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Abstract

We discuss matrix partition problems for graphs that admit a partition into k independent
sets and ` cliques. We show that when k + ` 6 2, any matrix M has finitely many (k, `)

minimal obstructions and hence all of these problems are polynomial time solvable. We
provide upper bounds for the size of any (k, `) minimal obstruction when k = ` = 1 (split
graphs), when k = 2, ` = 0 (bipartite graphs), and when k = 0, ` = 2 (co-bipartite graphs).
When k = ` = 1, we construct an exponential size split minimal obstruction for a particular
matrix M , obtaining the first known exponential lower bound for any minimal obstruction.
The construction also shows that the upper bounds are “nearly” tight.

Keywords: generalized graph colouring, matrix partition, split graphs, minimal obstruc-
tions, forbidden subgraphs, polynomial time algorithms, np-complete problems
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Chapter 1

Introduction

1.1 Preliminary Definitions

For natural numbers m,n 2 N, denote the set {1, ...,m} by [m]; denote the set consisting of
all sets of size n whose members are elements from [m] by

�
[m]

n

�
.

A digraph D = (V,E) consists of a vertex set V (D) and a binary relation E(D) ✓
V (D)⇥ V (D) known as the edge set of D. A digraph G is an undirected graph, or simply a
graph, if the edge relation is symmetric. That is, for any u, v 2 V (G), we have (u, v) 2 E(G)

if and only if (v, u) 2 E(G). In an undirected graph we refer to the pairs (u, v) and (v, u)

as the edge between u and v, and write uv 2 E(G). Further, when uv 2 E(G), say that
u and v are adjacent and write u ⇠ v. For a vertex u 2 V (G), a loop is the edge uu. A
(di)graph is simple if it has no loops. Note that as E(G) ✓ V (G) ⇥ V (G), multiple edges
are not permitted. In this thesis we restrict our attention to simple undirected graphs. The
open neighbourhood of a vertex v in G, written NG(u), or simply N(u) when the context
is clear, is the set of vertices that are adjacent to v. The closed neighbourhood of u is then
defined to be NG[u] = NG(u) [ {u}.

A homomorphism of a graph G to a graph H is a mapping h : V (G) ! V (H) such
that h(u)h(v) 2 E(H) whenever uv 2 E(G). An isomorphism of G to H is a bijective
homomorphism of G to H. If G has an isomorphism to H, we say that G and H are
isomorphic and write G ' H.

A subgraph H of a graph G is a graph for which V (H) ✓ V (G) and E(H) ✓ E(G). We
say that H is an induced subgraph of G, if H can be obtained from G by deleting a set of
vertices from G, together with any edges that include these vertices. For a set A ✓ V (G),
denote by G � A the subgraph obtained by deleting the vertices of A. When A is a single
vertex a, write G�a. For a set B ✓ V (G) of vertices, define G[B] = G�(V (G)�B) to be the
graph obtained from G by deleting all vertices of V (G)�B, and say that G[B] is the graph
induced by B. When B = {v

1

, ..., vn}, we omit the braces and write G[v
1

, ..., vn] to mean
G[B]. The complement G of a graph G is the graph with the same vertex set V (G) = V (G),
in which two vertices u, v of G are adjacent if and only if u and v are not adjacent in G. If

1



CHAPTER 1. INTRODUCTION

P is a class of graphs, define co-P as the class of graphs that are complements of graphs in
P. That is, co-P = {G|G 2 P}.

For m 2 N, and given graphs G
1

, G
2

, ..., Gm with disjoint vertex sets, let G
1

[G
2

...[Gm

be the graph obtained by taking V (G
1

)[V (G
2

)[...[V (Gm) and E(G
1

)[E(G
2

)[...[E(Gm)

as its vertex set and edge set, respectively. Then we say that G
1

[G
2

...[Gm is the disjoint
union of G

1

, ..., Gm. For a single graph G, let mG be the disjoint union of m copies of G,
with the vertices renamed appropriately. Let G

1

and G
2

be graphs. Define G
1

\G
2

as the
largest subgraph of G

1

that is isomorphic to a subgraph of G
2

. Define the join of two graphs
and denote it by G

1

� G
2

, as the graph obtained from adding to G
1

[ G
2

, every edge uv

where u 2 V (G
1

) and v 2 V (G
2

).
For n 2 N, a path is a graph on n vertices for which an ordering x

1

, , , , xn exists such
that two vertices are adjacent if and only if they appear consecutively in the order. The
path on n vertices and n� 1 edges is denoted Pn and said to be of length n� 1. For a pair
of vertices u, v in a graph G, a u, v-path is an induced path in G whose vertices of degree
1 are u and v. Define the distance from u to v, denoted d(u, v), as the length of a shortest
u, v-path. If there is no u, v-path, let d(u, v) = 1. A cycle Cn is the graph obtained from
the path x

1

, ..., xn by adding the edge x
1

xn. Consequently, the cycle is said to be of length
n. An odd cycle is a cycle of odd length; we identify two special odd cycles that frequently
occur - a triangle is a cycle of length 3 and a pentagon is a cycle of length 5.

For n 2 N, a graph on n vertices in which every two vertices are adjacent is known as a
complete graph, and denoted Kn. A clique in a graph G is a set of vertices of which every
two vertices are adjacent. An independent set or stable set in a graph G, is the complement
of a clique - a set in which no two vertices are adjacent. Here we mention another type
of graph that appears frequently in this thesis - for m,n 2 N, define mKn as the disjoint
union of m cliques on n vertices. A maximal clique (respectively stable set) of a graph G

is a set of vertices of G which is a clique (stable set) and to which no vertex of G can be
added to induce a larger clique (stable set). A maximum clique (stable set) of a graph G is
a clique (stable set) in G with the largest number of vertices among all other cliques (stable
sets) of G. Denote the size of the maximum clique in a graph G by !(G), and the size of
the maximum independent set in G by ↵(G). Note that each maximum clique is a maximal
clique, but not vice versa.

A colouring of a graph G using k 2 N colours is a labeling of the vertex set of the graph,
c : V (G) ! [k]. A proper colouring of G is a colouring in which any two adjacent vertices
receive different colours. The smallest number of colours needed to properly colour G is the
chromatic number of G, and is denoted �(G).

2



CHAPTER 1. INTRODUCTION

1.2 Graph Classes

In any graph G, we have !(G) 6 �(G), since each of the !(G) vertices of a maximum
clique must receive a unique colour; of interest are the graphs for which the two invariants
are equal, for every induced subgraph of the original graph. A graph G is perfect if every
induced subgraph H of G satisfies �(H) = !(H). The NP -complete decision versions of
many graph problems admit polynomial time algorithms, when the input is restricted to
perfect graphs. Of note are k-colouring, clique number, and maximum independent set [28].

Claude Berge, in 1961, proposed two conjectures underlining the importance of perfect
graphs [2]. The first of these, now known as the Weak Perfect Graph Theorem was proven
in 1972 by Lovász, and states that a graph is perfect if and only if its complement is perfect
[35]. More recently, in 2006, Chudnovsky, Robertson, Seymour, and Thomas proved the
second conjecture of Berge, now known as the Strong Perfect Graph Theorem, which states
that a graph is perfect if and only if it does not contain an induced odd cycle of length at
least five, or the complement of an induced odd cycle of length at least 5 [7]. These graphs
are now known as Berge graphs and were shown separately by Chudnovsky et al. to be
recognizable in polynomial time [6].

We now discuss some families of graphs which are perfect and are of interest in this
thesis. A chordal graph is a graph in which the only induced cycles are triangles. A
simplicial vertex v of a graph G, is a vertex whose closed neighbourhood NG[v] is a clique.
A simplicial elimination ordering, sometimes referred to as a perfect elimination ordering,
of a graph G is an ordering of the vertices v

1

, ..., vn in which vertex vi is a simplicial vertex
in G[vi, ..., vn], for 1 6 i 6 n. It is well known that a graph G is chordal if and only if it has
a simplicial elimination ordering, and that finding such an ordering can be done in linear
time [38]. To illustrate one of the many applications of the simplicial elimination ordering
consider the following result, proved by Berge; the proof also serves to demonstrate the
greedy coloring algorithm.

Theorem 1.2.1. [1] Chordal graphs are perfect.

Proof. Let G be a chordal graph on n vertices. Deleting vertices from G cannot create
chordless cycles. Thus, every induced subgraph of G is chordal. It therefore suffices to prove
that �(G) = !(G). Given a simplicial elimination ordering v

1

, v
2

, ..., vn, of the vertices
of G, we apply greedy colouring to the vertices in reverse order. That is, for the vertices
vn, ..., v2, v1, assign to vertex vi the least color not used by any of its neighbours that came
before it in the reverse ordering. Suppose the largest colour used is k 2 N, and that
some vertex vi received color k. Then vi has a neighbour in vn, vn�1

, ..., vi+1

of each colour
1, ..., k�1. Since vi is simplicial in G[vi+1

, ..., vn], together with vi, these vertices form a clique
of size k, giving k 6 !(G). Since !(G) 6 �(G) 6 k, we conclude that �(G) = !(G).

There are graph families that are defined by a partition that their members admit. A
bipartite graph is a graph whose vertices can be partitioned into two independent sets. For

3



CHAPTER 1. INTRODUCTION

m,n 2 N, a complete bipartite graph, denoted Km,n, is a bipartite graph whose partite sets
X and Y are of size m and n, respectively, and such that every x 2 X is adjacent to every
y 2 Y . A star graph on n + 1 vertices is the graph K

1,n for some n 2 N. A split graph
is a graph whose vertex set can be partitioned into an independent set and a clique. More
generally, for k, ` 2 N, a (k, `)-graph is a graph whose vertices can be partitioned into k

independent sets and ` cliques. Thus a bipartite graph is a (2, 0)-graph, and a split graph is
a (1, 1)-graph. We write (k, `) to denote the class of all (k, `)-graphs. Since every induced
subgraph of a (2, 0)-graph is a (2, 0)-graph, and every (2, 0)-graph has clique number at
most 2, we have that (2, 0)-graphs are perfect. In Section 1.3 we show that the class of split
graphs is a subclass of the class of chordal graphs [26]. Hence split graphs are also perfect.

One more class of graphs discussed in this thesis is the class of complement reducible
graphs, or cographs. This class is defined recursively as containing the single vertex graph
K

1

, and the graphs obtained from cographs G
1

and G
2

by taking either their disjoint union
G

1

[G
2

, or their join G
1

�G
2

.
From the definition it follows that the class of cographs is closed under complementation,

and that the join of two cographs is equivalent to complementing the disjoint union of
their complements. This information, together with the fact that the complement of every
nontrivial connected component of a cograph is disconnected [9], has been used by the
authors in [39, 9] to characterize the class of cographs by the absence of a particular induced
subgraph, namely, the path on four vertices.

Cographs can be recognized in linear time [8], and can be represented by a special tree,
which can be constructed, also in linear time [8]. The cotree T of a cograph G is a tree
representing the recursive structure of G. The leaves of T are the vertices of G, while
the internal nodes are marked either 0 or 1. The root of T is labeled 1, the children of a
node labeled 1 are labeled 0 and the children of a node labeled 0 are labeled 1. The 1-nodes
represent the join operation, while the 0-nodes represent the disjoint union. To be consistent
with [9], we assume that the root node has exactly one child if and only if G is disconnected.
For an internal node x of T , the graph Gx is the graph corresponding to the subtree of T
rooted at x. Thus if the tree is rooted at a node r, then G = Gr. In Section 2.2 we show
that cographs are perfect [9].

Aside from being perfect, the graph families described above share another interesting
property. Each family can be characterized by the absence of certain configurations. For-
mally, let H be a fixed graph. A graph G is said to be H-free if no induced subgraph of G
is isomorphic to H. Now fix a family of graphs H. We say that G is H-free if it is H-free
for every H 2 H. Define Forb(H) = {G|G is H-free }; say that every member of H is a
forbidden subgraph of Forb(H). We call H 2 H a minimal forbidden subgraph of Forb(H)

of H if it is a forbidden subgraph of Forb(H), but every proper induced subgraph of H is
not a forbidden subgraph of Forb(H).

For example, the class of chordal graphs is defined as Forb(C) where C is the set of all

4



CHAPTER 1. INTRODUCTION

cycles of length at least four; for the set Codd = {C
2n+1

|n 2 N} of odd cycles, Forb(Codd) is
the family of bipartite graphs, by a result of König [34], and by the Strong Perfect Graph
Theorem, the class of perfect graphs is the class Forb(H [ co-H) where H = Codd � C

3

.
As was shown in [26], Forb({2K

2

, C
4

, C
5

}) defines the family of split graphs. Finally, as
already mentioned, the class of cographs is defined by Forb({P

4

}).
The first three examples can be distinguished from the last two by an important char-

acteristic. Namely, the infinite families C, Codd and Codd � C
3

are needed to describe the
chordal, bipartite, and perfect graphs respectively. On the other hand, a finite number of
minimal forbidden subgraphs suffices to describe split graphs and cographs.

A characterization of a graph family G by a finite set of forbidden subgraphs is desirable
since it allows for a polynomial time recognition algorithm for G. Note, however, that
such a characterization isn’t necessary for polynomial time recognition to be possible, as
exemplified by the bipartite graphs. Further, characterization by a finite family of minimal
forbidden subgraphs, while guaranteeing a polynomial time recognition algorithm, might not
provide the best lower bound for such recognition. For example, linear time algorithms for
the recognition of split graphs can be found in [29], and [31]. These algorithms do not rely
on forbidden subgraphs. On the other hand, naively searching for the minimal forbidden
subgraphs takes time O(n5

), to determine whether an induced C
5

exists in the input graph.

1.3 Partitions of Graphs into Cliques and Independent Sets

Here we consider recognition and characterizations of (k, `)-graphs for various values of k
and `.

Polynomial time recognition and a characterization of bipartite graphs is easily obtained
from the following well-known Theorem by König.

Theorem 1.3.1. [34] A graph is bipartite if and only it has no odd cycle.

Proof. ) Suppose G = (X,Y,E) is a bipartite graph, and let C be a cycle in G of length m

with vertices a
1

, ...am. Suppose without loss of generality that a
1

2 X. Then for 1 6 i 6 m,
if ai 2 X, then i is odd, and if ai 2 Y , then i is even. Thus, as am 2 Y , m is even.

( Suppose G has no odd cycles. Assume without loss of generality that G is connected;
otherwise, we apply what follows to each component of G. We construct a bipartition
X,Y for G. Let u 2 V (G), and partition the vertices of G by their distance from u. Let
X = {v 2 V (G)|d(u, v) is even}, and Y = {v 2 V (G)|d(u, v) is odd}. If v, v0 are adjacent
and both belong to X, then we can find an odd closed walk using the u, v-path, the edge vv0,
and the v0, u-path. Since every closed odd walk contains an odd cycle [40], this contradicts
the assumption that G has no odd cycles. Thus X is independent. By a similar argument,
Y is independent as well, and so G is bipartite.

5



CHAPTER 1. INTRODUCTION

For split graphs, we have the following well-known characterization. We follow the proof
presented in [27].

Note first that if G is a split graph, then G is a split graph. This follows from the fact
that for a partition of G into a clique C and independent I, the complements C and I are
a stable set and a clique, respectively.

Theorem 1.3.2. [26] The following conditions are equivalent for a graph G:

(i) G is a split graph.

(ii) G and G are both chordal.

(iii) G does not have 2K
2

, C
4

, and C
5

as induced subgraphs.

Proof. (i) =) (ii) Suppose G is a split graph. Let C [ I be a partition of G into a clique
C and independent set I. Then every vertex of I is simplicial in G and every vertex of C is
simplicial in G� I. Hence, picking any ordering for the vertices I, followed by any ordering
for the vertices of C produces a simplicial elimination ordering, so that G is chordal. Since
G is also a split graph, the same argument shows that G is chordal.

(ii) =) (iii) Since G is chordal, it does not contain an induced C
4

or C
5

. Since G is
chordal, G does not contain an induced C

4

. If G were to contain an induced 2K
2

, then G

would contain an induced C
4

, as the complement of C
4

is isomorphic to 2K
2

.
(iii) =) (i) Let C be a maximum clique in G, chosen so that the number of edges in

G�C is minimized, over all maximum cliques in G. Suppose for contradiction that G�C is
not an independent set, and let u, v be two adjacent vertices of G�C. Since C is maximal,
u has a non-neighbour w in C and v has a non-neighbour x in C. Further, since C is of
maximum size, we may choose w and x so that w 6= x . To see this, suppose otherwise, that
u and v have the same non-neighbour w in C and that u and v are adjacent to every other
vertex of C. Then the clique (C�{w})[{u, v} is larger than C, contradicting the maximality
of C. Now, if both edges ux and vw are not present in G, then G[u, v, w, x] ' 2K

2

, and if
both these edges are present, then G[u, v, w, x] ' C

4

, but both these graphs are not induced
subgraphs of G by assumption. Thus exactly one of the edges ux or vw is present in G. Say
without loss of generality that vw 2 E(G). Then v is adjacent to every vertex of C�{w, x},
for if some vertex y 2 C � {w, x} is not adjacent to v, then if y is also not adjacent to u,
we have G[u, v, x, y] ' 2K

2

, and if y is adjacent to u, then G[u, v, w, y] ' C
4

. Therefore the
graph induced by C 0

= C � {x}[ {v} is a clique of maximum size. In G�C, the edge uv is
present, while in G�C 0 it is not. Since G�C 0 has at least as many edges as G�C, by choice
of C, there must be some edge to replace uv in the edge count for G � C 0. That is, there
must be a vertex z 2 G � C adjacent to x. Further, z cannot be adjacent to v, otherwise
together with the edge uv, G � C has at least one more edge than G � C 0. Now z must
be adjacent to u, otherwise G[z, x, u, v] ' 2K

2

. This implies that z is not adjacent to w,
because then we would have G[z, w, v, u] ' C

4

. But then G[z, x, w, v, u] ' C
5

, contradicting
the assumption that C

5

is not an induced subgraph of G.
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CHAPTER 1. INTRODUCTION

The split, bipartite, and co-bipartite graphs constitute those (k, `)-graphs for which
k+ ` < 3. In [23] a general technique is presented for recognizing graphs that admit certain
partitioning schemes. Of interest here, the technique unifies the recognition of split, bipartite
and co-bipartite graphs. Further, the same technique may be used for the recognition of
graphs in (1, 2) [ (2, 1) [ (2, 2).

Let S and D be two classes of graphs. We say that S is a class of sparse graphs and that
D is a class of dense graphs, if S and D satisfy the following:

• Both S and D are closed under taking induced subgraphs.

• There is a constant c such that for every S 2 S and D 2 D, we have |S \D| 6 c.

In a given graph G, say that a set of vertices A is sparse if G[A] 2 S. Say that A is dense
if G[A] 2 D. A Sparse-Dense Partition of a graph G, with respect to classes S and D of
sparse and dense graphs, is a partition of the vertex set V (G) into two parts V (G) = S [D

such that G[S] 2 S and G[D] 2 D.
Sparse-Dense partitions are a generalization of split graphs. If we take S to be the set

of all independent sets, D to be the set of all cliques, and c = 1, then since any S 2 S and
D 2 D have at most one vertex in common, a graph has a sparse-dense partition if and
only if it can be partitioned into an independent set and a clique. That is, if and only if the
graph is a split graph.

Given S and D, it turns out that any graph has a polynomial number of sparse-dense
partitions with respect to S and D. Additionally, if S and D can be recognized in polynomial
time, then this allows us to determine the existence of a sparse-dense partition in a given
input graph, in polynomial time.

Theorem 1.3.3. [23] Let S and D be classes of sparse and dense graphs, respectively. Let
c 2 N such that |S \D| 6 c for every S 2 S and D 2 D.

(i) A graph on n vertices has at most n2c different sparse-dense partitions with respect to
S and D.

(ii) Further, all n2c partitions can be found in time proportional to n2c+2 · T (n), where
T (n) is the time required for recognizing members of S and D.

Proof. (i) Suppose G has at least one sparse-dense partition. Fix a sparse-dense partition
V (G) = S [D. Then any other sparse-dense partition V (G) = S0 [D0 satisfies |S0 \D| 6 c

and |S \D0| 6 c. Thus S0 is obtained from S by deleting at most c vertices and inserting at
most c vertices. Each of these at most 2c operations can be made in at most n ways, giving
at most n2c different partitions, and all of the partitions can be found in time n2c · 2T (n),
since at each change we must check whether the new partition is sparse-dense.

(ii) Having (i), it remains to find the first sparse-dense partition, if one exists. Suppose
G has a sparse-dense partition, and let V (G) = S[D be a sparse-dense partition maximizing

7



CHAPTER 1. INTRODUCTION

the size of S. We show how to find S[D, starting with any sparse set S0 such that |S0| < |S|.
Since S0 is sparse, |S0 \D| = c0 6 c. Then there are at least c0 +1 vertices in S that are not
in S0. To see this, suppose otherwise, that |S�S0| 6 c0. Then S = (S0� (S0\D))[ (S�S0

)

and so |S0| < |S| = |(S0� (S0\D))|+ |(S�S0
)| 6 |S0|. Further, if A is a set of c0+1 vertices

of S�S0, then (S0� (S0 \D)[A is a subset of S and so must be sparse. Therefore starting
with any sparse set S0, say S0

= ;, we can obtain a larger set by deleting some selection of
c0 = |S0 \D| vertices and inserting some c0 + 1 other vertices. This can be done in time at
most n2c+1 · T (n). After at most n such enlargements we obtain a sparse set S0 of the same
size as S.

With |S0| = |S|, the set S can be obtained from S0 by a deletion of at most c vertices
and an insertion of at most c vertices. Thus we can test all n2c possible new sets for
sparseness, and the rest of V (G) for denseness. If no sparse-dense partition is found, then
none exists.

A variation on the problem of recognizing (k, `)-graphs, defined more generally in Section
1.4 is that of recognizing (k, `)-graphs with lists. In this version, the k stable sets and `

cliques are numbered using elements from [(k+`)], with the stable sets numbered 1, ..., k and
the cliques numbered k + 1, ..., k + `. An input graph is provided with lists L(v) ✓ [(k + `)]

for each v, and we ask whether G admits a (k, `)-partition such every vertex v is placed in
a part from L(v). In this case, we say that the partition respects the given lists. Theorem
1.3.3 yields a recognition algorithm for (k, `)-graphs where k 6 2 and ` 6 2, even with lists.

Corollary 1.3.4. [23] Let k, ` 2 N. If k 6 2 and ` 6 2, then recognizing (k, `)-graphs with
lists can be done in polynomial time. Otherwise, the recognition problem is NP -complete.

Proof. Suppose first that k > 3. We show that 3-colourability is reducible to (k, `)-
recognition. That is, given a graphG, we construct a graph G0 with lists such that G is
3-colourable if and only if G0 admits a (k, `)-partition respecting the lists. Let G0

= G, but
with lists L(v) = {1, 2, 3} for each vertex of G0. Then G0 is a (k, `)-graph with respected
lists if and only if G is 3-colourable. A similar argument is made when ` > 3.

Suppose now that both k 6 2 and ` 6 2. Let S be the class of all k-colourable graphs,
and D be the class of all graphs whose complement is `-colourable. As k 6 2 and ` 6 2 both
of these classes can be recognized in polynomial time. By Theorem 1.3.3 we generate all
sparse-dense partitions of any input graph G, if they exist. If G has no lists, we are done.

Suppose G is an input graph with lists L. Generate all sparse-dense partitions of G,
and for each sparse-dense partition update the lists of the vertices as follows. Let S =

(I
1

[ I
2

[ ...[ Ik) and D = (Ck+1

[Ck+2

[ ...[Ck+`) be a particular sparse-dense partition.
If a vertex v belongs to S, remove from L(v) any element i > k + 1. If v belongs to D,
remove from L(v) any element i 6 k. The resulting instance of the graph has a set of lists L0

all of size at most 2, and hence can be solved using 2-satisfiability (cf. [23] Proposition 2.1).

8



CHAPTER 1. INTRODUCTION

Further, G admits a (k, `)-partition respecting the original lists L if and only if it admits a
(k, `)-partition respecting at least one of modified sets of lists L0.

1.4 Matrix Partition

Here we discuss graph partitions in terms of patterns. Up until now we have described
different partition schemes of graphs into independent sets or cliques, while not placing any
restrictions on how the different partite sets, or parts, interact. Some of the sets may be
restricted to have no adjacency, while with others we may require that all edges be present
between two given parts. To describe these additional requirements, we use a symmetric
m ⇥ m matrix M whose entries range over {0, 1, ⇤}. The requirements for the different
parts of a graph partition are given by the diagonal entries of M , while the constraint on
interaction between part i and part j are given by entry M(i, j).

Formally, an M -partition of a graph G is a partition P
1

, ..., Pm of the vertex set V (G)

such that if u is a vertex of Pi and v is a vertex of Pj , with u 6= v, then

• If M(i, j) = 1 then u and v are adjacent

• If M(i, j) = 0 then u and v are non-adjacent

• If M(i, j) = ⇤ there is no restriction on the adjacency of u and v.

Additionally, given parts P, P 0 of an M -partition, we define M(P, P 0
) as M(i, j) where i

and j are the diagonal indices of M that correspond to P and P 0, respectively. Note that
M(i, i) = 0 signifies a stable set, and M(i, i) = 1 a clique. The M -partition problem asks
whether or not an input graph G admits an M -partition. Note that if for some i, we have
M(i, i) = ⇤, then the M -partition problem is trivial. However there are variations in which
a diagonal asterisk does not make the problem trivial. cf. the end of this Section for an
example.

Thus bipartite graphs are the (

0 ⇤
⇤ 0

)-partitionable graphs and in general, if Cm is the
matrix containing 0s on the main diagonal, and asterisks in all off diagonal entries, then the
k-colourable graphs are the Cm-partitionable graphs. Similarly, split graphs are precisely
the ( 0 ⇤

⇤ 1

)-partitionable graphs, and the matrix with k diagonal 0s, ` diagonal 1s and asterisks
in every other entry captures the (k, `)-graphs.

Given an m ⇥ m matrix M , a principal matrix of M is a matrix M 0 obtained from
M by deleting any number of rows from M , together with their corresponding columns.
Throughout this thesis, when M is symmetric and has no diagonal asterisks, we assume
that it has k diagonal 0s and ` diagonal 1s. In this case M can be described in so called
(A,B,C)-block form, in which the matrix A is the k⇥ k principal matrix of M having only
diagonal 0s, the matrix B is the ` ⇥ ` principal matrix of M having only diagonal 1s, and
C = M(1...k, k+1...`) is the k⇥ ` submatrix of M describing the interaction of independent
parts with clique parts.

9
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If all off diagonal entries of A are the same value, say a, and similarly all of diagonal
entries of B are the same value b, we refer to M as an (a, b, C)-block matrix. Further, if the
entries in C are all equal to c, we say that M is an (a, b, c)-block matrix and also call it a
constant matrix.

For a matrix M , define the complementary matrix M as the matrix obtained from M

by replacing 0 entries of M with 1s, and 1 entries with 0s. Clearly we have -

Fact 1.4.1. A graph G is M -partitionable if and only G is M -partitionable. ⇤

In addition to colouring problems, matrix partitions generalize another well known prob-
lem. The H-homomorphism problem asks whether the input graph G admits a homomor-
phism to a fixed graph H. Note that a homomorphism of G to H can be viewed as a
partition of V (G) into sets Pv with v 2 V (H) such that Pv = f�1

(v) and Pv is independent
if v has no loop, and for two distinct vertices u, v 2 V (H), there are no edges between Pu

and Pv whenever uv /2 E(H).
Let MH be the matrix obtained from the adjacency matrix of H by replacing each 1 entry

with an asterisk. Then a homomorphism of G to H corresponds to an MH -partition of G,
and an MH -partition of G corresponds to a homomorphism of G to H. In fact, if we restrict
our attention to matrices M whose entries are not equal to 1, there always exists a graph
HM for which the H-homomorphism problem is equivalent to the M -partition problem:
given M , we obtain the adjacency matrix of the graph H by replacing each asterisk entry
of M by a 1. Thus we have the following equivalence.

Theorem 1.4.2. [30] Let M be a matrix with no 1s. The M -partition problem is polynomial
time equivalent to the H-homomorphism problem.

Lastly, we describe a variation of the M -partition problem. While most of this thesis
discusses the basic M -partition problem, this variation is touched upon as well. Given a
matrix M , we may index parts of an M -partition using the numbers {1, ...,m}. Define
the list M -partition problem to be the M -partition problem in which the input graph G is
equipped with lists L(v) ✓ {1, ...,m} for each vertex v 2 V (G), where v may only be placed
in the parts whose index is contained in L(v). Note that in this variation, diagonal asterisks
do not make the problem trivial.

Of course, the result of Theorem 1.4.2 extends to encompass list M -partition problems
and list H-homomorphism problems. The list H-homomorphism problem asks whether an
input graph G, together with lists L(v) ✓ V (H) for each v 2 V (G), admits a homomorphism
of G to H that respects the lists.

The matrix partition problem, as formulated above, allows us discuss graph partition
problems in which the vertices of the graph are partitioned into independent sets or cliques,
and distinct parts are either fully connected, fully disconnected, or are unknown. For graph
partition problems with other types of restrictions on the parts or the interconnectivity of
parts, see [3, 4, 13, 36].

10



Chapter 2

Survey of Matrix Partition

Here we discuss the current state of the M -partition problem. The topics discussed in
this survey may be coloured by two broad strokes. On the one hand, as always, we are
interested in the complexity of an M -partition problem for a given matrix M , or perhaps
for a restricted set of input graphs. On the other hand, as mentioned in Section 1.2, the
notion of minimal forbidden subgraphs plays an interesting role in describing families of
M -partitionable graphs, again, restricted to some M , or to some set of input graphs.

In the context of matrix partitions, we discuss minimal forbidden subgraphs by another
name, capturing the idea that the existence of a minimal forbidden subgraph in an input
graph obstructs us from partitioning the graph. That is, given a matrix M and a graph G,
we say that G is a minimal M -obstruction if G does not admit an M -partition, but every
proper induced subgraph of G admits an M -partition. If the context is clear, we omit the
M and simply call G a minimal obstruction.

Formally, for an m ⇥ m matrix M , and a family of graphs G, let fM,G(m) denote the
size of the largest minimal M -obstruction in G. If there are infinitely many minimal M -
obstructions in G for some matrix in M , say fM,G(m) = 1. Note that the parameter m for
fM,G is implied by the matrix M . However as bounds for fM,G tend to be given in terms of
m, we include it in the definition explicitly. For a class of matrices M, we are interested in
the smallest upper bound for fM,G(m) for all M 2 M. When the context is clear, we write
fM,G(m) = sup{fM,G(m)|M 2 M}.

2.1 General Graphs

2.1.1 Complexity

We begin by examining list matrix partition problems, unrestricted to any graph class.
In Section 2.1.2 we describe a result from [19] which asserts that for any matrix M

without asterisk entries, the class of M -partitionable graphs can be characterized by finitely
many minimal obstructions. As a result, the decision problem for M -partitionability in this

11
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case can be solved in polynomial time. It turns out that this is true even with lists.

Theorem 2.1.1. [23] If M has no asterisk entries then the list M -partition problem is
solvable in polynomial time.

Let M be a matrix with no 1s. By Theorem 1.4.2, the list M -partition problem is
polynomially equivalent to the list H-homomorphism problem. In the list version of M -
partition diagonal asterisks are permitted, and these correspond to loops in the graph H

obtained from the matrix M . Feder et al. ([16, 21]) gave classifications of list M -partition
problems for the case when all or none of the diagonal entries of M are asterisks, into those
matrices M for which the list M -partition problem is NP -complete, and those matrices M

for which the list M -partition problem is polynomial time solvable.
Let HM be the graph obtained by replacing every asterisk entry in M with a one, and

regarding M as an adjacency matrix for HM . Note that if all of the diagonal entries of M
are asterisks, then HM is a reflexive graph; if no diagonal entries are asterisks, then HM is
irreflexive. An interval graph is the intersection graph of a family of intervals on a line.

Theorem 2.1.2. [16] Let M be a matrix with no 1 entries. Suppose all diagonal entries of
M are asterisks. If HM is an interval graph, then the list M -partition problem is polynomial
time solvable.

Otherwise the list M -partition problem is NP -complete.

A circular arc graph is the intersection graph of a family of arcs of a circle.

Theorem 2.1.3. [21] Let M be a matrix with no 1 entries. Suppose M has no diagonal
asterisks. If HM is bipartite and HM is a circular arc graph, then the list M -partition
problem is polynomial time solvable.

Otherwise the list M -partition problem is NP -complete.

In fact in [22], the authors define the class of bi-arc graphs, which encompasses the re-
flexive interval graphs and the bipartite complements of circular arc graphs from Theorems
2.1.2 and 2.1.3, and show that, in terms of patterns, the list M -partition problem is poly-
nomial time solvable if HM is a bi-arc graph, and NP -complete otherwise. This provides
dichotomy for the list matrix partition problem, when the patterns have no 1s. If M is al-
lowed 1s, then while it is not known whether a dichotomy still holds, it is shown in [17] that
each list M -partition problem is either NP -complete or solvable in time nO(logn). Say an
algorithm is quasi-polynomial if its running time on input of size n is bounded by nO(logpn)

for some p 2 N.
So far we have restricted the entries of M by disallowing some element from {0, 1, ⇤}.

Removing this restriction, a full dichotomy is known when M is small, specifically of size at
most four. We start with the following Claim.

12
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Claim 2.1.4. [30] If M is an m ⇥ m matrix, and M 0 or M 0 is a principal submatrix of
M such that the list M 0-partition is NP -complete, then the list M -partition problem is
NP -complete.

Proof. Suppose M 0 is a principal submatrix of the matrix M , and that the list M 0-partition
problem is NP -complete. Then an input to the list M 0-partition problem, a graph G with
lists, can be passed unchanged to an algorithm for list M -partition. Such an algorithm
accepts without using any parts of M that are not in M 0, if and only if G admits a list M 0-
partition. Thus if list M 0-partition is NP -complete, then so is list M -partition. It follows
by complementation, that if M 0 is a matrix for which list M 0-partition is NP -complete,
and M is a matrix containing M 0 or M 0 as a principal submatrix, then list M -partition is
NP -complete.

Now the first four patterns in Figure 2.1.1 correspond to NP -complete list matrix parti-
tion problems. These are (i) the 3-colouring problem, well-known to be NP -complete, even
without lists, (ii) the stable cutset problem, shown NP -complete in [33], (iii) the stable
cutset pair [33], and (iv) the reflexive four-cycle [16].

0

@
0 ⇤ ⇤
⇤ 0 ⇤
⇤ ⇤ 0

1

A

(i)

0

@
0 ⇤ ⇤
⇤ ⇤ 0

⇤ 0 ⇤

1

A

(ii)

0

BB@

⇤ ⇤ 0 0

⇤ 0 ⇤ 0

0 ⇤ 0 ⇤
0 0 ⇤ ⇤

1

CCA

(iii)

0

BB@

⇤ ⇤ 0 ⇤
⇤ ⇤ ⇤ 0

0 ⇤ ⇤ ⇤
⇤ 0 ⇤ ⇤

1

CCA

(iv)

0

BB@

0 ⇤ 0 ⇤
⇤ 0 ⇤ ⇤
0 ⇤ ⇤ ⇤
⇤ ⇤ ⇤ 1

1

CCA

(v)
The Stubborn Problem

Figure 2.1.1 – NP -complete small patterns

If M contains any of the patterns (i)� (iv) or the complement of one of (i)� (iv), then
the list M -partition problem is NP -complete. All other patterns of size at most four, were
shown to be either polynomial or quasi-polynomial time solvable in [23]. In [5] all patterns
of size at most four with quasi-polynomial algorithms, except for pattern (v), were shown
to be polynomial time solvable. This latter problem was recently shown to be polynomial
in [10], so that if M is of size at most four and M or M contains one of the four matrices in
Figure 2.1.1 as a principal submatrix, then list M -partition is NP -complete, and otherwise
list M -partition is polynomial time solvable [23, 5, 10].
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We turn now to the basic matrix partition problem, in which the input graph is presented
without accompanying lists. When M is larger than four, it is not clear that the existence
in M of a principal submatrix corresponding to an NP -complete problem implies that M -
partition is NP -complete. Nonetheless, in [23] the authors were able to show that when M

is of size at most four, if M or M contain matrix (i), then M -partition is NP -complete, and
otherwise it is polynomial time solvable.

In this case diagonal asterisks make the problem trivial, so of the four patterns described
in Figure 2.1.1 only pattern (i), corresponding to the 3-colouring problem, is relevant to the
discussion of small matrices M . If M does not contain the matrix (i) or its complement,
then the list M -partition algorithms (cf. [23] Theorem 6.2) can be applied with each list
containing all parts of M , so the M -partition problem is polynomial time solvable in this
case. On the other hand, if M contains (i) or its complement, then if M is of size 3 ⇥ 3,
M =

⇣
0 ⇤ ⇤
⇤ 0 ⇤
⇤ ⇤ 0

⌘
and M -partition is NP -complete. If M is of size 4 ⇥ 4, [23] provides the

following.

Claim 2.1.5. Let M be a 4 ⇥ 4 matrix. If M contains the matrix
⇣

0 ⇤ ⇤
⇤ 0 ⇤
⇤ ⇤ 0

⌘
as a principal

submatrix, then the M -partition problem is NP -complete.

Proof. Say the fourth column of M is (x
1

, x
2

, x
3

, y), and that M contains the matrix
⇣

0 ⇤ ⇤
⇤ 0 ⇤
⇤ ⇤ 0

⌘

as a principal submatrix.

Case 1. Suppose first that y = 0. Then if x
1

= x
2

= x
3

= ⇤, a graph G is M -partitionable
if and only if it is 4-colourable. If some xi = 0, then the union of the ith part and the fourth
part is an independent set so an input graph G admits an M -partition if and only if it is
3-colourable. If some xi = 1, let G0

= 2G. If G is 3-colourable, both copies of G in G0 can
be placed in the first three parts, ignoring the fourth. If G0 is M -partitionable, then if some
vertex of the first copy of G in G0 is placed in the ith part, no vertex of the second copy
may be placed in the fourth part, so one of the copies is 3-coloured.

Case 2. It is left to deal with the case y = 1, and we use the same graph G0. Here however,
the argument is that an M -partition of G0 can place at most one copy of G in the clique
part y. Therefore, G0 is M -partitionable if and only if G is 3-colourable.

Finally, suppose M is of size m⇥m and contains no 1s. As there are no diagonal asterisks,
HM is irreflexive, and Theorem 2.1.3 asserts that if HM is bipartite and the complement of
a circular arc graph, then M -partition can be solved in polynomial time. However, without
lists more problems can be solved in polynomial time.

Theorem 2.1.6. [32] Let M be a matrix with diagonal entries all 0. If HM is bipartite then
the M -partition problem is polynomial time solvable.

Otherwise the M -partition problem is NP -complete.
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2.1.2 Obstructions

When discussing obstructions, we are dealing with the basic matrix partition problem, with-
out lists. Hence we assume all matrices in this Section have no diagonal asterisks. For the
function fM,G(m), in this case G is the set of all graphs, and we examine different families of
matrices, starting with matrices having asterisks in their A or B blocks. Say that a matrix M

is unfriendly if for some i and j, the entries M(i, i) = M(j, j) 6= ⇤, but M(i, j) = M(j, i) = ⇤.
A matrix that is not unfriendly is called friendly. Note that since M is symmetric, a matrix
is friendly if and only if both blocks A and B have no asterisks. For a graph G, define the
girth as the length of a shortest cycle in G, and denote it g(G). If the graph is acyclic, define
g(G) = 1. Define the circumference of G as the length of a longest cycle in G, if one exists.
Otherwise, say the circumference of G is 1.

Theorem 2.1.7. [25] If M is unfriendly, then there are infinitely many minimal M -
obstructions.

Proof. Let M be an (A,B,C)-block unfriendly matrix, with k diagonal 0s and ` diagonal
1s. Assume without loss of generality that M contains the submatrix S = (

0 ⇤
⇤ 0

). Otherwise
we may consider M , the complement of M and use Fact 1.4.1.

We start by constructing an infinite family of minimal obstructions for the matrix A,
and then from these construct an infinite family of minimal M -obstructions. If k = 2, then
A = S, and a graph G is A-partitionable if and only if it has no odd cycle, so that the
odd cycles form an infinite family of minimal A-obstructions. Suppose now that k > 2 and
define an infinite family of minimal A-obstructions recursively as follows. Recall that Erdös
[12] proved the existence of graphs with arbitrarily large chromatic number �(G) and odd
girth g(G).

Let G
0

be any graph with chromatic number greater than k. Then G
0

is not M -
partitionable, so it must contain a minimal A-obstruction G0

0

. Since G0
0

has chromatic
number larger than k > 2, it must have an odd cycle. Let c

0

be the odd circumference of
G0

0

- the maximum length of an odd cycle in G0
0

.
Assume that G0

0

, G0
1

, ..., G0
i minimal A-obstructions have been constructed, with associ-

ated odd circumference c
0

< c
1

< ... < ci, for i > 0. Let Gi+1

be a graph with chromatic
number greater than k, and odd girth g(Gi+1

) > ci. Since Gi+1

is not M -partitionable it
contains a minimal obstruction G0

i+1

, and we have that the maximum length, ci+1

, of an
odd cycle in G0

i+1

satisfies ci+1

> g(G0
i+1

) > g(Gi+1

) > ci, since removing a vertex from a
graph does not create a new cycle.

Thus the graphs G0
0

, ..., G0
i, ... form a sequence of non-isomorphic minimal A-obstructions.

Now for each i, the graph obtained by taking the disjoint union of `+ 1 copies of G0
i is not

M -partitionable, since at most one copy of G0
i can be placed in a clique part of M . Hence

each such union of `+ 1 copies of G0
i contains a minimal M -obstruction G00

i . Further, since
removal of a vertex in a graph does not create a cycle, the odd girth of G00

i is at least that
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of G0
i, and the odd circumference is at most that of G00

i . Thus {G00
i }10 is an infinite family

of non-isomorphic minimal obstructions to M -partition.
Therefore, when dealing with the set of all simple graphs, with the goal of describing

matrices M for which the M -partitionable graphs can be characterized by finitely many
obstructions, we restrict ourselves to the friendly matrices. In other words, the submatrices
A and B have no asterisks, and we focus on C. The first one of these matrix classes is the
class of matrices that have no asterisk entries at all. A homogeneous set in a graph G is
a subset H of the vertex set V (G) such that every vertex not in H is either adjacent to
every vertex in H, or not adjacent to every vertex in H. Trivially, a single vertex and the
entire graph are homogeneous sets. For two disjoint subsets A and B of V (G), say that A

is homogeneous with respect to B if A is a homogeneous set in G[A [B].

For the rest of this Section, we assume without loss of generality that k > `.

Theorem 2.1.8. [25, 37] If M is an m ⇥ m matrix with no asterisk entries. Then any
minimal obstruction for M has at most 2(k + `)(k + 1) + 1 vertices.

Proof. Suppose for contradiction that a minimal M -obstruction G has at least 2(k+ `)(k+

1)+2 vertices, let v be an arbitrary vertex of G and consider an M -partition of G�v. Since
there are k + ` parts, some part P must contain at least 2(k + 1) + 1 = 2k + 3 vertices.
Further, since M has no asterisks, P is a homogeneous set in G� v, because either all edges
or no edges are present between P and any other part of the partition. Therefore, since
every vertex is either adjacent or non-adjacent to v, by the pigeonhole principle, G has a
homogeneous set H of size at least k + 2. Note that as H ✓ P , H is either an independent
set or a clique. Let h 2 H and consider now a partition of G�h. If H is an independent set,
then with k > `, of the k+1 remaining vertices of H�{h} at least one vertex h0 is placed in
an independent part P 0. With h non adjacent to h0 and h having the same neighbourhood
in G as h0, h can be placed in P 0 to obtain a partition of G. Similarly, if H is a clique, then
at least one of the k + 1 vertices of H � {h} is placed in a clique part and we arrive at a
similar contradiction.

With considerably more work, the bound in Theorem 2.1.8 can be improved.

Theorem 2.1.9. [19] If M has no asterisk entries, then any minimal obstruction for M

has at most (k + 1)(`+ 1) vertices. Further, there are at most two minimal M -obstructions
with exactly (k + 1)(`+ 1) vertices.

If C is particularly simple, namely has only asterisk entries or no asterisk entries, the
converse of Theorem 2.1.7 also holds.

Theorem 2.1.10. [25] If M is an (A,B,C)-block matrix, and C either has no asterisks or
only asterisks, then M has finitely many obstructions if and only if M is friendly.
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Proof. If C has no asterisk entries and M is friendly, this follows from Theorem 2.1.8 or
2.1.9. So suppose M is a matrix in which C has only asterisks. For convenience, say a labeled
graph G is a graph in which each vertex has a label A or B (but not both), with a vertex
labeled A (respectively B) meaning that it must be placed in a part from A (respectively
B). A labeled M -partition of G is an M -partition of G respecting the labels, and a minimal
labeled M -obstruction is a labeled graph G that has no labeled M -partition, but for which
any proper subgraph, with inherited labels, has a labeled M -partition.

With a labeled graph G as input, let G
1

be the subgraph of G induced on the vertices
labeled A and G

2

be the subgraph of G on the vertices labeled B. Note that V (G
1

)\V (G
2

) =

;. When C has only asterisk entries, G has no labeled M -partition if and only if G
1

has no
A-partition, or G

2

has no B-partition (without labels). Say without loss of generality that
G

1

is A-partitionable, so that G
2

does not have B-partition. Since G is a minimal labeled
M -obstruction, removing any vertex of G produces a labeled M -partition of G and hence
a B-partition for G

2

. In particular, removing a vertex labeled A produces such a partition.
But this is impossible, and so no vertex of G is labeled A, and we have G

2

= G, and G
2

is
a minimal B-obstruction.

Now if M is friendly, then A and B have no asterisk entries, and Theorem 2.1.9 then gives
us finitely many minimal A-obstructions, of size at most k + 1, and finitely many minimal
B-obstructions, each of size at most `+1, allowing us to conclude that each minimal labeled
M -obstruction is of size p = k + 1, since k > ` by assumption. It is shown in [18] that if a
minimal labeled M -obstruction has p vertices, then a minimal M -obstruction has at most
2p2r+1 vertices, where r is defined as an integer such that any graph that admits both an
A-partition and a B-partition has at most r vertices. To see that r exists, let H be a graph
that is both A-partitionable and B-partitionable. Then H is k-colourable, and so has no
clique of size k + 1, and its complement is `-colourable and so has no clique of size ` + 1.
By Ramsey’s Theorem, r is the integer for which any graph on at least r vertices contains
a k + 1 clique or the complement of an `+ 1 clique.

Hence, if G is the set of all graphs, and M
1

is the set of all friendly matrices whose
matrix C has no asterisks, we have fM,G(k + `) = (k + 1)(` + 1) for all M 2 M

1

and if
M

2

is the set of all friendly matrices whose matrix C only has asterisk entries, we have
fM,G(k + `) 6 2 · (k + 1)

2r+1, for all M 2 M
2

.

The last class of friendly matrices mentioned here is that of “small” matrices. Specifically,
those matrices of size m 6 5. For these matrices it is again the case that M has finitely
many obstructions if and only if M is friendly [25].

However, in general, it is not true that any friendly matrix M yields a family of M -
partitionable graphs that is characterized by finitely many obstructions. Figure 2.1.2 displays
a matrix M with an infinite family of M obstructions G(t) [25, 41]. For each natural number
t, the graph G(t) consists of a path on 2t vertices, v

1

, ..., v
2t. The vertex v

1

is adjacent to
every vertex vi with odd i > 1, and all even numbered vertices less than 2t form a clique.
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0

BBBBBB@

0 1 0 ⇤ 0 0

1 0 1 ⇤ 0 0

0 1 0 0 ⇤ ⇤
⇤ ⇤ 0 1 0 1

0 0 ⇤ 0 1 0

0 0 ⇤ 1 0 1

1

CCCCCCA

...

M G(t)

v1 v2 v3 v4 v5 v2t�1 v2t

Figure 2.1.2 – A friendly matrix M and infinitely many min M -obstructions G(t)

Finally, as a special case and to highlight their connection to homomorphism problems,
consider the set of patterns M with no 1s. Then by Theorem 1.4.2 we are dealing with the
homomorphism problem, for which we have the following.

Corollary 2.1.11. Let M be a matrix with no 1s. If HM is an independent set, then M

has finitely many minimal obstructions.
Otherwise, M has infinitely many minimal obstructions.

Proof. Here M is in fact the matrix A. If HM is an independent set, then M has no asterisks.
Otherwise, M contains at least one asterisk and is thus unfriendly.

2.2 Cographs

By examining the cotree representation of a cograph, many combinatorial optimization
problems, the decision version of which is NP -complete for general graphs, may be computed
efficiently when the input is a cograph. These include counting the number of cliques, the
number of maximum cliques, the number of transitive orientations and, of interest here, the
chromatic number of a cograph [9]. Since each level of the cotree represents a collection
of subgraphs of the graph G, the technique used for the problems mentioned is that of
dynamic programming. As this technique is also used for some of the matrix partition
results presented later in this Section, we demonstrate the approach here on the colouring
problem for cographs.

Say that two vertices of G meet at a node x if the paths from their respective leaf
representations in the cotree intersect at x for the first time. This gives the following simple
fact.

Fact 2.2.1. [9] Let G be a cograph with cotree T . Two vertices of G are adjacent if and
only if they meet at a 1-node in T .

With a cograph G represented by cotree T , recall that for a node x of T , the graph Gx

is the subgraph of G whose cotree representation is the subtree of T rooted at x. We collect
at each node x, the minimum number of colours k needed to colour the graph Gx. Start by
assigning the value 1 to every leaf of T . For a node with r children assume the number of
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colours needed for each of the children of a given node, k
1

, ..., kr, has been computed. For
a 1-node, let k =

Pk
i ki, since all vertices that meet at a 1-node are adjacent in G. For a

0-node, take k = max

k
i {ki}, as vertices meeting at a 0-node are non-adjacent.

Note that the same computation gives the size of the maximal clique in the input graph
G. Hence �(G) = !(G) when G is cograph. Since every subgraph of a cograph is a cograph,
cographs are perfect.

2.2.1 Complexity

For the class of cographs, the list M -partition problem for any M can be solved in time
linear in n. Specifically,

Theorem 2.2.2. [20] For any matrix M the list M -partition problem can be solved in time
2

O(m)n, linear in n.

The proof follows from a key observation about disconnected graphs. For an m⇥m matrix
M , refer to the integers 1, ...,m as parts, and given two sets or parts P,Q ✓ {1, ...,m}, define
MP,Q to be the submatrix of M obtained by taking the rows of P and the columns of Q.
Let MP = MP,P and note that for any P,Q ✓ {1, ...,m}, the matrices MP and MQ are
principal matrices of M , and MP,Q consists of the constraints between parts in P and parts
in Q and, if a part appears in P \Q, a constraint on the part.

The observation needed in proving Theorem 2.2.2 is given in the following Lemma.

Lemma 2.2.3. [20] Let M be an m⇥m matrix, and G = G
1

[G
2

be a disconnected graph,
with lists.

Then G is an M -obstruction if and only if for any P,Q ✓ {1, ...,m}, if MP,Q does
not contain a 1, then G

1

(with lists) is an MP -obstruction, or G
2

(with lists) is an MQ-
obstruction.

Proof. We prove the contrapositive, that G is M -partitionable if and only if there are P,Q ✓
{1, ...,m} such that MP,Q has no 1s, G

1

is MP -partitionable and G
2

is MQ-partitionable.
Let G be a disconnected graph G = G

1

[ G
2

. If G is M -partitionable, let P be the set of
nonempty parts containing vertices from G

1

and Q be the set of nonempty parts containing
vertices from G

2

, so that G
1

is MP -partitionable, and G
2

is MQ-partitionable. Further, if
a part belongs to P \ Q it must be a 0 part, since it is not empty, and no vertex of G

1

is
adjacent to a vertex of G

2

. By similar reasoning M(p, q) 6= 1 for any p 2 P and q 2 Q.
Conversely, if G

1

is MP -partitionable and G
2

is MQ-partitionable for some P,Q ✓
{1, ...,m} such that MP,Q has no 1s, then G is M -partitionable. Now if G also comes
equipped with lists, the argument is mostly unchanged, except that MP and MQ partitions
conform to the restrictions in the lists, which are assumed to be inherited by G

1

and G
2

.

This allows us to prove Theorem 2.2.2, by working with the cotree T . Associate with each
node t of T a set of matrices Mt. This set consists of all matrices MX , where X ✓ {1, ...,m},
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such that the graph Gt, corresponding to the graph constructed by taking the subtree of T
rooted at t, is an MX -obstruction.

Proof of Theorem 2.2.2. As the leaves of T represent single vertex cographs, we have
Mt = ; for each leaf t. If t is a 0-node, with children t

1

, t
2

, then Gt = Gt1 [ Gt2 and
for a fixed X ✓ {1, ...,m}, by Lemma 2.2.3, Gt is MX -obstruction if and only if for every
P.Q ✓ X, such that MP,Q has no 1s, MP 2 Mt1 or MQ 2 Mt2 . If t is a 1-node, and
Gt = Gt1 � Gt2 , then Gt may also be thought of as (Gt1 [Gt2), so Gt = (Gt1 [ Gt2) and
we may compute Mt for Gt and use Theorem 1.4.1. The graph G is at the root r of T ,
and G = Gr, so that G is M -partitionable if and only M /2 Mr. Each Mt has at most
2

m members, since there are at most 2

m subsets of {1, ...,m}, so the running time of this
algorithm is 2

O(m) · n.

2.2.2 Obstructions

For a set of matrices M , say that a graph G is an M -obstruction if G is an M -obstruction
for every M 2 M , and say that G is a minimal M -obstruction if G is an M -obstruction
but every proper induced subgraph of G admits an M -partition for some M 2 M . Now for
a fixed matrix M , and a disconnected graph G = G

1

[ G
2

, let M
1

be the set of matrices
MP such that P ✓ {1, ...,m} and G

1

is an MP -obstruction. Similarly, let M
2

be the set
of matrices MQ such that Q ✓ {1, ...,m} and G

2

is an MQ-obstruction. By definition, Gi

is an Mi-obstruction, for i 2 {1, 2}. Suppose that for all choices of P,Q ✓ {1, ...,m} for
which MP,Q contains no 1s, either MP 2 M

1

or MQ 2 M
2

. Then the Lemma ensures that
G is an M -obstruction. Now for i 2 {1, 2}, by definition, Gi is an Mi-obstruction, and so if
G0

i is a subgraph of Gi that is also an Mi-obstruction, then the graph G0
= G0

1

[ G0
2

is an
M -obstruction. By contrapositive, we obtain the following corollary to Lemma 2.2.3.

Corollary 2.2.4. [20] if G = G
1

[ G
2

is a minimal M -obstruction, then G
1

is a minimal
M

1

-obstruction and G
2

is a minimal M
2

-obstruction.

Note also that if G is a minimal M -obstruction, then M is not in M
1

, otherwise G
1

is
a proper subgraph of G which is an M -obstruction, contradicting minimality, and similarly
M /2 M

2

. This allows us to prove an upper bound on fM,G(m) for all matrices M 2 M and
the class G of cographs. For the remainder of this Section, M is the set of all matrices.

Theorem 2.2.5. [20] Let a =

1

ln(3/2) . For all M 2 M,

fM,G(m) 6 amm!

Proof. For convenience let f(m) = fM,G(m) where M and G are as defined. Fix M 2 M
and suppose G is a cograph minimal M -obstruction. Since G is a cograph, assume without
loss of generality that G is disconnected and G = G

1

[ G
2

(otherwise, G is disconnected
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and we may proceed with M). By corollary 2.2.4, G
1

is a minimal M
1

-obstruction and
G

2

is a minimal M
2

-obstruction, and the value of f(m) is at most the sum of the sizes of
minimal M 0

1

-obstructions and minimal M 0
2

-obstruction, with M 0
1

2 M
1

and M 0
2

2 M
2

. For
j 2 {1, 2}, with |Mj | 6

P
i<m

�m
i

�
, and each i ⇥ i member of Mj having an obstruction of

size at most f(i), we have that

f(m) 6 2

X

i<m

✓
m

i

◆
f(i)

Now, f(1) 6 2 and a1 · 1! > 2, so assume inductively that f(i) 6 ai · i!. Then,

f(m) 6 2

X

i<m

✓
m

i

◆
f(i) = 2

X

i<m

m!

i! · (m� i)!
f(i)

6 2

X

i<m

m!

i! · (m� i)!
· ai · i! by induction hypothesis

= 2m! ·
X

i<m

ai

(m� i)!
· a

m�i

am�i

= 2m! · am ·
X

i<m

1

(m� i)! · am�i

= 2m! · am ·
X

i<m

1

i!ai

6 2m! · am(e1/a � 1)

= amm!

The class of cographs also admits lower bounds on the size of a largest minimal M -
obstruction, for M 2 M. Consider the colouring matrix M = Cm with m diagonal 0s, no
diagonal 1s and asterisks in every other entry.

Theorem 2.2.6. [20] For every m 2 N, there exists a cograph G, with lists, that is a
minimal M -obstruction of size (e� 1� ✏(m)) ·m! where 1 > ✏(m) 2 o(1).

Proof. We construct G recursively. For each K ✓ {1, ...,m}, of size k, define a graph G(K),
with lists from {1, ...,m} such that

(i) For any S ✓ {1, ...,m}, G(K) is list MS-partitionable if and only if |S| > |K| and
S 6= K.

(ii) For each v 2 V (G), the subgraph G(K)� v is list MK-partitionable.

For sets K containing a single element i 2 {1, ...,m}, define G({i}) as a single vertex v with
L(v) = {1, ...,m} � {i}. Then clearly G({i}) is MS-partitionable if and only if |S| > |K|
and S 6= K for any S ✓ {1, ...,m} and the second condition holds trivially.
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For k > 2, assume G(K 0
) for |K| 6 k � 1 has already been defined to satisfy properties

(i) and (ii), and define G(K) for |K| = k as the disjoint union of all graphs G(K � {j})
for all j 2 K, together with an additional vertex vK with L(vK) = {1, ...,m}, and vK is
adjacent to all of the other vertices. That is

G(K) =

0

@
[

j2K
G(K � {j})

1

A� {vK}

Assuming inductively that each G(K � {j}) is a cograph shows that G(K) is a cograph.
If S ✓ {1, ...m}, then G(K) has a list MS-partition, with vK placed in part j

0

2 S,
if and only if each G(K � {j}) has a list MS�{j0}-partition, since vK is adjacent to every
vertex of G(K). This holds, inductively, if and only if each |S � {j

0

}| > |K � {j}| and
S � {j

0

} 6= K � {j} so that |S| > |K| and S 6= K.
Now if vK is removed then by induction, each G(K�{j}) is MK-partitionable by (i), and

if v 2 G(K�{j
1

}), for some specified part j
1

2 K, is removed, then by (ii) G(K�{j
1

})�v

is list MK�{j1}-partitionable, and by (i) any other G(K � {j}) is MK�{j1}-partitionable,
since K � {j

1

} 6= K � {j} when j 6= j
1

. Finally, vK may placed in part j
1

. Therefore, any
proper induced subgraph of G({1, ...,m}) with the lists inherited is M -partitionable. Also,
as G = G({1, ...,m}) satisfies (i), G is not M -partitionable.

If g(k) is number of vertices in G(K), then g(1) = 1 and g(k) = 1+kg(k�1). Therefore,

g(m) =

m�1X

i=0

m!

(m� i)!
= m!

mX

i=1

1

i!
= m!(e� 1� ✏(m))

with 1 > ✏(m) =

P1
m+1

1

i! .

Note that as m grows, ✏(m) tends to 0. We have previously defined fM,G(m) to discuss
the size of the largest M -obstruction in G for a matrix M 2 M, without lists. Letting g(m)

denote the size of the largest cograph minimal M -obstruction for a matrix M 2 M with
accompanying lists, we have

7

10

m! < (e� 1� ✏(m))m! 6 g(m) 6 am ·m!

In the case of the M -partition problem without lists, we obtain the following bounds for
fM,G . However, we do not have an exponential lower bound for fM,G .

Theorem 2.2.7. [20] Let m 2 N.

m2

4

6 fM,G(m) 6 O(

8

m

p
m
)

The lower bound is given by a particular subclass of the class of cographs, those graphs
that are a disjoint union of cliques. While cographs are the graphs having no induced P

4

,
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the graphs that are a disjoint union of cliques are precisely those graphs with no induced
P
3

.
In Section 2.1 we have seen that the minimal obstructions for matrices without asterisk

entries have at most (k+ 1)(`+ 1) vertices. For matrices with k 0s, ` 1s and asterisks in all
other entries (i.e. the matrices describing (k, `)-graphs), the authors in [20] show that any
cograph minimal obstruction, for any k and `, has exactly (k + 1)(`+ 1) vertices. Further,
of these minimal M -obstructions of size (k + 1)(` + 1), exactly one is a disjoint union of
cliques.

Theorem 2.2.8. [20] Let M be an (⇤, ⇤, ⇤)-block matrix, with k diagonal 0s and ` diagonal
1s. Then each cograph minimal M -obstruction admits a Ck+1

-partition as well as a C`+1

-
partition.

Proof. If ` = 0, then any minimal M -obstruction is a minimal cograph that is not k-
colourable. Since cographs are perfect, the only obstruction is Kk+1

which admits a Ck+1

-
partition, and is partitionable into (0 + 1) cliques and so admits a C

1

-partition. Since the
complements of cographs are cographs, the case where k = 0 follows by complementation.
Now suppose inductively that for an (⇤, ⇤, ⇤)-block matrix M 0 with k0 diagonal 0s and `0

diagonal 1s, if k0 + `0 6 k + `, then any minimal M 0-obstruction admits a Ck0+1

and C`0+1

partitions.
We assume that G = G

1

[G
2

is disconnected, otherwise we can use the complement of
G and M . The goal is to construct sets of matrices M

1

and M
2

for corollary 2.2.4. Let j

be the smallest natural number such that G
1

has a partition into k independent sets and
j cliques. Since G is a minimal M -obstruction and G

2

is not empty, 0 6 j 6 `. Since G
1

has a partition into k independent sets and j cliques, G
2

does not have a partition into k

independent sets and `� j cliques, otherwise G would have an M -partition. Let M
1

be the
(⇤, ⇤, ⇤)-block matrix with k diagonal 0s and j�1 diagonal 1s, and define M

1

to contain M
1

and all of its submatrices. Similarly, let M
2

be the (⇤, ⇤, ⇤)-block matrix with k diagonal 0s
and `� j diagonal 1s, and define M

2

to contain M
2

and all of its submatrices.
Now if P,Q ✓ {1, ...,m} are sets of parts such that MP /2 M

1

and MQ /2 M
2

, then MP

has at least j diagonal 1s, MQ has at least `� j + 1 diagonal 1s, so some part i > k lies in
both P and Q, and so MP,Q contains a 1. Thus by corollary 2.2.4, G’s minimality implies
that G

1

is a minimal M
1

-obstruction and G
2

is a minimal M
2

-obstruction. In particular, G
1

is a minimal M
1

-obstruction and G
2

is a minimal M
2

-obstruction. By induction hypothesis,
G

1

admits a Ck+1

-partition as well as a Cj-partition and G
2

admits a Ck+1

-partition as well
as a C`�j+1

-partition. Therefore G admits a Ck+1

-partition and a C`+1

-partition.

Thus every minimal M -obstruction is a collection of (` + 1) non empty cliques. Now
since a clique and independent set can have at most one vertex in common, each clique is of
size at most (k + 1). In fact, if one of the cliques has at most k vertices, then its members
may be placed in the k independent parts of M , and every other clique can be partitioned
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by placing k of its vertices in the k independent parts of M and the single remaining vertex
in a clique part of M . Thus each of the (` + 1) cliques consists of exactly (k + 1) vertices
and we have the following corollary.

Corollary 2.2.9. Let M be an (⇤, ⇤, ⇤)-block matrix. Then each cograph minimal M -
obstruction has exactly (k + 1)(`+ 1) vertices.

Let a cograph G be a minimal M -obstruction. For i 2 {1, ..., k+1}, j 2 {1, ..., `+1}, let
vi,j be the ith vertex of the jth clique. So any two vi,j , vi0,j are adjacent. Further, since G is
partitionable into (k+1) independent sets, we may arrange the vertices so that no two vi,j ,
vi,j0 are adjacent. Every other adjacency vi,j , vi0,j0 is left unspecified. It is shown in [11] that
G is a minimal M -obstruction, regardless of the unspecified adjacencies. In particular, note
that the graph (`+ 1)Kk+1

is a minimal M -obstruction that is a disjoint union of cliques.

2.3 Chordal Graphs

Another subclass of perfect graphs that has received some attention is the class of chordal
graphs. Unlike the class of cographs, discussed in Section 2.2, and the split graphs discussed
in Chapter 3, studying chordal graphs yields matrices M for which the list M -partition
problem is NP -complete, matrices for which the M -partition problem without lists is NP -
complete, and small matrices M for which the M -partitionable chordal graphs cannot be
characterized by finitely many minimal obstructions.

2.3.1 Complexity

The following two results describe families of matrices M for which the M -partition problem
with lists is NP -complete. Theorem 2.3.2 provides a dichotomy for a family of matrices,
when the input is restricted to chordal graphs. It turns out that the constructions involved
in Theorems 2.3.1 and 2.3.2 are in fact split graphs. As such, we delay the presentation of
the proofs of these results until Section 3.5 where they appear as Theorems 3.5.1 and 3.5.3.
For a matrix M and a graph H, say that M corresponds to H if M can be obtained from
the adjacency matrix of H by replacing every 1 entry with an asterisk.

Theorem 2.3.1. [14] Let M be an (A,B,C)-block matrix. Let H be a bipartite graph that
is not the complement of a circular arc graph, and let Z be the matrix corresponding to H.

If A does not contain any 1s, B does not contain any 0s, and C is the matrix Z or its
complement, then the chordal list matrix partition problem is NP -complete.

Further restricting the matrices A and B provides a dichotomy classification on these
types of matrices for chordal graphs. Recall that given a graph H, the matrix MH corre-
sponds to H.
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Theorem 2.3.2. [14] Let MH be a (0, 1, C)-block matrix in which C or its complement
corresponds to a bipartite graph H. If H is the complement of a circular arc graph, then the
chordal list MH-partition problem is polynomial. Otherwise, it is NP -complete.

Even without lists, there are matrices M for which the M -partition problem is NP -
complete, for chordal graphs. In [14], Feder, Hell, Klein, and Nogueria prove that there are
infinitely many matrices M for which the M -partition problem is NP -complete, without
lists, for chordal graphs. Given a bipartite graph H, define the H-retraction problem to be a
restriction of the list H-colouring (edge preserving mapping with lists) problem to instances
G containing H as a subgraph, with lists L(v) = v for v 2 V (H), and L(v) = V (H)

otherwise. It is known that if H is an even cycle of length at least 6, the H-retraction
problem is NP -complete [21]. Concretely, we demonstrate how to obtain a particular matrix
for which matrix partition without lists is NP -complete. Fix H to be the cycle on 6 vertices.
We now explicitly construct a matrix for which chordal matrix partition is NP -complete.
To avoid conflict with existing notation, denote this matrix by cMH

Extend H to a larger bipartite graph H 0, by attaching to each white vertex of H a path
of length five and to each black vertex a path of length four. Note that all the leaves (vertices
of degree 1) of H 0 are black. Denote the leaves of H 0 by L. Denote the black vertices of H 0

by VB(H 0
), and the white vertices of H 0 by VW (H 0

); let k := |VW (H 0
)| and ` := |VB(H 0

)|.
When H ' C

6

, the number of vertices in H 0 is |V (H 0
)| = 33, and |VB(H 0

)| = k = 18. See
Figure 2.3.1

Figure 2.3.1 – The graph H 0

To show that cMH is NP -complete, a reduction is performed from the following problem,
shown to be NP -complete in [14]. Define the weak H 0 retraction problem as follows: Given
a bipartite graph G0 containing H 0, together with a set X ✓ VB(G0

) of size k and satisfying
the property that a vertex of G0 not in X is adjacent to at most one vertex in X, does G0

have an edge-preserving, colour-preserving, mapping of the vertices of G0 to the vertices H 0

such that X is mapped bijectively to VB(H 0
).

We are ready to define cMH . Starting with the 6-cycle H, extend it to H 0 as above. Let
cMH be the (A,B,C)-block matrix in which A is a k ⇥ k matrix, every entry of which is 0;
B is an ` ⇥ ` matrix with 1s on the main diagonal, and asterisks everywhere else; C is the
k ⇥ ` bipartite adjacency matrix of H 0. Thus cMH is a 33⇥ 33 matrix.

25



CHAPTER 2. SURVEY OF MATRIX PARTITION

Theorem 2.3.3. [14] Let H be the cycle on 6 vertices. The cMH-partition problem is NP -
complete.

Proof. Given H, extend it to H 0. Then we have that the resulting weak H 0-retraction
problem is NP -complete, so it suffices to reduce from that. Note that the white vertices of
H 0 correspond to parts of A in cMH and the black vertices of H 0 correspond to parts of B.

If (G0, X) is an instance to the weak H 0-retraction problem, with VB(H 0
) = ` and

VW (H 0
) = k, construct the following graph G00: For each white vertex of G0 add an inde-

pendent set I(a) of size ` + 1. For each black vertex in G0 add a clique K(b) of size 2.
Whenever a and b are adjacent in G0, add edges from all of I(a) to all of K(b). If b, b0 are
black vertices, not both in X, connect the vertices of K(b) and K(b0).

If f 0 is a weak H-retraction, let a be a white vertex. f 0
(a) is mapped to a white vertex vi

since f 0 is colour preserving. Add I(a) to the part Vi. Similarly, a black vertex b is mapped
to a black vertex vj , so that K(b) can be added to the corresponding Vj . Since f 0 is edge
preserving, the relationship between each Vi, Vj is maintained in MH : a and b are adjacent
in G0, if and only if f 0

(a) and f 0
(b) are adjacent in H 0 and the corresponding parts of MH

have all the edges between them.
On the other hand, if G00 admits an MH -partition, then for any black vertex b at least

one vertex of K(b) must be mapped into a part V in B since A is an all-zero matrix.
Define f 0

(b) to be the vertex of H 0 corresponding to V . Further, since each independent set
corresponding to a white vertex a has ` + 1 vertices, but there are ` clique parts in B, at
least one vertex from I(a) is placed in a part V 0 of A. Define f 0

(a) to be the vertex of H 0

corresponding to V 0.
If two black vertices b, b0 are in X then since K(b),K(b0) have no edges between them,

those vertices of K(b) and K(b0) placed in parts of B were placed in distinct parts of B. So
f 0 maps X bijectively to VB(H 0

). If a and b are adjacent vertices then I(a) and K(b) have
all edges between them, so that the parts corresponding to f 0

(a) and f 0
(b) have all edges

between them. i.e. the corresponding (a, b) entry of MH is 1 and since this is the adjacency
matrix of H 0, f(a) is adjacent to f(b). Replace non-adjacent with adjacent in the preceding
argument to obtain that f 0 is edge preserving.

To show that G00 is chordal, consider I(a) for a white vertex a. The vertices in I(a)

are adjacent to at most one K(b) with b 2 X (by definition of X), so that for all b
1

, ...br

adjacent to a, the cliques K(bi) are all mutually adjacent and so form a clique, with 1 6 i 6 r.
Ordering the vertices of I(a) in any order creates a partial simplicial elimination ordering.
Doing this for every I(a) leaves a union of cliques which clearly has a simplicial elimination
ordering.

Remark. For k at least 2, X has at least two vertices so that G00 contains a copy of 2K
2

.
Thus G00 is not a split graph.

On the other hand, if M has a constant diagonal, or the C block of M has a special
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structure, then the chordal M -partition problem is polynomial time solvable.

Theorem 2.3.4. [14] Let M be an m ⇥m matrix. If k = 0 or ` = 0 then the chordal list
M -partition problem can be solved in polynomial time.

In particular, if ` = 0, the chordal list M -partition problem can be solved in time
O(nk(2k)k).

If k = 0, the chordal list M -partition problem can be solved in time O(n2`+d
) for some

constant d.

Say a matrix C is crossed if every non-asterisk entry in C belongs to a row or column
of non-asterisk entries. Say that an (A,B,C)-block matrix M is crossed if its C matrix is
crossed. Examples include any matrix in which C has no asterisk entries and

0

BBBBBBB@

0 ⇤
⇤ 0

C"
⇤ 0

0 1

#

"
⇤ 0

0 1

#

CT

1 0

0 1

1

CCCCCCCA

When C is crossed, the sparse-dense technique introduced in Theorem 1.3.3 yields a
polynomial time algorithm.

Theorem 2.3.5. [14] Suppose M is a crossed (A,B,C)-block matrix. Then the chordal list
M -partition problem can be solved in time O(nk`

).

Proof. Let A be the class of chordal graphs that admit and A-partition, and B be the class
of chordal graphs that admit a B partition. Both A and B are closed under taking induced
subgraphs. Further, If G

1

2 A and G
2

2 B, then G
1

\ G
2

2 A \ B. Therefore, G
1

\ G
2

is
coverable by ` cliques, each of size at most k. It follows that G

1

\G
2

has at most c := k · `
vertices. By Theorem 1.3.3, there are at most n2c choices for a partition of G into induced
subgraphs GA, GB such that GA admits an A-partition and GB admits a B-partition. As
in corollary 1.3.4, for each such partition we modify the lists L(v) into lists L0

(v) for every
v 2 V (G) such that G with the original lists is M -partitionable if and only if G with the new
lists is M⇤-partitionable for a related matrix M⇤, defined below. Specifically, the modified
lists will be used to represent the constraints of the crossed matrix C. Given one partition
GA and GB, for each non-empty part of A, choose at most one vertex of GA, and for each
non-empty part of B choose one vertex of GB. Call these vertices representative vertices, and
note that there are at most (n+ 1)

k+` of them. We perform the following modification for
each choice of representative. Assume the parts of M are numbered {1, ..., k, k+1, ..., k+`},
and let 1 6 i 6 k + `. For each vertex v 2 V (G), call the modified list L0

(v).
If part i is empty, delete it from L(v) for every v 2 V (G). Otherwise, If i < k+1, delete

part i from the list L(v) for every v 2 V (GB). If i > k+1, delete part i from every list L(v)
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such that v 2 V (GA). Let xi be the representative of part i. Delete from L(xi) all parts
other than i. For every neighbour y of xi, delete from L(y) every part j (possibly i = j)
such that M(i, j) = 0; similarly, for every non-neighbour y of xi, delete from L(y) every
part j (possibly i = j) such that M(i, j) = 1. It is left to represent to constraints of C.

If all entries of some row i in C are non-asterisks, define for r 2 {0, 1} the sets Jr of
parts j in B such that C(i, j) = r. Let y 2 V (GB). If y is a neighbour of xi, delete all of
J
0

from L(y). Otherwise, delete all of J
1

from L(y). Note that since row i of C is assumed
to contain only non-asterisk entries, then if y is a neighbour of xi, L0

(y) is contained in J
1

;
if y is a non-neighbour of xi, then L0

(y) ✓ L
0

. Now suppose z 2 V (GA). If some neighbour
y 2 V (GB) of z has L(y) ✓ J

0

, delete part i from L(z). If some non-neighbour y 2 V (GB)

of z has L(y) ✓ J
1

, delete part i from L(z). If all entries of some column j in C are non-
asterisks, we proceed in a fashion similar to the case above, exchanging the roles of A and
B, and of rows and columns.

Let M⇤ be the matrix obtained from M by replacing all entries of C with asterisks.
Then G admits an M -partition respecting the original lists, if and only if G admits an
M⇤-partition with the modified lists, for some choice of representatives. Now G admits
an M⇤-partition respecting the modified lists if and only if it can be partitioned into two
subgraphs GA 2 A and GB 2 B. This can be determined in polynomial time due to
Theorems 2.3.4 and 1.3.3.

2.3.2 Obstructions

When all off diagonal entries of M are asterisks, we are dealing with recognition of (k, `)-
graphs. For this we have the following.

Theorem 2.3.6. [31] A chordal graph G is a (k, `)-graph if and only if it does not contain
(`+ 1)Kk+1

.
Thus when M is the class of all square matrices whose off-diagonal entries are all aster-

isks, and G is the class of cographs, we have fM,G(k + `) = (k + 1)(`+ 1)

However, even for small matrices there exist infinite families of chordal minimal obstruc-
tions. Let M

1

=

⇣
0 ⇤ ⇤
⇤ 0 1

⇤ 1 0

⌘
and M

2

=

⇣
0 ⇤ ⇤
⇤ 0 1

⇤ 1 1

⌘
. For t > 3, let G

1

(t) consist of a path on
2t vertices, together with one more special vertex adjacent to all but the endpoint vertices
of the path. Let G

2

(t) consist of a path on 2t vertices, together with two special vertices
labeled 2t + 1 and 2t + 2. Add an edge in G

2

(t) from every 2t + 1 to every other vertex
by 2t, and an edge from 2t + 2 to every other vertex but 1. See Figure 2.3.2. In [24], the
authors prove that each G

1

(t) for t > 3 is a chordal minimal obstruction to both M
1

and
M

2

. In [15], all chordal minimal obstructions for M
1

and M
2

are described, and it is proved
that each G

2

(t) is a chordal minimal obstruction to M
2

.
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2t+ 1

1 2 3 2t� 1 2t...
...

(i)

...
1 2 3 2t...

2t+ 1 2t+ 2

(ii)

2t� 1

Figure 2.3.2 – Two infinite families of chordal minimal obstructions.

29



Chapter 3

New Results

This Chapter focuses on the matrix partition problem when the input graph is already
known to admit some other partition. For example, if M is an arbitrary matrix, we discuss
the M -partitionability of graphs that admit a split partition, (

0 ⇤
⇤ 1

), graphs that admit a
bipartition, ( 0 ⇤

⇤ 0

), etc.
In Sections 3.1 to 3.3 we focus on split graphs. There are two main results. Firstly, we

show that every matrix M has finitely many split minimal obstructions in Section 3.1, and
present an efficient algorithm for deciding the M -partition problem when M is any matrix
and the input graph is a split graph. Secondly, we exhibit matrices which have exponentially
large split obstructions in Section 3.3. At the time of writing, this is the first known minimal
obstruction of exponential size, in any graph class.

Section 3.4 focuses on graphs that admit other types of partitions, such as bipartite
graphs and (k, `)-graphs. Here we argue that any matrix has finitely many bipartite and
co-bipartite minimal obstructions. Further, when lists are considered, it is possible to find
matrices for which the list matrix partition problem is NP -complete, even for split graphs.
These aspects are discussed in Section 3.5.

3.1 Matrix Partitions of Split Graphs.

Here we prove that for any matrix M , there are finitely many split minimal obstructions.
This is surprising, as the only other graph class for which this is known to be true is the class
of cographs. In contrast, we have seen in Section 2.3.2 that for the class of chordal graphs,
which strictly contains the class of split graphs, there exist small matrices for which there
are infinitely many chordal minimal obstructions. We then present an efficient algorithm
for solving the M -partition problem for a fixed matrix M . This algorithm builds upon the
crossed matrix algorithm of Theorem 2.3.5.

Theorem 2.1.8 from Section 2.1, restated below for convenience, gives a class of matrices
having finitely many minimal obstructions, in the class of all graphs. For the remainder of
this Section, we assume that the matrix M has k diagonal 0s, ` diagonal 1s, and that k > `.
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In the case where k < `, we may interchange the roles of k and ` in what follows.

Theorem 2.1.8 [19] If M is an m⇥m matrix with no asterisk entries and k > `, then any
minimal obstruction for M has at most 2(k + `)(k + 1) + 1 vertices.

Some of the ideas used in the proof of Theorem 2.1.8 can be modified to accommodate
split graphs. Recall that a subset H of the vertex set V (G) is homogeneous if every vertex
not in H is either adjacent to every vertex in H, or non-adjacent to every vertex of H. The
argument of Theorem 2.1.8 uses the existence of a large enough homogeneous set in any
graph that admits an M -partition. More precisely, vertices placed in any part of M form an
independent or clique homogeneous set, so a large enough M -partitionable graph will have
a large homogeneous set. This follows from the fact M has no asterisks. We shall use a
similar idea to prove the following main result of this Section, noting that we may assume
that the matrix C has no asterisks.

Theorem 3.1.1. For any matrix M , there are finitely many split minimal M -obstructions.

Specifically, we shall prove an upper bound on the function fM,G(k + `), where M is
any matrix, G is the class of split graphs, and k, ` denote the number of diagonal 0s and
1s, respectively, in M . Recall that fM,G(k + `) is defined as the size of the largest minimal
M -obstruction in G. We begin with the following fact.

Fact 3.1.2. Let M be an (A,B,C)-block matrix and let G be a split graph. If C has an
asterisk entry, then G admits an M -partition.

Proof. If C has an asterisk, then M contains the matrix (

0 ⇤
⇤ 1

) as a principal submatrix.
Thus G admits this partition by definition.

Thus, we may assume that C contains no asterisks when proving Theorem 3.1.1. In this
case, every part in A is homogeneous with respect to every part in B, but we may have an
asterisk between two parts in A or two parts in B. We prove the following for parts of A,
with the result for parts of B following by complementation.

Proposition 3.1.3. Let A be a k ⇥ k matrix whose diagonal entries are all zero. Let GA

be a split graph that admits an A-partition. Then every part P of an A-partition of GA

contains a homogeneous set in GA of size at least |P |�1

2

k�1 .

Proof. Suppose the parts of the A-partition of GA are P
1

, ...Pk. Let C [ I be a partition
of V (GA) into a clique C and independent set I. Note that for 1 6 i 6 k, we have that
|Pi \ C| 6 1, since each Pi is an independent set. Now, the vertices in the set P

1

\ I are
non-adjacent to all but at most k� 1 vertices, one in each Pi \C, for 2 6 i 6 k (see Figure
3.1.1). Assume without loss of generality that |Pi\C| = 1 and let ui 2 Pi\C, for 2 6 i 6 k.
As each ui is either adjacent to at least half of the vertices of P

1

\ I, or non-adjacent to at
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least half of the vertices of P
1

\ I, a homogeneous set of size at least |P1|�1

2

k�1 can be found in
|P

1

|. Since this argument may be repeated for any other part in the partition, we have the
desired conclusion.

...

C

P1 P2 P3 Pk�1 Pk

I

Figure 3.1.1 – Structure of a k-partite split graph

Corollary 3.1.4. Let B be an ` ⇥ ` matrix whose diagonal entries are all 1. Let GB be a
split graph that admits a B-partition. Then every part P of a B-partition of GB contains a
homogeneous set in GB of size at least |P |�1

2

`�1 .

Proof. Recall that the graph GB admits an M -partition if and only if GB admits an M -
partition. The matrix M is an ` ⇥ ` matrix with diagonal entries all 0, and GB is a split
graph, by the note above Theorem 1.3.2. Letting P be a part of M , we have that by
Proposition 3.1.3, GB contains a homogeneous set of size at least |P |�1

2

`�1 . As the complement
of a homogeneous set is homogeneous, this set is homogeneous in GB as well.

Proposition 3.1.3 allows us to bound the value of fM,G(m), proving Theorem 3.1.1.

Theorem 3.1.5. Let G be the class of split graphs. For k, ` 2 N, suppose k > `. Then for
any matrix M without diagonal asterisks we have,

fM,G(k + `) 6 2

k�1

(k + `)(2k + 3) + 1.

Proof. Let M 2 M be an (A,B,C)-block matrix and assume without loss of generality
that C contains no asterisks. We claim that any minimal obstruction has at most 2k�1

(k+

`)(2k + 3) + 1 vertices. Assume for contradiction that G is a minimal obstruction with at
least 2k�1

(k+ `)(2k+3)+ 2 vertices. Pick an arbitrary vertex v and consider a partition of
the graph G� v on at least 2k�1

(k+ `)(2k+ 3)+ 1 vertices. As there are k+ ` parts in the
partition, by the pigeonhole principle there is a part, call it P , of size at least 2k�1

(2k+3)+1.
This part P is either an independent set or a clique, and each of these cases will be considered
separately below. Either way, by Proposition 3.1.3 P contains a homogeneous set in A or B
(depending on whether P is an independent set or a clique) of size at least |P |�1

2

k�1 > 2k + 3,
and since C has no asterisks, this set is homogeneous in G. Thus G� v has a homogeneous
set of size at least 2k + 3, and so G has a homogeneous set H of size at least k + 2, since
by the pigeonhole principle at least k + 2 of the vertices of P agree on v. Now let w 2 H,
consider a partition of G�w, and recall that P is either an independent set or a clique.
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Case 1. If P is an independent set, then so is H; hence, there are at least k+1 independent
vertices in G � w. As there are ` 6 k clique parts in the partition of G � w, and no
two independent vertices of H may be placed in the same clique part, at least one vertex
w0 2 H � {w} must be placed in an independent part P 0. Since w is not adjacent to w0 and
both vertices belong to H, w can be added to P 0, contradicting the minimality of G.

Case 2. If P is a clique then H �w is a clique of size at least k + 1, and so in the partition
of G � w, at least one vertex of H � w falls in a clique part P 0. As in Case 1, w can be
added to P 0, contradicting minimality.

Having shown that every matrix M has finitely many split minimal obstructions, we
obtain a polynomial time algorithm for the M -partition problem. However, a more efficient
algorithm is obtained in what follows. Recall that a matrix M is crossed if each non-asterisk
entry in its block C belongs to a row or column in C of non-asterisk entries. For chordal
graphs, Theorem 2.3.5 tells us that if M is a crossed matrix, then the list M -partition for
chordal graphs can be solved in polynomial time. Since split graphs are chordal, the same
result applies for split graphs, and we can use this to solve the M -partition problem for split
graphs in polynomial time.

Theorem 3.1.6. If G is a split graph, then for any matrix M the M -partition problem can
be solved in time O(nk`

)

Proof. Let M be an (A,B,C)-block matrix, and G be a split graph. If C contains an
asterisk, then the matrix (

0 ⇤
⇤ 1

) is a submatrix of M so G admits an M -partition. Otherwise,
as there are no asterisks in C, every non-asterisk entry belongs to a row or column of non-
asterisk entries. That is, C is trivially crossed, and since split graphs are chordal, we apply
Theorem 2.3.5, with the list L(v) containing all parts of M , for every vertex v of G. The
bound O(nk`

) is obtained from Theorem 2.3.5.

3.2 Matrices with Constant Diagonal

Examining an arbitrary matrix M , as in the previous Section, provides a rough upper bound
on the size of a largest split minimal obstruction for M . On the other hand, by restricting
the matrices so that all diagonal entries have the same value d 2 {0, 1}, we expose some of
the structure found in a split minimal obstruction.

Let M
0

be the class of matrices having all diagonal entries zero, and let M
1

be the
class of matrices having all diagonal entries one. Define Mc = M

0

[ M
1

as the class of
matrices with constant diagonal. When M 2 Mc, we can describe the structure of minimal
M -obstructions in more detail. Since the complements of split graphs are split graphs, and
a matrix M 2 M

0

if and only if its complement M 2 M
1

, we may focus on M
0

, obtaining
complementary results for the obstructions to matrices in M

1

.
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Suppose M 2 M
0

, so that m = k and ` = 0. If all of the off diagonal entries of M are
asterisks then M is the colouring matrix Ck. Since split graphs are perfect, the only split
minimal M -obstruction is Kk+1

. If M 6= Ck, then for some r 6 k + 1, Kr is a minimal
obstruction (the value of r depends on the number and arrangement of off diagonal 0s in
M), and any other split minimal obstruction G has clique number k0 6 r � 1 6 k.

Let K be a clique in a graph G. For a selection of s 6 |K| vertices k
1

, ..., ks from K,
define the satellite set S({k

1

, ..., ks}) as the set of vertices of G �K whose neighbourhood
in K consists exactly of the vertices k

1

, ..., ks. For example, the satellite S(;) consists of
vertices not adjacent to any vertex in K, the satellite S({k

1

}) each consists of vertices only
adjacent to the vertex k

1

, and so on. Note that the satellites of K partition V (G), and
that if K is of size !(G), then S(K) must be empty. We are now ready to state the main
Theorem of this Section.

Theorem 3.2.1. Let M 2 M
0

and G be a split graph. Let K be a maximum clique in G.
If G is a minimal M -obstruction, then for any X ( K, the set S(X) contains at most one
vertex.

The main idea of the proof to follow is that two vertices u and v, belonging to the same
satellite set of a maximum clique in a split minimal obstruction must have a vertex that
distinguishes them. Therefore they cannot be placed in the same part of any M -partition.
However if u and v are distinguished in such a way, then the neighbourhood of one of them,
say u, is small enough that, in a partition if G � u, we can find at least one other part in
which to place u, contradicting the minimality of G. The details of this approach follow.

We first show that distinct vertices belonging to (possibly distinct) satellite sets interact
in a very limited way.

Lemma 3.2.2. Let G be a split graph with maximum clique K. Suppose X,Y ( K and let
x 2 S(X) and y 2 S(Y ). If x ⇠ y, then X ( Y or Y ( X. Further, the larger of X and Y

is of size |K|� 1.

Proof. Suppose x ⇠ y. Then X 6= Y . Suppose otherwise, and note that either |X| = |K|�1,
or |X| 6 |K|� 2. If |X| = |K|� 1 then {x, y}[K forms a clique of size |K|+ 1, but |K| is
assumed to be a maximum clique. If |X| 6 |K|�2, then there are two vertices w, z 2 K�X

such that {x, y} 6⇠ {w, x}. But then G[x, y, w, z] ' 2K
2

. Thus X 6= Y . Now if Y 6✓ X, then
Y is not empty, and if X 6✓ Y , then X is not empty. Let w 2 X � Y and z 2 Y �X. Then
w 6⇠ y and z 6⇠ x. But this gives a C

4

in G[x, y, z, w]. Thus X ( Y or Y ( X. Assume
without loss of generality that Y ( X. Further, assume for contradiction that |X| 6 |K|�2.
Then there are at least two vertices w, z 2 K �X, so that x 6⇠ {w, z}. If both w /2 Y and
z /2 Y , then y 6⇠ {w, z} and so G[x, y, w, z] ' 2K

2

. Thus at least one of w, z must be in Y .
But since w /2 X and z /2 X, this contradicts the assumption that Y ( X.

Note that the Lemma states in particular, that no two vertices of any S(X) are adjacent.
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We now continue with the proof of the main Theorem, in two large steps described
broadly as follows. First suppose u and v are two members of some satellite set S(X) for a
maximum clique in a split graph G. Lemma 3.2.2 allows us to argue that if v has a neighbour
that is a non-neighbour of u, then u has a small neighbourhood: u is not adjacent to any
vertex in G, other than the vertices of A. Using this, in the second step we show that if
G� u admits an M -partition, so does G.

Proposition 3.2.3. Let G be a split graph with maximum clique K. Suppose W ( K such
that there are two vertices u, v 2 S(W ) with the property that v has a neighbour in V (G)�K

that is not a neighbour of u. Then NG(u) = W .

Proof. Let u, v, W be as in the statement of the Theorem. Let x be the vertex in V (G)�K

that is adjacent to v but non-adjacent to u, and suppose x 2 S(X) for some X ( K. By
definition, we have that W ✓ NG(u). Assume for contradiction that W 6= NG(u). Then
there is a vertex y of V (G)�K such that y ⇠ u. Say y 2 S(Y ) for some Y ( K. Then G

contains an induced cycle of length at least four. To show this, we must consider two cases
. Note that by Lemma 3.2.2, u cannot be adjacent to v.

Case 1. Suppose |W | = |K|�1. Let w be a vertex of W , adjacent to u and v but non-adjacent
to y. The existence of w follows from the assumption that u ⇠ y since by Lemma 3.2.2 the
size of |W | implies that Y ( W . Then v cannot be adjacent to y, or else G[u,w, v, y] ' C

4

.
Therefore x ⇠ y, otherwise G[v, x, u, y] ' 2K

2

. Thus u 6⇠ {v, x} and y 6⇠ {v, w} and so G

contains an induced C
4

if w ⇠ x or an induced C
5

otherwise.

u y

x

v

w

Figure 3.2.1 – Proposition 3.2.3, Case 1

Case 2. Suppose |W | 6 |K| � 2. Then x 6⇠ y since, by Lemma 3.2.2 and the assumption
that x ⇠ v and y ⇠ u, we have |X| = |Y | = |K|� 1. Thus |Y | = |X| or Y 6✓ X and X 6✓ Y .
Either way, by Lemma 3.2.2 x 6⇠ y and therefore v ⇠ y, else G[v, x, u, y] ' 2K

2

. Further,
Lemma 3.2.2 also gives W ( X and W ( Y so that W ✓ X \ Y . In fact, W = X \ Y .
Otherwise, suppose there exists a vertex w 2 (X \ Y ) � W . Then w is adjacent to both
x and y but not to v. But then G[x,w, y, v] ' C

4

. As this is impossible, W = X \ Y .
Now suppose w

1

2 X � W . Then w
1

cannot be adjacent to y, otherwise w
1

belongs to
Y and so w

1

2 X \ Y = W . Similarly, if w
2

2 Y � W , then w
2

is not adjacent to x.
Therefore w

1

⇠ w
2

, otherwise G[x,w
1

, y, w
2

] ' 2K
2

. Finally, as w
1

, w
2

are both not in W ,
v 6⇠ {w

1

, w
2

}. Thus G[x,w
1,w2

, y, v] ' C
5

.
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v w2

w1x

y

Figure 3.2.2 – Proposition 3.2.3, Case 2

Since G is a split graph, it is chordal, and thus cannot contain an induced cycle of length
greater than three. Thus u cannot be adjacent to vertices in V (G)�K, so NG(u) = W .

The fact that the vertex u of Proposition 3.2.3 is so limited in its neighbourhood, allows
us to distinguish a part P in a matrix partition of G � u, so that u can be placed in P .
Recall that given a numbering of the parts of a matrix M ,P

1

, P
2

, ..., Pm, we refer to the
entry at row i and column j of M by M(Pi, Pj).

Proposition 3.2.4. Let G be a split graph with maximum clique K. Suppose W ( K such
that there are two vertices u, v 2 S(W ) with the property that v has a neighbour in V (G)�K

that is not a neighbour of u.
Suppose M is a matrix whose diagonal entries are all 0. If G � u is M -partitionable,

then G is M -partitionable.

Proof. Suppose x 2 S(X) for some X ( K. By Lemma 3.2.2 and the fact that x ⇠ v,
either X ( W ( K, or W ( X ( K. Either way, there exists a vertex r 2 K � (X [W ),
non-adjacent to all three vertices u, v, and x. Suppose G� u is M -partitionable and let Pr

be the part containing r in an M -partition of G� u. We claim that u can be placed in Pr.
Indeed, u is not adjacent to any vertex in Pr, since by Proposition 3.2.3 u is adjacent only
to members of W , while r /2 W , and r is the only vertex of K in Pk. Further, there is no
part P such that M(P, Pr) = 0 and P contains a neighbour of u, since all the neighbours
of u belong to W ( K, and no member of K can be placed in P as these are all adjacent
to r. Finally, we might be prevented from placing u in Pr if there is a part P for which
M(P, Pr) = 1 but P contains a vertex y that is a non-neighbour of u. Suppose that this is
the case, and say that y 2 S(Y ) for some Y ( K. We show that G contains an induced
subgraph isomorphic to C

5

.

Start by noting that y must be adjacent to r, as M(P, Pr) = 1; hence, r 2 Y . Recall
that by Lemma 3.2.2, we have either W ( X or X ( W . Say without loss of generality that
X ( W (otherwise, exchange the roles of x and v in what follows). Thus |X| 6 |K|� 2 and
|W | = |K|�1 so that W 6✓ Y . Now since r 2 Y �W , it must be that Y 6✓ W . Therefore, by
Lemma 3.2.2, v 6⇠ y. This in turn requires that x ⇠ y; otherwise, G[v, x, r, y] ' 2K

2

. Thus
we have that G[v, x, y, r] is an induced path on four vertices. We now find a vertex r0 that
is adjacent to {v, r} and non-adjacent to {x, y}. This vertex r0 can be found in W � Y . To
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see this, note that x 2 X and y 2 Y are adjacent, while |X| 6 |K| � 2. Lemma 3.2.2 then
gives |Y | = |K|� 1 and X ( Y . As X is also a proper subset of W , we have X ✓ W \ Y .
Now with |W | = |Y | = |K| � 1, and W 6= Y , these sets differ by exactly one vertex. That
is, there is a vertex r0 2 W � Y such that Y = (W � r0)[ {r}. Thus r0 is not adjacent to y,
and since X ✓ W \Y , r0 cannot be in X and is thus not adjacent to x. As r0 belongs to W,

it is adjacent to v and since both r and r0 are members of the clique K, they are adjacent.
This gives an induced cycle on five vertices in G[r0, v, x, y, r].

Theorem 3.2.1 now follows from Proposition 3.2.4.

Proof of Theorem 3.2.1. Suppose G is a split minimal obstruction containing a clique K

of maximum size, and for contradiction suppose u, v 2 S(A) for some A ( K. Then G� u

is M -partitionable but u cannot be added to the part P containing v. Since by Lemma
3.2.2(c) u 6⇠ v, and P is an independent set, this must be because u and v disagree on some
vertex x 2 V (G) � K. Say u 6⇠ x and v ⇠ x. Then by Proposition 3.2.4, since G � u is
M -partitionable, G is M -partitionable, contradicting the minimality of G.

With M
0

, defined earlier as the class of matrices with all diagonal entries equal to zero,
we obtain the following corollary of Theorem 3.2.1.

Corollary 3.2.5. Let G is the class of split graphs. For any M 2 M
0

, we have

fM,G(k) 6 2

k � 1 + k.

Proof. Let M 2 M
0

, and G be a split minimal M -obstruction. Let K be a maximum clique
in G. By Theorem 3.2.1, each satellite of K contains at most one vertex. The satellite
S(K) = ;, since K is a maximum clique. Thus there are at most 2

k � 1 satellites, each
containing at most one vertex. As |K| 6 k, we have that |V (G)| 6 2

k � 1 + k.

Recall that from Section 3.1 we have that for every matrix M from the class of all
matrices M, having size m ⇥ m with m = k + ` and k > `, the size of a minimal M -
obstruction is at most 2

k�1

(k + `)(2k + 3) + 1. Thus, the upper bound for fM,G(m) with
M 2 M

0

is strictly smaller.

3.3 A Special Class of Matrices

Further restricting the entries of the matrix allows for an explicit construction of a par-
ticularly interesting split minimal obstruction. The obstruction obtained in this way is of
exponential size in the dimensions of the matrix. As seen in Chapter 2, most known up-
per bounds for the the size of minimal obstructions are exponential (e.g. for cographs it is
am ·m!, where a > 2 and m is the size of the matrix). Further, we note that Theorem 2.2.6
provides an exponential lower bound for the size of the largest cograph minimal obstruction
to the list M -partition problem. The exponential size split construction of this Section thus
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provides the first known exponential lower bound for the matrix partition problem, without
lists. In contrast, we show in [15] that the largest cograph minimal obstruction for the same
matrix M , is of quadratic size in the dimensions of M .

Let M be a k ⇥ k matrix with all diagonal entries zero, and all off diagonal entries of
in {⇤, 1}. Note that the graph representation of M can be considered as a simple graph
in this case, with asterisk entries interpreted as non-edges. Formally, let M 0 be the matrix
obtained from M by replacing every asterisk entry of M 0 by a zero, and let HM be the graph
with adjacency matrix M 0. We characterize some of the split minimal M -obstructions for
matrices M of this form. When HM is particularly simple, this characterization provides a
method of constructing split minimal M -obstructions. Specifically, if HM has exactly one
edge, all M -obstructions are explicitly constructed; if HM consists of star and a stable set,
an M -obstruction is constructed that is of exponential size in k. This is the first known
minimal obstruction of exponential size, for any class of graphs for which there are finitely
many minimal M -obstructions, without lists. We start with some preliminary information
on M -partitionable split graphs. For any m⇥m matrix M , say that part i is an indpendent
part if M(i, i) = 0 and that part i is a clique part if M(i, i) = 1, with 1 6 i 6 m.

Fact 3.3.1. If two independent parts i and j of a matrix M have M(i, j) = 1, then in any
M -partition of a chordal graph G, at least one of these parts is of size at most 1.

Proof. If both parts have at least two vertices, a, b in part i and c, d in part j, then
G[a, c, b, d] ' C

4

.

Lemma 3.3.2. Let G be a split graph with !(G) = m. Then there is a clique K of size m

in G for which
S

X✓K S(X) is an independent set.

Proof. Let K be a clique in G. If
S

X✓K S(X) is already an independent set there is nothing
to prove, so suppose u, v 2 S

X✓K S(X) and u ⇠ v. By Lemma 3.2.2, u 2 S(Y ), v 2 S(X)

with |X| = m � 1 and Y ( X ( K, so that u is adjacent to at most m � 2 vertices of K.
Now in a partition of G into a clique C and independent set S, |K\S| 6 1. If u were placed
in C, however, at least two vertices of K must be placed in S, so u must be in S implying
that v belongs in C, as u and v are adjacent. Therefore the single vertex k of K that v is
not adjacent to must be in S and C forms a clique of size m whose union of satellite sets is
equal to S.

We now restrict our attention even further, to matrices M for which the graph HM is
partitionable into a star graph and an independent set. For k, t,N, with 1 6 t 6 k � 1, let
Mk,t be a k ⇥ k matrix with diagonal entries all zero, t 1s in row k, symmetrically, t 1s in
column k and asterisks everywhere else. By permuting the rows and columns of Mk,t we
assume without loss of generality that the 1 entries of row k are in columns m� t, ...,m� 1

and symmetrically, that the 1 entries of column k are in rows k � t, ...,m � 1. See Figure
3.3.1 for example matrices.
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0 ⇤ ⇤
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⇤ 1 0
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A

M3,1

P1 P2 P3 P1 P2

P3

HM3,1

0

BB@

0 ⇤ ⇤ ⇤
⇤ 0 ⇤ ⇤
⇤ ⇤ 0 1

⇤ ⇤ 1 0

1
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M4,1
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HM4,1

HM5,3

0

BBBB@
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⇤ ⇤ ⇤ 0 1

⇤ 1 1 1 0

1

CCCCA

M5,3

P1 P2 P3 P4 P5 P1 P2 P3 P4

P5

Figure 3.3.1 – Matrices Mk,t and graph representations, k 2 {3, 4, 5}, t 2 {1, 3}

Of special interest are the matrices Mk,1, for k 2 N. When k = 3, there are infinitely
many chordal minimal M

3,1-obstructions [24]. In contrast, the largest split minimal Mk,1-
obstruction is of quadratic size in k, for any k 2 N. Specifically, we have the following.

Theorem 3.3.3. If G is the class of split graphs then

fMk,1,G(k) 6 k2+k+2

2

.

The proof of Theorem 3.3.3 follows from a characterization of Mk,1-partitionable split
graphs.

Theorem 3.3.4. Let G be a split graph with maximum clique K of size k.
Then G is Mk,1-partitionable if and only if there exist vertices u, v 2 K such that S(K�

{u}) = S(K � {u, v}) = ;.

Proof. ) If G is Mk,1-partitionable then every part of the partition contains exactly one
vertex of K. Let P and P 0 be the parts of the partition such that Mk,1(P, P 0

) = 1. Then
one of these parts, say P , is of size exactly one containing a single vertex u of K. It must
be then that S(K � {u}) = ;. Further, if v is the vertex of K placed in P 0, then a vertex in
S(K � {u, v}) must be placed in either P or P 0. As Mk,1(P, P 0

) = 1, this is impossible, so
S(K � {u, v}) = ;.

( Let K be a clique as in Lemma 3.3.2, let u, v be members of K satisfying S(K�{u}) =
S(K � {u, v)} = ;, and let Pu and Pv be the parts of Mk,1 for which Mk,1(Pu, Pv) = 1. We
produce an Mk,1-partition of G. Start by placing u into Pu and v into Pv; distribute the
remaining m � 2 vertices of K into the remaining parts of M arbitrarily, one vertex into
each part. It is left to deal with vertices of G that are not in K. For w 2 K, refer to the
part containing w as Pw, and consider x 2 S(X) for some X ( K. If {u, v} ✓ X, then there
is at least one vertex w 2 K � A. Place x in Pw. If u 2 X but v /2 X, place x in Pv, and
if u /2 X but v 2 X, then since S(K � {u}) = ;, we have X 6= K � {u} so there is at least
one other vertex w 2 K non adjacent to x, and x can be placed in Pw. Finally, if u, v both
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do not belong to X, then as S(K � {u, v}) = ;, we have A 6= K � {u, v} so a vertex w 2 K

exists that x is not adjacent to.

We state the negation of Theorem 3.3.4 as a corollary.

Corollary 3.3.5. A split graph G is an Mk,1-obstruction if and only if for every pair of
vertices u, v 2 K, either S(K � {u}) 6= ; or S(K � {u, v}) 6= ;.

This allows us to find an upper bound for the largest split minimal Mk,1-obstruction.

Proof of Theorem 3.3.3: Fix k 2 N. A split graph G of maximum clique size at most
k � 1 is Mk,1-partitionable and so cannot be an obstruction. On the other hand, the graph
Kk+1

is a split minimal Mk,1-obstruction having k+1 6 k2+k+2

2

vertices. Thus we consider
minimal Mk,1-obstructions of maximum clique size k. For s > 0, let Gs be a split graph
containing a clique K of size !(Gs) = k, such that K has s vertices u

1

, ...us for which
S(K � {u

1

}) = S(K � {u
2

}) = ... = S(K � {us}) = ;. If Gs is a minimal Mk,1-obstruction,
then by Corollary 3.3.5, Gs must have exactly k � s vertices v

1

, ..., vm�s for which each
S(K � {vi}) is not empty, together with

�s
2

�
pairs of vertices for which S(K � {ui, uj}) 6=

;, and s(k � s) pairs of vertices for which S(K � {ui, vj}) 6= ;. This gives a total of
k + (k � s) +

�s
2

�
+ s(k � s) vertices. This value is maximized when s = k � 2:

• If s = k, then

k + (k � s) +

✓
s

2

◆
+ s(k � s) =

k(k + 1)

2

• If s = k � 1, then

k + (k � s) +

✓
s

2

◆
+ s(k � s) =

k2 + k + 2

2

• If s = k � 2 then

k + (k � s) +

✓
s

2

◆
+ s(k � s) =

k2 + k + 2

2

• If s = k � r where 3 6 r 6 m, then

k + (k � s) +

✓
s

2

◆
+ s(k � s) =

k2 + k � r(r � 3)

2

6 k(k + 1)

2

Figure 3.3.2 lists the graphs Gs for different values of s 2 {0, ..., 4}, when m = 4. Note
that G

3

is not a minimal M
4,1-obstruction.
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s = 0 s = 1 s = 2

s = 3 s = 4

Figure 3.3.2 – Obstructions for Mk,1, with m = 4.

We now exhibit certain split minimal obstructions for a matrix in the family matrices
Mk,t, for a particular value of t. These obstructions will be of exponential size, in the
dimensions of the matrix.

Theorem 3.3.6. There exist k, t 2 N such that for the matrix M = Mk,t,

fM,G(k) >
�
⇡ k�1

2

�� 1
2 · 2k�1

+ 2k � 1

Proof. We choose values of k and t so that the matrix Mk,t has a minimal split obstruction
of the desired size. Let k = 2n+1 for some n 2 N, so that the matrix Mk,t has 2n+1 parts.
Let t = n, place 1s in row 2n + 1 and columns n, n + 1, ...2n and symmetrically in column
2n + 1 and rows n, n + 1, ..., 2n. The part in row and column 2n + 1 is designated P , and
designate the n parts that have a 1 to P as restricted parts, R

1

, ..., Rn and the remaining n

parts as unrestricted parts, U
1

, ..., Un. See Figure 3.3.3.
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a

B

2n

B0

2n

...
n

S

�2n
n

�

d(a) = 4n
d(b0) = 2n
b0 2 B0

b0bn

n

P

U1 U2 Un

...

...

R1 R2 Rn

Figure 3.3.3 – The matrix M2n+1,n (left) and an obstruction G (right)

The minimal obstruction G, depicted in Figure 3.3.3, has a special vertex a, and 2n

vertices forming a clique B, all of which are adjacent to a (so that B [ {a} is a clique of size
2n + 1); another 2n vertices forming an independent set B0 such that for each b 2 B there
is a b0 2 B0 that is not adjacent to b but adjacent to every other vertex of B [ {a}. Call b
and b0 mates. Finally, G has an independent set S of size

�
2n
n

�
such that for every subset ˜B

of B of size n, there is exactly one vertex s 2 S adjacent to exactly the vertices of ˜B. Note
that G is a split graph since B [ {a} is a clique and B0 [ S is an independent set, as seen
in Figure 3.3.4.

a

B

2n

B0

2n

...
n

S

�2n
n

�

d(a) = 4n
d(b0) = 2n
b0 2 B0

b0b

Figure 3.3.4 – A split partition for G.

To see that G is indeed an obstruction, suppose otherwise, and note that B [ {a} is a
clique of size 2n+ 1, so each of these vertices must be placed in a different part. Since each
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vertex of B has a mate in B0 that is adjacent to a and all of the other vertices in B, all parts
other than the part containing a have size at least two in any Mk,t-partition of G. Thus
only the part containing a may be a singleton. Further P must be the only singleton part,
otherwise all of the restricted parts must be singletons. Therefore a 2 P . Now whichever n

vertices of B are placed in the unrestricted parts, as in Figure 3.3.5, there is a vertex s 2 S

adjacent to exactly these vertices, and so must be placed into one of the restricted parts.
But as s is not adjacent to a, it cannot be placed in a restricted part, and s can’t be added
to P ; hence, G is not Mk,t-partitionable.

n

n

P

U1 U2 Un

bn+1, b0n+1bn+2, b0n+2 b2n, b02n

b1, b01 b2, b02 bn, b0n

...

...

R1 R2 Rn

a

...
b1 b2 bn

a

s 2 S

Figure 3.3.5 – An attempt to partition G.

To argue that G is a minimal obstruction, we show that removing a vertex from one of
S,B,B0, or {a} allows a partition for the resulting graph:

(i) For s 2 S partition G� s as follows: map a to P , place each b 2 B, together with its
mate b 2 B0, in some part, taking care that neighbours of the missing s are placed in
unrestricted parts. Now each remaining vertex of S has an unrestricted part to go to.

(ii) We consider b 2 B together with its mate b0 2 B0. For G � b, place a in P , place b’s
mate b0 in an unrestricted part Pb0 , and place all of S and all of B0 in Pb0 . This is
possible since B0 [ S form an independent set. place the remaining 2n� 1 vertices of
B to the remaining 2n � 1 parts arbitrarily. To partition G � b0, place b in P , and
place a together with all of the vertices of S in an unrestricted part Pa, and place each
other pair of mates v, v0 from B and B0 into a part, different from P and Pa.

(iii) Finally, G� a can be partitioned using the restricted and unrestricted parts only, not
placing anything in P . Place each b and its mate b0 into a part. Each s 2 S is only
forbidden from n out of the 2n parts and so can be placed somewhere.
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Now G has 2k � 1 +

�k�1

k�1
2

�
= 4n+ 1 +

�
2n
n

�
vertices, and using Stirling’s approximation, we

get

2

k�1

q
⇡ k�1

2

=

2

2n

p
⇡n

6
✓
2n

n

◆
6 2

2n

p
⇡n

⇣
1� c

n

⌘
=

2

k�1

q
⇡ k�1

2

⇣
1� c

n

⌘
,where

1

9

< c <
1

8

So that G is of size exponential in m.

Recall that for a class of matrices M, we define fM,G(m) = sup{fM,G(m)|M 2 M}. In
Section 3.1, we found that fM,G(k+ `) 6 2

max{k,`}�1 · (k+ `) · (2 ·max{k, `) + 3)+ 1, where
M is the class of all matrices with no diagonal asterisks. Since for any k, t 2 N the matrix
Mk,t is a member of M we obtain nearly tight bounds in the following Corollary.

Corollary 3.3.7. Let M be the class of all matrices with no diagonal asterisks, and G be
the class of split graphs. For any m 2 N, with m = k + `, and k > `. Then,

�
⇡ k�1

2

�� 1
2 · 2k�1

+ 2k � 1 6 fM,G(m) 6 2

k�1 · (k + `) · (2 · k + 3) + 1

Finally, we contrast these results for split graphs with the fact that, for the class of
cographs, the same matrices Mk,t with k, t 2 N have minimal obstructions of fairly simple
structure and small size. We state the main results here; see [15] for the details.

Theorem 3.3.8. The cograph minimal obstructions for Mk,t are either Kk+1

, or have the
form (Kr1 [ Kk�t) � (Kr2 [ Kk�t) � ... � (Kr` + Kk�t) where r

1

+ ... + r` = k and each
r
1

> k � t+ 1 for i 6 i 6 `.

Therefore, the largest cograph minimal obstruction to Mk,t has size O(k2).

3.4 Generalized Split Graphs.

In this Section we examine some (k, `) graphs, other then (1, 1)-graphs. We start by dis-
cussing (2, 0) and (0, 2) graphs, of which any matrix M has only finitely many minimal
obstructions. We then examine (k, `) graphs when k + ` > 3, exhibiting matrices for which
there are infinitely many (k, `) minimal obstructions. The families of graphs in these con-
structions are chordal, except for the cases in which k 6 1. It is therefore natural to discuss
(k, `)-chordal graphs, when k 6 1.

3.4.1 Bipartite or Co-bipartite Graphs

Let G be a bipartite graph. In the language of matrices, G admits an (

0 ⇤
⇤ 0

)-partition. Thus
any matrix containing (

0 ⇤
⇤ 0

) as a submatrix does not have any bipartite minimal obstructions.
For the remainder of this Section, let M be an (A,B,C)-block matrix in which A has no
asterisks. We proceed with an approach similar in nature to that used in Section 3.1. That
is, given an M -partition for a bipartite graph G, we argue for the existence of a large
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homogeneous set in one of the parts of the M -partition, and use this set to bound the size
of the largest bipartite minimal M -obstruction. The details follow.

Proposition 3.4.1. Let M be an (A,B,C)-block matrix, with A of size k ⇥ k and B of
size `⇥ `. Suppose the block A has no asterisk entries. If G is an M -partitionable bipartite
graph, then any part P of A in an M -partition of G, contains a homogeneous set of size at
least |P |

2

2l .

Proof. Fix a bipartition of G and let P be a part of A in an M -partition of G. As A has no
asterisks, the vertices of P all have the same adjacency relation to vertices in other parts of
A. Let P 0 be a part of B. Since G is bipartite, P 0 can have at most two vertices, one from
each part of the bipartition of G. Let these vertices be x and y. Then by the pigeonhole
principle x is either adjacent or non-adjacent to at least half of the vertices of P 0, call the set
of these vertices P 00, and y is either adjacent or non-adjacent to at least half of the vertices
of P 0 and we call the set of these vertices P 000. Note that |P 000| > |P |

2

2 . Now there are ` � 1

more clique parts, each of size at most two. Inductively, we obtain a homogeneous set in P

of size at least |P |
2

2` .

Theorem 3.4.2. Let m > 1, and M be an (A,B,C)-block, m ⇥m matrix. M has finitely
many bipartite minimal obstructions

Proof. As discussed, we may assume that A contains only entries in {0, 1}. We show that
any bipartite minimal obstruction has at most 22`(k+`)(2`+3) vertices. Suppose otherwise,
and let G be a minimal obstruction with at least 2

2`
(k + `)(2k + 3) + 1 vertices. For an

arbitrary v, G � v is M -partitionable, and so some part P in an M -partition of G � v

contains at least 22`(2`+3) vertices. Since 2

2`
(2`+3) > 3 for ` > 0, and no clique part of M

may contain more than two vertices, P must be an independent set. Thus by Proposition
3.4.1, P contains a homogeneous set of size at least |P |

2

2` > 2`+ 3, and so by the pigeonhole
principle, G has an (independent) homogeneous set H of size at least `+2. Let h 2 H, and
consider a partition of G�h. As there are only ` cliques and `+1 vertices in H�{h}, there
must be a part P 0 of A that contains a vertex h0 of H � {h}. But since H is an independent
set and h has the same neighbourhood as h0, we may add h to P 0, thus obtaining a partition
for G, a contradiction.

By complementation, a similar result can be proved for (0, 2)-graphs.

Theorem 3.4.3. Let m > 1, and M be an (A,B,C)-block, m ⇥m matrix. M has finitely
many co-bipartite minimal obstructions.

Proof. If the block B of M contains asterisk entries, then any co-bipartite graph admits an
M -partition. Assume that B contains no asterisks, and let G be a co-bipartite graph. The
complement matrix M is a (B,A,C)-block matrix in which B only has entries in {0, 1}.
As M has finitely many bipartite minimal obstructions, M has finitely many co-bipartite
minimal obstructions.
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Remark. Interestingly, if a matrix M does contain (

0 ⇤
⇤ 0

) as a submatrix, it is unfriendly;
hence, there are infinitely many minimal obstructions to M -partition, unrestricted to any
graph class [25]. By Theorem 3.4.2, none of these obstructions is bipartite.

3.4.2 (k, `)-graphs with k + ` > 3

For the matrix M =

⇣
0 ⇤ ⇤
⇤ 0 1

⇤ 1 0

⌘
, the family of graphs depicted in Figure 2.3.2 is an infinite

family of chordal minimal obstructions [24]. We redefine G(t) here for convenience. Let
t > 3. The graph G(t) consists of a path on 2t vertices, and a special vertex u. The vertex
u is adjacent to all vertices of the path except its endpoints. Note that G(t) is not bipartite.

Proposition 3.4.4. Let t 2 N. Each G(t) is 3-colourable and is partitionable into a bipartite
graph and a clique.

Proof. The graph G(t) consists of an even path on 2t vertices, which can be coloured using
two colours. The special vertex u of G(t) may be coloured using a third colour. Further,
this last colour class contains a single vertex and so may be considered a clique.

Corollary 3.4.5. The matrix M =

⇣
0 ⇤ ⇤
⇤ 0 1

⇤ 1 0

⌘
has infinitely many (2, 1) \ (3, 0) minimal

obstructions. The matrix M has infinitely many (1, 2) \ (0, 3) minimal obstructions.

This allows us to prove the following.

Theorem 3.4.6. If k, ` 2 N such that k + ` > 3, then there exists a matrix M that has
infinitely many (k, `) minimal obstructions.

Proof. Let k, ` 2 N such that k + ` > 3. Let M =

⇣
0 ⇤ ⇤
⇤ 0 1

⇤ 1 0

⌘
. If k 6 1 then ` > 2, and every

member of the family of graphs {G(t)|t > 3} is a minimal M -obstruction that is also a
(k, `)-graph. If k > 2, then every member of the family of graphs {G(t)|t > 3} is a minimal
M -obstruction that is also a (k, `)-graph.

Note that as shown in [24], the graphs G(t) are chordal. This gives the following Corol-
lary.

Corollary 3.4.7. Let k, ` 2 N, such that k + ` > 3. If k > 2, then there exists a matrix M

that has infinitely many (k, `)-chordal minimal obstructions.

On the other hand, the complement of any G(t), with t > 3 is not a chordal graph, as
the edges at either end point of the path on 2t vertices in G(t) form a 2K

2

. Thus the graph
G(t) contains an induced subgraph isomorphic to C

4

. While Theorem 3.4.6 gives infinitely
many (k, `) minimal obstructions when k 6 1, we do not know whether there are infinitely
many (k, `)-chordal minimal obstructions when k 6 1.

Conjecture 3.4.8. Let k, ` 2 N, such that k + ` > 3. If k 6 1, then there exists a matrix
M that has infinitely many (k, `)-chordal minimal obstructions.
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3.5 Algorithmic Aspects

In Section 3.1 it is shown that every split M -partition problem is polynomial time solvable.
However, when dealing with list M -partition problems, we exhibit in this Section matrices
M for which the list M -partition problem is NP -complete, even for split graphs.

In [14], the authors described how to obtain infinitely many matrices M for which the
list M -partition problem is NP -complete even for chordal graphs. We shall review these
proofs and conclude that for the matrices M provided, list M -partition is NP -complete
even for split graphs. In addition, an infinite family of matrices M 0 is provided for which
M 0-partition (without lists) is NP -complete for chordal graphs. We reproduce the results
here in further detail, noting that many of the algorithmic results for split graphs follow
from them.

Let H be a fixed bipartite graph with bipartition into white and black vertices, and let
M be obtained from the adjacency matrix of H, by replacing each occurrence of a 1 by an
asterisk. The matrix obtained in this way is an (X,Y, Z)-block matrix, with the X and Y

blocks consisting entirely of 0s and corresponding to the white vertices and black vertices of
H, respectively, and the off diagonal matrix Z describing adjacency between the white and
black vertices of H - the (i, j) entry of C is ⇤ if vertices i and j are adjacent in H, and is 0

otherwise. Say that Z corresponds to H. For a fixed H, the proof constructs a particular
matrix MH related to H and provides reduction from the list H-colouring problem to the
list MH -partition problem. Thus a suitable graph H for which the list H-colouring problem
is NP -complete will produce a matrix MH for which list MH -partition is NP -complete.
The graph constructed in the reduction is a split graph, and is therefore chordal.

Theorem 3.5.1. [14] If H is a bipartite graph for which list H-colouring is NP -complete,
then there is a matrix MH for which list MH-partition is NP -complete, even for split graphs.

Proof. Let MH be an (A,B,C)-block matrix with diagonal asterisks allowed such that entries
of A are restricted to {0, ⇤}, the entries of B are restricted to {1, ⇤} and C is the matrix Z

corresponding to H. Note that each part Pv of MH corresponds to vertex v of H. Further,
since H is bipartite, we may assume that any input G is bipartite, and that the white vertices
of G have lists corresponding to white vertices of H, and that the black vertices of G have
lists corresponding to black vertices of H. Given a bipartite graph G as input to the list
H-colouring problem, let G0 be the graph obtained by from G by adding all edges between
black vertices, thus producing a clique. The lists of G0 are the same as the lists of G. If
G admits a list H-homomorphism f , let Pv = f�1

(v) for every v 2 H. Now white vertices
are mapped to white parts and A has no 1s. Similarly, black vertices are mapped to black
parts and B has no 0s. Thus Pv = f�1

(v) is an MH -partition if every part of A satisfies the
appropriate C constraint to every part of B. Because f is a homomorphism, this is in fact
the case. On the other hand, a list MH partition of G0 describes a list homomorphism of G
to H by letting f�1

(v) = Pv for every v 2 H, and the same argument applies.
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Note that the graph G0 produced in the construction is a split graph, since the black
vertices of G0 form a clique and the white vertices of G0 form an independent set.

It is known that if a bipartite graph H is the complement of a circular arc graph, then
the list H-colouring problem is polynomial time solvable, and otherwise it isNP -complete
[21]. Further, if we define the bipartite complement of G as the graph obtained by only
exchanging edges and non-edges between the white and black vertices of G, then we may
obtain the same result for the matrix M 0

H defined as (A,B,C), where C is the complement
of the matrix Z. In other words, we have the following Corollary -

Corollary 3.5.2. Let M be an (A,B,C)-block matrix, with diagonal asterisks allowed. Let
H be a bipartite graph that is not the complement of a circular arc graph, and let Z be the
matrix corresponding to H.

If A does not contain any 1s, B does not contain any 0s, and C is the matrix Z or its
complement, then the split (and hence chordal) list matrix partition problem is NP -complete.

Further restricting the matrices A and B provides a dichotomy on these types of matrices
for chordal graphs.

Theorem 3.5.3. [14] Let MH be an (0, 1, C)-block matrix in which C or its complement
corresponds to a bipartite graph H. If H is the complement of a circular arc graph, then the
chordal list MH partition problem is polynomial. Otherwise, it is NP -complete.

Proof. Assume without loss of generality that C, rather than C, corresponds to H. If H
is not cocircular arc, then by Corollary 3.5.2 the chordal list MH -partition problem is NP -
complete. Otherwise, let G be an input chordal graph to list MH -partition. If G is not a
split graph, then G has an induced 2K

2

. In any MH -partition of G, no edge may placed in
A and no non edge may be placed in B. But then the two edges of the 2K

2

must be placed
in parts of B and so the four non edges of the 2K

2

must also be placed in B, a contradiction.
Thus if G is chordal but not split, then G does not admit an MH -partition. Suppose now
that G is a split graph, partitioned into a clique C and independent set I. We apply the
reduction from the proof of Theorem 3.5.1. That is, for each of the O(n2

) partitions of G
into a clique C and independent set S, let G0

C,S be the bipartite graph obtained from G by
deleting all edges of C. Since H is a co-circular arc graph, the list H-colouring problem is
solvable in polynomial time for G0

C,S .
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