1

in v with a single edge whose value in v is −1. The curved lines on the right side of Figure

2.7 depict these two possibilities for the pair (B0, Bi). Therefore Bi is also a v-tight cut of

H6. The cut Bi is also a v-tight cut of H6/16 which is represented by the curved lines on the

left side of Figure 2.7.

We now view the process in reverse writing v1 instead of v and v0 instead of v′. That is,

let v0 be a noncylic hypermetric constraint vector for K5. Let B0 be any v0-tight cut of K5

and let x0 ∈ V(K5) be such that B0 ∩ δ(x0) consists of one or two edges whose value(s) in

v0 is −1. There is at least one edge e ∈ δ(x0) \ B0 with v0
e = +1. We now uncontract a new

edge f = x0
1x0

2 by partitioning δ(x0) and replacing x0 with x0
1 and x0

2. One end of f should

be incident with either both edges in B0 ∩ δ(x0) or both edges in (B0 ∩ δ(x0)) ∪ {e}. This

results in a new graph G1 � H6. We extend the vector v0 to a vector v1 ∈ RE(G1) by defining

v1
f = −2. We say that we have extended the pair (K5, v0) to (G1, v1) by uncontracting at

vertex x.

We may now select a v1-tight cut in G1 say B1, and another vertex of degree 4 in G, say

x1, for which B1 ∩ δ(x1) consists of one or two edges whose value(s) in v1 is −1, and repeat

the above process with G1 in place of K5, x1 in place of x0, and B1 in place of B0. In this

way we extend (G1, v1) to a new pair (G2, v2), where (v2)−1(−2) = {x0
1x0

2, x
1
1x1

2} and G2 is an

uncontraction of K5 having 7 vertices. One can check that there is a unique v2-tight cut in

G2 that uses the new edge in G2, and it has the form B1 4 δ(x1
1), where x1

1 is one of the two

new vertices arising in the uncontraction G1 7→ G2.

We may repeat the extension process as above up to three more times, each time starting

with a vi-tight cut Bi and a vertex of degree 4, say xi, in Gi, to define Gi+1 and vi+1. After

k ≤ 5 such steps, we obtain a pair (Gk, vk) where Gk is a 3-connected uncontraction of K5

and where vk is a valid constraint vector for Cone(Gk). We have that Gk/F � K5, where

F := (vk)−1(−2). We may now select any one of the k new edges, say f ∈ F, and construct a

new constraint vector from vk by switching on the unique vk-tight cut containing that edge.

This results in a constraint vector w f for Cone(Gk) satisfying (w f )−1(2) = { f }. As with the
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case G1 = H6, every w f -tight cut of Gk includes the edge f .

The following theorem states that every noncyclic facet-inducing constraint vector for

Gk takes the form of either vk or w f , where f ∈ F and G/F � K5, and vk restricts to a

noncyclic hypermetric inequality of K5, as described above.

Theorem 2.3.3. Let G be a 3-connected uncontraction of K5. The cone of cuts of G is given

by the cycle constraints of G along with the following two families of inequalities.∑
e∈H

−2xe +
∑
f<H

v f x f ≤ 0. (2.3)

There is one such inequality for each pair (H, v) where H ⊆ E(G) for which G/H � K5,

and where v is one of the ten vectors for which vT x ≤ 0 is a hypermetric inequality of G/H.∑
e∈H′
−2xe +

∑
f<H′

w f x f ≤ 0. (2.4)

There is one such inequality for each H′ ⊆ E(G) for which G/H′ � H6, and where w is as

given in (2.2).

Furthermore G ∈H .

Proof. We used Normaliz ([5], [6], See Appendix A) to verify with a computer the fact that

G ∈ H for all 3-connected uncontractions of K5. The polyhedral description of Cone(G)

is verified sorting the facets found by Normaliz. �

Example 2.3.4. The non cycle facets of the cut cone of Petersen graph P, belong to two

families. The first have the form vT x ≤ 0 where v has weight −2 on a matching M, 1 on

a fixed triangle of P/M and an edge not incident to it and −1 everywhere else (See Figure

2.8) for each of the six perfect matchings M. There are 18 other switching equivalent

constraints that have weight 2 on one edge of M and −2 on the other 4 edges of M such

that contracting the 4 edges of M of weight −2 gives the constraint (2.2) of H6. We give a

detailed description of the facets of Cone(P) in Appendix A.

Proposition 2.3.5. If G is formed by successive uncontractions of K5, then G ∈H .

Proof. Let G be a graph formed by successive uncontractions of K5. Then G is obtained

from a 3-connected uncontraction H of K5 by subdividing edges and adding cut-edges. By
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1 1

1

1

-2

-2-2

-2 -2

Figure 2.8: A facet of the cut cone of the Petersen graph

Theorem 2.3.3, we have H ∈ H . Also addition of cut-edges to H does not affect the

membership in the class H . So we prove the result only for successive subdivisions of H.

Let H′ be a subdivision of H and let f ∈ E(H′). Then H′ \ f does not contain a K5 minor,

so H′ \ f ∈H by Proposition 2.2.3. Therefore by Theorem 2.2.20, the 2-sum of G and Cn

on the edge f is in H . �

We have not investigated the case of 2-sums of uncontractions of K5 but we conjecture

that they also belong to H . However we do have a positive result for K3,3-free graphs.

Theorem 2.3.6. All K3,3-free graphs are in H .

Proof. Note that K3,3-free graphs can be formed by 2-sums of planar graphs with copies

of K5 (Wagner. 1937, [28]). Let G be a graph with no K3,3-minor. We prove the result

by induction on the number of edges of G. Let G be a 2-sum of G1 and G2 where G1 is

either planar or K5. Now G1 ∈ H since all planar graphs and K5 are in H . By induction

hypothesis, G2 \ f ∈ H . Also by Lemmas 2.2.17 and 2.2.18, G1 has the lattice endpoint

property for all edges. Therefore by Theorem 2.2.20, we have, G ∈H . �



Chapter 3

Hilbert bases of cuts of subgraphs of K6

In this chapter we look at the Hilbert basis of cuts of the complete graph on six vertices and

its subgraphs. We shall prove that the cuts of K6 and K6 \ e do not form a Hilbert basis.

3.1 Cuts of K6

Definition 3.1.1. Let S = {x1, x2, . . . , xm}, xi ∈ R
n. Define the set of quasi-Hilbert points of

S denoted by quasi-H(S ) to be the unique set of vectors H such that the set S ∪ H forms a

Hilbert basis and that H is the inclusion-wise minimal set with this property. Schrijver [24]

shows that H is unique provided the Cone(S ) is pointed. For a graph G, we denote the set

of quasi-Hilbert points of the set of characteristic vectors of its cuts by quasi-H(G). Note

that G ∈H if and only if quasi-H(G) = ∅.

Theorem 3.1.2. (Laurent [17]) K6 < H and quasi-H(K6) consists of the 15 vectors d f ∈

RE(K6) defined by (d f )e = 2 if e , f and (d f ) f = 4.

The vectors d f are clearly in the lattice of cuts since they add up to an even integer over

each circuit in K6. It can be seen that d f ’s are in the cone by adding all cuts that use f and

dividing by 4. Now each of the d f lie on exactly four triangular facets of the cut cone. We

can check that d f −χ(B) < Cone(K6) for each cut B that is tight for all of these facets. These

cuts B are precisely the cuts of K6 that contain f . Therefore d f cannot be in the integer cone

of the cuts of K6.

20
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The next theorem corrects a statement of Laurent [17] where she incorrectly asserts that

any proper subgraph of K6 is in H .

Theorem 3.1.3. Let G = K6\e where e = (5, 6). Then quasi-H(G) consists the eight vectors

d f ∈ RE(K6\e) defined as follows. Let f be a fixed edge in δ({5, 6}). If, say f ∈ δ(5), then

define d f
f = 3 and d f

e = 1 for the remaining edges in δ(5) and d f
e = 2 everywhere else.

5 6

41

2 3

3
1

11

Figure 3.1: A quasi-Hilbert element of Cone(K6 \ e))

Proof. Without loss of generality, we assume f = (4, 5). Then d(4,5) is in the cone since

d(4,5) =
1
2

∑
S

(δ(S ))

where S ranges over the following collection of vertex sets. {1, 4} , {2, 4} , {3, 4} , {1, 4, 6} ,

{2, 4, 6} , {3, 4, 6} and {6}. By Lemma 2.2.12, the integer vector d(4,5) is in the lattice since

Eodd(d(4,5)) = δ(5).

The vector d(4,5) lies on exactly 7 facets of the cut cone:

• One facet given by Hyp6(1, 1, 1,−1,−1, 0)

• 3 triangular facets given by

· x45 − x15 − x14 ≤ 0
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· x45 − x25 − x24 ≤ 0

· x45 − x35 − x34 ≤ 0

• 3 more triangular facets given by

· x12 − x15 − x25 ≤ 0

· x23 − x25 − x35 ≤ 0

· x31 − x15 − x35 ≤ 0

One can check that subtracting any cut that is tight for all of the above facets from d(4,5)

takes us out of the cone. Therefore d(4,5) is not in the integer cone.

We have verified by computer (using Normaliz version 2.8 [5], [6], See Appendix A)

that the 8 vectors described above are precisely the quasi-Hilbert points for cuts of K6\e. �

The preceding theorem corrects an error in [17] in which it is claimed that all proper

subsets of K6 are in H . The error appears in equation (10) on page 270 where 16 is

erroneously assumed to be an edge of K6 \ 16. We have verified using Normaliz that all

other subgraphs of K6 do belong to H . So we can state the result as follows.

Theorem 3.1.4. A simple graph of order ≤ 6 belongs to H if an only if it is a proper

subgraph of K6 \ e.

3.2 Forbidden minors for the class H

Since the property of having cuts that form a Hilbert Basis is not known to be preserved

under deletion minors, we do not know whether there is a forbidden minor for the class H .

We do however have the following partial result. If H,G are graphs, we write H ⊆ G if H

is a subgraph of G.

Proposition 3.2.1. Let G be a simple graph on n vertices such that H < H for every graph

H with G ⊆ H ⊆ Kn. Then every graph G′ with a G-minor does not belong to H .

Proof. Suppose G = G′/S \ T where S ,T ⊂ E(G′) and T contains no cut-edges of G. Note

that G′/S may contain parallel edges or loops. Let H be the graph formed by deleting the

loops and all but one edge of each parallel class of G′/S . Then G′/S ∈ H if and only if

H ∈H . Since G ⊆ H ⊆ Kn, we have H < H . Thus G′ < H . �
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Corollary 3.2.2. If G is a graph with a (K6 \ e)-minor, then G < H .

Proof. By Theorems 3.1.2 and 3.1.3, we have, K6,K6 \ e < H . So by the previous propo-

sition, G < H if G has a (K6 \ e)-minor. �



Chapter 4

Contractible circuits of projective planar
graphs

4.1 Signed graphic matroids

A signed graph is a pair (G, σ) where G is a graph and σ is a function σ : E(G)→ {+1,−1}

which we call the sign function. Define Σ := σ−1(−1). We sometimes write (G,Σ) instead

of (G, σ). We refer to the edges in Σ as odd edges. Define the signature of a circuit C ⊆ E

to be the product of signs of its edges. We say that C is even (odd) if |C ∩ Σ| is even (odd).

Thus even circuits are precisely the circuits with signature +1.

Given a signed graph (G,Σ), we can define a matroid M(G,Σ) on its edge set. We

assume basic knowledge of matroid theory and follow the notation in [21]. A subset S of E

is independent in M if it contains at most one circuit and that circuit is odd. The circuits of

M are the even circuits of (G,Σ) together with sets C1 ∪ C2, where C1,C2 are disjoint odd

circuits in G satisfying |V(C1)∩V(C2)| ≤ 1. Thus M(G,Σ) is the binary matroid represented

by the matrix obtained from the vertex-edge incidence matrix of G by adding a new row

which is the characteristic vector of Σ.

Given a signed graph (G, σ) and a vertex labeling η : V(G) → {+1,−1}, we define

a new signing ση of G by ση(e) = η(v)σ(e)η(w) where e = (v,w). The function η can

be represented by the edge cut δ(A) where A = η−1(+1). We will refer to the operation,

(G, σ) 7→ (G, ση) as resigning on the cut δ(A). It is easy to see that (G, ση) has the same set

24
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of even circuits as (G, σ). Thus M(G, ση) = M(G, σ). Conversely if M(G, σ) = M(G, σ′),

then σ′ = ση for some η : V(G)→ ±1. Two signed graphs are switching equivalent if they

have the same set of even circuits.

4.2 Graphs on a projective plane

The projective plane N1 can be defined as a set homeomorphic to the closed unit disc D

where antipodal points on its boundary δ(D) are identified. After this identification, δ(D)

has the topology of a simple closed uncontractible curve on N1 and it is called an equator

of N1. Any uncontractible simple curve in N1 can serve as δ(D).

Given a graph G we define an embedding of G on N1 to be a drawing of G on N1 where

vertices are represented by points on N1 and edges are represented by arcs in N1 that are

pairwise disjoint except possibly at common endpoints. A graph G is called projective

planar if such a drawing of G exists. By a projective plane graph, we mean a graph G

along with a drawing on a projective plane. A projective plane graph is called standard if

no vertex lies on δ(D) and no edge meets δ(D) in more than one point. Every projective

planar graph has a standard embedding with respect to any given equator. The reader may

consult [20] for more on embedding of graphs.

Definition 4.2.1. Let G be a graph with a standard embedding on N1 and let Q be an equator

of N1. Define an equitorial signing of G to be the signed graph (G,Σ) where Σ = {e ∈ E(G) :

e ∩ Q , ∅}.

Definition 4.2.2. A circuit C ⊆ E(G) is contractible if C is represented by a contractible

curve on the projective plane. Thus if G is a standard embedding, then C is contractible if

and only if C meets the equator of N1 in an even number of points. Define a bicycle to be

the edge set of two non contractible circuits having exactly one vertex in common.

Remark: If (G,Σ) is an equatorial signing of G on a projective plane, then a resigning

Σ′ = Σ4δ(S ), where S ⊆ V(G) is not necessarily equitorial. For example if no edge incident

to a vertex v crosses the equator, then Σ 4 δ(v) is not equitorial.
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4.3 Surface duals and dual matroids

Definition 4.3.1. The cut matroid M∗(G) of a graph G is the matroid on E(G) whose circuits

are the minimal cuts of G.

Definition 4.3.2. The surface dual G∗ of a projective plane graph G is the graph whose

vertices are the connected regions of N1 \G and each edge e ∈ E(G) corresponds to an edge

e∗ ∈ E(G∗) joining the two regions incident to e.

Proposition 4.3.3. Let G be a projective plane graph and let Σ be an equitorial signing.

Let G∗ be its surface dual. Then the cut matorid of G∗, M∗(G∗) is isomorphic to the signed

graphic matroid M(G,Σ). In particular the minimal cuts of G∗ correspond bijectively to the

set of contractible circuits and bicycles of G, which are precisely the circuits of M(G,Σ).

For a detailed proof of the above, refer [27]. The above proposition enables us to exam-

ine the cuts of a projective plane graph in the context of contractible circuits and bicycles of

its surface dual. We list some observations regarding operations on graphs and their duals

on a projective plane.

Let G be a projective plane graph. Let G∗ be its surface dual. Let e∗ denote the edge of

G∗ that correspond to the edge e of G. Then

• Deleting an edge e of G corresponds to contracting the dual edge e∗ in G∗ and vice

versa.

• Subdividing an edge e of G corresponds to adding a parallel edge e∗ in G∗.

• Adding a facial chord in G corresponds to uncontracting an edge in G∗ and vice versa.

We now state a theorem of Seymour [25] which is a generalization of Theorem 1.2.2 to

matroids.

Theorem 4.3.4. (Sums of Circuits) Given a matroid M with set of circuits C,

Cone(C) ⊆ {v ∈ RE
≥0 : v(e) ≥ 0; v(e) ≤ v(B \ e) for all cocircuits B and all e ∈ B}

with equality if and only if M has no minor isomorphic to one of, U2
4 ,M

∗(K5), F∗7,R10.



CHAPTER 4. CONTRACTIBLE CIRCUITS OF PROJECTIVE PLANAR GRAPHS 27

The complete set of representations of the above four minors as signed graphs is given

here. [22]

• U2
4 is not binary so it cannot be represented as a signed graph.

• Up to switching equivalence the unique representation of R10 is R10 = M(K5,Σ) where

Σ = E(K5).

• M∗(K5): The four switching inequivalent representations of M∗(K5) are given in Fig-

ure 4.1.

• F∗7: The two switching inequivalent representations of F∗7 are given in Figure 4.2.

(a) (b)

(c) (d)

Figure 4.1: All signed graphic representations of M∗(K5) up to switching equivalence. Bold

edges indicate Σ.

It is not hard to see that among the forbidden minors of Theorem 4.3.6, only M∗(K5) can

be represented by an equitorial signing of a projective plane graph. In fact, there are exactly

two such representations of M∗(K5), namely (a) and (c) of Figure 4.1, and they correspond

to the two topologically distinct projective plane embeddings of K5. The surface duals of

these two embeddings are shown in Figure 4.3.

Definition 4.3.5. Let G be a projective plane graph. LetD(G) denote the set of (character-

istic vectors of) contractible circuits and bicycles of G.
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(a) (b)

Figure 4.2: All signed graphic representations of F∗7 up to switching equivalence. Bold

edges indicate Σ.

(a) (b)

Figure 4.3: Duals of the two embeddings of K5 on the projective plane

We can interpret the sums of circuits result for projective plane graphs.

Corollary 4.3.6. Let G is a projective plane graph and let Σ be a corresponding equitorial

signing. Then for every x ∈ Cone(D(G)) we have

x(e) ≥ 0

x(e) ≤ x(B \ e)
(4.1)

for every pair (e, B) where e ∈ B and, for some edge cut δ(S ) of G, either B = δ(S ) or

B = δ(S ) 4 Σ. Furthermore (4.1) is a sufficient condition of x to be in Cone(D(G)) if and

only if G does not contain either of the two graphs given in Figure 4.3 as a surface minor.

Proof. Let M(A) be the representation of M(G,Σ) over over GF(2) that is obtained from

the vertex-edge incidence matrix of G by adding a row that indicates Σ. Then the binary

sum of a subset rows takes the form either δ(S ) 4 Σ or δ(S ), depending on whether or not

the last row of A is used, and where S ⊆ V(G) corresponds to the other rows of A appearing

in the sum. Thus χ(B) in (4.1), ranges over the range space of A. The condition (4.1) holds
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for all such B if and only if it holds for the minimal nonempty sets B for which χ(B) is in

the row space of A. These are precisely the cocircuits of M∗(G,Σ).

Now by Theorem 4.3.4, we know that the cone of circuits of a matroid M(G,Σ) is

completely described by (4.1) if and only if M(G,Σ) does not contain a minor isomorphic

to one of, U2
4 ,M

∗(K5), F∗7,R10. As discussed above, if either of the two graphs in Figure 4.3

do not appear as a surface minor of G, thenD(G,Σ) will be completely described by (4.1).

�

Theorem 1.2.1 was extended to binary matroids by Seymour [26].

Theorem 4.3.7. (Lattice of Circuits) Given a binary matroid M = (E,C), we have

Lattice(C) ⊆ {v ∈ ZE :v(B) is even for all cocircuits B,

vb = 0 if b is a bridge ,

ve = v f if {e, f } is a cocircuit}

(4.2)

with equality if M has no minor isomorphic to F∗7.

A matroid is said to have the lattice of circuits property if equality holds in (4.2). Since

F∗7 does not have a representation as a signed graph which embeds in the projective plane

via a standard signing, we have the following result.

Corollary 4.3.8. Even circuit matroids arising from equitorial signings of graphs on a

projective plane have the lattice of circuits property.

4.4 Computational results

In this section we report some of the findings of some additional computational experiments

done regarding contractible circuits of projective plane graphs and its variations. We have

used the Normaliz software [5], [6] for computing Hilbert bases. Refer to Appendix A for

a more detailed description of the software.
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Figure 4.4: Petersen graph with K6 as the dual graph

4.4.1 Signed Petersen graphs

Theorem 4.4.1. (Zaslavsky [29]) Let P denote the Petersen graph. Up to switching equiv-

alence, there are exactly six signings of P. (See Figure 4.5.)

P+ P1 P2,2

P3,3P3,2P2,3

Figure 4.5: Non isomorphic signings of the Petersen Graph

Here P+ is the P with no odd edges. P1 is the signing of P with one odd edge. Pi, j is

the signing of P with i odd edges at pairwise distance of j for j = 2, 3.

The motivation for studying the signings of Petersen graph is that P can be embedded

on the projective plane with K6 as its dual. This embedding is unique, so out of the six

signings, only P3,2 is equitorial.
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Definition 4.4.2. Let (G,Σ) be a signed graph. Define D(G,Σ) to be the set of (character-

istic vectors of) circuits of M(G,Σ).

Note that this notation is compatible with Definition 4.3.5 since for any equitorial sign-

ing Σ of a projective plane graph G, we haveD(G,Σ) = D(G).

We state the Hilbert basis properties ofD(P) of the six signings below.

• D(P+) does not form a Hilbert basis by the main result of [1].

• No even circuit of P1 contains the unique negative edge f of P1. Thus D(P1) is the

set of circuits of the unsigned graph P \ f . Since P \ f does not contain a Petersen

minor,D(P1) is a Hilbert Basis by the main result of [1].

• D(P2,2) does not form a Hilbert basis.

• D(P2,3) does not form a Hilbert basis.

• D(P3,2) does not form a Hilbert basis. This is equivalent to the statement K6 < H .

• D(P3,3) forms a Hilbert basis.

4.4.2 Contractible circuits and non contractible circuits of projective
plane graphs

Let G be a projective plane graph. Until now we have considered contractible circuits and

bicycles of G since they correspond to cuts of G∗. So it is natural to want to examine the

set K(G) of contractible circuits of G.

In generalK(G) is not the set of circuits of any matroid. In Figure 4.6, the sets {e1, e2, e3}

and {e3, e4, e5} are contractible circuits. But it is not possible to find a circuits using, say e5

and avoiding e3 contradicting the circuit exchange axiom for matroids.1

We ran some computer tests regarding Cone(K(G)). We have K(G) ⊆ D(G). However

even for relatively simple graphs the cone Cone(K(G)) generally has more complicated

facet structure than Cone(D(G)). Consider for example K6. The setD(K6) has 191 elements

1The circuit exchange axiom states that if C1,C2 are circuits of a matroid and C1 , C2, and e ∈ C1 ∩ C2

there exists a circuit C3 of the matroid such that C3 ⊂ (C1 ∪C2) \ e
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e1

e2

e3

e4

e5

Figure 4.6: Contractible circuits

and Cone(D(K6)) has 225 support hyperplanes. In contrast K(K6) has 96 elements and

Cone(K(K6)) has as many as 920 support hyperplanes.

Let L(G) denote the set of non-contractible circuits of a projective plane graph G. By

running further experiments, we found that the facet structure of Cone(L(G)) appears to

be more complicated than those of Cone(D(G)) and Cone(K(G)). Again considering K6,

we found that although L(K6) has only 61 elements, Cone(L(K6)) has 6674 support hyper-

planes.



Chapter 5

Conclusions

In this thesis, we studied the cones, lattices and Hilbert bases of characteristic vectors of

cuts of graphs. This continued the research previously done by Laurent [17], Lauberthe et

al. [16] in the same area. Our results can be summarized as follows.

We studied the class H of graphs whose cuts form Hilbert bases. We derived a suf-

ficient condition for when a 2-sum of graphs in H also belongs to H namely the lattice

endpoint property. As a corollary we proved that all K3,3-free graphs belong to H . We also

applied a similar argument to conclude that all graphs contractible to K5 belong to H .

We also repaired a result of Laurent [17] that said all proper subgraphs of K6 ∈ H by

proving that the graph K6 \ e < H .

Finally we applied these results to the even circuit matroids of signed graphs on a pro-

jective plane and performed some computational experiments.

One of the more interesting results of our experiments was that the only potential ex-

cluded minor we found for the class H is in fact the graph K6 \ e. A possible direction for

future research is to investigate the matter to check if there exist any graphs without a K6 \ e

minor that do not belong to H .

Conjecture 1. Let G be a graph such that G does not contain a (K6 \ e)-minor. Then

G ∈H .

Another possible direction for research is to extend the main theorem of 2-sums of

graphs and Hilbert bases to 3-sums. It seems likely that a mild sufficient condition exists

for a 3-sum of graphs in H to also be in H .

33
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We believe that all 2-sums of copies of uncontractions of K5 with planar graphs belong

to the class H . It is even possible that the 2-sum or 3-sum of any two graphs in H is also

in H .

Conjecture 2. Let G be a graph formed by 2-sums of copies of uncontractions of K5 and

planar graphs. Then G ∈H .



Appendix A

Computational Results

In this appendix we present miscellaneous computational results about cones of cuts of

graphs and even circuits of signed graphs. For computations we have used the Normaliz

software [5] [6]. It allows us to compute the Hilbert basis, extreme rays and support hy-

perplane of the cone generated by a set of vectors. The ambient lattice for the Hilbert basis

can be chosen to be Zn or the lattice generated by the vectors themselves. We first present a

sample output of the program.

//sample_1.in :

//In this case we calculate the Hilbert basis

//with respect to the lattice Z^n.

2 //number of rows

2 //number of columns

2 0 //list of vectors

0 2

0

// ’0’ in the last line represents the input needed for lattice Z^n

// while ’1’ represents the lattice generated by the vectors.

// sample_1.out : Output of the above file

35



APPENDIX A. COMPUTATIONAL RESULTS 36

2 Hilbert basis elements

2 Hilbert basis elements of degree 1

2 extreme rays

2 support hyperplanes

rank = 2 (maximal)

index = 4

original monoid is integrally closed

size of triangulation = 0

resulting sum of |det|s = 0

grading:

1 1

degrees of extreme rays:

1: 2

Hilbert basis elements are of degree 1

*****************************************************************

//Vectors corresponding to the Hilbert basis of the input vectors

2 Hilbert basis elements:

0 1

1 0

//Extreme rays of the cone generated

2 extreme rays:

1 0

0 1

// Support hyperplanes interpreted as : *.x1 + *.x2 >= 0

2 support hyperplanes:
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1 0

0 1

2 Hilbert basis elements of degree 1:

0 1

1 0

We now present the results of several computational experiments that we performed. We

first look at the cone and Hilbert basis for 3-connected uncontractions of K5. Our algorithm

was roughly as follows.

1. First list graphs by uncontracting the edges from K5.

2. Use “Nauty” to separate the non isomorphic graphs. [19]

3. At this point we used C++ to generate all cuts of the graphs.

4. Insert data into Normaliz to generate cones and Hilbert basis of the vectors

We present the facets of the cut cone of the Petersen graph. To save space, we only

present the support hyperplanes of the cut cone. Other 22 graphs followed a similar pattern.

Cuts of Pete,

which are the contractible circuits of K_6 on the projective plane

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

***************

15 constraints* x(e) \ge 0

***************

-1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 -1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 -1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 -1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0

-1 1 0 0 0 0 0 0 1 1 0 0 0 1 0

1 -1 0 0 0 0 0 0 1 1 0 0 0 1 0

1 1 0 0 0 0 0 0 -1 1 0 0 0 1 0

1 1 0 0 0 0 0 0 1 -1 0 0 0 1 0

1 1 0 0 0 0 0 0 1 1 0 0 0 -1 0

-1 0 0 0 1 1 0 0 0 0 1 0 0 0 1

1 0 0 0 -1 1 0 0 0 0 1 0 0 0 1

1 0 0 0 1 -1 0 0 0 0 1 0 0 0 1

1 0 0 0 1 1 0 0 0 0 -1 0 0 0 1

1 0 0 0 1 1 0 0 0 0 1 0 0 0 -1

-1 0 0 0 0 1 1 1 1 0 0 0 0 0 0

1 0 0 0 0 -1 1 1 1 0 0 0 0 0 0

1 0 0 0 0 1 -1 1 1 0 0 0 0 0 0

1 0 0 0 0 1 1 -1 1 0 0 0 0 0 0

1 0 0 0 0 1 1 1 -1 0 0 0 0 0 0

0 -1 1 0 0 1 0 1 0 0 0 0 1 0 0

0 1 -1 0 0 1 0 1 0 0 0 0 1 0 0
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0 1 1 0 0 -1 0 1 0 0 0 0 1 0 0

0 1 1 0 0 1 0 -1 0 0 0 0 1 0 0

0 1 1 0 0 1 0 1 0 0 0 0 -1 0 0

0 -1 0 0 0 1 0 0 0 1 1 1 0 0 0

0 1 0 0 0 -1 0 0 0 1 1 1 0 0 0

0 1 0 0 0 1 0 0 0 -1 1 1 0 0 0

0 1 0 0 0 1 0 0 0 1 -1 1 0 0 0

0 1 0 0 0 1 0 0 0 1 1 -1 0 0 0

0 0 -1 1 0 0 0 0 0 1 0 1 0 0 1

0 0 1 -1 0 0 0 0 0 1 0 1 0 0 1

0 0 1 1 0 0 0 0 0 -1 0 1 0 0 1

0 0 1 1 0 0 0 0 0 1 0 -1 0 0 1

0 0 1 1 0 0 0 0 0 1 0 1 0 0 -1

0 0 -1 0 0 0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 0 -1 0 0 1 0 0 1 1 0

0 0 1 0 0 0 1 0 0 -1 0 0 1 1 0

0 0 1 0 0 0 1 0 0 1 0 0 -1 1 0

0 0 1 0 0 0 1 0 0 1 0 0 1 -1 0

0 0 0 -1 1 0 1 0 1 0 0 0 1 0 0

0 0 0 1 -1 0 1 0 1 0 0 0 1 0 0

0 0 0 1 1 0 -1 0 1 0 0 0 1 0 0

0 0 0 1 1 0 1 0 -1 0 0 0 1 0 0

0 0 0 1 1 0 1 0 1 0 0 0 -1 0 0

0 0 0 -1 0 0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 0 -1 0 0 1 0 1 0 1

0 0 0 1 0 0 0 1 0 0 -1 0 1 0 1

0 0 0 1 0 0 0 1 0 0 1 0 -1 0 1

0 0 0 1 0 0 0 1 0 0 1 0 1 0 -1
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0 0 0 0 -1 0 0 0 1 0 0 1 0 1 1

0 0 0 0 1 0 0 0 -1 0 0 1 0 1 1

0 0 0 0 1 0 0 0 1 0 0 -1 0 1 1

0 0 0 0 1 0 0 0 1 0 0 1 0 -1 1

0 0 0 0 1 0 0 0 1 0 0 1 0 1 -1

0 0 0 0 0 0 -1 1 0 0 1 1 0 1 0

0 0 0 0 0 0 1 -1 0 0 1 1 0 1 0

0 0 0 0 0 0 1 1 0 0 -1 1 0 1 0

0 0 0 0 0 0 1 1 0 0 1 -1 0 1 0

0 0 0 0 0 0 1 1 0 0 1 1 0 -1 0

***************

60 constraints* x(e) \le x(C-e) : C is a pentagon and e is in C

***************

-1 1 0 0 1 0 0 0 0 1 0 1 0 0 1

1 -1 0 0 1 0 0 0 0 1 0 1 0 0 1

1 1 0 0 -1 0 0 0 0 1 0 1 0 0 1

1 1 0 0 1 0 0 0 0 -1 0 1 0 0 1

1 1 0 0 1 0 0 0 0 1 0 -1 0 0 1

1 1 0 0 1 0 0 0 0 1 0 1 0 0 -1

-1 1 1 0 0 0 1 0 1 0 0 0 1 0 0

1 -1 1 0 0 0 1 0 1 0 0 0 1 0 0

1 1 -1 0 0 0 1 0 1 0 0 0 1 0 0

1 1 1 0 0 0 -1 0 1 0 0 0 1 0 0

1 1 1 0 0 0 1 0 -1 0 0 0 1 0 0

1 1 1 0 0 0 1 0 1 0 0 0 -1 0 0

-1 0 0 1 1 1 0 1 0 0 0 0 1 0 0

1 0 0 -1 1 1 0 1 0 0 0 0 1 0 0

1 0 0 1 -1 1 0 1 0 0 0 0 1 0 0

1 0 0 1 1 -1 0 1 0 0 0 0 1 0 0

1 0 0 1 1 1 0 -1 0 0 0 0 1 0 0
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1 0 0 1 1 1 0 1 0 0 0 0 -1 0 0

-1 0 0 0 0 1 0 0 1 0 1 1 0 1 0

1 0 0 0 0 -1 0 0 1 0 1 1 0 1 0

1 0 0 0 0 1 0 0 -1 0 1 1 0 1 0

1 0 0 0 0 1 0 0 1 0 -1 1 0 1 0

1 0 0 0 0 1 0 0 1 0 1 -1 0 1 0

1 0 0 0 0 1 0 0 1 0 1 1 0 -1 0

0 -1 1 1 0 1 0 0 0 0 1 0 0 0 1

0 1 -1 1 0 1 0 0 0 0 1 0 0 0 1

0 1 1 -1 0 1 0 0 0 0 1 0 0 0 1

0 1 1 1 0 -1 0 0 0 0 1 0 0 0 1

0 1 1 1 0 1 0 0 0 0 -1 0 0 0 1

0 1 1 1 0 1 0 0 0 0 1 0 0 0 -1

0 -1 0 0 0 1 1 1 0 1 0 0 0 1 0

0 1 0 0 0 -1 1 1 0 1 0 0 0 1 0

0 1 0 0 0 1 -1 1 0 1 0 0 0 1 0

0 1 0 0 0 1 1 -1 0 1 0 0 0 1 0

0 1 0 0 0 1 1 1 0 -1 0 0 0 1 0

0 1 0 0 0 1 1 1 0 1 0 0 0 -1 0

0 0 -1 1 1 0 0 0 1 1 0 0 0 1 0

0 0 1 -1 1 0 0 0 1 1 0 0 0 1 0

0 0 1 1 -1 0 0 0 1 1 0 0 0 1 0

0 0 1 1 1 0 0 0 -1 1 0 0 0 1 0

0 0 1 1 1 0 0 0 1 -1 0 0 0 1 0

0 0 1 1 1 0 0 0 1 1 0 0 0 -1 0

0 0 -1 0 0 0 0 1 0 1 1 1 1 0 0

0 0 1 0 0 0 0 -1 0 1 1 1 1 0 0

0 0 1 0 0 0 0 1 0 -1 1 1 1 0 0

0 0 1 0 0 0 0 1 0 1 -1 1 1 0 0
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0 0 1 0 0 0 0 1 0 1 1 -1 1 0 0

0 0 1 0 0 0 0 1 0 1 1 1 -1 0 0

0 0 0 -1 0 0 1 0 0 0 0 1 1 1 1

0 0 0 1 0 0 -1 0 0 0 0 1 1 1 1

0 0 0 1 0 0 1 0 0 0 0 -1 1 1 1

0 0 0 1 0 0 1 0 0 0 0 1 -1 1 1

0 0 0 1 0 0 1 0 0 0 0 1 1 -1 1

0 0 0 1 0 0 1 0 0 0 0 1 1 1 -1

0 0 0 0 -1 0 1 1 1 0 1 0 0 0 1

0 0 0 0 1 0 -1 1 1 0 1 0 0 0 1

0 0 0 0 1 0 1 -1 1 0 1 0 0 0 1

0 0 0 0 1 0 1 1 -1 0 1 0 0 0 1

0 0 0 0 1 0 1 1 1 0 -1 0 0 0 1

0 0 0 0 1 0 1 1 1 0 1 0 0 0 -1

***************

60 constraints* x(e) \le x(C-e) : C is a hexagon and e is in C

***************

-2 1 2 1 1 1 1 2 1 1 1 -1 -1 2 2

2 1 -2 1 1 1 1 2 -1 1 -1 1 1 2 2

2 1 2 1 -1 1 1 -2 1 -1 1 1 1 2 2

2 1 2 -1 1 -1 1 2 1 1 1 1 1 -2 2

2 -1 2 1 1 1 -1 2 1 1 1 1 1 2 -2

2 -1 1 2 1 1 -2 1 1 2 2 1 1 1 -1

2 1 -1 2 1 1 2 1 -1 2 -2 1 1 1 1

2 1 1 -2 1 -1 2 1 1 2 2 1 1 -1 1

-2 1 1 2 1 1 2 1 1 2 2 -1 -1 1 1

2 1 1 2 -1 1 2 -1 1 -2 2 1 1 1 1

1 -2 1 2 1 1 -1 2 2 1 1 2 1 1 -1

1 2 1 -2 1 -1 1 2 2 1 1 2 1 -1 1
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1 2 1 2 -1 1 1 -2 2 -1 1 2 1 1 1

1 2 -1 2 1 1 1 2 -2 1 -1 2 1 1 1

-1 2 1 2 1 1 1 2 2 1 1 -2 -1 1 1

-1 2 1 1 2 1 1 1 1 1 2 -1 -2 2 1

1 2 1 -1 2 -1 1 1 1 1 2 1 2 -2 1

1 -2 1 1 2 1 -1 1 1 1 2 1 2 2 -1

1 2 1 1 -2 1 1 -1 1 -1 2 1 2 2 1

1 2 -1 1 2 1 1 1 -1 1 -2 1 2 2 1

1 1 2 1 -2 2 2 -1 1 -1 1 2 1 1 1

1 1 2 -1 2 -2 2 1 1 1 1 2 1 -1 1

1 -1 2 1 2 2 -2 1 1 1 1 2 1 1 -1

-1 1 2 1 2 2 2 1 1 1 1 -2 -1 1 1

1 1 -2 1 2 2 2 1 -1 1 -1 2 1 1 1

1 1 -1 1 1 2 1 1 -2 2 -1 1 2 1 2

-1 1 1 1 1 2 1 1 2 2 1 -1 -2 1 2

1 1 1 1 -1 2 1 -1 2 -2 1 1 2 1 2

1 1 1 -1 1 -2 1 1 2 2 1 1 2 -1 2

1 -1 1 1 1 2 -1 1 2 2 1 1 2 1 -2

***************

30 constraints* corresponding to equation (2.3)

***************

2 1 2 -1 1 -1 -1 2 -1 1 1 1 1 2 2

2 1 2 1 -1 1 -1 2 1 -1 1 1 -1 2 2

2 -1 2 1 1 1 1 2 -1 -1 -1 1 1 2 2

2 -1 2 -1 -1 1 -1 2 1 1 1 1 1 2 2

2 1 2 -1 1 1 1 2 -1 1 -1 1 -1 2 2

2 1 2 -1 1 -1 1 2 1 -1 1 -1 1 2 2

2 -1 2 1 1 1 -1 2 1 1 -1 -1 1 2 2

2 -1 2 1 1 -1 1 2 1 1 1 -1 -1 2 2

2 1 2 1 -1 -1 1 2 1 -1 -1 1 1 2 2
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2 1 2 1 -1 1 1 2 -1 1 1 -1 -1 2 2

2 1 -1 2 1 -1 2 -1 -1 2 2 1 1 1 1

2 1 -1 2 1 1 2 1 -1 2 2 -1 1 1 -1

2 1 -1 2 1 -1 2 1 1 2 2 1 -1 -1 1

2 -1 1 2 1 1 2 -1 1 2 2 1 -1 1 -1

2 -1 1 2 1 1 2 1 -1 2 2 1 1 -1 -1

2 1 1 2 -1 -1 2 1 1 2 2 1 1 -1 -1

2 1 1 2 -1 1 2 1 -1 2 2 -1 -1 1 1

2 1 1 2 -1 1 2 -1 1 2 2 -1 1 -1 1

2 -1 -1 2 -1 1 2 -1 1 2 2 1 1 1 1

2 -1 1 2 1 -1 2 1 1 2 2 -1 -1 1 1

1 2 -1 2 1 -1 1 2 2 1 1 2 -1 -1 1

1 2 1 2 -1 1 -1 2 2 -1 1 2 -1 1 1

-1 2 1 2 1 1 1 2 2 1 -1 2 -1 1 -1

-1 2 -1 2 -1 1 1 2 2 1 -1 2 1 1 1

-1 2 1 2 1 -1 -1 2 2 1 1 2 1 1 -1

-1 2 1 2 1 1 1 2 2 -1 1 2 -1 -1 1

1 2 1 2 -1 -1 1 2 2 -1 -1 2 1 1 1

1 2 1 2 -1 -1 1 2 2 1 1 2 1 -1 -1

1 2 -1 2 1 1 -1 2 2 -1 1 2 1 1 -1

1 2 -1 2 1 1 -1 2 2 1 -1 2 1 -1 1

1 2 -1 1 2 1 1 1 -1 1 2 -1 2 2 -1

1 2 -1 1 2 1 -1 1 1 -1 2 1 2 2 -1

1 2 1 -1 2 -1 1 1 1 -1 2 -1 2 2 1

1 2 1 -1 2 1 1 -1 1 -1 2 1 2 2 -1

1 2 1 -1 2 -1 -1 1 -1 1 2 1 2 2 1

-1 2 1 1 2 1 -1 -1 1 1 2 -1 2 2 1

-1 2 -1 -1 2 1 1 1 1 1 2 -1 2 2 1

-1 2 1 1 2 1 1 -1 -1 -1 2 1 2 2 1

-1 2 1 1 2 -1 -1 1 1 1 2 1 2 2 -1

1 2 -1 1 2 -1 1 -1 -1 1 2 1 2 2 1
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1 -1 2 1 2 2 2 1 -1 -1 -1 2 1 1 1

1 -1 2 1 2 2 2 -1 1 1 1 2 -1 1 -1

1 1 2 -1 2 2 2 1 -1 1 -1 2 -1 1 1

1 -1 2 1 2 2 2 1 -1 1 1 2 1 -1 -1

1 1 2 -1 2 2 2 -1 1 1 -1 2 1 -1 1

-1 1 2 1 2 2 2 1 1 1 -1 2 -1 1 -1

-1 -1 2 -1 2 2 2 1 1 1 1 2 1 -1 1

-1 1 2 1 2 2 2 1 1 -1 1 2 -1 -1 1

-1 1 2 1 2 2 2 -1 -1 -1 1 2 1 1 1

1 1 2 -1 2 2 2 -1 1 -1 1 2 1 1 -1

-1 1 1 1 1 2 -1 -1 2 2 1 -1 2 1 2

1 -1 1 1 1 2 -1 1 2 2 -1 -1 2 1 2

1 1 -1 1 1 2 -1 1 2 2 -1 1 2 -1 2

1 1 1 -1 1 2 1 -1 2 2 -1 1 2 -1 2

1 1 1 1 -1 2 1 -1 2 2 1 -1 2 -1 2

1 -1 1 -1 -1 2 -1 1 2 2 1 1 2 1 2

1 -1 -1 1 -1 2 1 -1 2 2 1 1 2 1 2

-1 1 -1 -1 1 2 1 1 2 2 1 -1 2 1 2

-1 1 -1 1 -1 2 1 1 2 2 -1 1 2 1 2

-1 -1 1 -1 1 2 1 1 2 2 1 1 2 -1 2

***************

60 constraints* corresponding to equation (2.4)

***************

Total = 225

We now look at the Hilbert basis of cuts of K6 \ e and present the complete output of

Normaliz.

38 Hilbert basis elements

30 extreme rays

124 support hyperplanes
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rank = 14 (maximal)

index = 1

original monoid is not integrally closed

size of triangulation = 13107

resulting sum of |det|s = 13868

No implicit grading found

*******************************************************

38 Hilbert basis elements:

1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0 0 0 0 1 1

0 0 1 0 0 0 1 1 0 1 1 0 0 0

0 0 0 1 0 0 0 1 1 0 0 1 1 0

1 0 0 0 0 1 0 0 0 0 1 1 0 0

0 0 0 0 1 0 0 0 1 1 0 0 0 1

1 1 1 1 0 0 0 0 1 1 0 0 0 1

1 1 0 0 0 0 1 0 0 0 1 1 1 1

1 0 1 0 0 1 1 1 0 1 0 1 0 0

1 0 0 1 0 1 0 1 1 0 1 0 1 0

0 1 1 1 1 1 0 0 0 0 1 1 0 0

0 1 0 0 1 1 1 0 1 1 0 0 1 0

0 0 1 0 1 0 1 1 1 0 1 0 0 1

0 0 0 1 1 0 0 1 0 1 0 1 1 1

1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 1 0 0 0 0 1 0 1 0 1 1 1

1 1 0 1 1 0 1 1 0 1 1 0 0 0

1 1 0 1 0 0 1 1 1 0 1 0 0 1

1 0 1 1 1 1 1 0 0 0 0 0 1 1

1 0 1 1 0 1 1 0 1 1 0 0 1 0

0 1 1 0 1 1 0 1 1 0 1 0 1 0

0 1 1 0 0 1 0 1 0 1 1 0 1 1
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0 1 0 1 1 1 1 1 0 1 0 1 0 0

0 1 0 1 0 1 1 1 1 0 0 1 0 1

0 0 1 1 1 0 1 0 0 0 1 1 1 1

0 0 1 1 0 0 1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0 1 1 1 1 1 0

1 0 1 0 1 1 1 1 1 0 0 1 0 1

1 0 0 1 1 1 0 1 0 1 1 0 1 1

0 1 1 1 0 1 0 0 1 1 1 1 0 1

1 2 2 2 2 1 2 2 2 2 1 3 2 2

3 2 2 2 2 1 2 2 2 2 1 1 2 2

2 2 2 2 3 2 2 2 1 1 2 2 2 1

2 2 2 2 1 2 2 2 3 1 2 2 2 1

2 2 2 2 1 2 2 2 1 3 2 2 2 1

2 2 2 2 1 2 2 2 1 1 2 2 2 3

1 2 2 2 2 1 2 2 2 2 3 1 2 2

1 2 2 2 2 3 2 2 2 2 1 1 2 2

30 extreme rays:

0 0 0 0 1 0 0 0 1 1 0 0 0 1

0 0 0 1 0 0 0 1 1 0 0 1 1 0

0 0 0 1 1 0 0 1 0 1 0 1 1 1

0 0 1 0 0 0 1 1 0 1 1 0 0 0

0 0 1 0 1 0 1 1 1 0 1 0 0 1

0 0 1 1 0 0 1 0 1 1 1 1 1 0

0 0 1 1 1 0 1 0 0 0 1 1 1 1

0 1 0 0 0 1 1 0 0 0 0 0 1 1

0 1 0 0 1 1 1 0 1 1 0 0 1 0

0 1 0 1 0 1 1 1 1 0 0 1 0 1

0 1 0 1 1 1 1 1 0 1 0 1 0 0

0 1 1 0 0 1 0 1 0 1 1 0 1 1

0 1 1 0 1 1 0 1 1 0 1 0 1 0

0 1 1 1 0 1 0 0 1 1 1 1 0 1

0 1 1 1 1 1 0 0 0 0 1 1 0 0

1 0 0 0 0 1 0 0 0 0 1 1 0 0
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1 0 0 1 0 1 0 1 1 0 1 0 1 0

1 0 0 1 1 1 0 1 0 1 1 0 1 1

1 0 1 0 0 1 1 1 0 1 0 1 0 0

1 0 1 0 1 1 1 1 1 0 0 1 0 1

1 0 1 1 0 1 1 0 1 1 0 0 1 0

1 0 1 1 1 1 1 0 0 0 0 0 1 1

1 1 0 0 0 0 1 0 0 0 1 1 1 1

1 1 0 0 1 0 1 0 1 1 1 1 1 0

1 1 0 1 0 0 1 1 1 0 1 0 0 1

1 1 0 1 1 0 1 1 0 1 1 0 0 0

1 1 1 0 0 0 0 1 0 1 0 1 1 1

1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 1 1 0 0 0 0 1 1 0 0 0 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0

124 support hyperplanes:

0 0 0 1 1 0 0 0 -1 0 0 0 0 0

0 0 1 0 1 0 0 0 0 -1 0 0 0 0

0 0 1 1 0 0 0 -1 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 -1

0 1 0 1 0 0 0 0 0 0 0 0 -1 0

0 1 1 0 0 0 -1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 -1 0 0

1 0 1 0 0 0 0 0 0 0 -1 0 0 0

1 1 0 0 0 -1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -1 1 1 0 0 0 0

0 0 0 -1 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 -1 1

0 -1 0 0 1 0 0 0 0 0 0 0 0 1

0 0 -1 0 1 0 0 0 0 1 0 0 0 0

0 1 1 1 -1 0 -1 -1 1 1 0 0 -1 1

0 0 0 0 0 0 -1 0 0 1 0 0 0 1

0 1 1 -1 1 0 -1 1 1 -1 0 0 1 -1

0 0 0 0 0 0 0 0 1 0 0 0 1 -1
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0 0 0 1 -1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 -1 0 0 0 0

0 1 -1 1 1 0 1 1 -1 1 0 0 -1 -1

0 -1 1 1 -1 0 1 -1 1 1 0 0 1 -1

0 0 0 0 0 0 1 0 0 1 0 0 0 -1

0 0 0 0 0 0 0 1 -1 1 0 0 0 0

0 0 1 0 -1 0 0 0 0 1 0 0 0 0

0 0 -1 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 -1 1 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 1 -1 0 0

0 -1 -1 1 1 0 -1 1 -1 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0 -1 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0 -1 0

0 0 1 -1 0 0 0 1 0 0 0 0 0 0

0 -1 1 -1 1 0 1 1 1 -1 0 0 -1 1

0 -1 1 1 1 0 1 -1 -1 -1 0 0 1 1

0 0 0 0 0 0 1 0 0 -1 0 0 0 1

0 0 0 0 0 0 0 0 -1 0 0 0 1 1

0 1 0 0 -1 0 0 0 0 0 0 0 0 1

0 1 -1 1 -1 0 1 1 1 -1 0 0 -1 1

0 1 1 -1 -1 0 -1 1 -1 1 0 0 1 1

-1 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1 -1 0

0 -1 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 -1 1 0

1 1 0 -1 1 -1 0 0 1 1 -1 1 1 -1

0 0 0 0 0 -1 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 -1 0 0 0 0 1 0

0 1 0 -1 0 0 0 0 0 0 0 0 1 0

0 1 -1 -1 1 0 1 -1 1 1 0 0 1 -1

0 0 0 0 0 0 0 -1 0 0 1 1 0 0

1 0 0 -1 0 0 0 0 0 0 0 1 0 0

1 1 1 -1 0 -1 -1 1 0 0 -1 1 1 0

1 0 0 0 1 -1 -1 1 -1 1 -1 1 1 1
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1 0 1 -1 1 -1 0 1 1 -1 -1 1 0 1

1 1 1 0 -1 -1 -1 0 1 1 -1 1 0 1

-1 0 1 0 0 0 0 0 0 0 1 0 0 0

-1 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 -1 0 0 0 1 0 0 0

-1 1 1 1 0 1 -1 -1 0 0 1 1 -1 0

1 -1 1 0 1 1 1 0 1 -1 -1 -1 0 1

0 -1 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 -1 0 0 0

1 -1 0 0 0 1 0 0 0 0 0 0 0 0

1 -1 1 1 0 1 1 -1 0 0 -1 -1 1 0

1 0 0 0 1 1 1 -1 1 1 -1 -1 1 -1

1 1 -1 0 1 -1 1 0 1 1 1 -1 0 -1

0 0 0 0 0 -1 1 0 0 0 1 0 0 0

0 1 -1 0 0 0 1 0 0 0 0 0 0 0

1 0 -1 0 0 0 0 0 0 0 1 0 0 0

1 1 -1 1 0 -1 1 1 0 0 1 -1 -1 0

1 0 0 0 1 -1 1 1 1 -1 1 -1 -1 1

1 -1 0 1 1 1 0 0 -1 1 -1 -1 1 1

1 0 1 1 -1 1 0 -1 1 1 -1 -1 0 1

1 0 -1 1 1 -1 0 1 -1 1 1 -1 0 1

1 1 0 1 -1 -1 0 0 1 1 1 -1 -1 1

-1 -1 1 1 0 -1 1 -1 0 0 1 1 1 0

-1 1 -1 1 0 1 1 1 0 0 -1 1 -1 0

-1 1 1 -1 0 1 -1 1 0 0 1 -1 1 0

1 0 0 0 1 1 -1 1 1 -1 1 -1 1 -1

1 -1 -1 1 0 1 -1 1 0 0 1 -1 1 0

1 -1 0 1 1 1 0 0 -1 -1 1 -1 1 1

1 0 -1 1 1 1 0 1 -1 1 1 -1 0 -1

1 0 0 0 1 1 1 1 -1 1 -1 1 -1 -1

1 -1 1 -1 0 1 1 1 0 0 -1 1 -1 0

1 -1 1 0 1 1 1 0 -1 -1 -1 1 0 1

1 0 1 -1 1 1 0 1 1 -1 -1 1 0 -1

1 0 0 0 1 -1 1 -1 -1 -1 1 1 1 1
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1 1 0 -1 1 -1 0 0 1 -1 1 1 1 -1

1 1 -1 0 1 -1 1 0 -1 1 1 1 0 -1

1 1 -1 -1 0 -1 1 -1 0 0 1 1 1 0

-1 1 1 0 1 1 -1 0 1 -1 1 1 0 -1

-1 1 0 1 1 1 0 0 -1 1 1 1 -1 -1

-1 0 1 1 1 1 0 -1 -1 -1 1 1 0 1

-1 0 0 0 1 1 -1 1 -1 1 1 -1 1 1

-1 0 -1 1 1 1 0 1 -1 1 -1 1 0 1

-1 -1 0 1 1 -1 0 0 -1 1 1 1 1 1

1 -1 -1 0 1 1 -1 0 -1 1 1 1 0 1

-1 0 1 -1 1 1 0 1 1 -1 1 -1 0 1

-1 0 0 0 1 1 1 1 1 -1 -1 1 -1 1

-1 -1 1 0 1 -1 1 0 1 -1 1 1 0 1

1 -1 0 -1 1 1 0 0 1 -1 1 1 -1 1

-1 1 0 -1 1 1 0 0 1 1 1 -1 1 -1

-1 1 -1 0 1 1 1 0 1 1 -1 1 0 -1

-1 0 0 0 1 -1 1 -1 1 1 1 1 1 -1

1 0 -1 -1 1 1 0 -1 1 1 1 1 0 -1

1 -1 -1 0 1 1 -1 0 1 1 1 -1 0 1

1 -1 0 1 -1 1 0 0 1 1 1 -1 1 -1

1 0 -1 1 -1 1 0 1 1 -1 1 -1 0 1

1 0 0 0 -1 1 -1 1 -1 1 1 -1 1 1

1 -1 0 -1 1 1 0 0 1 1 -1 1 -1 1

1 -1 1 0 -1 1 1 0 1 1 -1 1 0 -1

1 0 1 -1 -1 1 0 1 -1 1 -1 1 0 1

1 0 0 0 -1 1 1 1 1 -1 -1 1 -1 1

1 0 0 0 -1 -1 1 -1 1 1 1 1 1 -1

1 0 -1 -1 1 -1 0 -1 1 1 1 1 0 1

1 1 0 -1 -1 -1 0 0 -1 1 1 1 1 1

1 1 -1 0 -1 -1 1 0 1 -1 1 1 0 1

1 0 0 0 -1 1 -1 -1 1 1 1 1 -1 1

-1 0 1 1 -1 -1 0 -1 1 1 1 1 0 1

-1 1 0 1 -1 1 0 0 1 1 -1 1 -1 1

-1 1 1 0 -1 1 -1 0 1 1 1 -1 0 1
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-1 1 1 0 -1 1 -1 0 -1 1 1 1 0 1

-1 1 0 1 -1 1 0 0 1 -1 1 1 -1 1

-1 0 1 1 -1 1 0 -1 1 1 1 1 0 -1

-1 0 0 0 1 1 -1 -1 1 1 1 1 -1 1

Next we look at the cones and Hilbert basis of even circuits of the six signed Petersen

graphs. For this we have generated the list of even circuits in C++. For this we encoded the

graph as a signed incidence matrix of the graph, i.e. the incidence matrix with an added row

specifying the signature of each edge. Calling Normaliz we get the required information.

Again, to save space, we only present the number of Hilbert basis elements, extreme rays

and support hyperplanes of the cone.

P+

63 Hilbert basis elements

57 extreme rays

60 support hyperplanes

P1

29 Hilbert basis elements

29 extreme rays

32 support hyperplanes

P22

59 Hilbert basis elements

29 extreme rays

200 support hyperplanes

P23

63 Hilbert basis elements

31 extreme rays

480 support hyperplanes

P32

46 Hilbert basis elements

31 extreme rays
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210 support hyperplanes

P33

31 Hilbert basis elements

31 extreme rays

165 support hyperplanes

Notice that since P3,2 embeds on the projective plane with the appropriate signing and

K6 as a dual, the cone of even circuits is the same as the cone of cuts of K6.

Finally, we present the results for the cones and Hilbert basis of the contractible circuits

and bicycles, contractible circuits and non contractible circuits of K6 on the projective plane.

Contractible circuits and bicycles of signed K6 on projective plane

-------------------------------------------------

191 Hilbert basis elements

191 extreme rays

225 support hyperplanes

Contractible circuits of K6 on projective plane

-------------------------------------------------

96 Hilbert basis elements

96 extreme rays

920 support hyperplanes

Non contractible circuits of K6 on projective plane

-------------------------------------------------

193 Hilbert basis elements

61 extreme rays

6674 support hyperplanes



Appendix B

3-connected uncontractions of K5

In this appendix we list the 22 non isomorphic 3-connected uncontractions of K5.

Figure B.1: The graph K5

Figure B.2: The graph K5 with one edge uncontraction

54
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Figure B.3: Non isomorphic two-edge uncontractions of K5

Figure B.4: Non isomorphic three-edge uncontractions of K5
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Figure B.5: Non isomorphic four-edge uncontractions of K5
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Figure B.6: Non isomorphic five-edge uncontractions of K5
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