
CLIENT-SIDE CACHING FOR CLIENT-SERVER OLAP

SYSTEMS

by

Elaheh Kamaliha

B. Sc., Sharif University of Technology, 2009

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Elaheh Kamaliha 2013

SIMON FRASER UNIVERSITY

Spring 2013

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.



APPROVAL

Name: Elaheh Kamaliha

Degree: Master of Science

Title of Thesis: Client-Side Caching for Client-Server OLAP Systems

Examining Committee: Dr. Uwe Glasser

Chair

Dr. Wo-Shun Luk, Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Oliver Schulte, Professor, Computing Science

Simon Fraser University

Supervisor

Dr. Jian Pei, Professor, Computing Science

Simon Fraser University

Examiner

Date Approved:

ii

Lib M-scan1
Typewritten Text
8 April 2013



 

Partial Copyright Licence 

  

 

iii



Abstract

Recently, client-side data caching has become popular for building highly interactive web

applications. This research is about client-side data caching in a client-server OLAP system.

Contrary to the traditional OLAP systems, the system we study here is client-centric which

contains a light-weight OLAP engine and a data cache, such that queries posed by the user

may be processed on the client without a round-trip to the server. It has been shown that

this system works better than the traditional ones in some data visualization scenarios.

In this study, we focus on the client-side data caching in this system. We implemented

a new data structure for storing multidimensional data on the client-side, which occupies

a small memory footprint and decreases the load time significantly with a minimal client-

side processing overhead. Also, we investigate the efficiency of client-side caching when the

processing of the query needs extra data that are not already client-resident. Our results

show that in some cases it could be cost-effective to download more than %80 of the required

data from the server, rather than to download the entire sub-cube from the server.

Keywords: OLAP; client-server system; client-side aggregation; client-side caching;
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“In theory, there is no difference between theory and practice; In practice, there is.”

— Chuck Reid
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Chapter 1

Introduction

1.1 Server-side vs Client-side data caching

Data caching is one of the most popular and effective techniques to boost the performance of

a client-server system. By caching the data accessed by users on the server side, e.g., DBMS

and Web servers, data items that are frequently accessed will be available immediately

without resorting to the database on the disk.

Recently, client-side data caching has emerged as a popular technique for building highly

interactive web applications. These applications are web-based, i.e., they are written in

Javascript that run on any generic browser. As such, there is nothing to maintain and runs

anywhere internet access is accessible. Client-caching and pre-fetching of data will eliminate

not only the round trip of retrieving data from the server, but also the unpredictable network

delays that are beyond the users control. As a result of client-side processing, the server will

be given additional resources either to serve more clients and/or to become more responsive

to current clients. Development tools for client-side data caching are provided on major

development platforms [6], [5].

1.2 Client-centric OLAP

In this thesis, we study client-side caching for a specific type of application, i.e., OLAP

(OnLine Analytic Processing) applications that run in a client-server environment. In par-

ticular, the client targeted by this study is typically a resource-constrained device, i.e., a

mobile device.

1



CHAPTER 1. INTRODUCTION 2

To the best of our knowledge, the first study of Web-based OLAP was published in

[13]. Compared to many Web-based client products on the market, the Web-based OLAP

described in [13] features light-weight OLAP engine, which is capable of performing OLAP

operations on the data cached on the client side. This engine, written in Javascript, is

embedded in the web page downloaded from the server side. To distinguish it from the

traditional client-server OLAP systems, we call it client-centric OLAP.

Data prefetching is a common technique in reduction of I/O latency for server-side data

caching, when the data in the file are processed sequentially, e.g., in a file scan operation.

Data prefetching on the client-side works very well for some data visualization scenarios [13].

As an example, consider the scenario where an executive of a company would like to explore

sales amounts in the top 10 regions and their contributions to the total amount, in the past

2 weeks. To this end, the application features a slider in its user interface that is bound to

the time dimension. Every movement of the slider triggers a new query for different day, the

answer of which is shown in a pie-chart. A server-centric client has to take a round trip to

the server to find out the answer. In the case of Web-based OLAP, a data cube containing

the answers for every day in the past 2 weeks, is first downloaded from the server. With

the data in the cache on the client side, the answer will be produced by the local OLAP

engine. Another data visualization scenario involves an x − y scatter plot, where x and y

are measures of a data cube. By downloading the scatter plot plus the associated dataset,

the user may zoom in a specific rectangle of the plot by a mouse move-over.

1.3 Objective and Motivations

This thesis is to study the issues related to client-side data caching in an OLAP system

against a workflow, i.e., a sequence of queries. In comparison, each data visualization

scenario as described in [13] is treated as a workflow, and pre-fetching of data is confined

to the scope of the scenario. For a general workflow, the data downloaded from the server

are stored in the data cache, which may, or may not, be utilized for processing subsequent

queries.

Despite its speculative nature, we believe client-side data caching is still an effective

strategy, because the subsequent queries to be posed by an OLAP user are often related to

the answer of the current query. For instance, the user may want to compare the answer

of the current query with the answer of a previous query. For another instance, the user
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may create new queries based on the answer of an existing query. Consider drill-down, one

of the OLAP operations, which allows the user to derive the aggregates by navigating from

the current level of a hierarchy (-ies) to the more detailed level. Consider the 2-dimensional

“cube” shown in figure 1.1 , with Geography and CalendarYear as the dimensions, has one

cell storing the measure Sales. One may drill-down into the dimension CalendarYear, so

that the sales for the year may be split by H1 and H2.

$6.8 B
United 
States
United 
States

CY 2005

United 
States
United 
States

CY 2005
H1 H2

$3.2 B $3.6 B

Drill-Down

Drill-Up  

Figure 1.1: Drill-down/Roll-Up Operation

When a query is submitted by the user on the client side, the client may seek from the

OLAP server, not only the answer sought by the user, but also the data associated with

the more detailed levels of dimension hierarchies included in the query. For example, if the

user requests the sales of US in the calendar year 2005, the client, in anticipation of the

drill-down, may request the sales for first-half and second-half years instead. Pre-fetching

of additional data is even more speculative, but it could work very well if the drill-down

session is long and involved, since the user can develop various roll-up operations supported

by the local OLAP engine. Similarly, a roll-up operation involves aggregation at a level

higher than the current level of hierarchy. In this case, the data cache may not contain all

necessary data required by the aggregation. The missing part could be downloaded from

the server.

1.4 Research Problems

When a query is submitted without any indication of subsequent drill-down operations, the

client will be faced with choosing one of the following options:
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(a) Send the query to the server, requesting only the answer to the query. We shall call it

the answer sub-cube. The 2-D cube on the left side of figure 1.1 is an example.

(b) Same as (a) , except that the sub-cube returned is an inflated version of the answer sub-

cube, that is, each dimension of the answer sub-cube may include extra nodes, which

are child nodes of nodes in the answer sub-cube. The 2-D cube on the right side of Fig.

1 is an example of inflated version of the answer sub-cube on the other side.

(c) Answer the query with the data in the local cache.

(d) Same as (c), except that a modified query is sent also to the server.

It is a fairly simple task for deciding to go for the option c), i.e., on the condition that the

data in the local cache is sufficient for deriving answer to the query. Otherwise, one of the

remaining three options will be chosen. In fact, the first step will be the choice between d)

and a). If d) is not the choice, then the final choice is between a) and b). The objective of

research is to develop a cost function with which to make these decisions.

1.4.1 Research Approach

To be sure, the cost function depends on factors which are difficult to quantify, or are

simply non-technical in nature. For example, the client needs to know to what extent the

user will drill down into the inflated answer sub-cube. There is also a factor related to the

preference of the user with working data off-line over on-line with the OLAP server. Our

focus in this research is to consider only the cost in terms of the following components: (i)

processing on the server side, (ii) the data download from the server to the client, and (iii)

the processing at the client side. The first task to proceed is perhaps the most important

one: to design and implement a client-side data cache that will minimize the cost in each of

the three components. Next, we conduct experiments on sample data to determine the cost

associated with each option. The experimental results hopefully will shed light on whether

client-side data caching is effective.

1.4.2 Research Findings

• We have developed a new data structure for storing data inside a cube on the client

side, which takes a small memory footprint, and requires minimal overhead for trans-

formation of the source data from the OLAP server into the cached data.
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• Client-side data cache helps processing a new query, even though the processing of the

query may require extra data that are not already client-resident. For some queries,

it is faster to download over 80% of data required from the server, than to download

the entire inflated answer sub-cube from the server. In other words, the option (d) is

sometimes cost-justified over (b).

• Pre-fetching in anticipation of drill-down works. Our experiments show that for some

queries, especially those with relatively smaller answer sub-cube, downloading an in-

flated answer cub-cube can be cost-justified, when they are followed by quite a few

drill-down queries on the inflated answer cub-cube. In other words, the option (b) is

sometimes cost-justified over (a).

1.5 Thesis Organization

The organization of the rest of this thesis is as follows : in chapter 2, we present an overview

of the client-server OLAP system with the emphasis on the client-centric OLAP system. In

this chapter, we explain each of the components of the client-based OLAP architecture.

Also, we describe the data flow in the system for downloading and presenting a sub-cube to

the user.

In chapter 3, we explain in details the client-side caching we have developed. We explain

the method we have designed and implemented for storing multidimensional data and we

explain how the client-side data engine is able to use this data structure for aggregation.

Also, we propose an algorithm for using option (d) where for the new user’s requests, we

first check if it has any overlap with a cached sub-cube and we send modified MDX queries

to the server to download the required data.

In chapter 4, we compare inflated sub-cube with the answer sub-cube in a workflow sce-

nario. In this chapter, we present our algorithm for drill-down operation which is faster than

the original algorithm. Then we compare the results with the answer sub-cube approach.

In fact, we compare option (a) and (b).

In the last chapter, we discuss the conclusion of this work. We also present the future

work for this research.



Chapter 2

Overview of the Client-Server

System and Data Flow

In OLAP research, there is quite a lot of research done on transferring server-side aggregation

to the client-side. Typically, the “thin” client is used to submit a query to the server and

display whatever it receives from the server. All the communications with the OLAP server

and the aggregation is done at the server side. Figure 2.1 shows an overview of the traditional

server-centric architecture.

OLAP 
Server

ADOMD

Application 
Server

XMLA

Browser Thin 
Client

Server components

Figure 2.1: Server-Centric OLAP architecture
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Hsiao explores in his thesis, the potential of a client-side OLAP system. He has proposed

and implemented a client-centric OLAP system which is able to perform OLAP operation

locally. In his design, the client application is not anymore a “thin” client. He has imple-

mented a client-side query engine which connects to a web service to download metadata

and multidimensional data and performs data aggregation locally. The engine code is in

JavaScript and the engine runs in a browser platform.

Figure 2.2 is an adoption of the client-centric architecture proposed by Hsiao. The

server-side components are: OLAP server, ADOMD,XMLA and web service. The server-

side components are OLAP server, ADOMD, XMLA and the web service. OLAP server is

the core of each OLAP system. It is the data provider that contains the databases in the

form of data cubes. XML for Analysis (XMLA) is an Application Programming Interface

for data access in OLAP server. ADOMD is a Microsoft .Net framework that implements

the XMLA protocol. And the last component is the web service which acts as a middleware

between the client-side and server-side applications. The web service receives the queries

from the client and submits it to the server through the ADOMD layer. Also the data

returned from the server is retrieved by the web service and the data is prepared for sending

to the client in this component.

OLAP 
Server

ADOMD

SOAP Web 
Service

XMLA

JavaScript 
OLAP Client

Server components

Figure 2.2: Our adopted Client-Centric OLAP architecture

The JavaScript OLAP Client (JSOC) shown in figure 2.2 consists of a User Interface
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(UI) which is a web page displayed to the client, and a data engine which is written in

JavaScript. The UI is designed to provide easy interaction with the user. User can select

to download metadata from the drop-down menues. Also, a TreeView of the data is shown

to the user so that she can selects the dimensions to build a sub-cube and submit an MDX

query.

When the client decides to submit a query, the local data engine accepts user’s request

from the UI. Then an MDX query is send to the OLAP server via the web service. The

OLAP server returns the answer in XMLA format. The web service will process the XMLA

message and return the dataset to the client.

When the JavaScript OLAP Client receives the daatset, it is able to process user’s

requests regarding this data. JSOC implemented by Hsiao is mainly focused on Data Visu-

alization. The local data engine is able to answer client’s request for cross-tab generation,

m-Day Moving Average, Scatterplot, and Top-k Contribution locally from the downloaded

dataset. However, in our work we are focused on the user experience with the workflow

when a sequence of MDX queries are requested.

The rest of this chapter is about the components of the client-centric system we have

adopted and the data flow between the components. In section 2.1 we describe the server-

side components and also we give general information about multidimensional data. In

section 2.2, the JavaScipt OLAP Client is introduced and the common OLAP operations

handled by JSOC are explained. In the last section, we explain the data flow in the system

in details.

2.1 Server-side Components

There are four different components on the server-side. In this section, we explain each of

these components.

2.1.1 OLAP Server

There is plenty of work and research done on different aspect of OLAP such as aggregation

and cubing, modeling multidimensional data and join optimization [1, 2, 3, 11]. Over the

past decades, a new market has emerged for systems that provide the ability to analyze very

large amount of data which is called online analytical processing(OLAP). Because OLAP

systems are designed specifically for analyzing, they typically do not need to do both read
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and write [14]. All is needed is reading data. Therefore, OLAP systems have the advantage

of high speed data access. Another important factor that distinguishes OLAP from relational

databases is multidimensional data structure. We explained about the conceptual model of

multidimensional data earlier in this chapter. In general, the core of each OLAP server is

an OLAP cube. This cube contains numeric values called measures which are the object of

the analysis. An example of such data cube is shown in figure 2.3.

Multidimensional Data and Metadata

Typically, each database contains one or more fact tables which are related to a number of

dimension tables. Each fact table contains a number of records with one or more measures.

Example of measures could be quantity or sale amount. Each record consists of attributes

associated with it. Example of these attributes could be customer number, store number,

product number.

Each dimension consists of a set of attributes. Examples of this attributes for date

dimension are week, month and quarter. There may be a hierarchical relation between

the attributes of a dimension. Figure 2.3 shows hierarchy levels for the three dimensions:

Product, City and Date. Primary members are at the lowest level and are the values for the

attributes in each record in the fact table. OLAP server builds a multidimensional cube for

each fact table that pre-aggregates measures in the fact table in different level of hierarchy

of each dimension.

Figure 2.3 shows a 3-dimensional cube. The cube is an aggregation of sales quantity

measure for product, city and date dimension. Each combination of members from each

dimension makes a tuple. That is, for an n-dimensional cube, a tuple consists of n members

that specify one cell. If a tuple does not specify any member for one dimensions of the cube,

every member in that dimension is considered.

OLAP vendors have standardized an interface that allows an application execute MDX

query. This interface is called XML for Analysis or XMLA. Any application can access any

multidimensional database that supports XMLA.

2.1.2 XML for Analysis and ADOMD

XMLA is a protocol developed for communication between applications and analytic data

provider. It is a standard XML format that defines the messages and representation of
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Figure 2.3: Multidimensional data [4]

multidimensional data types. The back and forth communication of messages is done using

web standards: HTTP, SOAP and XML. Essentially, XMLA is a SOAP envelope with XML

content sent over the HTTP layer. The query language used is MDX which is explained

later in this chapter.

Technically speaking, XMLA is a specification for a set of XML message interfaces that

uses Simple Object Access Protocol (SOAP) to define data access interaction between a

client application and a data provider working over the Internet. Using a standard API,

XMLA provides open access to multi-dimensional data from varied data sources − any client

platform to any server platform − through web services that are supported by multiple

vendors.

The reason that XMLA has become a standard is that XMLA is adopted by all major

OLAP service providers such as IBM Infospehre Warehouse Cubing Services, Oracle/Hype-

rion Essbase, Microsoft Analysis Services and Mondrian on top of MySQL.

XMLA has two methods: Execute and Discover [8].

Discover message will return the metadata to the application. Metadata contains infor-

mation about dimension, hierarchies and measures.

Execute message will execute an MDX query on the OLAP server. The result of the

XMLA execute operation for an MDX query shown is included in appendix A.

Since the result of the XMLA execute message contains a lot of details, it will produce a

lot of overhead for the client. The results include axes information, but this information is

already available at the client when metadata is downloaded. Removing this overhead from

the XMLA response will decrease the amount of the data sent over the network.

ADOMD.NET is a Microsoft.NET Framework that uses XMLA protocol to communicate

with the analytical data sources. ADOMD is the so-called middleware, which makes it easy
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for the web service to communicate with the OLAP server. A call from the web service

to ADOMD, will be translated into a method of XMLA to submit to the OLAP server.

The server returns the answer within an XMLA message to ADOMD. The ADOMD has

functions to parse the results and produce convenient objects such as dimension, hierarchy

and fact table for the web service.

2.1.3 Web Services

The web service layer is a middleware between the JavaScript OLAP Client and ADOMD

layer. A web service consists of a set of methods that can be called from the remote

distance client. Web service receives client’s requests and depending on the type of the

request, appropriate ADOMD function is used to retrieve the data from the OLAP server.

Examples of client requests could be the list of dimensions, the contents for a hierarchy, or

an MDX query for retrieving a sub-cube. Since XMLA is needed to communicate with the

OLAP server, the web service uses ADOMD to access the OLAP server.

Once the data is retrieved from the server, the web service processes the results to clean

the data and put it in the structure desired by JSOC.

In general, the web service is designed to provide server side support for the JavaScript

OLAP Client on two aspects transmitting: (i) metada and (ii) multidimensional data. To-

gether with the JavaScript OLAP Client, they are the main parts in this research.

2.2 JavaScript OLAP Client

JavaScript OLAP Client (JSOC) is developed on a browser platform. The benefit of this

approach is that any device with an internet connection and a browser can be an OLAP

client. No application is installed on the client machine and therefore the client machine is

maintenance-free: there is no cost for updating the application on every user device and the

user is always running the latest version of the code.

The JavaScript OLAP Client consists of a graphical User Interface which is displayed

to the user, and a data engine which manages the data flow on the client-side. The UI is

designed to interact with the user: user can select to download the list of dimensions and

download a sub-cube with desired dimensions. The data engine collects the information

from the UI and manages the communication with the server and displays the result to the

client.
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In the following, we first explain the graphical User Interface(UI) used to interact with

the user client. Then we describe the tree view used for metadata representation. We also

discuss the query engine and the way it performs OLAP operations.

2.2.1 UI

Figure 2.4 shows a screen-shot of the interface displayed to the user. After user has selected

the server and cube she wants to connect to, a list of dimensions and categories is downloaded

and represented in a tree structure. The box for the dimensions tree is specified in the figure

by number 1. The open source TreeView from Yahoo! UI 2 [12] is adopted to give the user

the option to select axes from the dimensions and hierarchies. The components provides

many features for developing the JavaScript client such as: the ability to instantiate the

tree nodes as objects, methods and properties to access node level, children nodes, dynamic

loading of sub-tree node on the node expansion.

Figure 2.4: An screenshot of JavaScrip OLAP Client user interface

Figure 2.5 shows an example of dimensions on the first level of the TreeView. Note

that at this stage, the JavaScript OLAP Client does not load the whole content of every

hierarchy. This is due to the fact that the complete hierarchy data are too large to be

downloaded at once. Instead, the TreeView components provides the ability to define a

loading function when the user expands a node. When user selects to expand a hierarchy,
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JSOC downloads the contents of the sub-tree from the web service layer. The [Geography]

dimension contains five hierarchies: [city], [country],[Geography], [postal code] and [state-

province]. The [Geography] hierarchy contains a multi-level sub-tree.

Figure 2.5: TreeView a)Before loading hierarchy content, b) After loading Hierarchy content

2.2.2 Query Engine

User can select one or more hierarchies from the TreeView to build a sub-cube. For example,

user selects to download a 2-dimensional sub-cube: [Geography].[Geography].[Canada] and

[Prodcut].[product Categories].[All Products]. These selected nodes are added to the Hier-

archy Selection textbox in the UI which is just above the tree view. The list of hierarchies

shown in this box will make the dimensions of the sub-cube requested from the web service.

The TreeView component provides the option of retrieving the tree nodes for the hierar-

chy selection. Therefore the data engine have all the information about the sub-cube such

as size and hierarchy levels.

When the user selects to download a sub-cube, the fact table for that sub-cube is loaded

to the browser memory. Fact table is a 2D array with n rows and (totalDim+totalMeasure)

columns. Each row in the fact table represent a tuple in the dataset. the first totalDim

columns contain primary member values for each dimension of the tuple. The totalMeasure

columns contain the numeric measure values.
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The JavaScript OLAP Client provides cross-tab, drill-down and rull-up operations lo-

cally. In the following we explain each of these operations and how they are implemented

in JSOC.

Cross-tab

One of the operations that OLAP engine process is cross-tab (or pivot table). Suppose that

the user requests a cross-tab query based on [rowAxis].[rowNode] and [columnAxis].[colNode].

The OLAP engine performs a linear scan on the fact table. A tuple (a row in the fact table)

is determined to be part of the cross-tab if the tuple members for the row and column axes

are descendants of the rowNode and colNode. Then the tuple is aggregated to a cell in the

answer matrix. The following algorithm shows the general idea for cross-tab designed by

Hsiao:

Algorithm 1 getMatrixAnswer

1: var answer=new object
{initialize the answer object by adding rowGroup member names as object properties}

2: for i=0 → rowGroup.length do
3: {initialize each property to an object of colGroup members}
4: answer[rowGroup[i]]=new object
5: for j= → colGroup.length do
6: answer[rowGroup[i][colGroup[j]=0
7: end for
8: end for
9: {Linear scan of the fact table}

10: for i=1 → factTable.Length do
11: currentTuple=factTable[i]
12: rowMember=current[rowAxis]
13: colMember=curren[colAxis]

{lookup the actual node in the treeview}
14: rowMemberNode=keyToNodeMap(rowMember)
15: colMemberNode=keyToNodeMap(colMember)

{the aggregation point is the ancestor node at the level of the rowAxisNode+1}
16: row=rowMemberNode.getAncestor(rowAxisNode.depth+1)
17: col=comMemberNode.getAncestor(colAxisNode.depth+1)
18: if row is a property of answer AND col is a property of answer[row] then
19: answer[row][col]+ =currentTuple[measureIndex]
20: end if
21: end for
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The variable answer is an object with |rowGroup| properties. rowGroup is an ordered

list of members that are the children of rowNode. Each rowGroup is itself an object with

|colGroup| properties whose values are the aggregated measures. Similarly, colGroup is an

ordered list of members that are the children of colNode. Figure 2.6 shows the answer object

returned by this algorithm for the cross-tab query on [Geography].[Geography].[Canada] and

[Prodcut].[product Categories].[All Products]. The answer object contains six properties

for six states of Canada. For example, the first proprty is AB(Alberta). Then each property

contains four properties for the product categories 1 to 4. The fact table is scanned row by

row. If current tuple in the fact table is [PostalCode.T2P2GB : Calgary : AB, Product :

483] , then row and col nodes will be set to “State-Province.AB:CA” and “Category.4” and

since both values for row and col nodes exists in the answer object, the measure value will

be added to the corresponding cell in the answer matrix.

Figure 2.6: The answer object containing the aggregated measures.

This algorithm uses a linear table scan method. Therefore the algorithm runs in O(n.H(t))

time where H(t) = max(H(rowAxis), H(columnAxis)

Drill-down

Drill-down means viewing data at a level of increased detail. When a cross-tab is per-

formed on [rowDim]. [rowHier]. [rowMember].Children and [columnDim]. [columnHier].

[columnMember].Children, a drill-down operation on a cell can occur on any row member

r ∈ rowMember.Children and any column member c ∈ colMember.Children. As shown in

figure 2.7, the operation will generate an embedded cross-tab within the intended cell. User
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can also perform drill-down operation on row r or on column c. In this case, a new cross-

tab table will be generated which is not embedded. In each case, the getMatrixAnswer

algorithm will be supplied with sufficient rowMember and columnMember.

Figure 2.7: (top)A sample cross-tab. (button)Drill-down on a cell

Roll-up

Roll-Up operation refers to the process of decreasing the detail in data view. In JSOC, when

a roll-up is requested, the data will be re-stored with the original cell value and embedded

table will be removed which is done at no additional cost. In the case that drill-down is led

to generating a new grid, data can be restored with re-generating the original cross-tab by

choosing the row and column member.

2.3 Client-server Data Flow

In this part, we go through the data flow between the client and server application. We

explain how the user initiates a requests via the User Interface and the process of back and

forth communications between the client and server applications until the result is displayed

to the user.

(a) Accept user’s request from UI: The UI shown in figure 2.4 provides the user with

the options to download metadata and subcubes. At the beginning, the user needs to

view the list of dimensions for the selected cube. So in each session, the first thing that
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the user should do is select a cube to view the list of dimensions. Then the user is able

to formulate an MDX query from the available dimensions. In the following we explain

the data flow for each of the two cases: Metadata download and MDX query.

(I) Metadata query: A request for metadata is submitted when the user clicks on a

node in the tree view. In figure 2.4, user has selected two hierarchies: [Customer].

[Marital Status] and [Customer]. [Gender]. The data engine adds the selected

nodes to the “Hierarchy Selection” textbox which is specified with number 2 in

this figure. This textbox keeps the hierarchy selection for the sub-cube that is

going to be downloaded later. Then the data engine establishes a communication

with the server to requests the detailed information about the content of the

selected hierarchies.

The web service receives the request for the metadata, first it specifies the object

names such as the cube name, dimension name, and hierarchy name and then

invokes ADOMD method to send an XMLA discovery message to the OLAP

server. The ADOMD will return the metadata to the web service where the data

is processed and transmitted to the client.

Hsiao explains in detail that how he transfers the tree structure of dimensions

and hierarchies to the client. Note that the content of the dimensions are down-

loaded only for the first level, i.e. the first order children of the dimensions.

User can explore each dimension by choosing to open a hierarchy node which

leads to downloading the content of that hierarchy. This is to avoid the cost of

downloading the whole cube at once.

When the data engine receives the metadata, it will store the data in the tree

view structure. The TreeView component provides this ability to load each node

in the tree view with the corresponding content and display it to the user.

(II) Formulation of MDX query: When the user selects the hierarchies for each

dimension of the sub-cube, she will select one or more measures from the list of

measures specified by number 3 in the figure 2.4. Then she will click on “Get

sub-cube” button which is numbered as 4 in the figure.

The data engine collects the list of hierarchy selections and the measures from the

UI. Then it will formulate an MDX query. Multidimensional Expression(MDX)

is a query language for OLAP databases. MDX is analogous to SQL which is the
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query language for relational databases. Figure 2.8 shows an example of MDX

query which has 2 dimensions: [Customer].[Education] and [Geography]. [Gegra-

phy]. [All Geography] and 1 measure: Internet Sales Amount.

SELECT {[Measures].[Internet Sales Amount]} on axis(0),
DESCENDANTS([Customer]. [Education]. [All Customers] , ,LEAVES) on
axis(1),
DESCENDANTS([Geography]. [Geography]. [All Geographies] , ,LEAVES)
on axis(2)
FROM [Adventure Works]

Figure 2.8: Example of an MDX query

The data engine will send this query to the server-side and wait for the respond.

(b) Send MDX query to OLAP server via web service: The MDX query submitted

to the server will be received at the web service. The web service includes the MDX

query inside an XMLA execute message and submits it to the OLAP server. The data

provider executes the query and returns the multidimensional data set in the form of

an XMLA message to the web service.

The result of performing execute message is highly detailed and needs to be cleaned and

converted to a data structure that the client can consume. In the web service layer, the

data received in the XMLA format is parsed and converted to the desirable format for

JSOC.

(c) Processing of XMLA messages in web service layer: One of the main parts

that our system differs from the Hsiao’s is in the approach used for multidimensional

data transformation. In Hsiao’s system, the fact table is built from the dataset prior to

sending it to the client. However, in our design we use a different way to present the

dataset. In the following, we explain the approach that Hsiao has used for this purpose.

We discuss our own design which leads to reducing the data sent over the network in

chapter 3.

In the XMLA message returned from the OLAP server to the web service (appendix A)

the cells are addressed in a special format: each cell is uniquely identified by a numeric
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value named CellOrdinal. This number specifies the exact position of a cell in a sub-

cube as if the multidimensional data is a d-dimensional array and the array is traversed

in a row-major. Each cell in the XMLA message is equivalent to a row in the fact table.

The web service transforms the XMLA result into a fact table by parsing the XMLA

message: for each cell, it takes out the CellOrdinal and produces the corresponding row

in the fact table. In the following, we explain how CellOrdinal of a cell is calculated

from the axes of a sub-cube and similarly, how one can extract the tuple ordinal of a

cell from its CellOrdinal.

(I) Converting CellOrdinal into a tuple of fact table: The multidimensional

result is a sub-cube in which the cells are addressed as CellOrdinals. A Cel-

lOrdinal is a number assigned to a cell as if the dataset is a D-dimensional array

where D is the number of dimensions in the result set[7]. For a cell with tuple

ordinal (s0, s1, ..., sD−1), cellordinal is:

D−1∑
0

si.ei where e0 = 1 and ei =

i−1∏
0

Uk (2.1)

Where Uk is the number of members in axis k.Cells are numbered from 0 to n

in a row-major format for a sub-cube of size n. For example, the block of code

shown in figure 2.9, is part of the result returned by XMLA which is related to a

cell in a sub-cube.

<CellData>

. . .

<Ce l l Ce l lOrd ina l=”5”>

<Value x s i : type=”xsd : decimal ”>9900142.75</Value>

<FmtValue>$9 ,900 ,142.76 </ FmtValue>

</Cel l>

. . .

</CellData>

Figure 2.9: A cell in the XMLA result
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For each cell in the mutidimensional dataset, we can calculate the correspond-

ing CellOrdinal using the formula in 2.1. Conversely, if we have the CellOrdinal

number of a cell, number of axes and the number of members in each axis, we

can uniquely specify the related tuple ordinal (measure1, ...,measurem, s1, ...sn)

where si is the value for dimension i for this tuple. For example, in the XMLA

code in figure 2.9, CellOrdinal= 5 and cell Value is 9, 900, 142.76. We know that

the sub-cube has 2 dimensions with cardinalities of U0 = 5 and U1 = 655. by

substituting these values in 2.1 we will find s0 = 0 and s1 = 1. With the axis mem-

bers in hand, the tuple for this particular cell is [Bachelor, Postal Code.2450:Coffs

Harbour:NSW, 9900142.76].

(II) Fact table representation: As we explained in subsection 2.2.2, the JavaScript

OLAP Client implemented by Hsiao uses the in-memory dataset as an n ∗ (|D|+
|M |) array which corresponds to a fact table in the data warehouse used to build

a cube. The web service is responsible to provide such array for the client.

The web service implemented by Hsiao performs the execute message on the

OLAP server and collects the multidimensional result set such as the one shown

in appendix A. The transformation of this result set to a fact table is done at the

web service layer.

Above, we explained the process of converting each CellOrdinal into the stripped

down dimensions members. The measure value is moved to the end of the D

dimensions, then the row is inserted as a tuple into the fact table. The headings

of the fact table are dimensions and hiararchy names. Table 2.10 shows a portion

of a fact table created by transforming the multidimensional result set.

It is worth mentioning the potential size of the sub-cube fact table. In theory, if

the data cube is dense, the maximum size of the sub-cube fact table is the size of

the Cartesian product of all dimensions which is equal to:

D−1∏
0

Uk (2.2)

where Uk is the the number of members in axis k and D is the number of dimen-

sions

(d) JSOC processes user’s request: Once the dataset is downloaded to the browser’s

memory, JSOC is able to process further queries regarding this dataset locally. In
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Figure 2.10: Transforming Multidimensional result set to a fact table

Hsiao’s work, the focus is on data visualization: queries for cross-tab, drill-down, m-

Day Moving Average, Scatterplot, and Top-k Contribution for the loaded sub-cube is

processed in the data engine and displayed through the UI to the user. Hsiao does not

study the cost of sub-cube download in details.



Chapter 3

Client-Side Caching for Web-Based

OLAP

Depending on the client’s requests, the server will return the data sub-cube in two different

formats. In chapter 1 we defined two terms for identifying the formats of the data returned

from the server to the client. The client may send a query to request the data sub-cube to

answer only the current query. We called this sub-cube “answer sub-cube”. Otherwise, the

client requests a sub-cube that not only answers the current query, but also contains the

answer for any query on the child nodes of the nodes in the answer sub-cube. We called

this data sub-cube “inflated version of the answer sub-cube”.

In this chapter, we assume that the user always chooses to download the inflated version

of the answer sub-cube. This data is stored in the local machine. As long as the user

submits queries within the current sub-cube, there is no communication cost and the client

application will answer the queries with the local data engine. In the rest of this chapter,

For the sake of conciseness we use “sub-cube” instead of “inflated version of the answer

sub-cube”.

In chapter 2, we explained that the web service designed by Hsiao returns the dataset

to the client in the form of a fact table. In this chapter, we propose a new approach to

represent multidimensional dataset: instead of fact table, our web service will send a cell

table to the client which consists of only CellOrdinals and measure values extracted from the

XMLA message. This way, we will decrease the volume of the data sent over the network

and thus the network transmission time.

22



CHAPTER 3. CLIENT-SIDE CACHING FOR WEB-BASED OLAP 23

Also, since the client has already have paid the cost of downloading the sub-cube to

the client, we intend to perform client-side caching. When the client decides to download

a sub-cube, the local data engine first checks to see if this cube has already been cached.

If the sub-cube has any intersection with the cached-cube, the data engine manages to use

the part that exists in the cache and generate appropriate query only for the parts that are

not already cached.

In the following sections, first we define cell table, then we explain how the JavaScipt

OLAP Client processes the cell table for data aggregation. Next, we explain the design and

implementation of client-side caching. The evaluation results are discussed in each related

part.

3.1 Design and Implementation of Client-side Caching

One of the goals of this thesis is reduce data sent over the network to decrease client’s

waiting time. To achieve this purpose, we want to avoid building the fact table on the

server. This will save the time needed by the web service to respond to the client’s request.

Also, we can send the data in a more efficient and compact format.

3.1.1 Using cell Table for Storing Cached Sub-Cube

As we explained in the previous chapter, each cell in a sub-cube is identified by an integer

called CellOrdinal. To minimize the data transmitted over the network, we do not send

the fact table. Instead, we send corresponding cellordinal and measure value for each cell.

Figure 3.1 shows how fact table is reduced to a smaller table. We call this table cell table.
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Geography Date Product Sales amount 

Australia 2005 Bike M0 

Canada 2005 Bike M1 

France 2005 Bike M2 

Australia 2006 Bike M3 

Canada 2006 Bike M4 

France 2006 Bike M5 

Australia 2007 Bike M6 

Canada 2007 Bike M7 

France 2007 bike M8 

Australia 2005 Clothing M9 

Canada 2005 Clothing M10 

 

 

CellOrdinal Sales amount 

0 M0 

1 M1 

2 M2 

3 M3 

4 M4 

5 M5 

6 M6 

7 M7 

8 M8 

9 M9 

10 M10 

Figure 3.1: left: A complete fact table with 3 dimensions and a measure.right: Correspond-

ing cell table for this fact table

By using cell table, we avoid building and transmitting the massive fact tables over the

network. The size of a cell table is in average equal to 30% of the size of the fact table for

the same sub-cube. As we will see later in the evaluation results, this reduction in the size

of the data leads to reduction of dataset download time which is strongly desired.

When the cell table is loaded to the browser’s memory, the client-side data engine should

be able to process the data and perform aggregation on it. Since JSOC designed by Hsiao

only works on the fact table, we need to modify his cross-tab algorithm so that the data

can be extracted from the cell table. For this purpose, the CellOrdinals should be used to

generate the stripped down tuple ordinals.

3.1.2 Searching Cached Data

In Hsiao’s design, the web service is responsible for building the rows of the fact table

from the CellOrdinals. In our design, the web service sends the cell table that includes the

CellOrdinals to the client. Here, we perform the same process to extract a tuple ordinal

from the CellOrdinal, but we don’t store the row in the fact table. In fact, we do not build

any fact table. The reason is that the browser’s memory is limited and we want to use it as

efficient as possible.

Remember that the user builds the MDX query by selecting nodes from the TreeView.

The client keeps the records of these selected dimensions and hierarchies. So the contents of
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each hierarchy is at hand by using the TreeView, i.e the parents and the list of leaf nodes.

The algorithm for decoding the CellOrdinals is shown below. In this algorithm, memberList[i]

contains all the members(leaves) for dimension i. Then through a ForLoop, for each di-

mension the index of the corresponding member is calculated and the member is retrieved

from the current dimension array. In getMatrixAnswer algorithm explained in section 2.2,

row number < 11 > is replaced with a call to the Decode cellordinal algrithm :

11: currentTuple=decode cellordinal(cellTable[i])

Algorithm 2 Decode CellOrdinal

Input: Current Row =[cellOrdinal, measureValue] in the sub-cube data and membersList

that contains member values for all dimensions in the query.

Output: Stripped down tuple with members value for current row.

{Parsing CurrentRow to get cellOrdinal and measureValue.}
1: cellOrdinal ← currentRow[0]

2: measureValue ← currentRow[1]

3: for j = 0→ totalDimension do

4: currentDimension ← membersList[j]

5: S[j] ← temp mod (currentDimension.Length)

6: tuple[j] ← currentDimension[S[j]]

7: temp ← (temp− S[j])/currentDimension.Length

8: end for

In figure 3.2, the process of decoding a CellOrdinal into a stripped down member names

is shown: The fact table is scanned for aggregation and for each row in the cell table,

the CellOrdinal is read and passed to the Decode CellOrdinal algorithm. The algorithm

computes the tuple and returns it to the function. The rest of the function is the same as

getMatrixAnswer algorithm explained in chapter 2.
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YellowFrance

Bikes

0 165374

D0
D1

D2

cellordinal Measure

0

1

2

i 1371179124

S0

CellOrdinal=9124
Measure Value=137117
CurrentTuple=[cellordinal, 
measureValue]
Call DecodeCellOrdinal(currentRow)

cell table

S1

S2

DecodeCellOrdinal(CurrentTuple)
Inputs: currentRow,, ,
Task: Calculate , ,
Output: [France, Bikes, Yellow, 13117]

n

.

.

.

.

.

.

Members list

Figure 3.2: Determining the complete tuple for each CellOrdinal.

3.2 Performance Comparison with JSOC

Table 3.1 shows the test environment and the client-server specifications we have used for

evaluation throughout this work.
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Test Environment

Front-End Machine

Core i5 @1.7GHz

4GB RAM

Windows 7 64-bit

Back-end Server

quad-core Intel Xeon E5420

4 GB RAM

Windows Server 2008 R2 64-bit

OLAP Server Microsoft Analysis Services 2008 R2

Web Service ASP.Net

Browser Platform Firefox 17.0.1

Dataset Adventure Works DW

Table 3.1: Test environment

The time that client is waiting for the server’s response consists of two parts: server

execution time and data transmission time over the network. In section 3.1, we explained

how we reduced the size of data transmitted over the network by sending the cell table

instead of the fact table. Table 3.2 compares the sizes of fact table and cell table of the

same sub-cube. As one can see, the size of cell table is in average %30 of the size of the fact

table for a sub-cube.
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sub-cube

number

Sub-cube

Size (rows)

Download Size

(Kilo Bytes)

Size Ratio

fact table cell table

1 80 4.1 1.4 %34

2 130 6.5 2.3 %35

3 548 23 2.7 %33

4 1880 117.4 32.8 %27

5 3275 205.2 57.9 %28

6 3760 248.8 65.4 %26

7 12629 800.5 196.7 %24

8 16059 1229.6 250.1 %20

9 22578 1470.2 363 %24

10 38480 2491.9 758.5 %30

11 68056 4049.9 1132.7 %27

12 93624 4714.7 1861.4 %39

13 163095 8239.5 3313.9 %40

14 234248 17543.3 3920.6 %22

Table 3.2: Size of Sub-cube download:(I) fact table is downloaded and when (II) cell table

is downloaded

In table 3.3, for each of the sub-cubes in table 3.2, we show the load time, web service

time, network transmission time and client processing time. Load time is the total time

that client is waiting before receiving a response which is:

load time = server time + network transmission time.

Server time is the time that web service spends for generating the results. Network trans-

mission time is the total time that data is on the network until it is fully received by the

client.

As table 3.3 shows, the cell table approach outperforms the fact table download in both

server time and network transmission time. However, as it is expected, the client has to

do more processing when scanning the cell table. In table 3.3, the processing time for each

approach is shown. Although the processing time for cell table approach is larger than the

fact table, the difference is still much smaller compared to the difference of the load time.

For the sub-cubes shown in the table, the average difference between the load time of

fact tables and cell tables is +2084 milliseconds. However, the average difference between
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the processing time of the cell tables and the fact tables is +83 millisecond. So we can

conclude that downloading the sub-cube in the form of a cell table will increase the client-

side processing time to some extent, but the time saved in server-side processing and network

transmission in this approach is quite large so that we can say the cell table approach is

faster. In addition, our approach is more efficient in the terms of client’s memory since we

store cell table instead of fact table.

sub-cube

number

Load Time (ms) Server Time (ms) Network Transmis-

sion Time (ms)

Processing Time

(ms)

fact table cell table fact table cell table fact table cell table fact table cell table

1 214 81 140 51 74 30 5 5

2 220 93 130 56 90 37 2 4

3 1253 150 1126 81 127 69 3 5

4 2485 343 2213 307 272 36 4 6

5 4202 251 3442 156 760 95 6 17

6 5769 524 5372 453 397 71 7 19

7 15548 691 14986 499 562 192 12 43

8 28751 1779 26699 834 2052 945 20 51

9 35723 1655 28793 802 6930 853 25 67

10 50344 2887 44511 2107 5833 780 65 138

11 60704 2710 51525 2181 9179 529 112 138

12 46401 3820 40737 2962 5664 858 120 251

13 88833 12461 69908 4977 18925 7484 202 447

14 527124 13494 512674 10377 14450 3117 307 823

Table 3.3: Sub-cube download information when:(I) fact table is downloaded and when (II)

cell table is downloaded

3.3 Using Cache for Answering Further Sub-Cube Requests

When the user requests a new inflated answer sub-cube, it is possible that a fraction of

the cube already exists at the client’s memory within an already cached sub-cube. In other

words, the sub-cube user is waiting for and the already cached sub-cube have an overlap.

The client data engine can manage to use this part locally, and submit necessary queries to

retrieve the rest of the data which are not already client-resident.

In the most basic scenario, when the user requests a repeated sub-cube which is retrieved

once from the OLAP server, we can escape the phase of executing the query on the OLAP
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server again if we have already stored the sub-cubes in the memory. Then the engine will

first look into the cached sub-cube for the answer. If it is not one of the previously cached

sub-cubes, then a query is sent to the web service retrieve it from the OLAP server.

Note that cached sub-cube can be stored at either the server-side or the client-side. In

JSOC, server-side caching is implemented while we investigate the possibilities and advan-

tages of client-side caching.

In the following sections, first we briefly explain the server-side caching implemented

by Hsiao and the changes in the data flow described in section 2.3. Then we present our

client-side caching approach and the corresponding data flow.

3.3.1 Server-side Caching Implemented in JSOC

Hsiao has implemented sub-cube caching in the web-service layer. Remember the data flow

we explained in section 2.3: we explained that the web service submits the MDX query

to the OLAP server and transmits the results to the client. For implementing server-side

caching, this part of the data flow will change. When the JavaScript OLAP Client submits a

request to the web service to fetch a sub-cube, the web service generates a unique tag for the

sub-cube based on a few properties : the number of the axes in the dataset, the hierarchies

specified for each dimension, the depth of the hierarchy and the selected measure. All these

properties can be derived from the MDX query. When the web service has the MDX query,

it will use this information to generate a file name that uniquely determines this cube. Then

the web service searches through the cached files to see if this sub-cube is already cached.

If the sub-cube has been previously cached, it is returned to the client. Otherwise, the web

service executes the query on the OLAP server to get a new sub-cube. When the OLAP

server returns the result set, web service sends the transformed sub-cube fact table to the

client and also saves a copy of the fact table on the disk. The name of the file is generated

with a hash function using the properties mentioned above.

Note that in Hsiao’s approach, the cached sub-cube fact table has to be an exact match

of the client request. Otherwise the web service does not use the cache file. Hsiao mentions

that he had decided to implement server-side caching over client-side caching due to the fact

that client memory is limited. The cached cube should be kept in the browser’s memory

which has a limited capacity of three to ten megabytes per domain [10].
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3.3.2 Using Client-Side Caching for Answering Further Sub-Cube Re-

quests

In our system, we have decided to implement client-side sub-cube caching. In fact, when the

client receives a sub-cube and stores it in local memory, there is no reason for not using this

dataset if it can answer further requests. Not only we are able to answer the query if the

same sub-cube is requested, but also any sub-cube that is a subset of the cached sub-cube

can be retrieved locally without communicating with the server.

For developing client-side caching, the data flow (section 2.3) needs some modifications.

When the user submits the MDX query from the UI, the client data engine will first consider

the cached sub-cubes in the browser’s memory. When comparing the two sub-cubes (cached

sub-cube and the requested sub-cube) three cases may occur:

• The cached sub-cube and the client’s request are completely separate. In this case, the

data engine will submit an MDX query to the server to retrieve the client’s requested

sub-cube.

• The cached sub-cube is a superset of the client’s request. This means that the sub-

cube requested by the user is totally inside the cached sub-cube. Therefore, the data

engine can perform aggregation from the cached sub-cube and no query is sent to the

server.
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Australia

Canada

France

Germany

U.K

U.S

2005 Q1 2005 Q2 2005 Q3 2005 Q4

Cached sub-cube

New sub-cube

Cached sub-cube hierarchies: [Geography].[All Countries], [Date].[2005]

New sub-cube requested: [Geography].[All  Countries].[France]&[Germany], [Date].[2005].[Quarter 
1]&[Quarter 2]

Required queries for fetching the new sub-cube: No query to the server is needed. 

Figure 3.3: Cached sub-cube is a superset of the client’s request

For example, suppose that the client has downloaded a sub-cube with the sale amount

measure for two hierarchies: [All Countries] and [Date 2005] and stored the result

set in the local machine. If later, the client has a query on sale amount of [All

Countries].[France]&[Germany] and [Date 2005].[Quarter 1]&[Quarter 2], the answer

exists in the client’s memory.

• The third case is when the requested sub-cube has an overlap with the cached sub-

cube. In this case, the data engine will manage to use the part of the sub-cube that

is already cached and send proper queries to retrieve the rest of the sub-cube.

For example, the data engine has cached a 2-dimensional sub-cube: one dimen-

sion consists of [All Countries].[Autralia]&[Canada]&[France], the other dimension is

[Date].[2005].[Quarter 1]&[Quarter 2]&[Quarter 3] and the measure is [Internet Sale

Amount]. Suppose that later the client request a query on the same measure for
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[All Countries].[Canda]&[France]&[Germany] and [Date].[2005].[Quarter 3]&[Quarter

4]. These two sub-cube are not the same. Also, the cached sub-cube is not a su-

perset of the requested sub-cube. However, part of the answer exists in the cached

sub-cube. I.e., the intersection of the two sub-cubes can be retrieved from the local

cached sub-cube and the rest should be retrieved from the server. In this example,

a sub-cube consisting of [All Countries].[France] and [Date].[2005].[Quarter 3] can be

retrieved from cache. The rest of the data can be retrieved with two separate queries:

one query for [All Countries].[France], [Date].[2005].[Quarter 4] and another query for

[All Countries].[Germany], [Date].[2005].[Quarter 3]&[Quarter 4].

Australia

Canada

France

Germany

U.K

U.S

2005 Q1 2005 Q2 2005 Q3 2005 Q4

Cached sub-cube: [Geography].[All Countries].[Australia]&[Canada]&[France], 
[Date].[2005].[Q1]&[Q2]&[Q3]
New sub-cube requested: [Geography].[All Countries].[Canada]&[France]&[Germany], 
[Date].[2005].[Q3]&[Q4]
Required queries for fetching the new sub-cube: 

1. [Geography].[All Countries].[Canada]&[France], [Date].[2005].[Q4]
2. [Geography].[All Countries].[Germany], [Date].[2005].[Q3]&[Q4]

Figure 3.4: 2 MDX queries is needed to fetch the rest of the client’s request.
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Since case one and two are straight forward, our attention in this section is mainly in the

last case. Remember that user builds the MDX query by selecting dimensions and hierarchy

nodes from the TreeView. The data engine has every information about the sub-cube except

the values for the measure. So with comparing the selected hierarchies with the hierarchies

of the cached sub-cube, the data engine can understand whether the two sub-cubes have an

intersection. If yes, the data engine needs to figure out which hierarchies does not exist in

the cache and generate appropriate queries to retrieve them from the server.

Although it is possible to cache multiple sub-cubes in the browser’s memory, in this

work we focus on methods that a cached sub-cube could be used. In other words, we only

consider the situation that we have a cached sub-cube that has an intersection with the

client’s request. However, the work is extendable to the case of multiple sub-cubes.

3.3.3 Proposed Algorithm for Using the Client-Side Cached Sub-Cube

Depending on the shape of the intersection of the two sub-cubes, the query engine will

have to generate different number of MDX queries to build the requested sub-cube. Figures

3.3, 3.4 and 3.5 show three different situations that may occur between two 2-dimensional

sub-cubes. In each figure, the hierarchies of the MDX queries are written in the box below

the graph. As you can see, for 2-dimensional sub-cubes we can imagine three kinds of

intersection which may lead to 0, 1, or 2 MDX queries:

• No query is needed: The cached sub-cube may fully contain the answer for the whole

new sub-cube. In this situation no query is generated and the data engine will use the

data from the cached sub-cube.

• one query is needed: The cached sub-cube may have an intersection with the new

sub-cube. The rest of the data may be retrievable with only one query. The example

of this case is shown in figure 3.5.

• two queries are needed: The data engine may have to retrieve the rest of the data from

the server by submitting two separate queries. The example for this case is shown in

figure 3.4.
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Australia

Canada

France

Germany

U.K

U.S

2005 Q1 2005 Q2 2005 Q3 2005 Q4

Cached sub-cube: [Geography].[All Countries], [Date].[2005].[Q1]&[Q2]&[Q3]
New sub-cube requested: [Geography].[All Countries], [Date].[2005].[Q3]&[Q4]
Requires queries for fetching the sub-cube: 
[Geography].[All Countries], [Date].[2005].[Q4]

Figure 3.5: 1 MDX query is needed to fetch the rest of the client’s request.

In general, for a d-dimensional sub-cube, the data engine may have to submit 0 to d sub-

cubes to fetch the dataset. In the following we will explain how the data engine determines

the number of queries and the hierarchies for each of them.

Suppose we have cached a d-dimensional sub-cube in the client’s memory. By caching

the sub-cube, we mean caching the list of its hierarchies and the corresponding cell table.

Later, client submits a new request that is within the same d dimensions. Before sending

the new request to the server, we compare the hierarchy members of the client’s request

with the cached sub-cube. For each dimension i, we separate hierarchies in 2 parts: ai is

the part of the dimension that is in common with the cached sub-cube, bi is the rest of the

hierarchy members. Figure 3.6 illustrates these definitions for a 2-dimensional sub-cube. The

intersection is a sub-cube itself consisting of dimensions a0and a1. In general, the intersection

of two d-dimensional sub-cube is a sub-cube consisting of dimensions a0, a1, ...ad−1 where d
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is the number of dimensions.
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Dim 1 

Dim 2 

New 

sub-

cube 

Cached sub-cube 

Intersection 

Figure 3.6: Cached sub-cube, new client’s request and their intersection. The intersection

is an n−dimensional sub-cube named a0 × a1 × ....

Our goal is to use the part a0 × a1 that is already cached and to submit a request to

download the rest of the new sub-cube. Retrieve From Cache algorithm specifies the queries

for this purpose which runs in O(n2) where n is the number of total dimensions. Notice

that when we omit the intersection part from the query, we may need more than one query

to retrieve the rest of the data. The number of queries is determined as follows: Each

dimension i is separated into two parts ai and bi as defined earlier. There are 2d sub-cubes

such as c0 × c1 × ... × cd−1 where ci = ai or bi. We need to retrieve all these subcubes

except one with ci = ai| i = 0, ..., d− 1. This sub-cube is already cached. However, we can

reduce the number of queries with some simplifications. For instance, instead of generating

two queries for b0 × a1 and b0 × b1 in figure 3.6, we build one query such as b0 × (a1 + b1).
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Therefore, we will have maximum number of d queries where d is the number of dimensions.

The format of hierarchies for j-th query, where 0 ≤ j ≤ d− 1, would be:

subcubej = c0×c1× ...×ci× ...×cd−1 where 0 ≤ i ≤ d−1 and ci =


ai i < j

bi i = j

(ai + bi) i > j

(3.1)

As an example, consider a 3-dimensional sub-cube which has an overlap in all three dimen-

sions with a cached sub-cube. This means that bi is a non-empty set for i = 0, 1, 2. The

result of applying the algorithm on the sub-cube will generate three lists as follows:

• [b0, a1 + b1, a2 + b2]

• [a0, b1, a2 + b2]

• [a0, a1, b2 ]

Each list, has hierarchies for a 3-dimensional MDX query. For example, the first list

means that the MDX query will have hierarchies in b0 as the first dimension, hierarchies in

a1 + b1 as second dimension and hierarchies in a2 + b2 as the third dimensions. Another

function will generate the appropriate structure for the MDX query from this list.
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Algorithm 3 Retrieve From Cache

Input: An array containing cached cube dimensions and an array containing client’s request

dimensions

Output: queries: list of queries to be sent to the web service. {a[i] is the intersection of

cachedCubeDimension[i] and newCubeDimension[i]} {b[i] is newCubeDimension[i] −
a[i]}

1: if a[i] == 0 for all 0 ≤ i < totalDimension then

2: RETURN

3: end if

4: for i=0 → totalDimension do

5: list=[]

6: for j=0 → totalDimension do

7: if j < i then

8: list.push(a[j])

9: else

10: if j == i then

11: if b[j].length> 0 then

12: list.push(b[j])

13: end if

14: else

15: list.push(concat(a[j], b[j]))

16: end if

17: end if

18: end for

19: if list.length == totalDimension then

20: queries.push(list)

21: end if

22: end for

The client query engine will send a request containing all MDX queries to the server

instead of sending each query separately. The web service will create a connection to the

server and execute the queries one by one. Then the web service concatenates the response

in an array and returns it to the client.
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3.4 Evaluation for Using Client-Side Cached Sub-Cubes

Re-using the cached sub-cube at the client-side will obviously decrease the communication

with the server and the client has to download less data if any part of the data is already

cached. In this section, we want to compare the download time and size when the client-side

caching is used with the case that caching is not used.

The complete results of caching experiments for 2-dimensional and 3-dimensional sub-

cubes are shown in appendix B. Each group of three rows which are separated with a double

solid line are related to one case of testing. A sample of the test case is shown in table 3.4

which is one of the test cases in appendix B. Table 3.4 shows the tree dimensions for the

cached sub-cube and for the requested sub-cube. As you can see, the first dimension is the

same, and the second and the third dimensions have intersections. %34.6 of the requested

sub-cube exists in the cached sub-cube.

sub-cube

number

Dimension 1 Dimension 2 Dimension 3
percentage

cached

cached sub-cube

1

Customer.Education:

Grad, High sch, partial C,

partial H

Date: 2007.H1 Countries:Ger, U.K, U.S

requested sub-cube

2

Customer.Education:

Grad, High sch, partial C,

partial H

Date: 2007.H1,

H2

Countries:Aust,ca,Fr,

Ger, U.K, U.S
%34.6

Table 3.4: A sample test case for client-side caching

The size of the sub-cubes and timing for this sample test case is shown in table 3.5.

When the data engine uses the cached part, it needs to send two MDX queries to the server

to retrieve the rest of the data. However, when the cached part is not used, the whole

data is returned with one MDX query. In this specific example the server time, network

transmission time and aggregation time are all lower when cache is used.
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sub-cube

number

# of

queries

# of rows size( kilo

byte)

server time network

transmission

time

Total Load

Time

aggregation

time

cached sub-cube

1 1 278588 4582.9 12395 6887 19282 983

requested sub-cube (using the cached part)

2 2 525752 8715.3 25446 17276 42722 1755

requested sub-cube(cache is not used)

2 1 804340 13457.5 34666 21749 56415 2892

Table 3.5: download information for the sample test case in table 3.4

In table 3.6 we summarized the tables in appendix B for easier comparison. In all

the experiments, three parameters are measured: server time, network transmission time

and aggregation time (“download time” in the summary table is the sum of server time

and network transmission time). It is important to compare the two scenarios (client-side

caching and no cache) for these three parameters. Essentially, using the partial cached

sub-cube leads to multiple sub-cube download. We are interested to figure out how this

fact will affect each of the three timing parameters. We can summarize the results for each

parameter as follows:

• Server time: which is the total time spent on the server-side for generating and

preparing the dataset for the client. The results show that when one query is used

to retrieve all the not-cached-part of the client’s request, server time is less than the

no-cache scenario. However, when multiple queries are submitted to the server, the

server performs better or equal to the no-cache scenario if the percentage of the data

cached is greater than 10%.

This result seems rational. When a large percentage of the requested sub-cube is

cached, less data is needed from the server. Therefore server spends less time on

collecting the results from the database. But when this percentage is low, the two

scenarios need to retrieve approximately the same amount of data from the server,

plus that in the case of multiple queries, there is an overhead for running the queries

on the server. Therefore, when a low percentage of the sub-cube is cached (< %10),

and multiple queries are needed to retrieve the data, the server time may be greater

than downloading the whole sub-cube without using cache.
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# of rows Download Time (ms) Processing Time (ms) Percentage Cached

with cache without cache with cache without cache

2-dimensional sub-cube

1 159165 10352 10041 450 752 %0.5

2 151143 6752 8861 1260 1269 %6.8

3 33630 3567 3746 180 328 %10.1

4 98644 4532 7829 224 380 %34.7

5 23797 6117 9827 67 140 %53.9

6 163095 880 11169 54 612 %93

3-dimensional sub-cube

7 846390 52040 60673 2850 2815 %0.62

8 859070 60857 55615 3053 2990 %0.67

9 297370 17566 18546 917 1059 %10.63

10 804340 42722 56415 1755 2892 %34.63

11 575604 14944 25944 1813 1848 %46.85

12 476840 7328 28078 1616 1707 %72.82

13 450640 3113 28615 114 1636 %93.89

4-dimensional sub-cube

14 362068 29066 28316 1356 1390 %1.2

15 259064 16241 15931 924 986 %1.8

16 33600 970 2257 119 109 %47.5

Table 3.6: Sub-cube download with/without using cache

• Processing time: is the time spent by the client-side data engine to aggregate the

result from the dataset. The results for processing time shown in table 3.6. If we

compare the two columns under the “processing time” header (with cache and without

cache), we see that for the cases that cached part is greater than 10 percent, the

caching outperforms the no-cache approach. Again, we can argue that for the lower

percentages of cache, the overhead of dealing with multiple sub-cubes may be larger

than the advantage of using cache.

• Network transmission time: In our results, this parameter is always better when

cache is used expect for one or two of the test cases. It is clear that when less data

is transmitted, less time is needed. For the cases that using cache is not better than
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the no-cache method, the percentage of cache is low. Therefore, the two methods

transmit “about” the same amount of data and either approaches may become the

winner. However, the difference is not very large in these test cases.

To conclude, we can say that for the three parameters discussed above, the benefit

of using client-side cache outperforms its overhead specially when a large portion of the

sub-cube exists in the cache. Therefore, when the user requests a new sub-cube which is

is partly cached, it is beneficial to use the cached part from the local memory and send

modified queries to retrieve the additional data to complete the answer for the requested

sub-cube. In our experiment, the benefit is recognized when the cached percentage of the

sub-cube is as low as 10%.



Chapter 4

User Workflow

In the previous chapter, we explained in details the process of downloading the multidimen-

sional data and client-side caching. As we stated earlier, we download the sub-cube when

the user knows in advance that the next couple of queries are from this sub-cube. The user

is going to explore the sub-cube by requesting different cross-tab and drill-down queries.

Therefore, it worth to download the inflated answer sub-cube rather than generating the

exact response for the client’s request.

In this chapter, we focus on the workflow, i.e., a sequence of queries for cross-tab, drill-

down and roll-up for two cases :

(I) when for each query, only the answer sub-cube is downloaded from the server and,

(II) when the inflated version of the answer sub-cube is downloaded.

We described in chapter 1 these two terminologies. As a reminder, the answer cub-sube is

the data sent to the client when the client requests only the exact answer to the query. And

an inflated version of the answer sub-cube is a sub-cube where each dimension of the answer

sub-cube includes extra nodes, which are child nodes of nodes in the answer sub-cube. The

challenge in this chapter is to compare cases (I) and (II) in a workflow scenario.

Downloading the inflated answer sub-cube decreases the communication time and en-

ables the client to work with the local dataset. However, the processing time is affected since

the local engine should process the large sub-cube. In this chapter, we present our algorithm

for searching the sub-cube. The new algorithm for data aggregation is much better than

the getMatrixAnswer algorithm discussed in chapter 3.

43
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In the following, first we explain the workflow scenario through an example. Then we

discuss the trade-off between downloading the answer sub-cube and the inflated sub-cube.

In section 4.1.3, we present the algorithm we used for drill-down operation which leads

to a lower processing time. And finally, we evaluate the workflow for the two approaches

(answer sub-cube and inflated answer sub-cube) and we present the results for our workflow

experiment.

4.1 Workflow Scenario

A workflow is a sequence of queries requested by the user. In each case, the client-side

data engine has two options. It can download only the aggregated data that answers the

current query or download a sub-cube containing the measure value for the lowest level of

aggregation. Table 4.1 shows a sample sub-cube from the workflow.

In this table, the workflow sequence and the time for each version is shown. For inflated

version of answer sub-cube (which we we call version II), there is a one-time cost for

downloading the sub-cube. The time for downloading the sub-cube is in millisecond and

the size of the sub-cube s in kilobytes. For the answer sub-cube (which we will call version

I), we do not have such a cost since we only download the data needed for each query when

the query is submitted.

In this specific example, the client submits four queries one by one: a cross-tab and

three drill-downs. Because of the design of the UI, a cross-tab on the sub-cube is necessary

before one can perform any drill-down. In the answer sub-cube approach, for each of these

queries, the client data engine will submit a query to the server. Server will generate the

result and return it to the client. In this approach, since the amount of data returned for

each query is low, the processing time is negligible. Therefore we only show the load time

for each query in the table.

For the other approach, downloading the inflated version sub-cube with all leaf nodes,

no data is downloaded from the server for further queries and all the queries are answered

locally from the sub-cube downloaded at the beginning. However, since this sub-cube is

large, the processing time becomes a matter. Therefore, for this version we do not have any

load time for cross-tab and drill-down queries, but we have processing time for them.
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workflow Inflated sub-cube answer sub-cube

script time load time (size)

1. Download [Customer].[Education], [Date].[ 2008] Load (size)

288 (15)

2. Generate cross-tab on [Customer].[Education], [Date].[ 2008] 8 102

3. Drill down on [Date].[2008].[H2] 2 157

4. Drill down on [Date].[2008].[H2].[Q3] 2 117

5. Drill down on [Date]. [2008].[H2]. [Q3].[July] 3 144

Table 4.1: One sample of the workflow sequence

4.1.1 Trade-off between Downloading Answer Sub-cube and Inflated Ver-

sion Sub-cube

We already mentioned that is is difficult to choose between downloading the answer sub-

cube and the inflated version of it, because it depends on non-technical and non-quantitative

factors. For example, one needs to know to what extent the user will perform drill-down on

the inflated answer sub-cube. In the example shown in table 4.1, it seems clear that even

with considering the download time of the inflated sub-cube, it is better to download the

inflated version of the sub-cube because the average response time for the inflated sub-cube

processing is much lower than the answer sub-cube load time.

In general we can see that there is a trade-off between the two approaches: When the

inflated sub-cube is downloaded, we avoid the cost of network transmission time and server

time, instead we have to pay the one time cost for downloading the large sub-cube. If

the user is willing to apply several drill-downs on the local sub-cube, the cost of sub-cube

downloading is compensated. In addition, the server time is saved to serve another user or

even the same user for other queries.

In the other hand, if the inflated sub-cube is not really used for further drill-downs, then

there is no reason to download the large dataset since we could download only the answer to

the current query. So the more the sub-cube is used for further queries, it is more beneficial

to download the inflated sub-cube.

Note that the processing time for drill-downs increases as the size of the inflated sub-cube

goes up. To decrease the processing time (scripting time), we came up with a new algorithm

for data aggregation. In the next part, we explain briefly how the data for cross-tab and

drill-downs are generated in the current algorithm, and we present the new algorithm for
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this purpose.

4.1.2 Data Aggregation for Drill-down Request

The basic operations in an OLAP system are cross-tab and drill-down/roll-up. Here we

briefly describe how these operations are addressed in the getMatrixAnswer algorithm. Then

we describe our new implementation.

Full Sub-cube Scan for a Drill-down Operation

In section 2.2 we explained the getMatrixAnswer algorithm used in JSOC for performing

cross-tab and drill-down. Then in section 3.1 we explained how we adopted this algorithm

to process a cell table instead of a fact table. The key point about using this algorithm

for both cross-tab and drill-down is that, for each of these queries, the algorithm scans the

whole sub-cube and for each row of the sub-cube, it will determine if this row is part of the

answer or not.

For example, suppose that the user chooses to download a 2-dimensional sub-cube:

[Date]. [Calendar].[All Periods].[CY 2005] and [Geography]. [All Geography].[Canada]

which has 13213 rows. The user then requests a cross-tab on these two dimensions: the row

node is [All Geography]. [Canada] and the column node is [All Periods].[CY 2005]. A full

sub-sube scan is performed to generate the matrix for cross-tab table. The result tables are

shown in figure 4.1.

Suppose that later, the user chooses to perform a drill-down on [All Geography].[Alberta].

The query engine, handles the drill-down requests as a subquery. The getMatrixAnswer

function is called with [All Geography].[Canada].[Alberta] as the row node and [Date]. [Cal-

endar]. [All Periods]. [CY 2005] as the column node. However, the full sub-cube is scanned

again: for each row, if the row member is a descendant of the row node ([All Geography].

[Canada]. [Alberta]) and column member is a descendant of the column node ([Date]. [Cal-

endar]. [All Periods]. [CY 2005]), the row will be computed as a part of the drill down

table. Therefore, for each cross-tab or drill-down, the algorithms iterates through the loop

on the whole dataset downloaded from the web service.
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Figure 4.1: An screen shot of the JavaScript OLAP Client.

Selective Part Sub-cube Scan for a Drill-down Operation

A better solution for performing the drill-down operation is scanning the part of the dataset

that is intended for a drill-down instead of scanning the whole dataset.

In the new algorithm, instead of scanning the cell table for a drill-down, we start from

the Members List containing the child nodes for the hierarchies. The process of the work

is shown in figure 4.2. The idea is for each child node in the Members List, check to see

if it is part of the requested drill-down and then compute the cellordinal only if both row

child and column child are part of the drill-down. Then the algorithm looks up for the

generated cellordinal in the cell table and returns the measure value for aggregation. With

this approach, we avoid the cost of calculating cellordinal for unused cells.
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4.1.3 Proposed Algorithm for Drill-down Operation

The algorithm needed for this purpose is shown below. columnNode and rowNode are the

nodes selected as dimensions when the sub-sube was downloaded. colmnMemberNode and

rowMemberNode are the nodes selected for drill-down. When a drill-down is performed,

first for each leaf node in columnAxis, the algorithm will check whether this node is part of

the drill-down or not. If yes, then the loop will continue and check whether the row leaf is

a member of drill-down too. Then the cellordinal is calculated for these two tuple ordinal.

The function “isAncestor” takes two tree nodes as input and determines if the first one

is an ancestor of the second node. It will take O(h) to determine the ancestor where h is

the height of the latter node.

Algorithm 4 Modified-GetMatrixAnswer

Input: columnNode, rowNode

Output: cellordinal

1: for i = 0→ columnAxis.Length do

2: current=[]

3: S=[]

4: if isAncestor(columnNode,ColumnMemberNode) then

5: current.add(columnAxis[i])

6: S.add(i)

7: for j=0 → rowAxis.Length do

8: if isAncestor(rowNode, rowMemberNode) then

9: current.add(rowAxis[j])

10: S.add(j)

11: cellordinal=calculateCellOrdinal(current, S)

12: fillMatrixAnswer(cellordinal)

13: end if

14: end for

15: end if

16: end for

The cellordinal calculated in algorithm 4 will be passed to fillMatrixAnswer shown in

algorithm 5 for calculcating the aggregation. The fillMatrixAnswer algorithm, receives a
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cellordinal as an input and searches the cell table to find this cellrodinal. If it is found, it

will add the corresponding measure value to the answer .searchIndex is the index of the

last cellOrdinal found in the cell table. Since the cell table is sorted by the cellordinal,

and also the cellrodinals generated in Modified-getMatrixAnswer are incremental, finding a

cellordinal in the cell table will take O(1) time.

Algorithm 5 fillMatrixAnswer

Input: cellordinal
Output: matrixAnswer
1: if cellTable[searchIndex][0]==cellordinal then
2: measureValue ← cellTable[searchIndex][1]
3: SearchIndex++
4: end if
5: if cellTable[searchIndex][0]> cellordinal then
6: # The cellordinal does not exists in the cell table
7: return
8: end if
9: row=rowMemberNode.getAncestor(rowMemberNode.depth+1)

10: col=colMemberNode.getAncestor(colMemberNode.depth+1)
11: if row is a property of answer AND col is a property of answer[row] then
12: answer[row][col]+ = measureValue
13: end if

4.2 Experiment Results for the Workflow

Table C shows the workflow experiment results. Our goal is to compare the answer sub-cube

and the inflated version of the sub-cube for the same workflow.

We discuss the results in two part. In part one, we compare the proposed drill-down

algorithm with the previous version of the getMatrixAnswer algorithm explained in chapter

??. In the second part, we compare downloading the answer sub-cube with downloading the

inflated version of it.
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4.2.1 Comparing the Proposed Aggregation Algorithm vs. the Original

Algorithm

We expect that our algorithm performs better than the original getMatrixAnswer algorithm

in drill-downs since less data is processed. The results meet our expectation. For all drill-

downs, our algorithm beats the original algorithm. This is reasonable since less data is

processed in the new algorithm.

The graph in figure 4.3 shows a comparison between the new algorithm and the previous

version for a sequence of random drill-downs on different sub-cubes. As the graph shows, the

new algorithm always performs better than the old one. The drill-down sequence is sorted

by the size of the sub-cubes. The graph shows that we have a huge difference between the

two methods when the sub-cube is large i.e. the right side of the graph. This is rational since

when the sub-cube is large, the old method that scans the whole sub-cube will take a long

time to perform. But the new method that only scans the part needed for the drill-down

has a very lower peak.



CHAPTER 4. USER WORKFLOW 52

 

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

p
ro

ce
ss

in
g 

ti
m

e
 

Drill-down sequence 

Drill-down algorithms 

new version

old version

Figure 4.3: Comparing processing time for the new drill-down algorithm with the previous

version. The lower is the better.

4.2.2 Answer sub-cube vs. Inflated Sub-cube Comparison

As we addressed the problem in the Introduction chapter, when the user wants to launch

a drill-down, the client engine has two options : (I) requesting only the answer sub-cube

which usually has a small size, but still there is a communication with the server or (II)

the answer is derived by the local engine working entirely on the cache data. This cached

data is the inflated sub-cube with the lowest level of aggregation i.e the leaf nodes. This

sub-cube has a larger size and therefore it takes longer to download, but instead the user

has the benefit of working locally with the data and only pays the processing time.
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# of drill-downs Inflated answer sub-cube answer sub-cube

Load Time (size) sum of script time sum of load time

1 4 288 (15) 15 520

2 5 320 (25.9) 17 933

3 6 389 (66.5) 130 528

4 5 519 (162) 82 433

5 6 1401 (274.5) 98 892

6 4 1669 (326.5) 99 597

7 8 1601(421) 105 1067

8 7 3006 (431) 319 1470

9 13 2717 (679) 593 1504

Table 4.2: workflow summary

Table 4.2 summarizes the results of the workflow experiment. The expanded table is

attached in appendix C which contains more details about the queries. In table 4.2, for

each sub-cube requests, we show the number of further drill-downs on that sub-cube. In

the case of inflated answer sub-cube, we show the load time of the sub-cube and the sum

of processing time for the consequent queries. However, in the case of answer sub-cube

download, we only show the sum of load times since the processing time is very small and

negligible. Two factors are important in the workflow scenario : number of up-coming

drill-downs and size of the inflated sub-cube.

1. Number of further drill-downs : When several number of drill-downs are launched, it is

more likely that downloading inflated sub-cube is worthy. For example, consider query

number 3 in table 4.2. It takes 389 millisecond to download the inflated sub-cube. For

this sub-cube, a couple of further requests are submitted. As you can see, the response

time of the inflated sub-cube approach is better than the answer-sub-cube approach.

Therefore, the client may prefer to download the inflated answer sub-cube and work

locally instead of communicating back and forth with the server.

But for some cases, such as row number 6 in the table, still processing the large cell

table is faster than downloading the answer sub-cube from the server. However, there

are a few requests for drill-down on this sub-cube. Therefore, it may not worth for

the client to pay the download time cost for the inflated sub-cube.

2. Size of inflated sub-cube : When the inflated sub-cube is large, the load time may
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become too large that is not tolerable for the user. In addition, the processing time

increases with the sub-cube size. For example, consider the last sub-cube in the

workflow table. Even without considering the load time for the inflated sub-cube, the

processing time for a drill-down in this sub-cube is equal or larger than downloading

the answer sub-cube for it. So it is not beneficial to download the inflated sub-cube

for such a large sub-cube.

In conclusion, we can say that for large sub-cube we should be cautious about down-

loading the inflated sub-cube. In our workflow experiment, for larger sub-cubes, we should

hesitate to download the inflated sub-cube since the cost of the load time may not be over-

come with even several drill-down requests. However, for smaller sub-cubes the load time

of the large sub-cube may be tolerable since it is less than 4 seconds. Instead, the data

processed locally with a lower cost, plus that the facts that the task load of the server is

reduced and the client is able to work offline.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

To the best of our knowledge, Hsiao did the first study of client-centric OLAP system [10].

The study is concerned with data pre-fetch as well, but in the context of data visualization.

Once the data visualization is over, the data cube is discarded. There is no client-side data

cache. We improved the client-centric OLAP system by reducing the size of the data cube

downloaded to the client. Also, in our design, the client-side data engine will re-use the

cached data cube for answering further queries.

The focus of this study is client-side caching for a client-centric OLAP system. As the

first step, we designed a new data structure for transmitting the multidimensional data

from the server to client, and storing it to the client’ memory. The new data structure is

specially beneficial when inflated answer sub-cube is downloaded. Our results show that

we save about 70% of the memory compared to JSOC. The new data structure increases

the client-side processing time, but the overhead is tolerable since the network transmission

time is decreased significantly.

When we download the inflated answer sub-cube, we can use it for processing a new

query if the new query has any intersection with the cached sub-cube. We made the data

engine capable of comparing the new query with a cached sub-cube. If the two sub-cubes

have an overlap, that part of the data is used and the data query engine will generate the

MDX queries to retrieve the rest of the data from the server. Our results show that this

approach is useful even when more than 80% of the data still needs to be retrieved from the

server.

55
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Also in this work we studied the efficiency of downloading the inflated answer sub-cube

in expectation of further drill-downs. We discussed that when the client submits a query,

we can either download a sub-cube that only answers the current query (which we named

answer sub-cube, or we can download the inflated version of the answer sub-cube which

contains all the measure values for the child nodes of the selected hierarchies in the query.

If we choose the latter one, then further drill-downs on this sub-cube is performed locally.

The workflow shows that downloading the inflated sub-cube is specially cost-effective for

smaller sub-cubes.

5.2 Future Work

There are different directions to continue and expand this research. First, when we use client-

side caching, like any other caching application, we should think of a system for managing

multiple sub-cubes in the client’s memory. For example, when the client’s memory reaches

its limit, there should be a pre- defined algorithm that chooses a sub-cube and excludes it

from the memory and includes a new sub-cube. Different strategies could be first-in/first-

out, excluding the largest sub-cube, excluding least wanted, or random selection.

Also, it is a good idea to repeat the workflow experiment several times to obtain a better

idea of the fact that to what extent the user will explore the current sub-cube.

Another idea is to work on size of the inflated answer sub-cube. In this work, we build

the inflated version with the lowest level of the aggregation for each hierarchy in the sub-

cube, i.e. the leaf members. However, we may not always need to drill down the sub-cube

all the way down to the leaf nodes. Instead, the client data engine can decide on the level

of the hierarchies to be fetched. Since we have enough information from the metadata to

calculate the size of the sub-cube, we can decide how deep we want to build the inflated

answer sub-cube specially for large sub-cube. This way, we can reduce the processing time

and still, drill-downs are possible for a number of levels.
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Partial XMLA Response

<return xmlns="urn:schemas -microsoft -com:xml -analysis">

...

<OlapInfo >

<CubeInfo >

<Cube>

<CubeName >Adventure Works </CubeName >

<LastDataUpdate xmlns="http:// schemas.microsoft.com/analysisservices /2003/

engine">2011 -03 -25 T21:16:58 .49</LastDataUpdate >

<LastSchemaUpdate xmlns="http: // schemas.microsoft.com/analysisservices

/2003/ engine">2011 -03 -25 T20:53:05 .976667 </LastSchemaUpdate >

</Cube>

</CubeInfo >

<AxesInfo >

<AxisInfo name="Axis0">

<HierarchyInfo name="[Measures]">

<UName name="[Measures ].[ MEMBER_UNIQUE_NAME]" type="xsd:string" />

<Caption name="[Measures ].[ MEMBER_CAPTION]" type="xsd:string" />

<LName name="[Measures ].[ LEVEL_UNIQUE_NAME]" type="xsd:string" />

<LNum name="[Measures ].[ LEVEL_NUMBER]" type="xsd:int" />

<DisplayInfo name="[Measures ].[ DISPLAY_INFO]" type="xsd:unsignedInt" />

</HierarchyInfo >

</AxisInfo >

<AxisInfo name="Axis1">

<HierarchyInfo name="[Customer ].[ Marital Status]">

<UName name="[Customer ].[ Marital Status ].[ MEMBER_UNIQUE_NAME]" type="

xsd:string" />

<Caption name="[Customer ].[ Marital Status ].[ MEMBER_CAPTION]" type="

xsd:string" />

<LName name="[Customer ].[ Marital Status ].[ LEVEL_UNIQUE_NAME]" type="

xsd:string" />

57
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<LNum name="[Customer ].[ Marital Status ].[ LEVEL_NUMBER]" type="xsd:int" />

<DisplayInfo name="[Customer ].[ Marital Status ].[ DISPLAY_INFO]" type="

xsd:unsignedInt" />

</HierarchyInfo >

...

<Axis name="Axis0">

<Tuples >

<Tuple>

<Member Hierarchy="[Measures]">

<UName>[Measures ].[ Internet Sales Amount]</UName>

<Caption >Internet Sales Amount </Caption >

<LName>[Measures ].[ MeasuresLevel]</LName >

<LNum>0</LNum>

<DisplayInfo >0</DisplayInfo >

</Member >

</Tuple>

</Tuples >

</Axis>

...

<CellData >

<Cell CellOrdinal="0">

<Value xsi:type="xsd:decimal">7267018.3655 </Value >

<FmtValue >$7 ,267 ,018.37</FmtValue >

</Cell>

<Cell CellOrdinal="1">

<Value xsi:type="xsd:decimal">7546600.3097 </Value >

<FmtValue >$7 ,546 ,600.31</FmtValue >

</Cell>

<Cell CellOrdinal="2">

<Value xsi:type="xsd:decimal">7920357.3733 </Value >

<FmtValue >$7 ,920 ,357.37</FmtValue >

</Cell>

<Cell CellOrdinal="3">

<Value xsi:type="xsd:decimal">6624701.1722 </Value >

<FmtValue >$6 ,624 ,701.17</FmtValue >

</Cell>

</CellData >

</root>

</return >



Appendix B

Tables for Caching Experiment
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Appendix C

Tables for Workflow Experiment

Table C.1: User workflow

Inflated version of sub-cube
Answer sub-

cube

Workflow Script time Load time

1. Download [Customer].[Education], [Date].[

2008]
Load time (size)

288 (15)

2. Generate cross-tab on [Customer].[Education],

[Date].[ 2008]
8 102

3. Drill down on [Date].[2008].[H2] 2 157

4. Drill down on [Date].[2008].[H2].[Q3] 2 117

5. Drill down on [Date]. [2008].[H2]. [Q3].[July] 3 144

6. Download [Geography].[Australia].[New South

Wales], [Date].[2006].[Q1]
Load time (size)

420 (25.9)

7. Generate cross-tab on [Geography]. [Aus-

tralia].[New South Wales], [Date].[2006].[Q1]
4 144

8. Drill Down on [Geography]. [Australia].[New

South Wales].[Alexandria]
4 151

9. Roll up on [Geography].[Australia].[New South

Wales]
3 151

10. Drill down on [Date]. [2006].[Q1].[January] 1 276

Continued on next page
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Table C.1 – Continued from previous page

Workflow Script time Load time

11. Drill down on [Date].[2006].[Q1].[Feb] 5 211

12. Download [Customer].[Education],

[Date].[All Periods]
Load time (size)

389 (66.5)

13. Generate cross tab on [Customer]. [Educa-

tion], [Date]. [All Periods]
37 133

14. Drill down on [Date]. [2006] 17 65

15.Drill down on [Date]. [2006]. [H2] 7 71

16. Roll up on [Date].[2006] 39 114

17. Drill down on [Date]. [2008] 18 76

18. Drill down on [Date]. [2008]. [H1] 12 69

19. Download [Geography]. [Canada]. [BC],

[Employee]. [All Employee Departments]
Load time (size)

519 (162)

20. Generate cross-tab on [Geography].

[Canada]. [BC], [Employee]. [All Employee De-

partments]

41 127

21. Drill down on [Geography]. [Canada]. [BC].

[Vancouver]
14 91

22. Drill down on [Employee]. [All Employee

Departments]. [Engineering]
4 65

23. Roll up on [Employee]. [All Employee De-

partments]
7 83

24. Drill down on [Geography]. [Canada]. [BC].

[burnaby]
16 67

25. Download [Geography]. [United

States].[California], [Date].[2007].[H1]
Load time (size)

1401 (274.5)

26. Generate cross tab on [Geography].[United

States].[California], [Date].[2007].[H1]
37 173

27. Drill down on [Geography].[United

States].[California].[San Fransisco]
17 137

28. Drill down on [Date].[2007].[H1].[Q1] 7 136

Continued on next page
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Table C.1 – Continued from previous page

Workflow Script time Load time

15. Download sub-cube [Customer]. [Educa-

tion].[Bachelors], [Date]. [2007].[H1], [Geogra-

phy]. [Canada]&[France]

Load time (size)

1669 (326.5)

29. Generate cross tab on [Customer].

[Education].[Bachelors], [Geography].

[Canada]&[France]

45 146

30. Drill Down on [Geography].[France] 25 167

31. Drill Down on [Geography].[France].[Nord] 28 146

32. Roll up on [Geography].[France] 1 138

33. Download sub-cube [Geography].[Canada],

[Employee].[all employee departments]
Load time (size)

1601 (421)

34. Generate cross-tab on [Geography].[Canada],

[Employee].[all employee departments]
35 108

35. Dill down on [Geography].[Canada].[BC] 19 110

36. Drill down on [Employee].[All Employee De-

partment].[marketing]
3 101

37. Roll-up on [Employee].[All Employee Depart-

ment]
21 117

38. Drill down on [Employee].[All Employee De-

partment].[executives]
1 203

39. Roll-up on [Employee].[All Employee Depart-

ment]
20 120

40. Drill Down on [Employee].[All Employee De-

partment]].[engineering]
2 216

41. Drill down on [Employee].[All Employee De-

partment].[senior designer]
4 92

42. Download Subcube [Product].[All products],

[All Geography].[Australia]&[Canada]&[France]
Load time (size)

3006 (431)

Continued on next page
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Table C.1 – Continued from previous page

Workflow Script time Load time

43. Generate cross tab on [Prod-

uct].[All products], [All Geogra-

phy].[Australia]&[Canada]&[France]

63 150

44. Drill down on [Product].[All products].[bikes] 54 147

45. Drill down on [Product].[All prod-

ucts].[mountain bike]
43 366

46. Roll up on [Product].[All products] 2 189

47. Drill down on [Gegraphy].[Asutralia] 46 205

48. Drill down on [Gegraphy].[canada] 60 192

49. Drill down on [Gegraphy].[France] 51 221

50. Download [Geography].[Germany]&[France],

[Date].[2006]
Load time (size)

2717 (679)

51. Generate cross tab on [Geogra-

phy].[Germany]&[France], [Date].[2006]
88 170

52. Drill down on [Geogra-

phy].[Germany].[Hessen]
39 141

53. Drill Down on [Geogra-

phy].[Germany].[Hessel].[Berlin]
37 141

54. Roll up on [Geography].[Germany] 1 141

55. Drill Down on [Date].[2006].[H1] 30 173

56. Roll up on [Date].[2006] 1 141
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