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Abstract

In this project, a novel statistic to evaluate the putting performance of professional golfers

is developed. The methodology provided in this paper borrows ideas from Bayesian spa-

tial statistics to determine the expected number of putts at various green locations. After

constructing a Bayesian hierarchical model, the necessary derivation and computations of

the relevant full conditional distributions are discussed. Data from the 2012 Honda Classic

tournament obtained from the ShotLink website is then used to investigate the approach.

The Metropolis within Gibbs algorithm is run to generate samples from the posterior dis-

tribution with the ultimate goal of determining the posterior mean of expected number of

putts at various green locations. A golfer’s performance is assessed against the expected

number of putts generated from the MCMC run. Finally, the statistic developed in this pa-

per is compared to total putts and the strokes gained-putting statistic. The results indicate

that the difficulty of a putt is influenced by both the distance and region from which the

shot is taken.
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“There was the Door to which I found no Key;

There was the Veil through which I might not see:

Some little talk awhile of ME and THEE

There was-and then no more of THEE and ME.”

Omar Khayyam
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Chapter 1

Introduction

All statistics are meaningful in one way or another. When it comes to the world of sport,

various statistics are used to evaluate the performance of players. However, some of these

statistics are misleading and do not contain all the information necessary to evaluate the

performance of players. This project will focus on providing a novel statistic to evaluate the

putting performance of golfers as we believe that the current available statistics only provide

partial information. To that end, we will first introduce the two commonly used statistics

to evaluate the putting performance of golfers and subsequently discuss the shortcomings

of these statistics. This motivates us to develop an enhanced statistic that improves upon

the commonly used putting statistics.

1.1 Putts per Round Statistic

The putts per round statistic is the traditional statistic used with respect to putting. This

metric is calculated by summing the number of putts (number of shots taken by a player

from inside the green to get into the hole) for each of the 18 holes in an entire round. If a

player chipped in from outside the green, he is credited zero putts for that hole.

This metric is a classic example of a statistic that is misleading as it fails to take the

difficulty of putts into consideration. It is obvious that a golfer who hits many greens in

regulation will face more difficult putts compared to a golfer who hits only a few greens in

regulation and then chips close to the hole. In addition, the golfers who chip in from off the

green are credited zero putts. Therefore, evaluation of putting based on total putts does

not appear to be a sensible approach.

1



CHAPTER 1. INTRODUCTION 2

Another problem with this metric is its failure to properly distinguish between profes-

sional golfers. The PGA (Professional Golfers’ Association) reports that in 2012 season the

best putter was Jonas Blixt with an average of 27.89 putts per round and Boo Weekley was

in the last place (191st) with an average of 30.5 putts per round. As can be seen, there is

little to distinguish such professional golfers from one another using this metric.

1.2 Strokes Gained-Putting Statistic

The shortcomings with the putts per round statistic were recognized in a paper by Broadie

(2008); as a result he developed a new putting statistic which was later extended by Fearing,

Acimovic and Graves (2011). This statistic, which is often referred to as strokes gained-

putting statistic, became popular and the PGA started reporting it in 2011. Thus far, it

has been well received by players as it takes the difficulty of a putt into account. The

strokes gained-putting statistic is a relative-value statistic as it quantifies how many strokes

a golfer gains relative to other PGA golfers. Strokes gained-putting is often reported as

the number of putts gained/lost per round. A positive strokes gained-putting value would

indicate above average putting performance and a negative strokes gained-putting value

would indicate below average putting performance. For instance, in 2012 season, Brandt

Snedeker was the top putter with 0.860 strokes gained per round, and Kyle Thompsons

was in the last place (191st) with 1.177 strokes lost per round (or -1.177 strokes gained per

round).

According to the PGA, the strokes gained value is determined by subtracting the actual

number of putts taken by a player from the average number of putts by a PGA tour player

to hole out from the initial location that the putt was taken inside the green. The distances

to the holes are obtained using the ShotLink data and the averages are calculated from all

putts from the previous season. For instance, the ShotLink data in 2010 shows that the

average number of putts it took professional golfers to hole out from seven feet was 1.5

putts. Thus, if a pro golfer took one putt to hole out from 7 feet in 2011 season, his strokes

gained value would be 0.5. Further, a golfer’s performance is evaluated against the field for

an entire round. That is, if the player over the course of the round gained two putts and

the average strokes gained for that round was one putt, his strokes gained-putting against

the field for that round would be one.
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The strokes gained-putting contains more information compared to the traditional statis-

tic used. It allows us to determine the effectiveness of a pro golfer against the field. In addi-

tion, it provides information on how easy or difficult a course is compared to other courses.

However, the main shortcoming of this approach is that it only considers the distance from

the hole to determine the difficulty of a putt and ignores other potential contributing factors.

1.3 Objective

The main goal of this project is to construct an enhanced relative-value statistic that im-

proves upon the strokes gained-putting statistic by taking factors other than distance into

account to determine the expected number of putts from various locations on a green. This

new metric will feature a spatial aspect that considers the region of the green from which

the shot is taken. The greens in various courses often have uneven shapes and it would

be sensible to investigate whether taking a shot from certain regions of the green would be

more or less difficult than other regions of the green.

The methodology developed in this project borrows ideas from Bayesian spatial statistics.

Spatial maps of each green are constructed which provide the expected number of putts

from various green locations. The Bayesian part of our model uses a hierarchical structure

in which prior distributions are required. The ideas found in Cressie (1993) for geostatistical

models, and Banerjee, Carlin, and Gelfand (2004) for Bayesian spatial models are relevant to

the model developed in this project. The difficulty of a putt in our model will be a function

of both its direction and distance to the hole. Using such a model, the performance of

golfers is assessed by comparing the observed number of putts with the expected number of

putts. Again, ShotLink data is used to determine the initial location of putts on greens.

1.4 Project Outline

In Chapter 2, a Bayesian spatial model for putting is developed. As this model is non-trivial,

the computations utilize Markov chain Monte Carlo (MCMC) methodology for simulation

from the posterior distribution. Then, in Chapter 3, the necessary derivation and compu-

tations of the relevant full conditional distributions are discussed. It is then seen that the

Metropolis within Gibbs algorithm needs to be used as the full conditional distributions are

not tractable. In Chapter 4, 2012 Honda Classic data obtained from the ShotLink website is
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used as test data for this project. The model developed in this project is then applied to the

ShotLink data and the values of our statistic are obtained. We then compare our statistic to

the total putts per round statistic and the strokes gained-putting statistic. Finally, Chapter

5 will discuss the implications of the model developed in this paper and will provide a list of

potential avenues for future investigation. A more concise companion paper of this project

is given by Yousefi and Swartz (2013).



Chapter 2

Bayesian Spatial Statistics Models

This chapter considers the modelling approach required to construct spatial maps that pro-

vide estimates of the expected number of putts by a pro golfer from each of the green

location realizations. To construct such maps, Bayesian hierarchical modelling is utilized.

Such modelling allows us to capture various features of the data and parameters condition-

ally, one layer of the hierarchy at a time. In this chapter, we will first give a brief discussion

of spatial statistics and then we will model the number of putts for our application using

spatial statistics.

2.1 A Brief Note on Spatial Statistics

The first law of geography by Tobler (1970) states that “Everything is related to everything

else, but near things are more related than distant things”. Statistically speaking, this

law suggests the existence of positive spatial correlation and weakens the independence

assumption of observations (Waller, 2005). This law underlies the importance of considering

spatial features of data in various fields. In short, spatial statistics consists of statistical

methodologies that consider location and distance when providing inference. The field of

spatial statistics has grown in popularity in recent years mainly due to the increase in

computing power and the availability of spatial data. Further, as Waller (2005) notes, there

has been a great appeal to use Bayesian methods to analyse spatial data primarily through

utilizing hierarchical structures. It should be noted that as in other statistical fields, different

data structures exist in spatial statistics. Each data structure can help answer a specific

inferential question and the analyses will differ based on the data structure available.

5
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Cressie (1993) categorizes spatial data into three types based on the study design and

the inferential questions of interest. These three categories are spatial point process, geo-

statistical, and lattice data.

Spatial point process data consist of observations in a specified study region. In this

data structure, locations are realizations of a random process for which we seek inference.

With such data, one can answer whether observations are similar at all locations and provide

point estimates for the defined study region.

Geostatistical data consist of measurements taken at a fixed number of sites. Note that

the sites are chosen by the study design and are not random. Geostatistical data can help

researchers predict the outcome at sites where no measurement is taken. For instance, sup-

pose that we take ozone level measurements in Burnaby and then would like to use the data

collected in Burnaby to predict the ozone level in Coquitlam where no measurement is taken.

The modelling approach required to predict the ozone level measurement in Coquitlam is

often referred to as geostatistical modelling. Diggle and Ribeiro Jr. (2007), in their book

Model-based Geostatistics, give an extensive look regarding such models.

Finally, lattice (also known as regional) data consist of summary measurements for a

specified region such as number of deaths due to lung cancer in British Columbia. Note that

lattices can have regular or irregular shapes. The analyses relating to such data provide us

with accurate estimates of regions with small sample sizes. The idea here is to use empirical

Bayesian models (naive and simplistic) or even fully Bayesian models to give such accurate

estimates.

It is important to determine the data structure category for the PGA tour putting data.

The PGA tour putting data consist of observations in a defined study region (a particular

green in a particular round). In addition, the locations are realizations of a random process

for which we seek inference. Thus, our data falls into the spatial point process data category.

As a result, using the appropriate modelling approach, we will be able to investigate putting

proficiency at various green locations by providing the expected number of putts for the set

of observations inside a specific green in a specific round. However, one key difference of

our model that distinguishes it from other spatial problems is that we only require point

estimates (expected number of putts) at the realized locations where putts have taken place.
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2.2 Modelling Number of Putts

As we are interested in the expected number of putts, the very first step is to assign a

distribution to them. Now, consider a specific green in a specific round of a tournament.

Let Zi denote the number of putts it takes the ith pro golfer to hole out from his initial

putting green location where i = 1, . . . , n and n is the number of players who competed

during that round of the tournament. With detailed ShotLink data, we are able to extract

the initial putting coordinates (xi, yi) on a green for the ith golfer where i = 1, . . . , n. Note

that the hole is defined as the origin (0,0) and (xi, yi) are the Cartesian coordinates measured

in feet relative to the initial putting location for the ith golfer. In addition, let (ri, θi) denote

the polar representation of (xi, yi). In other words, r2i = x2i +y2i and yi = risin(θi). Suppose

further that the data Z1, . . . , Zn are independent with the following distribution:

Zi − 1 ∼ Poisson(exp{λi(ri, θi)}) (2.1)

for i = 1, . . . , n. It can then easily be seen from (2.1) that E(Zi) = 1 + eλi for the ith golfer

which reasonably depends on the initial putting location (ri, θi).

At first glance, it is seen that the Poisson distribution is a good choice as it is tractable

and its support matches our application. However, one major problem with using the

Poisson distribution is that λi belongs to R which is not sensible for our application. For

instance, in the case that λi = 0, Pr(Zi = 1) = Pr(Zi = 2) = .37 indicating that two-putts

are as common as one-putts from a putting location where the expected number of putts

is two. All golfers would agree that for such a putt, the probability of two-putting should

exceed the probability of one-putting. To address this issue, we consider a variation of the

model in (2.1) where Z1, . . . , Zn are assumed independent with

Zi − 1 ∼ truncated-Poisson(exp{λi(ri, θi)}) (2.2)

For our application, we impose the truncation such that Pr(Zi ≥ 4) = 0 for i = 1, . . . , n.

The truncated-Poisson seems to be sensible for the PGA tour putting application. It can

be seen that limλ→∞Pr(Z = 3|λ) = 1 which indicates that there are locations on the green

where the probability of three-putting approaches one. Further, limλ→−∞Pr(Z = 1|λ) = 1

which indicates that there are green locations (possibly very close to the hole) where the

probability of one-putting approaches one.

The next layer of the hierarchical modelling requires specifying the distribution of λ =

(λ1, . . . , λn)′. We borrow ideas from Diggle et al. (1998), and Besag et al. (1991) to propose
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the following distribution for λ:

λ ∼MVN(µ, σ2V ) (2.3)

where µ = (µ1, . . . , µn)′. Further, let V = (vij) be the Gaussian covariance function such

that

vij = exp{−δ2||(xi, yi)− (xj , yj)||2} (2.4)

where ||.|| denotes the Euclidean distance and δ > 0. The specification of the variance-

covariance matrix in (2.4) is a common choice (Bannerjee et al., 2004) as it guarantees

positive-definiteness. The diagonal elements of V equal one, and for distant spatial locations,

vij → 0. In addition, the Gaussian covariance function defined in (2.4) assigns greater

correlation to parameters λi and λj that are spatially close while it assigns smaller correlation

to parameters λi and λj that are spatially distant.

The next step in our modelling approach is to specify a prior distribution for the vector

µ in (2.3). The main idea here is that a putt on a given line to the pin should have a

smaller apriori probability of being made compared to a shorter putt along the same line. As

discussed, λi relates to the probability of a putt being made from the initial putting location

(xi, yi) such that smaller λi values indicate less difficult putts. Further, µi represents the

prior mean of λi. In our model, we divide each green into 8 “pie slices” emanating from the

hole as illustrated in Figure 2.1. The polar covariate θi represents the region in which the

putt of the ith golfer resides. Such an approach allows for putts to share common features

within the same region. Further, the relative difficulty of putts within the same region is

influenced by the distance ri of the putt to the hole. Thus, we define µi as follows:

µi = g(ri + β(θi)ri) (2.5)

where g is an increasing piecewise linear function and β(θi) is mapped to one of β1, . . . , β8

with respect to the slice corresponding to θi. Note that β1, . . . , β8 represent different slopes

and account for varying difficulty between the 8 putting angles. After some experimentation

with respect to the number of observations available for a particular green, it was found

that 8 slices is small enough to provide stable parameter estimation and is large enough to

yield realistic varying difficulty of putting angles. The specification of µi in (2.5) indicates

that shorter putting distances ri lead to smaller values of µi and longer putting distances

ri lead to larger values of µi. Further, (2.5) provides a nice interpretation for β. A slice
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Figure 2.1: The 8 pie slices with their corresponding slope parameter

of normal putting difficulty has β = 0 while β > 0 and β < 0 denote more difficult and

less difficult putting regions, respectively. For instance, β = −0.15 represents a putt that is

equivalent in difficulty to a normal putt shortened in length by 15%. The specification of

knots for the piecewise linear function g will be given in detail in Chapter 3.

We now assign a distribution to β1, . . . , β8 to complete the modelling requirements.

Assume β1, . . . , β8 are independent with

βj ∼ Normal(0, σ2β) (2.6)

where j = 1, . . . , 8. The hyperparameter σβ is fixed at 0.2 to cover a wide range of possible

βj values. Note that the βjs are centred at 0 (the average value), with differences accounting
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for more and less difficult putting regions. Further, we set:

[σ] ∝ 1/σ

[δ] ∝ 1
(2.7)

where [·] is standard notation for the probability density function. The distributions in (2.7)

are reference priors. Both of the unknown parameters are constrained to the positive real

line.

2.3 Enhanced Spatial Putting Statistic based on Bayesian

Spatial Models

As discussed before, our ultimate goal is to determine the expected number of putts from

the green location realizations. Here, the metric to evaluate the putting performance of a

golfer based on the Bayesian spatial model developed in this chapter is given.

We define the performance measure of the ith golfer on a particular hole for a particular

round of a golf tournament as

Ê(Zi|λi) ≈ E(Zi|λ̂i)− Zi (2.8)

such that E(Zi|λ̂i) is obtained under (2.2) as follows where τ̂i = exp{λ̂i}:

E(Zi − 1|λ̂i) =

3∑
zi=1

(zi − 1)τ̂ zi−1i e−τ̂i/(zi − 1)!

3∑
zi=1

τ̂ zi−1i e−τ̂i/(zi − 1)!

=
0× τ̂0i e−τ̂i/0! + 1× τ̂ie−τ̂i/1! + 2× τ̂2i e−τ̂i/2!

τ̂0i e
−τ̂i/0! + τ̂ie−τ̂i/1! + τ̂2i e

−τ̂i/2!

=
e−τ̂i(τ̂i + τ̂2i )

e−τ̂i(1 + τ̂i + τ̂2i /2)

=
τ̂i(1 + τ̂i)

1 + τ̂i + τ̂2i /2

Thus, we have that E(Zi|λ̂i) is:

E(Zi|λ̂i) = 1 +
τ̂i(1 + τ̂i)

1 + τ̂i + τ̂2i /2
(2.9)
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It can immediately be seen that the metric in (2.8) gives relative strokes gained on the hole

under our model. Further, a positive value of this metric is interpreted as above average

putting performance while a negative value indicates below average putting performance on

the hole. Note that a player who chipped-in will not have a relative strokes gained value for

that hole. This is a sensible approach as the player who chips-in does not make a putting

attempt.

The proposed enhanced putting statistic for an entire round of golf for the ith pro golfer

would involve a summation of (2.8) over all 18 holes (if he did not chip-in) in that particular

round. The enhanced putting statistic for a given tournament would involve summation of

72 terms (18 holes × 4 rounds) assuming there were no chip-ins. Similarly, season averages

of pro golfers can be calculated. Finally, the enhanced putting statistic is adjusted against

the field as is done for strokes gained-putting statistic which was discussed in section 1.2.

Such an adjustment will allow us to compare strokes gained-putting and our spatial putting

statistic properly.

Finally, it should be noted that we only require the expected number of putts at a green

location realization unlike other spatial problems (Cressie, 1993) as discussed in section 2.1.

This leads to a simplification of our inferential problem. In the next chapter, we will fit

the models specified here in an attempt to determine the posterior density of the expected

number of putts.



Chapter 3

Derivations and Computations

In this chapter, we derive the posterior density of the expected number of putts using the

specified distributions in Chapter 2. The notation [B | A] denotes the density (or probability

mass function) of B given A. Accordingly, we have:

[λ, β, σ, δ | Z] = [Z | λ, β, σ, δ] · [λ, β, σ, δ]

= [Z | λ] · [λ | β, σ, δ] · [β, σ, δ].

In the above expression [Z | λ, β, σ, δ] reduces to [Z | λ] as Z follows the truncated-Poisson

distribution (2.2) and only depends on λ. Further, we make the reasonable assumption that

β, σ and δ are independent from one another. Thus, we have:

[λ, β, σ, δ | Z] = [Z | λ] · [λ | β, σ, δ] · [β] · [σ] · [δ] (3.1)

Note that the above posterior density has n+ 10 dimensions as λ has n dimensions, β has 8

dimensions, σ has one dimension and δ has one dimension. In the next step, we replace the

densities in (3.1) with the parametric distributions specified in Chapter 2. Therefore, (3.1)

becomes:

[λ, β, σ, δ | Z] ∝
n∏
i=1

eλi(Zi−1)e−e
−λi

e−e
−λi (1 + eλi + e2λi/2)

· e
− 1
σ2

(λ−µ)′V −1(λ−µ)

σn|V |1/2

·
8∏
j=1

e
− 1

2σ2
β

(βj−β0)2
· 1

σ

12
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=

n∏
i=1

eλi(Zi−1)e−e
−λi

e−e
−λi (1 + eλi + e2λi/2)

· e
− 1
σ2

(λ−µ)′V −1(λ−µ)

σn+1|V |1/2

·
8∏
j=1

e
− 1

2σ2
β

(βj−β0)2
(3.2)

where V and µi are given in (2.4) and (2.5), respectively.

It can be seen from (3.2) that the complexity and dimensionality of the posterior density

prevents straightforward interpretation. Hence, posterior summaries such as posterior means

or posterior standard deviations are required for interpretation. However, these quantities

are not tractable and cannot be derived analytically in our model. Further, obtaining

analytic approximations to the posterior density does not appear to be feasible. As a

result, we turn to Monte Carlo integration techniques that are easy to program and can

often handle high-dimensional models with ease. We will use Markov chain Monte Carlo

(MCMC) methods to approximate the posterior summaries in our model. To that end, let us

give a brief introduction to MCMC methods and then discuss our computational approach.

3.1 MCMC Methods

It is quite common in Bayesian statistics to come across parameters of interest that take the

form of intractable integrals. Further, in the case of high dimensional models, it is standard

practice to utilize MCMC methods. In short, MCMC methods allow us to simulate draws

that are approximately from the desired posterior density. It is then easy to approximate the

posterior summaries using these draws. However, the main issue that requires our attention

is to ensure that convergence to the desired posterior density is achieved. In practice,

this is accomplished by judging the sampled output through use of plots and numerical

summaries (Carlin and Louis, 2009). Here, we will discuss only the two most common

MCMC algorithms. These algorithms are the Gibbs sampler and Metropolis-Hastings.

3.1.1 The Gibbs Sampler

In a Gibbs sampling algorithm, we need the full conditional distributions of the model pa-

rameters. Full (or complete) conditional distributions are the distributions of the parameters

of interest conditioned on all the other parameters and the data Z. For our model, they are
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derived in section 3.2. As Carlin and Louis (2009) note, it has been shown that under mild

conditions, the knowledge of full conditional distributions allow us to determine the joint

density uniquely. Suppose now that we have a model with l parameters, a = a1, . . . , al. Let

[ai | · ] for i = 1, . . . , l denote the full conditional distribution for the ith parameter. The

Gibbs sampling algorithm can be implemented if the full conditional distributions are known

densities (e.g. Normal) or it is easy to generate samples from them through methodologies

such as rejection sampling. The description of the Gibbs sampling algorithm is as follows:

The Gibbs Sampling Algorithm:

1. Set starting values a
(0)
2 , . . . , a

(0)
l

2. For s = 1, . . . , S, repeat:

• Generate a
(s)
1 from [a1 | a(s−1)2 , a

(s−1)
3 , . . . , a

(s−1)
l , z]

• Generate a
(s)
2 from [a2 | a(s)1 , a

(s−1)
3 , . . . , a

(s−1)
l , z]

...

• Generate a
(s)
l from [al | a

(s)
1 , a

(s)
2 , . . . , a

(s)
l−1, z]

We can then use the generated draws to estimate posterior quantities of interest.

3.1.2 The Metropolis-Hastings Algorithm

Suppose that some or all of the full conditional distributions are unfamiliar densities. Then,

the Gibbs sampling algorithm cannot be used and we consequently turn to Metropolis-

Hastings which is applicable when some of the underlying densities of the full conditional

distributions are unknown. One major part of Metropolis-Hastings involves specifying a

candidate (proposal) distribution. Evans and Swartz (2000) state that a good candidate

distribution would wander around the support of the target density unpredictably and com-

pletely. Let q(x | y) denote the proposal density which specifies the probability density of

going to x given that the chain is currently at y. For a one-dimensional parameter a whose

full conditional distribution is an unknown density, the implementation of the Metropolis-

Hastings algorithm is as follows:
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The Metropolis-Hastings Algorithm:

1. Set an initial value a(0)

2. For s = 1, . . . , S, repeat:

• Generate a? from q(· | a(s−1))

• Compute the acceptance ratio AR = [a?|z]q(a(s−1)|a?)
[a(s−1)|z]q(a?|a(s−1))

• Accept a? as a(s) with probability min(AR, 1). Otherwise, set a(s) = a(s−1) if

a? is not accepted.

In the case that the proposal distribution is symmetric, the acceptance ratio reduces to

[a? | z]/[a(s−1) | z]. Further, it is quite common in practice to choose a proposal density

such that q(a? | a(s−1)) = q(a?). These proposal densities are known as independent pro-

posals. It is also instructive to assess the acceptance rate (the fraction of proposal draws

that are accepted) of the Metropolis-Hastings algorithm. An acceptance rate between 0.25

and 0.5 for a random walk is often desirable (Robert and Casella, 2009).

With these MCMC methods at our disposal, we now turn to the joint posterior density

of our model given in (3.2). The full conditional distributions of our parameters are derived

in the next section.

3.2 Derivation of the Full Conditionals

We now apply simple algebra to obtain the full conditional distributions of our model from

the joint posterior density given in (3.2) as follows:

[λi | · ] ∝ eλi(Zi−1)

(1+eλi+e2λi/2)
· exp{− 1

2σ2 (λ− µ)′V −1(λ− µ)}

[βj | · ] ∝
∏8
j=1 exp{− 1

2σ2
β

(βj − β0)2} · exp{− 1
2σ2 (λ− µ)′V −1(λ− µ)}[

σ2 | ·
]
∼ Inverse-Gamma

(
n−1
2 , 2

(λ−µ)′V −1(λ−µ)

)
[δ | · ] ∝ |V |−1/2 exp{− 1

2σ2 (λ− µ)′V −1(λ− µ)}

(3.3)

Note that σ2 follows the Inverse-Gamma since:
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[σ2 | ·] ∝
exp{− 1

2σ2 (λ− µ)′V −1(λ− µ)}
σn+1

∝
(

(λ− µ)′V −1(λ− µ)

2

)n−1
2

· 1

Γ(n−12 )
·

exp{− 1
2σ2 (λ− µ)′V −1(λ− µ)}

(σ2)
n−1
2

+1

∼ Inverse-Gamma

(
n− 1

2
,

2

(λ− µ)′V −1(λ− µ)

)
We observe that drawing samples from σ is straightforward. It is simply done by gen-

erating random variates v from the corresponding Gamma distribution and then setting

σ = 1/
√
v. The other distributions in (3.3) are unknown. Hence, we use the so-called

Metropolis within Gibbs algorithm (Gilks, Richardson and Spiegelhalter, 1996) as our im-

plementation involves a Gibbs step (generating samples from σ) and Metropolis-Hastings

steps for generating samples from the posterior densities of the other parameters. As dis-

cussed in section 3.1.2, the Metropolis-Hastings steps require the specification of proposal

densities. Thus, we shift our focus to introduce reasonable proposal densities for the un-

known parameters.

3.3 Proposal Density Specifications

To simulate λi draws, the 2012 PGA tour putting data up to and including the Ryder

Cup on September 30, 2012 is considered. The data are summarized in Table 3.1 which

were obtained from the website www.pgatour.com. Note that the table gives the putting

performance by pro golfers at a distance of r feet from the hole and the resultant expected

number of putts. Recall from section 2.3 that the expected number of putts is given by

E(Z|λ) = 1 + τ(1 + τ)/(1 + τ + τ2/2) where τ = eλ. Further, λ depends on the distance to

the hole r and the directional angle θ. To determine plausible λ values, we solve the above

expression for τ . This yields:

τ =
2− E(Z | λ)±

√
(E(Z | λ)− 2)2 − 2 (E(Z | λ)− 3)(E(Z | λ)− 1)

E(Z | λ)− 3
(3.4)
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Putting Distance r Proportion of
(in feet) One-Putts Two-Putts Three-Putts E(Z) λ

07.5 0.554 0.441 0.005 1.45 -0.722
12.5 0.298 0.694 0.008 1.71 -0.165
17.5 0.180 0.804 0.016 1.84 0.071
22.5 0.114 0.861 0.025 1.91 0.192

Table 3.1: Putting summaries from the 2012 PGA Tour.

We can use (3.4) and the E(Z) values in the fifth column of Table 3.1 to obtain values

of λ. Note that E(Z) in Table 3.1 represents average putting conditions. The computed λ

values are given in the sixth column of Table 3.1. Now, recall that µi = g(ri +β(θi)ri) is the

mean of λi as defined in (2.5). For instance, when r = 7.5, we have −0.722 = g(7.5). We

now use the values given in Table 3.1 to obtain the knots for the piecewise linear function

g for putting angles of average difficulty. We have:

µi = g(ri + β(θi)ri) =



−4.600 + 0.705(ri − 2.0 + β(θi)ri) 2.0 ≤ ri < 7.5

−0.722 + 0.111(ri − 7.5 + β(θi)ri) 7.5 ≤ ri < 12.5

−0.165 + 0.047(ri − 12.5 + β(θi)ri) 12.5 ≤ ri < 17.5

0.071 + 0.024(ri − 17.5 + β(θi)ri) 17.5 ≤ ri < 22.5

0.192 + 0.019(ri − 22.5 + β(θi)ri) 22.5 ≤ ri ≤ 40.0

where observations ri < 2 are set to ri = 2 and observations ri > 40 are set to ri = 40.

The piecewise linear function g gives a subjective estimate of the mean for a putt with an

average difficulty (β(θi) = 0). Further, the slopes are obtained by using the endpoints. For

instance, the slope for the first knot is obtained from (−0.722 + 4.600)/(7.5 − 2) = 0.705.

The plot of the piecewise linear function is provided in Figure 3.1 where β(θi) = 0.

It should be noted that other than the piecewise linear function g, various functional

forms were considered. However, it was found that the function g gives a preferable fit given

the knots. Further, distance and angle of the putt are incorporated nicely into the function.

Recall from section 2.2 that β(θi)ri has an appealing interpretation. For instance, β = −0.15

represents a putt that is equivalent in difficulty to a standard putt shortened in length by

15%.
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Figure 3.1: The piecewise linear function of distance for putting angles of average difficulty
with five knots. The distance r is measured in feet.

Now, we use the information given in Table 3.1 to give a proposal density for λi. For

instance, when r = 7.5, we have τ = 0.486, and as a result λ = −0.722. Thus, in the case

that ri = 7.5 corresponding to the ith pro golfer, we consider λi ∼ Normal(−0.722, 0.4)

as the proposal density where the variance is relatively large to cover plausible λi values.

Note that Normal distribution is symmetric and this choice of proposal density leads to a

simplification of the acceptance ratio in the Metropolis-Hastings step.

Next, we consider Normal(0, σ2β) as the proposal distribution for βj . The Normal(0, σ2β)

is also the prior distribution for βj , j = 1, . . . , 8 as defined in (2.6).

Finally, for generation of random variates from δ, we take the constraint that δ > 0 into

account. Therefore, we use a proposal density of Gamma(0.25, 1). This attempts to cover

aposteriori plausible values of δ near 0.25. The variance is large enough to cover a wide

range of δ values.
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Having specified the model, the algorithm, and the proposal densities, we move on to fit

this model to the test data obtained from the ShotLink website. In the next chapter, we give

a description of the data and the steps taken to transform it into the required format. We

fit our model and obtain the putting statistic arising from our model. The spatial putting

statistic is then compared to the commonly used putting statistics discussed in Chapter 1.



Chapter 4

Test Data: The 2012 Honda Classic

In this chapter, we first give a description of the data. Next, we discuss the early difficulties

with the data and the steps taken to transform it into the required format. We then fit

the models discussed in Chapter 3 and assess the convergence of the parameters. Finally,

we compute the putting statistic arising from our model and compare it to total putts per

round and the strokes gained-putting statistic.

The test data in our analysis were obtained from the ShotLink website and consist of

the results from the 2012 Honda Classic held at the PGA National Championship course.

This tournament took place on March 1-4, 2012 in Palm Beach Gardens, Florida.

4.1 Description of the Data

The data consist of all the shots taken by players who competed in the tournament and give

the x and y coordinates of the shots along with the location from which the shot was taken

(e.g. fairway or green). Further, the distance to the hole is provided. However, the number

of putts is not provided in the data. As a result, an R program was written to extract the

total number of putts taken and the starting location (x, y) of the first putt on the green

for each hole and each golfer.

One other missing piece in the data are the coordinates of the holes in the tournament.

It was found that the hole coordinates were not recorded. We used the Euclidean distance to

determine the coordinates of the hole. This is possible since we have the x and y coordinates

of at least two separate shots and their distance from the hole. Newton’s Method for solving

a pair of equations was used to find the coordinates of the hole. To illustrate this better,

suppose the coordinates of the hole are (xh, yh). Further, consider the coordinates of two

20
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other putts as (x1, y1) and (x2, y2) that are distances d1 and d2 from the hole, respectively.

Note that (x1, y1), (x2, y2), d1 and d2 are all known from the data. Consequently, we have

the following equations:

f1(xh, yh) = (x1 − xh)2 + (y1 − yh)2 − d21 = 0

f2(xh, yh) = (x2 − xh)2 + (y2 − yh)2 − d22 = 0

We then arrange them into the following form:

F (v˜) =

(
f1(xh, yh)

f2(xh, yh)

)
=

(
(x1 − xh)2 + (y1 − yh)2 − d21
(x2 − xh)2 + (y2 − yh)2 − d22

)
= 0

where v = (xh, yh)′

Newton’s Method can then be easily applied to the above equation. After applying

Newton’s Method, the hole coordinates were found within six digits of accuracy. Once the

hole coordinates were found, we transformed the coordinates of all the shots for a particular

hole so that they would be centred around zero.

Having transformed the data into the required format, we fit our model. For illustration

purposes, we only analyze the first hole of the fourth round of the tournament in detail and

then discuss the overall results of our model for the entire fourth round.

4.2 Detailed Analysis of Hole One - Round Four

Figure 4.1 gives the number of putts taken by each of the 76 pro golfers on the first hole of

round four from the 2012 Honda Classic. It is observed that the probability of a one-putt

increases as the length of the putt from the hole decreases. We further observe that putts

in the first quadrant seem to be more difficult compared to other quadrants as three-putts

are more common in the first region compared to other regions.
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Figure 4.1: The number of putts taken by each of the 76 pro golfers on the first hole of
round four of the 2012 Honda Classic. The x and y coordinates are measured in feet.

Next, we use the data from the first hole of the fourth round to fit our spatial model.

Table 4.1 gives the Markov chain estimates for δ, σ and β. The Metropolis within Gibbs

implementation was run for 25000 iterations which took approximately 10 hours of compu-

tation on a Mac Pro workstation. Further, we used the first 2500 iterations as burn-in. We

observe from Table 4.1 that the largest β value is β1 which corresponds to the first region.

This is in agreement with our original belief that the first quadrant is more difficult than

other quadrants. It is also observed that the posterior standard deviations for all secondary

parameters are relatively small compared to their posterior means. This is desirable since

it conveys that there is information in the data regarding these parameters.
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Parameter Post Mean Post Std Dev

δ 0.082 0.021
σ 2.384 0.856
β1 0.151 0.076
β2 -0.084 0.043
β3 -0.063 0.039
β4 -0.078 0.049
β5 -0.081 0.043
β6 0.079 0.061
β7 0.088 0.057
β8 0.087 0.048

Table 4.1: Posterior means and posterior standard deviations for the secondary parameters
of interest corresponding to the first hole of the fourth round of the 2012 Honda Classic.

We further assess the convergence of the secondary parameters by use of plots. Figure

4.2 gives the trace plot and histogram of σ draws from the Inverse-Gamma. We see that it

is moving around quite well and there is no indication of lack of convergence..

Figure 4.3 gives the trace plot and histogram of δ draws. The acceptance ratio was

found to be 32.5% which is reasonable. We see that it covers a plausible range and we see

no indication as to lack of convergence.

We finally assess the convergence of β draws. Figure 4.4 summarizes the trace plots and

histograms for β1, . . . , β8. The acceptance ratio was found to be 25.5 % which is reasonable.

We further see that there is no indication of lack of convergence. The histograms again

suggest that the first quadrant is a more difficult putting direction.
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Figure 4.2: Posterior draws for σ following iteration 2500. The plot on the top gives the
trace plot of σ. The plot on the bottom gives the histogram of σ.
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Figure 4.3: Posterior draws for δ following iteration 2500. The plot on the top gives the trace
plot of δ. The plot on the bottom gives the histogram of δ. Overall Metropolis acceptance
rate: 32.5%.
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Figure 4.4: Posterior draws for β following iteration 2500. The trace plots are given on
the left and the histograms are given on the right hand side. The blue colour indicates a
positive β posterior mean and the red colour indicates a negative β posterior mean.
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We now provide the fitted spatial map that gives the expected number of putts E(Zi | λ̂i)
where λ̂1, . . . , λ̂76 are the estimated posterior means of the primary parameters λ1, . . . , λ76.

Figure 4.5 gives the fitted spatial map:
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Figure 4.5: The expected number of putts obtained using the spatial model for a selection
of putting locations.

The estimates of the expected values are believed to be accurate to within one digit in

the last decimal place. We also monitored and assessed the convergence of λ1, . . . , λ76, but

we are not providing the trace plots and histograms of the λ parameter due to its high

dimensionality.

From Figure 4.5, we observe a number of appealing features. First, within a quadrant,

the expected number of putts decreases as the distance from the hole decreases. Second, the

expected number of putts for spatially close putts is similar. Finally, when comparing putts

with the same radii, we observe that the expected number of putts in the first quadrant is

greater compared to other quadrants.
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4.3 Analysis of Round Four

To give a ranking of the players in the fourth round based on the spatial model developed in

this paper, we fitted our model to each of the 18 holes in the fourth round of the tournament.

The first step involved converting four-putts to three-putts due to the definition of our

model in (2.2) which is based on a truncated-Poisson distribution where four-putts are not

permitted. This modelling approach was used as four-putts are very rare. Further, in our

data set, we observed only one four-putt out of 76× 18 = 1368 putting opportunities in the

fourth round.

Table 4.2 provides the total putts per round statistic and the strokes gained-putting

statistic (original) compared to our spatial strokes gained-putting statistic in the fourth

round for the top 11 finishers in the tournament.

Golfer Finishing Total Strokes Gained Strokes Gained
Position Putts (Original) (Spatial)

Rory McIlroy 1 28 3.0 3.0
Tiger Woods 2 26 3.2 3.9
Tom Gillis 2 30 0.6 3.0
Lee Westwood 4 28 1.3 1.8
Charl Schwartzel 5 32 1.1 2.1
Justin Rose 5 30 1.1 1.5
Rickie Fowler 7 26 2.0 3.0
Dicky Pride 7 26 2.7 2.8
Graeme McDowell 9 29 0.8 1.2
Kevin Stadler 9 25 3.1 2.4
Chris Stroud 9 25 2.6 1.9

Table 4.2: Various putting statistics calculated for the fourth round of the 2012 Honda
Classic.

Recall from section 1.1 that the total putts per round statistic is not a good mea-

sure to evaluate putting performance of professional golfers as it does not take the initial

location of the ball on the green into consideration. On the other hand, the strokes gained-

putting statistic is a much better measure to evaluate putting proficiency of pro golfers. The

stokes gained-putting statistic in the fourth column of the above table was obtained from

http://media1.pgatourhq.com/reports/R20120101 LeadersStatisticalSummary.pdf.

The strokes gained-putting statistic has been adjusted for the field. The strokes gained-

putting statistic values show that the top 11 finishers putted above average since the values



CHAPTER 4. TEST DATA: THE 2012 HONDA CLASSIC 28

are all positive. With the strokes gained-putting statistic, we observe that Tiger Woods had

the best putting performance amongst the top 11 finishers as he was three strokes better

than average.

With our spatial putting statistic, we observe that Tiger Woods also had the best putting

performance. However, our spatial putting statistic suggests that Tiger Woods was four

strokes better than average. The one stroke difference between our statistic and the original

strokes gained-putting statistic maybe due to Tiger Woods taking shots in more difficult

regions.

We can also calculate the correlation between the total putts, strokes gained (original)

and strokes gained (spatial) from Table 4.2. Figure 4.6 summarizes our findings:
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Figure 4.6: The pair-wise correlation plot for total putts, strokes gained (original) and
strokes gained (spatial).

We see from Figure 4.6 that there is a positive correlation (0.56) between strokes gained

(original) and our strokes gained (spatial). Further, we can test the null hypothesis that

correlation coefficient between strokes gained (original) and strokes gained (spatial) is zero.

This yields a p-value of 0.3 meaning that we fail to reject the null hypothesis.
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Overall, we observe general agreement when comparing the strokes gained-putting statis-

tic and our spatial strokes-gained putting statistic. However, we also observe some key

differences. For instance, Tom Gillis has the worst putting performance with respect to

the strokes gained-putting statistic amongst the top 11 finishers while he is tied for sec-

ond best putting performance with respect to our spatial strokes gained-putting statistic.

These key differences suggest that potential factors other than distance such as direction

are influencing the difficulty of putts.



Chapter 5

Discussion

In this project, we introduced a new metric to evaluate the putting performance of profes-

sional golfers. The statistic developed in this paper has a spatial aspect that assesses the

difficulty of putts by considering both distance and direction from the hole. The computa-

tion of this statistic is facilitated by ShotLink data that records the location on the green

for all putts.

The comparison of the spatial statistic developed in this project and the strokes gained-

putting statistic indicates that difficulty of putts may be influenced by factors other than

distance. This result opens up a new area of research for future investigations as we have

only touched the surface here.

First, it is possible to obtain the estimates of expected number of putts for a varying

numbers of slices and observe whether the results differ significantly or not. It may also be

preferable to determine the slices (Figure 2.1) on a hole by hole basis.

Further, it is quite possible not to adapt a splitting procedure and rather treat the angle

difficulty β(θi) as a continuous parameter.

Second, the spatial Bayesian model developed in this paper is such that it fits a model

to each hole in the fourth round separately. It may be desirable and possible to develop a

more complex model that is strengthened by borrowing information from all four rounds of

a tournament. Such a modelling approach may lead to more stable and improved parameter

estimates.

30
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Finally, in this project, we estimated the expected number of putts from the observed

putting green locations. However, it may be possible to draw inference for putting difficulty

at other locations. Such inference may help pro golfers to strategize the location of their

approach shots to the green.
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