
CHIRAL SYMMETRY BREAKING IN HIGH-TEMPERATURE

SUPERCONDUCTORS AND BIREFRINGENT COLD ATOMS,

HELICITY MODULUS IN LAYERED BOSONS AND PHASE

DIAGRAM OF SUPERCONDUCTOR-INSULATOR TRANSITION

by

Kamran Kaveh

MSc., University of Alberta, 2000

BSc., Sharif University of Technology, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in the

Department of Physics

Faculty of Science

c© Kamran Kaveh 2012

SIMON FRASER UNIVERSITY

Summer 2012

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.



APPROVAL

Name: Kamran Kaveh

Degree: Doctor of Philosophy

Title of Thesis: Chiral Symmetry Breaking in High-Temperature Superconductors

and Birefringent Cold Atoms, Helicity Modulus in Layered Bosons

and Phase Diagram of Superconductor-Insulator Transition

Examining Committee: Dr. J. Steven Dodge, Associate Professor

Chair

Dr. Igor Herbut, Professor

Senior Supervisor

Dr. Michael Plischke, Professor

Supervisor

Dr. Malcolm Kennett, Associate Professor

Supervisor

Dr. Mohammad Amin, Adjunct Professor

Internal Examiner

Dr. Marcel Franz, Professor, Department of Physics, UBC

External Examiner

Date Approved:

ii

lib m-scan5
Typewritten Text
June 26th, 2012

lib m-scan5
Typewritten Text



 

Partial Copyright Licence 

  

 



Abstract

This work is a compilation of several research projects with them main theme being high-temperature

superconductivity.

We construct the field theory of underdoped cuprates beginning with a well-defined d-wave

superconductor and adding the vortex degree of freedom using a singular gauge transformation.

The symmetries of the theory both in the presence and absence of a quasi-particle mass are studied.

Nodal quasi-particles are known to obey a relativistic Lorentz symmetry while their massless nature

represent another symmetry which we will identify as a chiral SU(2) symmetry. It is shown that

2+1 quantum electrodynamics is the effective theory that describes underdoped cuprates in the zero-

temperature pseudogap regime.

We focus on the mechanism of dynamical mass generation in three dimensional quantum elec-

trodynamics and theories with four-fermion interactions. This is a field that has been subject of

extensive research in last two decades. However, our momentum-shell renormalization group ap-

proach is new to the field and through that we are able to estimate the conditions for the mass

generation mechanism and also work out the phase diagram of the theory for charge and inter-

action strength. We discuss the applications of momentum-shell renormalization group to other

four-fermionic theories in the absence of a gauge field. The justification for this is the fact that in

the superconducting regime the system can be described by a massive gauge field theory coupled to

relativistic quasi-particles which effectively represent a four-fermionic theory.

Inspired by the field theory constructed for underdoped cuprates we discuss the superfluid re-

sponse of the underdoped materials using an anisotropic bosonic model and compare it to experi-

ment. The idea is to see how c-axis superfluid density measurements can help one set the parameters

in our field theory for underdoped cuprates. The behaviours of the superfluid responses in both out-

of-plane and in-plane measurements has been detailed as a function of temperature and density

(doping) and it is shown that there is disagreement with the measured c-axis response using the
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conjectured bosonic Hamiltonian. Discussions of the limitations of the layered bosonic model to

explain the superfluid response of a underdoped cuprate is detailed at the end of Chapter 4.

Chapters 5 and 6 digress from the subject of high-temperature superconductivity. Chapter 5

discusses broken chiral symmetry in context of fermions in optical lattices. A particular model

is constructed in which there is broken chiral symmetry for relativistic quasi-particles. However,

the mechanism of symmetry breaking is different from dynamical mass generation. The effects of

different staggered potentials and interactions in this model are briefly discussed.

The final topic is the superconductor-insulator transition (SI) in the context of low-dimensional

disordered systems. We construct a bosonic theory for a conventional BCS superconductor in the

presence of quenched disorder and show that in the phase diagram of the theory the phase-disordered

Bose Glass phase, survives for arbitrary weak-disorder and interaction strengths. The general fea-

tures of such SI transitions are very similar to high temperature superconductors in the pseudogap

regime. The main difference is the absence of nodal quasi-particles and relativistic invariance that

follows from their gapless nature.
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Chapter 1

Effective Field Theory of Phase
Fluctuating High Temperature
Superconductors

The discovery of high temperature superconductivity in cuprates [1] and the rapid raising of the

transition temperature to well above the boiling point of nitrogen has attracted the attention of many

experimental and theoretical physicists. While there are are hundreds of high-Tc compounds, they

all share the layered structure and up of one or more copper-oxide planes (up to seven layers in

mercury-based materials). With an anisotropic crystal structure, it is expected that anisotropic be-

haviour should be observed in the measurements of different quantities. In fact measurements such

as electron transport, penetration depth and superfluid density all indicate that high-Tc superconduc-

tivity is quite two-dimensional, occurring primarily in the cuprate planes.

The parent compounds of the cuprate materials are known to be insulators. In stark contrast with

conventional superconductors where the BCS mechanism works best for metallic type of materials,

this type of insulator is known as a Mott insulator. The concept of a Mott insulator corresponds to

the situation that according to band theory the material should be metallic but is an insulator due

to strong electronic repulsion. Initially different features of the Mott insulators were worked out

in the pioneering works of Mott and Anderson using the electronic Hubbard model. In the cuprate

materials it also follows that the Mott insulator should be an anti-ferromagnet (AF).

The anti-ferromagnetic ground state of these Mott insulator is sensitive to introducing extra

electrons or holes to the system, a mechanism known as doping. One can introduce extra electrons

1
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CHAPTER 1. EFFECTIVE FIELD THEORY OF PHASE FLUCTUATING HTS 2

to the Cu-O planes, or substitute the intra-layer atoms with different type of atoms with different

valence bands. For the case of YBa2Cu3O7 doping is indicated with change in the percentage of

oxygen atoms, YBa2Cu3O6−x.

The other well-established fact about the cuprate superconductors is their pairing symmetry

of their superconducting phase. It has been shown by many different experiments [2] - including

microwave measurements of penetration depth [2]- that Cooper pairs in such materials have a d-

wave symmetry, particularly, a dx2−y2 one which is the possibility imposed by the symmetry of the

lattice. This symmetry of the pairing potential imply that at some point of the Fermi surface the gap

function can go to zero and the quasi-particle system is basically gapless in low energies. The power

law behaviour of specific heat and the linear behaviour of the normal density/penetration depth at

very low temperatures can be explained by the above assumption.

The phase diagram of the cuprate materials has been the subject of an extensive research and

has a very rich form. The phase diagram of a typical high-Tc material for temperature vs. doping

is shown in Fig.(1.1). It is well established that at x = 0 the phase is a well-defined AF. Upon

doping holes the AF order parameter rapidly suppresses and eventually reaches a superconducting

state. The region of phase diagram with doping x less than that of the maximum Tc is called under-

doped region. The not-very-well-defined phase in between AF and d-wave superconductor is known

as pseudogap phase. Angel-resolved photoemission spectroscopy (ARPES) experiments show that

while the superconducting long-range order is gone in this phase as one passes a pseudogap tem-

perature, T ∗, the pairing amplitude is still finite indicating that although the Cooper pairs persist the

long-range superfluid order is lost through a phase disordering mechanism. This part of the phase

diagram is the subject of focus of this Chapter.

The doping corresponding to maximum Tc is known as optimal doping and after that the system

is called overdoped. In the overdoped region cuprates are known to have metallic behaviour (finite

conductivity). The anomalous region above optimal doping is sometimes referred to as the “strange

metal” region. A popular notion is that the strange metal is characterized by a quantum critical point

lying under the superconducting dome.

The emergence of superconductivity from an anti-ferro-magnetically ordered Mott insulating

state seems paradoxical. In conventional materials, the superconducting state arises due to an insta-

bility of the weak interacting Fermi liquid to phonon mediated pairing between electrons (Cooper

instability). It is difficult to imagine the same mechanism in high-Tc cuprates because of the strong

electron repulsion. Beginning from Hubbard model of highly interacting electrons- which describes

as AF state well - another mechanism for the pairing is suggested using an approximation to the
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original Hubbard Hamiltonian known as the t − J model. Mean-field solutions of the t − J model

show d-wave pairing for the electron pairs. In the t− J model the bosonic degrees of freedom that

mediated electrons interactions in conventional superconductors are replaced by a different bosonic

degree of freedom known as slave bosons.

ARPES experiments (see Ref.[3]) show that the superconducting order parameter - pairing am-

plitude - does not go to zero at non-zero temperatures when a cuprate system gradually enters the

underdoped regime from the optimal doping. Thus, it is believed that in the pseudogap regime the

superconductivity is destroyed by phase fluctuation of the quasi particles. The strength of these

phase fluctuations, however, is also mediated by a bosonic field. The destruction of superconducting

order parameters has been seen in disordered two-dimensional materials before and is known to have

the same mechanism as the Kousterlitz-Thouless transition [4]. Bosonic fields in high-Tc materials

represent the magnetic vortex degrees of freedom of the system as cuprates are very strong type-

II superconductors and the coupling between the fermionic (quasi-particle) and bosonic (vortices)

excitations is strong.

In this chapter we closely follow a new field theoretical framework for this phase disordering

beginning from the d-wave state as our starting point. The mechanism of disordering through a

new type of gauge-field was recently suggested by M. Franz and Z. Tesanovic. I.F. Herbut very

soon after showed a d-wave superconductor is unstable with respect to the fluctuations of the gauge

field which results in mass generation for the originally massless excitations, and the mass gen-

erated is the antiferromagnetic order parameter. The two key aspect of this new field theory are

(i) the gauge transformation which transforms the singular/vortex phase of the d-wave order pa-

rameter into a gauge-field minimally coupled to the nodal quasi-particles (ii) the mechanism of

mass generation for nodal quasi-particles coupled to such a singular gauge field. In relevant limits,

the mass generation is shown to be the same as dynamical mass generation in three dimensional

quantum electrodynamics. Remarkably, the mass generation can only happen in low-dimensional

systems (d < 3). This is in the same line as the common belief that the quantum phase transition in

high temperature superconductors is mainly due to the layered, quasi two-dimensional nature of the

cuprates.
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Figure 1.2: Generic temperature-doping phase diagram of cuprate superconductors, showing the
antiferromagnetic (AF), superconducting (dSC) and pseudogap (PG) phases.

is therefore the natural outcome.
Understanding the phase diagram as holes are added is much more complicated. Within the

framework of the BCS theory, the emergence of superconductivity from the antiferromagnetically
ordered Mott insulating state seems paradoxical. In conventional materials, the superconducting
state arises due to an instability of the weakly interacting Fermi liquid to phonon mediated pairing
between electrons[3]; it is difficult to imagine how this pairing can occur in the face of the strong
interactions present in the cuprates. To further complicate the situation, experiments early on found
no sign of an isotope effect in high temperature superconductors[12], thus effectively ruling out the
conventional pairing mechanism.

Another candidate for electron pairing has a magnetic origin and is, thus, consistent with the
cuprate phase diagram. The essence of this mechanism can be seen in the t-J model, which is be-
lieved to capture the important physics near half-filling. The t-J model is derived from the Hubbard
model for large interaction U :

Ht-J = −t
∑

〈i,j〉,σ

c†i,σcj,σ + J
∑

〈i,j〉

(
Si · Sj −

1

4
ninj

)
, (1.1)

Figure 1.1: The typical phase diagram of a cuprate superconductor. T ∗ represents the pseudo-

gap (PG) temperature below which the d-wave state is phase-disordered. Our focus is on the

zero-temperature part of the phase diagram and possible quantum critical point between the anti-

ferromagnetic state (AF) and d-wave superconducting phase (dSc).

1.1 Nodal quasi-particle action

The conventional approach to superconducting phase transitions is to consider the superconducting

state as an instability of the normal phase to some small perturbation - normally weak attractive

interactions. To explain the pseudogap regime and quantum phase transition from a d-wave state

to an anti-ferromagnetic one, we take an opposite approach. We assume the d-wave state which

experimentally and theoretically is known to have sharp d-wave excitations as the starting point

and then proceed to study how under-doping the system from optimal doping can introduce phase

fluctuations and disorder the d-wave state. In this section, however, we proceed beginning with a

review of the BCS d-wave action limit of the electronic Hubbard model and focus on low-energy,

low-temperature behaviours where the nodal excitations dominate.
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Consider the BCS action given by

Sq−p = T
∑

iωn,σ,p

(−iωn + ε(p))c†σ(ω,p)cσ(ω,p)− σ

2
∆(p)c†σ(ω,p)c†−σ(−ω,−p) + h.c., (1.1)

where cσ(ω,p) and c†σ(ω,p) are electronic operators with momentum p, spin σ, and Matsubara

frequency ω. Here a lattice tight-binding model with free particle dispersion εp = −4t ·(cos(pxa)+

cos(pyb)) − µ is assumed where t is the hopping amplitude, µ is the chemical potential and, a,b

are lattice spacings on the x-y plane. The gap function, ∆p = (∆0/2)(cos(px) − cos(py)), is

assumed to have dx2−y2 symmetry. This is dictated by the layered tetragonal crystal structure of

most of the HTS’s. In the action (1.1) we have ignored any quartic interaction between electrons,

and concentrated on the well-defined BCS quasi-particle ground state and the phase fluctuations

around mean-field solutions.

A novel feature of the dx2−y2 pairing symmetry is that the gap function, ∆p, vanishes along lines

px = ±py. These lines intersect the two-dimensional fermi surface at four points in momentum

space. Near these four nodal points, there are electronic excitations with arbitrary low energy.

These low energy excitations dominate well below the transition temperature and lead to power law

corrections in quantities such as the electronic specific heat and penetration depth.

To obtain the low-energy behaviour of the theory, we concentrate on the four nodes of the gap

which appear on the ±π/4,±3π/4 angles around the Fermi surface. Each node is distinguished

by vectors ±KI and ±KII, where KI = (π/2, π/2),KII = (−π/2, π/2) (Fig.(1.2)). Rewrite the

momentum p in a π/4-rotated new coordinates around one node (say KI):

p = pF

(
1

1

)
+ qx

(
1

1

)
+ qy

(
1

−1

)
(1.2)

where qx and qy are the rotated momenta measured from the Fermi surface. The Fermi momentum,

pF , is the amplitude of the wave-vectors Ki. The chemical potential, µ, can be determined from the

fact that the zero energy level lies on the Fermi surface ε(Ki) = 0. Now the free particle dispersion

and gap function can be written in terms of qx and qy as follows:

ε(p) ' 2
√

2t sin(KI,x)qx (1.3)

∆p '
√

2∆0 sin(KI,x)qy. (1.4)
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Figure 2.1: Four nodes of the d-wave order parameter in the Brillouin zone and other defi-

nitions. Dashed line is the putative Fermi surface.

each node i,

Ψi(q, ωn) ≡


c↑(Ki + q, ωn)

c†↓(−Ki − q,−ωn)

c↑(Kī + q, ωn)

c†↓(−Kī − q,−ωn)

 . (2.4)

At T = 0, with q0 ≡ ω, the action may be then written as

S =

�
d3q

(2π)3
Ψ̄(q)Γ0{iq0 + iM(q)}Ψ(q) + U

�
dτd2r

�
Ψ̄(r, τ)BUΨ(r, τ)

�2
. (2.5)

In this expression, M(q) = diag(MI(qx, qy), MII(qy, qx)) and iMi = diag(Hi,Hī) is a

4× 4 matrix defined by

Hi =

�
ξ(Ki + q) ∆(Ki + q)

∆∗(Ki + q) −ξ(−Ki − q)

�
. (2.6)

As usual, Ψ̄ ≡ Ψ†Γ0 with Γ0 = diag(γ0, γ0).1 We have chosen to work with the following
1Given the square matrices T1, T2, · · · Tn, we define diag(T1, T2, · · · Tn) as the block-diagonal matrix

formed by placing T1, T2, · · · Tn on the diagonal.

−π π

π

Thursday, April 19, 2012

Figure 1.2: d-wave gap function of a typical d-wave superconductor and the nodal vectors KI,II.

Adopting a two-component Nambu spinor representation for electronic operators,

Ψ′(2) =

(
c↑(ω,p)

c†↓(−ω,−p)

)
(1.5)

using the above linearized forms of the energy and gap function, the action is subsequently written

in a linearized form,

Sq−p =
∑
iω,p

Ψ′(2)†
I {iω1 + ivFσ3qx + iv∆σ1qy}Ψ′(2)

I + (I→ II, x→ y), (1.6)

where σ’s are Pauli matrices. This can be made into a Lorentz invariant form by introducing the

matrix γ0 = σ2 and defining spinor Ψ̄(2) as γ0Ψ(2). The other two gamma matrices γ1 and γ2 are

σ3 and σ1 respectively. In the real space representation the action would be

Sq−p =
∫ β

0
dτ
∫

d2xΨ̄′(2)
I {γ0∂τ + vFγ1∂x + v∆γ2∂2}Ψ′(2)

I + (I→ II, x→ y). (1.7)
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Correspondingly, the relativistic energy spectrum of the quasi-particles reads as

Eq =
√
v2
Fq

2
x + v2

∆q
2
y . (1.8)

It is well-known that in three-dimensions the fundamental representation of the Euclidean Clif-

ford algebra1 is the set of 2×2 Pauli-matrices. This limits the number of the elements of the Clifford

algebra from 16 in 3+1-dimensions to 4 elements in 2+1-dimensions.

In 3+1 dimensions, there is an extra element of the Clifford algebra that anti-commutes with all

the set of γ-matrices appearing in Dirac action, γ5 = iγ0γ1γ2γ3. The Dirac action is invariant under

the “chiral”-rotations generated by γ5 unless there is an scalar mass term in the action. The distinc-

tion of massive and massless theories from a point of view of symmetry breaking is an important

feature that is missing from our construction above.

Now we proceed by choosing a four-component representation for the spinors around each node

(each node stands for a “flavour” in the spinor representation). Two flavours of the spinors- each

belonging to one node of the gap function will be defined as

ΨI =


c↑(ω,p)

c†↓(−ω,−p)

c↑(ω,p + KI)

c†↓(−ω,KI − p)

 , ΨII =


c↑(ω,p)

c†↓(−ω,−p)

c↑(ω,p + KII)

c†↓(−ω,KII − p)

 . (1.9)

The construction implemented above clearly is not unique. In our definition Eq.(1.9), each field

is composed of two Nambu spinors, one for each of the nodes in diagonally opposed pairs. One could

also combine the spin-reversed states in a similar manner. The choice one makes with regards the

construction of the spinors is dictated by the particular symmetry of the problem. The spin-reversed

combination would recover the full spin-rotation symmetry of the problem, while our choice yields

a hidden chiral SU(2) symmetry. We will elaborate this matter as we proceed.

Using the spinors defined above and the linearized quasi particle dispersion will give rise to the

action

S = T
∑
iω,p

Ψ†I(−iω + vF qxM1 + v∆qyM2)ΨI + Ψ†II(−iω + vF qxM2 + v∆qyM1)ΨII, (1.10)

1A Euclidean Clifford algebra is defined by its generators, γµ, satisfying the anti-commutation relations: γµ, γν =
2δµν .
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where vF ≡ 2
√

2t sin(KI,x), v∆ ≡
√

2∆0 sin(KI,x) and the matrices M1 and M2 are

M1 = i

(
σ3 0

0 −σ3

)
(1.11)

M2 = −i
(
σ1 0

0 −σ1

.

)
(1.12)

The reader should notice the asymmetric role of spinors ΨI and ΨII under the exchange x and

y axes (x ↔ y). The reader might notice that M1 and M2 belong to the SU(2) generators of spin

rotation in a four-component representation. Correspondingly they anti-commute with each other.

This form can also be written in a Dirac form for fermions by introducing an appropriate matrix γ0

which anti-commutes with both M1 and M2. Assuming a general form for γ0 and bearing in mind

that γ0 is Hermitian, the Dirac action now looks like:

S =
∫

d3q

(2π)3
ΨI(iq0γ0 + vF qxγ1 + v∆qyγ2)ΨI + ΨII(iq0γ0 + v∆qyγ1 + vF qxγ2)ΨII, (1.13)

where Ψ is defined as Ψ ≡ Ψ†γ0. The isotropic form of the theory (vF = v∆) would now look like:

S =
∫

d3q

(2π)3

{
ΨI(iqµγµ)ΨI + ΨII(iqµγµ)ΨII

}
. (1.14)

This action represents the spectrum of nodal quasi-particles at low energies. The fact that quasi-

particles are massless is the signature of the chiral symmetry in our theory. Each of the two nodes

now represent a “flavour” for our Dirac field Ψ and the gapless nature of quasi-particles is hidden in

both the linear form of action and the γ-matrices algebra. We proceed by deriving all possibilities

for the proposed γ0 matrix. Writing γ0 in terms of four 2× 2 matrices A,B,C and D,

γ0 =

(
A C

C† B
.

)
(1.15)

A,B,C, and D can be expanded in the basis of 1, σ1, σ2, σ2. For the sake of simplicity we choose

them to be one of the basis members. The conditions that γ0 anti-commute with both M1 and M2

and also squares to unity determines the unknown components A,B,C, and D.

γ0M1 = −M1γ0 =⇒ {A, σ3} = 0, {B, σ3} = 0, [C, σ3] = 0.

γ0M2 = −M2γ0 =⇒ {A, σ1} = 0, {B, σ1} = 0, [C, σ1] = 0. (1.16)

=⇒ A = a σ2, B = b σ2, C = c 1. (1.17)
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and finally requiring γ2
0 = 1 gives rise to

a2 + |c|2 = 1, b2 + |c|2 = 1 (1.18)

ac+ cb = 0, ac∗ + bc∗ = 0 (1.19)

Independent solutions of the above equations (a = ±1, b = ±1, c = 0 or a = b = 0, c = 1, i)

give rise to four candidates for γ0 as

γ
(1)
0 = σ1 ⊗ 1

γ
(2)
0 = σ3 ⊗ σ2

γ
(3)
0 = σ2 ⊗ 1

γ
(4)
0 = 1⊗ σ2 (1.20)

This arbitrariness in the definition of γ0 can be interpreted in terms of a symmetry of the action.

The same feature persists in a four dimensional massless relativistic model. However, in four di-

mensions γ0 is arbitrary up a to a “chiral” rotation by γ5. The lower dimensionality, d = 3, enriches

the symmetry structure of the model as will be discussed in more detail in later sections.

1.2 Phase fluctuations

1.2.1 Singular gauge transformation

In the pseudo-gap regime the phase fluctuations of the order parameter determine the critical be-

haviour of the system. Thus in this Section we turn our focus to the phase fluctuations of the order

parameter. We assume that the fluctuations of the amplitude for the order parameter are ignorable,

and approximate it by a constant. The phase of the order parameter is be divided to its regular and

singular parts as

φ(x) = φr(x) + φs(x). (1.21)

φr and φs are regular and singular parts and can be distinguished as one circles around a sin-

gularity of the order parameter. To avoid more discussions regarding mathematical definitions of

singular phase on a lattice, we do the following discussion in a continuum limit. However both lim-

its share the concept of singular phases for the order parameter and later on I come back to a lattice

model to describe such singularities.
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∮
∇φr(x).ds = 0,∮
∇φs(x).ds = 2πm, (1.22)

where m is an integer that determines the vorticity of the singularity. The superfluid current can be

written as the gradient of the phases

j(x) ∼ ∇φr(x) +∇φs(x). (1.23)

The current can also be decomposed into an irrotational piece (regular) and incompressible piece

(vortices) too. By introducing the vorticity ~w(x) the current can be written

= ∇φr(x) +∇× ~w(x), (1.24)

where∇× ~w(x) = ∇φs(x) and ~w(x) satisfies

∇2wx =
∑
i

miδ(x− xi), (1.25)

where mi’s are the vorticity of individual indices positioned at x = xi. It is desirable to include the

explicit phase degree of freedom into the quasi-particle action by introducing a gauge transformation

which absorbs the phase of the order parameter into the fermionic operators. The simplest way of

doing this is divide total phase equally between each spin-up/down electron. i.e.,

c↑(x)→ e−iφ(x)/2c↑(x)

c↓(x)→ e−iφ(x)/2c↓(x)

∆(x) = 〈c↑(x)c↓(x)〉 → |∆|. (1.26)

However, the above transform is not well-defined in the presence of the vortices: c↑,↓ →
exp(iπ) · c↑,↓. This will introduce branch cuts associated with each vortex which makes things more

complicated than it is already. The symmetric dividing of the phase, however, would be well-defined

if we only consider double-vorticity vortices. This will lead to the Z2 gauge theory representation

of the problem. We will not pursue this approach since the single-vorticity vortices are the ones to

become relevant at a Kosterlitz-Thouless transition. To avoid this we adopt Franz-Tesanovic gauge
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transformaion [10][9] that allows for a symmetric split of the regular-phase of the order parameter

between the electrons but assigns only the phase of vortices in a group (group A or B) to each

fermion with spin up/down. i.e.,

c↑(x)→ e−iφA(x)c↑(x),

c↓(x)→ e−iφB(x)c↓(x), (1.27)

while

φ(x) = φA(x) + φB(x),

φA ≡ φr
2

+ φs,A,

φB ≡ φr
2

+ φs,B (1.28)

It is important to emphasize that each fermion acquires a singular phase solely from one set of

vortices - arbitrarily chosen. We will return to this point while constructing the vortex dynamics

through duality transform in the Sec. 1.3. Since the dividing of the vortices (loops) into two groups

A and B is arbitrary, we assume an average over all possible configuration of the A and B groups

in the partition function. Every fixed group in our case will act as a fixed singular-gauge, and by

summing over all possible configuration we restore the gauge invariance.

1.2.2 Minimal coupling

In the previous Section we did not consider the phase fluctuations of the order parameter and the

corresponding topological excitations of the system corresponding to that. This issue will be il-

luminated in this section [9][5][11]. However, we have to modify our construction of the Dirac

quasi-article action to include the fluctuations of the order parameter

∆(x, τ) = (∆0 + δ∆(x, τ))eiφ(x,τ), (1.29)

Where δ∆(x, τ) indicates the amplitude fluctuations and φ(x, τ) is the total phase of of order

parameter. If we rewrite the off-diagonal contributions in the original BCS Hamiltonian in spatial

coordinates - back to a tight binding lattice model and allow time and spatial dependence of the

phase:
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S∆ =
1
2

∑
µ=x,y

∫
dτd2x ·∆µe

iφ(x,τ){c†↑(x, τ)c†↓(x + µ̂, τ)− c†↓(x, τ)c†↑(x + µ̂, τ)}+ h.c., (1.30)

where

∆µ =

+∆0 µ̂ = x̂,

−∆0 µ̂ = ŷ,
(1.31)

expanding c(x + µ̂, τ) and c†(x + µ̂, τ) in the continuum

S∆ =
1
2

∫
dτd2x · eiφ(x,τ){(c†↑(x, τ)∂xc

†
↓(x, τ)− c†↓(x, τ)∂xc

†
↑(x, τ))

−(c†↑(x, τ)∂yc
†
↓(x, τ)− c†↓(x, τ)∂yc

†
↑(x, τ))}+ h.c. . (1.32)

Upon π/4 rotation of the x-y frame: ∂x − ∂y → ∂y we have

S∆ =
1
2

∫
dτd2x · eiφ(x,τ)(c†↑(x, τ)∂yc

†
↓(x, τ)− c†↓(x, τ)∂yc

†
↑(x, τ)

+e−iφ(x,τ)(c↓(x, τ)∂yc↑(x, τ)− c↑(x, τ)∂yc↓(x, τ), (1.33)

integrating by parts for second and fourth terms gives rise to

S∆ =
∫
x,τ

c†↑ ·
1
2
{eiφ, ∂y} · c†↓ + c↓ · 1

2
{e−iφ, ∂y} · c↑, (1.34)

so the previous quasi particle action can be modified by replacing ∂y with 1
2{eiφ, ∂y} in c†c†

terms and ∂y with 1
2{e−iφ, ∂y} in cc terms. Thus, the quasi-particle action can be written as

Sq−p =
∫

dτd2xΨ†′I (∂τ + vF · M̃1∂x + |v∆| · M̃2∂y)ΨI + (I→ II, x→ y). (1.35)

where the matrix M̃2 is

M̃2 = −i1
2


{eiφ, ∂y}

{e−iφ, ∂y}
−{eiφ, ∂y}

−{e−iφ, ∂y}

,

 (1.36)
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Now we apply our singular gauge transform

c↑(x, τ) −→ eiφA(x,τ) · c↑(x, τ),

c↓(x, τ) −→ eiφB(x,τ) · c↓(x, τ), (1.37)

where φA(x, τ)+φB(x, τ) = φ(x, τ). Correspondingly the spinor Ψ′ can be transformed using

the unitary transform UΨ = Ψ′.

U =


eiφA

e−iφB

eiφA

e−iφB

.

 (1.38)

Introducing the gauge fields a(x, τ) and v(x, τ) as

~a(x, τ) = ∇(φA(x, τ)− φB(x, τ)),

~v(x, τ) = ∇(φA(x, τ) + φB(x, τ)), (1.39)

using the commutation relations [U,M1] = 0 and [U,M2] = exp(iφ) the action can be rewritten

with the gauge field a(x, τ) minimally coupled to the gradient term while the gauge field v(x, τ)

only couples to the current term in the action

Sq−p =
∫

dτd2xΨ†I(x, τ){(∂τ + iaτ ) +M1(∂x + iax) +M2(∂y + iay)}ΨI(x, τ)

+(I→ II, x→ y) + Jµvµ, µ = 0, 1, 2 (1.40)

where the with the current coupled to the field vµ is

Jµ =

∑
i=I,II

Ψ†i (1⊗ σ3)Ψi, ivFΨ†I(σ3 ⊗ 1)ΨI, ivFΨ†II(σ3 ⊗ 1)ΨII

 . (1.41)

If we write the imaginary-time component J0 in terms of the electronic operators, it will appear

to be proportional to the electron density operator.

J0 = i(c†↑(x, τ)c↑(x, τ) + c†↓(x, τ)c↓(x, τ)), (1.42)
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while the x and y components of the current represent the electronic current

J1,2 = i(c†↑(x, τ)c↑(x, τ)− c†↓(x, τ)c↓(x, τ)). (1.43)

To obtain the above I have taken advantage of the form of the Ψ spinors around both nodes in

the spatial coordinates

ΨI(x, τ) =


e−iKIxc↑
e−iKIxc†↓
eiKIxc↑
eiKIxc†↓

 , ΨII(x, τ) =


e−iKIIxc↑
e−iKIIxc†↓
eiKIIxc↑
eiKIIxc†↓

.

 (1.44)

To conclude this section we look at the gauge symmetry property of the new representation of

the theory above.

1.3 Dynamics of the gauge fields

Now we can more carefully illuminate the meaning of the singular gauge transformations by investi-

gating the coupling of the vortex action and the quasi-particle action including the vortex fluctuation

into the theory.

For the phase fluctuating part of the theory we take the 3D XY-model on a cubic lattice as the

simplest theory that resembles all the expected behaviours:

Z3D−XY =
∫ 2π

0
[Πdφi] exp

K
2

∑
i,µ̂

cos(∆µφi)

 , (1.45)

where φi is the field variable on the lattice site ~i and µ̂ is the vector connecting to the nearest-

neighbour sites.

To begin we look at the Villain approximation to the XY-model [19]

ZXY =
∫ 2π

0
[Πdφi]

∑
mi,µ

exp

−K
2

∑
i,µ̂

(∆µφi − 2πmi,µ)2

 . (1.46)

The above theory is invariant under the gauge transformation
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φi → φi + 2πNi,

mi,µ → mi,µ − 2π∆µNi. (1.47)

This will let us to extend the integral between {0, 2π} to {−∞,+∞}. Decoupling the quadratic

term by introducing the real fields bi,µ

ZXY =
∫

[Πdφi][Πdbi,µ]
∑
mi,µ

exp

∑
i,µ̂

−b2i,µ + ibi,µ(∆µφi − 2πmi,µ)

 (1.48)

Recalling the Poisson summation formula

∑
n

e2πnx =
∑
m

δ(x−m), (1.49)

and integrating over the angular variable forces the auxiliary field to be divergence free

Z =
∫

[Πdbi,µ]
∑
mi,µ

δ[∆µbi,µ] exp

∑
i,µ̂

−b2i,µ + 2πmi,µbi,µ

 , (1.50)

the bi,µ thus can be rewritten as the curl of another real vector field

Z =
∫

[Πdsi,µ]
∑
ni,µ

exp

∑
i,µ̂

−(ενµρ∂νsi,µ)2 + 2πni,µsi,µ

 , (1.51)

where ~n ≡ ∇ × ~m is the integer vortex field that forces si,µ to take integer values. This is the

current representation of the XY-model. Before we proceed let us stop to understand the meaning of

the vortices in this model. Consider the line integral of the original field variable φi around a lattice

point i on the adjacent bonds.

∑
loop

∆µφi = 2πni,µ, (1.52)

where the integer valued vector field ni,µ represents the quantized flux/vortex variables. In the

Villain representation with the angular variable divided into φi → φi + 2πNi with 0 ≤ φi ≤ 2π,

this will lead to
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∑
µ

∆µφi = 2π
∑
µ

mi,µ = nµ,i

=⇒ ~ni = ∇× ~mi. (1.53)

The condition that ni,µ is also divergence free makes it a vortex loop.

Back to the Eq.(1.51), we decouple the vortex field terms by introducing two gauge-fields, ~ai
and ~vi.

ZXY =
∫

d[~a,~v]
′∑

mA,mB

δ[∇× (mA,i −mB,i)] · exp(−2K ·
∑
i

~v2
i

+ 2πi~vi · (∇× (mA,i + mB,i))),

ZXY =
∫

d[~a,~v]
′∑

mA,mB

· exp(−2K ·
∑
i

~v2
i

+ 2πi~vi · (∇× (mA,i + mB,i)) + 2πi~ai · (∇× (mA,i −mB,i))), (1.54)

where index (′), on the summation indicates that the sum is over divergence-less fields. Integrating

over the gauge field vi and introducing real fields ΦA,i and ΦB,i give rise to

Z =
∫

d[~ai,Φ+,Φ−]
′∑

lA,lB

exp[
1

8K
(∇×Φ+,i)2 + i~ai · (∇×Φ−,i)

+2πi · (lA ·ΦA,i + lB ·ΦB,i)]. (1.55)

where Φ ≡ ΦA ±ΦB and lA and lB force Φ± fields to take integer values.

Now we introduce chemical potential term,

x ·
∑
i

(
l2A,i + l2B,i

)
, (1.56)

while assuming the limit of x→ 0. To keep the gauge invariance for fields Φ+ and Φ−

Φ+,iµ → Φ+,iµ + ∆µχi,

Φ−,iµ → Φ−,iµ + ∆µφi, (1.57)
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we should impose the conditions that both fields lA and lB are divergence free,

∇ · lA,i = 0,

∇ · lB,i = 0. (1.58)

There are other ways that chemical potential could be introduced, such as,

x ·
∑
i

(lA,i + lB,i)2 + (lA,i − lB,i)2. (1.59)

This would directly take us to the one-flavour representation of the Frozen Superconductor rep-

resentation of the XY model [13]. However if I assume that the vortex fields mA and mB (similarly

lA and lB) belong to different groups, i.e., no overlap between the two fields, the form Eq(1.56) is

justified.

Finally, we arrive at the Frozen Lattice Superconductor (FLS) representation of the XY model

by forcing the zero-divergence condition on the vortex fields lA and lB [13][15]:

Z = lim
x→0

∑
lA,lB

∫
Π[dθA,i]Π[dθB,i]Π[dai,µ] exp(

∑
i

1
8K

(∇×Φ+,i)2 + ia · (∇×Φi) +

2πi(lA ·ΦA,i + lB ·ΦB,i)− x

2
(lA,i + lB,i)2 + 2πi(∇ · lA,i) · θA,i + 2πi(∇ · lB,i) · θB,i). (1.60)

Poisson-resumming over lA and lB and using the reverse form of Villain approximation, we

obtain:

ZXY = lim
x→0

∫ ∞
−∞

d[~ai,ΦA,ΦB]
∫ 2π

0
d[θA, θB] exp(−

∑
i,µ

1
8K

(∇×Φ+,i)2 +

ia · (∇×Φ−,i)− 1
2x

cos(∆µθA,i − 2πΦA,iµ)− 1
2x

cos(∆µθA,i − 2πΦA,iµ)),

(1.61)

where the angles θA,B represents two-flavoured “dual” fields with respect to original angular field

φi.

The usefulness of this representation is seen when we try to calculate the correlation function

for ~a:

〈(∇× ~a)i,γ(∇× ~aj,µ)〉 = δijδµν
π2

x
〈cos(∆µθi + 2πΦiµ)〉FLS. (1.62)
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It is well established that the lattice superconductor at a small but finite temperature x has a

phase transition, as stiffness K is varied in the same universality class as in the frozen limit [14].

We can therefore relax the constraint x→ 0 and assume x to be finite. The average on the righthand

side of Eq. (1.62) can be calculated to be:

1
x
〈cos(∆µθi + 2πΦiµ)〉FLS ∝ |〈exp(iθi)〉|2. (1.63)

This is simply a restatement of the fact that in the ordered phase the dual angles are correlated

while through the Anderson-Higgs mechanism the gauge field ~a becomes massive. The expression

for the correlation function for ~a at low momenta is therefore:

〈(∇× ~a)γ(∇× ~a)µ〉 ∝ (|〈Φ〉|+O(q2))(δµν − âµq̂ν). (1.64)

While the stiffness is inversely proportional to the expectation value of the dual loop condensate

〈Φ〉 ∼ 〈eiθ〉 the fugacity of the vortex-loop corresponds to the charge for the gauge field ~a. This will

lead us to the effective theory at low temperature for quasi-particles as:

S[Φ] =
∫
d2xdτ(ΨI(γ0(∂τ + ia0) + γ1vF (∂x + iax) + γ2|v∆|(∂y + iay))

+ (I→ II, x↔ y) +
1

2|〈Φ〉|2 (∇× ~a)2), (1.65)

where the effect of vortices is simplified into a Maxwell’s term for dynmaics of ~a-field. This is

a central result and starting point for the dynamical mass generation in this theory which we will

discuss in the next sections.

Back to the vortex part of the action, notices that another duality transform on Eq. (1.61) using

the identity: ∫
(
∏
i

dθidΦi) exp{
∑ 1

T
cos(∆θ + Φ)− i

2π
~a · (∇× ~A)} =

lim
x→0

∫
(
∏
i

dΨi) exp{1
x

cos(∆Ψ + ~a)− T

8π2
(∇× ~a)2, (1.66)

will lead to the action

Sb = lim
x→0

−2K
∑
i

v2
i +

1
2x

∑
i,µ

cos(∆µΨA,i + vi + ai) +
1

2x
cos(∆µΨi + vi − ai)

 . (1.67)

Notice that we have recovered the ~a and ~v gauge field in the dual-dual transformed action.

From symmetry considerations, it is straightforward to determine the continuous version of Sb by
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introducing bosonic fields b(n)
i

Sb[b
(n)
i ] =

∫ β

0
dτ

∫
d2r(2Kv2

µ +
1
2

2∑
n=1

|(∂µ − i(vµ + (−1)naµ))b(n)
i |

2

+ α
2∑

n=1

|bn|2 +
β1

2
(

2∑
n=1

|b(n)
i |2)2 +

β2

2
(

2∑
n=1

|b(n)
i |4)). (1.68)

Minimizing the action with respect to the bi’s, gives:

|〈b1〉|2 = |〈b2〉|2 =
α

2β1 + β2
, (1.69)

and leads to Sb as

Sb →
∫ β

0

∫
d2r(K(vµ +Aµ) +

|α|
2β1 + β2

(v2
µ + a2

µ)). (1.70)

Notice that now aµ and vµ fields are coupled and thus we can write down the total action decomposed

into quasi-particle and spin and charge sectors, i.e.

S[Ψ, bn,~a,~v] = Sspin[Ψ,~a,~v] + Scharge[bn,~a,~v], (1.71)

where Sspin and Scharge are defined as

Sspin = Sq−p − i(vµ +Aµ)Jµ +
|α|

2β1 + β2
a2
µ, (1.72)

Scharge = i(vµ +Aµ)Jµ + 2K(vµ +Aµ)2 +
|α|

2β1 + β2
v2
µ. (1.73)

We will use the Scharge later on in this thesis to derive a general superfluid form for response in this

theory.

The theory, so far, is represented by two sectors, each indicating one degree of freedom of the

system. The fermionic excitations are represented by a Dirac action which is coupled through a

singular gauge field to a two-component Frozen Lattice superconductor version of bosonic vortex

loops. The lattice bosons can be simplified - as we just did - into a two component Landau-Ginzburg

action in the presence of the two gauge-fields. Two new features which makes it difficult to analyze

are the fact that the vortex loops are represented by two fields, not one, and the coupling of the

two singular gauge fields ~a and ~v to the vortex loops is very non-trivial. One main feature of the

theory, however, is that the spin-sector of the theory, i.e., the quasi-particle coupled to the field ~a,

can generate a mass for fermions if the dynamics of the field ~a is strong enough. This is allowed
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as soon as the vortex loops are condensed, which creates an effective charge for our gauge field and

thus a dynamics. In the following, we briefly discuss the mechanism of mass generation following

the original work of Appelquist et al for three dimensional quantum electrodynamics [25]. A more

detailed discussion on the subject dynamical mass generation is postponed until the Chapter two.

1.4 Dynamical mass generation in Dirac theory

As discussed before, the effect of the vortex degree of freedom in the nodal excitation sector of the

theory is to introduce an effective charge for the quasi-particles. The charge is directly proportional

to the vortices’ fugacity. Ignoring anisotropies in the theory in the three dimensional electrodynam-

ics, QED3 (Eq.(1.65)) there is a mechanism known as dynamical mass generation, which leads to

non-zero expectation values of Ψ̄Ψ and creates a mass for fermionic excitations. This is due to the

fluctuations of the gauge-field a [17][16][24]. This is the signature of the chiral symmetry breaking,

which we will discuss in the next section. Dynamical mass generation can also lead to other kinds

of mass/order-parameter such as 〈Ψ†ΓΨ〉, for which Γ does not commute with chiral symmetry

generators.

Dynamical mass generation can be better formulated under a large-N approximation, where

N is flavour of fermionic degrees of freedom (N = 2 in the original theory, i.e., the number of

nodes). Writing down the Schwinger-Dyson equation for fermion self-energy Σ(q) and gauge-field

polarization function Πµν(q), the self-energy will look like,

Σ(q) = e2γν

∫
d3p

(2π)3

Dµν(p− q)Σ(p)
p2 + Σ2(p)

(1.74)

with the gauge-field propagator Dµν (in transverse gauge) as,

Dµν(p) =
1

p2 + Π(p)
(δµν − p̂µp̂ν) . (1.75)

We are interested to see if a self-energy with Σ(0) = m can satisfy in Eqs.(1.74) and (1.75)

self-consistently. Polarization function can be straightforwardly calculated,

Π(p) =
Ne2

2πm

[
2 +

p2 − 4
p

sin−1

(
p√

4 + p2

)]

=
Ne2

2πm
f(p), (1.76)



CHAPTER 1. EFFECTIVE FIELD THEORY OF PHASE FLUCTUATING HTS 21

to the leading order in N .

Re-scaling the momentum p/m → p, self-energy Σ(p)/m → m and polarization Π(p)/m2 →
Π(p), in the limit q → 0 we have,

1 =
e2

π2m

∫ Λ/m

0

p2Σ(p)
[p2 + Σ2(p)] [p2 + Π(p)]

, (1.77)

The right-hand side of Eq.(2.17) is a decreasing function of m, so for solution with m 6= 0 to

exist we just need the right-hand side greater than 1 for m = 0. This introduces a critical flavour

number Nc, as

Nc =
4
π

∫ ∞
0

dp
p2Σ(p)

(p2 + Σ2) f(p)
(1.78)

Evaluation of the above integral needs Σ(p) to be self-consistently calculated. The full solution

yields Nc = 32/π to the leading order in N [16]. Solution for the self-energy then determines the

mass m,

m ∝ exp

− 2π√
Nc
N − 1

 (1.79)

The higher order calculations in large-N approximation still give a critical flavour number close

to the above result [20]. Since the value of Nc ' 3.2 is bigger than the number of actual fermion

flavours, N = 2, this indicates that dynamical mass generation mechanism can happen in the phase-

fluctuating HTS and the chiral symmetry will be broken.

The three phases of the system now can be distinguished by the effective charge in the above

QED3, by the generated mass of the Dirac fermions, and by the possible mass of the gauge field

~a. At zero-temperature for higher doping the vortices are bound in the superconducting phase. This

leads to an effective charge for gauge fields. Also the condensation of the dual-vortex loop fields

b(x, τ), results in an effective mass for ~a in Eq.(1.72). Notice that we have assumed the coefficient

α in Eq.(1.72), to be related to relative doping x − xc, and the gauge field becomes massless as

soon as one passes the critical doping xc. Right on the critical point the gauge field is massless and

the dynamical mass generation mechanism has not created a mass yet, thus the parent state phase is

not present yet. In higher temperatures, the quantum critical region where the quantum fluctuations

still dominate the thermal ones determine the pseudogap phase. In the pseudogap phase the gauge

field is massless and the mass for the quasi-particles is not created yet. Upon lowering the doping

to less than xc- at zero temperature - the dynamical mass generation mechanism begins to work
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and some parent insulating phase appears. In the next Section we discuss different possibilities for

these insulators and show that the anti-ferromagnetic order parameter in fact is one of the candidate

insulators which comes out of the chiral symmetry breaking in QED3.

1.5 Symmetries of Dirac action in 2+1 dimensions

Lorentz symmetry: Lorentz invariance of the action represents the d-wave nature of the Cooper

pairing of electrons at low energies. In a sense this stands for lattice symmetry of the different

cuprate materials such as YBCO. In terms of the Clifford algebra elements, the symmetry generators

are γ0γ1, γ0γ2 and γ1γ2. The first two are boosts while the third is the rotation around the c-axis.

Chiral symmetry: The notion of chiral symmetry in general comes from the fact that there exists

at least one extra element in the Clifford algebra that anti-commutes with the rest of the γ’s.

In 3+1 dimensions it is easy to show that the only matrix with such property is γ5 ≡ iγ0γ1γ2γ3.

This presents itself as a freedom in choosing γ0, since the U(1) group generated by γ5 introduces a

new γ0

γ̃0 = e−iθγ5γ0e
iθγ5 , (1.80)

which is also an eligible γ0, i.e., anti-commutes with the rest of the γ-matrices. As discussed in the

previous sections, in three dimensions the minimal representation of the Clifford algebra is 2 × 2

and there exists no other fourth matrix that anti-commutes with γ0, γ1 and γ2.

The chiral symmetry breaking is a signature of mass generation in Dirac theory. This creates

finite fugacity/charge for vortices which lead to a complex mechanism of dynamical mass generation

for quasi-particles.

We will choose to work with four-component representation of the algebra to reveal a chiral

symmetry. In this case there are four independent γ0’s to chose among (Eq. (1.20)). Different

candidate γ̃0’s in Eq.(1.20) can be written in terms of the generators of the chiral group:

γ̃
(1)
0 = γ0

γ̃
(2)
0 = iγ0γ3

γ̃
(3)
0 = iγ0γ5

γ̃
(4)
0 = iγ1γ2

= iγ0γ35 (1.81)

The elements of the chiral group will rotate these candidate γ0’s among each other. Unlike the
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four-dimensional case, now there exists three independent elements of the Clifford algebra that anti-

commute with γ0, γ1 and γ2, and the chiral group is a SU(2). The generators of this SU(2) will be

denoted by γ3, γ5 and γ35 (≡ iγ3γ5). Notice that γ̃4
0 is a scalar under the chiral group and does not

mix with other γ̃0’s under a chiral rotation

The effect of each of the individual generators on γ0 would be:

γ̃0 = e−iθγ3γ0e
iθγ3 ,

= cos(2θ)γ̃(1)
0 + sin(2θ)γ̃(3)

0 , (1.82)

where the γ̃(i)
0 ’s are candidates γ0’s from Eq.(1.20). For θ = π/4, the rotated γ̃0 would be:

γ̃
(3)
0 = e−i

π
4
γ5 γ̃

(1)
0 ei

π
4
γ5

γ̃
(2)
0 = e−i

π
4
γ3 γ̃

(1)
0 ei

π
4
γ3

γ̃
(2)
0 = e−i

π
4
γ35 γ̃

(3)
0 ei

π
4
γ35 , (1.83)

For a fixed γ0 in a given representation. The last γ̃(4)
0 does not transform under the chiral group

and in fact is a singlet under chiral transformations. As one can see from the Eq.(1.81) that beginning

from a fixed γ0 the rest of the γ0’s can be constructed using the elements of the chiral group. Now

the question that naturally arises is that how given the form of the quasi-particle pairing near the

Fermi surface, which shows itself in the form matrices M1 and M2, can limit the possible forms

of γ0’s or the symmetry generators. Put in a different language, we are basically investigating the

connection between the generators of Lorentz group which purely come from γ1, γ2 and γ0 - which

are given through the matrices M1,2 and chiral group generators γ3, γ5, γ35 with the freedom of γ0

choice as the bridge between the two. Given the matrices M1,2 assume the symmetry generators of

two SU(2) groups,

{M1,M2,M1M2} = SU(2) generators,

{γ3, γ5, γ35} = SUc(2) generators,. (1.84)

In fact the existence of four candidates for γ0’s is not accidental. It can be shown that there exists

the following set of bilinear forms,

Γ = (Ψ†γ0Ψ,Ψ†iγ0γ3Ψ,Ψ†iγ0γ5Ψ), (1.85)
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vector under chiral SUc(2) and scalar under the Lorenz group. This means we can interpret them

as mass, while a chiral generator can rotate them among each other. Any linear combination of the

above masses where Γ2 = 1 is also a candidate chiral mass. The fourth choice for γ0 corresponds

however, to a parity breaking mass and not chiral breaking and is also a scalar under SUc(2).

The physical significance of these chiral symmetry generators is clear when we write the masses

generated in terms of the electronic operators. Using γ0 = γ̃
(1)
0 which we used in our representation

leads to,

mΨ†γ0Ψ = m
{
c†↑(Ki + q)c↑(−Ki + q)− c†↓(Ki − q)c↓(−Ki − q)

}
→ 2m

∑
σ=pm

σ cos(2Ki · r)c†σ(r)cσ(r), (1.86)

which can be recognized as staggered spin density wave (SDW) order, the periodicity of which is

given by the node-spanning wave vector, 2Ki. As discussed before this is particularly intriguing

since the antiferromagnetic order is the natural parent phase to the superconducting state. Thus the

SDW is a natural candidate for the doping-evolved state. Repeating the same exercise for the next

candidate, γ0 → γ̃
(2)
0 = γ0γ3, one gets sine-SDW rather than cosine-SDW,

mΨ†γ0Ψ→ 2m
∑
σ=pm

σ sin(2Ki · r)c†σ(r)cσ(r). (1.87)

For γ̃(3)
0 the situation is slightly different; in this case, the mass acts like a particle-particle

potential encouraging the opening of a pairing gap in addition to the already established d-wave

gap. The sign of the potential is reversed for opposing nodes, and so we interpret this as p-wave

pairing. The resultant state, then, is a d+ ip insulator.

The mass term associated with γ̃4
0 is quite different from the other three. As we previously

noted, the fourth does not allow a representation of the chiral SUc(2), and so the mass term does not

break this symmetry. The mass term does, however, break parity (e.g., x → −x) and time-reversal

symmetry (t→ −t), both of which are expected to be preserved in QED3. For this reason, the term

mΨ†i γ̃
4
0Ψi is not expected to become dynamically generated. We discuss this issue in detail in the

next chapter.

Thus the main result of this construction of the peudogap field theory is the fact that the antifer-

romagnetic phase is naturally derived from phase-disordering a d-wave superconductor. However,

the chiral symmetry mechanism does not distinguish between any of the above masses/order param-

eters and one might as well expect a d + ip mass instead of sin- or cos- SDWs. It has been argued
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using energy considerations [35], that the SDW has the lowest minimum energy of the system with

respect to any other chiral symmetry breaking mass.

To conclude this chapter, we mention two important factors that have to be included in the

QED3 theory constructed above. First is the effect of anisotropy v∆ 6= vF for the nodal quasi-

particles. Although the value of anisotropy is significant, vF/v∆ ∼ 10, it can be shown that the

mechanism of dynamical mass generation remains intact. O. Vafek et al and D. Lee and I.F. Herbut

have investigated the effect of small anisotropy in the above model and shown that a weak anisotropy

can be ignored as it turns out to be marginal under renormalization [21][22]. There is recent work

on the effect of the very strong anisotropy which we refer the reader in Ref.[23].



Chapter 2

Renormalization Group Approach to
QED and Four-Fermion Models in Three
Dimensions

2.1 Introduction

In the previous chapter we established the field theoretical framework for cuprate superconductors in

the pseudogap regime and proposed that the quantum critical point corresponding to the pseudogap

region of the d-wave superconductors is derived from a well-known mechanism for low-dimensional

quantum field theories known as dynamical mass generation. Dynamical mass is commonly created

in fermionic field theories with strong interactions either with other fermionic fields or gauge fields

with dynamics. It is sensitive to the number of the degrees of freedom - flavours - and the mechanism

of mass generation can only happen if the flavour number, N , is less than a certain critical number

Nc. Since the whole notion of dynamical mass generation comes from the a large-N expansion

formalism - the estimates ofNc should be carefully executed. Continuing from the previous chapter,

our emphasis is on quantum electrodynamics in three dimensions which represents the spin sector

of the underdoped cuprates in the pseudogap phase. Upon increasing the doping towards optimal

doping, the gauge field ~a gains a mass and the system becomes a superconductor. the massive gauge

field theory is shown to be equivalent to a Dirac action with quartic interaction which preserves the

chiral symmetry of the theory. The effective theory is known as the Thirring model and will be the

subject of our subsequent discussion.

26
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In QED3, current estimates of Nc0 strongly disagree. Early studies of Schwinger-Dyson equa-

tions in the large-N approximation - as discussed in previous chapter - gave Nc0 = 32/π2 ≈ 3.24

[16]. Vertex corrections [28], or the next-to-leading-order terms in the 1/N expansion [20] did not

change Nc0 significantly, and if anything, only increased its value. On the other hand, Appelquist

et al have argued that Nc0 < 3/2 [29]. Adding to the controversy, recent lattice calculations have

found no decisive signal for chiral symmetry breaking forN = 2, but did detect a significant fermion

mass forN = 1 [30]. It has been argued, however, that although greatly increased compared to early

studies, the sizes of the systems considered in the lattice calculations may still not be close enough

to the thermodynamic limit [31]. In fact, due to the essential singularity at N = Nc the value of

the mass at N = 2, if finite, should be rather small, and the results of numerical simulations are not

necessarily in conflict with the values obtained from the Schwinger-Dyson equations [30], [32].

We apply the momentum-shell renormalization group (RG) to QED3 theory with N fermion

flavours with four-fermion interactions which break the U(2) symmetry per flavour and later on to

Thirring model. The gauge-invariant β-functions for the charge and the four-fermion couplings are

computed to the leading order in 1/N . The value ofNc may be obtained from the RG flow simply by

inverting the dependence of the critical coupling(s) g onN . In case of symmetry breaking interaction

we show that Nc obtained this way is necessarily a monotonic function of the interaction coupling,

i.e. that an infinitesimal interaction, although irrelevant, alters the value of Nc. In particular, this

suggests that even if Nc0 < 2 in pure QED3, the low-energy theory of underdoped cuprates with

repulsive interactions included [?] is likely to lie below the (shifted) critical point for dynamical

mass generation. The flow of the chirally-symmetric interactions, on the other hand, suggests that

the chirally symmetric mass cannot get spontaneously generated in pure QED3.

Our method relies on identification of the RG runaway flow of the chiral-symmetry-breaking

interaction coupling constant with the dynamical mass generation. This conjecture is supported by

the exact solution in the limit N = ∞ and of zero charge. The idea is rather general, however, and

similar to the standard way of determining a spontaneously broken symmetry in statistical physics:

first allow a weak explicit symmetry breaking perturbation, take the thermodynamic limit, and only

then take the perturbation to zero. The thermodynamic limit would in the RG language correspond

to letting the momentum cutoff go to zero.
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2.2 Large-N expansion

The large-N expansion is applied in theories for which weak-coupling perturbative expansions are

not justified by dimensional arguments . The idea is too look at the limit of the same theory in which

it is assumed that the field degrees of freedom have N copies where N is a large number. Physical

quantities can now be expanded in terms of a new small parameter: 1/N . In this section we will

discuss some of the general features of the ideas behind large-N expansion before we proceed to

implement it in our renormalization approach to the three-dimensional quantum electrodynamics in

the presence of four-fermionic interactions in later sections.

The basic mechanism of the 1/N -expansion is the summation of infinite number of Feynman

diagrams. This can go beyond perturbative power counting. Consider the subset of diagrams formed

by the chain of bubbles in the geometric series in Fig(2.1). If the inverse coupling is tuned to cancel

the leading divergence in the bubble diagram, then the geometric sum can become finite as the cutoff

Λ → ∞. This is indeed what happens in the d = 2 + 1 dimensions. Interestingly, the fine-tuning

requirement here is exactly the same as the Hartree-Fock approximation. In a diagrammatic notation

Hartree-Fock corresponds to the self-consistent sum of the cactus graphs in Fig2.2.

+ +

+ + .....

Figure 2.1: Infinite re-summation of the bubble diagrams in the leading order of 1/N for a four-

fermion vertex.
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+

+ +
......

Figure 2.2: Infinite re-summation of cactus mass-loop diagrams to leading order in 1/N

In a 1/N resummation method the leading order contribution for any connected Green’s func-

tion is defined by the infinite set of diagrams for which the powers of N coming from the flavour

contractions (P ), is equal to the number of the loops (L). For self-energy terms this is just the cactus

graphs as in Fig.(2.2), and the sum can be performed provided we take the coupling to be of the

order of unity in units of N . In general, the n-th order of the resummation has P = L − n. The

resummation can be codified in a convenient way using an auxiliary field to decouple the interaction

terms.

Here we proceed with simplest four-fermionic model with interaction of the form

Lint =
g

N
(Ψ̄Ψ)2, (2.1)

using an auxiliary field σ, the Lagrangian is rewritten as,

L =
∑
i

iΨiγµ∂µΨi + σΨ̄iΨi − Nσ2

2g
, (2.2)

where i indicates the flavour index. Integrating out the fermionic degrees of freedom is straight

forward and one gets the effective action for auxiliary field σ,

Seff = N ·
∫

ddx
{
σ2

2g
− Tr ln (i∂µ + σ)

}
. (2.3)

The explicit N -dependence will let us to look at the saddle-point solutions for large-N which

leads to exactly the same equation as the Hartee-Fock eqaution. Notice that the infinite resummation

is automatically done upon the integration over the fermionic degrees of freedom.
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The large-N limit now corresponds to a saddle-point solution for the auxiliary field σ whose

its average value is the the fermionic two-point Green’s function. In weak-coupling perturbative

expansions the fluctuations of the auxiliary field are suppressed by the coupling (or the system size)

this is now replaced by new tuning parameter 1/N . In the limit of theN →∞, σ is static and saddle

point solutions of the above action represent a dynamical mass. This is equivalent to calculating the

σ(p) propagator, Dσ(p) from the geometric sum in Fig.(2.3).

= +

+ ...

Figure 2.3: The chain of diagrams giving a contribution to the Dσ(p) in the zeroth order of the 1/N

expansion. The thick dashed lines indicate the full-propagator Dσ.

In theories for which the form of interaction terms preserves the symmetries of the original non-

interacting theory, such as gauge-field coupling in QED3 and the current-current interaction in the

Thirring model, the mechanism of mass generation is more sophisticated. In QED the gauge field to

the first order in 1/N is obtained from a infinite sum of polarization bubbles, Fig.(2.4). As discussed

in Chapter 1 this leads to a 1/p behaviour for the gauge propagator at low-momenta. Including this

result in the wave-function renormalization diagram Fig.(2.5), one can derive self-consistent solution

with a dynamical mass Σ(p→ 0) 6= 0, where Σ is the self-energy.
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+ + ....!

= +

Figure 2.4: The leading order bubble corrections to the gauge-field propagator Dµν(p).

Interestingly the wave-function renormalization diagram with all the bubbles included in the

gauge field propagator play the role of mass generating bubbles. This can naively be seen as the re-

sult of the fact that for the screened propagator, one can imagine the wave-function renormalization/self-

energy diagram have the legs cut off into a mass generating Hartree-Fock term.

Figure 2.5: The mass generation diagrams in QED3 (a) vs Hartree mass term diagram (b). Both

bubbles are calculated with the full fermionic propagator.
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2.3 QED3 and quartic interactions

We begin by recalling that the spin sector of the low-energy theory of the phase-disordered d-wave

superconductor described by the action S =
∫

d3x L, with the Lagrangian

LQED3
= Ψ̄iγµ(∂µ + iaµ)Ψi +

1
2e2

(∇× ~a)2. (2.4)

Ψi, i = 1, 2 represent the electrically neutral spin-1/2 fermions (spinons), Ψ̄ = Ψ†γ0, γµ’s are the

usual Dirac gamma matrices (µ = 0, 1, 2), and we define γ5 = γ0γ1γ2γ3, and γ35 = iγ3γ5 for later

use [?]. The charge e2 ∼ |〈Φ〉|2, where Φ is the vortex loop condensate [7][5], [37]. As discussed in

the previous chapter, the complementary charge sector of the theory may be shown to be describing

an insulator [38]. Later on in this chapter we will get back to discuss the insulating/phase disordered

section of the lagrangian when we are discussing the Thirring model.

Let us first consider the case of single fermion species, and then generalize to N > 1. To

construct the quartic interaction that breaks the SUc(2) symmetry down to Uc(1) we notice that the

three-component objects,

A = (Ψ̄Ψ, Ψ̄iγ3Ψ, Ψ̄iγ5Ψ),

Bµ = (Ψ̄γµγ35Ψ, Ψ̄iγµγ3Ψ, Ψ̄iγµγ5Ψ),

(2.5)

are the only triplets under the chiral group. Upon breaking the symmetry to Uc(1), we look at the

projection of A and Bµ along the direction corresponding to the remaining generator of the SUc(2).

In this case, these are Ψ̄Ψ and Ψ̄γµγ35Ψ which remain invariant under the action of γ35. Thus, the

required quartic chiral-symmetry-breaking (CSB) interaction will have the form

LCSB =
g

N
(Ψ̄Ψ)2 +

g′

N
(Ψ̄γµγ35Ψ)2. (2.6)

On the other hand, the two SUc(2) singlets

Cµ = Ψ̄γµΨ, C35 = Ψ̄γ35Ψ, (2.7)

may be used to construct chiral-symmetry-preserving (CSP) quartic interactions, as

LCSP =
λ

N
(Ψ̄γ35Ψ)2 +

λ′

N
(Ψ̄γµΨ)2. (2.8)
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For a general N we will therefore define the following U(N)⊗U(N) symmetric theory

L = LQED3 + LCSB + LCSP,

= {Ψ̄iγµ(∂µ + iaµ)Ψi +
1

2e2
(∇× ~a)2 +

g

N
(Ψ̄iΨi)2

+
g′

N
(Ψ̄iγµγ35Ψi)2 +

λ

N
(Ψ̄iγ35Ψi)2 +

λ′

N
(Ψ̄iγµΨi)2},

i = 1 · · ·N. (2.9)

In principle, one could imagine other interaction terms satisfying the required symmetry. How-

ever, it can be shown that these would have to be a linear combination of the already introduced

quartic terms. For example, the interaction g1|A|2 + g2|Bµ|2 can be written as a linear combina-

tion of C2
µ and C2

35. This follows from Fierz identities which imply that there are only two linearly

independent quartic terms invariant under the U(2N). For U(N) ⊗ U(N) theory, the number of

independent couplings doubles to four, which are precisely the introduced g, g′, λ and λ′. For a

more detailed discussion we refer the reader to Appendix B.

Notice the particular way we have treated the large-N flavours in the theory. A four-component

Dirac spinon can be rotated with the chiral generators and the lagrangian can manifest chiral sym-

metry. At the same time, the rotations in a larger space of large-N flavours, trivially leave both bare

and interaction Lagrangian intact. This to us means that the symmetry broken model always pre-

serve a U(N) symmetry. In general, we could repeat the above construction of quartic terms for all

U(2N) generators and categorize them based on the behaviour under the symmetry transform. This

could be done by carefully gong through the Cartan construction of the U(N) generators. However,

we are merely interested on the mass generation mechanism for each node -the flavour in our theory

- and not the rotations of spinon/quasi-particles in the larger space of two nodes. So we keep the

interaction terms to the above form in Eq.(2.9). There has been suggestions in the literature that

inclusion of the inter-node generators into the symmetry group can represent some exotic phases

such as charge-stripes [35].

Special cases of the above interaction Lagrangian can cover many of the commonly discussed

four-fermionic models in the context of low-dimensional field theories and/or dynamical mass gen-

eration. The simplest model is Gross-Neveu model which corresponds to g′ = λ = λ′ = 0, without

a gauge-field present e = 0.

LGross−Neveu = Ψ̄i(γµ∂µ)Ψi +
g

N
(Ψ̄iΨi)2. (2.10)
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The Thirring model is a similar model with current-current interaction term and can represent

the chiral symmetry preserving sector of the Lagranigian and defined as g = g′ = λ = 0,

LThirring = Ψ̄i(γµ∂µ)Ψi +
g

N
(Ψ̄iγµΨi)2, (2.11)

where a sum over γµ in the interaction term is implied. We, however, restricted ourselves to one

of the three generators of the chiral symmetry group to construct the chiral symmetry breaking

section of the Lagrangian. Including all chiral generators it is possible to construct a different chiral

symmetric theory known as the Nambu-Joana-Lasisnio (NJL) model,

LNJL = Ψ̄i(γµ∂µ)Ψi +
g

N
{(Ψ̄iΨi)2 + (Ψ̄iiγ3Ψi)2 + (Ψ̄iiγ5Ψi)2}, (2.12)

which is basically the A2 and invariant under chiral rotations. Before we proceed further, in the

next chapter, I will spend some time to introduce the concept of large-N expansion in such field

theoretical models and devote some discussion to the non-perturbative nature of this approach.

2.4 Dynamical mass generation in the RG language

In this section I explain our methodology by simplifying the interaction Lagrangian in Eq.(2.9) to a

simple Gross-Neveu model in the presence of the gauge-field

For the N →∞, mean-field, limit of the Gross-Neveu model, the dynamically generated mass,

m ∼ 〈Ψ̄Ψ〉, is determined by the gap equation

−1
g

= 8
∫

d3p

(2π)3

1
p2 +m2

, (2.13)

which after the integration gives

1 =
4gΛ
π2

(
m

Λ
tan−1 Λ

m
− 1
)
, (2.14)

with Λ � m being the assumed ultraviolet (UV) cutoff. Demanding m to be invariant under the

change of cutoff Λ→ Λ/b, the β-function at N =∞ is readily obtained to be exactly

βg =
dg

d ln b
= −g − g2, (2.15)

where g has been rescaled as 4gΛ/π2 → g. We see that at weak coupling g is irrelevant, but that

the flow for g < g∗ = −1, which represents the infrared (IR) unstable fixed point, is towards

negative infinity. Since the same values of g yield a finite mass from the gap equation, it is natural
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to identify the runaway flow of g with dynamical mass generation. Note that the same Eq.(2.15) can

alternatively be obtained in the standard Wilson’s momentum-shell one-loop RG.

The second solvable limit of the theory is pure QED3 without any four-fermion interactions,

again in the limit N →∞. The flow of the charge is then

βe =
de2

d ln b
= e2 −Ne4, (2.16)

where the dimensionless charge is defined as (4/3)(e2/(2π2Λ)) → e2. While the theory is free

in the UV region, there is a non-trivial IR stable fixed point at e2∗ = 1/N . (Notice that the quartic

interactions, even when present, can not appear in βe to the leading order in largeN as a consequence

of the Ward-Takahashi identity.)

Symmetry breaking coupling

Figure 2.6: Flow diagram in the charge-coupling plane. Near the critical charge e2
c fixed point the

runaway flows change from attractive to repulsive.

Next, we want to consider the interplay of the charge e and the quartic coupling g, and in

particular to examine the influence of a weak charge on the value of g∗. One expects the effect of

the gauge field on βg to be
dg

d ln b
= −g − g2 + (const.) e2g,
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to the leading order in e2 and 1/N . In particular, βg(g = 0) = 0 even when e 6= 0, since otherwise

it would be possible to generate the CSB interaction in the chirally symmetric theory. So g = 0 is

always a fixed point. Since at the fixed point e2∗ = 1/N , decreasing N is the same as increasing

the charge in Eq. (13). Since the factor in front of the last term is expected to be positive (as

it indeed turns out to be the case), decreasing N will reduce the absolute value of the non-trivial

critical coupling g∗, until it eventually merges with the trivial fixed point, permanently located at

g = 0. There will therefore exist a critical charge e2
c = 1/Nc0, above which an infinitesimal

symmetry breaking interaction suffices to cause the runaway flow of g. We identify this point with

the spontaneous chiral symmetry breaking in pure QED3. The flow diagram with this structure has

been depicted in Fig.(2.7).
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Figure 2.7: The phase-diagram in the interaction-charge plane, for the chiral symmetry breaking
interaction. The value of the charge is e2 = 1/N . Nc is a continuous function of the symmetry
breaking interaction, as a consequence of the existence of the fixed point at g = 0 at any charge.
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When N < ∞ the terms with an explicit N -dependence in βg, such as g3/N , should also be

included. These terms may be understood as contributing 1/N corrections to Nc0 in the following

way: one can expand the critical charge (corresponding to the double-root of βg at g = 0) in powers

of 1/N as

e2
c = a0 +

a1

Nc0
+

a2

N2
c0

+ · · · . (2.17)

Since e2
c = 1/Nc0 +O(1/N2

c0) from βe, this effectively generates then the 1/N -expansion for Nc0.

One may analogously consider the CSP interaction (λ/N)(Ψ̄γ35Ψ)2, which when alone leads to

the dynamically generated massm ∼ 〈Ψ̄γ35Ψ〉 for λ < −1, in theN →∞ limit. In the presence of

the charge, however, there is a crucial difference between the βλ and βg. Since the CSP interaction

term has the same full chiral symmetry as pure QED3, finite charge may, and in fact does, generate

the coupling λ. This manifests itself as the e4 contribution in βλ, which will now take the form

dλ

d ln b
= −λ− λ2 + (const.) e2λ+ (const.) e4. (2.18)

With the last term, however, λ = 0 is not a fixed point any longer. Furthermore, the sign of the

e4-term turns out to be positive, so that the critical coupling actually increases with charge. We

interpret the latter feature as that the spontaneous dynamical generation of the chiral symmetry

preserving mass in pure QED3 is not possible. This would be in agreement with conclusions of

earlier studies [39], [40].

Before we proceed further with deriving the β-functions of the coupled theory, it is worth men-

tioning that the derivation of the charge fixed point was based on a dimensional regularization and

unlike the Schwinger-Dyson bubble-resummation for the gauge field propagator which inherently

scereens the propagator dynamics into a 1/p in low-momenta, the Wilson RG does keep the 1/p2

form of the propagator. Under the framework that we have been discussing this is completely con-

sistent - as long as theory shows proper sensitivity to the external symmetry breaking perturbations.

This will be troublesome when we consider a true 2+1 dimensional model at T = 0, where there

is no cutoff over imaginary time and there is an intrinsic anisotropy in the system. The β-function

of charge, then, cannot be properly calculated using the Wilson RG scheme as dimensional regular-

ization does not work in the anisotropic quasi 3 − ε models. We have included discussion on such

model at the end of the chapter with suggested RG equations and some more discussions on the

matter.
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2.5 RG for chiral symmetry breaking interactions and the value ofNc0

In general, the β-functions for all four quartic interactions will be coupled and the flow is non-trivial.

To the leading order in 1/N , however, the calculation simplifies considerably. In the following two

theorems we show that the β-functions for the CSB and CSP interactions are completely decoupled

in this limit.

Theorem I: To the leading order in 1/N and for e = 0, different β-functions decouple.

Proof: Only particle-hole diagrams, as in Fig.(2.8) contribute to leading order in large-N . Such

diagrams are proportional to:

k
i

i

j

jk

A B

(CSP )

k
i

i

j

jk

A B

(CSB) (CSP )

(a)

k
i

i

j

jk

A B

(CSB)(CSB)

(CSP )

(b)

(c)

Figure 2.8: Particle-hole diagrams to the leading order in 1/N .

∝ gAgB ·
∫
d3q Tr(ΓAG(q)ΓBG(q)) ∝ Tr(ΓAΓB). (2.19)

Here, ΓA and ΓB’s are the matrices in the kernel of the quadratic form accompanying either gA or
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gB ,

ΓA,ΓB ∈ {1, γµ, γ35γµ, γ35} (2.20)

It is easy to see that these diagrams are zero unless gA = gB . For diagrams that mix CSB and

CSP interactions in Fig.(2.8a), Eq.(2.19) contains the trace of an odd number of γ-matrices and

thus yields zero. For the CSB-CSB or CSP-CSP diagrams in Figs.(2.8b) and 2.8c, the identities

Tr(γµγν) = 4δµν and Tr(γµγ35) = 0, imply that all the mixing terms are zero unless µ = ν, i. e.

gA = gB .

So, to the leading order, the coupling between different quartic interactions in the β-functions

can only be mediated through charge. One may easily see, however, that the symmetry requires that

the β-functions for the CSB and CSP couplings still remain decoupled. We will state it in the form

of the following theorem:

Theorem II: There are no ∼ λe2 or ∼ λ′e2 terms in βg or βg′ , nor ∼ ge2 and ∼ g′e2 terms in

βλ and βλ′ , to the leading order in 1/N .

Proof: λe2 and λ′e2 terms obey the full chiral symmetry, and thus cannot generate a CSB inter-

action. To prove the equivalent statement for the CSB couplings, we notice that to the leading order

in 1/N the ge2 and g′e2 terms differ from the λe2 and λ′e2 terms by a single γ35 matrix, and thus

necessarily break the chiral symmetry. They therefore cannot generate a CSP coupling.

The above theorems allow us to significantly reduce the number of relevant Feynman dia-

grams. The straightforward calculation of the diagrams in Figs.2.8 and 2.9 leads to the following

β-functions for the symmetry breaking interactions:

de2

d ln b
= e2 −Ne4,

dg

d ln b
= −g − g2 + 4e2g + 18e2g′,

dg′

d ln b
= −g′ + g′2 +

2
3
e2g, (2.21)

with conveniently rescaled parameters

4gΛ/π2 → g, 4g′Λ/(3π2)→ g′, 2e2/(3π2Λ)→ e2.

Note that the coupling g′ becomes generated by g and e even if absent initially, so in principle it

must be included into the analysis. A notable feature of the above β-functions is also their inde-

pendence from the gauge-fixing parameter ξ. This derives from the exact cancellation between the

gauge-dependent part of the diagrams in Fig.(2.8) and the wave-function renormalization factor Z
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Figure 2.9: Diagrams contributing to the renormalized couplings to the leading order in 1/N .

(Fig.(2.10)):

Z = 1 + (ξ − 2
3

)e2 ln b. (2.22)

The flow diagram on the g − g′ plane for N =∞ (e2 = 0) is given in Fig.(2.10). For N <∞,

the fixed point value of the charge becomes e2 = 1/N , and the locations of all the fixed points,

except the trivial one at the origin, shift in the directions as indicated. The point at which the RG

trajectory that starts at the purely repulsive fixed point (initially at (−1, 1)) and terminates at the

‘Gross-Neveu’ fixed point (initially at (−1, 0)) intersects the g-axis determines the location of the

phase boundary in the g − e2 (g′ = 0) plane. At small charge we obtain such a phase boundary at

g = −1 + 4e2 +O(e4), (2.23)

whereas at low g

g = −144
13

(
1
6
− e2

)
+O

((
1
6
− e2

)2
)
. (2.24)
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Figure 2.10: Diagram contributing to the wavefunction renormalization.

A numerical solution at a general coupling is given in Fig.(2.7). The critical point in pure QED3,

Nc0, is determined by the value of N for which the ‘Gross-Neveu’ fixed point reaches the origin.

ForN > Nc0, the flow beginning at an infinitesimal negative g and g′ = 0 then runs away to infinity.

To the leading order in 1/N , this criterion yields Nc0 = 6. At N = Nc0 the other two non-trivial

fixed points are still at finite values. The role of g′ is therefore only to modify the phase boundary

in the g − e2 plane and the value of Nc0 quantitatively, but not qualitatively. Neglecting the flow of

g′ entirely would lead, for example, to Nc0 = 4. This would correspond to the value at which the

dimension of the coupling g at the charged fixed point changes sign.
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Figure 2.12: The RG flow (dashed lines) in the plane of the two symmetry-breaking interactions g
and g′ for N =∞. circles mark the evolution of the four fixed points with decrease of N .

2.6 RG for chiral symmetry preserving interactions

We now turn to the analysis of the theory in Eq.(2.9) with g = g′ = 0, i. e. when the quartic

terms respect the full chiral symmetry. This exercise underlines the important role of symmetry in

the phase diagram. The diagrams are still the same as in the CSB case, with the addition of the two

diagrams in Fig.(2.14). These new terms generate the coupling λ, and thus change the evolution

of the flow diagram with N in an important way, as mentioned in the introduction and depicted in

Fig.(2.19). We obtain the following β-functions for the couplings λ, λ′ and e2:
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Figure 2.13: The phase-diagram in the interaction-charge plane, for the chiral symmetry breaking
interaction. The value of the charge is e2 = 1/N . Nc is a continuous function of the symmetry
breaking interaction, as a consequence of the existence of the fixed point at g = 0 at any charge.

de2

d ln b
= e2 −Ne4,

dλ

d ln b
= −λ− λ2 + 4e2λ+ 18e2λ′ + 9Ne4,

dλ′

d ln b
= −λ′ + λ′2 +

2
3
e2λ. (2.25)

Notice that the flow equations for the CSB and CSP cases are identical, apart from the positive

e4 term. This term, however, prevents the fixed point that was located at (−1, 0) for N = ∞ from

ever merging with the Gaussian fixed point, and consequently, no spontaneous generation of the

chiral-symmetry-preserving mass should be allowed in pure QED3.

To conclude our achievement so far, we reformulated the problem of dynamical mass generation
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(a)

(b)

Figure 2.14: The diagrams that give e4 term in βλ.

in QED3 with four-fermion interactions in terms of the renormalization group flows, and we found

that the critical number of fermions Nc is a continuous function of the chiral-symmetry-breaking

interaction strength. By taking the limit of vanishing interactions we estimated that Nc0 = 6 in

pure QED3. Our analysis of the chiral-symmetry-preserving interactions suggests that the chiral-

symmetry-preserving mass cannot become dynamically generated in pure QED3.

The result thatNc may depend on an infinitesimal symmetry breaking interaction should be con-

trasted with the previous studies of Schwinger-Dyson equations in QED3 with symmetry preserving

interactions (the ‘gauged Nambu-Jona-Lasinio model’). There, the Nc was found to depend on the

quartic interaction only if the latter is larger than a certain value [41]. In the RG language this would

correspond to the merger of the two fixed points, like the Gaussian and the ‘Gross-Neveu’ fixed

points in our case, at a finite value of the coupling. In fact, we find that occurring in the Eqs.(2.21)

for CSP interactions: the ‘Gaussian’ fixed point (initially at (0, 0)) and the ‘Thirring’ fixed point

(initially at (0, 1)) meet at (1.78, 0.43) for N = 4.83. For N > 4.83 both couplings become com-

plex, and the flow that begins at the line λ = 0 is always towards infinite λ′. It is tempting to identify

this runaway flow with the phase with broken chiral symmetry and the dynamically generated mass,

as proposed in [42]. We refrain from doing so, however, since the runaway flow for λ′ > 1 at
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Figure 2.16: The evolution of the chiral symmetry preserving fixed points in the λ − λ′ plane with
the increase of charge.

e = λ = 0 (the ‘Thirring model’), actually does not correspond to broken symmetry phase, as one

can easily check by directly solving the gap equation in this case at N = ∞. The transition in the

Thirring model occurs only at the order of 1/N [43], and so we suspect that the above runaway flow

of λ′ may be an artifact of the N =∞ limit. This issue is the subject of the following section.

Finally, although our scheme provides a systematic way of computing Nc0, for example, it be-

comes rapidly complicated. To the next order in 1/N chiral symmetry breaking and chiral symmetry

preserving coupling constants mix in the β-functions. Since the couplings λ and λ′ get generated

by the charge, and then mix into βg, one necessarily has to track the flow of all four couplings. The

next-to-the leading order calculations are in fact necessary if one wants to calculate the critical value

of Nc for QED3 with a massive gauge field. This is shown to be equivalent to the Thirring model

and is the subject of discussion in Sec.2.7 and 2.8.
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2.7 Dynamical mass generation in the next order of large-N

If one wants to generalize the above arguments to the next order in 1/N -expansion some tedious

calculation from further diagrams arises. At the same time, the two theorems we proved about

the form of the renormalization group equations and the chiral symmetry breaking and the chiral

symmetry preserving coupling terms do not hold anymore. On the other hand, some of the current-

current interaction terms that did not generated mass through the gap equation Eq.(2.13), now in

the finite-but-large N limit give rise to small dynamically generated masses. To analyze this mass

generation mechanism we begin with the most general four-fermion theory which include previous

models such as Thirring and Gross-Neveu in addition to NJL. To simplify things we discuss things

in the absence of the gauge-field. The action for most general theory will look like,

S =
∫

dx3
∑
i

Ψ̄γµ∂µΨi +
g

N
(Ψ̄iΨi)2 +

g′

N
(Ψ̄iγµγ35Ψi)2

+
g3

N
(Ψ̄iγ3Ψi)2 +

g′3
N

(Ψ̄iγ5γµΨi)2

+
g5

N
(Ψ̄iγ5Ψi)2 +

g′5
N

(Ψ̄iγµγ3Ψi)2

+
λ

N
(Ψ̄iγ35Ψi)2 +

λ′

N
(Ψ̄iγµΨi)2, (2.26)

which is basically the same as the form of Eq.(2.5), giA2
i + g′iB

2
µ,i + λC2

0 + λ′C2
µ. If the couplings

gi are all the same (gi = g, g′i = g′) and the chiral preserving interaction couplings λ and λ′ are

zero, one recovers the NJL model, which is also a chiral symmetry preserving theory. For the case

of only λ′ 6= 0 it is the Thirring model. Dynamical mass generation in both of these theories is

well-known and extensively studied. For the case of NJL, the RG equations for the couplings g, g3

and g5 will be identical to and decoupled in the same way as the RG equations obtained in Eq.(2.21).

In the presence of a gauge field there exists no Nc for the dynamical mass generation as new chiral

preserving coupling terms are generated in e4 diagrams. This indicates that the identical form of

the chiral symmetry breaking and chiral symmetry preserving β-functions is not accidental and is

a reflection of the fact that the chiral symmetry breaking β-function can also represent the NJL-

model at the same time as the couplings corresponding to a different generator of the chiral group

are decoupled in the leading order limit.

However, the fact that RG equations are de-coupled might not be the case for the next order cal-

culations, thus one has to go through a somewhat tedious calculation of different one-loop diagrams
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to find the full-form of the RG equations. If we put the NJL model aside for a moment and look at

the chiral symmetry breaking and chiral symmetry preserving actions introduced earlier the results

are interesting. We will proceed with the analysis of finding Nc for different four-fermion theories-

Eq.(2.26) in general - in few steps: first we analyze how there will be mass generation to the next

order of the 1/N in the mean-field limit gap equation. Next, we focus on the chiral preserving limit,

i.e., the Thirring model, as the new diagrams to be calculated are bound to obey chiral symmetry

and thus there will be no couplings between chiral symmetry preserving and breaking couplings

(λ’s and g’s). Finally we approach the four-fermionic chiral symmetry breaking action in the limit

of zero charge and calculate the general form of the RG equations. We will argue that the value of

the Nc calculated from the merging of the Gross-Neveu fixed point to the Gaussian fixed point can

be interpreted as the Thirring model’s Nc. The value of the Nc for the NJL model can similarly be

calculated but we will not address it in this Chapter. Finally we repeat the same procedure for both

of the chiral symmetry breaking + chiral symmetry preserving model in the presence of the gauge

field and calculated the modifications to the critical flavour number Nc.

Consider the chiral symmetry preserving interaction action,

S =
∫

dx3
∑
i

Ψ̄γµ∂µΨi +
λ

N
(Ψ̄iγ35Ψi)2 +

λ′

N
(Ψ̄iγµΨi)2, (2.27)

The gap equation for λ was calculated before in equation Eq.(2.13). However the gap equation for

the term λ′(Ψ̄γµΨ)2 can be calculated using the Fierz identity Eqs.(B.13) (see Appendix B),

−(Ψ̄aγµΨa)2 = (Ψ̄aΨb)(Ψ̄bΨa) + (Ψ̄aiγ3Ψb)(Ψ̄biγ3Ψa)

+(Ψ̄aiγ5Ψb)(Ψ̄biγ5Ψa) + (Ψ̄aγ35Ψb)(Ψ̄bγ35Ψa) + (Ψ̄aγ35Ψa)2). (2.28)

It is interesting to notice that both terms (Ψ̄aγ35Ψb)(Ψ̄bγ35Ψa) and (Ψ̄aγ35Ψa)2 appear in this

new form of the Thirring interaction. Both of these terms, however, will lead to a parity breaking

mass term. Decoupling all the first four terms in Eq.(2.28) in Fock-channel using the auxiliary field

matrix M̂ab gives

exp
{
λ′

N
(Ψ̄aΓΨb)(Ψ̄bΓΨa)

}
=
∫

[DM̂ ] exp

{
−N · Tr(M̂abM̂ba)

4λ′
+ Tr ln

(
γµ∂µ + M̂Γ

)}
.

(2.29)

Using a de-coupling in the Hartree-channel for the (Ψ̄γ35Ψ)2 term using the scalar auxiliary field

m35, and writing M̂ in terms of the chiral generators:
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M̂ = M0 + iM3γ3 + iM5γ5 +M35γ35, (2.30)

we end up the following effective form for the action:

Seff [M0,M3,M5,M35,m35] =
N

4λ′
(
M2

0 +M2
3 +M2

5 +M2
35 +Nm2

35

)
+

Tr ln (γµ∂µ +M0 + iM3γ3 + iM5γ5 +M35γ35) . (2.31)

One can notice that since γ35 commutes with the rest of the γµ and chiral generators, in the

limit of N → ∞ where we need to square the action Eq.(2.31), the mass term M35 does not let

us have a gap equation in the form of Eq.(2.13). This means that in the N → ∞ limit the gap

equation can either give us a parity breaking mass OR a chiral symmetry breaking mass and not

both together from one interaction term. The above two gap equations are based on the fact that the

chiral symmetry and parity symmetry breaking does not happen at the same time.

Since we are interested in chiral symmetry breaking masses, we drop both parity violating

masses m35 and M35 and the gap equations can simply be written as,

1
λ

=
∑
k

1
k2 +m2

35

,

1
λ′

=
1
N

∑
k

1
k2 +M2

0 +M2
3 +M2

5

. (2.32)

The new mass M2 = M2
0 +M2

3 +M2
5 is however chiral symmetric and the gap equation above

is exactly the saddle-point limit of the NJL model. The Thirring fixed point on the λ = 0 axis will

represent chiral symmetry breaking through the above mechanism. The above mean-field approach

is somewhat crude and will not show how different coupling strengths might compete with each

other for the chiral (or parity) symmetry breaking. One important feature of the above analysis is

to show that the mass generated through the Fock channel decomposition will be of order of 1/N

and can be ignored in the limit of N →∞. Thus the above discussion shows that we do expect that

a mass gets created for the Thirring model in the same manner as we have it for NJL, and also we

expect the mass be small in the limit of large-N that we are considering. In the next Section we try to

approach the same question beginning from a chiral symmetry preserving model including the next

order corrections. The next oder corrections should probably tell us if there is any mass generation

mechanism like the gap equation obtained above can be seen in the renormalization group approach

and wether the critical flavour number Nc for the Thirring model can be obtained from it.
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2.8 Next-order chiral symmetry preserving RG equations

In this Section we will restrict ourself to a chiral symmetry preserving Lagrangian and calculate the

1/N -corrections to the β-functions derived in Eq.(2.25). To simplify calculations we consider the

limit of e = 0 only and look at the evolution of the fixed-points as N changes. Notice that now N

appears directly in the RG equations and not through the charge-renormalization as in the QED3

case.

For the next order calculations we have to look at diagrams in which the number of vertices

- which carry 1/N - with respect the number of loops - which give rise to a factor of N - differ

by only 1. In principle many cactus diagrams such as the one in Fig.(2.17a) qualify for the next

order calculations. However, symmetry considerations prohibit any mass-loop terms for our chiral

symmetric model and thus we can ignore such diagrams. On the other hand internal loops such as

the diagrams in Fig.(2.17b) and Fig.(2.17c) are of higher order in 1/N by a simple power counting:

(λ/N)4 ·N2 ∼ (1/N)2. The only possibility at this order of expansion is to consider the one-loop

diagrams which incorporate particle-particle and hole-hole terms. All such diagrams are listed in

Fig.(2.18).

The above argument would become substantially more difficult if we had non-zero charge.

Higher-order radiative-corrections had to be included in the O(1/N) diagrams. We are going to

leave this issue for future studies and will not address a full next-to-the leading order RG analysis

for QED3 problem in this thesis.
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Figure 2.17: Some of the possible diagrams in higher orders of 1/N .

The number of diagrams to account for is still high. The diagrammatic calculations can be

simplified if we notice that the interaction terms of the form λΓ(Ψ̄ΓΨ)2 and λΓ′(Ψ̄Γ′Ψ)2 leads to

λΓ′λΓ

N2

(
Ψ̄
(
ΓGΓ′ − Γ′GΓ

)
Ψ
)2
, (2.33)

There are two other forms appearing in the one-loop diagrams, corresponding to the figures

Fig.(2.18 a), Fig.(2.18 b),Fig.(2.18 c) and Fig.(2.18 d),

λΓ′λΓ

N2

((
Ψ̄ΓGΓ′GΓΨ

) · (Ψ̄Γ′Ψ
))

+ Γ←→ Γ′, (2.34)

and the contribution from the diagrams Eq.(2.18 e) and (2.18 f) in the figure is,

λΓ′gλΓ

N2

((
Ψ̄ΓGΓGΓ′Ψ

) · (Ψ̄Γ′Ψ
))

+ Γ←→ Γ′, (2.35)
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Figure 2.18: Particle-particle and hole-hole diagrams to the leading order in 1/N .

upon summing up the particle-particle and particle-hole terms. Here, G represents the fermionic

Green’s function. Performing the calculations for the chiral symmetry preserving coupling strengths

g and g′ leads to,
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dλ
d ln b

= −λ−
(

1− 1
2N

)
λ2 +

9
2N

λ′2 +
9

2N
λλ′,

dλ′

d ln b
= −λ′ +

(
1 +

1
2N

)
λ′2 +

1
2N

λλ′. (2.36)

This is the same as the RG equations derived in Ref.[46]. In the absence of the gauge field the

flavour number dependence has a totally different form from the RG equations obtained for QED3

in presence of the symmetry preserving interactions. The e4 term in the β-function of the parity-

breaking mass Ψ̄γ35Ψ is absent and all the linear couplings between the charge e2, i.e., 1
N , and chiral

symmetry preserving coupling strengths that came from the radiative corrections diagrams now are

missing too. The N -dependence is of higher order in coupling strength now and comes from λ2, λ′2

and λλ′ terms. This leads to a less sensitive behaviour for the fixed points and critical points to

the change of the flavour number N . The solutions to the RG equations in Eq.(2.36) are plotted

below in Fig.(2.19) for different values of large-N . As can be seen the fixed- points of neither

the parity breaking not the Thirring interaction terms merge towards the Gaussian fixed-point for

N > 1. In fact there is nothing to prevent spontaneous symmetry breaking for this theory at some

smaller value of large-N parameter as the e4 term in the β-function of coupling λ is missing. For

values of N ≈ 0.1 the Thirring fixed-point seems to approach the Gaussian one. However, since

this corresponds to very small N and is out of the range of the large-N limit, we do not consider it

as a physically acceptable result.

A more detailed analysis of the above RG equations can be found in the Ref.[46]. The authors

analyzed the domains of broken chiral symmetry and parity in the theory and derived the phase

diagram of the Thirring model. Remarkably, the fixed-point corresponding to the chiral symmetry

broken phase however, turns out to be λ = 1, λ′ = 1. Similarly to our findings, Ref.[46] has reported

that the value of Nc cannot be obtained from the above RG equations.

To calculate the value of Nc for the Thirring model we will proceed by including the chiral

symmetry breaking interaction into the theory, i.e., considering the most general theory. This is the

subject of the discussion in the next section.
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Figure 2.19: (a) Evolution of the Thirring coupling, λ′, with respect to change of the flavour number

N . Thirring critical point merges with the gaussian one at Nc ∼ 0.3. (b) The evolution of the

parity breaking interaction coupling strength, λ, as N increases. Upon change of N the critical

point moves further away from zero. (c) The motion of the fixed point in the λ − λ′ space. Two of

the fixed points (out of four) do not move significantly.
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Figure 2.20: Renormalization group flow diagrams for the chiral symmetry breaking strengths, λ

and λ′ at (a) 1
N = 0.0, (b) 1

N = 0.1, (c) 1
N = 0.17 and (d) 1

N = 1.0. Below N = 1 the results are

not physical and the corresponding flow diagrams are not depicted.

.
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Using the same Fierz identities that we employed in obtaining the NJL-type gap equation for

the Thirring model, Eq.(2.32), Refs.[46][47] have tried to show the existence of a phase transition

in the system. One interesting observation from both Refs. is that beginning from a general chiral

symmetry preserving model and applying the Fierz identity, the condition of λ = 2λ′ results in the

pure NJL form for the whole model - ignoring the parity breaking terms. The Thirring FP which we

were following its possible merging to the Gaussian fixed-point is in fact lies very close to the line

λ = 2λ′, thus if the RG equations would result in any merging between the Thirring fixed-point and

the Gaussian fixed-point, the corresponding flavour number N could automatically be considered as

the value of Nc for NJL model too. In any case, our RG analysis has not shown any value for Nc as

we already expected since the limit of N → ∞ does not give any chiral symmetry breaking mass.

In the next Sec. we add an explicit chiral symmetry breaking term to the chiral symmetry preserving

model and try to follow the same logic as the discussion on QED3, to obtain a value for Nc.

2.9 Massive-gauge field QED3; Thirring model

In the following we are going to discuss the mass generation mechanism in the Thirring model

which through a similar approach as in QED3 the β-function for the Thirring coupling will lead to

the generation of all other chiral symmetry preserving coupling strengths.

Similar to what we did for the QED3, we introduce a Gross-Neveu type of coupling as a direct

chiral symmetry breaking term. The resulting RG equations lead to a complicated coupled equation

of all couplings strengths coupled to each other in next-to-the leading order of 1/N . The fact that

both QED3 and Thirring exhibit similar behaviour with respect to a symmetry breaking perturbation

- such as Gross-Neveu type- is however remarkable. The Thirring model can also be considered as

the effective field theory for the phase fluctuating superconductor coupled to the singular gauge field

~a, in the superconducting phase. In this phase the gauge field is massive and the Lagrangian takes

the form,

L = Ψ̄ (γµ∂µ + iaµ) Ψ +M~a2 +
1

2e2
(∇× ~a)2. (2.37)

M is the mass of the gauge field ~a and comes from the Anderson-Higgs mechanism as discussed

in Chapter 1. Upon re-scaling,

√
M ·Naµ → aµ, (2.38)
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the Lagrangian looks like,

L = Ψ̄
(
γµ∂µ + i

λ′√
N
aµ

)
Ψ + ~a2 +

1
2e2

(∇× ~a)2, (2.39)

where λ′ ∼ 1/
√
M . Ignoring the dynamics of the gauge field and integrating out the gauge field ~a

one reaches to the Thirring model as the effective theory for the d-wave superconductor deep inside

the superconducting region,

L = Ψ̄ (γµ∂µ) Ψ +
λ′

N

(
Ψ̄γµΨ

)2
. (2.40)

It is important to notice that the Thirring interaction coupling appears in the form of charge in

the massive gauge field theory. This observation will lead us to treat the dynamical mass generation

in Thirring model the same way as we did in QED3 in previous Sections. The obvious difference

is that the charge renormalization fixed-point is replaced with Thirring coupling strength fixed-

point. Adding the Gross-Neveu term to the above Lagrangian by a charily symmetric breaking

perturbation,

L = Ψ̄(γµ∂µ)Ψ +
g

N
(Ψ̄Ψ)2 +

λ′

N
(Ψ̄γµΨ)2. (2.41)

From our next-order RG equations, we can see that coupling of g and λ′ induces non-zero g′ and

λ couplings strengths upon renormalization. Calculating all the diagrams in Fig.(2.18), results in

the coupling between almost all the four-fermion coupling strengths and results in a much more

sophisticated picture as we originally had for three-dimensional quantum electrodynamics. Below

in Eq.(2.42) we report which non-zero couplings generate the other ones is reported. The fact is that

there is nothing to prevent the chiral symmetry breaking interactions inducing a chiral symmetry

preserving interaction terms in the next order of 1/N . As a matter of fact the chiral symmetry

breaking couplings, g and g′ generate chiral symmetry preserving coupling strengths λ and λ′ in

the 1/N order. This means that beginning from Thirring model with an additional Gross-Neveu

interaction added to it, all the four possible chiral symmetry preserving and breaking interaction

coupling strengths are induced and the β-functions of all the couplings strengths are coupled to

each other (unlike the zeroth order case). We have listed how all different couplings contribute to

renormalization of the other couplings in the followings,
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λ′2

N
→ λR,

gλ′

N
→ g′R,

gλ′

N
→ g′R,

gλ′

N
→ gR,

gg′

N
→ λ′R,

g′2

N
→ gR,

g′λ
N

→ g′R,
g′λ
N
→ λR,

λλ′

N
→ λ′R,

λ2

N
→ λR,

g2

N
→ gR,

gλ

N
→ gR,

g′λ′

N
→ gR.

(2.42)

The RG equations will be,

dg
d ln b

= −g −
(

1− 1
4N

)
g2 − 1

2N
g′2 +

1
2N

gλ− 9
2N

gλ′ − 9
2N

g′λ′,

dg′

d ln b
= −g′ +

(
1 +

1
4N

)
g′2 − 1

2N
gλ′ − 1

2N
g′λ′ +

1
6N

gg′,

dλ
d ln b

= −λ−
(

1− 1
4N

)
λ2 +

9
N
λ′2 − 3

4N
λλ′ +

3
2N

g′λ+
1

2N
gλ,

dλ′

d ln b
= −λ′ +

(
1 +

1
2N

)
λ′2 +

2
N
gg′ − 1

2N
λλ′ − 1

2N
g′λ− 1

6N
gλ′. (2.43)

Notice that because the chiral symmetry breaking couplings do generate chiral symmetry pre-

serving couplings and not vice versa, we do not expect a symmetric look for βλ and βg or βλ′ and

βg′ unlike the leading order RG equations. The analysis of the phase transition in the above system

is somewhat difficult. There are 16 fixed points which corresponds to Thirring, parity breaking,

chiral symmetry preserving and Gross-Neveu chiral symmetry breaking regions. Going back to

the idea of treating the Gross-Neveu interaction as a perturbation on the original Thirring theory,

we will focus on the g 6= 0 and λ′ 6= 0 plane. Assuming that particularly for the Thirring fixed

point which at N = ∞ is at λ′ = 1, λ = 0, g = 0, g′ = 0, and the Gross-Neveu fixed-point

λ′ = 0, λ = 0, g = 1, g′ = 0, we can ignore the couplings including the other two parameters λ and

g′ inside the above RG equations Eq.(2.43) will lead to a simper set of coupled equations,
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dg
d ln b

= −g −
(

1− 1
4N

)
g2 − 9

2N
gλ′,

dλ′

d ln b
= −λ′ +

(
1 +

1
2N

)
λ′2 − 1

6N
gλ′. (2.44)

Upon decreasing the value of large-N , the λ′ = 1, g = 1, fixed-point will merge with the

Thirring fixed point. For some N ’s after a critical value Nc, the Thirring fixed point will be a

completely repulsive one. The flow diagram of the system of the RG equations for different values

of N is plotted below in Fig.(2.21).

This will let us estimate a value for the critical Nc for Thirring model,

Nc = 4.0. (2.45)

This is in accordance with some other previous works using Schwinger-Dyson equations [48][49],

which reported Nc = 4.32. The numerical calculation, however, has reported Nc = 6.6 [50][51].
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Figure 2.21: Renormalization group flow diagrams for the chiral symmetry breaking strengths, g
and Thirring coupling λ′ at (a) 1/N = 0.1, (b) 1/N = 0.2, (c) 1/N = 0.3 and (d) 1/N = 0.4. As
it can seen, the nature of the Thirring coupling changes upon passing the critical Nc ≈ 3.0.
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2.10 Further Discussion and Future Directions

2.10.1 Anisotropic RG scheme; 2+1 dimensional quantum electrodynamics

As the reader might have noticed, so far all the RG calculations have been performed by assum-

ing the same cutoff for imaginary time and momenta. This is not exactly the case for the case

of underdoped cuprates as the critical point that the quantum fluctuations of the system nearby it

should identify the pseudogap region. In this section we apply the same RG techniques to the three-

dimensional QED coupled to a Gross-Neveu coupling to the leading order in large-N and derive the

RG equations with imaginary-time cutoff taken to infinity. This resembles a system in a 3-ε dimen-

sions and might give somewhat different results. The charge renormalization in this scheme can be

derived from the calculation of the polarization bubble and the resulting β-function has a different

factor in front of the Ne4 term which might eventually result in a different reading for the value of

Nc.
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Figure 2.22: Diagrams contributing to the leading order in the anisotropic RG scheme. The main

difference is that there are now three coupling strengths appearing in the vertices and there can be

cross terms from those couplings in the RG equations even in the leading order of 1/N .
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de2

d ln b
= e2 − N

6
e4,

dg

d ln b
= −g − 2g2 + 4e2g +

2
3
e2g′ +

3
8
e2g′0 +

5
16
e2g′i,

dg′0
d ln b

= −g′ + 1
24
e2g′0 +

3
8
e2g,

dg′i
d ln b

= −g′i + g′2i −
1
48
e2g′i +

1
4
e2g. (2.46)

Analysis of the above RG equations, is left as a future project. Most importantly one has to

argue the consistency of the charge renormalization β-function which is now obtained using a field-

theoretical approach and momentum-shell renormalization for the interaction coupling strengths.

There is also another straight forward extension of the problems discussed above and that is the

next-order in 1/N modification to the QED3 RG equations that was obtained in the beginning of

the chapter. Aside from the one-loop particle-particle diagrams that is already calculated to reach at

Eq.(2.43), we also need to look at the radiative correction diagrams to the next order. We expect that

the value of Nc does not change significantly from the value we calculated Nc = 6.0. This should

affirm the consistency of our large-N expansion.

2.11 Summary

As the heart of the high-temperature superconducting transition in the underdoped regime is pro-

posed to be explained by dynamical mass generation in Dirac fermionic theories strongly coupled

with a gauge field and also in the presence of different four-fermionic couplings we needed to un-

derstand the mechanism much better. More importantly we need to have a reliable estimate of the

critical number of fermionic flavours,Nc, below which the dynamical mass generation does not hap-

pen. Our approach to the dynamical mass generation of fermionic theories in presence of both gauge

field and on-site interaction terms is based on a momentum-shell renormalization group analysis us-

ing which we can identify when the system (QED3 in this case), becomes unstable with respect to

the introduction of infinitesimal (chiral) symmetry breaking terms.

Next part of the Chapter we proceeded with a similar analysis for Thirring model which effec-

tively describes AF order-parameter generation directly from the d-wave phase (and not from the

intermediate pseudogap phase). We show the possibility of dynamical mass generation in Thirring

model and derive the value of Nc = 4.0 for this transition. The scheme we are discussing will lead
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to the conclusion that since there is the possibility of transition to AF phase both from pseudogap

and dSC phase there might be an overlap region between the two AF and dSc phases. However, it

has been argued before that considering the full theory and including the vortex degrees of freedom

the overlap region tends to be zero as upon the mass of the gauge put restriction on momentum

cut-off that appears in the calculation of the quasi-particle dynamical mass generation. A fact that

has been absent from our RG analysis.
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Chapter 3

Superfluid Density and Helicity Modulus

3.1 Weakly Interacting Bosons; General Approach

In this section we will review the general theory for superfluids and derive the formulas for conden-

sate fraction and superfluid density for a superfluid either on a lattice or continuum with a general

form of dispersion under the Bogluibov approximation. Later on, we will focus on the layered

model that is appropriate for the QED3 theory of nodal high-temperature superconductors and the

low-temperature, underdoped form of the superfluid density along both ab-axes and also particularly

the c-axis as discussed in the previous sections.

Consider a bosonic theory with both continuous and discrete degrees of freedom in a general

form:

S0 =
∫ β

0
dτ
∫

ddx
∑
ij

(−tijb∗i (x, τ)bj(x, τ) + h.c.) +
∑
i

b∗i (x, τ)
(
−∂τ − ∇

2

2m
− µ

)
bi(x, τ)

+
λ

2
(b∗i (x, τ)bi(x, τ))2. (3.1)

where bosonic fields, b(x, τ), are coherent-state bosons at continuous position x, lattice site index

i, and imaginary time τ . tij is the hopping amplitude between the lattice sites i to j, β is the

inverse temperature and λ is the on-site interaction strength. To see the spontaneous gauge symmetry

breaking in this this theory, as is customary, we introduce a linear symmetry breaking term to the

action:

S0 −→ Sν = S0 +
1
2

∫
dτddx

∑
i

(ν∗bi(x, τ) + νb∗i (x, τ)), (3.2)

66
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where ν is the Bose symmetry breaking field. Sν can be written in the momentum space representa-

tion as

Sν =
∑
ωn,k

(−iωn + ξk)|b(k, ωn)|2 +
β1/2(2π)d

vol1/2
{ν∗b(0, 0) + νb∗(0, 0)}, (3.3)

where ξ is the energy dispersion of the system measured from the chemical potential. It can take very

general forms as we have been considering a very general form of hopping and continuous dispersion

initially. By introducing the symmetry breaking field the ambiguity in transforming the sum over

momenta into an integral in the thermodynamic limit is removed, since the zero-momentum states

are singled out by the field ν and the divergence is removed. The order parameter 〈b(x, τ)〉 can be

written as the derivative of the free energy with respect to the symmetry breaking field,

lim
ν→0

∂ lnZν
∂ν∗

=
∫

d2xdτ〈b(x, τ)〉 = (vol)(β)〈b〉

=⇒ lim
ν→0

∂f

∂ν∗
= 〈b〉 = φ0, (3.4)

where f is the free energy density of the system.

fν =
T

(vol)
lnZν = T

∑
ωn

∫
k

1
−iωn + ξk

+
ν2

4µ
. (3.5)

The derivative with respect to chemical potential gives the total number density in terms of the

symmetry breaking field and chemical potential and a sum of over momentum occupation numbers:

−∂fν
∂µ

= ntot =
∫
k
nB(ξk) +

ν2

4µ2
,

−∂fν
∂ν∗

= φ0,

→ φ0 =
ν

2µ
, (3.6)

with nB being the Bose distribution function. This will lead us to the relation for the total number

density,

ntot =
∫
k
nB(ξk) + |φ0|2. (3.7)

Now, the non-zero order parameter φ0 can occur at temperatures below some critical Bose-Einstein

temperature TBE , under the condition that while both ν → 0 and µ → 0 the quantity ν2/4µ2

remains constant.
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lim
ν→0

lim
µ→0

ν2

4µ2
= constant , i.e., φ0. (3.8)

3.2 Dilute Bose Gas; Bogoliubov Approximation

In this section we discuss a similar approach to the weakly interacting bosonic superfluid in d-

dimensions with a general form of dispersion on either a lattice or in the continuum with weak

on-site interactions indicated by the interaction strength λ in Eq.(3.1). To proceed I introduce new

bosonic fields:

b(x, τ) → b(x, τ) + φ0,

b†(x, τ) → b†(x, τ) + φ∗0, (3.9)

where the order parameter φ0 ∼
∫
b(x, τ), is the zero-momentum part of the bosonic fields. In the

absence of interactions, the quantum statistical average of the new field will be zero both below and

above the critical TBE. Begin with the Hamiltonian of the bosonic theory using the new bosonic

fields

HBG =
∫

ddx
∑
ij

(−tij(b†i (x) + φ∗0)(bj(x) + φ0) + c.c.)

+
∑
i

(
(b†i (x) + φ0)

(
−∇

2

2m
− µ

)
(bi(x + φ0)

)
+

λ

2
{(b†i (x) + φ∗0)(bi(x) + φ0)}2 − µ̃|φ0|2

+ ν(bi(x)∗ + φ∗0) + ν∗(bi(x) + φ0), (3.10)

where the symmetry breaking term is also included in the Hamiltonian. Now, after the shift in

the bosonic operators the divergence that leads to Bose-Einstein condensation has been removed

and a perturbation theory is possible in the dilute limit. To do so, we only keep the quadratic and

linear terms in the action and drop the rest of the odd and quartic powers. While the dispersion,

ξk = εk − µ + 2λφ2
0, is re-defined to include the Hartee term from the quartic interaction, the

corresponding action can be written in a more compact form by introducing two-component Nambu

spinors for our bosonic fields.
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SBG = S0 + Sqp +
β

2

∫
k
ξk,

S0 ≡ β(−µ̃|φ|20 +
λ

2
|φ|4),

Sqp ≡ T

2

∑
ωn

∫
ddk
2πd

(
b∗k,ωn b−k,−ωn

) −iωn + ξk λφ∗20

λφ2
0 iωn + ξ−k


 bk,ωn

b∗−k,−ωn
,


Sν ≡

∑
ωn

∫
k
(νb∗0,0 + ν∗b0,0). (3.11)

Notice that there is an overall extra term ξk/2 added to SBG which comes from writing the bosonic

field combinations bb† in a time-ordered manner b†b after expanding the Hqp.

The above action can be diagonalized by a Bogoliubov transform,

αk,ωn = cosh(Θk)bk,ωn + sinh(Θk)b∗−k,−ωn ,

α∗k,ωn = cosh(Θk)b∗k,ωn + sinh(Θk)b−k,−ωn . (3.12)

This diagonalizes the action if tanh(2Θk) = λ|φ0|2/ξk is satisfied. The diagonalized action can be

written as,

Sqp =
T

2

∑
ωn

∫
ddk
2πd

(
α∗k,ωn α−k,−ωn

) −iωn + Ek 0

0 iωn − Ek

( α∗k,ωn
α−k,−ωn

)
(3.13)

and the Bogoliubov quasi particle dispersion Ek will be:

Ek =
√
ξ2
k − λ2φ4

0 =
√
εk(εk + 2λφ2

0). (3.14)

The free energy density of the action is easy to calculate since the theory is Gaussian

f(ν = 0) = − T

vol
lnZ =

T

2

∑
ωn

∫
k

ln{ω2
n + ξ2

k − (λφ2
0)2}+

∫
k

ξk
2
− µ̃|φ0|2 +

λ

2
|φ0|4, (3.15)

while the same condensate order-parameter φ0 as in the non-interacting limit can still be obtained

as the derivative of the free energy with respect to the symmetry breaking field
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lim
ν→0

(
−∂f(ν)

∂ν

)
= φ0 (3.16)

while the particle number density is easily seen to be

ntot = −∂f
∂µ

=
∫
k

(
T

2

∑
ωn

2ξk
ω2
n + E2

k

+
1
2

)
+ |φ0|2, (3.17)

where the derivative with respect to chemical potential has been replaced with the one with respect

to boson energy, ∂/∂µ = ∂/ξk.

3.3 Superfluid Density; Generalized Landau Formula

The superfluid density is a torsional spring constant which provides a response to a helical twist of

the order parameter

φ0 → φ0 e
ik0·x, (3.18)

which implies the same twist in the the symmetry-breaking field ν. As argued by Landau for

translationally invariant systems, this corresponds to a Galilean transform v0 = ∇θ. In the new

coordinate system which is moving the with the velocity v0, the kinetic energy of the superfluid can

be written as,

K(v0) = K0 +
1
2
Mv2

0 + P · v0, (3.19)

where the cross term, P · v0, can be written as

P · v0 =
∫
b†(x)

(
i~2

m
k0 · ∇

)
b(x)

=
~
m

k0 · Σk~k b†kbk. (3.20)

The action of this term is to impose a velocity drift on the quasi-particle excitations, ε(k)→ ε(k)−
v0 ·k, which give rises to a momentum flux density Ptot/vol. The proportionality constant between

total momentum and k0 defines the normal fluid density, ρn. Assuming a two fluid model picture,

ρ = ρs + ρn, (3.21)
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leads to a definition for the superfluid density.

For a more general case of non-Galilean invariant systems, such as bosons on a lattice or in the

presence of external magnetic fields, there is a more rigorous mathematical definition [91][56][55].

One can assume a twist in the boundary conditions of the system has been imposing helical twist in

the order parameter and then calculate the change in the free-energy of the system, under the new

“twisted” boundary condition. The difference between the old and new free-energies per phase-twist

can give us the superfluid density. Here k0 is taken to be θ/L where L is the system size along the

direction for which the superfluid response is being calculated and θ is the value of the boundary

condition twist.

ρs ≡ m2

~2
Υµ = lim

θ→0
lim
L→∞

{F (θ, µ, T )− F (0, µ, T )}. (3.22)

where we have defined the so-called “helicity-modulus”, Υµ[56][55]which is the superfluid density

per unit of (~/m)2. Calculating the free-energy in an arbitrary system of bosons with an arbitrary

boundary condition twist is a difficult task. We adopt an equivalent method. Instead of the twist

in the boundary conditions we merely assume the phase-twist in the symmetry breaking term, ν →
ν exp(ik0 · x). and define the superfluid density in a similar manner as Eq.(3.22),

ρ
(s)
α,β = lim

ν→0
lim
k0→0

m2

~2

∂2F (µ, T ; k0)
∂k0,α∂k0,β

, (3.23)

where the superfluid density now takes the form of a tensor. In isotropic models the superfluid

density is an scalar.

Applying a gauge transform to make the symmetry breaking field real and constant again, re-

quires that we transform bosonic field same way:

b(x, τ) → b(x, τ) eik0·x

b∗(x, τ) → b∗(x, τ) e−ik0·x

. (3.24)

The effect of this transform in momentum space is

bk,ω → bk+k0,ω

b−k,ω → b−k+k0,ω (3.25)
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and the k0-dependent action now becomes

S0 → S0(k0) = (εk0 − µ)|φ0|2 +
λ

2
|φ0|4,

Sqp → Sqp(k0) =
∑
ωn

∫
k

(
b∗k,ωn b−k,−ωn

)
× −iωn + ξk+k0 λφ∗20

λφ2
0 iωn + ξ−k+k0

( b∗k,ωn
b−k,−ωn .

)
(3.26)

The new action can be diagonalized with a Bogoliubov transform. Now the Bogoliubov coeffi-

cients uk and vk will have the form

uk(k0) = cosh(Θk(k0)) =
ε̄k + λφ2

0√
ε̄k(ε̄k + 2λφ0)

vk(k0) = sinh(Θk(k0)) =
λφ2

0√
ε̄k(ε̄k + 2λφ0)

(3.27)

and Sqp(k) becomes

Sqp(k) = T
∑
ωn

∫
k

(
b∗k,ωn b−k,−ωn

)

×

 −iωn + ∆εk + E(ξ̄k) 0

0 iωn −∆εk + E(ξ̄k)

( bk,ωn

b∗−k,−ωn

)
(3.28)

where ε̄ and ∆ε are defined as

ε̄k =
1
2

(εk+k0 + εk−k0),

∆εk = (εk+k0 − εk−k0). (3.29)

The free energy density for the phase-twisted system will be

F (k0,α) = T
∑
ω0

∫
k

ln
(
−iωn +

∂ξk
∂k0,α

+ E(ξ̄k)
)

+ ln
(
iωn − ∂ξk

∂k0,α
+ E(ξ̄k)

)
+
∫
k
ξk+k0 + (εk0 − µ)|φ0|2 +

λ

2
|φ0|4. (3.30)
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Now, the helicity modulus will be simply obtained from the second derivative of the k-dependent

free energy.

Υα = lim
k0→0

∂2F (k0)
∂k0,α∂0,β

= lim
k0→0

T

2

∑
ωn

∫
k
− (∂k0,αE(ξ̄k) + ∂k0,αξk)2

{−iωn + E(ξ̄k) + (∂αξk)k0,α}2
− (∂k0,αE(ξ̄k)− ∂k0,αξk)2

{iωn + E(ξ̄k)− (∂αξk)k0,α}2

+
∂2
k0,α

E(ε̄k)

{−iωn + E(ξ̄k) + (∂αξk)k0,α}
+

∂2
k0,α

E(ε̄k)

{iωn + E(ξ̄k)− (∂αξk)k0,α}
+

∂2

∂k2
0,α

(εk0 − µ)φ2
0 +

λ

2
φ4

0). (3.31)

Taking the limit k0 → 0 and performing the summation over Matsubara frequencies simplifies

the above formula to a generalized Landau formula for the helicity modulus:

Υα,β =
∫
k

(
∂εk
∂kα

)(
∂εk
∂kβ

)
dnB(Ek)

dEk
+
∫
k

∂2εk
∂kαkβ

·
(
nB(Ek) · ε+ λφ2

0

Ek

)
+
∫
k

∂2εk
∂kαkβ

· 1
2

(
ε+ λφ2

0

Ek
− 1
)

+

(
∂2εk
∂k2

0,α

)
k0=0

× |φ0|2. (3.32)

This will be our starting point to analyze the anisotropic superfluids which will be discussed in

the next section. Notice that in terms of the standard language of linear response theory, the first

term represents the paramagnetic response of the quasi-particles and represents a current-current

correlation function (or similarly a polarization bubble). The second term, on the other hand, is the

diamagnetic part of the response which is absent in a translationally invariant model while playing

an important role in lattice models. The third term is the zero-temperature superfluid depletion and

conventionally part of the diamagnetic response term. Finally the last part is the collective response

of the condensate to the phase twist. As expected the component of the dispersion is coupled to the

Bose condensate in this term and the introduction of a generalized form of dispersion here might

just change the effect of the Bose condensate term by a constant factor ∂2ε(k = 0)/∂k2.

In the language of two fluid model, we can also identify the normal fluid and total fluid density

from the above result as follows

Υtot,α,β = Υs,α,β + Υn,α,β, (3.33)
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while the condensate fraction/order parameter, φ0 can also be written in terms of the total particle

number density

|φ|2 = ntot −
∫

dε
∂E

∂ε
ntot(E). (3.34)

Restricting ourselves to diagonal elements of the helicity modulus and substituting back for φ into

Eq.(3.32) yields the normal and total helicity moduli as

Υtot = Υs,α(T = 0) = ntot ·
(
∂2εk
∂k2

α,0

)
k0=0

+
1
2

∫
k

∂2εk
∂k2

α,0

(
∂Ek

∂εk
− 1
)

Υn,α =
∫ (

∂εk
∂kα

)2

· dnB(Ek)
dEk

+
∫
k

(
∂εk
∂kα
− ∂εk=0

∂kα

)
nB(Ek) · ∂Ek

∂εk
. (3.35)

Thus we obtain the familiar relationship between the superfluid and normal components,

Υα,s(T )
Υα,tot

= 1− Υα,n(T )
Υα,tot

. (3.36)

Υtot has the zero-temperature depletion effect in it, which is typically of ∼ O(λ3/2). Before doing

that there are some points to be considered regarding the form of the superfluid density /helicity

modulus tensor. The helicity modulus tensor should be diagonal as can be seen from the following

argument. In general this is not the case but in most of the physical problems such as anisotropic

bosonic models in a continuum or a tight-binding lattice, the kinetic energy for different degrees of

freedom can be divided into independent pieces and there is no coupling. i.e.,

εk =
∑
i

ε
(i)
k (3.37)

where the ε(i)
k is the dispersion for the i-th degree of freedom. As an example consider the εk =

ε(x, y) = ε1(x) + ε2(y) where x and y are two momenta. The formula for helicity modulus would

look like,
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Υx =
∫

dxdy

[
−dnB(ε)

dε
·
(
∂ε(x, y)
∂x

)2

+
∂2ε(x, y)
∂x2

· nB(ε(x, y)) +
(
∂2ε(x, y)
∂x2

0

)
x0=0

|φ|2
]

=
∫

dxdy

[
dnB(ε(x, y))

dx
·
(
∂ε

∂x

)−1

+
dnB(ε(x, y))

dy
·
(
∂ε

∂y

)−1
](

∂ε

∂x

)2

+
∂2ε(x, y)
∂x2

· nB(ε(x, y)) +
(
∂2ε(x, y)
∂x2

0

)
x0=0

|φ|2

= −
∫

dxdy
dnB(ε(x, y))

dx
·
(
dε1(x)
dx

)
+ nB(ε(x, y)) · d

2ε1(x)
dx2

+
(
∂2ε(x, y)
∂x2

0

)
x0=0

|φ|2

=
(
∂2ε(x, y)
∂x2

0

)
x0=0

|φ|2,

(3.38)

where we arrived at the last line through an integration by parts. As one expects, the superfluid

density is proportional to the condensate fraction in a non-interacting bosonic model. The anisotropy

will only appear in the second derivative term calculated at the zero momentum twist.

The helicity modulus in the simple model we are considering, εk =
∑

i ε
(i)
k , is trivially diagonal.

The second derivative of the dispersion will vanish if the two components are not equal

∂2ε(x, y)
∂x∂y

=
∂

∂x

(
∂ε2(y)
∂y

)
= 0. (3.39)

Actually, in the absence of interaction, the above observations can be stated in a generalized form

almost independent of the form of the dispersion. I can state them in the form of a theorem.

Theorem I: In the absence of topological defects, the helicity modulus of a free system of bosons

in d-dimensions is always diagonal and the diagonal elements are proportional to the condensate

fraction, i.e.,

Υµν(T ) =
(
∂2εk
∂kµkν

)
k=0

× n0(T ). (3.40)

Without loss of generality, we limit ourselves to the case of two momenta (calling them x and y as

before) and notice that,

∂nB(ε(x, y))
∂x

=
dnB(ε)

dε
· ∂ε(x, y)

∂x
∂nB(ε(x, y))

∂y
=

dnB(ε)
dε

· ∂ε(x, y)
∂y

. (3.41)
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Substituting the above in the formula for the Υµν - as we did for additive dispersion (ε(x, y) =

ε1(x) + ε2(y), after partial integration one finds

Υx =
∫

dy
[
nB(ε)

∂ε(x, y)
∂x

]
boundary,x=±∞

+
(
∂2ε(x, y)
∂x2

)
x,y=0

· |φ0|2. (3.42)

The boundary term is basically the total momentum on the boundary and vanishes in the thermody-

namic limit. In the presence of topological defects, however, the boundary term does not vanish as

is the case for the vortices in a two or three dimensional superfluid.

The corresponding version of the above theorem for fermionic systems can be found in Ref.[57].

The statement is that there has to be a gap in the dispersion of the quasi-particles to have a non-zero

superfluid density/helicity modulus. The derivation is pretty much identical to the bosonic version

considering there is no BEC condensate contribution in the fermionic models.

Theorem II: For an anisotropic dilute Bose gas, the helicity modulus, Υµν , vanishes at the same

value of critical temperature, Tc as the isotropic case.

Proof : Near Tc the BEC fraction, φ2
0 → 0. The Bogoliubov spectrum,

√
εk(εk + λφ2

0 ap-

proaches the free dispersion, εk. i.e.,

Υµν(T → Tc) = Υ(0)(T → Tc) = δµνn0(T → Tc)→ 0. (3.43)

where Tc = TBEC under the Bogoliubov approximation. Eq.(3.38) similarly can be derived for

a weakly interacting fermionic systems using linear response theory techniques. The main source

of difference os however the contribution of the condensate φ2
0 everywhere in Eq.(3.38), which is

missing from fermionic counter-part [57][58][59].

3.4 Regimes of an Isotropic Superfluid; Cross Over Scaling for the
Helicity Modulus

Before we get into the problem of the layered anisotropic superfluid, let us discuss cross over regimes

of an isotropic d-dimensional superfluid particularly in two and three dimensions. One can do that

by investigating temperature dependence of superfluid density/helicity modulus in different limits.

In the following, we will closely follow the discussion in Ref.[91] on the crossover scaling of the

superfluid density.

For a non-interacting system of bosons superfluid density scales as
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∆ρs(T )
ρ0

= 1−
(
T

Tc

)d/2
. (3.44)

There are three characteristic energy scales in the problem: λφ2
0, εk (k ∼ n

1/d
tot ) and, T. They

can be expressed in terms of corresponding length scales, where the λT = h/
√

2πmT is the thermal

wavelength while a =
√

~2/mλ is the scattering length. We have mentioned the ~ and kB in the

formulas for the sake of familiarity while we consistently assume both to be equal to unity. In

terms of these and length scales the superfluid density can be written as a function of dimensionless

variables

∆ρs
ρ0

= F̃

(
λT

a
,
T

Tc

)
(3.45)

where F̃ (0, TTc ) = 1 −
(
T
Tc

)d/2
describes an ideal Bose gas. Near Tc one can assume a scaling

hypothesis for the superfluid density

ρs(T ) = ρideal
s (T ) · Ỹ

(
a/λTc
tφ

)
, (3.46)

with t̃ = 1 − T/Tc and asymptotic behaviour as T → Tc, y → ∞, Y (y) ∼ yζ and also Y (0) = 1,

which corresponds to a/λT → 0 as t̃→ 0.

At low temperatures the linear character of Bogoliubov spectrum will dominate when T � T1 =

λφ2
0. This corresponds to the famous ∆ρs

ρ0
∼ T d+1 behaviour (Landau’s T 4-law in three-dimension),

i.e.,

∆ρs(T )
ρ0

= F̃

(
λT
a
,
T

Tc
→ 0

)
∼ T d+1. (3.47)

Assuming a similar cross over scaling form for superfluid density as t→ 0 and defining t ≡ T
Tc

,

ρs(T ) = ρideal(T ) · Ỹ0

(
a/λTc
tφ′

)
(3.48)

It is natural to assume that the correct low-T scaling should be given by the ratio of T and

T1 = λφ2
0 thus leading to the fact that the exponent φ′ = 1. The width of the quantum critical region

near T = 0 is given by [91],

t ≤ t1 =
(
Tc
T1

)(d−2)/2

(3.49)
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We have summarized the crossover scaling properties of the superfluid density in a wide range

of temperature in the Fig.(3.1).

Now we have all the tools to investigate the particular case of weakly interacting layered bosons,

which is suggested to be relevant for the underdoped cuprates . This is the subject of the next

Chapter.

Critical region

Figure 3.1: The three major crossover temperatures for an isotropic and weakly interacting super-

fluid.



Chapter 4

C-axis Superfluid Density In Layered
Bosonic Models

4.1 Introduction

The original inspiration for writing this section comes from an idea that detailed analysis of the

response functions such as superfluid density along different axes can help us to fix the unknown

parameters that appear in the field theory constructed for the underdoped cuprates Eqs.(1.65) and

(1.68). The focus on the bosonic superfluid density comes from the argument by I.F. Herbut [38]

that in the underdoped regime the superfluid density calculated from the bosonic degrees of freedom

in the system Eq.(1.68), is dominant in comparison to the fermionic part and also gives the right

doping dependence compared with experiments. Ref.[38] has proposed a layered model of bosons

with the possibility of inter-layer hopping added to the original field theory. In the BEC limit the

ab-plane superfluid density is calculated and shown to fit the observed experimental results. We

aimed to generalize the above approach to c-axis superfluid density observations to try to fix un-

known parameters appearing in the action, Eq.(1.68). However, as it turns out the bosonic superfluid

density cannot give a good match for the c-axis superfluid response in HTS. One can argue that

fermionic degrees of freedom and their impurity scattering in inter-layer hopping play a dominant

role [59][60].

Hence we will not emphasize the modelling of the HTS superfluid response using our layered

model much and rather try to analyze it as an abstract model. We work out all crossover scaling

79
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behaviours for both the ab-plane and c-axis superfluid densities and show that there is a quasi two-

dimensional regime that appears in the low-T range where ρs ∼ T 2+ε, above the quantum critical

point in the vicinity of which ρs ∼ T d+1.

4.2 Layered Quasi Two-Dimensional Superfluids

In high-temperature superconductor materials lattice symmetry and electronic structure basically

describes a tight-binding dispersion for electrons. Phenomenologically, we will be adopting a sim-

ilar dispersion relation for our bosons which are basically the dual-quantum vortex fields in the

theory of a phase fluctuating d-wave superconductor. The tight-binding dispersion for bosons will

be anisotropic:

εk = ta sin2(kxa) + tb sin2(kyb) + tc sin2(kzc), (4.1)

where ta,b,c are the values of the hopping amplitude along the a- b- or c-axes. In YBCO and most of

the HTS materials the values of a and b lattice spacings are close to each other while the c-axis has a

ratio of 10 relative to them.The hopping amplitudes are significantly different. with tab/tc ∼ 1000.

This will allow us to assume a somewhat simpler model for the layered bosonic model. We assume

εk =
k2
x + k2

y

2m
+ t sin2(kzc) (4.2)

with m being the mass of the bosons and t the hopping amplitude for intra-layer jumps. We have

noted the axes defining the plane as a and b-axis and the axis perpendicular to them as c-axis and

the a, b, and c denote the corresponding lattice spacings.

The condensate fraction can simply be calculated as,

n0(T ) = n0(0) +
∫

dkz
2π

∫
kdk
2π

(
exp

[
k2

2mT
+
t

T
sin2(kzc))− 1

])−1

. (4.3)

The integral can be exactly calculated upon expanding the Bose-function in terms of a geometrical

series and the result is

mT

(2π)2

∞∑
n=1

∫ 1

0

dα√
1− α2

∫ ∞
0

dy · λne−n{y+ t
T
α2}, (4.4)

where y ≡ k2/2 and α ≡ sin(kzc/2), and the λ is the fugacity λ = exp(βµ). Performing the

integrals over y and α is straight forward,
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n(T ) = n0 − mT

π

∑
n

λn

n
I0

(−nt
T

)
e
nt
T . (4.5)

with I0(x) being the Bessel function. In the limit of small hopping, t/T � 1,

I0(tn/T ) ' 1 +
1
4

(
tn

T

)2

+O
(
tn

T

)3

, (4.6)

∆n(T ) = −mT
π

ln
[
1− λe− t

T

]
' mT

π
ln
(
T

t

)
, forλ = 1. (4.7)

The next order term can also be calculated

mT

π

∑
n

e−nt/T

n
×
(
nt

2T

)2

=
1

1− e−t/T ×
mt2

4πT 2
' mt

4πT
, (4.8)

which might be of significance in the low temperature limit. If one does the summation before

expanding the integral Bessel function there would be an additional contribution, that is linear in

temperature,

∆n =
∫ 1

0
−mT

π
· ln(1− e− tα

2

T )
dα√

1− α2

=
m

π
· T
(

ln
(
T

t

)
+ π ln 2

)
. (4.9)

For the sake of completeness I conclude the non-interacting limit calculations by including next-

nearest-neighbuor hopping (nnn). The assumed nnn-model is

εk =
1

2m
(k2
x + k2

y) + t sin2(kz/2) + t′{sin2(kz/2)(k2
x + k2

y)}. (4.10)

The condensate fraction can be conveniently calculated,
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∆n(T ) =
∫

dkz
(2π)

kdk
(2π)2)

[
exp

{
k2

(
1

2mT
+
t′

T
sin2(kz/2)

)
+
t

T
sin2(kz/2)

}
− 1
]−1

=
∫

dkz
(2π)

(
ln
(
T

t

)
+ ln(sin2(kz/2))

)
·
(

1
2mT

+
t′

T
sin2(kz/2)

)−1

=
mT

π

∫
dz

1
1 + 2mt′ sin2(kz/2)

ln
(
T

t

)
+

1
1 + 2mt′ sin2(kz/2)

ln(sin2(kz/2)), (4.11)

which leads to

∆n(T ) =
mT

π

[
ln
(
T
t

)
√

1 + 2mt′
+ constant

]
. (4.12)

Thus, the modifications for t′m� 1 are minor.

4.2.1 Regimes of an Anisotropic Superfluid; Crossover Scaling for the Helicity Mod-
ulus

In the layered model, the existence of a new energy scale, t (hopping amplitude), changes the low-

temperature scaling properties of the superfluid density. The effective dimensionality of the system

will vary with temperature. Near T = 0 we have 3D behaviour ∆ρs ∼ T 4 while as T increases it

changes into ∆ρs ∼ T 3 which represents a quasi-two dimensional system.

Similar to the analysis of the isotropic case we write the form of ρs as

∆ρs(T )
ρ0

= F̃

(
λT
a
,
T

Tc
,
t

T

)
(4.13)

while for λ = 0, F̃
(

0, TTc ,
t
T

)
will represent the 2 + ε dimensional Bose-Einstein condensate result,

F̃

(
0,
T

Tc
,
t

T

)
=
(
T

Tc

) 2+ε
2

=
T lnT
Tc lnTc

. (4.14)

Which we have assumed lnT ∼ T ε. This will determine the value of ε which depends on t/T ,

2
ln(Tc/t)

= ε. (4.15)

At low-T’s but above T1 (T > T1), we can see from Bogoliubov spectrum that the quasi-particles

will be easily excited along the ab-plane but not along c-axis. We ignore the terms k2
x/2mT and
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k2
y/2mT but retain t sin2(kz/2)/T . Inserting this into the quasi-particle dispersion leads to the

energy scale T ′1 ≡
√
tλφ2

0. An alternative way to derive the crossover temperature T ′1 is to assume

a scaling ansatz for the superfluid density of the following form

ρs(T ) = ρideal(T ) · Y0

(
λT
a · tT
T/Tc

)
, (4.16)

in analogy with the isotropic model. Eq.(4.16) indicates that ρs is a homogeneous function of the

dimensionless parameters λT
a ,

t
T ,

T
Tc

. The scaling behaviour of Y0, however, is not complete. There

might not be an asymptotic form for Y (y) → yζ as y → ∞. But it will roughly behave as a

2 + ε-dimensional superfluid at low-T, i.e.

∆ρs
ρ0

∼ F̃

(√tλφ2
0

T

)2

· Tc
T


∼ T 3+ε. (4.17)

Eq.(4.17) defines T ′1 as the upper limit temperature for the interacting quasi-two dimensional

regime in our layered model. The regimes of the highly anisotropic layered bosonic model are

defined based on the crossover temperatures T1, T
′
1, Tc −∆cT and Tc.

4.2.2 Regime I: Interacting 3D Limit (T < T ′1)

To calculate the superfluid density/helicity modulus in this regime we will begin with calculating

the zero temperature depletion of the condensate fraction. However, since the result are temperature

independent they will be used in the rest of the regime I and II calculation of both ab-plane and

c-axis superfluid densities.

Consider the the paramagnetic part of the superfluid response along ab-plane given by equation:

ρn
ab(T ) = −1

2

∫
2πkdk
(2π)2

dkz
2π

dnB(E)
dE

·
(

k
m

)2

, (4.18)

we define new variables x, y and the speed of sound u =
√

2λφ2
0,

y ≡ u

T

√
k2

2m
+ t sin2(kz/2)

x ≡ u
√
t

T
sin(kz/2). (4.19)
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The integral can be re-written as

ρn
ab(T ) =

∫ ∞
0

(
T

u
√
t

)
· dx√

1−
(

T
u
√
t

)2
x2

∫ ∞
y=x

(
T

u

)3 dnB(y)
dy

y3dy

−t
∫ ∞

0

(
T

u
√
t

)3

· x2dx√
1−

(
T
u
√
t

)2
x2

∫ ∞
y=x

(
T

u

)
dnB(y)

dy
ydy. (4.20)

To leading order in temperature, T , we take 1/
√

1− (Tx/u
√
t)2 ∼ 1 to obtain

∫
dx
∫
y=x

dynB(y)y2 =
∫

dx
∫

dy
∞∑
n=1

e−nyy2

=
∑
n

∫
dx
(

2
n3
− 2
n2

∂

∂n
+

1
n

∂2

∂n2

)
e−nx

=
∑
n

6
n4

= 6ζ(4), (4.21)

where ζ is the Reiman zeta-function. Similarly, the other term can be calculated as

∫
dx · x2

∫
y=x

dynB(y) = 2ζ(4), (4.22)

and overall,

ρnab(T ) =
2

m
√
t
· 1

(2π)2
· T

4

u5
· 8ζ(4). (4.23)

Now, let us get to the c-axis normal component. The paramagnetic response term looks like,

ρnc,para(T ) = −
∫
α
√
t

dnB(y)
dy

ydy · 4α2
√

1− α2 · 2dα×
[(

t

2

)2 2
(2π)2

1
u

]
, (4.24)

Again, u
√
tα/T → x and uy/T → y,



CHAPTER 4. C-AXIS SUPERFLUID DENSITY IN LAYERED BOSONIC MODELS 85

−
[(

t

2

)2 2
(2π)2

1
u

]
×

(
T

u

)∫
y=x

dnB(y)
dy

ydy
(

T

u
√
t

)3

· 2
√

1−
(

T

u
√
t

)2

x2dx

=
∑
n

∫
0
x3e−nxdx+

∑
n

(∫
y=x

e−nxdy
)
x2dx

=
√
t

(2π)2u3
· 6ζ(4). (4.25)

This time we have to add the diamagnetic contribution which appears when there is a lattice

structure rather than a continuum.

ρnc,dia(T ) =
∫

t

2
(1− cos(kz))nB(E) · ε+ λφ2

E
· kdkdkz

(2π)2

T

u
√
t

=
∑
n

∫
x,y

t

2

(
T

u
√
t

)2

2x2 × e−ny ×
((

T
u

)2
y2 + u2

2

Ty

)(
T

u

)2

ydy
(

T

u
√
t

)
2dx√

1− T 2x2

u
√
t

=
√
t

(2π)2u3
· 2ζ(4) · T 4 (4.26)

To compare the two results, we need to calculate the depletion of the condensate fraction and the

superfluid densities at zero-temperature, ∆n0, ∆ρdep
ab and, ∆ρdep

c .

∆n0 =
1
2

∫
k

(
εk + λφ2√
εk(εk + λφ2)

− 1

)

=
4
√

2
3π

√
m

t2
· λ3/2φ, (4.27)

while ∆ρdep
ab = 1

m∆n0. A similar calculation shows that the c-axis depletion is also proportional to

the condensate fraction by a factor of anisotropy.

∆ρdep
c =

1
2

∫
k

t

2
cos(kz)

(
εk + λφ2√
εk(εk + λφ2)

− 1

)

∆ρdep
c = ∆ρdep

ab ×
(
tm

2

)
+O

(
λφ2

t

)
. (4.28)

Thus the relative values for the ρab and ρc have the same temperature dependence,
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ρsab(T )
ρsab(0)

= 1− ρnab(T )
ρnab(0)

= 1− 1
ρ0

T 4

m
√
tπ2u5

· 8ζ(4),

ρsc(T )
ρsc(0)

= 1− ρnc (T )
ρnc (0)

= 1− 1
ρ0

T 4

m
√
tπ2u5

· 8ζ(4). (4.29)

The two results are proportional and the depletion of the condensate should be included in the

c-axis ρ0.

This is the famous Landau T 4-rule for the interacting region. In this regime the effective dimen-

sionality of the system is three as the temperature is lower than any scale of the system, including the

hopping amplitude. As discussed in the previous sections, as temperature increases one expects to

see the the quasi-two dimensional nature of the system introduce a T d+1-behaviour for the normal

component of the superfluid density - in the ab-plane at least - with d = 2 + ε. A similar result can

be expected for the c-axis superfluid density with a different effective dimensionality, i.e., d = 1+ε.

4.2.3 Regime II: Interacting (2+ε)D Limit ( T ′1 < T < T1)

As one increases the temperature to the range T ′1 � T � T1, i.e. λφ2 � T �
√
tλφ2, the layered

nature of the system displays itself. To see the behaviour of the superfluid density and/or the helicity

modulus we begin with calculating the depletion of the superfluid density in this regime,

∆ρdep
ab =

1
m

∫
k
(y2 − tα2)

dnB

udy
× ydy

(2π)2
· 4dα√

1− α2
. (4.30)

The re-scaling of the variables is different now:

uy

T
→ y,

α→ α,

c1 =
4
m
· 1

(2π)2
. (4.31)

Similarly to previous section, there are two different powers of y that appear in the integral:

−T
3

u4

∫
y3 dnB

dy
dy

dα√
1− α2

= 3c1
T 3

u4

(
ζ(3)π +

π

8

(
T ′1
T

)2

+
1
9

(
T ′1
T

)3
)

≈ 3πζ(3)c1

u4
· T 3 +O

((
T ′1
T

)2
)
. (4.32)
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The second term in Eq.(4.30) gives a different behaviour,

− c1 · T
u2

∫
tα2

∫ ∞
a

nB(y)dy · dα√
1− α2

= −π
4
c1 · T

u2

[
ln
(
T

T ′1

)
+ 0.151697 +

1
3

(
T ′1
T

)
+O

((
T ′

T

)2
)]

. (4.33)

Including the boundary terms which have a linear behaviour in T , the final result for the ab-plane

superfluid density in this limit is,

∆ρab =
3πζ(3)c1

u4
· T 3 − π

4
c1 · T · t

u2

[
ln
(
T

T ′1

)
+ 0.1516 +

1
3

+O
((

T ′1
T

)2
)]

+

+
π

4
c1t · T

u2

[
π

4
− 1

3

(
T ′1
T

)
+O

(
T ′1
T

)]
. (4.34)

The c-axis superfluid response comes from a similar calculation. This time both paramagnetic

and diamagnetic response terms contribute:

∆ρc(T ) = ∆ρp
c (T ) + ∆ρd

c (T ),

∆ρp
c (T ) = −c̃1

∫
t2α2

√
1− α2dα · dnB

udy
· ydy

= c̃1t
2 T

u2

[
− 3

64
− π

16
ln(2) +

π

16
ln
(
T ′1
T

)]
,

∆ρd
c (T ) = c̃1

∫
t(1− 2α2)nB(y)y · dy · dα√

1− α2

= c̃1

(
T

u

)2

· π
2

6
. (4.35)

where c̃1 = 1/4π2, Overall,

∆ρc(T ) =
π2

6
c̃1

(
T

u

)2

+ c̃1t
2 · T
u2

(
π

64
+

π

16
ln
(
T

T ′1

))
. (4.36)

Thus the behaviours of the both ab-plane and c-axis superfluid densities will have the forms:

∆ρab(T ) = aT 3 + bT · (lnT + c)

∆ρc(T ) = a′T 2 + b′T · (lnT + c′) . (4.37)
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4.2.4 Regime III: Ideal Bose Gas Limit; Anisotropic Bose-Einstein Condensate (T1 <

T < Tc −∆cT )

In this limit, that for small hopping covers most of the regime of temperature, the interactions can

be ignored. The condensate fraction has been derived in detail in the beginning of the chapter and

both ab-plane and c-axis superfluid density are proportional to the condensate fraction:

ρab,s(T )
ρ0

= 1− T lnT
Tc lnTc

,

ρc,s(T )
ρ0

= mt

(
1− T lnT

Tc lnTc

)
,

(4.38)

where the mt indicates the anisotropy along the c-axis. As mentioned before, the relative helicity

modulus along the c-axis, Υc(T )/Υc
0 and in the ab-plane, Υab(T )/Υab

0 , are identical. Thus the

behaviour of both of the values of the superfluid densities versus temperature is almost linear, T lnT ,

in the absence of interactions. The effect of interactions can be seen as the curvature of both the ab-

plane and c-axis responses. Before we consider more detail of the curvature of the superfluid density

graphs we will discuss the relationship of the layered bosonic model we have been analyzing to the

underdoped phase-fluctuating high temperature superconductor in the next section.
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Critical region

Figure 4.1: The three major crossover temperatures for an anisotropic superfluid. ρ(T ) stands for

either of the ab-plane or c-axis responses (see text).

4.3 Ioffe-Larkin Rule and the Connection to the Underdoped HTS

In this Section we will discuss the superfluid density response in the high temperature superconduc-

tors in the underdoped pseudogap regime the framework of the phase fluctuating d-wave supercon-

ductor developed in Chapter1. In principle the depletion of the superfluid density is due to several

contributions. The relevant mechanisms in the low energy limit are the order parameter phase fluc-

tuations and depletion of the nodal Dirac quasi-particles, superfluid density. In the following I will

construct the superfluid response due to each one of the above mentioned factors and their contribu-

tion to the total ab-plane superfluid density. The total superfluid density will have the form:

1
ρs,ab(T )

=
1

ρs,abB (T )
+

1

ρs,abF (T )
, (4.39)

where ρB indicates order parameter superfluid response, ρF is the quasi-particle superfluid density

and ρs is total superfluid density. This relationship is known as Ioffe-Larkin rule. the generalization
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of Ioffe-Larkin rule to the c-axis superfluid densities is not obvious however. Derivation of such a

relationship, if any, is left as a future direction of work.

There is a simple logic for the Ioffe-Larkin rule which we will argue below. It basically repre-

sents the fact that the external gauge-field does not couple to the bosonic/vortex section of the theory

and only appears in the fermionic part. Assuming eF and eB as the gradient of the gauge fields that

is coupled to either bosonic or fermionic degrees of freedom (in the model constructed in Chapter

1, both of eF = eB = ∇~v). Assuming a linear response for small applied electromagnetic field the

fermionic and bosonic currents read off as,

jF = σFeF, jB = σBeB, (4.40)

where the σ’s are the superfluid/Drude responses respectively. assume that on the fermionic and

bosonic sections of the action, they change upon applying an external electric-field E. The gauge

field itself is the same for fermionic and bosonic sectors the external electromagnetic field is only

coupled to the fermionic sector:

eF → e+ E,

eB → e. (4.41)

The fermionic and bosonic current responses jF and jB are induced respectively, Assuming jF +

jB = 0 1 leads to,

e = − σF

σF + σB
E. (4.42)

The physical current j = jF = −jB is given by

j =
σFσB

σB + σF
E. (4.43)

The σ’s, as is known from the linear response theory, are merely polarization functions or

current-current correlation functions ΠB,F
µν of the either bosonic or fermionic degrees of freedom.

In a linear response approximation with only transverse external field applied Πµν ∼ Υµν ∼ ρµ.

The calculation of the current-current correlation function will be done later. But the above argument

and Eq.(4.43) which is essentially the Ioffe-Larkin formula is enough for our current discussion.

1In t-J model this corresponds to the fact that bosons represent holes and thus their currents should be opposite of the
the fermions
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A more formal way of deriving the physical electromagnetic response is as follows. If the

external gauge field Aµ in the effective theory appears in the form,

Seff(vµ, Aµ) = Π(q)F
µν(vµ(q) +Aµ)(vν(−q) +Aν(−q)) + ΠB

µν(q)vµ(q)vν(−q), (4.44)

then after integrating over the gauge field vµ, we end up with

Seff = ΠµνAµ(q)Aν(−q) (4.45)

with the physical superfluid response function,

Π−1 =
(
ΠF(q)

)−1
+
(
ΠB(q)

)−1
. (4.46)

This can be in fact be derived from the effective field theory of the underdoped regime for HTS

constructed in Chapter 1. The Lagrangian for dual theory of the Eqs.(1.72) and (1.73) [38], has the

form of,

LΦ =
Kµ

2
(vµ +Aµ)2 + h

∑
n=1,2

b∗(τ,x) [∂τ − iv0(−)naτ ] bn(τ,x) +
1
2

∑
n

([∂µ − i(vµ(−)naµ)])2

+
(
α− h

2

)2∑
n

|bn(τ,x)|2 +
β1

2

(∑
n

|bn(τ,x)|2
)2

+
β2

2

(∑
n

|bn(τ,x)|4
)
, (4.47)

where h is the chemical potential for the dual theory, Kµ is the stiffness along the µ-direction, Aµ
is the external gauge field and ~a and ~v are the singular gauge fields. α and β1,2 are parameters to

be determined from experiment. Integrating out the bosonic fields b1,2(τ,x) and assuming α >

0, β1,2 > 0, and minimizing the action one finds |〈b1〉|2 = |〈b2〉||2 = (h2 − h2
c)/2(2β1 + β2). To

quadratic order LΦ reduces as,

Lch = iJµ · (vµ +A)µ +
Kµ

2
(vµ +Aµ)2 +

ρb(T )
2

(v2
µ + a2

µ)− ihnbv0, (4.48)

where Jµ is the physical current defined in the Chapter 1 and µ = 0, 1, 2. ρb indicates the superfluid

density of the bosons and the nb is the total density if the bosons. Setting A0 = 0 and integrating

over v0 yields:

(J0 − hnb)2

2(2K0 + ρb)
+ i ~J · (~v + ~A) +

K

2
(~v + ~A)2 +

ρb(T )
2

~v2. (4.49)
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This form of the effective action exactly satisfies the condition for the Ioffe-Larkin rule, Eq.(4.44).

The first term with J2
0 is a short-range repulsion between fermions and irrelevant at low energies.

The renormalized chemical potential is, µ(T ) = −hρb(T )/(K0 + ρb) with charge renormalization

factor as z = ρb/(ρb +K0).

Since doping, x ∼ µ(0), it follows that x ∼ ρb(0). Integrating out the fermions we get:

L ∼ K(T )
2

(~v + ~A)2 +
ρb(T )

2
~v2, (4.50)

where Kµ(T ) ∼ ΠF
µ(q → 0) and ρb ∼ ΠB

µ (q → 0). Finally, integrating out the gauge field v leads

to the Ioffe-Larkin rule as expected, Eq.(4.39), where K represents the fermionic superfluid density.

The fermionic current-current correlation function can straight forwardly calculated using the

Dirac dispersion for the fermions,

ΠF
µν(q) = − 1

vol

∫ 1/T

0
dτ〈Jµ(q, τ)Jν(−q, 0)〉

=
1

vol

∑
k

(
∂εk
∂k

)2 dnF(E)
dE

=
vF

v∆
2 ln 2 · T

π
. (4.51)

We expect that the bosonic superfluid density to behave as the 3D XY model and the condensate

originates from a Kosterlitz-Thouless type of transition which lead to a T 3 temperature dependence.

Writing down the Ioffe-Larkin rule and keeping the leading order terms in temperature,

ρs,tot =
ρB
s · ρF

s

ρB
s + ρF

s

=
(ρB
s (0) + ∆ρB

s )(ρF
s (0) + ∆ρF

s )
ρB
s (0) + ρF

s (0)

∼ z
vF

v∆
· 2 ln 2

π
· T. (4.52)

However, since the charge renormalization factor is proportional to the doping, x, we conclude

that the slope of the superfluid density vs. T graph be x-dependent. As a matter of fact it is easy

to show the slope is proportional to x2. This contradicts recent measurements of the superfluid

density of the highly underdoped cuprates that reported ta constant slope and doping independent

[61][62]. This is our inspiration to consider a quasi- three dimensional bosonic theory for which
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the contribution for the superfluid density comes from Bose-Einstein condensation rather than a

Kosterlitz-Thouless mechanism in the 3D XY model which we had before. As has been discussed

previously in this chapter the bosonic superfluid density decreases linearly with temperature and

cannot be ignored at low temperatures. More importantly the slope of the bosonic superfluid density

is doping independent [38]. The results from Ref.[61] are depicted in Fig.(4.2) which clearly shows

the constant slope of the superfluid density for different dopings (i.e. different Tc).
2

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

S
u
rf

a
c
e
 I
m

p
e
d
a
n
c
e
 (
!

)

Temperature (K)

R
s

X
s

2

2.5

3

3.5

4

13 14 15

"
1
 (

1
0

6
 !

-1
m

-1
)

Temperature (K)

#T
c

FIG. 1: (color online). ab-plane surface impedance at
2.64 GHz for the YBa2Cu3O6+y ellipsoid, at two dopings.
Rs(T ) is measured directly in the experiment. Absolute re-
actance is obtained by o⇥setting �Xs(T ) so that Rs and Xs

match in the normal state. Inset: a fluctuation peak in ⇧1(T )
at one doping. �Tc is set to the di⇥erence between inflection
points in ⇧1(T ) on opposite sides of the transition.

� is a scale factor that applies to the data set as a whole,
and is empirically determined using a Pb–Sn replica sam-
ple to an accuracy of 2.5%. The absolute surface reac-
tance is set in the usual way by matching Rs and Xs in
the normal state, where we expect the imaginary part
of the microwave conductivity to be very small. This is
illustrated in Fig. 1, which shows the surface impedance
Zs = Rs +iXs of the ellipsoid at two of the dopings. The
rounded shoulders in Zs(T ) are the result of fluctuations.
This is seen more clearly in the microwave conductivity
⌥ = ⌥1 � i⌥2, which is obtained using the local-limit ex-
pression ⌥ = i�µ0/Z

2
s . The inset of Fig. 1 shows ⌥1(T ) at

one of the dopings, revealing a narrow fluctuation peak
at Tc. In a homogeneous system, ⌥1(T ) is expected to
have a sharp cusp at Tc [19]. Rounding of the fluctuation
peak, arising from the macroscopic dopant inhomogene-
ity present in all real samples, is used to define ⇥Tc.

The superfluid density is given by ⌃s ⇥ 1/�2 = �µ0⌥2.
Figure 2 shows ⌃s(T ) at 20 of the 37 dopings. The
most striking feature of the data is the wide range of
linear temperature dependence, extending from close to
Tc down to T ⇧ 4 K. Below 4 K ⌃s(T ) crosses over to
an accurately quadratic temperature dependence. Such
behaviour is well established in YBa2Cu3O6+y at higher
dopings and is consistent with d-wave superconductivity
in the presence of a small density of pair-breaking de-
fects [20, 21]. One unusual feature of the data is the
nature of the thermal transitions, which, within limits
set by ⇥Tc appear mean-field-like. At optimal doping
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FIG. 2: (color online). ab-plane superfluid density ⌅s(T ) =
1/�2(T ) shown at 20 of the 37 dopings measured in this study.
Measurements were made starting in the most ordered state
(Tc ⌅ 17 K) followed by controlled oxygen annealing in small
steps down to Tc ⌅ 3 K. At the end of the experiment the sam-
ple was reordered and measured again to verify reproducibil-
ity. Lines mark where the vortex-unbinding transition should
occur for a 2D superconductor. The dashed line corresponds
to ⌅2D

s ⇥ �2d/4kBe2µ0�
2 = (2/⇤)T in each CuO2 plane. The

solid line shows ⌅2D
s = (2/⇤)T in each CuO2 bilayer. ⌅s(T ) in-

stead passes smoothly through this region. While mean-field-
like over most of the doping range, ⌅s(T ) develops downwards
curvature near Tc at the highest dopings, a possible indication
of the onset of the 3D-XY critical fluctuations.

YBa2Cu3O6+y is the most three dimensional cuprate,
with �2

c(T ⌃ 0)/�2
ab(T ⌃ 0) ⇧ 50 [22]. Its criti-

cal behaviour has been firmly established to be in the
3D-XY universality class [23, 24, 25]. In the doping
range explored in this paper, YBa2Cu3O6+y is highly
anisotropic, with �2

c(T ⌃ 0)/�2
ab(T ⌃ 0) ⇧ 10, 000 [14].

In these circumstances, one would anticipate fluctuations
in adjacent layers to be uncorrelated, and a Kosterlitz–
Thouless–Berezinsky (KTB) vortex unbinding transition
[6, 26] should occur when the 2D phase sti⇤ness in a
layer of thickness d, ⌃2D

s (T ) ⇥ �2d/4kBe2µ0�
2(T ), falls

to (2/⇧)T . This defines minimum superfluid densities
for isolated planes and CuO2 bilayers, shown in Fig. 2
by the dashed and solid lines respectively. ⌃s(T ) instead
passes smoothly through these lines, with no indication
of vortex unbinding. Surprisingly, this implies that fluc-
tuations remain correlated over many unit cells in the c
direction. Recent work on YBa2Cu3O6+y thin films sup-
ports this, showing that the KTB transition does occur
but that the e⇤ective thickness for fluctuations is the film
thickness [27]. At the highest dopings in our experiment,
⌃s(T ) develops slight downward curvature near Tc, pos-
sibly indicating the emergence of 3D-XY criticality.

Monday, 28 May, 12

Figure 4.2: The plot of in-plane superfluid density of YBCO versus temperature for different values

of of doping 4K◦ < Tc < 16K◦ [61].

Although the layered bosonic model can explain the experimental observation of the doping-

independent slope of the in-plane superfluid density the relevance of the layered model to HTS is
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limited to the in-plane superfluid density. It is easy to observe that the argument for the Ioffe-Larkin

rule does not hold for the c-axis superfluid density. Experimental observations suggest that unlike

the ab-plane superfluid density the c -axis decreases with an almost power-law ∼ T 2.5[63][64][60].

In the next section we show some numerical results for the layered bosonic model while the hopping

strength and interaction couplings varies and we also try to fit the results with the HTS superfluid

density observations.

4.4 Numerical Results

The integrals in the Landau formula for both ab-plane and c-axis superfluid densities can be calcu-

lated numerically. We can change some of the values including hopping amplitude, t, interaction

strength, λ, while keeping some others like the inter-layer spacing constant.
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Figure 4.3: in-plane (triangle) and c-axis (circles) superfluid densities plotted as a function of tem-

perature for different values of interaction coupling λ = 0.0, 0.05, 0.02 for highly underdoped case

Tc = 10K. The c-axis hopping is assumed 1/10 of the ab-plane (2m): t = 0.1.
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Figure 4.4: in-plane (square) and c-axis (circles) superfluid densities plotted as a function of temper-

ature for different values of hopping amplitude t = 0.1, 0.05, 0.02, the diamonds represent the BEC

result for a comparison. Value of the interaction coupling is kept at λ = 0.1. As can be seen the

change in the hopping does not dramatically change the temperature dependence of both ab-plane

or c-axis superfluid densities.

Fig(4.4) shows that both of the superfluid densities are not very sensitive to the change in the

anisotropy. This is understandable based from the discussion we had on the values of c-axis and ab-

plane superfluid densities in the BEC limit, i.e., ρ(0)
ab (T )/ρ(0)

ab (0) = ρ
(0)
c (T )/ρ(0)

c (0). By changing

interaction between the bosons, Fig.(4.3), both of the superfluid density graphs get slight curvature

which is related to the value of the interaction (weak).

In Fig.(4.5), the reader can notice that for a range of weak-interaction couplings one can find a
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fit for ab-plane superfluid response of higher Tc samples while the constant-slope BEC result can

well explain the very underdoped regime. However, the same is not true for the c-axis result and one

cannot find any fit between the experimental observation and the layered bosonic results.

The result above can be compared with the experimental results from microwave cavity mea-

surements of the London penetration depth. In the Fig.(4.5), the ab-plane superfluid density of the

bosonic model can fit well for highly underdoped cases with BEC results and as the doping increases,

tuning the interaction can give a fit for higher doping up to Tc = 55K with t = 0.1 and λ = .002

in our bosonic model. The corresponding c-axis response, however, does not match with the same

parameters. In the Fig.(4.6), we have reported the case of λ = 0.02, t = 0.1 as the upper limit of in-

teraction strength value - derived from ab-plane fitting - in comparison with the experimental results.

As can be seen there is a mismatch and this leads us to conclude that unlike the in-plane superfluid

response, the out-of- plane response must to be a combination of both quasi-particle and bosonic

degrees of freedom. Since we do not have a firm Ioffe-Larkin rule for c-axis superfluid densities we

do not speculate on this matter much more and leave this as a future direction of research.
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decline of the slope !dHc1=dT indicates a decrease in !2.
Within the framework of Fermi liquid theory [31], the
current renormalization is a result of the interaction be-
tween quasiparticles, which causes screening of charge and
reduces the current carried by a quasiparticle from e"F to
!e"F. This renormalization is also expected to occur in
non-Fermi liquid theories such as gauge theories based on
Anderso’s resonating valence bond model [32–35], where
the charge of electronlike quasiparticles shrinks to zero
upon underdoping. In spite of various theoretical predic-
tions, however, there has been little experimental evidence
for the quasiparticle charge renormalization in cuprates.
Our data here suggest that in the very underdoped region
the quasiparticle effective charge is strongly renormalized
and finally vanishes as the doping is decreased towards the
insulating phase.

In summary, the lower critical field Hc1 for highly under-
doped YBCO has been determined for fields parallel to the
c axis, without uncertainties related to nonellipsoidal
samples and the BL surface barrier. If the data are analyzed
using the assumption that # is only weakly doping and
temperature dependent, Hc1 is equivalent to the phase
stiffness $s. The data then show a power law relation Tc /
$s"0#0:61, differing markedly from the linear relationship
expected for a Tc governed by phase fluctuations in two
dimensions. This is remarkable given the high anisotropy
of this material (%c=%ab $ 100) and the importance that
phase fluctuations ought to have at such low values of
phase stiffness. The low phase stiffness is further depleted
by quasiparticle excitations, though this depletion weakens
at very low doping in a manner suggesting the charge
renormalization of the nodal quasiparticles, which reduces
the effective charge to zero as the insulating part of the
phase diagram is approached.
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Figure 4.5: ab-plane superfluid density for YBCO [62] (scattered points) and the bosonic superfluid

response fit.The best fit for the low-Tc graphs is the linear BEC graph. The circles correspond to

λ = 0.02, t = 0.1, shows an approximate match for Tc = 55.5K◦.
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Figure 4.6: The c-axis superfluid response plotted from experiment [61] for three different doping

values Tc = 20K, 17K, 15K. The solid curve is the c-axis response from the bosonic model with

λ = 0.02, t = 0.1 and Tc = 20K.

We also tried a match for higher Tc values for both ab-plane and c-axis superfluid densities

which is depicted in the Figs.(4.7) and (4.8). The normalized values of superfluid densities now

match with λ = 0.02 partially as before. The λ = .02 c-axis superfluid response however does not

give a good match, while there is not a proper scaling of the normalized values of c-axis superfluid

densities for different doping values.

We do not consider the c-axis graphs a match as the corresponding ab-plane graphs does not fit

the experimental observation.
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Figure 4.7: Experimental values for both a-axis, i.e., ab-plane (open symbols) and c-axis (solid

symbols) for higher doping values [65] and the fit for λ = 0.02, t = 0.1 and Tc = 60K◦.
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Chapter 5

Birefringent Break Up of Dirac
Fermions in a Square Optical Lattice

This Chapter contains work previously published with M. Kennett et. al [66]. and is somewhat out

of line with the previous discussions, not having direct bearing on the subject of superconductivity.

However, it discusses a very unique construction of chiral symmetry breaking for Dirac fermions

on optical lattices by introducing anisotropy in the kinetic energy. The Sections 5.1 and 5.2 which

introduces the theory includes the previous works of M. Kennett and N. Komeilizadeh. The author

acknowledges M. Kennett for letting the author to present some of their work here. My contribution

lie mainly in Sec. 5.3.

5.1 Introduction

The discovery of graphene [67] and topological insulators [68] has led to much recent interest in

systems whose low energy excitations can be described with Dirac fermions. In parallel there has

been exploration of the possibility of generating artificial magnetic fields for cold atoms confined

in an optical lattice. Neutral bosonic cold atoms cannot couple to a magnetic field directly, so there

have been numerous proposals [69, 70] of approaches to couple atoms to an artificial gauge field,

several of which have been implemented experimentally [71].

Quantum particles in a uniform magnetic field on a lattice have the well-known Hofstadter spec-

trum [72]. We study a Hamiltonian with a tunable Hofstadter-like spectrum that arises from the

102
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combination of hopping and an artificial magnetic field with a non-zero mean that are both period-

ically modulated in the x and the y directions. The presence of spatial periodicity in the amplitude

as well as the phase of the hopping is the key difference between the model we consider here and

previous work on the spectrum of particles in the presence of magnetic fields that are periodic in

both the x and y directions [73]. This difference facilitates the unusual Dirac-like spectrum that we

discuss here.

Our main result is that in the lattice model we introduce [Eq. (5.3)], when there is an average

of half a flux quantum per plaquette, and at half-filling, the low energy degrees of freedom can be

described by a Dirac Hamiltonian with the unusual property that chiral symmetry is broken in the

kinetic energy rather than via mass terms. This has the consequence that the doubly degenerate

Dirac cone for massless fermions splits into two cones with tunable distinct slopes, analagous to a

situation in which there are two speeds of light for fermionic excitations, similar to birefringence of

light in crystals such as calcite. We discuss the meaning of broken chiral symmetry in our effective

model and explore the effects of various perturbations, such as staggered potentials, domain walls,

and interactions between fermions.

The Chapter is structured as follows: in Sec. 5.2 we discuss a possible scheme to realize the

Hamiltonian Eq. (5.3), illustrate its Hofstadter-like spectrum and demonstrate that there are Dirac

points in the spectrum when there is an average of half a flux quantum per plaquette. In Sec. 5.3

we discuss the low energy theory in the vicinity of the Dirac points, and give brief conclusions and

discussion in Sec. 5.4.

5.2 Effective Hamiltonian

We use a generalization of the approach introduced by Sørensen et al. [70] to obtain an artificial

magnetic field. However, our results regarding the spectrum of the model are independent of any

particular experimental scheme used to realize the model. The scheme in Ref. [70] was presented

for bosons but applies equally well to a starting point of spinless fermions (corresponding to only

one available hyperfine state for cold atoms) with Hamiltonian

H = −J
∑
〈i,j〉

(ĉ†i ĉj + ĉ†j ĉi), (5.1)

where ĉ†i and ĉi are fermionic creation and annihilation operators respectively at site i and the nota-

tion 〈i, j〉 indicates that we restrict the sum in the hopping term to nearest neighbours only. There



CHAPTER 5. BIREFRINGENT BREAK UP OF DIRAC FERMIONS 104

can be no Hubbard-like interaction for spinless fermions, and since nearest neighbour interactions

in an optical lattice system are weak, we initially ignore interactions.

In Ref. [70], two steps are required to generate an artificial magnetic field. First, a time-varying

quadrupolar potential V (t) = Vqp sin(ωt)x̂ŷ is applied to the system, and second, the hopping is

modulated as a function of time. During the course of one oscillation of the quadrupolar potential,

hopping in the x direction is turned on for a very short period of time τ � t0 = 2π
ω at times t = nt0,

where n is an integer, and hopping in the y direction is turned on for time τ around t =
(
n+ 1

2

)
t0.

Due to the periodic oscillation in the Hamiltonian, the time evolution operator after m periods may

be written as U(t = mt0) = U(t = t0)m.

Figure 5.1: Time dependence of the hopping and the quadrupolar potential during the course of one
period of the quadrupolar potential.

Our modification to the proposal in Ref. [70] is that when hopping is turned on in the x-direction

at time t = nt0, hopping is also turned on in the y-direction with an amplitude 0 ≤ β ≤ 1 relative to

the hopping in the x-direction. At time t =
(
n+ 1

2

)
t0, hopping is turned on in the y direction, and

hopping in the x-direction is turned on with amplitude β relative to the hopping in the x-direction

as illustrated in Fig. 5.1.

The operator for hopping in the x direction is T̂x = −J ∑x,y

(
ĉ†x+1,y ĉx,y + h.c.

)
with a similar

expression for T̂y. We may write the time evolution operator as

U (t = mt0) =
[
e−

iτ
2~(βT̂x+T̂y)e2πiαx̂ŷe−

iτ
~ (T̂x+βT̂y)

×e−2πiαx̂ŷe−
iτ
2~(βT̂x+T̂y)

]m
, (5.2)

where α = Vqp/π~ω and we have set the lattice constant to unity. To lowest order in J τ/~ we can
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write this in the form

U = e−
iHeff t

~ ,

Heff = −J0

∑
x,y

{[(
1 + βe2πiαx

)
ĉ†x,y+1ĉx,y + h.c.

]
+
[(
β + e2πiαy

)
ĉ†x+1,y ĉx,y + h.c.

]}
, (5.3)

with J0 = τJ /t0.

5.2.1 Hofstadter-like spectrum

A more conventional way to write this Hamiltonian is in the form

Heff = −
∑
ij

[
tije

ie
~

R i
j A·dlĉ†i ĉj + h.c.

]
, (5.4)

from which we may identify the amplitude of the hopping and the artificial magnetic field

tx+1,y = J0

√
1 + β2 + 2β cos(2παy), (5.5)

tx,y+1 = J0

√
1 + β2 + 2β cos(2παx), (5.6)

and the artificial magnetic field

Bz =
2πα~
e

{
β2 + β cos(2παx)

1 + β2 + 2β cos(2παx)
− 1 + β cos(2παy)

1 + β2 + 2β cos(2παy)

}
. (5.7)

This field is the sum of a spatially uniform piece with magnitude 2π~α
e and a piece that is spatially

periodic in both the x and y directions. If β = 0, the hopping amplitude is J0 and the field is uniform

with strength 2π~α
e , corresponding to a flux of αφ0 per plaquette (where φ0 is the flux quantum) as

found in Ref. [70] and there is a Hofstadter spectrum. If β = 1, then Bz = 0, but the hopping

parameters are still spatially periodic. At β intermediate between 0 and 1, both the hopping and the

magnetic field are spatially periodic in x and y. This illustrates the essential difference between the

model we consider and previous work on quantum particles in a periodic magnetic field on a lattice

– there is spatial periodicity of 1/α in the amplitude of the hopping as well as in the magnetic field.

For finite β the spectrum (illustrated for β = 1 in Fig. 5.2) as a function of α is reminiscent of the

Hofstadter spectrum.
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Figure 5.2: Spectrum as a function of α when β = 1: obtained by exact diagonalization on a 97×97
site lattice: there is no artificial magnetic field, yet due to the periodic hopping, the spectrum has
some similarities with the Hofstadter spectrum [credit to Peter Smith].

5.2.2 Half a flux quantum per plaquette

When α = 1/2 there is an average of half a flux quantum per plaquette and Heff simplifies to a tight

binding model with four sites in the unit cell as shown in Fig. 5.3 a).

Labelling the four sites in the unit cell as A, B, C, and D, and Fourier transforming in space,

we may rewrite the effective Hamiltonian in the following form:

H =
∑
k

ψ†k[Ek −Hk]ψk, (5.8)

with

Hk = 2


0 J+ cos ky J+ cos kx 0

J+ cos ky 0 0 −J− cos kx
J+ cos kx 0 0 J− cos ky

0 −J− cos kx J− cos ky 0

 ,

where J± = J0(1± β) and ψTk = (cAk, cBk, cCk, cDk). We find that the dispersion is

Ek = ±J±
√

cos2 kx + cos2 ky,
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a) b)

Figure 5.3: a) Unit cell of tight binding model with hopping parameters indicated. b) Dirac cones
corresponding to J+ and J− bands.

and we note that when β = 1, J− = 0, so there will be a flat band at ε = 0 and a dispersing

band associated with J+. We can also see that in the vicinity of the points K±,± =
(±π

2 ,±π
2

)
, the

spectrum is linear

Eq = ±J±
√
q2
x + q2

y , (5.9)

where q = k − (±π
2 ,±π

2

)
, and there are cones with two different slopes, corresponding to J±

respectively as illustrated in Fig. 5.3 b). When β = 0, the two slopes are identical, whereas as

β → 1, the J− band becomes flat, and the J+ band remains conical. Several authors recently

considered lattice models closely related to the β = 1 limit of our model, in which there are three

bands, one flat, and one Dirac like [74]. The β = 1/2 spectrum matches that of Weyl fermions

considered in Refs. [75, 76]. When β 6= 1, the underlying Dirac structure of the problem is exposed,

which allows us to use a symmetry approach to understand this unusual dispersion.

5.3 Low Energy Theory

We expand around the Dirac points and represent the low energy theory (with k measured with

respect to K) as

Hk = 2J0

[(
γ0γ1 + iβγ3

)
kx +

(
γ0γ2 + iβγ5

)
ky
]
, (5.10)

where we use a non-standard representation of the gamma matrices in which γ0 = σ3 ⊗ σ3, γ1 =

iσ2 ⊗ I2, γ2 = iσ3 ⊗ σ2, γ3 = −iσ1 ⊗ I2, and γ5 = −γ0γ1γ2γ3 = −iσ3 ⊗ σ1. The matrices γ0,
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γ1, γ2 and γ3 satisfy the Clifford algebra γµγν + γνγµ = 2gµν with Minkowski metric gµν .

The dimension of the minimal representation of a Euclidean Clifford algebra in 2+1 dimensions

is 2, allowing for the 2×2 Pauli matrices as a choice for the γs. A non-minimal 4×4 representation

as we have used above leads to a freedom in the choice of the γ0 matrix, i.e. a matrix with
(
γ0
)2 =

I4 that anticommutes with γ1 and γ2. Candidates for γ0 are then {γ0, γ0γ3, γ0γ5, γ1γ2}. The

matrices {γ0, γ0γ3, γ0γ5} form a triplet and γ1γ2 forms a singlet with respect to the SU(2) “chiral”-

symmetry group with generators { i2γ3, i2γ
5, i2γ

35} (where γ35 ≡ γ3γ5). Each different choice of

γ0 corresponds to a different labelling of the four sites in the unit cell. The elements of the chiral

group generate transformations between each labelling. For example, the generator γ5 translates

the plaquette indices to the labelling of the neighboring lattice cell along the y-direction, whilst γ3

translates the plaquette indices to the neighbouring cell in the x-direction.

e
π
2
γ5


cA

cB

cC

cD

 = i


cB

cA

−cD
−cC

 , e
π
2
γ3


cA

cB

cC

cD

 = i


cC

cD

cA

cB

 . (5.11)

Similarly, γ35 translates the plaquette one lattice cell along the x- and one lattice cell along the y-

direction. When β = 0, the elements of the chiral group are symmetries of Hk. When β 6= 0,

the γ3 and γ5 terms in Hk break the chiral symmetry and shifts along either the x- or y-directions

do not leave Hk invariant. We emphasise that this manifest chiral symmetry breaking is inherently

different from the conventional notion of spontaneous chiral symmetry breaking in field theoretical

models which is the signature of mass generation [41].

An additional discrete symmetry of Hk (that arises from the hopping structure inHk) that holds

even when β 6= 0 is

Γ =
i

2
(
γ1γ3 + γ2γ5

)− i

2
(
γ2γ3 − γ1γ5

)
,

which corresponds to a reflection about the diagonal AD in the unit cell, with cA → cA, cB → cC ,

cC → cB and cD → −cD. The action of Γ on Hk is to exchange kx and ky.

5.3.1 Fermion birefringence

As illustrated in Fig. 5.3 b) the dispersion Eq. (5.9) admits massless fermions with two different

“speeds of light” controlled by β. The eigenvectors (written as row vectors) for the positive and neg-

ative energy J+ bands are ΨT
1 = 1√

2
(1,− sin θ,− cos θ, 0) and ΨT

2 = 1√
2

(1, sin θ, cos θ, 0); whilst
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the eigenvectors for the J− bands are ΨT
3 = 1√

2
(0, cos θ,− sin θ, 1) and ΨT

4 = 1√
2

(0,− cos θ, sin θ, 1) ,

where we write kx = k cos θ and ky = k sin θ. The linear combinations Ψ1 + Ψ2 and Ψ3 + Ψ4 have

non-zero amplitude only on A and D sites respectively. Any other state will break up into fast (J+)

and slow (J−) fermionic excitations, analogous to fast and slow modes in an optically birefringent

medium.

5.3.2 Staggered potentials

Staggered on-site potentials are a natural perturbation to Hk in the context of cold atoms on an

optical lattice. The most general form of such a potential is

∆ =
∑
k

ψ†k
[
∆0I4 + ∆1γ

0 + ∆2(iγ1γ3 + iγ2γ5)

+∆3(iγ1γ3 − iγ2γ5)
]
ψk, (5.12)

where we may set ∆0 = 0 since this just corresponds to a uniform shift of the chemical potential.

The ∆1 term violates chiral symmetry in the usual way but is Lorentz invariant and hence introduces

a gap in the dispersion of the fermions

Ek = ±
√

∆2
1 + 4J2±k2. (5.13)

When β = 1 there are flat bands at E = ±∆1 that intersect the J+ bands only at (kx, ky) = (0, 0).

The birefringence property discussed above is unaffected by the ∆1 term. We combine iγ1γ3 and

iγ2γ5 into a Lorentz invariant term (∆2) and a Lorentz violating term (∆3). There are two cases

in which we have obtained simple analytic solutions for the spectrum: case I): ∆1 6= 0, ∆2 6= 0,

∆3 = 0, for which

Ek =

 ∆2 ±
√

(∆1 + ∆2)2 + 4J2
+k

2

−∆2 ±
√

(∆1 −∆2)2 + 4J2−k2
,

and case II): ∆1 6= 0, ∆2 = 0, ∆3 6= 0, for which

Ek =

 ∆3 ±
√

(∆1 −∆3)2 + 4J2
+k

2
y + 4J2−k2

x

−∆3 ±
√

(∆1 + ∆3)2 + 4J2
+k

2
x + 4J2−k2

y

.

In case I) the dispersion is isotropic in momentum space and there are flat bands when β = 1,

whereas in case II), the dispersion is anisotropic, with the anisotropy governed by β through J±. In

both cases, there is a shift in the spectrum and at least one set of massive modes (however in both

cases there can be a set of massless modes whose dispersion is given by the upper half of a cone if

∆1 = ±∆2,3 and ∆0 = ∓∆2,3).
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5.3.3 Interactions

As we consider spinless fermions, there will be no on-site Hubbard interaction, so we consider

nearest neighbour interactions of the extended Hubbard type (for cold atoms in an optical lattice

these will generally be weak or can be engineered to be weak):

Hint =
∑
〈ij〉

Vijninj . (5.14)

Setting all of the Vij = V0, we can write the interaction Hamiltonian in terms of spinors as

Hint =
V0

4

∑
k

[
(ψ̄kγ0ψk)2 − (ψ̄kψk)2

]
, (5.15)

with ψ̄k = ψ†kγ
0. The identity and γ0 that appear in the kernels of the quartic interaction terms

are the only elements of the Clifford algebra that either commute or anticommute with all of the

elements of the Lorentz group and the chiral group, ensuring that the interactions remain invariant

under any rotation of the lattice by the Lorentz group or relabelling of the plaquette indices by the

chiral group. At the mean field level, the (ψ̄ψ)2 term breaks chiral symmetry by introducing an

effective mass term m0γ
0, and the (ψ̄γ0ψ)2 term renormalizes the chemical potential as δI4. For

weak interactions, the mean field interaction Hamiltonian is:

HMF
int =

∑
k

ψ†k
[
(δI4 +m0γ

0) + (m1γ
0γ1 +m2γ

0γ2

+m3iγ
3 +m5iγ

5)
]
ψk, (5.16)

where δ = 〈nA〉+ 〈nB〉+ 〈nC〉+ 〈nD〉, and the order parameter for staggered charge density wave

order m0 = 〈nA〉 − 〈nB〉 − 〈nC〉+ 〈nD〉 arise from the Hartree term. The remaining masses, m1,

m2, m3 and m5 arise from the Fock term – if these are dropped and β = 0, we recover the mean-

field approximation of the Gross-Neveu model [77]. Similarly to a ∆1γ
0 staggered potential, the

Hartree term leads to massive excitations, but does not destroy fermion birefringence. The detailed

study of interactions when β 6= 0 is a topic for future investigation.

For small values of β, when Hint is added to Eq. (5.3) there is a mapping between the weak

interaction strength regime considered above to the strong interaction strength limit that preserves

the property of birefringence:

Ek(β, V0) = βEk(β−1, β−1V0). (5.17)
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This arises from the appearance of the chiral symmetry generators, γ3 and γ5 in the kinetic energy

and their duality with Lorenz group generators γ0γ1, γ0γ2. Upon choosing a different representation

of Clifford algebra elements, one can transform γ0γ1 ↔ γ3, γ0γ2 ↔ γ5.

5.4 Discussion

The model we introduce here has the unusual feature of low energy excitations that are birefringent

massless fermions arising from broken chiral symmetry. We suggested a particular procedure based

on Ref. [70] as a way to realize this model with cold atoms in an optical lattice. This might not

be the only route to realize the model: recent work by Lan et al. [76] on cold atoms suggested

a procedure that gives a model with the same spectrum as the α = 1/2, β = 1/2 version of our

model. Additionally, as noted in a similar context [78] it might be possible to engineer an appropriate

semiconductor heterostructure.

An important feature of the birefringent fermion dispersion that we find here is that the slopes

of the J+ and J− bands can be controlled by the parameter β. Possible applications of birefringent

properties might include a filter for Dirac fermions in cold atom systems (via spatially varying β) or

birefringent Klein tunnelling [76]. Flat bands such as Landau levels enhance interactions, suggesting

that the flat bands we observe here when β = 1, which are robust to the addition of a staggered po-

tential and weak interactions may allow for interesting correlated phases when interactions beyond

mean field are taken into account [79]. Future avenues for research on this model could include the

study of such correlated phases when β 6= 0. Generalizing the model to fermions with spin would

allow for on-site Hubbard interactions, that could require an approach similar to those used to study

QED3 in high temperature superconductors [?][5][11][12].



Chapter 6

Phase Diagram of
Superconductor-Insulator Transition at
Weak Disorders

In this chapter we focus on problem of a quantum phase transition in a disordered system. In par-

ticular, the problem of the Superconductor-Insulator (SI) transition in two spatial dimensions in the

presence of a disorder potential. Similarly to high temperature superconductors (HTS) - which has

been the subject of previous chapters - the quantum phase fluctuations of the superfluid order param-

eter in such systems is responsible for the phase transition in disordered superconductors.[80][81].

Most importantly the disordered superconductors also share the type of phases that appear for the

underoped cuprates: a superconducting phase, an insulating phase through strong correlation, Mott

Insulator (MI), in the system and a medium phase disordered phase (pseudogap). The form of phase

diagram of the system in low disorder and weak interactions is the main subject of this Chapter.

First, we construct an effective bosonic action for a BCS superconductor in high-disorder and

generalize it to arbitrarily low-disorders. Our focus is to derive the phase-diagram of the system

for arbitrarily low disorder and (electronic) interaction couplings. Our findings differ from some of

the previous numerical results that suggested the transition between a superconductor to a phase-

disordered glassy phase persists in that regime. From the form of the phase diagram we offer

an argument for discrepancy in the previous findings in the literature. Our main finding is based

on a variable-range disorder-dependent hopping bosonic Hamiltonian that we suggest for the low-

disorder limit. The exact derivation of suggested model, beginning with an electronic Hubbard

112
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model is left for future works. In the last part of this Chapter, we address a different problem by ap-

plying the same approach to the Bose-Hubbard model in low-disorder and weak interactions. There,

we prove that the localization-delocalization transition is independent of the form of disorder dis-

tribution and merely depends on the disorder-strength and other physical quantities in the system

(chemical potential, hopping and interaction strength).

6.1 Superconductor-Insulator Transition

It is known that weak non-magnetic impurities do not affect the transition temperature of s-wave

superconductors [84]. In the presence of disorder translational symmetry is broken and momentum k

is not a proper quantum number with which to construct the BCS variational ground state. However,

time-reversed states of electrons pair up to make Cooper pairs. Anderson’s theorem, as this is

known, is so strong that until the limit of site-localized states the BCS ground state has a lower

energy than the non-superconducting one. This site localized phase is a gapless insulator of tightly

bound electron pairs and known as a bosonic Mott insulator (MI). A Mott insulator is incompressible

and distinguished by its gap in its low-energy excitations.

On the other hand, It is well-known that all states of non-interacting particles in the presence

of a random potential are localized in dimensions D = 1, 2 (in the infinite system-size limit) [86].

The localization phenomena leads to less uncertainty of the number operator and the phase-number

uncertainty relation requires that disorder in low-dimensional systems enhances the quantum phase

fluctuations which eventually should be responsible for a Kosterlitz-Thouless type of transition in

this case. This disordered phase still has Cooper pairs and a finite superconducting order parameter

amplitude but the phase of order parameter does not have long-range order. Such a phase is called

a Bose glass (BG) and is a gapless insulator with finite compressibility [87]. With three distinct

phases and two different mechanisms for transitions, the phase diagram of the theory is somewhat

difficult to derive. A bosonic model on a lattice with short-range interactions has been suggested

by Fisher et al. [87] to study the properties of the SI transition. They have argued that the direct

Mott-insulator (MI) to superfluid (SF) transition is unlikely and the two phases are always separated

by Bose glass phase. If any direct MI to SF transition exists, it is expected to happen at integer

fillings (commensurate). More recently Ref. [90], has shown that all the transitions between fully

gapped and gapless ground states in disordered systems result in a insulating gapless state, which

supports the original conjecture by Fisher et al.

The bosonic theory of the Superconductor-Insulator transition has been extensively studied and
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has been successful in explaining the critical behaviour of the transition and universality of the

conductivity[87][81][82]. However, the nature of the transition in the low-disorder limit has been

a source of debate. There are arguments that weak disorder is irrelevant and would prevent the

formation of the phase-disordered Bose glass and there is the possibility of a direct Mott-insulator

to superfluid transition [96][98][87].

The validity of the bosonic theory in the weak-interaction limit is also an important issue. The

bosonic theory assumes that electron pairs do not dissociate at the point of transition. A different

mechanism of the Superconductor-Insulator transition has been suggested for weak-disorder which

argues that the disorder will enhance the effect of Coulomb interactions to the point that the net

interaction between electrons become repulsive and leads to pair-breaking. Thus a direct supercon-

ductor to electronic Mott-insulator transition has been suggested [88][89]. We will return to this

issue and the possibility of pair-breaking in the low-U, low-disorder bosonic Hubbard model later

in the Chapter.
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Figure 6.1: Possibilities for the phase boundary in the low disorder limit: (a) phase diagram sug-

gested in Ref.[81] (see also [100]) and heuristic arguments mentioned there to guess the form of

phase-boundary in low-disorder (b) Our result with an exponentially small Bose glass region in the

limit of U → 0 which explains why there has been debate over the phase diagram between the above

two scenarios.

6.2 Derivation of the Bosonic Model

We will begin with a system of lattice fermions in a random potential with onsite attractive Hubbard

interaction,

H = −t
∑

〈i,j〉,σ=↑,↓
c†i,σcj,σ +

∑
i,σ

Ṽini,σ − U
∑
i

ni,↑ni,↓. (6.1)

Ṽi is a random potential with a given distribution P (Ṽ ) - whose form we will discuss later -

with second moment, W , which will indicate the disorder strength, and ni is occupation number
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operator. When W/t is small the single-particle states of the Hamiltonian are close to plane waves

and the usual BCS variational ground state might be a good candidate to minimize free energy in

the mean-field limit (and there is usual the Cooper instability for small U > 0). When disorder

increases, however, the states are localized and one can write the lattice fermionic states in terms of

Anderson localized eigenstates:

ci,σ =
∑

Aincn,σ

c†i,σ =
∑

A∗in c
†
n,σ. (6.2)

The Hamiltonian can thus be written in terms of these localized states as

H =
∑
nm

εnnn,σ −
∑
n

Unn,nnnn,↑nn,↓ −
∑
nm,kl

Unm,klc
†
n,↑c

†
k,↓cm,↓cl,↓. (6.3)

In the strong disorder limit, the exact eigenstates of the random single-particle part of the Hamil-

tonian approach the site-localized wave-function, |n〉 → |i〉, and Unn,nn → U , and the last term

involving the overlap between different strongly localized terms can be treated as small perturba-

tion. In the limit of W/t → ∞ the last term is zero and the ground-state is simply the product of

composite bosons:

Ψ =
∏

c†n,↓c
†
n,↑|0〉, (6.4)

A crucial observation is that the low-energy excitations above this ground state are purely

bosonic. To create a pair of electrons at the next available energy level does not cost any energy

while to create a single electron there costs a finite amount of energy U/2. Despite the single

particle gap, the ground state does not have any off-diagonal long-range order characteristic of a su-

perfluid. This is the result of the fact that the states are either fully occupied with a pair or empty and

in fact an insulator. i.e., there is no hopping/kinetic energy to enable the Bose-Eintsein condensation

of these composite bosons and thus off-diagonal long range order.

A mean-field treatment of the interaction term as a small perturbation around a BCS/Anderson

variational ground state introduces different terms: (i) a hopping term (for n = m and k = l) (ii) a

Hartree potential diagonal term (n = k,m = l) and similarly (iii) n = l,m = k which represents

pair-breaking.

We will drop the pair-breaking term as for energies much lower than U it will be insignificant.

These considerations lead to a simple bosonic theory with the effective Hamiltonian
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Hb = −
∑
nm

Jnmb
†
nbm + Vnb

†
nbn. (6.5)

The parameters Vn = 2εn − U , and Jnm = Unn,mm and each of the bosonic operators are defined

as

bn = cn,↑cn,↓. (6.6)

The inclusion of Pauli principle along with the composite nature of these bosons introduces an

on-site interaction between the bosons. We can simplify the above theory by assuming that all the

Jnm are the same and not random variables. In principle the randomness should be kept in both

the diagonal term Vn and the hopping Jnm. However for the sake of simplicity we assume diagonal

disorder only. The above mapping now takes the lattice electrons to a new virtual lattice which is

labeled by the energy quantum number n of the localized states. All the complications of the theory

- which is now defined on a virtual lattice - is kept in two main features, (i) the exact form of overlap

integrals Jnm and (ii) the hard-core nature of the interaction.

Remarkably, the same construction of a bosonic Hamiltonian works for bosonic holes,as exci-

tations of a commensurate MI ground state. When hopping is strong the hole excitations hopping

around - on top of a MI ground state - can undergo a BEC and lead to a superfluid order parameter.

If the solutions remain localized for all of the excitation spectrum in Eq.(6.5) - for strong disor-

der - the long-range order between these localized excitations acting as seeds of superfluid order

is lost through quantum phase-fluctuations. This strong-disorder situation describes a Bose-Glass.

The above scenario can come to a clear light by considering a uniform superfluid order-parameter

through a infinite-range hopping limit which we will discuss in the next Section.

The above construction of a bosonic theory was originally suggested by Lee and Ma [93] [94].

They, however, did not discuss the phase disordering phase transition of such a system, i.e. SF-BG

transition, and merely showed that the superconducting ground-state survive in the high-disorder

limit, in what they called a “localized superconductor”.

We have to emphasize that although the construction of the bosonic model was in the strong

disorder limit, the procedure is completely general. In weak disorder, since the localization length

is large, the overlaps between the localized states are large and can create long-range hopping terms

in the bosonic model, Eq.(6.3). The form of the ground state and excitations that accompany it will

be also a lot more complicated as the site-localized case will never be reached.
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6.3 Infinite-Range Hopping Limit

One of the commonly used mean-field approaches to a system of highly interacting bosons or

fermions on a lattice is the infinite-range hopping approximation[87][97]. In the following we

investigate the solutions of the infinite-range hopping model in detail both in the interacting and

non-interacting cases. For us, however, the infinite-range limit is not an approximation. Rather,

we are going to use the exact solutions of the infinite-range problem to map the weak-disorder and

dilute model to a high-disorder limit. The infinite-range Hamiltonian,

H[b, b†] = −J
∑
i,j

b†ibj +
∑
i

(Vi − µ)b†ibi, (6.7)

can exactly be diagonalized. Decoupling the hopping term by introducing a superfluid order

parameter, m,

Heff

[
m, b†i , bi

]
= −N

4J
|m|2 +

∑
i

[
mb†i +m∗bi +

(
Vib
†
ibi

)]
. (6.8)

The infinite-range assumption is a systematic way of introducing the mean-field assumption of

uniform order parameter in the system. For superfluid transition the order parameter is 〈bi〉, so the

infinite-range hopping assumption is needed to decouple the hopping term through introducing the

order parameter into the Hamiltonian.

The hard-core constraint restricts the bosonic occupation numbers to 1 or 0 per site and writing

the trace in the |1〉 and |0〉 basis in calculating the partition function, we arrive at the effective form

for free energy in terms of the order parameter,

〈F 〉dis =
m2

J
− µ

2
− T

∫
dV P (V ) ln

[
cosh

(√
(V − µ)2 + 4m2

2T

)]
. (6.9)

P (V ) is the disorder distribution and 〈· · · 〉dis indicates average over disorder. For small m’s

near the transition point Eq.(6.9) can be expanded in powers of m,
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Hb [m] =
∫

dV P (V )

{
ln

(
e(V−µ)/T + 1

2

)
− (V − µ)

}

+
{
− 1
J

+
∫

dV P (V )
1

2(V − µ)
tanh

(
V − µ
T

)}
×m2

+

{∫
dV P (V )

{
T 2 1 + 4e(V−µ)/T − e2(V−µ)/T

8(V − µ)4(e(V−µ)/T + 1)2

)}
×m4

+O(m6). (6.10)

The mean-field equations for the above model are derived by taking the derivative over the

superfluid order parameter, m, which leads to

1 = J

∫
P (V )dV

tanh
(√

(V − µ)2 + 4m2/2T
)

√
(V − µ)2 + 4m2

, (6.11)

The transition temperature is obtained from the mean-field equation with m = 0. This is in

essence the coefficient in the quadratic term put equal to zero,

1 = J

∫
P (V )dV

tanh((V − µ)/2Tc)
V − µ . (6.12)

One of the important limits of the theory is the dilute limit when the hard-core interaction is

less important. The condensate state is a Bose-Einstein condensate now, and the question is how

the interplay between BEC and localization determines the transition. In the infinite-range limit the

energy spectrum of the theory can be worked out for any arbitrary form of disorder distribution.

The disorder averaged density of states, ρ(ε), has an interesting form. It consists of two sections,

the ground state is extended and appears as an isolated δ-function while the rest of the excitations

are localized and have the exact form of the distribution of the random potential P (V ),

〈ρ(ε)〉dis = δ(ε− ε0) + P (ε). (6.13)

We prove this result in the following. Beginning with one-particle Hamiltonian,

Hb =
∑
ij

(
− J
N

+ δij(Vi − µ)
)
b†ibj , (6.14)

the disorder-averaged density of states 〈ρ〉dis is the imaginary part of the free-particle Green’s func-

tion at zero momentum,
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〈ρ(ω)〉dis =
1

2πN

〈
Im
∑
i

O−1
ij

〉
dis

. (6.15)

The kernelOij = −J/N +δij(Vi−µ) = 1+δijαi. Expanding the determinant ofO, using Saurus’

rule for determinant expansion, we obtain:

detO = (Πkαk)

(
1 +

∑
l

1
αl

)
(6.16)

and the trace of inverse O−1
ii ,

TrO−1 =
∑
i

1
αi
− 1

1 +
∑

m
1
αm

∑
i

1
α2
i

(6.17)

Notice that the second term is negligible in the thermodynamic limit. The disorder average can

be straightforwardly calculated using Cauchy’s integral theorem and it gives rise to Eq.(6.13). The

most important feature of the form of the density of states in the dilute regime is that the extended

ground state’s energy ε0 depends on the disorder distribution,

1− J
∫ ∞
−∞

dV
P (V )

Vi − µ− ε0
= 0, (6.18)

where (1/N)
∑

i is replaced with disorder average 〈· · · 〉dis. This is the same equation as the

mean-field equation, Eq.(6.11) in the limit of T → 0. The eigenvector for the ground-state is

φ0(i) =
m

Vi − µ− ε0
∼ 1√

N
, (6.19)

andm = (1/N)
∑

i φn(i), is the superfluid order parameter. For a uniform disorder distribution,

P (V ) =


1

2W , −W ≤ V ≤W
0, otherwise,

(6.20)

Eq.(6.18), and the normalization condition, give us,

ε0 = W ln
(
W

J

)
, (6.21)

m =
1√
N

(
ε2

0 −W 2
) 1

2 . (6.22)

For low-disorder, (W � 1)
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m ≈ J√
N

{
1− 1

6

(
W

J

)2
}
≈ J√

N
. (6.23)

The excitations come from the same eigenvalue equation - however (1/N)
∑

i is not replaced

with an average over disorder. The result is simple and the excitation energy value is close to the

one of the Vi’s,

εn = Vi − µ− J

N
. (6.24)

The excitations also have the same functional form as the ground-state,

φn(i) =
mn

Vi − µ− εn ∼
1
N
, (6.25)

mn ≈ J

N
. (6.26)
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Figure 6.2: (a) The general form of the averaged disorder density of states, ρ̄(ε), for a bounded

disorder distribution with disorder strength W . (b) and (c) The same form for the uniform and

triangular distributions Eq.(6.20) and Eq.(6.57). For the triangular distribution, upon increasing

disorder strength the extended ground state indicated by δ(ε − ε0), can reach the lower edge of the

density of states.
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(The mn = J/N comes from assuming a site-localized form for φn(i), φn(i) ∼ δ(i− in), n 6= 0).

As discussed before, in the weak-disorder limit the value of the normalization factors is important

and determines the nature of the wave-functions. The isolated ground state has 1/
√
N normalization

which is the signature of an extended coherent-state while the excitations are all normalized as 1/N

as a sign being of perfectly localized. The fact that ground-state is extended and excitations are

localized (in the thermodynamic limit) can be more rigorously proved [95].

As a matter of fact the existence of an extended ground state with gapped excitations depends

on the behaviour of the disorder distribution near its lower edge, i.e. the IR behaviour of the gap

equation - Eq.(6.18). It is easy to see that a distribution weaker than linear does not give a finite

integral value in Eq.(6.18), and for the linear function P (V ) ∼ V near the edge the existence of

a solution depends on the slope of the distribution. Notice that if the solutions of gap equation,

Eq.(6.18), do not result in a gapped spectrum, then the system is missing the extended ground state.

Thus, if a form of disorder distribution can let the isolated ground state merges with the lower edge of

the excitation spectrum upon increasing disorder, we can interpret it as a localization-delocalization

transition. This is in fact what happens for the triangular distribution:

P (V ) =


1
W 2V + 1

W , −W ≤ V ≤ 0,

− V
W 2 + 1

W 0 ≤ V ≤W.
(6.27)

The lowest eigenvalue will satisfy the following relation,

W 2

J
= ln

(
ε0 −W
|ε0|

)
(|ε0| −W ) + ln

( |ε0|+W

|ε0|
)

(|ε0|+W ) (6.28)

Taking the limit of ε0 → −W leads to a critical values for disorder strength,

Wc = 2J ln 2, (6.29)

and the slope of the distribution near the lower edge would be inverse of this value 1/(2J ln 2).
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Figure 6.3: Numerical calculation of disorder-averaged density of states, ρ̄(ε), for both triangular

and uniform disorder distributions. The disorder strength, W , is 0.5 and hopping,J , is 1.0.
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Figure 6.4: Numerical solutions for ground-state energy of both uniform and triangular distributions
as a function of disorder. Notice the ground-state energy merges to lower edge of the distribution -
V = 0.0 in the figure - for the triangular distribution as disorder reaches the critical value 2 ln 2.
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The above picture of ground-state and localized excitations can explain the three phases in our

original theory as follows: The free bosonic Hamiltonian Eq.(6.14) explains the dynamics of holes

around the MI ground state of the hard-core bosons. When the functional form of the disorder

distribution lets an extended state exist, as the chemical potential reaches ε0 ∼ W transition to a

superfluid state happens, to be precise, holes undergo a Bose-Einstein condensation. Before that,

the insulating phase can be identified as a Mott insulating phase as the spectrum is gapped. For

distributions with smooth behaviour on their lower edge, there is no gap in the density of states and

both ground-state and excitations are localized. This can be interpreted as a candidate for a Bose

glass phase in the BEC limit.

Before concluding this section, let us address the finite soft-core interactions for the sake of

completeness. The gap equations that we discussed for the non-interacting model so far are also very

similar to the equation for the phase-boundary in the Bose-Hubbard model. In the Bose-Hubbard

model a perturbation expansion for small hopping amplitude around the Mott insulating state leads

to a similar condition as the gap equation, Eq.(6.11),

1
J

=
∑
i

[
U(ni + 1)

Uni − (Vi − µ+ J)
+

Uni
Vi − µ+ J − U(ni − 1)

]
. (6.30)

The discrete values of occupation numbers, ni can be treated as the the density of states or some

screened disorder distribution P̃ (V ). Because of the nature of bosonic onsite interaction, they are

discrete values unlike our case. A similar approach is in principle possible for the hard-core model

in mid-densities by considering the expansion of the free energy in the powers of superfluid order

parameter, Eq.(6.10). However the order parameter is not a real bosonic field anymore and the

dynamics of the screening would be somewhat different.

6.4 Mapping of the Hamiltonian Between Low-Disorder and High-
Disorder Limits

The case of weak disorder in the bosonic Hamiltonian, Eq.(6.5), is somewhat straight-forward. We

can simplify the form of hopping Jij into a step-function form where the hopping between the par-

ticles closer than a characteristic lengths, lw, is J and outside that length the hopping amplitude is

zero. The characteristic length is of the order of the localization length. The integral that determines

the hopping depends on the overlap of the localized states, Jij ≈
∫
φ∗i (x)φj(x), in two-dimensions,
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Anderson localization implies permanent localization of all single-particle states with an exponen-

tially decaying form,

φi(x) ≈ e− x
lw . (6.31)

The overlap integral for the hopping amplitude will be dominant inside x ≤ lw region. At weak dis-

order, the localization length is large and sensitive to the value of disorder strength. Its dependency

can be approximated by the non-analytic form,

lw ≈ exp
{
− c

W

}
. (6.32)

Thus, for a hard core bosonic theory in weak-disorder, we propose a disorder-dependent Jij :

Hb = −J
∑

ix−jx,iy−jy≤lw
b†(i)b(j) + h.c.+ (Vi − µ)b†(i)b(i). (6.33)

γ0,I

lw

lw
J

J

J

γ0,J

J̃

J̃

i

j

Friday, March 30, 2012

Figure 6.5: The coarse graining procedure of mapping the lattice into large blocks of the localization

length size, lw. The operators γ0(I) (or γ0(J)) represents the local, extended ground-state of the

block/cell indexed I (or J)
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lw now determines the hopping range and c is a number with units of energy and we will assume it to

be of order 1 for simplicity. The non-analytic dependence of the localization length is an indication

that the clean limit cannot be considered as a limiting case of this model. The interplay between

disorder and interaction in the original fermionic theory is now translated into a bosonic theory

which in the dilute limit can be treated as a free system.

Now, we suggest a coarse graining procedure by dividing the lattice into a much larger lattice

with lattice spacing for which the unit cells are of the size of the hopping range, i.e., the localization

length lw. Inside each two-dimensional box of size lw, we re-write the bosonic operators in terms of

the infinite range hopping model solutions. This can be justified as for arbitrarily low disorder the

localization length is exponentially large. The hopping between each of these neighbouring coarse-

grained cells is mainly dominated by the superfluid extended ground state indicated by energy ε0.

As the last step, one needs to integrate out the excitation degrees of freedoms inside each block

and we will be left with an effective theory for the inside-the-block-extended local ground states

which now have the nearest neighbour hopping between each cells. This will let us to make a

direct mapping between a low-disorder theory with long-range hopping and the nearest-neighbour

hopping high-disorder limit of the dirty bosonic theory. The values of these nearest neighbour

hopping amplitudes between local superfluid states are however different from original hopping J

and should be calculated through the coarse-graining procedure. The same goes for the effective

disorder strength in each block. In the following we will demonstrate this in a systematic way,

Let us begin with transforming the bosonic operator to the solutions of the infinite range hopping

model,

γn =
∑
i

φn(i)bi,

γ†n =
∑
i

φ∗0(i)b†i , (6.34)

while the wave functions φn(i) ∼ 1/(εn − Vi) were derived in the previous Section, Eqs.(6.19)

and (6.26). The operators γ†0(I) and γ0(I) are the creation and annihilation operators for the single

extended state inside each block/cell of size lw.

The Hamiltonian in terms of the infinite-range hopping operators can be written as
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Hb = − J
N

∑
i,j<lw

∑
〈IJ〉

φ∗n(i)φm(j)γ†n(I)γm(J)

+
∑

I

(εn − µ)γ†n(I)γn(I). (6.35)

The capital indices I and J label neighbouring cell blocks while i, j indices label internal sites

for each individual cell. To integrate out the excitations, I first write down the Hamiltonian keeping

terms with γ0 in them,

Hb= −NJ
∑
nm

∑
IJ

〈φ0〉2dis ·
{
γ†0(I)γ0(J) + h.c.

}
+
∑∑

I

ε0(I)γ†0(I)γ0(I) +
∑

I

∑
n

εnγ
†
n(I)γn(I)

−NJ
∑
IJ

〈φ0〉〈φ0〉 ·
{
γ†0(I)γn(J) + γ†n(I)γ0(J)

}
. (6.36)

The Hamiltonian is Gaussian and integrating out the excitations leads to a coarse-grained Hamil-

tonian with “renormalized” parameters J̃ and W̃ and chemical potential µ̃,

Hb = J̃
∑
〈IJ〉

{
γ†0(I)γ0(J) + γ†(J)γ0(I)

}
+ (ṼI − µ̃)γ†0(I)γ0(I), (6.37)

with the new effective nearest-neighbour hopping amplitude J̃ and random potential Ṽ ,

J̃ =
1
N

∑
ij

φ∗0(i)φ0(j)

 · J = NJm2

Ṽ = εI ≈ 1
N

∑
i∈Ithcell

Vi

µ̃ = µ+
∑
n

m2J4

εn
≈ µ+W 2J3. (6.38)

N is the number of lattice sites in each cell block and proportional to l2w in two dimensions. Using

the value of m obtained for a uniform distribution, Eq.(6.22), and substituting for the solutions of ε0

one gets,
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J̃ = J ·W 2

{
coth2

(
W

J

)
− 1
}
, (6.39)

Crudely, J̃ , can be approximated with J - at least it is independent of cell size, N .

Calculating the effective value of the disorder strength is more tedious. This is basically to

calculate the distribution of the ε0. This is similar to calculating the standard deviation of the mean,

using the central limit theorem, while the mean is calculated over a large but finite size cell. Now we

expect the extended superfluid state, which in the infinite range hopping and thermodynamic limit

was an isolated δ-function at energy ε0 given by the Eq.(6.18), now to be a Gaussian around the

same value with the second moment of the Gaussian now indicating the effective disorder strength

W̃ .

We can also derive the coarse-grained disorder strength by considering the second term in the

Eq.(6.17). Including only that term in the density of states’ form and averaging over disorder we

will have,

〈δρ(ω)〉dis =
1

2π
Im

〈
1

1 +
∑

m
1
αm

∑
i

1
α2
i

〉
dis

. (6.40)

The average over disorder can be written as,

〈δρ(ω)〉dis =
∫ ∑

i

P [V ]DV
α2
i

δ

1 +
∑
j

1
αj


=

∫
dk
2π

∫
P [V ]DV ·

(
1
N

∑
i

1
α2
i

)
· exp

{
ik ·

(
1 +

1
N

∑
i

1
α2
i

)}
. (6.41)

Since in the low-disorder limit the hopping range increases faster than exponentially, we can look at

the large-N limit of the above integrals over the disorder. Expanding the exponential function and

applying Sterling’s approximation one ends of with the following Gaussian form for the P̃ (V ), the

effective disorder distribution:

P̃ (V ) = exp

− 1
2J2

(
1 + J

〈
1

V − ε0

〉
dis

)2

· N〈
1

V−ε0
〉2

 . (6.42)

Now let us insert the values of the averages over the 〈φ2〉 and 〈φ4〉 for the uniform distribution, into

Eq.(6.42),
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〈
1

(· · · )
〉
/

〈
1

(· · · )2

〉
= ln

[ |ε0|+W

|ε0| −W
]
· ε

2
0 −W 2

2W
, (6.43)

and thus the coarse-grained disorder strength, W̃ will have the form,

W̃ (W ) = W · ln
[

coth(W/J) + 1
coth(W/J)− 1

]
· coth2(W/J)− 1

2
· e− 1

2W . (6.44)

This will lead to the known result that the W̃ ∼ W/
√
N . The fact that N has also a non-

analytic dependence on disorder strength actually make the above result quite interesting. We could

have used the intuitive argument that the coarse-grained disorder distribution is

W̃ = W · exp
{

1
2W

}
. (6.45)

In the next section we will apply the results obtained above to estimate the phase boundary.

6.5 Phase Diagram of the Theory

We begin by an estimate of the phase-boundary in the strong disorder limit. In strong disorder all

the states of the system are localized and the wave function decays exponentially within the range

of the slocalization length. This leads to a effective hopping energy/kinetic energy of the form of

the neighbouring wave functions overlap integral,

K ∼ exp

[
a ·
(
W

t

)2
]
, (6.46)

where a is a numerical factor. Near the transition point, this kinetic energy part should be

comparable with value of the interaction energy in the system which is of order the interaction

strength, U in Eq.(6.1). This leads to an estimate for phase boundary in the strong-disorder limit

U

t
∼ exp

[
a

(
W

t

)2
]
. (6.47)

Notice that as argued before, in the strong disorder limit U/t ∼ J . We now substitute the values

of the effective hopping strength, J̃ and effective disorder strength, W̃ , into Eq.(6.47), and obtain

a similar estimate for the phase boundary in the low-disorder limit. The fact that the characteristic

energy associated with disorder, W is exponentially suppressed makes an interesting and non-trivial
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phase-boundary. Since the value of hopping in the bosonic model is proportional to the electronic

interaction strength, we will use J instead of that. The result reads,

J3W 2

{
coth2

(
W

J

)
− 1
}
e−

4
W ∼ exp

[(
W · ln

[
coth(W/J) + 1
coth(W/J)− 1

]
· coth2(W/J)− 1

2
· e− 1

2W

)2
]

(6.48)

The value of disorder, W , plotted as a function of interaction strength, J , is an exteremely sharp

function. However it is analytic and also smooth near the origin. This can be the reason that some

numerical calculations and some experiments have previously suggested that in the low-disorder

limit the Bose-glass to superfluid transition is not possible and only a Mott-insulator to superfluid

transition through a pair-breaking mechanism would be allowed. That argument would lead to a

constant value for W as J reaches zero. In our scheme, we think, we can argue that Bose-glass state

still survive for very low interaction and low disorder values although in an exponentially narrow

region around the W = 0 axis. In the following we are going to argue, however, that the form of the

phase-boundary in low-disorder is independent of the details of the phase-boundary in high-disorder.

If instead of the Eq.(6.47), we had used a simpler approximation,

J ∼W, (6.49)

We would end up with a smoother phase-boundary, coming for the equation,

J =
exp

(− c
2W

)
W
(
coth2(WJ − 1

) . (6.50)

Fig.(6.6), shows the solution to the above equation,
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BG

Monday, April 16, 2012

Figure 6.6: Phase-boundary of the superfluid and BG phases near the arbitrary weak disorder and

interaction strength (both of the W and J are written relative to original electronic hopping t).

Although the author is not aware of any numerical work on the weak-disorder limit of the phase-

boundary for the superconductor-insulator problem, our result is consistent with the heuristic argu-

ments in Ref.[81]. At the same time we can explain why some other works have predicted a MI-SF

transition through a pair dissociation mechanism. The BG region is so small that it can be easily

missed.

The nature of three different phases in our theory is somewhat easier to explain in this long-

range hopping model. The Mott-insulating phase is preferred when the local ground state of each

site is a gapped insulator. When the local superfluid ground-state is reached, then the coarse grained

Hamiltonian ground state, Eq.(6.15) can explain long-range order in thermodynamic limit (SF) or

having a phase disordered state (BG).There is however another possibility and that is when the form

of the disorder potential prohibits an extended ground state to exist. This means that even inside

each block will see a local superfluid to Bose glass transition. The superfluid ground state is now

an overlap of localized states and not a modified BEC. This is what has been described as localized

superconductors by Ma and Lee [93].



CHAPTER 6. PHASE DIAGRAM OF S-I TRANSITION 133

The difference between the two possible mechanisms of the formation of superfluid and insu-

lating states in low- and high densities requires a careful inclusion of the interaction. In the next

section we will include the interaction for a Bose-Hubbard model Hamiltonian and show that the

original mechanism assumed holds and the formation of localized superconductors and a localized

Bose-glass ground state does not happen in the weak-interaction limit of our model. In other words,

the mechanism of the phase transition is independent of the form of the disorder distribution.

6.6 Screening of the Disorder Potential in the Bose-Hubbard Model in
the Weak Interaction Limit

Inspired by the above discussion it is worth to consider the effect of interactions in a soft-core

bosonic model with a Bose-Hubbard (BH) type of interaction. As before, the hopping term for

bosons is assumed to have a long range which depends on the disorder non-analytically ,

H =
J

N

∑
ix,iy≤lw

(
b†ibj + b†jbi

)
+
∑
i

(
(Vi − µ)b†ibi +

λ

2

(
b†ibi
)2
)

(6.51)

The main feature of the screening, which we are in interested to investigate, is whether it affects

the behaviour of the disorder potential at the lower-edge. As discussed before, if P (V ), has a linear

- or weaker - form near the edge - like the triangular distribution - there is the possibility of having

localized ground states inside each cell.

Steps of the coarse graining procedure can be exactly followed as before. Transforming the

bosonic operators, b†i , bi into the solutions of a non-interacting model γ†, γ, Eq.(6.34), the Hamilto-

nian can be written as,

Hb = − J
N

∑
i∈Ithcell
j∈Jthcell

∑
〈IJ〉

φ∗n(i)φm(j)γ†n(I)γm(J)− J
∑

ij∈Ithcell

∑
I,nm

φ∗n(i)φm(j)γ†n(I)γm(I, nm)

+
∑

I

∑
i

(Vi − µ)φ∗n(i)φm(j)γ†n(I)γm(I)

+
λ

2

∑
IJKL

∑
ijkl

∑
nmpq

φn(i)φm(j)φp(k)φq(l)γ†n(I)γ†m(J)γp(K)γq(L). (6.52)

The above form can be simplified by considering the fact that the dominant wave-function over-

laps come from the condensate. Ignoring the terms with an odd number of condensate operator in

them we arrive at the Bogoliubov Hamiltonian written in terms the Anderson localized solutions,
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Hb = H0 +Hexc +Hhopping,

H0 =
∑

I

εγ†0,Iγ0,I +
λ

2
〈φ4

0〉(γ†0,Iγ0,I)2,

Hexc, =
∑

I

∑
n

(εn + 4λ〈φ2
0φ

2
n〉〈γ†0,Iγ0,I〉)γ†n,Iγn,I + 〈φ2

0φ
2
n〉〈γ†0,Iγ†0,I〉γn,Iγn,I,

+〈φ2
0φ

2
n〉γ†n,Iγ†n,I〈γ0,Iγ0,I〉,

Hhopping = J̃
∑
〈IJ〉

γ†0,Iγ0,J + h.c.. (6.53)

Notice that the validity of the approximation now relies on the fact that ground state is the only

extended state in the theory and for large enough block sizes, the overlap integrals in the Hartree-

Fock approximation of Eq.(6.52), are dominated by γ0. The Bogoliubov transform results in a new

spectrum for the excitations in the low-energy limit. This will be of particular interest for us as

the screening of the original disorder potential can result in different solutions of the gap equation,

Eq.(6.18), and possibly the disappearance of the extended ground state. One should also notice

that the coefficients 〈φ4
0〉 and 〈φ2

0φ
2
n〉 now will give rise to two different values for the effective

interaction strength in H0 and Hexc.

The Bogoliubov dispersion for quasi-particles is,

En =
√
εn
(
εn + 2λ〈φ2

0φ
2
n〉n0

)
, (6.54)

where n0 = 〈γ†0γ0〉 is the superfluid condensate and is obtained by minimizing the condensate

part of the Hamiltonian, H0,

n0 =
ε0

Nλ〈φ4
0〉
. (6.55)

Notice that ε0 plays the role of chemical potential µ. The phononic part of the dispersion is

of particular interest to us. If the new quasi-particles model considered, their density of states can

be treated as the screened disorder potential. For energies very close to zero, i.e., the edge of the

disorder distribution.

En =

√
2〈φ2

nφ
2
0〉 · ε0

N〈φ4
0〉

· √εn (6.56)

This is in fact the prescription for a triangular distribution, if the original distribution- in this

case εn - is a uniform one,
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Ptri(Vtri) =


√

W 2

2 Vuni, 0 < V < W/2

W −
√

1− Vuni/W )W 2

2 W/2 < V < W.
(6.57)

which implies that the factor
√
ε0 now should determines the value of the the disorder strength of

the screened disorder potential W ′. The main point to see from this observation is that upon closing

the gap, i.e., ε0 → 0, the effective disorder strength, W ′, also goes to zero which indicates that one

might not reach the critical disorder Wc/J = 2 ln 2 - for the triangular distribution - through this

mechanism, this is a significant result in the sense that in weak interaction and disorder limit, where

the hopping ranges are long and the coarse graining procedure is possible. The mean-field Bo-

goliubov spectrum determines the form of the screened disorder distribution and this new screened

distribution always keeps a gapped spectrum.

6.7 Concluding Remarks

In conclusion, we addressed the problem of a bosonic model with finite-range hopping as the ef-

fective model for the S-I transition at low-disorder and weak interaction strength. We considered

both hard-core and Hubbard interactions independently and derived the form of the phase boundary

for the hard-core model using a mapping between low-disorder and strong-disorder limits of the

model. The exponentially small region of BG phase that we obtained for the phase diagram in the

low-disorder limit, was considered the reason that why some of the numerical works have missed it

in their simulations. For the Bose-Hubbard model we showed that using the same coarse graining

technique we were able to show that the screening of the disorder potential by the interaction now

happens in such a manner that it keeps the gap for the extended local ground states. This prevents

double mechanisms for the MI-BG and BG-SF transitions in this limit.



Appendix A

Representations of Gamma-Matrices in
2+1 Dimensions

In this appendix we show a construction for all the possible representations of the γ-matrices in

2+1 dimensions assuming a SU(2) ⊗ SU(2) symmetry for the action. For the case of underdoped

cuprates one SU(2) sector corresponds to the Lorentz group and the other SU(2) is the group of

chiral rotations.

To begin, we conjecture the following form for the γ-matrices,

γµ ∈ {1, ~σ} ⊗ {1, ~σ}, (A.1)

there is some freedom in choosing the form of the γµ’s, while knowing the generators of one of the

SU(2)s one can predict the elements of the other SUc(2) (in our case the chiral symmetry group).

Given γ3 the Clifford algebra is complete and other elements of the SUc(2) can be obtained easily

as

γ5 = γ0γ1γ2γ3

γ35 = iγ3γ5. (A.2)

There is a freedom in choosing γ3, however. One can exchange γ3 and γ5 since γ5 anti-

commutes with all γµ’s and squares to unity too. The other freedom is that one can rotate all the

γµ’s (µ = 0, 1, 2) between each other. more importantly one can rotate the γµ’s among each other

while this time µ = 1, 2, 3.

136
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The simplest representation would be

γ0 =

(
σ3

−σ3

)
, γ3 =

(
1

1

)
,

γ1 =

(
σ1

−σ1

)
, γ35 =

(
1

−1

)
,

γ2 =

(
σ2

−σ2

)
, γ5 =

(
−i

i

)
.

The representation that we used in Ch.1, however, is somewhat different and can be easier to

deal with,

γ0 =

(
1

1

)
, γ3 =

(
−iσ2

iσ2

)
,

γ1 =

(
−iσ3

iσ3

)
, γ35 =

(
σ2

−σ2

)
,

γ2 =

(
iσ1

−iσ1

)
, γ5 =

(
1

−1

)
.

In the following we will proceed to construct the complete set of the γµu’s that are generators

of both SU(2) and SUc(2). Consider two elements of the Algebra A and B and propose the forms:

A = σν ⊗ σµ,
B = σρ ⊗ σκ. (A.3)

The conditionA2 = B2 = 1 is automatically satisfied. The anti-commutation betweenA andB

would enforce that either (i): σν and σρ commute and σµ and σκ anti-commute or (ii): vice versa.

(i) leads to

case (i)→


σρ = σν = 1,

or

ρ = ν,

(A.4)
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case (ii)→


σµ = σκ = 1,

or

µ = κ,

(A.5)

The possible γµu’s would be

(i) γµu = σi ⊗ ~σ,
(ii) γµu = 1⊗ ~σ. (A.6)

Mixtures are also possible. For example one can have- case (iii):

γ0 = 1⊗ σi →
[σν , σρ] = 0 (commute),

{σµ, σκ} = 0 (anti−),

γ1 = σl ⊗ σj →
[σν , σρ] = 0 (anti−),

{σµ, σκ} = 0 (commute),

γ2 = σl ⊗ σk →
[σν , σρ] = 0 (anti−),

{σµ, σκ} = 0 (commute),
. (A.7)

where i 6= j 6= k = {1, 2, 3} and l is some fixed index.

According to the above construction there are complementary sets of generators of the chiral

group SUc(2), i.e., γ3, γ5, γ35.

(i)


γ0 = σl ⊗ σi,
γ1 = σl ⊗ σj ,
γ2 = σl ⊗ σk,

→


γ3 = σl′ ⊗ σi,
γ5 = σl′ ⊗ σj ,
γ35 = σl′′ ⊗ σk.

(A.8)

where l, l′, l′′ = {1, 2, 3} are different indices, while i, j, k are the same notation as used before.

Similarly:



APPENDIX A. REPRESENTATION OF GAMMA-MATRICES 139

(ii)


γ0 = 1⊗ σi,
γ1 = 1⊗ σj ,
γ2 = 1⊗ σk,

→


γ3 = does not exist,

γ5 = · · · ,
γ35 = · · · ,

(iii)


γ0 = 1⊗ σi,
γ1 = σl ⊗ σj ,
γ2 = 1⊗ σk,

→


γ3 = σl′ ⊗ σj ,
γ5 = σl′′ ⊗ σj ,
γ35 = σl ⊗ 1.

(A.9)



Appendix B

Fierz Identities and Generality of the
Interaction Lagrangian

In this section we will construct the linear relationship between the quartic terms invariant under a

unitary U(N) group, known as Fierz identities. These are the direct consequences of the complete-

ness relation for the generators of the symmetry group.

Defining Tr(A · B) as the inner product between matrices A and B, we write down the com-

pleteness relation for the basis constructed out of generators of a U(N) group, {λα,1}, as

1
N
δabδcd +

1
2

N2−1∑
α

λαabλ
α
cd = δadδcb. (B.1)

A the special case of U(2), using Pauli matrices, Eq. (B.1) simplifies to

δabδcd +
∑
α

σαabσ
α
cd = 2δadδcb. (B.2)

Using the above relations one can derive the requisite linear relationship between different quartic

terms. First, it is convenient to represent the 4N -component spinor Ψ in terms of 2N -component

ones as

Ψ =

(
χi

φi

)
. (B.3)

It is then possible to apply to above completeness relations to the quartic terms of the form∑
α

(χ̄iaλ
α
ijχ

j
a)(χ̄

k
bλ

α
klχ

l
b), (B.4)
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where χi stands for both χi and φi. (The spinor index is indicated by subscripts.) Applying Eq.

(B.2) for spinor degrees of freedom and Eq. (B.1) for flavour degrees of freedom, one ends up with

the following identity

(1 +
1
N

)(χ̄χ)2 +
∑
µ

(χ̄σµχ)2 +
∑
α

(χ̄λαχ)2 = 0, (B.5)

where we have suppressed both the spinor and flavour (large-N ) indices for convenience, and re-

placed N with 2N , since QED3 is U(2N)-symmetric. Similarly, beginning with the quartic term∑
α,µ

(χ̄iaλ
α
ijσ

µ
abχ

j
b)(χ̄

k
cλ

α
klσ

µ
cdχ

l
d), (B.6)

it is easy to derive the other identity [44]∑
α,µ

(χ̄λασµχ)2 +
∑
α

(χ̄λαχ)2 +
1
N

∑
µ

(χ̄σµχ)2

+(4 +
1
N

)(χ̄χ)2 = 0. (B.7)

The above identities applied to a U(2N)-symmetric theory with the Sint of the form

g̃1(χ̄χ)2 + g̃2(χ̄λαχ)2 + g̃3(χ̄σµχ)2 + g̃4(χ̄σµλαχ)2, (B.8)

leave only two of the terms as independent. Noticing that the Eq. (B.8) is equivalent to the interac-

tion term written in 4N -component representation: g1|A|2 + g2|Bµ|2 + g3|Cµ|2 + g4|C35|2, we can

see that our choice of Cµ and C35 as the most general CSP quartic terms is justified.

CSB case is not very different. One can consider the interaction of the form in Eq. (B.8) for each

U(N) sector separately (i.e. χ and φ). Repeating the same argument would reduce the number of

independent interaction couplings in each sector to two, so that the overall number of independent

couplings will be four, as assumed in Eq. (2.9).

Similarly, for the 4× 4 representation, we can use completeness Eq.(B.1), written in the form:

1
4

16∑
A=1

ΓAmlΓ
A
ik = δmkδil. (B.9)

Multiplying the Eq.(B.9) to a four-Fermi term, Ψ̄aΓAΨbΨ̄cΓAΨd, we find,

(
Ψ̄aΓAΨb

)(
Ψ̄cΓAΨd

)
=

16∑
B=1

CAB

(
Ψ̄aΓBΨd

)(
Ψ̄cΓBΨb

)
(B.10)
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with the ΓA,B , belonging to the set of the whole three dimensional Clifford algebra:

ΓA,ΓB = (1, γµ, iγ3, γµγ35, γµγ3, γµγ5, γ35, iγ5) . (B.11)

The coefficient matrix CAB is given by

CAB =
1
4



−1 −1 1 1 −1 1 −1 1

−3 1 −3 1 1 1 −3 −3

1 −1 −1 1 1 −1 −1 1

−3 1 3 1 −1 −1 −3 3

3 1 3 −1 1 −1 −3 −3

3 1 −3 −1 −1 1 −3 3

−1 −1 −1 −1 −1 −1 −1 −1

1 −1 1 −1 1 1 −1 −1


. (B.12)

The following cases are useful for Chapter 2,

−(Ψ̄aγµΨa)2 − (Ψ̄aγ35Ψa)2 = (Ψ̄aΨb)(Ψ̄bΨa) + (Ψ̄aiγ3Ψb)(Ψ̄biγ3Ψa)

+(Ψ̄aiγ5Ψb)(Ψ̄biγ5Ψa) + (Ψ̄aγ35Ψb)(Ψ̄bγ35Ψa) (B.13)

and

(Ψ̄aγµΨb)2 − 3(Ψ̄aγ35Ψa)2 = (Ψ̄aγµΨb)(Ψ̄bγµΨa) + (Ψ̄aγµγ35Ψb)(Ψ̄bγµγ35Ψa)

+(Ψ̄aγµγ3Ψb)(Ψ̄bγµγ3Ψa) + (Ψ̄aγµγ5Ψb)(Ψ̄bγµγ5Ψa). (B.14)
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