
ARCHITECTURAL SUPPORT FOR A VARIABLE

GRANULARITY CACHE MEMORY SYSTEM

by

Snehasish Kumar

B.Tech, Biju Patnaik University of Technology, 2010

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Snehasish Kumar 2013

SIMON FRASER UNIVERSITY

Spring 2013

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Snehasish Kumar

Degree: Master of Science

Title of Thesis: Architectural support for a variable granularity cache mem-

ory system

Examining Committee: Dr. Anoop Sarkar

Chair

Dr. Arrvindh Shriraman, Senior Supervisor

Assistant Professor, Computing Science,

Simon Fraser University

Dr. Alexandra Federova, Supervisor

Associate Professor, Computing Science,

Simon Fraser University

Dr. Rob Cameron, Examiner

Professor, Computing Science,

Simon Fraser University

Date Approved: April 19, 2013

ii

Partial Copyright Licence

iii

Abstract

Memory in modern computing systems is hierarchical in nature. Maintaining a memory

hierarchy enables the system to service frequently requested data from a small low latency

store located close to the processor. The design paradigms of the memory hierarchy have

been mostly unchanged since their inception in the late 1960’s. However in the meantime

there have been significant changes in the tasks computers perform and the way they are

programmed. Modern computing systems perform more data centric tasks and are pro-

grammed in higher level languages which introduce many layers of abstraction between the

programmer and the system.

The cache memory is closest to the processor and retains a subset of the data present in

RAM for faster access. It is found that many cache blocks are not fully utilised, i.e. not all

words brought into the cache are touched by the processor before the cache block is evicted

from the cache. This may be caused due to non uniform data access patterns or low spatial

locality of data access within the application. Thus the effective cache space is reduced by

unused words and only a fraction of the data retained is referenced by the processor. Due

to the changing nature of workloads and programming interfaces, it is hard to select a set

of design parameters which perform optimally for different workloads.

This dissertation proposes and evaluates the benefits of the Amoeba-Cache, a novel ar-

chitecture for the on chip cache memory hierarchy that allows it to dynamically adapt to the

requirements of the application. We propose a design that can support a variable number

of cache blocks, each of a different granularity. It employs an organization that completely

eliminates the tag array, treating the storage array as uniform and morph-able between tags

and data. This enables the Amoeba-Cache to harvest space from unused words in blocks for

iv

additional tag storage, thereby supporting a variable number of tags (and correspondingly,

blocks). The design adjusts individual cache line granularity according to the spatial locality

in the application. The Amoeba-Cache adapts to the appropriate granularity both for dif-

ferent data objects in an application as well as for different phases of access to the same data.

Compared to a fixed granularity cache, the Amoeba-Cache improves cache utilization to

90% - 99% for most applications, saves miss rate by up to 73% at the L1 level and up to

88% at the LLC level, and reduces miss bandwidth by up to 84% at the L1 and 92% at the

LLC. Correspondingly reduces on-chip memory hierarchy energy by as much as 36% and

improves performance by as much as 50%.

v

Dedicated to Baba, Ma and Bukum

vi

Acknowledgments

I would like to thank Binay Meso and Supriya Masi; without them I would not be here

today, Dr. Arrvindh Shriraman; for his guidance and being a constant source of motivation,

Hongzhou Zhao and Dr. Sandhya Dwarkadas; for all the help and advice while working

on the Amoeba Cache projects, and finally my friends and colleagues for their help and

support.

vii

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Dedication vi

Acknowledgments vii

Contents viii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Cache Memory Systems . 2

1.2 Motivation for change . 3

1.2.1 Cache Utilization . 4

1.2.2 Causes of poor cache utilization . 5

1.2.3 Effect of Block Granularity on Miss Rate and Bandwidth 9

1.2.4 Need for adaptive cache blocks . 10

1.3 Dissertation Outline . 10

2 Amoeba Cache Architecture 11

2.1 Amoeba Blocks and Set-Indexing . 14

viii

2.2 Data Look-up . 15

2.3 Block Insertion . 17

2.4 Replacement Policy . 18

2.4.1 Pseudo-LRU . 19

2.4.2 Amoeba-Cache Replacement Policy . 20

2.5 Partial Misses . 20

2.6 Spatial Pattern Predictor . 22

2.7 Related Work . 23

2.7.1 Line Distillation . 23

2.7.2 Sector Caches . 25

2.7.3 Indirect Index Caches . 26

2.7.4 Prefetching . 27

2.7.5 Other related work . 28

3 Implementation 30

3.1 Hardware complexity . 30

3.1.1 Cache Controller . 30

3.1.2 Area, latency, and energy Overhead 33

3.1.3 Tag-only operations . 35

3.1.4 Trade-off with large caches . 35

3.1.5 Hierarchical cache memory systems . 37

3.1.6 Cache Coherence . 38

3.2 Simulation Infrastructure . 38

3.2.1 GEMS-Ruby . 39

4 Evaluation 40

4.1 Improved Memory Hierarchy Efficiency . 40

4.2 Overall Performance and Energy . 45

4.2.1 Extra cache pipeline stage . 47

4.2.2 Off-chip L2↔Memory energy . 48

4.3 Spatial Predictor Trade-offs . 49

4.3.1 Predictor Indexing . 49

4.3.2 Predictor Table . 50

4.3.3 Spatial Pattern Training . 52

ix

4.3.4 Predictor Summary . 52

4.4 Amoeba-Cache Adaptivity . 53

4.4.1 Tuning RMAX for High Spatial Locality 53

4.4.2 Predicting Strided Accesses . 53

4.5 Amoeba-Cache vs other approaches . 54

4.5.1 Energy and Storage . 55

4.5.2 Miss Rate and Bandwidth . 57

4.6 Multicore Shared Cache . 58

5 Conclusion 60

5.1 Conclusions . 60

5.2 Looking Forward . 61

Bibliography 62

x

List of Tables

1.1 Benchmark Groups . 5

1.2 Optimal block size . 9

2.1 Substring Search . 18

3.1 Hardware Overheads . 34

3.2 Fast Tag accesses percent . 36

4.1 Amoeba Blocks per set . 43

4.2 Predictor Policy Comparison . 54

4.3 Multiprogrammed workloads on Amoeba-Cache 58

4.4 Absolute performance statistics . 59

xi

List of Figures

1.1 Canonical Memory Hierarchy . 1

1.2 Cache Associativity . 4

1.3 Distribution of words touched . 5

1.4 Bandwidth vs. Miss Rate . 8

2.1 Conventional N-Way Set-Associative Cache 12

2.2 Amoeba Cache Overview . 13

2.3 Memory Regions . 14

2.4 Amoeba Cache Look-up . 16

2.5 Pseudo LRU . 19

2.6 Partial Miss . 21

2.7 Amoeba-Cache Predictor . 23

2.8 Line Distillation . 24

2.9 Sector Frame . 25

2.10 Indirect Index Cache . 27

3.1 Cache Controller . 31

3.2 L1 Cache Controller . 32

3.3 Serial vs. Normal - Latency and Energy . 36

4.1 Bandwidth vs. Miss Rate . 42

4.2 Distribution of cache block sizes . 44

4.3 Miss Rate and Bandwidth Improvement . 45

4.4 Overall performance and energy . 46

4.5 Extra Cache Pipeline Stage Performance . 48

4.6 Off-Chip Energy Reduction . 49

xii

4.7 Predictor Performance . 51

4.8 Amoeba-Cache Adaptivity . 54

4.9 Amoeba-Cache Comparison . 56

xiii

Chapter 1

Introduction

Cache memory systems are an integral part of computer architecture. Early mainframe

computers in the 1960’s were known to use a hierarchical cache memory organization. The

first documented use of a data cache was in the IBM System/360 Model 85 [21].

CPU

L1

LLC

DRAM

BANKS

S
E

T
S

C
O

S
T

S
P

E
E

D

S
IZ

E

Figure 1.1: Canonical Memory Hierarchy – Moving down through the hierarchy, away
from the processor, the levels are larger but slower. At each level the storage may be
monolithic or sub divided in to ”banks” for lower indexing overhead.

1

CHAPTER 1. INTRODUCTION 2

1.1 Cache Memory Systems

Most processors access data at the granularity of 4 to 8 bytes at a time. In order to exploit

locality present in programs, caches are designed to retain small amounts of data close to

the processor for fast access. The management of data in the cache is determined by a

suitably selected replacement scheme. Caches are given designations to indicate their level

in the memory hierarchy. The closest cached data stores to the processor are given lower

numerical designations starting from L1 and increases as their distance from the processor

increases. The last level of cache is often abbreviated as the LLC. Each level in the cache

hierarchy is linked in a daisy chain fashion, as shown in Fig 1.1, where there is an option for

the data that is being cached to be replicated or not. The design choices can be enumerated

as:

1. Inclusive Caches : Lower level caches (further from the processor) replicate the cache

lines present (although the data may be stale) present in the higher level caches.

Inclusive caches can be found in Intel Sandy Bridge processors.

2. Exclusive Caches : Caches lower in the hierarchy are guaranteed to not contain the

cache lines present in the higher levels of the hierarchy. Present in the AMD architec-

tures such as the Athlon processors.

3. Non-Inclusive Caches : Also known as Non-Exclusive or Accidentally Inclusive, were

used for a while in Intel architectures prior to the Intel P6. A lower level cache may

or may not include a block cached at a higher level in the cache hierarchy.

Caches are designed to take advantage of reuse of data by speeding up subsequent access

to the same datum. They also speed up accesses to nearby data which may be fetched into

the cache depending on its operating policy. The different types of locality which caches try

to exploit can be enumerated as :

1. Temporal Locality : Some applications tend to reuse the same data items over and

over again during the course of their execution. This principle is the cornerstone

for caching. Cache management policies usually implemented take into account the

recency of data reuse to take a decision on what data is to be retained in the cache.

Modern cache hierarchies implement a form of the Least Recently Used algorithm to

manage the contents of the cache.

CHAPTER 1. INTRODUCTION 3

2. Spatial Locality : Due to conventional imperative programming paradigms, data is

usually managed by grouping datum together in data structures, the fields of which

are accessed in close proximity in the source code. Thus, in order to exploit this

pattern, it is normal behavior for the cache to bring in a contiguous region, 32 – 128

bytes in size, which contains the datum. The contiguous region of data brought into

the cache is referred to as a cache block or cache line. The Intel Pentium 3 processors

used a 32 byte line size which was increased to 64 bytes from Pentium 4. The IBM

Power7 architectures use a 128 byte cache line where as the Intel Itanium2 uses a 64

bytes cache line size at the L1 and 128 byte cache line size at the L2 and L3.

According to the place where a new cache line can be inserted into the cache, the cache

can have varying associativity. If the policy requires that a certain block from memory

can map only to a specific entry in the cache, it is known as a direct mapped cache [Fig

1.2(a)]. On the other end of the spectrum, if a certain block from memory can map to

any entry in the cache it is known as a fully associative cache [Fig 1.2(c)]. It is easy to

see that fully associative caches are the most flexible, however they incur significant costs

in terms of latency and area overhead for standard cache operations. A cache look-up for

a specific block is analogous to checking each item in a collection for a possible match.

Conventional caches are organized as a 2-dimensional data structure where the rows are

called sets. Within each set there are a fixed number of cache blocks. The number of blocks

in each set is the degree of associativity of the cache. Each possible entry in a set is called

a way. Thus a direct mapped cache has associativity of 1 where as a fully associative cache

is one whose associativity is equal to the total number of cache blocks that the given cache

can possibly hold.

1.2 Motivation for change

In conventional caches, the cache block defines the fundamental unit of data movement and

space allocation in caches. The blocks in the data array are uniformly sized to simplify

the insertion / removal of blocks, simplify cache refill requests, and support low complexity

tag organization. Unfortunately, conventional caches are inflexible (fixed block granularity

and fixed # of blocks) and caching efficiency is poor for applications that lack high spatial

locality. Cache blocks influence multiple system metrics including bandwidth, miss rate,

and cache utilization. The block granularity plays a key role in exploiting spatial locality by

CHAPTER 1. INTRODUCTION 4

Index 0

1

2

3

4

5

…

Main Memory

Index 0

Index 1

Index 2

Index 3

Cache Memory

(a) Direct Mapped

Index 0

1

2

3

4

5

Main Memory

Index 0,Way 0

Index 0,Way 1

Index 1,Way 0

Index 1,Way 1

Cache Memory

…

(b) 2-way Set Associative

Index 0

1

2

3

4

5

Main Memory

Index 0,Way 0

Index 0,Way 1

Index 0,Way 2

Index 0,Way 3

Cache Memory

…

(c) Fully Associative

Figure 1.2: Each block in memory maps to (a) a single entry (way) in the cache (b) one of
2 possible entries (ways) in the cache (c) any entry (way) in the cache

effectively prefetching neighboring words all at once. However, the neighboring words could

go unused due to the low lifespan of a cache block. The unused words occupy interconnect

bandwidth and pollute the cache, which increases the # of misses. We evaluate the influence

of a fixed granularity block below.

1.2.1 Cache Utilization

In the absence of spatial locality, multi-word cache blocks (typically 64 bytes on existing

processors) tend to increase cache pollution and fill the cache with words unlikely to be used.

To quantify this pollution, we segment the cache line into words (8 bytes) and track the words

touched before the block is evicted. We define utilization as the average # of words touched

in a cache block before it is evicted. We study a comprehensive collection of workloads from

a variety of domains: 6 from PARSEC [4], 7 from SPEC2006, 2 from SPEC2000, 3 Java

workloads from DaCapo [5], 3 commercial workloads (Apache, SpecJBB2005, and TPC-

C [23]), and the Firefox web browser. Subsets within benchmark suites were chosen based

on demonstrated miss rates on the fixed granularity cache (i.e., whose working sets did not

fit in the cache size evaluated) and with a spread and diversity in cache utilization. We

classify the benchmarks into 3 groups based on the utilization they exhibit: Low (<33%),

Moderate (33%—66%), and High (66%+) utilization (see Table 1.1).

Figure 1.3 shows the histogram of words touched at the time of eviction in a cache line

of a 64K, 4-way cache (64-byte block, 8 words per block) across the different benchmarks.

Seven applications have less than 33% utilization and 12 of them are dominated (>50%) by

1-2 word accesses. In applications with good spatial locality (cactus, ferret, tradesoap, milc,

CHAPTER 1. INTRODUCTION 5

Group Utilization % Benchmarks

Low 0 — 33% art, soplex, twolf, mcf, canneal, lbm, omnetpp

Moderate 34 — 66% astar, h2, jbb, apache, x264, firefox, tpc-c, freqmine, flu-
idanimate

High 67 — 100% tradesoap, facesim, eclipse, cactus, milc, ferret

Table 1.1: Benchmark Groups

0

20

40

60

80

100

ap
ac

h
e

ar
t

as
ta

r

ca
ct

u
s

ca
n
n
ea

l

ec
li

p
se

fa
ce

si
m

fe
rr

et

fi
re

fo
x

fl
u
id

.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p

le
x

tp
c-

c.

tr
ad

e.

tw
o

lf

x
2
6

4

m
ea

n

W
o
rd

s
A

cc
es

se
d
 (

%
)

1-2 Words 3-4 Words 5-6 Words 7-8 Words

4
5

2
0

3
9

7
9

3
0

8
0

7
7

8
2

4
9

6
2

5
5

3
8

4
0

3
2

2
9

8
1

3
3

2
1

5
3

7
3

2
9

4
6

5
0

Figure 1.3: Distribution of words touched in a cache block. Avg. utilization is on top.
(Config: 64K, 4 way, 64-byte block.)

eclipse) more than 50% of the evicted blocks have 7-8 words touched. Despite similar average

utilization for applications such as astar and h2 (39%), their distributions are dissimilar;

'70% of the blocks in astar have 1-2 words accessed at the time of eviction, whereas '50%

of the blocks in h2 have 1-2 words accessed per block. Utilization for a single application

also changes over time; for example, ferret’s average utilization, measured as the average

fraction of words used in evicted cache lines over 50 million instruction windows, varies from

50% to 95% with a periodicity of roughly 400 million instructions.

1.2.2 Causes of poor cache utilization

Applications display poor cache utilization due to inefficient data structure access patterns.

This could be due to

CHAPTER 1. INTRODUCTION 6

1. Programming practices : The array of structs (AoS) approach is a common program-

ming practice. While performing computations upon the array if all elements of the

struct are not referenced in close proximity, it could cause poor cache utilization. A

relevant example can be seen in listing 1.1.

2. Incorrect assumptions about hardware : Hardware conscious code which attempts to

optimize for cache behavior based on assumptions should be ported carefully. We

found streamcluster of the PARSEC application suite, by default, attempt to op-

timize cache behavior for 32 byte cache line sizes. This finding was also reported by

Liu and Berger[22].

3. Compiler directives : For better cache performance, sometimes compilers can attempt

to allocate aligned blocks of memory. This functionality is exported to the programmer

as posix_memalign by GCC, __aligned_malloc by MSVC and ippMalloc by ICC.

These allocators may leave gaps filled with garbage values which are picked up by the

cache when an entire line is fetched, thus reducing the effective caching capacity and

reducing utilization.

4. Interaction with cache geometry : Due to the set associative nature of conventional

caches, a set can only contain a fixed number of ways. For instance, if a large amount

of data is accessed in a strided fashion which happens to map to the same set, will

cause evictions even though there may be space available for use in the other sets of

the cache. This shortens the lifetime of the cache blocks in the selected set and may

reduce utilization.

CHAPTER 1. INTRODUCTION 7

� �
1 /∗ b l a c k s c h o l e s . c :354 ∗/
2 for (i =0; i<numOptions ; i++)

3 {
4 otype [i] = (data [i] . OptionType == ’P ’) ? 1 : 0 ;

5 s p t p r i c e [i] = data [i] . s ;

6 s t r i k e [i] = data [i] . s t r i k e ;

7 r a t e [i] = data [i] . r ;

8 v o l a t i l i t y [i] = data [i] . v ;

9 otime [i] = data [i] . t ;

10 }� �
Listing 1.1: Code snippet from the initialization phase of blackscholes benchmark from

the PARSEC 2.1 [4] application suite. The code references each OptionData structure in the

data array where the first 6 fields (24 bytes, as observed on a x86-64 machine with Ubuntu

and gcc version 4.4.7) are referenced out of each struct which contains 9 fields (36 bytes).

The problem is exacerbated as the OptionData structure is allocated as a single chunk and

is not cache aligned. The rest of the program demonstrates good cache behaviour.

CHAPTER 1. INTRODUCTION 8

32

64

128

3.0

4.0

5.0

6.0

7.0

8.0

10 26 42 58 74 90

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

(a) 64K - Low

64

128

256

2.5

3.0

3.5

4.0

4.5

5.0

10 26 42 58 74 90

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

(b) 1M - Low

32

64

128

1.0

1.3

1.6

1.9

2.2

2.5

2 6 10 14 18 22

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

(c) 64K - Moderate

64

128

256

0.5

0.6

0.7

0.8

0.9

1.0

2 6 10 14 18 22

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

(d) 1M - Moderate

32
64

128

0.80

0.84

0.88

0.92

0.96

1.00

0 3 6 9 12 15

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

(e) 64K - High

64
128

256

0.40

0.45

0.50

0.55

0.60

0.65

0 3 6 9 12 15

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

(f) 1M - High

Figure 1.4: Bandwidth vs. Miss Rate. (a),(c),(e): 64K, 4-way L1. (b),(d),(f): 1M, 8-way
LLC. Markers on the plot indicate cache block size. Note the different scales for different
groups.

CHAPTER 1. INTRODUCTION 9

1.2.3 Effect of Block Granularity on Miss Rate and Bandwidth

Cache miss rate directly correlates with performance, while under current and future wire-

limited technologies, bandwidth directly correlates with dynamic energy. Figure 1.4 shows

the influence of block granularity on miss rate and bandwidth for a 64K L1 cache and a

1M L2 cache keeping the number of ways constant. For the 64K L1, the plots highlight the

pitfalls of simply decreasing the block size to accommodate the Low group of applications;

miss rate increases by 2× for the High group when the block size is changed from 64B to

32B; it increases by 30% for the Moderate group. A smaller block size decreases bandwidth

proportionately but increases miss rate. With a 1M L2 cache, the lifetime of the cache lines

increases significantly, improving overall utilization. Increasing the block size from 64→256

halves the miss rate for all application groups. The bandwidth is increased by 2× for the

Low and Moderate.

Table 1.2: Optimal block size. Metric: 1
Miss−rate×Bandwidth

64K, 4-way

Block Benchmarks

32B
cactus, eclipse, facesim, ferret, firefox, fluidanimate,freqmine, milc, tpc-
c, tradesoap

64B art

128B apache, astar, canneal, h2, jbb, lbm, mcf, omnetpp, soplex, twolf, x264

1M, 8-way

Block Benchmarks

64B
apache, astar, cactus, eclipse, facesim, ferret, firefox, freqmine, h2, lbm,
milc, omnetpp, tradesoap, x264

128B art

256B canneal, fluidanimate, jbb, mcf, soplex, tpc-c, twolf

Since miss rate and bandwidth have different optimal block granularities, we use the

following metric: 1
MissRate×Bandwidth to determine a fixed block granularity suited to an ap-

plication that takes both criteria into account. Table 1.2 shows the block size that maximizes

the metric for each application. It can be seen that different applications have different block

granularity requirements. For example, the metric is maximized for apache at 128 bytes and

for firefox (similar utilization) at 32 bytes. Furthermore, the optimal block sizes vary with

the cache size as the cache lifespan changes. This highlights the challenge of picking a single

block size at design time especially when the working set does not fit in the cache.

CHAPTER 1. INTRODUCTION 10

1.2.4 Need for adaptive cache blocks

Our observations motivate the need for adaptive cache line granularity that matches the

spatial locality of the data access patterns in an application. In summary:

• Smaller cache lines improve utilization but tend to increase miss rate and potentially

traffic for applications with good spatial locality, affecting the overall performance.

• Large cache lines pollute the cache space and interconnect with unused words for

applications with poor spatial locality, significantly decreasing the caching efficiency.

• Many applications waste a significant fraction of the cache space. Spatial locality

varies not only across applications but also within each application, for different data

structures as well as different phases of access over time.

1.3 Dissertation Outline

Chapter 2 describes the Amoeba-Cache architecture whilst comparing it with conventional

architecture and looking at related work. The hardware complexity, implementation issues

and simulator infrastructure are discussed in Chapter 3. The experimental results of an

exhaustive evaluation of the Amoeba-Cache is presented in Chapter 4. Conclusions and

future work are outlined in Chapter 5.

Chapter 2

Amoeba Cache Architecture

As described in § 1.1, a conventional cache organizes the data array into a 2 dimensional

structure. A transparently addressed cache uses the same namespace (memory address space

layout) as the main memory. The blocks which are stored in the sets are tagged with the

aligned start address of block present in the main memory. The tags for the cache blocks

currently present in the cache set are maintained in a separate array. When a search is

being performed to find out whether a required physical address is present in the cache, the

tag array is looked up to determine a cache hit or a cache miss. The organization of the

cache set and tag array is shown in Figure 2.1. The effective address is the virtual address

supplied by the CPU of the required datum. The component bits of the effective address is

segmented into 3 parts which form the Virtual Page Number(VPN), set number and byte

offset. The set number and byte offset are looked up in the tag array while the VPN is

looked up in the Translation Lookaside Buffer(TLB) to check that the current process has

brought in the corresponding page and it is valid. The organization described (and shown in

Fig 2.1) is virtually indexed, physically tagged organization where the look-up logic does not

include the TLB translation in the critical path to enable faster searches. There are other

organizations such as virtually indexed, virtually tagged and physically indexed, physically

tagged which are uncommon due to inherent issues with their design. The trade-off for a

virtually indexed, physically tagged cache is that it can only grow in size with an increase

in the associativity of each set, or an increase in the size of each cache block. The Intel

Sandy Bridge architecture is known to use a virtually indexed, physically tagged cache

organization.

11

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 12

VPN SET # BYTE

TLB

TAG DATA

=

TAG DATA

=

1

2

3

4 4

5

ONE

SET

BYTE OFFSET

3

OUTPUT

WORD

EFFECTIVE ADDRESS

Figure 2.1: Conventional N-Way Set-Associative Cache ~1 The Virtual Page Number

(VPN) is used to look up the entry in the Translation Lookaside Buffer (TLB) ~2 According
to the number of sets in the cache, the following bits from the address are used to look up

the corresponding set from the cache ~3 The tags read out from the set are compared with

the translation from the TLB and tested for equality ~4 The corresponding cache block is

forwarded to the output buffer for the tag which matches the TLB lookup ~5 Using the
byte offset from the CPU, the multiplexer selects the corresponding critical word

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 13

In contrast to a conventional cache, the Amoeba-Cache architecture enables the mem-

ory hierarchy to fetch and allocate space for a range of words (i.e. a variable granularity

cache block) based on the spatial locality of the application. For example, consider a 64K

cache (256 sets) that allocates 256 bytes per set. These 256 bytes can adapt to support, for

example, eight 32-bytes blocks, thirty-two 8-byte blocks, or four 32-byte blocks and sixteen

8-byte blocks, based on the set of contiguous words likely to be accessed.

The key challenges to realizing the Amoeba-Cache architecture are

1. How to support a variable number of blocks per set?

2. How to support a variable granularity for each block?

3. How to support a variable number of tags, which correspond to the blocks in the set?

1000 0010 0100 0100

1001 0001 0000 1000

1000 1000 0001 0000

0000 0100 0100 0100

1111 0011 1111 1111

VALID BITMAP(V?)TAG BITMAP(T?) STATIC RAM ARRAY

1111 1111 1111 1111

1111 1111 1001 1110

0000 0111 1111 1111

INVALID TAG DATA

1024 BYTES (16 WORDS)

S
E

T
S

BITMAP

METADATA

Figure 2.2: Amoeba Cache Overview The static RAM (SRAM) array where the tags
and data are collocated is shown on the right. The T? Bitmap and the V? Bitmap for the
Amoeba-Cache are shown on the left. Each block in the SRAM array represents 8 bytes (1
word). In this specific example, an Amoeba-Cache is shown with 4 sets and 1024 bytes per
set. The invalid, data and tag words (marked in the SRAM array) are tracked by setting
the corresponding bits in the T? and V? Bitmaps. This information is maintained in order
to simplify cache operations such as insertion and refill.

The Amoeba-Cache adopts a solution inspired by software data structures, where pro-

grams hold meta-data and actual data entries in the same address space. To achieve max-

imum flexibility, the Amoeba-Cache completely eliminates the tag array and collocates the

tags with the actual data blocks (see Figure 2.2). To distinguish which words are data words

and which ones are tags within the set, a bitmap data structure is used (labeled T? Bitmap

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 14

in Fig 2.2). For each word in the set which is a tag, the corresponding bit in the T? Bitmap

is set. The conventional valid/invalid bits are also decoupled (typically associated with the

tags) and organized into a separate array (labeled V? Bitmap in Fig 2.2) to simplify block

replacement and insertion. Amoeba-Cache tags are composed of a Region Tag and a tuple

which consists of the Start and End address of the variable granularity cache block. The

data block immediately follows the tag word as shown in Fig 2.2. The following sections

provide more detail about the Amoeba-Cache architecture and how cache operations are

performed.

2.1 Amoeba Blocks and Set-Indexing

MEMORY
RMAX

BYTES

DATA

REGION

T
A

G

AMOEBA

BLOCK

(a) Memory Regions

REGION TAG SET INDEX
START /

END

BYTE

OFFSET

TOP 3 BITS 3 BITS

64 BIT ADDRESS

(b) Addressing

Figure 2.3: (a) The linear memory address space is segmented into Regions. The Amoeba-
Blocks are constrained to have their start and end within a single memory region. (b) 64
bits are used to encode the Region Tag, the Set Index, the start or end word and the word
offset in the tag for an Amoeba-Block .

The Amoeba-Cache data array holds a collection of varied granularity Amoeba-Blocks

that do not overlap. Each Amoeba-Block is a 4 tuple consisting of <RegionTag, Start,

End, Data-Block> (Figure 2.2). The first 3 components of the tuple are equivalent to

a tag in a conventional cache. 8 bytes are allocated (1 word) for each tag. In order to

simplify cache look-ups for Amoeba-Blocks, the address space is partitioned into Regions.

A Region is an aligned block of memory of size RMAX bytes. The boundaries of any Amoeba-

Block block (Start and End) are constrained to lie within the regions’ boundaries. The

minimum granularity of the data in an Amoeba-Block is 1 word and the maximum is RMAX

words. The Start and End can be encoded in log2(RMAX) bits. The set indexing function

masks the lower log2(RMAX) bits to ensure that all Amoeba-Blocks (every memory word)

from a region index to the same set. The Region Tag and Set-Index are identical for every

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 15

word in the Amoeba-Block . Retaining the notion of sets enables fast look-ups and helps

elude challenges such as synonyms (same memory word mapping to different sets). When

comparing against a conventional cache, RMAX is set to 8 words (64 bytes), ensuring that

the set indexing function is identical to that in the conventional cache to allow for a fair

evaluation.

2.2 Data Look-up

When data is referenced by the CPU, a cache look-up takes place in order to determine

whether the required datum is present in the cache or not (resulting in a cache hit or

miss). The operation percolates down the memory hierarchy until a cache returns a hit or

the backing store supplies the datum required. Fig 2.1 shows a conventional cache which

operates in Fast Mode, where the contents of the entire set is read out into the output

buffer in parallel with the tag look-up. Megabyte sized caches, with larger sets, may want

to avoid the extra cost of reading out all ways to the output buffer and wait until the tag

look-up completes to read out only the required way from the set over the H-tree (for more

details see § 3.1.2). Though this saves energy, it serializes the look-up and takes longer.

The delay is usually tolerated as the Serial Mode look-up is often implemented in the L2

caches or lower in the memory hierarchy. Another approach which minimizes energy whilst

still reading out the way in parallel is way prediction[29, 44], commonly used in processors

manufactured by MIPS.

In contrast to a conventional cache, the Amoeba-Cache needs to look-up tags from the

SRAM array to determine a hit or miss. The meta-data stored in the T? Bitmap is used

during the look-up operation in the Amoeba-Cache. Figure 2.4 describes the steps of the

look-up procedure in an Amoeba-Cache. The overheads incurred due to the extra stages

introduced in the critical path are evaluated in chapter 3.1.

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 16

REGION
TAG

SET
INDEX

WORD
INDEX

1 1 0 0 0 0 0 0 0

2 x 1 2 x 1 2 x 1 2 x 1

∈ ∈ ∈ ∈4

WORD SELECTOR

ADDR ∈ TAG

2

3

5

BUFFER

SET

TAG SELECT

C
R

IT
IC

A
L

 P
A

T
HADDRESS

TAG ?

Figure 2.4: Amoeba Cache Look-up

The incoming effective address is segmented into the region tag, set index and word offset.~1 The Tag? Bitmap is looked up to determine which words in the activated set are required
for the tag comparison. Note that given the minimum size of a Amoeba-Block is two words
(1 word for the tag meta-data, 1 word for the data), adjacent words cannot be tags. Given
this constraint, the number of 2-1 multiplexers required to route one of the adjacent words

to the comparator (∈ operator), is equal to half the number of words in the set. ~2
Simultaneously, the set is activated and the contents are latched onto the output buffer. ~3
The appropriate tag words are selected with the input from the the Tag? Bitmap. ~4 The
comparator generates the hit signal for the word selector. The ∈ operator consists of two
comparators: a) an aligned Region tag comparator, a conventional == (64 - log2Nsets -
log2RMAX bits wide, e.g., 50 bits) that checks if the Amoeba-Block belongs to the same
region and b) a Start <= W < END range comparator (log2RMAX bits wide; e.g., 3

bits) that checks if the Amoeba-Block holds the required word. Finally, in ~5 , the tag
match activates and selects the appropriate word. The critical path (as indicated on the
left) includes the read out from the set, the tag selectors and the ∈ operation.

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 17

2.3 Block Insertion

On a miss for the desired word, a spatial granularity predictor is invoked (see § 2.6), which

specifies the range of the Amoeba-Block to refill. To determine a position in the set to slot the

incoming block use the information contained in the Valid? Bitmap. The V? Bitmap has 1

bit/word in the cache; a “1” bit indicates the word has been allocated (valid data or a tag).

To find space for an incoming data block, a sub-string search is performed on the V? Bitmap

of the cache set for contiguous 0s (empty words). For example, to insert an Amoeba-Block

of five words (four words for data and one word for tag), a sub-string search is performed for

00000 in the V? Bitmap / set (e.g., 32 bits wide for a 64K cache). If the required amount

of space is not found, the replacement algorithm is repeatedly triggered until the required

amount of contiguous space is found. Following this, the Amoeba-Block tuple (Tag and Data

block) is inserted, and the corresponding bits in the T? and V? Bitmaps are set. The 0s

sub-string search can be accomplished with a look-up table; or dedicated hardware as many

current processors already include sub-string instructions.

Table based substring search : A substring search to determine the availability of

space in a cache set can be implemented in hardware as a look-up table. For example,

consider the case where a cache set in the Amoeba-Cache has a capacity of 8 words. The

valid bitmap for such a set, when empty, would be 00000000. The substring search is

always for 2 or more words (as the minimum size of an Amoeba-Block is at least 1 word and

the tag requires 1 word). Table 2.1 shows the possible request sizes and the corresponding

states where 0 indicates available and * represents ignore. Using the size of the request the

corresponding table is selected. Next, using the bitmap pattern from the valid bitmap the

corresponding states are checked for matches. So, if the valid bitmap pattern for a request

of size 3 is 00011000, then the first and last entry of the table for size 3 would be activated.

The first matching entry is used to determine the index at which the insertion takes place.

Alternatively, if none of the entries match, then the replacement policy is triggered to evict

a block. This approach is based on the look-up technique implemented in ternary content

addressable memories described by Pagiamtzis and Sheikholeslami in [30].

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 18

Size States

2 00******

*00*****

00**

00

****00**

*****00*

******00

3 000*****

*000****

000*

***000**

****000*

*****000

4 0000****

*0000***

0000

***0000*

****0000

Size States

5 00000***

*00000**

**00000*

***00000

6 000000**

000000

**000000

7 0000000*

*0000000

8 00000000

Table 2.1: Table based substring search states

2.4 Replacement Policy

The replacement policy of a cache determines which blocks are evicted when new data is

brought in and there is no room to store it. The replacement algorithm tries to make an

optimal choice where it evicts a blocks which is not expected to be used in the near future.

The most optimal choice possible would be to remove a block which is not going to be

referenced in the program again or which is going to be referenced farthest in the future in

comparison to the other cache blocks. The optimal algorithm is also known as ”Belady’s

Optimal Algorithm”, named after Hungarian computer scientist, Laszlo Belady.

The Least Recently Used (LRU) algorithm is a popular choice for conventional caches

and is based on the principle of temporal locality of reference. The hardware tracks data

reference to the different cache blocks and when a new insertion request arrives, the least

recently used block in the set is evicted. Implementing an LRU cache in software is relatively

easy with the use of a linked list. Hardware manufacturers commonly implement the Pseudo-

LRU (PLRU) which has a lower meta-data overhead and is a reasonable approximation of

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 19

LRU. The tree based PLRU was implemented in processors such as the Intel 80486 and

many processors in the PowerPC family.

2.4.1 Pseudo-LRU

The tree based Pseudo-LRU algorithm was developed as an approximation of LRU due to

the exponentially increasing complexity of storing the LRU state for increasing number of

ways (an Nway cache would require N ! states). For multi threaded processor designs and

megabyte sized caches, it is often desirable to have a high level of associativity. For Pseudo-

LRU, one bit indicates whether the most recent reference is to a line in either the first half

or the second half of the lines in a set; then, this technique is logically applied recursively,

resulting in a logical binary tree with N-1 nodes (thus N-1 bits are required to represent a

state in tree-PLRU). A 4-way set associative can be encoded for PLRU replacement with 3

bits. Each bit represents one branch point in a binary decision tree; let 1 represent that the

left side has been referenced more recently than the right side, and 0 vice-versa.

START

ALL WAYS

INVALID ?

BIT[0] == 0 ?

BIT[1] == 0 ?

WAY 1WAY 0

NOYES

YES

YES

BIT[2] == 0 ?

WAY 3WAY 2

NOYES

NO

USE ANY

NO

00x

01x

1x0

1x1

WAY 0

WAY 1

WAY 2

WAY 3

WAY 0

WAY 1

WAY 2

WAY 3

11_

10_

0_1

0_0

STATE REPLACE REFER STATE

STATE TRANSITION TABLES

‘x’ means

don’t care

‘_’ means

unchanged

(a) (b)

Figure 2.5: Pseudo-LRU decision tree and state transition table : The flowchart on
the left shows the decision making process based on the values of the 3 PLRU bits in a 4-way
associative cache. The state transition tables on the right are (a) way to replace for given
state (b) state to transition to on reference to a way. Reproduced from Intel Embedded
Pentium Processor Family Dev. Manual[9].

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 20

2.4.2 Amoeba-Cache Replacement Policy

To reclaim the space from an Amoeba-Block the tag bits T? (tag) and V? (valid) bits

corresponding to the block are unset. The key issue is identifying the Amoeba-Block to

replace. Classical pseudo-LRU algorithms [18, 27] keep the meta-data for the replacement

algorithm separate from the tags to reduce port contention. To be compatible with pseudo-

LRU and other algorithms such as DIP [32] that work with a fixed number of ways, a set

in Amoeba-Cache can be logically partitioned into Nways. For instance, partitioning a 32

word cache set into 4 logical ways, any access to an Amoeba-Block tag found in words 0

—7 of the set is treated as an access to logical way 0. Finding a replacement candidate

involves identifying the selected replacement way and then picking (possibly randomly) a

candidate Amoeba-Block . This procedure is repeated until the required amount of space is

made available. More refined replacement algorithms that require per-tag meta-data can

harvest the space in the tag-word of the Amoeba-Block which is 64 bits wide (for alignment

purposes) while physical addresses rarely extend beyond 48 bits.

2.5 Partial Misses

With variable granularity data blocks, a challenging although rare case (5 in every 1K

accesses) that occurs is a partial miss. It is observed primarily when the spatial locality

changes. Figure 2.6 shows an example. Initially, the set contains two blocks from the region

R, one Amoeba-Block caches words 0 — 2 (Region:R Start:0 End:2) and the other caches

words 6 and 7 (Region:R Start:6 End:7). Let us assume that the CPU reads word 4, which

misses, and the spatial pattern predictor requests an Amoeba-Block with range Start:0 and

End:7. The cache has Amoeba-Blocks that hold sub-parts of the incoming Amoeba-Block ,

and only some words (4,5 and 5) need to be fetched.

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 21

R 0 1 2 R 6 7

R 0 - 7 NEW ∩ TAGS

1

∩ OPERATION

q RNEW == RTAG

q STARTNEW ≤ ENDTAG

q ENDNEW > STARTTAG

2
MSHR

FETCH NEW

S
T

A
G

E
 1

 O
F

 2

0 1 2 6 7

MSHR

S
T

A
G

E
 2

 O
F

 2

R

0 1 2 3 4 5 6 7

3

4

5

CACHE SET

CACHE SET

ALLOCATE

SPACE

Figure 2.6: Partial miss processing : The partial miss processing is shown as 2 separate
stages. Stage 1 deals with the identification and eviction (to MSHR) of all overlapping
blocks. Stage 2 issues the miss, allocates space for the new Amoeba-Block and patches in
the missing words from a lower level in the memory hierarchy before copying the data back
into the cache set. Due to the infrequent nature of partial misses the implementation does
not optimize for fetching only the missing words.

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 22

Amoeba-Cache removes the overlapping sub-blocks and allocates a new Amoeba-Block .

This is a multiple step process: ~1 On a miss, the cache identifies the overlapping sub-

blocks in the cache using the tags read out during look-up. The ∩(in) operation returns

false if there are no overlapping blocks. The ∩ operation consists of an equality check for

the region (R), StartNew ≤ EndTag and EndNew > StartTag (where New refers to the fetch

request from the spatial pattern predictor and Tag refers to the existing Amoeba-Block).~2 The data blocks that overlap with the miss range are evicted and moved one-at-a-time

to the miss status holding register (MSHR) entry. ~3 Space is then allocated for the new

block, i.e., it is treated like a new insertion. A miss request is issued for the entire block

(Start:0 — End:7) even if only some words (e.g., 3, 4 and 5) may be needed. This ensures

request processing is simple and only a single refill request is sent. ~4 The incoming data

block is patched into the MSHR; only the words not obtained from the L1 (words 3,4 and

5 as indicated in Fig2.6) are copied (since the lower level could be stale). ~5 The entire

block is copied back into the SRAM array.

2.6 Spatial Pattern Predictor

The Amoeba-Cache uses a spatial block predictor, which informs refill requests about the

range of the block to fetch. Amoeba-Cache can exploit any spatial locality predictor and

there have been many efforts in the compiler and architecture community [7, 19, 31, 6]. A

tabular approach is adopted, as shown in Fig 2.7, consisting of a set of access bitmaps; each

entry is RMAX (maximum granularity of an Amoeba-Block) bits wide and represents whether

the word was touched during the lifetime of the recently evicted cache block. The entry

is indexed with information gleaned from either the program counter (PC) which initiated

the cache miss or region tag for the effective address or both. On a miss, the predictor

will search for an entry and choose the range of words to be fetched on a miss on either

side (left and right) of the critical word. The predictor optimizes for spatial prefetching

and will over-fetch (bring in potentially untouched words), if they are interspersed amongst

contiguous chunks of touched words. The prediction can also be bypassed when there is

low confidence in the prediction accuracy, i.e. when there may not be an entry in the table.

Trade-offs in the design of the spatial predictor are evaluated in § 4.3.

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 23

PC / REGION 0 1 0 1 1 1 0 0

PC / REGION 1 1 1 0 1 1 1 1

PC / REGION 0 0 0 0 1 1 1 1

PC / REGION 1 1 1 1 1 1 0 0

INDEX BITMAP

PREDICTOR TABLE

1

PC ADDR: LOAD 1 1 1 1 1 1 0 0
CRITICAL WORD

2

3

4

R 0 - 5PREDICT

Figure 2.7: Amoeba-Cache Predictor : On a cache miss, the Amoeba-Cache predictor

performs the following steps. ~1 Look the table using bits from the program counter or

region tag or a combination of both. ~2 If an entry is present for the calculated index, the
corresponding bitmap is read out from the table. The bitmap is updated on eviction of a
cache block with the pattern of words accessed by the CPU in the cache block during its

lifetime. ~3 The critical word (word requested by the instruction) is examined to ensure it
is part of the marked portion of the bitmap. The range(START and END) for the new block

is extended to include all marked words in the bitmap. ~4 The predictor then requests the
cache to issue a miss for words 0 – 5 based on the bitmap pattern.

2.7 Related Work

This section describes prior work in the area which closely relate to the Amoeba-Cache.

2.7.1 Line Distillation

Qureshi et al[33] proposed a cache organization dubbed as the Distill Cache and a technique

known as Line Distillation to discard only the unused words from a cache line upon eviction.

Their proposed organization (as shown in Fig 2.8) includes a Line Organized Cache(LOC)

which stores blocks at the default line granularity (such as 64 bytes per line) and a Word

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 24

A B C D0 D1 D2 D3 D4 D5 D6 D7

WORD USED?

TAG A TAG B TAG C T1 T2 T3 T4 T5 T6 T7 T8

TAG MATCH TAG MATCH

WORD

MATCH

EVICT

UNUSED

WORDS

INSTALL USED WORD

EVICTED LINE

DATA

STORE

LOC TAG

STORE

LINE

ADDRESS

HIT

WOC TAG

STORE

LINE

ADDRESS

WORD INDEX

VALID

BITS
LINE

HIT

WORD HIT /

HOLE MISS

Figure 2.8: Line Distillation Organization : The figure shows a single set from a 4-way
Distill Cache. The LOC consists of ways A,B and C and the WOC consists of way D. A line
evicted from the LOC ways is checked for suitable words to retain in the WOC. A look-up
in the WOC includes a check for the line address as well as the word index to qualify as a
hit.

Organized Cache(WOC) which stores blocks at the granularity of a word (usually 8 bytes).

The WOC is similar in spirit to the Victim Cache[15] proposed by Jouppi. The victim cache

is a small, fully associative cache which is usually coupled with a direct mapped cache and

stores the victim of a cache miss. It was used to alleviate problems caused by conflict misses.

The WOC however, does not cache the entire block. The WOC only caches the words within

the cache block which were touched by the application at the time of eviction. Whether

the words will be installed in the WOC or the entire line is discarded is determined by the

number of words which were touched. The authors propose a median threshold filtering

policy, where the words are retained in the WOC on eviction only if the number of words

touched in the cache line from the LOC is less than the median number of words touched

in a cache block in the application. The authors propose the implementation of the Distill

Cache at the L2 as the design of the L1 data cache is is heavily constrained by cycle time

and out of order processors already cover some of the latency of the cache misses. Their

findings show an average improvement of 12% in IPC by reducing cache misses for a 1MB

8-way L2 by 30%.

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 25

The Distill Cache is similar to the Amoeba-Cache in the sense that in a single cache it

supports word granularity blocks and line granularity blocks as two extremes. The Amoeba-

Cache supports varying granularity blocks of sizes 1–RMAX words (see § 2.1). The WOC

always incurs a high overhead in terms of a single tag for each of the data words in the

WOC which is similar to the worst case scenario for an Amoeba-Cache where all the data

words in the cache set are of size 1 word. Veidenbaum et al[40], propose the entire cache be

word organized and propose an online algorithm to prefetch required words. This approach

however has a built in tag overhead of 50% and requires energy intensive associative searches.

2.7.2 Sector Caches

The original cache designs[21] were essentially sector caches in nature was due to the technol-

ogy available at the time (the discrete transistor logic for sectors was easier to implement)

where the cache consisted of sectors (address tags) and sub-sectors (or blocks with valid

bits). They were deprecated in favor of set associative caches which have superior perfor-

mance in terms of miss rate and because many sub-sectors went unused due to early eviction

of a sector (for a 64K data cache with 256 byte sector frame and 64 byte sector size had

only 74% utilization[34]).

TAG SUBSECTOR 0 SUBSECTOR 1 SUBSECTOR N

V D V D V V D V

Figure 2.9: Sector Frame : Diagram of a single sector frame (reproduced from [34]). D is
the dirty bit and V is the valid bit associated with the sub-sector. The first documented
use of a cache in a computing system, the IBM 360/85, was 16 KBytes in size and consisted
of 16 sector frames of 16 sub-sectors, each of size 64 byte blocks.

In the 90’s interest in sector cache design was revived by Rothman et al[34] and Seznec[36,

37] due to their suitability for large cache design. Sector caches are also desirable due to

reduced bus traffic and smaller latency overheads. The Intel Pentium 4, SUN SPARC and

IBM PowerPC G4/G5 all incorporated sector designs into the cache memory hierarchy.

The Power7 architecture also employs a sector design at the L2 with 32 bytes per subsector.

Sector caches can also be combined with victim caches as proposed by Lai et al[20] to reduce

miss rates. Prior work on spatial pattern predictors by Kumar et al[19], Pujara et al[31]

and Yoon et al[42, 43] use sector caches as the substrate for their proposals.

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 26

Sector caches provide variable granularity caching at the granularity of the subsector size.

However, the space freed up by unused sub-sector cannot be reused by a different sector

frame. The Amoeba-Cache is able to provide adaptive granularity caching at a granularity of

a word and the unused space can be used by Amoeba-Blocks from other regions. Decoupled

sector caches[36] help reduce the number of invalid sub-sectors within a sector by increasing

the number of tags per sector. Compared to the Amoeba-Cache, the tag space is a constant

overhead and limits the number of invalid sectors that can be eliminated. Pujara et al[31]

consider a word granularity sector cache and use a predictor to try and bring in only the

used words. Smaller granularity sectors increase misses and optimizations that prefetch can

pollute the cache and interconnect with unused words.

2.7.3 Indirect Index Caches

The Indirect Index Cache(IIC) was proposed by Hallnor et al.[13] as a practical, fully asso-

ciative, software managed secondary cache system that does not require OS or application

intervention. Their goal was to provide LLCs the benefits of full associativity and software

management similar to DRAM architectures. Their motivation was the magnitude of the

increasing gap in latency between LLC and DRAM which is similar to the existing gap be-

tween DRAM and disk. In a conventional cache each way is statically associated with a tag

entry and indicates whether the way is valid. In the IIC, the tag entries are not associated

with particular data entries (ways). A tag entry in the IIC contains a pointer to the data

block, i.e. an index into the cache’s data array. And since a tag entry can indicate any data

array location, the cache is fully associative. Figure 2.10 illustrates an example IIC design.

The tag storage requirement for the IIC is greater than a conventional cache as the

position of an entry in the tag store for the IIC is not related to the corresponding physical

address of the block. Assuming a 48-bit physical address for a 1M cache with 256 byte

blocks, the tag entry in the primary tag storage, as shown in Figure 2.10, consists of tag bits

(48−log2(256) = 40 bits), status bits (3 bits - valid, dirty and unreferenced), the index of the

data block in the data array (log2(1M/256) = 12 bits), chain pointer (log2(1M/256) = 12

bits) and replacement policy data storage (32 bits). Thus each tag entry is 99 bits in size.

The latency overheads for the IIC are caused by : serial access of tag and data, additional

hit and miss latency overhead due to hash table look-ups and additional miss latency due

to software management.

In 2004, Hallnor et al[14] proposed a compressed memory hierarchy based on the IIC.

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 27

TAG OFFSET

HASH

TAG

ENTRY

TAG

ENTRY

TAG

ENTRY

TAG

ENTRY
CHAIN

TAG STATUS INDEX REPL

TAG

ENTRY
CHAIN

= ? = ? = ? = ?TAG

HIT? HIT? HIT? HIT?

= ?TAG

HIT?

DATA

DATA

1
2

Figure 2.10: Indirect Index Cache : The tag array for an IIC is split into two parts. A

primary hash table and a secondary block for chaining. ~1 On each access, the block tag is
hashed to obtain a primary table index. The primary table is associative, so a single search
accesses the first few entries (4 in the example figure) of the hash chain. Collisions beyond

this depth are chained into the secondary hash storage as shown in ~2 .

Their design to support compression in the LLC was heavily inspired by IBM’s Memory

Expansion Technology(MXT)[38]. The IIC already supported the random placement of

blocks within a set with the index of the data block being stored in tag entry. With suitable

modifications, the IIC was made to support compressed, variable granularity blocks.

The IIC-Compressed design is similar to the Amoeba-Cache in the sense that it can

cache variable granularity data blocks. However, the increased tag structure complexity

and nature of serialized access to tags and data detract from its merits. The goals of

caching variable granularity data blocks are different for the Amoeba-Cache(bandwidth and

energy reduction) and the IIC(caching compressed blocks).

2.7.4 Prefetching

Data prefetching techniques share a similar goal with the Amoeba-Cache in the reduction

of miss rate. Software and hardware techniques were explored in the 90’s[39] in order to

reduce memory stalls in memory bound applications. Current x86 implementations include

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 28

hardware prefetchers and instructions in the ISA which serve as hints. The Core i7 processor

and Xeon 5500 series processors, for example, have some prefetchers that bring data into the

L1 cache and some that bring data into the L2. There are also different algorithms some

monitor data access patterns for a particular cache and then try to predict what addresses

will be needed in the future. Others use simpler algorithms, such as fetching 2 adjacent cache

lines (next line prefetchers). As an example of software based prefetching, GCC provides

__builtin_prefetch which is a high level interface to the data prefetch instructions for

the target platform.

On issuing a prefetch, the system takes a expends energy in transferring a cache block

into the upper levels of the cache hierarchy. There is also a risk of evicting useful data

to make room for the prefetched block. This approach is antithetical to the nature of the

Amoeba-Cache, which seeks to minimize miss rate by caching useful data only and thereby

increasing the effective caching capacity. However, spatial prefetching can be achieved with

the Amoeba-Cache by increasing the RMAX size. For example, similar to next line prefetchers

for a cache with 64B cache blocks, an RMAX size of 128B would have a similar effect. Current

predictor policy would apply the RMAX to all Amoeba-Blocks whereas the prefetcher for the

conventional cache would only do so for certain blocks. This may lead to cache pollution

and degradation in performance. Also prefetchers are limited to a fixed granularity of a

cache line whereas increasing the RMAX size would attempt to capture are the utilized words

within the expanded region. Related observations are presented in § 4.4.1 for tuning RMAX

size.

2.7.5 Other related work

Recently Yoon et al. have proposed an adaptive granularity DRAM architecture[42]. This

provides the support necessary for supporting variable granularity off-chip requests from

an Amoeba-Cache-based LLC. Some research [11, 8] has also focused on reducing false

sharing in coherent caches by splitting/merging cache blocks to avoid invalidations. They

would benefit from the Amoeba-Cache design, which manages block granularity in hardware.

There has a been a significant amount of work at the compiler and software runtime level

(e.g. [7]) to restructure data for improved spatial efficiency. There have also been efforts

from the architecture community to predict spatial locality [31, 41, 19, 43], which can be

used to predict Amoeba-Block ranges. Finally, cache compression is an orthogonal body

of work that does not eliminate unused words but seeks to minimize the overall memory

CHAPTER 2. AMOEBA CACHE ARCHITECTURE 29

footprint [2].

Chapter 3

Implementation

This chapter describes the additional hardware complexity added to an Amoeba-Cache with

respect to a conventional cache in order to support variable granularity Amoeba-Blocks. The

chapter also describes the simulation infrastructure used to evaluate the performance of the

Amoeba-Cache.

3.1 Hardware complexity

The complexity of the Amoeba-Cache is analyzed along the following directions:

• Additional complexity of the cache controller

• Area, latency and energy overhead

• Challenges of megabyte sized Amoeba-Caches

3.1.1 Cache Controller

Each level of the cache memory hierarchy incorporates a finite state machine (FSM) called

the cache controller to track the state of the blocks currently being cached. The cache

controller is the interface between the CPU, cache and DRAM as shown in Fig 3.1(a). The

figure depicts a look through hierarchy where the processor is isolated from the system,

thus allowing the processor to run with data from the cache while another bus master is

accessing main memory. Fig 3.1(b) shows an overview of the implementation logic for the

cache controller. Using the current state of the block and the incoming request (which

30

CHAPTER 3. IMPLEMENTATION 31

could be from the CPU, DRAM or a remote cache) a new state is set for the cache block.

The state transition diagram of an L1 Amoeba-Cache is shown in Fig 3.2. The FSM for the

Amoeba-Cache is a superset of an equivalent FSM for a conventional cache (without cache

coherence; more details in § 3.1.6).

CCCPU
NORTH

BRIDGE

TAG

ARRAY

DATA

ARRAY

CACHE

(a) Interface

STATE

REGISTER

FSM LOGIC

INPUT

EVENT

NEXT

STATE

PERFORM

ACTION

(b) FSM Logic

Figure 3.1: Fig (a) on the left shows a high level block diagram of the cache controller’s (CC)
position in the memory hierarchy. The Northbridge is used to manage data communications
between the CPU and motherboard and is also where the memory controller resides. In
newer architectures such as the Intel Sandy Bridge, the Northbridge has been integrated on
chip. Fig (b) on the right depicts a cache controller where the input data path from the
cache (event) is used along with the current state to perform the corresponding action and
change the state of the block as required.

The cache controller manages operations at the aligned RMAX granularity. The con-

troller permits only one in-flight cache operation per RMAX region, i.e. transition buffer

entries in the cache controller are indexed using the region bits. In-flight cache operations

ensure no address overlap with stable Amoeba-Blocks in order to eliminate complex race

conditions. Fig 3.2 shows the L1 cache controller state machine for the Amoeba-Cache.

CHAPTER 3. IMPLEMENTATION 32

NP

IV

DATA

ID

DATA

V

IV_B

IV_C D

L1

EVICT

L2

DATA
PARTIAL

MISS

LOAD

LOAD
STORE

L2

DATA

L1

WRITEBACK

LOAD STORE

PARTIAL

MISS

LOAD /

STORE

LAST L1

EVICT

LOCAL

L1

EVICT

STORE

L1 cache controller states

State Description

NP Amoeba-Block not present in the cache.

V All words corresponding to Amoeba-Block present and valid (read-
only)

D Valid and at least one word in Amoeba-Block is dirty (read-write)

IV B Partial miss being processed (blocking state)

IV Data Load miss; waiting for data from L2

ID Data Store miss; waiting for data. Set dirty bit.

IV C Partial miss cleanup from cache completed (treat as full miss)

Amoeba-Cache specific events

Partial miss: Process partial miss.
Local L1 Evict: Remove overlapping Amoeba-Block to MSHR.
Last L1 Evict: Last Amoeba-Block moved to MSHR. Convert to full miss
and process load or store.

Figure 3.2: L1 Cache Controller for Amoeba-Cache : The Amoeba-Cache specific
states and events are marked by dashed lines. The Amoeba-Cache specific events are de-
scribed in the table.

CHAPTER 3. IMPLEMENTATION 33

A simple default single core protocol is assumed which contains blocks in either Valid

(V), Not Present (NP) and Dirty (D) as shown in Fig 3.2. There are also two transient

states IV Data(block transitions from Invalid/NP to Valid, waiting for Data response from

memory; cache miss caused by a load) and ID Data(block transitions from Invalid/NP

to Dirty, waiting for Data response from memory; cache miss caused by a store). To

handle partial misses, unique to the Amoeba-Cache, two new states are added to the default

protocol, IV_B and IV_C. IV_B is a blocking state that blocks other cache operations to

RMAX region until all relevant Amoeba-Blocks to a partial miss are evicted. IV_C indicates

partial miss completion. This enables the controller to treat the access as a miss and

issue the refill request. The Partial Miss event triggers the clean-up operations (Stage

1 and Stage 2 in Figure 2.6). Local_L1_Evict is an event that keeps being triggered for

each Amoeba-Block involved in the partial miss. Last_L1_Evict is triggered when the last

Amoeba-Block involved in the partial miss is evicted to the MSHR (see Stage 2 of Fig 2.6).

A key difference between the L1 and lower-level protocols is that the Load/Store event

in the lower-level protocol may need to access data from multiple Amoeba-Blocks. In such

cases, similar to the Partial Miss event, each block is read out independently before

supplying the data (more details in § 3.1.5).

3.1.2 Area, latency, and energy Overhead

The extra metadata required by Amoeba-Cache are the T?(1 tag bit per word) and V?(1

valid bit per word) bitmaps as shown in Fig 2.2. Table 3.1 shows the quantitative overhead

compared to the data storage.Both the T? and V? bitmap arrays are directly proportional

to the size of the cache and require a constant storage overhead (3% in total). The T?

bitmap is read in parallel with the data array and does not affect the critical path; T? adds

2%—3.5% (depending on cache size) to the overall cache access energy. V?is referred only

on misses when inserting a new block.

The Amoeba-Cache look-up logic was synthesized1 using Synopsys to quantify the area,

latency and energy penalty. Amoeba-Cache is compatible with Fast and Normal cache

access modes [28], both of which read the entire set from the data array in parallel with the

way selection to achieve lower latency. Fast mode transfers the entire set to the edge of the

1Actual synthesis was at 180nm node size and the results were scaled to 32 nm (latency and energy scaled
proportional to Vdd (taken from [10]) and V dd2 respectively). For synthesis, we used the Synopsys design
compiler (Vision Z-2007.03-SP5).

CHAPTER 3. IMPLEMENTATION 34

Cache configuration

64K (256by/set) 1MB (512by/set) 4MB (1024by/set)

Data RAM parameters

Delay 0.36ns 2ns 2.5 ns
Energy 100pJ 230pJ 280pJ

Amoeba-Cache components (CACTI model)

T?/V? map 1KB 16KB 64KB
Latency 0.019ns (5%) 0.12ns (6%) 0.2ns (6%)
Energy 2pJ (2%) 8pJ (3.4%) 10pJ (3.5%)
LRU 1

8KB 2KB 8KB

Lookup Overhead (VHDL model)

Area 0.7% 0.1%

Latency 0.02ns 0.035ns 0.04ns

Table 3.1: Amoeba-Cache hardware overheads : Percentage indicates overhead com-
pared to data array of a cache. 64K cache operates in Fast mode; 1MB and 4MB operate
in Normal mode. International Technology Roadmap for Semiconductors (ITRS) specified
32nm High Performance (HP) transistors are assumed for 64K cache and 32nm ITRS Low
Output Power (LOP) transistors for 1MB and 4MB.

H-tree, while Normal mode, only transmits the selected way over the H-tree.

Fig 2.4 shows Amoeba-Cache ś look-up hardware overhead on the critical path. The

Amoeba-Cache look-up logic is compared against a conventional cache’s look-up logic (mainly

the comparators). The area overhead of the Amoeba-Cache includes registering an entire

line that has been read out, the tag operation logic, and the word selector. The components

on the critical path once the data is read out are the 2-way multiplexers, the ∈ compara-

tors, and priority encoder that selects the word; the T? bitmap is accessed in parallel and

off the critical path. Amoeba-Cache is made feasible under today’s wire-limited technology

where the cache latency and energy is dominated by the bit/word lines, decoder, and H-

tree [28]. Amoeba-Cache’s comparators, which operate on the entire cache set, are 6× the

area of a fixed cache’s comparators. In a conventional cache, the data array occupies 99%

of the overall cache area. The critical path is dominated by the wide word selector since

the comparators all operate in parallel. The look-up logic adds ' 60% to the conventional

cache’s comparator time. The overall critical path is dominated by the data array access

and Amoeba-Cache’s look-up circuit adds 0.02ns to the access latency and ' 1pJ to the

energy of a 64K cache, and 0.035ns to the latency and '2pJ to the energy of a 1MB cache.

Amoeba-Cache’s overhead needs careful consideration when implemented at the L1 cache

CHAPTER 3. IMPLEMENTATION 35

level. There are two options for handling the latency overhead a) if the L1 cache is the critical

stage in the pipeline, the CPU clock can be throttled by the latency overhead to ensure that

the additional logic fits within the pipeline stage. This ensures that the number of pipeline

stages for a memory access does not change with respect to a conventional cache, although

all instructions bear the overhead of the reduced CPU clock; b) an extra pipeline stage can

be added to the L1 hit path, adding a 1 cycle overhead to all memory accesses but ensuring

no change in CPU frequency. The performance impact of both approaches is quantified in

§ 4.2.1.

3.1.3 Tag-only operations

Conventional caches support tag-only operations to reduce data port contention. While

the Amoeba-Cache merges tags and data, like many commercial processors it decouples the

replacement metadata and valid bits from the tags, accessing the tags only on cache look-

up. Look-ups can be either CPU side or network side (coherence invalidations, writebacks

or forwarding). CPU-side look-ups and writebacks (' 95% of cache operations) both need

data and hence Amoeba-Cache in the common case does not introduce extra overhead.

Amoeba-Cache does read out the entire data array unlike serial-mode caches as discussed

previously. Invalidation checks and snoops can be more energy expensive with Amoeba-

Cache compared to a conventional cache. Fortunately, coherence snoops are not common in

many applications (e.g., 1/100 cache operations in SpecJBB) as a coherence directory and

an inclusive LLC filter them out.

3.1.4 Trade-off with large caches

Large caches with many words per set (≡ highly associative conventional cache) need careful

consideration. Typically, highly associative caches tend to serialize tag and data access with

only the relevant cache block read out on a hit and no data access on a miss. The trade-off

between reading the entire set (normal mode), which is compatible with Amoeba-Cache,

and only the relevant block (serial mode), is analyzed herein. The cache size is varied from

2M—8M and associativity from 4(256B/set) — 32 (2048B/set). Under current technology

constraints (Figure 3.3), only at very high associativity does serial mode demonstrate a

notable energy benefit. Large caches are dominated by H-tree energy consumption and

reading out the entire set at each sub-bank imposes an energy penalty when bitlines and

CHAPTER 3. IMPLEMENTATION 36

0

0.4

0.8

1.2

1.6

2

4 8 16 32 4 8 16 32 4 8 16 32

2M 4M 8M

N
o

rm
al

v

s
 S

er
ia

l
M

o
d

e

Latency Energy

Ways Ways Ways

Baseline: Serial. ≤ 1 Normal is better. 32nm, ITRS LOP.

Figure 3.3: Serial vs Normal mode cache : This graph shows the ratio of Serial mode
access versus Normal mode access. Thus values less than 1 indicate the serial mode access
is more efficient. The cache configurations are grouped in terms of size and subgroups for
the number of ways per cache set.

wordlines dominate (more than 2KB of words per set).

64K (256 bytes/set) 1MB (512 bytes/set) 2MB (1024 bytes/set)

N Tags/set 2 4 4 8 8 16
Overhead 1KB 2KB 2KB 16KB 16KB 32KB

Benchmarks

Low 30% 45% 42% 64% 55% 74%
Moderate 24% 62% 46% 70% 63% 85%

High 35% 79% 67% 95% 75% 96%

Table 3.2: Percentage of direct accesses with fast tags

The Amoeba-Cache can be tuned to minimize the hardware overhead for large caches.

With many words/set the cache utilization improves due to longer block lifetimes making

it feasible to support Amoeba-Blocks with a larger minimum granularity (> 1 word). If we

increase minimum granularity to two or four words, only every third or fifth word could

be a tag, thus the number of comparators and multiplexers required for look-up reduce to
Nwords/set

3 or
Nwords/set

5 . When the minimum granularity is equal to max granularity (RMAX),

we obtain a fixed granularity cache with Nwords/set/RMAX ways. Cache organizations that

collocate all the tags together at the head of the data array enable tag-only operations and

CHAPTER 3. IMPLEMENTATION 37

serial Amoeba-Block accesses that need to activate only a portion of the data array. However,

the set may need to be compacted at each insertion. Recently, Loh and Hill [24] explored

such an organization for supporting tags in multi-gigabyte caches.

The use of Fast Tags help reduce the tag look-ups in the data array. Fast tags use a

separate traditional tag array-like structure to cache the tags of the recently-used blocks

and provide a pointer directly to the Amoeba-Block similar to Indirect Index Caches(see

§ 2.7.3). The number of Fast Tags needed per set is proportional to the number of blocks in

each set, which varies with the spatial locality in the application and the number of bytes

per set (more details in Section 4.1). Three different cache configurations were studied (64K

256B/set, 1M 512B/set, and 2M 1024B/set) while varying the number of fast tags per set

(see Table 3.2). With 8 tags/set (16KB overhead), the fast tags can filter 64—95% of the

accesses in a 1MB cache and 55—75% of the accesses in a 2MB cache.

3.1.5 Hierarchical cache memory systems

The Amoeba-Cache can be implemented in a hierarchical cache memory system of Inclusive

nature (see § 1.1). For the Amoeba-Cache however, inclusion means that the L2 cache

contains a superset of the data words in the L1 cache; however, the two levels may include

different granularity blocks. For example, the Sun Niagara T2 uses 16 byte L1 blocks and

64 byte L2 blocks. Amoeba-Cache permits non-aligned blocks of variable granularity at the

L1 and the L2, and needs to deal with two issues: a) L2 events that may invalidate multiple

L1 blocks and b) L1 refills that may need data from multiple blocks at the L2. For both

cases, the Amoeba-Cache needs to identify all the relevant Amoeba-Blocks that overlap with

either the recall or the refill request. This situation is similar to a Nigara’s L2 eviction which

may need to recall 4 L1 blocks. Amoeba-Cache’s logic ensures that all Amoeba-Blocks from

a region map to a single set at any level (using the same RMAX for both L1 and L2). This

ensures that L2 recalls or L1 refills index into only a single set. To process multiple blocks for

a single cache operation, the Amoeba-Cache uses the step-by-step process outlined in § 2.5

(Stage 1 and Stage 2 in Fig 2.6). Finally, the L1-L2 interconnect needs 3 virtual networks,

two of which, the L2→L1 data virtual network and the L1→L2 writeback virtual network,

can have packets of variable granularity; each packet is broken down into a variable number

of smaller physical flits.

CHAPTER 3. IMPLEMENTATION 38

3.1.6 Cache Coherence

There are three main challenges that variable cache line granularity introduces when inter-

acting with the coherence protocol: 1) How is the coherence directory maintained? 2) How

to support variable granularity read sharing? and 3) that is the granularity of write inval-

idations? The key insight that ensures compatibility with a conventional fixed-granularity

coherence protocol is that an Amoeba-Block always lies within an aligned RMAX byte region

(see § 2.1). To ensure correctness, it is sufficient to maintain the coherence granularity and

directory information at a fixed granularity ≤ RMAX granularity. Multiple cores can si-

multaneously cache any variable granularity Amoeba-Block from the same region in Shared

state; all such cores are marked as sharers in the directory entry. A core that desires exclu-

sive ownership of an Amoeba-Block in the region uses the directory entry to invalidate every

Amoeba-Block corresponding to the fixed coherence granularity. All Amoeba-Blocks relevant

to an invalidation will be found in the same set in the private cache (see set indexing in

§ 2.1). The coherence granularity could potentially be < RMAX so that false sharing is

not introduced in the quest for higher cache utilization (larger RMAX). The core claiming

the ownership on a write will itself fetch only the desired granularity Amoeba-Block , saving

bandwidth. An implementation and detailed evaluation of the coherence protocol is part of

future work.

3.2 Simulation Infrastructure

The simulation infrastructure used to evaluate the performance of the Amoeba-Cache is

described in this section. The Amoeba-Cache was implemented using the Wisconsin Mul-

tifacet Group’s GEMS[26] system simulator infrastructure. To focus on the performance

of the memory hierarchy in the studies, an in-order CPU model was used where each non-

memory instruction was assumed to have a latency of 1 cycle. The SIMICS frontend was

replaced with trace driven frontend. Application binaries were instrumented with PIN[25] to

collect information about the memory accesses being made by the application. The address

of an access, the type of access, the current instruction count, the contents of the program

counter and the size of the memory access were logged in a compressed format.

CHAPTER 3. IMPLEMENTATION 39

3.2.1 GEMS-Ruby

Ruby is a component of the GEMS framework which implements a detailed simulation

model for the memory system. It models inclusive/exclusive cache hierarchies with var-

ious replacement policies, coherence protocol implementations, interconnection networks,

DMA and memory controllers, various sequencers that initiate memory requests and han-

dle responses. The models are modular, flexible and highly configurable. It implements

a domain specific language called SLICC (Specification Language for Implementing Cache

Coherence) that is used for specifying the cache controller finite state machine. SLICC im-

poses constraints on the types state machines which can be specified. Apart from protocol

specification, SLICC also combines the interaction between the network components with

cache memories. Ruby was suitably modified to support variable granularity accesses and

the Amoeba-Cache protocol was designed to work with it.

Chapter 4

Evaluation

This chapter evaluates the performance of the Amoeba-Cache described in Chapter 2. The

evaluation is performed using the infrastructure described in Chapter 3.2. This chapter is

divided into sections based on performance evaluations of:

• Comparison against a fixed granularity cache

• Adaptivity of the Amoeba-Cache

• The spatial pattern predictor

• Amoeba-Cache versus other approaches

4.1 Improved Memory Hierarchy Efficiency

Result 1: Amoeba-Cache increases cache capacity by harvesting space from unused words

and can achieve an 18% reduction in both L1 and L2 miss rate.

Result 2: Amoeba-Cache adaptively sizes the cache block granularity and reduces L1↔L2

bandwidth by 46% and L2↔Memory bandwidth by 38%.

In this section, the bandwidth and miss rate properties of an Amoeba-Cache are com-

pared against a conventional cache. A Fixed cache represents a conventional cache which

allocates a fixed granularity cache block on a refill request. The accuracy of the spatial

pattern predictor is an important factor which governs the accuracy of the Amoeba-Cache

and is evaluated separately. For the results presented in this section, cache line utilization

40

CHAPTER 4. EVALUATION 41

statistics, gathered from a prior run of the application on a conventional cache, are used

to drive the predictor. This isolates the benefits of the Amoeba-Cache from the potentially

changing accuracy of the spatial pattern predictor across different cache geometries. This

also ensures that the spatial granularity predictions can be replayed across multiple simu-

lation runs. To ensure equivalent data storage space, the Amoeba-Cache size is set to the

sum of the tag array and the data array in a conventional cache. At the L1 level (64K),

the net capacity of the Amoeba-Cache is 64K + 8×4×256 bytes and at the L2 level (1M)

configuration, it is 1M + 8×8×2048 bytes. The L1 cache has 256 sets and the L2 cache has

2048 sets.

Fig 4.1 plots the miss rate and the traffic characteristics of the Amoeba-Cache. Since

Amoeba-Cache can hold blocks varying in size from 8B to 64B, each set can hold more

blocks by utilizing the space saved from eliminating untouched words. The Amoeba-Cache

reduces the 64K L1 miss rate on average by 23%1 and standard deviation(SD) of 24 for the

Low group, and by 21%(SD:16) for the moderate group; even applications with high spatial

locality experience a 7%(SD:8) improvement in miss rate. There is a 46%(SD:20) reduction

on average in L1↔L2 bandwidth. At the 1M L2 level, the Amoeba-Cache improves the

moderate group’s miss rate by 8%(SD:10) and bandwidth by 23%(SD:12). Applications with

moderate utilization make better use of the space harvested from unused words by Amoeba-

Cache. Many low utilization applications tend to be streaming and providing extra cache

space does not help lower miss rate. However, by not fetching unused words, the Amoeba-

Cache achieves a significant reduction (38%(SD:24) on average) in off-chip L2↔Memory

bandwidth; even High utilization applications see a 17%(SD:15) reduction in bandwidth.

Utilization and miss rate are not, however, always directly correlated (more details in § 4.4).

With the Amoeba-Cache the number of blocks per set varies based on the granularity

of the blocks being fetched, which in turn depends on the spatial locality in the application.

Table 4.1 shows the average number of blocks per set. In applications with low spatial

locality, the Amoeba-Cache adjusts the block size and adapts to store many smaller blocks.

The 64K L1 Amoeba-Cache stores 10 blocks per set for mcf and 12 blocks per set for art,

effectively increasing associativity without introducing hardware overheads. At the L2, when

the working set starts to fit in the L2 cache, the set is partitioned into fewer blocks.

1All reported averages are geometric mean unless otherwise specified.

CHAPTER 4. EVALUATION 42

1.0

2.0

3.0

4.0

5.0

6.0

20 26 32 38 44 50

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

Amoeba

Fixed

(a) 64K - Low

0.5

1.0

1.5

2.0

2.5

3.0

20 26 32 38 44 50

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

Amoeba

Fixed

(b) 1M - Low

0.00

0.40

0.80

1.20

1.60

2.00

0 3 6 9 12 15

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

Amoeba

Fixed

(c) 64K - Moderate

0.35

0.40

0.45

0.50

0.55

0.60

0 3 6 9 12 15

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

Amoeba

Fixed

(d) 1M - Moderate

0.60

0.66

0.72

0.78

0.84

0.90

3 4 5 6 7 8

B
a

n
d

w
id

th
 (

K
B

 /
 1

K
 i

n
s)

Miss Rate (Misses/1K ins)

Amoeba

Fixed

(e) 64K - High

0.40

0.42

0.44

0.46

0.48

0.50

3 4 5 6 7 8

B
a
n

d
w

id
th

 (
K

B
 /

 1
K

 i
n

s)

Miss Rate (Misses/1K ins)

Amoeba

Fixed

(f) 1M - High

Figure 4.1: Bandwidth vs. Miss Rate for a fixed granularity cache and Amoeba-Cache.
(a),(c),(e): 64K, 4-way L1 equivalent (b),(d),(f): 1M, 8-way LLC equivalent. Markers on
the plot indicate cache block size. Note the different scales for different groups.

CHAPTER 4. EVALUATION 43

Blocks/Set 64K Cache, 288 B/set

4—5 ferret, cactus, firefox, eclipse, facesim, freqmine, milc, astar
6—7 tpc-c, tradesoap, soplex, apache, fluidanimate
8—9 h2, canneal, omnetpp, twolf, x264, lbm, jbb

10—12 mcf, art

Blocks/Set 1M Cache, 576 B/set

3—5 eclipse, omnetpp
8—9 cactus, firefox, tradesoap, freqmine, h2, x264, tpc-c

10—11 facesim, soplex, astar, milc, apache, ferret
12—13 twolf, art, jbb, lbm , fluidanimate
15—18 canneal, mcf

Table 4.1: Average number of Amoeba-Blocks per set

Note that applications like eclipse and omnetpp hold only 3—5 blocks per set on average

(lower than conventional associativity) due to their low miss rates (see Table 4.4). With

streaming applications (e.g., canneal), Amoeba-Cache increases the number of blocks/set to

>15 on average. Finally, some applications like apache store between 6—7 blocks/set with

a 64K cache with varied block sizes (see Figure 4.2): approximately 50% of the blocks store

1-2 words and 30% of the blocks store 8 words at the L1. As the size of the cache increases

and thereby the lifetime of the blocks, the Amoeba-Cache adapts to store larger size blocks

as can be seen in Figure 4.2.

Utilization is improved greatly across all applications (90%+ in many cases). Figure 4.2

shows the distribution of cache block granularities in Amoeba-Cache. The Amoeba-Block

distribution matches the word access distribution presented in Fig 1.3). With the 1M cache,

the larger cache size improves block lifespan and thereby utilization, with a significant drop

in the % of 1—2 word blocks. However, in many applications (tpc-c, apache, firefox, twolf,

lbm, mcf), up to 20% of the blocks are 3–6 words wide, indicating the benefits of adaptivity

and the challenges faced by a fixed granularity conventional cache.

CHAPTER 4. EVALUATION 44

0

20

40

60

80

100

ap
ac

h
e

ar
t

as
ta

r
ca

ct
u

s
ca
n
…

ec
li

p
se

fa
ce
…

fe
rr

et
fi

re
fo

x
fl

u
id

.
fr

eq
.

h
2

jb
b

lb
m

m
cf

m
il

c
o

m
n

et
.

so
p
le

x
tp

c-
c.

tr
ad

e.
tw

o
lf

x
2

6
4

m
ea

n

%
 o

f
A

m
o

eb
a

B
lo

ck
s

1-2 Words 3-4 Words 5-6 Words 7-8 Words

9
2

8
0

9
8

1
0

0

6
7

9
8

8
8

9
9

7
8

1
0

0

9
4

8
2

8
9

8
9

9
3

1
0

0

8
3

9
1

9
1

9
7

7
0

9
1

9
0

(a) 64K L1 cache

0

20

40

60

80

100

ap
ac

h
e

ar
t

as
ta

r
ca

ct
u

s
ca
n
…

ec
li

p
se

fa
ce
…

fe
rr

et
fi

re
fo

x
fl

u
id

.
fr

eq
.

h
2

jb
b

lb
m

m
cf

m
il

c
o

m
n

et
.

so
p
le

x
tp

c-
c.

tr
ad

e.
tw

o
lf

x
2

6
4

m
ea

n

%
 o

f
A

m
o

eb
a

B
lo

ck
s

1-2 Words 3-4 Words 5-6 Words 7-8 Words

9
5

9
1

9
7

1
0

0

6
9

9
3

8
8

9
9

7
9

1
0

0

9
7

9
2

9
2

8
3

9
2

1
0

0

9
3

8
7

9
1

9
7

7
0

9
0

9
1

(b) 1M L2 cache

Figure 4.2: Distribution of cache line granularities in the (a) 64K L1 and (b) 1M L2 Amoeba-
Cache. Average utilization is on top.

CHAPTER 4. EVALUATION 45

0%

20%

40%

60%

80%

100%

ap
ac

h
e

ar
t

as
ta

r

ca
ct

u
s

ca
n
n
e.

ec
li

p
se

fa
ce

si
m

fe
rr

et

fi
re

fo
x

fl
u
id

.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p
le

x

tp
cc

tr
ad

e.

tw
o
lf

x
2
6
4

Miss Rate Bandwidth

(a) 64K L1 cache

0%

20%

40%

60%

80%

100%

ap
ac

h
e

ar
t

as
ta

r

ca
ct

u
s

ca
n
n
e.

ec
li

p
se

fa
ce

si
m

fe
rr

et

fi
re

fo
x

fl
u
id

.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p
le

x

tp
cc

tr
ad

e.

tw
o
lf

x
2
6
4

Miss Rate Bandwidth

(b) 1M L2 cache

Figure 4.3: Miss Rate and bandwidth reduction with respect to a fixed granularity conven-
tional cache with cache line size 64 bytes for (a) 64K equivalent Amoeba-Cache and (b) 1M
equivalent Amoeba-Cache.

4.2 Overall Performance and Energy

Result 3: Amoeba-Cache improves overall cache efficiency and boosts performance by 10%

on commercial applications2, saving up to 11% of the energy of the on-chip memory hierar-

chy. Off-chip L2↔memory energy sees a mean reduction of 41% across all workloads.

2“Commercial” applications includes Apache, SpecJBB and TPC-C.

CHAPTER 4. EVALUATION 46

0%

10%

20%

30%

40%
ap

ac
h

e

ar
t

as
ta

r

ca
ct

u
s

ca
n

n
e.

ec
li

p
se

fa
ce

.

fe
rr

et

fi
re

fo
x

fl
u
id

.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p

le
x

tp
c-

c.

tr
ad

e.

tw
o

lf

x
2

6
4

%
 R

ed
u

ct
io

n

(a) Energy Improvement

0%

10%

20%

30%

40%

ap
ac

h
e

ar
t

as
ta

r

ca
ct

u
s

ca
n
n

e.

ec
li

p
se

fa
ce

.

fe
rr

et

fi
re

fo
x

fl
u
id

.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p

le
x

tp
c-

c.

tr
ad

e.

tw
o

lf

x
2

6
4

%
 R

ed
u

ct
io

n

5
0

 %

(b) Performance Improvement

Figure 4.4: The above charts (a) show the percentage reduction in energy and (b) the
percentage reduction in cycle time for an Amoeba-Cache compared to a fixed granularity
conventional cache with 64K L1 and 1M LLC. Higher bars indicate better performance.
Y-axis terminated to illustrate bars clearly.

CHAPTER 4. EVALUATION 47

A two-level cache hierarchy is modeled in which the L1 is a 64K cache with 256 sets (3

cycles load-to-use) and the L2 is 1M, 8192 sets (20 cycles). A fixed memory latency of 300

cycles is assumed. It is assumed that the L1 access is the critical pipeline stage and throttle

CPU clock by 4% (an alternative approach is evaluated in the next section). The total

dynamic energy of the Amoeba-Cache is calculated using the energy numbers determined

in Section 3.1.2 through a combination of synthesis and CACTI [28]. 4 fast tags per set at

the L1 and 8 fast tags per set at the L2 are used. The penalty for all the extra metadata in

the Amoeba-Cache is included. The energy for a single L1—L2 transfer (6.8pJ per byte) is

derived from [3, 28]. The interconnect uses full-swing wires at 32nm, 0.6V.

Figure 4.4 plots the overall improvement in performance and reduction in on-chip mem-

ory hierarchy energy (L1 and L2 caches, and L1↔L2 interconnect). For applications that

have good spatial locality (e.g., tradesoap, milc, facesim, eclipse, and cactus), the Amoeba-

Cache has minimal impact on miss rate, but provides significant benefit in terms of reduction

in bandwidth. This results in on-chip energy reduction: milc’s L1↔L2 bandwidth reduces

by '15%(see Figure 4.3(a)) and its on-chip energy reduces by 5%. Applications that suffer

from cache pollution under Fixed (apache, jbb, twolf, soplex and art) see gains in perfor-

mance and energy. Apache’s performance improves by 11% and on-chip energy reduces by

21%, while SpecJBB’s performance improves by 21% and energy reduces by 9%. Art gains

approximately 50% in performance. Streaming applications like mcf access blocks with both

low and high utilization. Keeping out the unused words in the under-utilized blocks prevents

the well-utilized cache blocks from being evicted; mcf’s performance improves by 12% and

on-chip energy by 36%.

4.2.1 Extra cache pipeline stage

An alternative strategy to accommodate Amoeba-Cache’s overheads is to add an extra

pipeline stage to the cache access which increases hit latency by 1 cycle. The CPU clock

frequency entails no extra penalty compared to a conventional cache. Using such a design,

applications in the moderate and low spatial locality group (8 applications), the Amoeba-

Cache continues to provide a performance benefit between 6—50%. milc and canneal suffer

minimal impact, with a 0.4% improvement and 3% slowdown respectively. Applications

in the high spatial locality group (12 applications) suffer an average 15% slowdown (max-

imum 22%) due to the increase in L1 access latency. In these applications, 43% of the

CHAPTER 4. EVALUATION 48

instructions (on average) are memory accesses and a 33% increase in L1 hit latency im-

poses a high penalty. Note that all applications continue to retain the energy benefit. The

cache hierarchy energy is dominated by the interconnects and the Amoeba-Cache provides

notable bandwidth reduction. While these results may change for an out-of-order, multiple-

issue processor, the evaluation suggests that Amoeba-Cache if implemented with the extra

pipeline stage is more suited for lower levels in the memory hierarchy than the L1.

-40%

-20%

0%

20%

40%

60%

ap
ac

h
e

ar
t

as
ta

r

ca
ct

u
s

ca
n
n
e.

ec
li

p
se

fa
ce

.

fe
rr

et

fi
re

fo
x

fl
u
id

.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p
le

x

tp
c-

c.

tr
ad

e.

tw
o
lf

x
2
6
4

%
 R

ed
u

ct
io

n

Figure 4.5: Percentage reduction in cycle time for all applications with with addition of an
extra cache pipeline stage to accommodate for the Amoeba-Cache look-up overhead. positive
bars indicate better performance. Negative bars indicate degradation in performance.

4.2.2 Off-chip L2↔Memory energy

The L2’s higher cache capacity makes it less susceptible to pollution and provides less

opportunity for improving miss rate. In such cases, the Amoeba-Cache keeps out unused

words and reduces off-chip bandwidth and thereby off-chip energy. We assume that the

off-chip DRAM can provide adaptive granularity transfers for Amoeba-Cache’s L2 refills as

in [42]. The DRAM model used was presented in a recent study [1] and consumes 0.5nJ

per word transferred off-chip. The low spatial locality applications see a dramatic reduction

in off-chip energy. For example, twolf sees a 93% reduction. On commercial workloads the

off-chip energy decreases by 31% and 24% respectively. Even for applications with high

cache utilization, off-chip energy decreases by 15%.

CHAPTER 4. EVALUATION 49

0%

20%

40%

60%

80%

100%

ap
ac

h
e

ar
t

as
ta

r

ca
ct

u
s

ca
n
.

ec
li

p
se

fa
ce

.

fe
rr

et

fi
re

fo
x

fl
u
id

.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p
le

x

tp
c-

c.

tr
ad

e.

tw
o
lf

x
2
6
4

%
 R

ed
u

ct
io

n

Figure 4.6: Off chip energy reduction for all applications. Higher bars indicate greater
savings in energy.

4.3 Spatial Predictor Trade-offs

The effectiveness of spatial pattern prediction is evaluated in this section. In the table-

based approach, a pattern history table records spatial patterns from evicted blocks and is

accessed using a prediction index. The table-driven approach requires careful consideration

of the following: prediction index, predictor table size and training period. The effects are

quantified by comparing the predictor against a baseline fixed-granularity cache. A baseline

64K cache is used since it induces enough misses and evictions to highlight the predictor

trade-offs clearly.

4.3.1 Predictor Indexing

A critical choice with the history-based prediction is the selection of the predictor index.

Two types of predictor indexing were explored:

• a program counter based(PC) approach[6] based on the intuition that fields in a data

structure are accessed by specific PCs and tend to exhibit similar spatial behavior.

The tag includes the PC and the critical word index: ((PC >> 3) << 3) + (addr%64)
8 .

• a Region-based (REGION) approach that is based on the intuition that similar data

objects tend to be allocated in contiguous regions of the address space and tend to

exhibit similar spatial behavior.

CHAPTER 4. EVALUATION 50

The miss rate and bandwidth properties of both the PC (256 entries, fully associative)

and REGION (1024 entries, 4KB region size) predictors were compared. The size of the table

used in each predictor was selected as the optimal found by empirical analysis for each

predictor type. For all applications apart from cactus (a high spatial locality application),

REGION-based prediction tends to overfetch and waste bandwidth as compared to PC-based

prediction, which has 27% less bandwidth consumption on average across all applications.

For 17 out of 22 applications, REGION-based prediction shows 17% better MPKI on average

(max: 49% for cactus). For 5 applications (apache, art, mcf, lbm, and omnetpp), PC has

better accuracy when predicting the spatial behavior of cache blocks than REGION and

demonstrates a 24% improvement in MPKI (max: 68% for omnetpp).

4.3.2 Predictor Table

The organization and size of the pattern table was studied using the REGION predictor. The

following parameters were evaluated :

• region size, which directly correlates with the coverage of a fixed-size table

• the size of the predictor table

• the number of bits required to represent the spatial pattern.

Large region sizes effectively reduce the number of regions in the working set and require

a smaller predictor table. However, a larger region is likely to have more blocks that exhibit

varied spatial behavior and may pollute the pattern entry. Increasing the region size from

1KB (4096 entries) to 4KB (1024 entries), the 4KB region granularity decreased miss rate by

0.3% and increased bandwidth by 0.4% even though both tables provide the same working

set coverage (4MB). Fixing the region size at 4KB, the benefits of an unbounded table

were studied. Compared to a 1024 entry table (FINITE in Figure 4.7), the unbounded

table increases miss rate by 1% and decreases bandwidth by 0.3% . A 1024 entry predictor

table (4KB region granularity per-entry) suffices for most applications. Organizing the 1024

entries as a 128-set×8-way table suffices to eliminate associativity related conflicts (<0.8%

evictions due to lack of ways).

CHAPTER 4. EVALUATION 51

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ap
ac

h
e

ar
t

as
ta

r

ca
ct

u
s

ca
n
n
e.

ec
li
p
se

fa
ce

.

fe
rr

et

fi
re

fo
x

fl
u
id

.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p
le

x

tp
cc

tr
ad

e.

tw
o
lf

x
2
6
4

Finite Infinite Finite+FT Inf+FT Oracle

(a) Misses Per Kilo Instructions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ap
ac

h
e

ar
t

as
ta

r

ca
ct

u
s

ca
n
n
e.

ec
li
p
se

fa
ce

.

fe
rr

et

fi
re

fo
x

fl
u
id

.

fr
eq

.

h
2

jb
b

lb
m

m
cf

m
il

c

o
m

n
et

.

so
p
le

x

tp
cc

tr
ad

e.

tw
o
lf

x
2
6
4

Finite Infinite Finite+FT Inf+FT Oracle

(b) Bandwidth

Figure 4.7: The charts above show the performance of the different types of Amoeba-Cache
predictors in terms of misses per kilo instructions and miss bandwidth for a 64K L1
equivalent scaled to the performance of a fixed granularity conventional cache.

FINITE: REGION predictor (1024 entry table and 4K region size).
INFINITE: Unbounded predictor table (REGION predictor).
FINITE+FT: FINITE with hints for prediction on compulsory misses (first touches).
INF+FT: INFINITE with hints for prediction on compulsory misses (first touches).
HISTORY: Uses spatial pattern hints collected at eviction from a prior run.

CHAPTER 4. EVALUATION 52

Focusing on the number of bits required to represent the pattern table, the use of 4-

bit saturation counters (instead of 1-bit bitmaps) was evaluated. The saturation counters

seek to avoid pattern pollution when blocks with varied spatial behavior reside in the same

region. Interestingly, it was found that it is more beneficial to use 1-bit bitmaps for the

majority of the applications (12 out of 22) as the hysteresis introduced by the counters

increases training period.

To summarize, it was found that a REGION predictor with region size 4KB and 1024

entries can predict the spatial pattern in a majority of the applications. CACTI indicates

that the predictor table can be indexed in 0.025ns and requires 2.3pJ per miss indexing.

4.3.3 Spatial Pattern Training

A widely-used approach to training the predictor is to harvest the word usage information

on an eviction. Unfortunately, evictions may not be frequent, which means the predictor’s

training period tends to be long, during which the cache performs less efficiently and/or that

the application’s phase has changed in the meantime. Particularly at the time of first touch

(compulsory miss to a location), a global spatial access pattern is required due to lack of a

specific pattern. The finite region predictor (FINITE in Figure 4.7) that only predicts using

eviction history is compared against a FINITE+FT: this adds the optimization of inferring

the default pattern (from a prior run) when there is no predictor information. FINITE+FT

demonstrates an avg. 1% (max: 6% for jbb) reduction in miss rate compared to FINITE and

comes within 16% the miss rate of HISTORY. In terms of bandwidth FINITE+FT can save 8%

of the bandwidth (up to 32% for lbm) compared to FINITE. The percentage of first-touch

accesses is shown in Table 4.4.

4.3.4 Predictor Summary

• For the majority of the applications (17/22) the address-region predictor with region

size 4KB works well. However, five applications (apache, lbm, mcf, art, omnetpp)

show better performance with PC-based indexing. For best efficiency, the predictor

should adapt indexing to each application.

• Updating the predictor only on evictions leads to long training periods, which causes

loss in caching efficiency. Mechanisms to infer the default pattern based on global

CHAPTER 4. EVALUATION 53

behavior demonstrated by resident cache lines need to be developed to solve this

problem.

• The online predictor reduces MPKI by 7% and bandwidth by 26% on average relative

to the conventional approach. However, it still has a 14% higher MPKI and 38% higher

bandwidth relative to the HISTORY-based predictor, indicating room for improvement

in prediction.

• The 1024-entry (4K region size) predictor table imposes '0.12% energy overhead on

the overall cache hierarchy energy since it is referenced only on misses.

4.4 Amoeba-Cache Adaptivity

The Amoeba-Cache can adapt better than a conventional cache to the variations in spatial

locality.

4.4.1 Tuning RMAX for High Spatial Locality

A challenge often faced by conventional caches is the desire to widen the cache block (to

achieve spatial prefetching) without wasting space and bandwidth in low spatial locality

applications. 3 specific applications are studied: milc and tradesoap have good spatial

locality while soplex has poor spatial locality. With a conventional 1M cache, when the

block size is widened from 64 to 128 bytes, milc and tradesoap experience a 37% and 39%

reduction in miss rate. However, soplex’s miss rate increases by 2× and bandwidth by 3.1×.

The Amoeba-Cache can support Amoeba-Blocks with granularity 1—RMAX words (RMAX:

maximum block size). When we increase RMAX from 64 bytes to 128 bytes, miss rate re-

duces by 37% for milc and 24% for tradesoap, while simultaneously lowering bandwidth

by 7%. Unlike the conventional cache, the Amoeba-Cache is able to adapt to poor spatial

locality: soplex experiences only a 2% increase in bandwidth and 40% increase in miss rate.

4.4.2 Predicting Strided Accesses

Many applications (e.g.,firefox and canneal) exhibit strided access patterns, which touch a

few words in a block before accessing another block. Strided accesses patterns introduce

intra-block holes (untouched words). For instance, canneal accesses '10K distinct fixed

CHAPTER 4. EVALUATION 54

-50

-25

0

25

50

so
pl

ex

m
ilc

tra
de

s.

so
pl

ex

m
ilc

tra
de

s.

Fixed Amoeba

R
ed

uc
tio

n
(%

) Miss Rate Bandwidth

-2
13

-9

2

Figure 4.8: Effect of increase in block size from 64 to 128 bytes in a 1 MB cache

granularity cache blocks with a specific access pattern, [--x--x--] (x indicates ith word has

been touched).

canneal firefox

Miss Rate BW Miss Rate BW

Policy-Miss 10.31% 81.2% 11.18% 47.1%

Policy-BW –20.08% 88.09% –13.44% 56.82%

Spatial Patterns [--x--x--] [x--x----] [-x--x---] [x---x---]

–: indicates Miss or BW higher than Fixed.

Table 4.2: Predictor Policy Comparison

Any predictor that uses the access pattern history has two choices when an access misses

on word 3 or 6 a) A miss oriented policy (Policy-Miss) may refill the entire range of words 3–6

and eliminate the secondary miss but bring in untouched words 4–5, increasing bandwidth,

and b) a bandwidth focused choice (Policy- BW) that refills only the requested word but

will incur more misses. Table 4.2 compares the two contrasting policies for Amoeba-Cache

(relative to a Fixed granularity baseline cache). Policy-BW saves 9% bandwidth compared

to Policy-Miss but suffer 25-30% higher miss rate.

4.5 Amoeba-Cache vs other approaches

The Amoeba-Cache is compared against four approaches:

• Fixed-2x: The baseline is a fixed granularity cache 2× the capacity of the other

designs (64B block).

CHAPTER 4. EVALUATION 55

• Sector: The conventional sector cache design (as in IBM Power7 [17]): 64B block and

a small sector size (16 bytes or 2 words). This design targets optimal bandwidth. On

any access, the cache fetches only the requisite sector, even though it allocates space

for the entire line.

• Sector-Pre: Adds prefetching to Sector. This optimized design prefetches multiple

sectors based on a spatial granularity predictor to improve the miss rate [19, 31].

• Multi$: Combines features from line distillation [33] and spatial-temporal caches [12].

It is an aggressive design that partitions a cache into two: a line organized cache

(LOC) and a word-organized cache (WOC). At insertion time, Multi$ uses the spatial

granularity hints to direct the cache to either refill words (into the WOC) or the entire

line. Two design points are investigated: 50% of the cache as a WOC (Multi$-50) and

25% of cache as a WOC (Multi$-25).

Sector, Sector-Pre, Multi$, and Amoeba-Cache all use the same spatial predictor hints.

On a demand miss, they prefetch all the sub-blocks needed together. Prefetching only

changes the timing of an access; it does not change the miss bandwidth and cannot remove

the misses caused by cache pollution.

4.5.1 Energy and Storage

The sector approaches impose low hardware complexity and energy penalty. To filter out

unused words, the sector granularity has to be close to word granularity; 2 words per sector

leads to a storage penalty of '64KB for a 1MB cache. In Multi$, the WOC increases

associativity to the number of words/block. Multi$-25 partitions a 64K 4-way cache into a

48K 3-way LOC and a 16K 8-way WOC, increasing associativity to 11. For a 1M cache,

Multi$-50 increases associativity to 36. Compared to Fixed, Multi$-50 imposes over 3×
increase in look-up latency, 5× increase in look-up energy, and '4× increase in tag storage.

Amoeba-Cache provides a more scalable approach to using adaptive cache lines since it

varies the storage dedicated to the tags based on the spatial locality in the application.

CHAPTER 4. EVALUATION 56

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6

B
a

n
d

w
id

th
 R

a
ti

o

Miss Rate Ratio

Fixed-2X

Sector

(x:1.8)

Sector-Pre Amoeba

Multi$-25

Multi$-50

(a) 64K - Low

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6
B

a
n

d
w

id
th

 R
a

ti
o

Miss Rate Ratio

Sector

(x:2.9)

Sector-Pre

Fixed-2X

Amoeba

Multi$-25

Multi$-50

(b) 64K - Moderate

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6

B
a

n
d

w
id

th
 R

a
ti

o

Miss Rate Ratio

Sector

(x:2.6

y:1.2)
Sector-Pre

Amoeba

Multi$-50

Multi$-25

Fixed-2X

(c) 1M - Low

0.6

0.7

0.8

0.9

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6

B
a

n
d

w
id

th
 R

a
ti

o

Miss Rate Ratio

 Sector

(x:3.9,

y:1.0)

Sector-Pre

Multi$-50

Multi$-25

Amoeba

Fixed-2X

(d) 1M - Moderate

Figure 4.9: Relative miss rate and bandwidth for different caches. Baseline (1,1) is the
Fixed-2× design.
Labels: • Fixed-2x, ◦ Sector approaches. ∗ : Multi$, 4 Amoeba.
(a),(b) 64K cache (c),(d) 1M cache. Note the different Y-axis scale for each group.

CHAPTER 4. EVALUATION 57

4.5.2 Miss Rate and Bandwidth

Figure 4.9 summarizes the comparison for the moderate and low utilization groups of appli-

cations. For the high utilization group, all designs other than Sector have comparable miss

rates. Amoeba-Cache improves miss rate to within 5%—6% of the Fixed-2× for the low

group and within 8%—17% for the moderate group. Compared to the Fixed-2×, Amoeba-

Cache also lowers bandwidth by 40% (64K cache) and 20% (1M cache). Compared to

Sector-Pre (with prefetching), the Amoeba-Cache is able to adapt better with flexible gran-

ularity and achieves lower miss rate (up to 30% for a 64K L1 and 35% for a 1M LLC

equivalent). Multi$’s benefits are proportional to the fraction of the cache organized as a

WOC; Multi$-50 (18-way for 64K L1 and 36-way for 1M LLC) is needed to match the miss

rate of Amoeba-Cache. Finally, in the moderate group, many applications exhibit strided

access. Compared to Multi-$’s WOC, which fetches individual words, the Amoeba-Cache

increases bandwidth since it chooses to fetch the contiguous chunk in order to lower miss

rate.

CHAPTER 4. EVALUATION 58

4.6 Multicore Shared Cache

A shared Amoeba-Cache is evaluated. By dynamically varying the cache block size and

keeping out unused words, the Amoeba-Cache effectively minimizes the footprint of an

application. Minimizing the footprint helps multiple applications effectively share the cache

space. Results are presented for experiments using a 1M shared Amoeba-Cache in a 4

core system. Table 4.3 shows the application mixes; application mixes are chosen across

all groups. The change in miss rate is tabulated as miss rate per thread and the overall

change in bandwidth for Amoeba-Cache with respect to a fixed granularity cache running

the same mix. Minimizing the overall footprint enables a reduction in the miss rate of

each application in the mix. The commercial workloads (SpecJBB and TPC-C) are able

to make use of the space available and achieve a significant reduction in miss rate (avg:

18%). Only two applications suffered a small increase in miss rate (x264 Mix 2: 2% and

ferret Mix 3: 4%) due to contention. The overall L2 miss bandwidth significantly improves,

showing 16%—39% reduction across all workload mixes. An Amoeba-Cache based shared

cache design can effectively enable the shared cache to support more cores and increase

overall throughput. The design space exploration of a coherent Amoeba-Cache is part of

planned future work.

Miss Miss Miss Miss BW

Mix T1 T2 T3 T4 (All)

jbb×2, tpc-c×2 12.38% 12.38% 22.29% 22.37% 39.07%

firefox×2, x264×2 3.82% 3.61% –2.44% 0.43% 15.71%

cactus, fluid., omnet., sopl. 1.01% 1.86% 22.38% 0.59% 18.62%

canneal, astar, ferret, milc 4.85% 2.75% 19.39% –4.07% 17.77%

Table 4.3: Multiprogrammed Workloads on 1M Shared Amoeba-Cache : Percent-
age reduction in miss rate and bandwidth.

–: indicates Miss or BW higher than Fixed. T1—T4, threads in the mix; in the
order of applications in the mix. Baseline: Fixed granularity 1M conventional cache.

CHAPTER 4. EVALUATION 59

MPKI BW Bytes/1K CPI Predictor Stats

L1 L2 L1←→L2 L2←→Mem FT
MPKI MPKI Bytes/1K Bytes/1K Cycles/Ins. Miss % Ins/Evict

apache 64.9 19.6 5,000 2,067 8.3 0.4 17
art 133.7 53.0 5,475 1,425 16.0 0.0 9

astar 0.9 0.3 70 35 1.9 18.0 1,600
cactus 6.9 4.4 604 456 3.5 7.5 162
canne. 8.3 5.0 486 357 3.2 5.8 128
eclip. 3.6 <0.1 433 <1 1.8 0.1 198
faces. 5.5 4.7 683 632 3.0 41.2 190
ferre. 6.8 1.4 827 83 2.1 1.3 156
firef. 1.5 1.0 123 95 2.1 11.1 727
fluid. 1.7 1.4 138 127 1.9 39.2 629

freqm. 1.1 0.6 89 65 2.3 17.7 994
h2 4.6 0.4 328 46 1.8 1.7 154
jbb 24.6 9.6 1,542 830 5.0 10.2 42
lbm 63.1 42.2 3,755 3,438 13.6 6.7 18
mcf 55.8 40.7 2,519 2,073 13.2 0.0 19
milc 16.1 16.0 1,486 1,476 6.0 2.4 66

omnet. 2.5 <0.1 158 <1 1.9 0.0 458
sople. 30.7 4.0 1,045 292 3.1 0.9 35
tpcc 5.4 0.5 438 36 2.0 0.4 200

trade. 3.6 <0.1 410 6 1.8 0.6 194
twolf 23.3 0.6 1,326 45 2.2 0.0 49
x264 4.1 1.8 270 190 2.2 12.4 274

Table 4.4: Abslute performance statistics for the Amoeba-Cache using a Region predic-
tor(infinite table size) with predictions for compulsory misses serviced using data collected
from a prior run of the application. Higher value for Ins/Evict indicates predictor training
takes longer.

MPKI : Misses / 1K instructions.
BW: Number of words / 1K instructions.
CPI: Clock cycles per instruction.
FT: Percentage of misses that are compulsory misses.
Ins/Evict: Number of instructions between evictions.

Chapter 5

Conclusion

In this chapter the primary findings are summarized and describe future work motivated by

these findings.

5.1 Conclusions

This dissertation presents a novel architecture for an adaptive granularity cache memory

system, the Amoeba-Cache. The Amoeba-Cache adapts to the requirements of the ap-

plication to cache variable sized Amoeba-Blocks. This is achieved by eliminating the tag

array and storing tags and variable granularity data within the same SRAM data array. The

Amoeba-Cache keeps out the unused words, thus increasing caching efficiency. Experimental

evaluations show a reduced miss rate, improvement in performance and reduced consump-

tion in overall energy. Significantly reduced energy consumption is observed primarily due

to reduced interconnect traffic.

Compared to a fixed granularity cache, the Amoeba-Cache improves cache utilization to

90% - 99% for most applications, saves miss rate by up to 73% at the L1 level and up to

88% at the LLC level, and reduces miss bandwidth by up to 84% at the L1 and 92% at the

LLC. Correspondingly reduces on-chip memory hierarchy energy by as much as 36% and

improves performance by as much as 50%.

We conclude that the Amoeba-Cache is a plausible design which can be implemented

with considerations discussed in § 3.1. We believe the Amoeba-Cache is a promising step

towards more flexible hardware to suit the ever changing needs of software.

60

CHAPTER 5. CONCLUSION 61

5.2 Looking Forward

The possible avenues of exploration based on the current Amoeba-Cache infrastructure are

described as follows.

Adaptive Granularity Cache Coherence : Prior work which adapt existing schemes

such as sector caches [34] to support sub-block coherence [16, 35], show the viability of

extending Amoeba-Cache to a full multicore cache coherence protocol. We propose a multi-

core cache coherence protocol, named Protozoa, based on the Amoeba-Cache, in recent work

spearheaded by Zhao[45].

Replacement Policies : Investigating more intelligent replacement policies for the Amoeba-

Cache can also make for interesting future work. Currently the Pseudo-LRU policy described

in § 2.4 has been adapted for use in the Amoeba-Cache and leaves room for improvement.

Inspiration can be drawn from the Generational Replacement Policy described by Hallnor

et al.[13] for a customized replacement policy for the Amoeba-Cache.

Cache Compression : Cache compression is an area of work which can benefit from the

flexibility of the Amoeba-Cache whilst storing variable granularity cache blocks. Prior work

such as the compressed memory hierarchy by Hallnor et al.[14] can be suitably modified to

use an Amoeba-Cache as the substrate.

Bibliography

[1] The Opportunities and Challenges of Exascale Computing. Technical report, US De-
partment of Energy, 2010.

[2] A. R. Alameldeen. Using Compression to Improve Chip Multiprocessor Performance.
PhD thesis, University of Wisconsin, Madison, 2006.

[3] D. Albonesi, A. Kodi, and Stojanovic V. NSF Workshop on Emerging Technologies
for Interconnects (WETI), 2012.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: characterization and architectural implications. In Proceedings of
the 17th international conference on Parallel architectures and compilation techniques,
PACT ’08, pages 72–81, New York, NY, USA, 2008. ACM.

[5] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. The DaCapo benchmarks: java benchmarking development and analy-
sis. In Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, OOPSLA ’06, pages 169–190, New
York, NY, USA, 2006. ACM.

[6] Chi F. Chen, Se-Hyun Yang, Babak Falsafi, and Andreas Moshovos. Accurate and
complexity-effective spatial pattern prediction. In Proceedings of the 10th Interna-
tional Symposium on High Performance Computer Architecture, HPCA ’04, pages 276–,
Washington, DC, USA, 2004. IEEE Computer Society.

[7] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure lay-
out. In Proceedings of the ACM SIGPLAN 1999 conference on Programming language
design and implementation, PLDI ’99, pages 1–12, New York, NY, USA, 1999. ACM.

[8] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand,
Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou. Denovo:
Rethinking the memory hierarchy for disciplined parallelism. In Proceedings of the 2011

62

BIBLIOGRAPHY 63

International Conference on Parallel Architectures and Compilation Techniques, PACT
’11, pages 155–166, Washington, DC, USA, 2011. IEEE Computer Society.

[9] Intel Corporation. Intel embedded pentium processor family dev. manual, 1998.

[10] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz.
Cpu db: recording microprocessor history. Commun. ACM, 55(4):55–63, April 2012.

[11] Czarek Dubnicki and Thomas J. LeBlanc. Adjustable block size coherent caches. In Pro-
ceedings of the 19th annual international symposium on Computer architecture, ISCA
’92, pages 170–180, New York, NY, USA, 1992. ACM.

[12] Antonio González, Carlos Aliagas, and Mateo Valero. A data cache with multiple
caching strategies tuned to different types of locality. In Proceedings of the 9th inter-
national conference on Supercomputing, ICS ’95, pages 338–347, New York, NY, USA,
1995. ACM.

[13] Erik G. Hallnor and Steven K. Reinhardt. A fully associative software-managed cache
design. In Proceedings of the 27th annual international symposium on Computer archi-
tecture - ISCA 00, volume 28, page 107116. ACM Press, Jun 2000.

[14] Erik G. Hallnor and Steven K. Reinhardt. A compressed memory hierarchy using an
indirect index cache. Technical report, in Proc. 3rd workshop on Memory performance
issues, 2004.

[15] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In Proceedings of the 17th annual
international symposium on Computer Architecture, ISCA ’90, pages 364–373, New
York, NY, USA, 1990. ACM.

[16] M. Kadiyala and L.N. Bhuyan. A dynamic cache sub-block design to reduce false
sharing. In Computer Design: VLSI in Computers and Processors, 1995. ICCD ’95.
Proceedings., 1995 IEEE International Conference on, pages 313–318, Oct.

[17] R. Kalla, B. Sinharoy, W.J. Starke, and M. Floyd. Power7: IBM’s Next-Generation
Server Processor. Micro, IEEE, 30(2):7–15, March-April.

[18] K. Kedzierski, M. Moreto, F.J. Cazorla, and M. Valero. Adapting cache partition-
ing algorithms to pseudo-lru replacement policies. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1–12, April 2010.

[19] Sanjeev Kumar and Christopher Wilkerson. Exploiting spatial locality in data caches
using spatial footprints. SIGARCH Comput. Archit. News, 26(3):357–368, April 1998.

[20] Chunrong Lai and Shih-Lien Lu. Efficient victim mechanism on sector cache organi-
zation. In Pen-Chung Yew and Jingling Xue, editors, Advances in Computer Systems
Architecture, volume 3189 of Lecture Notes in Computer Science, pages 16–29. Springer
Berlin / Heidelberg, 2004.

BIBLIOGRAPHY 64

[21] J. S. Liptay. Structural aspects of the system/360 model 85: Ii the cache. IBM Syst.
J., 7(1):15–21, March 1968.

[22] Tongping Liu and Emery D. Berger. SHERIFF: precise detection and automatic mit-
igation of false sharing. In Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and applications, OOPSLA ’11, pages
3–18, New York, NY, USA, 2011. ACM.

[23] Diego R. Llanos. TPCC-UVa: an open-source TPC-C implementation for global per-
formance measurement of computer systems. SIGMOD Rec., 35(4):6–15, December
2006.

[24] Gabriel Loh and Mark D. Hill. Supporting Very Large DRAM Caches with Compound-
Access Scheduling and MissMap. IEEE Micro, 32(3):70–78, May 2012.

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design and implemen-
tation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[26] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH Comput.
Archit. News, 33(4):92–99, November 2005.

[27] Sun Microsystems. OpenSPARC T1 Processor Megacell Specification, 2007.

[28] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 40, pages 3–14, Washington, DC, USA, 2007. IEEE Computer Society.

[29] Ajit Karthik Mylavarapu. Patent 20100049912 : Data Cache Way Prediction, February
2010.

[30] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (cam) circuits and
architectures: a tutorial and survey. Solid-State Circuits, IEEE Journal of, 41(3):712–
727, 2006.

[31] P. Pujara and A. Aggarwal. Increasing the cache efficiency by eliminating noise. In
High-Performance Computer Architecture, 2006. The Twelfth International Symposium
on, pages 145 – 154, feb. 2006.

[32] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel Emer.
Adaptive insertion policies for high performance caching. In Proceedings of the 34th

BIBLIOGRAPHY 65

annual international symposium on Computer architecture, ISCA ’07, pages 381–391,
New York, NY, USA, 2007. ACM.

[33] Moinuddin K. Qureshi, M. Aater Suleman, and Yale N. Patt. Line distillation: In-
creasing cache capacity by filtering unused words in cache lines. In Proceedings of the
2007 IEEE 13th International Symposium on High Performance Computer Architec-
ture, HPCA ’07, pages 250–259, Washington, DC, USA, 2007. IEEE Computer Society.

[34] J .B. Rothman and A.J. Smith. Sector cache design and performance, page 124133.
IEEE Comput. Soc, 2000.

[35] Jeffrey B. Rothman and Alan Jay Smith. Minerva: An adaptive subblock coherence
protocol for improved smp performance. In ISHPC’02, pages 64–77, 2002.

[36] A. Seznec. Decoupled sectored caches: conciliating low tag implementation cost and low
miss ratio. In Proceedings of 21 International Symposium on Computer Architecture,
page 384393. IEEE Comput. Soc. Press.

[37] André Seznec. Interleaved sectored caches: reconciling low tag volume and low miss
ratio. Rapport de recherche RR-2084, INRIA, 1993.

[38] R.B. Tremaine, T.B. Smith, M. Wazlowski, D. Har, Kwok-Ken Mak, and S. Arram-
reddy. Pinnacle: Ibm mxt in a memory controller chip. Micro, IEEE, 21(2):56 –68,
mar/apr 2001.

[39] S.P. Vander Wiel and D.J. Lilja. When caches aren’t enough: data prefetching tech-
niques. Computer, 30(7):23–30, 1997.

[40] Alexander V. Veidenbaum, Weiyu Tang, Rajesh Gupta, Alexandru Nicolau, and Xi-
aomei Ji. Adapting cache line size to application behavior. In Proceedings of the 13th
international conference on Supercomputing, ICS ’99, pages 145–154, New York, NY,
USA, 1999. ACM.

[41] Matthew A. Watkins, Sally A. Mckee, and Lambert Schaelicke. Revisiting cache block
superloading. In Proceedings of the 4th International Conference on High Performance
Embedded Architectures and Compilers, HiPEAC ’09, pages 339–354, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[42] Doe Hyun Yoon, Min Kyu Jeong, and Mattan Erez. Adaptive granularity memory
systems. In Proceeding of the 38th annual international symposium on Computer ar-
chitecture - ISCA 11, volume 39, page 295. ACM Press, Jun 2011.

[43] Doe Hyun Yoon, Min Kyu Jeong, Michael B. Sullivan, and Mattan Erez. The dy-
namic granularity memory system. In Proceedings of the International Symposium on
Computer Architecture (ISCA12), June 2012.

BIBLIOGRAPHY 66

[44] Meng-Bing Yu, Era K. Nangia, Michael Ni, and Vidya Rajagopalan. Patent 7594079 :
Data cache virtual hint way prediction, and applications thereof, September 2009.

[45] Hongzhou Zhao, Arrvindh Shriraman, Snehasish Kumar, and Sandhya Dwarkadas. Pro-
tozoa : Adaptive Granularity Cache Coherence. In In proceedings of the International
Symposium of Computer Architecture, 2013.

