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Abstract

Recommender systems are becoming tools of choice to select the online information relevant to a

given user. Collaborative filtering is the most popular approach to building recommender systems

and has been successfully employed in many applications. However, collaborative filtering based

approaches perform poorly for so-called cold start users. With the advent of online social networks,

the social network based approach to recommendation has emerged. This approach assumes a social

network among users and makes recommendations for a user based on the ratings of the users

that have direct or indirect social relations with the given user. As one of their major benefits,

social network based approaches have been shown to reduce the problems with cold start users. In

this research we propose novel methods to address the recommendation problem in online social

networks. To better understand the underlying mechanisms of user behavior in a social network, we

first propose a model to capture the temporal dynamics of user behavior based on different effects

influencing the behavior of users in rating items and creating social relations (e.g. social influence,

social selection and transitivity of relations). Then we propose a memory based approach based

on random walk models to perform recommendation in social networks. Matrix factorization is

the most prominent model based approach for collaborative recommendation. We extend matrix

factorization and propose a model that takes into account the social network as well as the rating

matrix. Finally, we present a mixed membership community based model for recommendation in

social networks based on stochastic block models. This model is capable of performing both rating

and link prediction.

All methods have been experimentally evaluated and compared against state-of-the-art methods

on real life data sets from Epinions.com, Flixster.com and Flickr.com. The Flixster data set has been

crawled and published as part of the research during this thesis. Experimental results show that our

proposed models achieve substantial quality gains compared to the existing methods.
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“We are leaving the age of information and entering the age of recommendation”

— Chris Anderson, The long tail: Why the future of business is selling less of more, 2006
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Chapter 1

Introduction

With the rapidly growing amount of information available on the World Wide Web, it becomes

necessary to have tools to help users to select the relevant part of online information. To satisfy

this need, recommender systems have emerged, e.g. there are popular recommenders for movies1,

books2, music3, etc.

Recommender systems have become an important research area since the appearance of the first

papers on collaborative filtering in the mid-90s [42, 96, 103]. There has been much work done both

in the industry and academia on developing new approaches to recommender systems over the last

decade [1]. The interest in this area still remains high because it constitutes a problem-rich research

area and because of the abundance of practical applications that help users to deal with information

overload and to provide them with personalized recommendations of content, services, etc. Exam-

ples of such applications include recommending books, CDs, and other products by Amazon [68],

and movies by MovieLens [80]. Moreover, some of the vendors have incorporated recommendation

capabilities into their commerce servers [93].

Recommender systems can be classified into content-based recommendation and collaborative

recommendations. Content-based recommendation has its roots in information retrieval [1]. Collab-

orative recommendation does not depend on the content of the items and relies only on the past user

behavior (ratings). Recommender systems emerged as an independent research area in the mid-90s

when researchers started focusing on recommendation problems that explicitly rely on the ratings

1http://www.netflix.com
2http://www.amazon.com
3http://www.last.fm

1



CHAPTER 1. INTRODUCTION 2

structure [1]. Note that the main focus of this thesis is also on collaborative recommendation. In its

most common formulation, the recommendation problem is reduced to the problem of estimating

ratings for the items that have not been seen by a user. Intuitively, this estimation is usually based

on the ratings given by this user to other items and on some other information that will be formally

described below. Once we can estimate ratings for the yet unrated items, we can recommend to the

user the item(s) with the highest estimated rating(s).

Typically in a recommender system, we have a set of users and a set of items. Each user u rates

a set of items by some values. The ratings expressed by users on items are stored in a rating matrix.

The rating matrix is typically extremely sparse [1, 69]. The recommender has the task to predict

the rating for user u on a non-rated item i or to recommend the top-N items with highest predicted

ratings based on the known ratings. Note that “rating” is a general term and includes the real valued

item ratings in Epinions4 and Flixster5 and binary rating values such as joining a community in

Facebook6 and LiveJournal7 or adding a photo to your favorite list in Flickr8. In other words, any

type of user behavior demonstrating his evaluation of an item can be formulated as a rating (binary

or real values).

Generally two types of collaborative recommender systems have been investigated: Memory-

based and Model-based approaches. Memory-based algorithms (traditional collaborative filtering

[37]) explore the user-item rating matrix and make recommendations based on the ratings of item i

by a set of users whose rating profiles are most similar to that of user u. Model-based approaches

such as matrix factorization [99] learn the parameters of a model. Hence they do not need to explore

the rating matrix and only store the model parameters. Model-based approaches are very fast after

the parameters of the model are learned. The bottleneck for model-based approaches is the training

phase, while in memory-based approaches there is no training, but the prediction (test) phase is

slower.

It should be noted that although recommender systems and search engines seem to be similar,

but they are fundamentally different. Both search engines and recommender systems are information

filtering tools that retrieve the relevant piece of information for their users. In search engines the

input is the query keywords and the output is the ranked list of results. In other words, users need

4www.epinions.com
5www.flixster.com
6www.facebook.com
7www.livejournal.com
8www.flickr.com
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to know what they are looking for before using the search engine. Every user gets the same result

(although modern search engines such as Google try to personalize the search results as much as

possible). Users want to have personalized results, but are not willing to spend a lot of time to

specify their personal information needs. Recommender systems, on the other hand, automatically

identify information relevant for a given user, learning from available data.

Online social networks are playing an important role in shaping the behavior of users on the

Web. Popular social networking services such as Facebook, Twitter9, Flickr, and del.icio.us, are

increasingly accepting more traffic and are turning into community spaces where users interact with

their friends and acquaintances [4]. The availability of such rich data at large scales makes it possible

to analyze user behavior at an individual level in order to understand user behavior at large. In

particular, questions interpreting a user’s action in the context of his online friends and correlating

the actions of socially connected users, become highly interesting [4].

With the advent of online social networks, the social network-based approach to recommenda-

tion has emerged. This approach assumes a social network among users and makes recommenda-

tions for a user based on the ratings of the users that have direct or indirect social relations with

the given user. The input data for recommendation in social networks is a social rating network.

A Social Rating Network (SRN) is a social network in which each user expresses ratings on some

items besides creating social relations to other users. Figure 1.1 illustrates a sample social rating

network . In addition to the notion of a social rating network, we use the notion of trust network

in order to emphasize the trust aspect of a social network which is most important in the context of

recommendation. This notion has also been used in the literature [74, 36, 120], sometimes in the

combined notion of social trust [69].

Collaborative filtering is most effective when users have expressed enough ratings to have com-

mon ratings with other users, but it performs poorly for so-called cold start user. Cold start users are

new users who have expressed only a few ratings. Using similarity-based approaches, it is unlikely

to find similar users since the cold start users only have a few ratings. Social network-based recom-

menders, however, can make recommendations as long as a new user is connected to a large enough

component of the social network. More than 50% of users in existing real life data sets are cold start

users (have less than 5 ratings10) [47, 74]. Therefore, addressing cold start users in a recommender

system is very critical.

9www.twitter.com
10As stated in the literature [74, 36], users with less than 5 ratings are considered as cold start users.
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Figure 1.1: A sample social rating network.

Exploiting social networks in recommendation works because of the effects of selection and so-

cial influence that have been postulated by sociologists for a long time. Social selection [78] means

that people tend to create social relations to people with similar attributes. Another fundamental

property of social networks is that people tend to behave similarly to their friends. The process of

social influence [33] in SRNs leads to people adopting the rating behavior of their friends. Social

influence and selection together lead to social correlation, i.e., there is correlation between the be-

havior of a user and his neighbors. The increasing availability of online social network data has

finally allowed a verification of these sociological models. The results of experiments in [26] and

of similar work confirm that a social network provides an independent source of information which

can be exploited to improve the quality of recommendations.

In this dissertation, we propose novel probabilistic models for recommendation in social net-

works. In Chapter 2 we formally introduce the problem definition for recommendation in social

networks. Moreover, we review state-of-the-art methods on recommendation, in particular recom-

mendation method in social networks.

Many effects influence the behavior of users in the evolution of a social rating network. Before

digging deep into recommendation models, we first model the temporal dynamics of user behavior

in social rating network to capture these effects and to better understand the underlying mechanisms

of user behavior in a social network. The comprehensive set of effects influencing the user behavior

and how we model them in a generative model is presented in Chapter 3. We perform experimental
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studies on real life data sets from Epinions and Flickr to evaluate how well the proposed model

captures the temporal dynamics of user behaviors.

We introduce TrustWalker in Chapter 4, random walk based method for recommendation ins

SRNs. TrustWalker is a memory based approach and explores the network to find an estimated

rating for a specific user on a specific item. We also extend TrustWalker to perform tasks such as

top-N recommendation and link prediction. Link prediction is a recommendation problem specific

to social networks in which the goal is to recommend a list of top users to a given user in order to

create social relations to these recommended users. Experimental results on two real life data sets

from Epinions and Flixster show that TrustWalker outperforms existing memory-based approaches,

in particular for cold start users. The Flixster data set has been crawled and published as part of this

research.

Memory-based approaches such as TrustWalker are slow in the test (prediction) phase, since they

have to explore the social rating network for every single predictions. Model-based approaches, on

the other hand, are very fast in prediction (although they need an additional time for the learning

phase). Matrix Factorization is the most well know approach in model-based recommendation. In

Chapter 5 we extend matrix factorization to take into account the social network in the recommen-

dation process. Basically, we regularize the latent factors of a user by the latent factor of his direct

neighbors in the social network. Regularization works particularly well for cold start users who

do not have expressed many ratings and their latent factors can not be learned effectively based on

their ratings only. Cold start items are also very important in recommender systems, in particular

for industries since they want to be able to promote their new items. To address cold start items, we

further extend our model and regularize the latent factor of items by the latent factors of their direct

neighbors in an item graph. The item graph is constructed using simple properties of items such as

product names in Epinions and movie genres and IMDB11 ratings in Flixster. Again, we perform ex-

periments on Epinions and Flixster to demonstrate the substantial improvement of recommendation

quality in the proposed models, particularly for cold start users and items.

Social influence and selection together lead to the formation of communities of like-minded and

well-connected users. Exploiting the clustering of users and items is one of the most important ap-

proaches for model-based recommendation. Users may belong to multiple communities or groups.

In Chapter 6, we extend mixed membership stochastic block models [3] and introduce a generalized

stochastic blockmodel (GSBM) that models not only the rating behavior of users but also models the

11www.imdb.com
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creation of social relations. In other words, GSBM is a community based recommender that is capa-

ble of performing both rating prediction and link prediction. Experiments on Epinions and Flixster

demonstrate the accuracy of the proposed GSBM for rating prediction as well as link prediction.

In Chapter 7, to present more insights on this thesis and the proposed models, we discuss some

general questions such as: Given an SRN, how do we say whether social network-based recommen-

dation works for this SRN or not? How do memory-based approaches for recommendation in social

networks compare against model-based approaches? Finally we conclude the thesis in Chapter 8

and present some directions for future works.



Chapter 2

Introduction to Recommendation in
Social Networks

In this chapter we formally define the recommendation problem and different classes of methods ex-

isting for recommendation. Then we discuss the approaches for evaluating recommender systems.

Since the focus of this thesis is on collaborative recommendation, we review the state-of-the-art

methods for collaborative filtering based recommendation, both memory-based and model-based

approaches. Next, we formally introduce the problem definition for recommendation in social net-

works and review the state-of-the-art methods for recommendation in social networks.

2.1 Problem Definition in Recommender Systems

In recommender systems we have a set of users U = {u1, ... uN} and a set of items I = {i1, ... iM}.
The ratings expressed by users on items are given in a rating matrix R = [ru,i]N×M . In this matrix

ru,i denotes the rating of user u on item i. ru,i can be any real number, but often ratings are integers

in the range [1, 5]1. In a social rating network, each user u has a set Nu of direct neighbors and tu,v
denotes the value of social trust u has on v as a real number in [0, 1]. Zero means no trust and one

means full trust. Binary trust networks are the most common trust networks (Facebook, Google+2

Amazon3, eBay4, ...). The trust values are given in a matrix T = [tu,v]N×N . Non-zero cells tu,v in

1Note that bookmarks and page hits can be formulated as binary rating values.
2plus.google.com
3www.amazon.com
4www.ebay.com

7
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T denote the existence of a social relation from u to v. Note that T is asymmetric in general.

As discussed before, two general tasks can be defined for a recommender system: Rating pre-

diction and top-N recommendation. In the following we formally define these two problems:

Rating Prediction:

Given a user u ∈ U and an item i ∈ I for which ru,i is unknown, compute the predicted

rating of u on item i, r̂u,i, using the rating matrix R and the social network T .

Top-N Recommendation:

Given a user u ∈ U and the rating matrix R, recommend the top N most desired items

that u has not rated yet.

The main focus of this thesis is on rating prediction. Using a rating prediction system, one can

infer a top-N recommender by simply ranking all items according to their predicted rating. This

approach is obviously not efficient but effective. There are more sophisticated ways to perform

top-N recommendation that we discuss later in this thesis.

2.2 Classification of Recommender Systems

The predicted ratings of the not-yet-rated items can be estimated in many different ways using

methods from machine learning, approximation theory, and various heuristics [1]. The commonly

accepted formulation of the recommendation problem was first stated in [42, 96, 103] and this prob-

lem has been studied extensively since then. Recommender systems are usually classified according

to their approach to rating estimation. In the next section, we will present such a classification that

was proposed in the literature and will provide a survey of different types of recommender systems.

Recommender systems are usually classified into the following categories, based on how recom-

mendations are made [11]:

• Content-based recommendations: The user will be recommended items similar to the ones the

user preferred in the past.

• Collaborative recommendations: The recommendation is performed based on the ratings ex-

pressed by people with similar tastes and preferences in the past. Collaborative filtering ap-

proaches exploit only the rating history of users and they do not consider the content features

of items or profile attributes of users.

• Hybrid Methods: These methods combine collaborative and content-based methods.
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2.2.1 Content-based Methods

In content-based recommendation methods, the predicted rating r̂u,i of item i for user u is estimated

based on the ratings ru,j assigned by user u to items j ∈ I that are similar to item i. For example,

in a movie recommendation application, in order to recommend movies to user c, the content-based

recommender system tries to understand the commonalities among the movies user u has rated

highly in the past (specific actors, directors, genres, subject matter, etc.) [1].

Content-based recommendation systems analyze item descriptions to identify items that are of

particular interest to the user. Also the similarity of users is computed using user profiles.

The content-based approach to recommendation has its roots in information retrieval [10] and

information filtering [13] research. Because of the significant and early advancements made by the

information retrieval and filtering communities and because of the importance of several text-based

applications, many current content-based systems focus on recommending items containing textual

information, such as documents, Web sites (URLs), and Usenet news messages. The improvement

over the traditional information retrieval approaches comes from the use of user profiles that contain

information about users tastes, preferences, and needs. The profiling information can be elicited

from users explicitly, e.g., through questionnaires, or implicitly-learned from their transactional

behavior over time [1].

As stated earlier, content-based systems recommend items similar to those that a user liked in

the past [63, 83, 91]. In particular, various candidate items are compared with items previously rated

by the user and the best matching item(s) are recommended.

Too many information is required for the content-based approach to perform high quality rec-

ommendations. Descriptive features of users and profiles of users should be available to compute

the similarities. Having to deal with the content features of users and items makes content-based ap-

proaches less efficient than collaborative recommenders where only the rating history is exploited.

Besides, many rating systems do not grant permission to access the private contents of users and

items by recommenders.

2.2.2 Collaborative Methods

Unlike content-based recommendation methods, collaborative recommender systems (or collabo-

rative filtering systems) try to predict the rating of items for a particular user based on the ratings

already expressed by this users and other users. Note that the item description or users profiles are

not exploited in collaborative recommenders.
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For example, in a movie recommendation application, in order to predict the rating of user u on

movie i, the collaborative recommender system tries to find the users similar to u, i.e., other users

that have similar tastes in movies (rate the same movies similarly). Then, the aggregate of ratings

expressed by the users with similar rating pattern is computed as the predicted rating.

According to [19], algorithms for collaborative recommendations can be grouped into two gen-

eral classes: memory-based (or heuristic-based) and model-based.

Memory-based algorithms [19, 28, 85, 96, 103] essentially are heuristics that make rating pre-

dictions based on the entire collection of previously rated items by the users. That is, the value of

the unknown rating ru,i for user u and item i is usually computed as an aggregate of the ratings of

some other (usually, the N most similar) users for the same item i.

Model-based algorithms [16, 43, 73, 90, 109, 115, 100, 14, 60, 58] use the collection of ratings

to learn a model, which is then used to make rating predictions. After learning the model, we do not

need to have access to the entire ratings anymore. We can store the model parameters and use them

to compute the predictions.

In contrast with memory-based approaches, model-based approaches have a learning phase

which could be time consuming. On the other hand, memory-based approaches are slower in the

prediction part since they have to explore the whole ratings heuristically, while model-based ap-

proaches are pretty fast since they only use the model parameters to compute the predicted rating.

2.2.3 Hybrid Methods

Several recommendation systems use a hybrid approach by combining collaborative and content-

based methods, which helps to avoid certain limitations of content-based and collaborative systems

[11, 12, 24, 92, 102, 105, 109]. Different ways to combine collaborative and content-based methods

into a hybrid recommender system can be classified as follows [1]:

• implementing collaborative and content-based methods separately and combining their pre-

dictions,

• incorporating some content-based characteristics into a collaborative approach,

• incorporating some collaborative characteristics into a content-based approach, and

• constructing a general unifying model that incorporates both content-based and collaborative

characteristics.
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2.3 Evaluation of Recommendation systems

Typically, recommenders are evaluated based on the quality of their predictions in terms of predic-

tion errors. Also, leave-one-out method is used to evaluate recommendation systems [36, 74, 101].

In the leave-one-out method, we withhold a rating and try to predict it using the trust network and

the remaining ratings.

Two most common metrics for computing the error of predictions are Root Mean Squared Error

(RMSE) [115, 58], and Mean Absolute Error (MAE) [41]. RMSE is defined as follows:

RMSE =

√∑
(u,i)|Ru,i

(ru,i − r̂u,i)2

|{(u, i)|Ru,i}|
(2.1)

In the above Equation, Ru,i is a boolean showing whether u has a rating on i in our data set,

and ru,i and r̂u,i denote the actual and recommended rating, respectively. The smaller the value of

RMSE, the more precise a recommendation. MAE is defined as follows:

MAE =

∑
(u,i)|Ru,i

|r̂u,i − ru,i|
|{(u, i)|Ru,i}|

(2.2)

Besides the evaluation of recommenders in terms of measuring their prediction errors, some

other aspects of recommendation quality have also attracted attentions in the literature. Examples

of these aspects are explainability, serendipity, and diversity.

Explainability means that the recommender system is able to explain how it predicted the rating.

There is now a growing recognition that recommender systems must be able to explain and justify

the recommendations in order to help users to understand why particular items have been suggested.

Some works in the literature have addressed the explainability issue and tried to propose recommen-

dation models that can explain their predictions [110, 107, 40, 117]. To explore how explanation

interfaces should be implemented, authors of [40] present a model for explanations based on the

user’s conceptual model of the recommendation process. Vig et al. [110] introduced tagsplanations,

which are explanations based on community tags. This paper investigates the properties of a good

explanation in a movie recommender system. Tintarev [107], in her PhD thesis, suggests seven cri-

teria for evaluation of explanations in recommender systems, followed by an attempt to define the

properties of a useful explanation using a movie review corpus and focus groups.

Another aspect of recommendation quality is diversity of results in recommendation. This aspect

is most related to the top-N recommendation. Diversity means that the list of top-N recommendation

items are from different contexts and topics and they are not all similar to each other. In other words,
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there is topic diversification among the recommended items [122]. There has been some works in

the literature addressing serendipity and diversification [122, 117, 84]. Serendipity in recommenda-

tion means the extent of unexpectedness in the list of recommended items. Serendipity is in close

relation with diversity. Authors of [84] propose metrics, unexpectedness and unexpectednessr, for

measuring the serendipity of recommendation lists produced by recommender systems. The ba-

sic idea of their metrics is that unexpectedness is the distance between the results produced by the

method to be evaluated and those produced by a primitive prediction method [84]. Ziegler et al.

[122] introduced an intra-list similarity metric to assess the topical diversity of recommendation

lists and a topic diversification approach for decreasing the intra-list similarity. Yu et al. [117] intro-

duced the notion of explanation-based diversification to address the problem of over-specialization

in item recommendations. This paper leverages the reason for which a particular item is being rec-

ommended, i.e., explanation, for diversifying the results, without the need to access the attributes of

the items.

2.4 Related Work on Collaborative Recommendation

Since the main focus of this thesis is on collaborative approaches, we devote this section to discuss

the state-of-the-art memory-based and model-based approaches for collaborative recommendations.

2.4.1 Memory-based Approaches for Collaborative Recommendation

Memory-based approaches are essentially heuristics that make rating predictions based on the entire

collection of previously rated items by the users. In this chapter we introduce two general approaches

for memory-based collaborative filtering (CF): user-based collaborative filtering, and item-based

collaborative filtering. Also, at the end of this chapter, we introduce a memory-based approach that

is random walk based method for alleviating the sparsity problem in collaborative filtering.

User-based Collaborative Filtering

User-based collaborative filtering is the method of making predictions about the interests of a user

by collecting taste information from similar users. The underlying assumption of user-based CF

approach is that those who agreed in the past tend to agree again in the future. For example, a

collaborative filtering recommendation system for television tastes could make predictions about

whether a user likes a television show given a partial list of that user’s tastes and also the opinion of
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other users with similar taste.

In a rating system, to predict the rating of user u on target item i, collaborative filtering methods

make recommendations based on the ratings of item i by a set of users whose rating profiles are

most similar to that of user u. The predicted rating is computed as follows [37]:

r̂u,i =

∑
simu,vrv,i∑
simu,v

(2.3)

In the above equation, the summation is computed over top N users that are most similar to the

user u. r̂u,i denotes the predicted rating. Note that some users are optimistic and some users are

pessimistic in their ratings. This leads to a bias in users’ ratings. To avoid this the prediction is

revised as follows:

r̂u,i = ru +

∑
simu,v(rv,i − v)∑

simu,v
(2.4)

where u is the average of ratings expressed by u. The above equation subtracts each user rating

by the average of ratings expressed by that user and computes an estimated deviation from the

average rating for user u.

There are a number of different ways to compute the similarity between users. In the following

we present two most common approaches: cosine-based similarity and correlation-based similarity.

• Cosine-based Similarity: In this case, two users are considered as two vectors in the N

dimensional item-space. The similarity between them is measured by computing the cosine

of the angle between these two vectors. Formally, in the N ×M ratings matrix, similarity

between users u and v denoted by simu,v is given by:

simu,v = cos(−→u ,−→v ) =
−→u · −→v

‖−→u ‖2 × ‖−→v ‖2
(2.5)

where “·” denotes the dot product of the two vectors and “‖‖2” represent the L2 norm of a

vector.

• Correlation-based Similarity: In this case, similarity between two users u and v is measured

by computing the Pearson-r correlation corru,v. Let the set of items rated by both user u and

v denoted by Iu,v then the correlation similarity is given by

corru,v =

∑
i∈Iu,v (ru,i − ru)(rv,i − rv)√∑

i∈Iu,v(ru,i − ru)2
√∑

i∈Iu,v(rv,i − rv)2
(2.6)
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Here, ru denotes the average of ratings expressed by u.

Challenges of User-based CF

User-based collaborative filtering systems have been very successful in the past, but their widespread

use has revealed some potential challenges [101] such as:

• Sparsity. In practice, many commercial recommender systems are used to evaluate large item

sets (e.g., Amazon.com recommends books and CDnow.com recommends music albums). In

these systems, even active users may have purchased well under 1% of the items (1% of 2

million books is 20000 books). Accordingly, a user-based collaborative filtering recommender

system may be unable to make any prediction for a particular user [101]. Enough rating should

have been expressed by users for the algorithm to be able to compute the similarity and find

similar users. Therefore, user-based collaborative filtering methods are not efficient for cold

start users who have rated only a few items.

• Scalability. User-based CF algorithms require computation that grows with both the number

of users and the number of items. With millions of users and items, a typical web-based

recommender system running existing algorithms will suffer serious scalability problems.

Item-Based Collaborative Filtering

In this section we study a class of item-based recommendation algorithms for producing predictions

to users. Unlike the user-based collaborative filtering algorithm discussed in previous section, the

item-based approach looks into the set of items the target user has rated and computes how simi-

lar they are to the target item i and then selects k most similar items {i1, i2, ..., ik}. At the same

time their corresponding similarities {simi,i1 , ..., simi,ik} are also computed. Once the most sim-

ilar items are found, the prediction is then computed by taking a weighted average of the target

user’s ratings on these similar items. Computation of the similarity of two items is similar to the

computation of user similarities in user-based CF.

The cosine-based similarity of items i and j is computed as follows [101][68]:

simi,j = cos(
−→
i ,
−→
j ) =

−→
i · −→j

‖−→i ‖2 × ‖
−→
j ‖2

(2.7)

where
−→
i is the vector in the N dimensional user-space representing ratings expressed on i.
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The Pearson correlation is computed as follows:

corri,j =

∑
u∈Ui,j

(ru,i − ri)(ru,j − rj)√∑
u∈Ui,j

(ru,i − ri)2
√∑

u∈U (ru,j − rj)2
(2.8)

where Ui,j denotes the set of user who have rated both items i and j. There is also another way

to compute the similarity and it has been shown to result in higher quality experimental results [30].

This similarity measure is called Adjusted Cosine Similarity:

corri,j =

∑
u∈Ui,j

(ru,i − ru)(ru,j − ru)√∑
u∈Ui,j

(ru,i − ru)2
√∑

u∈U (ru,j − ru)2
(2.9)

Item-based collaborative filtering also has challenges with handling the sparsity of the rating

data, specially for cold start users and items. It should be noted that since the number of users is

much more than the number of items in most rating data sets, the item-based CF is more scalable

than the user-based CF. The reason is that in user-based CF we have to compute the similarity for

user pairs while in item-based CF we compute the similarity for item pairs.

2.4.2 Model-based Approaches for Collaborative Recommendation

Model-based algorithms [16, 43, 73, 90, 109, 115, 100, 14, 60, 59] use the collection of ratings to

learn a model, which is then used to make rating predictions. After learning the model, we do not

need the entire ratings anymore. We can store the model parameters to compute the predictions.

In contrast with memory-based approaches, model-based approaches have a learning phase

which could be time consuming. On the other hand, memory-based approaches are slower in the

prediction part since they have to explore the whole ratings heuristically, while model-based ap-

proaches are pretty fast since they only use the model parameters to compute the predicted rating.

In this section we review some of the state-of-the-art model-based approaches.

Clustering-based Recommendation

A standard model-based collaborative filtering algorithm uses k-means to cluster similar users.

Given a set of user profiles, the space can be partitioned into k groups of users that are close to

each other based on a measure of similarity. The discovered user clusters are then applied to the

user-based neighborhood formation task, rather than individual profiles used in the user-based col-

laborative filtering. To make a recommendation for a target user u and target item i, we select a
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neighborhood of user clusters that have a rating for i and whose aggregate profile vk is most similar

to u. This neighborhood represents the set of user segments that the target user is most likely to be

a member, based on a measure of similarity. For this task, we use Pearsons correlation coefficient.

We can now make a prediction for item i as described in user-based collaborative filtering, where

the neighborhood is the set of user cluster aggregate profiles most similar to the target user.

To contrast the user-based collaborative filtering and the clustering-based collaborative filtering,

we should note that user-based CF is like a k-nearest neighbors approach, while clustering-based CF

is like k-means approach. The clustering-based approach improves the quality of recommendation

for cold start users as long as we can assign them to one of the clusters.

Association Rule-based Recommendation

Association rule mining is a common technique for performing market basket analysis. The intent

is to gain insight into customers buying habits and discover groups of products that are commonly

purchased together. As an example, an association rule may show that 98% of all customers that

purchase frozen pizza also purchase soda. Association rules capture relationships among items

based on patterns of co-occurrence across transactions. In [100], this method has been adapted to

the context of collaborative filtering. Considering each user profile as a transaction, it is possible to

use the Apriori algorithm [2] and generate association rules for groups of commonly liked items.

To make a recommendation for a target user profile u, we create a set of candidate items C such

that an association rule r exists of the form X ⊆ u ⇒ i ∈ C where i is an unrated item in the

profile u [100]. In practice, it is not necessary to search every possible association rule given u. It is

sufficient to find all frequent item setsX ⊆ u and base recommendations on the next larger frequent

itemsets Y ⊃ X where Y contains some item i that is unrated in u.

Rule-based recommendation is typically used in the domain where the input data is binary rat-

ings (e.g., user purchase history) and these models are not suitable to the cases where actual ratings

exist. Also, rule-based recommendation is used for top-N recommendation rather than for the pre-

diction task in recommenders.

Random Walk based Method for Alleviating the Sparsity Problem

Authors of [115] propose a novel item-based algorithm, RandomWalk recommender, that first infers

transition probabilities between items based on their similarities and models finite length random

walks on the item space to compute predictions. This method is especially useful when training data
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is less than plentiful, namely when typical similarity measures fail to capture actual relationships

between items. Aside from the proposed prediction algorithm, the final transition probability matrix

computed in one of the intermediate steps can be used as an item similarity matrix in typical item-

oriented approaches.

The experimental results in [115] show that the quality of results of RandomWalk recommender

is higher than the regular item-based collaborative filtering.

In [115], they have an item graph on which they perform the random walk. This graph is in-

dependent of users, and hence they do not perform random walks on users. Moreover, the random

walks are performed only starting from the items already rated by a user. This will lead to recom-

mending items similar to items already rated by the user. Hence the diversification of the results of

this approach is limited and the results have low serendipity.

Matrix Factorization based Recommendation

Matrix Factorization (MF) is one of the common techniques for model based recommendation. In

MF, each user and each item has a K dimensional latent factor vector [58]: the latent factor of user

u is denoted by Uu and stored in the uth row of user factor matrix U . The latent factor of item i is

denoted by Vi and stored in the ith row of item factor matrix V .

In order to learn the latent factors of users and items, [99] employs matrix factorization to fac-

torize the user-item matrix into product of user and item latent factors. The conditional probability

of the observed ratings is defined as:

p(R|U, V, σ2R) =
N∏
u=1

M∏
i=1

[
N
(
Ru,i|g(UTu Vi), σ

2
r

)]IRu,i
(2.10)

where N (x|µ, σ2) is the normal distribution with mean µ and variance σ2, and IRu,i is the indi-

cator function that is equal to 1 if u has rated i and equal to 0 otherwise. The function g(x) is the

logistic function g(x) = 1/(1 + e−x), which bounds the range of UTu Vi within [0,1]. Also, zero

mean Gaussian priors are assumed for user and item factors:

p(U |σ2U ) =

N∏
u=1

N (Uu|0, σ2U I), p(V |σ2V ) =

M∏
i=1

N (Vi|0, σ2V I) (2.11)

Now, through a Bayesian inference, the posterior probability of the latent variables U and V can

be obtained as follows:
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p(U, V |R, T, σ2R, σ2U , σ2V ) ∝ p(R|U, V, σ2R)p(U |σ2U )p(V |σ2V )

=
N∏
u=1

M∏
i=1

[
N
(
Ru,i|g(UTu Vi), σ

2
r

)]IRu,i × N∏
u=1

N
(
Uu|0, σ2U I

)
×

M∏
i=1

N
(
Vi|0, σ2V I

)
(2.12)

The corresponding graphical model is presented in Figure 2.1. Using the above equation, we

can learn the latent factors of users and items purely based on the user-item rating matrix.

Figure 2.1: Graphical Model representing matrix factorization technique.

The matrix factorization based method has been recently extended to incorporate other factors

in the factorization of the rating matrix: such as modeling at multiple scales [14], incorporating user

with similar rating patterns [58], and taking the timestamps into account [59]. The last approach

[59] won the Netflix grand $1M prize5.

2.5 Social Networks Used in Recommender Systems

In this section, we elaborate on the characteristics of the social networks that can be employed for

prediction quality improvement in recommender systems.

Throughout this dissertation, we use the terms social network and trust network. A social net-

work is a network among users in which users are interconnected through social relations such as

5http://www.netflixprize.com/
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friendship [27]. On the other hand, a trust network is a network of users in which users connect to

others based on the trust they have on other user’s opinions [21]. Members of a trust network may

not actually know each other in real life, but they know of each other’s opinions and expertise. Trust

can be considered as one aspect of social relations. In fact, in social network based recommendation,

we are emphasizing on the trust aspects of social relations, and that is why we use the terms social

network and trust network interchangeably.

Social relations can be explicit or implicit. For example, the social relations in online social

networking services such Facebook and Twitter are explicitly expressed by the users. On the other

hand, users in content generation Websites such as Wikipedia are allowed to interact with other users

by commenting on each other’s walls. These types of interactions form an implicit social network

[26]. All the datasets used in this thesis include explicit social networks that are either trust relations

(Epinions), or social relations (Flixster).

The social relations in a social network can be directed or undirected. Friendship based networks

(e.g. Flixster) are mainly undirected, since friendship is a bidirectional relation. On the other hand,

networks based on trust or reputation (e.g. Epinions, Twitter) are directed. Note that even in directed

networks, a relation can be bidirectional, meaning that it exists in both directions.

Social relations can be associated with weights that indicate the strength of a relation. Typically,

online social networks do not explicitly ask user to put a with on their relation with other users.

However, social networks such as Orkut have some ways to ask for the strength of a relation.

All the models we propose in this dissertation are capable of handling directed, undirected,

weighted and un-weighted social networks. We do not focus on how the social networks are ex-

tracted (implicit or explicit), and we assume that the social network is given as an input in this

thesis. In the next section, we review some related work on recommendation in social networks.

2.6 Related Work on Recommendation in Social Networks

With the advent of online social networks, the social network based approach to recommendation

has emerged. This approach assumes a social network among users and makes recommendations for

a user based on the ratings of the users that have direct or indirect social relations with the given user.

Social network based recommendation methods assume as input a so-called Social Rating Network

(SRN), i.e., a social network in which each user expresses ratings on some items besides creating

social relations to other users. Figure 2.2 illustrates a social rating network.
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Figure 2.2: Illustration of a social rating network used in recommender systems. The ratings are
shown below the item icon beside the user.

In this section we introduce existing related work on social network-based (trust-based) recom-

mendation. We can distinguish two types of trust: Explicit trust and Implicit trust. Explicit trust

denotes the trust values explicitly indicated by users, while implicit trust is the trust value inferred

from some evidence such as feature similarity of users or email exchange among two persons. In

this dissertation, we only consider the explicit trust indicated by users. In the case of explicit trust,

we have direct trust and indirect trust. Direct trust is the trust value explicitly indicated by users, but

indirect trust is the trust inferred from direct trust using transitivity of trust. How to compute indi-

rect trust is one of the main issues of trust models. Two different approaches can be distinguished

for trust computation: Model-based [97, 71] and Memory-based [74, 36, 120, 67]. In Model-based

approaches, a model with its parameters will be learned to compute indirect trust. However, in

Memory-based approaches, no model is being learned and normally exploration and heuristics are

being used.

Most existing approaches for social network-based recommendation are memory-based ap-

proaches. They compute a neighborhood of trusted users in the social network who have rated

the target item. Then they aggregate the ratings expressed by these trusted users weighted by trust
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values to compute a rating prediction. The main challenge in these approaches is computing the

indirect trust between pairs of users and how the trust propagates in the trust network. In this section

we review some of the methods proposed in the literature for computing the indirect trust. Recently

some model-based approaches have also been proposed for recommendation in social network. We

discuss these models at the end of this section.

2.6.1 TidalTrust

TidalTrust [36] performs a modified breadth first search in the trust network to compute a prediction.

Basically, it finds all raters with the shortest path distance from the source user and aggregates their

ratings weighted by the trust between the source user and these raters. To compute the trust value

between user u and v who are not directly connected, TidalTrust aggregates the trust value between

u’s direct neighbors and v weighted by the direct trust values of u and its direct neighbors as follows:

tu,v =

∑
w∈Nu

tu,wtw,v∑
w∈Nu

tu,w
(2.13)

In the above equation, tu,v denotes the trust value from u to v. Nu denotes the set of neighbors

of u. Note that if any of the trust values tw,v is an indirect trust value, they will be computed

recursively. After computing all the trust values between u and the raters at the shortest path, the

predicted rating is computed as follows:

r̂u,i =

∑
v∈raters tu,vrv,i∑
v∈raters tu,v

(2.14)

Since TidalTrust only uses information from raters at the nearest distance, it may loose a lot of

valuable ratings from users a little further apart in the network.

2.6.2 MoleTrust

Authors of [74] introduce MoleTrust. The ideas used in MoleTrust and TidalTrust are similar. But

MoleTrust considers all raters up to a maximum-depth given as an input. Note that maximum-

depth is independent of any specific user and item. Also, to compute the trust value between u

and v, MoleTrust performs a backward exploration. It means that the trust value from u to v is the

aggregation of trust values between u and users directly trusting v weighted by the direct trust values

[75]:
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tu,v =

∑
x∈N−u tu,xtx,v∑
x∈N−u tu,x

(2.15)

where N−u is the set of in-links of v. In other words, N−u is the set of users for whom v is a

direct neighbor. The predicted rating is computed in a similar way to that of TidalTrust.

In MoleTrust a fixed maximum-depth is used. If this maximum depth is set to a very small value,

the likelihood of finding a rater will be very low. On the other hand, having a large maximum depth

lead to incorporate the noisy information from users far way from the user u. It should be noted

that both TidalTrust and Model trust do not distinguish different lengths of shortest path between

the user u and the raters. Raters farther away from the user u should have smaller influence on the

prediction.

2.6.3 Advogato

The Advogato [67] maximum flow trust metric has been proposed in order to discover which users

are trusted by members of an online community. The input for Advogato is given by an integer

number n, the number of members to trust and the source (seed) user x for whom we like to find

trusted users.

Capacities are assigned to every node in the network, based upon the shortest path from u to

them. Hereby, the capacity of the seed itself is given by the input parameter n mentioned before,

whereas the capacity of each successive distance level is equal to the capacity of the previous level

l divided by the average out-degree of trust edges extending from l. The trust graph obtained hence

contains one single source and multiple sinks, i.e., all nodes other than the seed. Capacities con-

strain nodes. In order to apply Ford-Fulkerson maximum integer network flow [31], the underlying

problem has to be formulated as single-source/single-sink, having capacities on the edges rather than

capacities on nodes.

Through a conversion algorithm, the graph is converted to a new graph where capacities are

assigned to edges. A new node, the “super-sink” is added to serve as a single sink for the network

flow algorithm. Each node x is split into two nodes, x− and x+. For a node x with capacity c, an

edge is added from x− to x+ with capacity c − 1. For each edge from s to t in the original graph,

an infinite capacity edge from s+ to t− is added to the new graph. Finally, from each node x, we

add a unit capacity edge from x− to the super-sink node [67]. Figure 2.3 depicts a sample network,

and the network constructed for input n = 5. Figure 2.3(a) shows the original graph with capacities

assigned to the nodes and Figure 2.3(b) demonstrates the converted graph to be used as the input of
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Ford-Fulkerson algorithm.

(a) The original graph with capacities on nodes. (b) The converted graph with capacities on edges.

Figure 2.3: A sample input graph for the Advogato trust metric [67].

After running the maximum flow algorithm, the nodes who have flow to the super-sink are

considered to be the top-trusted users. It is easy to see that the number of such nodes is always n.

To assign capacities to the edges of the network, they need to transform the network, so it needs

to know the whole structure of the network. Moreover, it only computes the nodes to trust and does

not compute different degrees of trust. Since the number of users to trust is independent of users

and items and there is no distinction between the trusted users, this approach is not appropriate for

trust-based recommendation. However, this trust metric can be used to find top trusted users in a

social network.

2.6.4 AppleSeed

AppleSeed has been proposed in [120] as part of a PhD thesis. In contrast to Advogato, being

inspired by maximum network flow computation, the basic intuition of Appleseed is motivated by

spreading activation models. Source node u is activated through an injection of energy e, which is

then fully propagated to other nodes along edges proportional to the weight of the edge [121]. After

the energy is propagated, nodes which receive more energy are higher ranked in terms of trust.
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AppleSeed considers the trust to be additive. If there are many weakly trusted paths between

two users, this pair of users will obtain a high trust value, which is not intuitive.

2.6.5 Model-based approaches for recommendation in SNs

Recently, the model-based approach for recommendation in social rating networks has been inves-

tigated [69][71]. These methods exploit the matrix factorization technique to learn latent factors for

users and items from the observed ratings.

Ma et al. [71] developed a factor analysis method based on the probabilistic matrix factorization.

In their model, SoRec, they consider three sets of latent features: U for users, V for items, and F

for factors. They factorize the rating matrix R using latent item features V and latent user features

U . On the other hand, they factorize the trust matrix T using latent user features U and latent factor

features F . They assume a factor latent vector for each user. The graphical model for SoRec is

presented in Figure 2.4.

As stated in in their next paper [69], although the users’ social network is integrated into the rec-

ommender systems by factorizing the social trust graph, the real world recommendation processes

are not reflected in the model. Two sets of different feature vectors are assumed for users which

makes the interpretability of the model very hard. Moreover, experiments in [69] show that the

more recent STE model outperforms the SoRec model in terms of the RMSE.

Figure 2.4: The graphical model representing SoRec [71].

As mentioned above, the same authors proposed a matrix factorization approach for social
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network-based recommendation, called Social Trust Ensemble (STE) [69]. Their method is a linear

combination of basic matrix factorization approach [99] and a social network-based approach. The

graphical model for their proposed model is illustrated in Figure 2.56. The predicted rating of user

u on item i is as follows:

R̂u,i = g(αUTu Vi + (1− α)
∑
v∈Nu

Tu,vU
T
v Vi) (2.16)

where parameter α controls the effects of neighbors on the estimated rating.

Figure 2.5: The Social Trust Ensemble (STE) model [69].

Experiments show that their model outperforms the basic matrix factorization based approach

and existing trust-based based approaches. However, in their model, the latent factors of direct

neighbors of u affect the ratings of u instead of affecting the latent factor of u. This model does not

handle trust propagation. Also, since the procedure of learning latent factors of users is based on

observed ratings, enough ratings should have been expressed by users so that the model can learn

the latent factors of the user effectively. This issue make the model less effective for cold start users.

The authors of the STE model also proposed another model in [70]. They define a loss function

that regularizes the latent factors of users by the sum of the latent factors of their neighbors. The

loss function in [70] is similar to the objective function in SocialMF.However, unlike our SocialMF,

6It should be noted that model in Figure 2.5 is different from the graphical model presented in [69], but it correctly
represents the joint probability distribution actually computed for the STE model.
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this model is not a probabilistic generative model. More importantly, since this model uses a sum

function for regularization (instead of the mean function used in SocialMF), it penalizes users with

lots of social relations more than other users. Note that this paper also incorporates not only trust

relations but also distrust relations in recommendation. In a very recent paper [72], the same authors

extend their model from [70] and our SocialMF model [49] by taking into account the rating pattern

similarity of users to put weights on the regularization terms in their model.

Yang et al. [114] propose a matrix factorization based model that factorizes both the rating

matrix and the social network. Basically, the rating matrix is decomposed into the product of user

latent factors and item latent factors. Also, the social network is decomposed into the product of the

user latent factors. Note that the social network in this paper is considered to be undirected and the

user latent factors is shared between decomposition of ratings and links.

2.6.6 Other methods

There has been some other methods addressing the trust-based recommendation. Andersen et al.

[5] present a set of axioms for trust-based recommender systems and analyzes which combination

of these axioms can be satisfied simultaneously. In the context of this discussion, a simple random

walk method for binary (+1,-1) ratings is presented. Authors of [5] do not perform any experimental

evaluation or comparison to other methods.

Trust has been defined and used in a different way by [88]. They extract the social network from

the similarity of users’ profiles, which is not providing additional information as is provided by trust

network. They have two definitions for trust: profile level trust, which is a global reputation metric;

and item level trust, which measures the trustworthiness of a user according to his recommendations

for an item rather than a user-user local trust metric. They use the trust values to filter raters, and

they aggregate the ratings weighted by a combination of trust and similarity values. Moreover, they

do not use the transitivity of trust, but only directly trusted users. This method is not a trust-based

recommendation method in the sense in which we use this term in this thesis.

Authors of [112] proposed a model for trust-based recommendation. Their approach is a simpli-

fied approach of the one proposed in TidalTrust[36] and MoleTrust [7]. To compute the trust value

between users u and v, this model only considers one shortest path between u and v in the trust

network and multiplies the trust values along the path to compute the indirect trust value.

Sometimes, people express distrust to some users besides expressing trust to some other users.

Recently, propagation of distrust has been addressed in the literature [38]. The intuition is that the
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distrust propagates only one level. In other words, if a trusted friend distrust another user, it can be

inferred that we may distrust that user as well. However, if u distrusts v and v distrusts w, we can

not say anything about the relation of u and w [38].

2.7 Top-N Recommendation

As discussed in the introduction, two general tasks can be distinguished in a recommender system:

predicting a rating on a target item, and recommending top-N items. Most state-of-the-art methods

for recommendation address the problem of predicting a single rating for a user. However, there has

also been some work on top-N recommendation, which is reviewed in this section. [30] and [56]

deal with Boolean ratings (indicating whether an item was purchased), while [57], [62] and [77] deal

with numeric ratings (integer-valued scores). All of these methods adopt the collaborative filtering

approach.

User-based collaborative filtering has been extended for top-N recommendation [77]. To rec-

ommend top-N items to a user u, the top K similar users to the u are computed first. Then list of

items rated by similar users is aggregated and the top-N highly ranked items in this aggregated list

are returned as the top-N recommended items. Similarly, item-based collaborative filtering can be

extended to perform top-N recommendation [30]. The general idea is to find the top-K items similar

to the items rated by a user and aggregate those items to compute the top-N recommended items. In

the following, we review some works addressing the top-N item recommendation problem.

The method proposed in [30] is one of the first works addressing the problem of top-N rec-

ommendation. They extend the item-based collaborative filtering method [101] and present two

alternative item-to-item similarity measures. The first one models the items as vectors in the user

space and uses the cosine function to measure the similarity, whereas the second one uses a tech-

nique based on the conditional probability between two items. The second measure can differentiate

between users with varying amounts of historical information as well as between frequently and

infrequently purchased items. To perform the actual recommendation, the top similar items are

computed for each item purchased by the target user, items are ranked according to the frequency

of appearing in the set of similar items for different items purchased, and the top-ranked N items

are returned. Intuitively more similar items should have more impact on the recommended items,

but this is not supported. In addition, this method cannot handle cold start users well, since these

users have purchased only few items which do not provide enough information to compute the top-N

recommended items.
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Authors of [56] also employ item-based collaborative filtering for top-N recommendation and

introduce various evaluation metrics for top-N recommendation. Since they are using item-based

collaborative filtering, they have similar issues with cold start users and similar items as the previous

method.

The model proposed in [57] is another work exploring the item-based collaborative filtering

approach, taking user feedback into account. They compute an error matrix recording the difference

between the actual ratings and the predicted ratings. For a source user u and a target item i for which

u has not expressed a rating, the predicted rating is computed by summation of the average error

on predictions for u and the average error on predictions for i. The error matrix is updated upon

receiving a new actual rating. This model is also unable to handle users and items with few ratings.

Kwon et al. [62] build a top-N recommendation method on top of existing recommendation

systems for single ratings. They observe that the prediction accuracy decreases with increasing

rating variance. Therefore, various methods are presented that filter out items with high rating

variance. Since this approach reduces the diversity of items among the recommendations over all

users, another method is proposed which does not filter out, but only penalizes high variance items.

Variance-based filtering and weighting can be applied to any top-N recommendation algorithm in-

cluding memory-based or model-based collaborative filtering (which are considered in [62]).

The method proposed in [77] has exploited user-based collaborative filtering to perform top-N

recommendation. They introduce the Belief Distribution Algorithm that computes the belief (dis-

tribution) of rating differences instead of point estimates of the rating as done by existing methods.

They estimate the belief difference between each user’s average rating and the estimated rating on

the items. The predicted belief difference for the source user and a given item is computed and

added to the source user’s average rating to obtain the predicted rating. Finally, the items having one

of the top-N predicted ratings are returned as the recommended items. This method is an extension

of the collaborative filtering algorithm for top-N recommendation.

In this chapter, we reviewed some of the state-of-the-art related work on recommendation, in

particular recommendation in social networks. In the following chapters, if necessary, we also

discuss the related work specific to the topic of that chapter.

Before digging deep into recommendation models, in the next chapter we model the temporal

dynamics of user behavior in social rating network to capture these effects and to better understand

the underlying mechanisms of user behavior in a social network.



Chapter 3

Modeling the Temporal Dynamics of
Social Rating Networks using
Bidirectional Effects of Social Relations
and Rating Patterns

Before drilling down into discussing different models for recommendation, in this chapter we inves-

tigate the temporal dynamics of a social network and how different effects influence the behavior

of users in a social rating network. These effects are fundamental to better understanding of user

behaviors in SRNs. In this chapter, we analyze these effects and propose a generative model [53] to

capture these effect in social rating networks.

3.1 Introduction

Users in a social rating network can perform two types of actions: creating a link to another user

(social action) and creating a rating for an item (rating action). Note that the “rating action” is a

general term and includes the real valued item ratings in Epinions and Flixster and binary rating

values such as joining a community in Facebook and LiveJournal or adding a photo to your favorite

list in Flickr. In other words, different types of user behaviors can be formulated as a rating action.

In this chapter, we analyze and model the behavior of users while performing different actions.

We also take into account the timestamp to analyze the temporal dynamics of user behavior. Our

29
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model assumes real valued ratings. Binary ratings such as joining a community can be considered

as special cases of real valued ratings.

Many effects influence the behavior of users in the evolution of a social rating network. A

fundamental property of social networks is that people tend to behave similarly to their friends. The

process of social influence [33] in SRNs leads to people adopting the rating behavior of their friends.

Also people may adopt the rating behavior from users having similar rating patterns. We call this

correlational influence. While this effect is the implicit foundation of the successful collaborative

filtering recommenders [37], it has not yet been explicitly considered in social network models. The

social behavior of users is also investigated. As discussed in [26], people tend to form relationships

with others who are already similar to them, so-called selection [78]. However, we argue that social

selection is not the only mechanism influencing the social relation creation process in SRNs. Implied

by the well-known trust transitivity [44], people tend to create social relations to friends of their

friends. We call this effect transitivity.

There are also some other effects that influence the behavior of users. For example, users may

create social relations to other users who live in the same location, or they may befriend their co-

workers. Users may rate items they face in their daily life independent of their friends. These

effects are called environmental or external effects [4]. Since we do not have access to these kinds

of information, we make a simplifying assumption about these kinds of behaviors: when creating a

social relation, we assume that there is a chance that users create a link to a random existing user

(representing unknown effects) or to a new user. Similarly, there is a chance that users rate a random

existing item or a new item.

In our experiments, we use one data set with real valued ratings (Epinions) and another data set

with binary ratings (Flickr). According to our observations from these real life data sets, different

effects influencing the behavior of users are dynamic. In other words, the strength of each each

effect is not constant throughout the evolution of an SRN. For example, when very few users have

created social relations and the average number of social relations per user is very low, the strength of

social influence and transitivity is low, but these effects become more important during the growth

of a social rating network in which users rate more items, create more social relations and are

exposed to more people and items. Effects influencing the behavior of users are not the only dynamic

components governing the evolution of an SRN. At the beginning of the evolution when there are

only few nodes in the system, the rate of new users joining the system is high. Also, the rate of

creating a social relation to a new user decreases with the increase in the number of existing users

in the system.
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In this chapter, based on our observations and analysis, we propose a probabilistic generative

model [53] to model the behavior of users and capture the temporal dynamics of different effects

influencing the behavior of users. To capture the dynamism of effects, we model each of them as a

function of some evolving features of the SRN such as the number of users, the number of neighbors

for a users, etc.

This generative model can serve various purposes. First, there are very few SRN data sets

publicly available. This is mainly due to privacy concerns in social networks, especially when some

behaviors of the user should also get published. The lack of publicly available data sets is seriously

restricting research on social network-based recommendation. A generative model for social rating

networks can be used to generate synthetic data sets with properties similar to those of real-life data

sets, which can be used for research purposes. Moreover, the study of the evolution of social rating

networks and the growth patterns for social networks and rating profiles is an important application

of a generative model, providing insights into models developed in the social sciences. Also such a

model can be used for predicting future links, ratings or community structures.

The main contributions of this chapter are as follows:

• We analyze the temporal dynamics of SRNs and provide insights on bidirectional effects of

social relations and rating patterns. We analyze and model the dynamism of effects influencing

the behavior of users in an SRN. The dynamic nature of these effects has been neglected in

the literature.

• We present a generative model for the evolution of SRNs, modeling different effects influ-

encing the behavior of users. To the best of our knowledge, our model is the first one to

comprehensively capture all the four effects between social relations and ratings: social-on-

rating (social influence), social-on-social (transitivity), ratings-on-social (selection), ratings-

on-rating (correlational influence).

• We perform an experimental study on two real life data sets (Epinions and Flickr), showing

that the proposed model can indeed produce realistic SRNs. To compare different generative

models we introduce several formal evaluation metrics.

• Our experimental study provides interesting insights into the factors that drive SRNs. For

example, we find that transitivity is much more important than selection in the creation of

social relations for both Epinions and Flickr.
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The rest of the chapter is organized as follows. We present our observations and analysis of the

temporal dynamics of SRNs in Section 3.2. Based on our observations and analysis, we present a

model for the behavior of users and the evolution of SRNs in Section 3.3. Related work is discussed

in Section 3.4. Evaluation metrics and experimental results on real life data sets are presented in

Section 3.5.

3.2 Analyzing the Temporal Dynamics of SRNs

To observe the behavior of users in an SRN and to analyze the evolution of SRNs, we performed

experimental studies on two real life data sets: Epinions and Flickr. Epinions.com is an online

reviewing website. In Epinions, two types of actions are provided: users rating items with some

rating values, and users creating social relations to other users. In Flickr, we consider two types of

actions: users creating social relations to other users, and users adding photos to their favorite list.

We consider adding a photo to favorites as a binary rating action (with rating value 1).

We represent the data set as a sequence of actions A. Each action can be either a rating action

creating a rating or a social action creating a social relation. Every action a in A is also associated

with a timestamp. We order the actions with respect to their timestamps and observe the behavior of

users in chronological order.

Figure 3.1: Illustration of different effects influencing the behavior of users in an action.

For every action a, we observe and analyze the behavior of users as follows (see Figure 3.1):
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• Who is the user u performing the action? One of the existing users or a new user joining the

SRN and performing his first action.

• What type of action is being performed? A rating action or a social action?

• If it is a social action, who is the target user v to whom the social relation is being created?

– If transitivity is playing role in this action, then v should be one of the friends of friends

of u.

– Selection leads to select v among top similar users to u.

– If unknown external effects are influencing this action, then v could be any existing user.

– Finally, there is the possibility of v being a new user just joining the SRN.

• If it is a rating action, what item i is being rated and by what value?

– If social influence is affecting the rating behavior of u in this action, then i should be

one the items rated by friends of u. The value of the rating should also be affected by

ratings expressed by direct neighbors of u on i.

– If correlational influence is affecting the behavior of u, then i should be one of the items

rated by top similar users to u. The rating of u on i should also be influenced by the

ratings of similar users on i.

– If some unknown external effect is influencing the behavior of u in this action, then i

could be any existing item.

– It could be also the case that i is a new item which has not been rated in the SRN before

this action.

Note that the rating actions being affected by social influence, correlational influence and unknown

external effects may overlap. Also the social actions influenced by transitivity, selection and un-

known external effects may overlap. We compute the similarity among users using Pearson correla-

tion [96] between their ratings. Similar to the idea used in [26] to construct a similarity network, the

number of top similar users considered for each user u in rating actions is the same as the number of

direct neighbors of u in the social network, Nu
1. For social actions of user u, the number of similar

users considered is the same as the number of users who are friends of friends of u.

1Since there could be users with no direct neighbor but with some similar users, in our experiments, the number of
similar users is set to be at least K=10.
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First we analyze the role of new users and items in the evolution of SRNs. As shown in Figure

3.1, the probability that an action is performed by a new user is η. However this probability is not a

fixed number. Figure 3.2(a) presents our observation on the percentage of actions being performed

by new users versus the total number of users existing in Epinions and Flickr. As shown in this

Figure, for both data sets η has a power law-like distribution over |Nt|, where Nt is the current set

of existing users in the SRN at time t. At the very beginning of SRN’s evolution, when there exists

only a few users, the probability of an action being performed by a new user is very high, and this

probability decreases very fast with the increase in the number of existing users. As depicted in

Figure 3.2(a), a similar behavior exists for the percentage of social actions in which a social relation

is created to a new user, denoted by Φt,4. If the action is a rating action, the percentage of rating

actions in which a new item is rated (denoted by Φr,4) also exhibits a power law-like distribution

over the number of existing items for both Epinions and Flickr, as shown in Figure 3.2(b).

Our observations show that the percentage of social actions (φ) over the total number of actions

(denoted by |At|) remains fairly constant throughout the evolution of SRN for both Epinions and

Flickr.

When a social relation is created by a user to some existing user, it could be either influenced

by transitivity or selection, or by some unknown external effect. If unknown effects are playing

a role, we assume that the social relation is being created to an arbitrary user. Our observations

show that the percentage of social actions that are influenced by transitivity or selection increases

almost linearly with growth of the number of social actions. We believe that in the course of time

more social relations and more ratings are being expressed and hence users get more similar and

also get to know friends of their friends. These events may lead to a stronger influence of similar

users and direct neighbors on their behavior for creating social relations. Figure 3.3(a) depicts the

percentage of social relations created to existing users that are not affected by transitivity or selection

for different values of |N∗u | + |S∗u| for both data sets, where N∗u is the set of friends of friends of u

and S∗u is the set of top similar users for u. As shown in this figure, the more users become available

in N∗u and S∗u, the less likely it becomes that a social action can not be explained by the effect of

transitivity or selection. Again, the diagram resembles a power law distribution.

Similar behavior is observed for rating actions. The percentage of rating actions that are affected

by social or correlational influence increases almost linearly with the growth of the number of rating

actions. Figure 3.3(b) depicts the percentage of rating actions rating an existing item that are not

affected by social or correlational influence for different values of |INu|+ |ISu| for both data sets,

where INu denotes the set of items rated by friends of u and ISu denotes the set of items rated by
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(a)

(b)

Figure 3.2: a) The distribution of η and Φt,4 versus the number of existing users in Epinions and
Flickr. η is the percentage of actions that are performed by a new user. Φt,4 is the percentage of
social actions that are created to a new user. b) Evolution of the percentage of ratings in which a
new item is rated (Φr,4).

top similar users for u. Figures 3.3(a) and 3.3(b) show that the percentage of actions that can be

explained only by unknown effects decreases in a power law-like distribution in both Epinions and

Flickr.

Furthermore we analyze the percentage of social actions in which a social relation is created to

a friend of a friend versus the social actions in which the social relation is created to a top similar

user. Surprisingly, this percentage remains fairly constant throughout the evolution of the Epinions

data set. Figure 3.4(a) shows the percentage of social actions influenced by transitivity or selection

that are solely influenced by transitivity (denoted by φt,1) versus the total number of social actions

for Epinions and Flickr. Note that social actions influenced by transitivity may overlap the social
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(a)

(b)

Figure 3.3: a) P(¬(transitivity ∨ selection)): Percentage of social actions that are not affected by
transitivity or selection for different values of |N∗u | + |S∗u| in Epinions and Flickr. b) P(¬(social ∨
correlational)): Percentage of rating actions that are not affected by social or correlational influence
for different values of |INu|+ |ISu| in Epinions and Flickr.

actions influenced by selection. As shown in this figure, transitivity plays a more important role in

creating social relations than selection in both data sets.

The next observation is the percentage of ratings being affected by social influence versus the

actions affected by correlational influence. Figure 3.4(b) depicts the percentage of rating actions

affected by social or correlational influence that are solely influenced by social influence (denoted

by φr,1) versus total number of rating actions for Epinions and Flickr. Again, similar to the case

for social actions, this percentage is fairly constant throughout the evolution of the SRN in both

Epinions and Flickr.

Our final observation is the distribution of rating values throughout the evolution of an SRN.
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(a) φt,1

(b) φr,1

Figure 3.4: a) Relative strength of transitivity and selection for Epinions and Flickr. Each diagram
shows the percentage of social actions influenced by transitivity or selection that are solely influ-
enced by transitivity (denoted by φt,1) versus total number of social actions in a data set. b) Relative
strength of social influence and correlational influence for Epinions and Flickr. The diagrams show
the percentage of rating actions affected by social or correlational influence that are solely influenced
by social influence (denoted by φr,1) versus total number of rating actions.

Figure 3.5 depicts the evolution of the percentage of each rating value in Epinions2. Interestingly, we

observe that the relative frequency of the rating values are fairly constant during the evolution of the

SRN. The percentage of higher rating values are larger than those of low rating values, demonstrating

that users in Epinions tend to be very generous in their ratings.

2Note that since the ratings in Flickr are binary only, this observation does not apply to the Flickr data set.
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Figure 3.5: Distribution of rating values throughout the evolution of social network in Epinions.
Possible rating values are integers in the range [1,5].

3.3 Modeling the Temporal Dynamics of SRNs

In this section we exploit our observations and analysis to model the temporal dynamics of social

rating networks. To do so, we represent different effects influencing the behavior of users in a

probabilistic generative model.

As discussed before, a social rating network consists of a sequence of dated actions. In the

following, we explain the details of the proposed model (see Figure 3.1) for the generative process

of performing an action.

In our model, first the user to perform the action is selected. With probability η this user is a

new user. With probability 1−η one of the existing users performs the action. η is not a fixed value.

Inspired by our observation in Figure 3.2(a), we assume a power law function for η over the number

of existing users as follows:

η = power(|Nt|) = a1 × (|Nt| − b1)c1 (3.1)

where Nt is the current number of existing users. Now we introduce P (u|St), the probability of

user u performing the action. St denotes the current state of the SRN which summarizes the effects

of all actions performed up to now. If the model decides that the next action is to be performed by

a new user, then “selecting” a user u is deterministic: the model simply generates a new user u to
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perform the action. If it is decided that the next action is to be performed by an existing user, then

the probability of a particular user u performing the action is proportional to the number of actions

already performed by u taking into account a smoothing parameter ε0. This is similar to the “rich

get richer” idea which is also the basis of preferential attachment [86][87].

Next, the type of the action being performed is decided: social action or rating action. Based on

the observations the probability of creating a social relation is considered to be a constant parameter

φ.

If the action is a social action, then there are four alternatives on how to create the social relation:

creating a social relation to a new user, to a friend of a friend (transitivity), to a similar user (selec-

tion), or to a random existing user (unknown effect). With probability Φt,4 the action will create a

social relation to a new user. According to our observations shown in Figure 6.4(a), Φt,4 decreases

with the increase of the number of existing users by a power function. So, we model this probability

as follows:

Φt,4 = power(|Nt|) = a2 × (|Nt| − b2)c2 (3.2)

With probability Φt,3 = (1 − Φt,4)φt,3, the action creates a social relation to some random

existing user influenced by unknown external effects. These are the social actions that can not be

explained by transitivity or selection. To model φt,3 we exploit the observation shown in Figure

3.3(a) and assign social actions that can not be explained by transitivity or selection to unknown

external effects as follows:

φt,3 = power(|N∗u |+ |S∗u|) = a3 × (|N∗u |+ |S∗u| − b3)c3 (3.3)

where N∗u is the set of friends of friends of u and S∗u is the set of top similar users to u. Note

that as mentioned before, S∗u is defined in a way such that |S∗u| is the same as |N∗u |. If we decide

to create a social relation to an arbitrary existing user, we do so by assigning higher probabilities to

users to whom more social relations have been created already. This is the same as in preferential

attachment models [86].

Pe(v|u,St) =
din(v) + ε3∑
w(din(w) + ε3)

(3.4)

In the above equation, din(v) is the in-degree of user v in the social network and ε3 is a smooth-

ing parameter. Pe(v|u,St) is the probability that u creates the social relation to v who is among

existing users.
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With probability (1 − Φt,4)(1 − φt,3), the action creates a social relation to either a friend of a

friend or a top similar user. Based on our observations in Figure 3.4(a), φt,1 is constant throughout

the evolution of the social rating network and can be learned as model parameters. Hence, in our

model a social action creates a social relation to a friend of a friend with probability Φt,1 = (1 −
φt,4)(1− φt,3)φt,1 and to a top similar user with probability Φt,2 = (1− φt,4)(1− φt,3)(1− φt,1).

If the social action is creating a social relation to a friend of a friend, then the probability of a

friend of friend v being selected is proportional to the frequency of appearance of v in the set of

friends of friends of u:

Pt(v|u,St) =
ft(v|u) + ε1∑

w∈N∗u (ft(w|u) + ε1)
(3.5)

where Pt(v|u,St) is the probability of creating a social relation from u to a friend of friend

v when deciding to create the social relation to a friend of friend. ft(v|u) is the frequency of

appearances of v in the set of friends of friends of u and ε1 is a smoothing parameter to be learned.

Similarly, the probability of creating a social relation to a top similar user v is modeled as

follows:

Ps(v|u,St) =
simu,v + ε2∑

w∈Su
(simu,w + ε2)

(3.6)

where ε2 is the smoothing parameter to be learned for our model. Ps(v|u,St) is the probability

that u creates a social relation to v who is among his top similar users.

Next, we model rating actions. There are four alternative ways to rate an item: rating a new item,

rating an item rated by friends (social influence), rating an item rated by similar users (correlational

influence), and rating a random existing item (unknown effect). With probability Φr,4 a new item is

rated by action performer u. As we observed in Figure 3.2(b), this probability exhibits power law

behavior. So, we model it as follows:

Φr,4 = power(|It|) = a4 × (|It| − b4)c4 (3.7)

where It is the current set of existing items. To select the rating value for this rating action, we

apply the observation in Figure 3.5 and model the probability of each rating value r by µr, where

µr is a model parameter indicating the prior probability of rating value r.

With probability Φr,3 = (1 − Φr,4)φr,3, user u rates an arbitrary existing item influenced by

unknown external effects. These are the rating actions that can not be explained by social or cor-

relational influence. Similar to our model for social relations, we exploit the observation shown



CHAPTER 3. MODELING TEMPORAL DYNAMICS IN SRNS 41

in Figure 3.3(b) to model φr,3 and assign all rating actions that can not be explained by social or

correlational influence to unknown external effects as follows:

φr,3 = power(|INu|+ |ISu|) = a5 × (|INu|+ |ISu| − b5)c5 (3.8)

where INu is the set of items rated by direct neighbors of u and ISu is the set of items rated

by top similar users of u. In this case, the probability of selecting an existing item i, Pe(i|u,St), is

modeled to be proportional to the number of ratings already expressed for i:

Pe(i|u,St) =
|Ii|+ ε8∑
j (|Ij |+ ε8)

(3.9)

where Ii is the set of users who have rated i. The next step is to decide the rating value for this

action. For each rating value r, we combine the prior probability µr with the percentage of existing

ratings for item i with value r:

Pe(r|i,St) ∝
fi(r) + ε9∑
r′(fi(r

′) + ε9)
+ µr (3.10)

where fi(r) is the frequency of rating value r for item i and ε9 is the smoothing parameter.

Pe(r|i,St) is the probability of assigning rating value r to i if i is a random existing user.

With probability Φr,1 = (1− Φr,4)(1− φr,3)φr,1, the rating action selects the item from one of

the items rated by direct neighbors of u. Based on our observations in Figure 3.4(b), φr,1 remains

fairly constant throughout the evolution of the SRN, and can be learned as a model parameter. If an

item already rated by direct neighbors is being rated, then the probability of item i being rated is as

follows:

Pt(i|u,St) =
ft(i|u) + ε4∑

j∈INu
(ft(j|u) + ε4)

(3.11)

where ft(i|u) is the frequency of item i appearing in the set of items rated by direct neighbors

of u. To compute the probability of rating the item by value r (denoted by Pt(r|u, i,St)), we use

the prior knowledge of general probability of rating i by value r combined with the distribution of

rating values on i among direct neighbors u as follows:

Pt(r|u, i,St) ∝
ft(r|i, u) + ε5∑
r′ (ft(r

′|i, u) + ε5)
+ Pe(r|i,St) (3.12)

In the above equation, Pe(r|i,St) is the prior probability of rating item i by value r as defined

in Equation (3.10). ft(r|i, u) is the frequency of rating value r for item i among ratings expressed
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by friends of u for item i. It should be noted that since the ratings are binary in Flickr, models for

rating values (Equations (3.10) and (3.12)) apply to Epinions only. In Flickr, all rating values are 1.

With probability Φr,1 = (1 − Φr,4)(1 − φr,3)(1 − φr,1), the rating action selects the item from

one of the items rated by top similar users to u. The process for rating an item in this case is similar

to the process of rating an item rated by direct neighbors of u in the social network. Ps(i|u,St) and

Ps(r|u, i,St) are defined in a way similar to the definition of Pt(i|u,St) and Pt(r|u, i,St).

3.3.1 Learning the model parameters

In this section, we present our approach to learn the parameters of our model. As discussed above,

parameters of our model include 10 smoothing parameters (ε0...ε9), 15 parameters for power law

functions (a1, b1, c1...a5, b5, c5), φ, and φt,1,φr,1. We denote the set of all parameters by Θ.

We compute the likelihood of the ratings and social relations observed in the data set under our

model, and resort to maximum likelihood (ML) estimation to learn the values of the model parame-

ters. We consider the network generation from the very beginning, and maximize the likelihood of

the observed sequence of social and rating actions.

From the start time to the end time T , we observe K actions which transform the SRN from the

state S0 to the state ST . St denotes the state of the SRN at time t which summarizes the effects of

all actions performed up to this time. Let A denote the sequence of all actions performed between

times 0 and T , in which the actions are sorted according to their timestamps. We denote each action

inA by ak and its timestamp by tk, where k ∈ [1..K]. Based on the chain rule, the likelihood of the

model is the product of the probabilities of each individual action in A given the previous actions:

P (A|S0,Θ) =
K∏
k=1

P (ak|Stk ,Θ) (3.13)

For the two types of actions (social actions, rating actions), we compute the likelihood of the

action in a different way. The probability of selecting a user u, and performing a social action Tu,v
to create a social relation between user u and user v is:

P (Tu,v|St,Θ) = P (u|St)× φ×
[
Φt,4gn(v|St)+

(1− Φt,4)φt,3Pe(v|u,St) + (1− Φt,4)(1− φt,3)φt,1Pt(v|u,St)

+ (1− Φt,4)(1− φt,3)φt,2Ps(v|u,St)
]

(3.14)
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where gn(v|St) is an indicator of whether v is a new user. Likewise, the likelihood of an action

Ru,i,r in which the user u gives the rating r for item i is:

P (Ru,i,r|St,Θ) = P (u|St)× (1− φ)×[
Φr,4gn(i|St)µr + (1− Φr,4)φr,3Pe(i|u,St)Pe(r|i, u,St)

+ (1− Φr,4)(1− φr,3)φr,1Pt(i|u,St)Pt(r|i, u,St)

+ (1− Φr,4)(1− φr,3)φr,2Ps(i|u,St)Ps(r|i, u,St)
]

(3.15)

where gn(i|St) is an indicator of whether i is a new item. We use expectation maximization

(EM) to estimate the maximum likelihood model parameters.

3.4 Related Work

There has been a lot of research on modeling the evolution of social networks [45, 61, 66, 81].

However, these works only model the creation of social relations and do not consider attributes for

nodes. In the following, we review some recent works which address the problem of modeling the

evolution of social networks together with node attributes.

Authors of [26] introduce an evolution model for social networks with user activities. In the

Wikipedia data set used in their experiments, activities are the editing of a certain Wikipedia article,

and network edges represent interaction, i.e., participation in the discussions on another users’s

profile. The generative model of [26] considers only two factors: social influence and selection.

The co-evolution of social and affiliation networks has been explored by the authors of [118]. In

this scenario, nodes are associated with group labels. The proposed model creates edges and group

labels. For each user, groups to join are selected from those of his friends (social influence), and

new friends are selected from his friends of friends (transitivity). However, the effects of selection

and correlational influence are not modeled.

Like our work, [76] investigates social networks with user ratings. Similar to our work the

bidirectional effects between trust and ratings are explored, but only selection and correlational

influence are considered. The effect of social relations on the behavior of users is not discussed in

this paper.

Evaluating generative models and the fit of synthetic networks with actual networks is an impor-

tant issue in designing models for the evolution of social networks. In the following we review two
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recent works which investigate evaluation metrics for generative models.

Reference [4] addresses the problem of distinguishing social influence (causation) from corre-

lation. A shuffle test is proposed based on the intuition that if social influence is not a likely source

of correlation in a system, timing of actions should not matter, and therefore reshuffling the time

stamps of the actions should not significantly change the amount of correlation. They also define

a metric for measuring social correlation. If the social correlation measure does not change after

shuffling, then social influence is ruled out as a cause of social correlation.

The authors of [46] present a systematic examination of a real network data set using maximum

likelihood estimation for exponential random graph models as well as new procedures to evaluate

how well the models fit the observed networks. These procedures compare structural statistics of the

observed network with the corresponding statistics on networks simulated from the learned model

[46]. All metrics in this paper measure some structural property of social networks. Attributes of

nodes are not considered.

The microscopic evolution of social networks is investigated in [66]. The authors argue that

using the likelihood is a more objective measure for comparing alternative generative models than

using some of the many potential relevant network statistics. Only simple social networks without

attributes and only the influence of transitivity are considered. The timing of the creation of nodes

and edges is also modeled, which is beyond the scope of our work.

3.5 Experiments

In this section, we present our experiments and discuss the results. To evaluate the performance of

our model, we build a generative model for each data set, learning the parameters using maximum

likelihood and expectation maximization.

We used the version of the Epinions data set3 published by the authors of [98]. The data set

contains 22K users, 30K items, 108K ratings, and 117K social relations between users4. The times-

tamps in the data set range from 2001/01/17 to 2002/02/01. Flickr.com is an online photo sharing

website. We used the version of the Flickr data set5 published by the authors of [23]. The Flickr

3http://alchemy.cs.washington.edu/data/epinions/
4Note that we had to prune the data set to remove all the links for which no timestamp was available. The timestamps

are available for links after 2001/01/17 and therefore we had to remove all the ratings before that date as well as un-dated
links.

5http://socialnetworks.mpi-sws.org/
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data set used in our experiments contains 150K social relations and 30K rating actions expressed by

5.2K users on 5K items. The timestamops in the flickr data set are from 2206/11/02 to 2007/03/15.

In our experiments, we compare the model proposed in Section 3.4, called the FullModel, against

the following models which capture only some of the effects:

• CrossModel. This model considers only the effect of ratings on social relations (selection),

and the effect of social relations on ratings (social influence). This model is similar to [26],

and is derived by removing the parameters Φr,2 and Φt,1 from the FullModel (or setting these

parameters to zero in the FullModel). It should be noted that this model considers social

influence and social selection to be constant.

• SocialOnly. It ignores the effects of similarities, i.e., it just models the effects of social influ-

ence and transitivity. This model is derived by removing parameters Φr,2 and Φt,2, from the

FullModel. This setting simulates the model proposed by [118] in our framework. It should

be noted that the model in [118] ignores the dynamic nature of effects.

• SimilarityOnly. It ignores the effects of social relations and just models selection and cor-

relational influence. This model is derived by removing the parameters Φr,1, Φt,1 from the

FullModel. Results of this model show whether considering only effects of similarity and

correlation of rating patterns can capture the behavior of real data. The SimilarityOnly model

is the same as the model proposed in [76]

• Baseline. In this setting, we ignore all four bidirectional effects of social relations and rating

patterns. This model is derived by removing the parameters Φr,1, Φt,1, Φr,2 and Φt,2 from the

FullModel and is designed to investigate the power of randomness in SRN generation. This

model is close to the preferential attachment model [86].

3.5.1 Experimental Results

In this section, we present our experimental results with respect to different evaluation metrics. It

should be noted that we generate 10 SRNs using each model and take the average of each evaluation

metric over these 10 generated SRNs. Each generated SRN consists of the same number of actions

as the real data.

After learning the parameters, some interesting insights can be gained on the behavior of users in

Epinions and Flickr. The estimated value of φ is 0.52 for Epinions and 0.83 for Flickr. This indicates

that in the Flickr data set, users tend to create more social relations compared to adding photos to
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their favorites list. The estimated value of φt,1 is 0.91 for Epinions and 0.9 for Flickr which means

that the effect of transitivity is much more important than selection in both data sets. In other words,

ignoring the effect of friends of friends on the creation of social relations (as done in [26]) is not

realistic. For rating actions, we have φr,1 = 0.59 for Epinions and φr,1 = 0.54 for Flickr which

shows that the strength of social influence is close to the strength of correlational influence with

social influence being a little stronger in both data sets. In the following subsections we evaluate

comparison partners against several evaluation metrics.

Comparing the likelihoods

As discussed in [66], using the likelihood of the real data is an objective measure for comparing

alternative models. Table 3.1 lists the log-likelihood of Epinions and Flickr for all of the comparison

partners. The FullModel achieves the clearly highest log-likelihood in both data sets, while the

Baseline model, that ignores all four bidirectional effects, achieves the lowest likelihood.

Table 3.1: Comparison of the log-likelihood of the Epinions data set and the Flickr data set using
alternative models.

Model
Log-Likelihood

Epinions Flickr
FullModel -2.914E6 -2.732E6

CrossModel -2.994E6 -2.791E6
SocialOnly -2.977E6 -2.764E6
SimilarOnly -3.031E6 -2.807E6

Baseline -3.122E6 -2.829E6

Evaluation of structural properties

As proposed in [46], we evaluate a generative model for social rating networks based on some

structural properties of the generated graph. We compare the following measures of the generated

SRN with those of the real SRN data sets in both Epinions and Flickr.

• Link Degree Distribution: The distribution of the out-degree of nodes.

• User Rating Degree Distribution: The rating degree of a user is the number of items rated by

him.
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• Item Rating Degree distribution: The rating degree of an item is the number of users who have

rated the item.

Our experiments show that all the above distributions follow a power law. For each model, we com-

pute the scaling exponent6 of each distribution and compare it to the corresponding scaling exponent

in the real data set. Table 3.2 compares the scaling exponent of different degree distributions for both

Epinions and Flickr. Note that the scaling exponents for all models are very close. We believe this is

mainly due to the fact that all models exploit the idea of “rich get richer”. Thus all the comparison

partners are generating SRNs close to the real data in terms of degree distributions.

Table 3.2: Comparison of the scaling exponent of each degree distribution of the SRN created by
FullModel and the real data for both Epinions and Flickr.

Structural Measure
Epinions Flickr

Model Real Model Real
Link Degree 2.164 2.132 1.368 1.382

User Rating Degree 1.904 1.901 1.665 1.718
Item Rating Degree 2.68 2.76 1.998 1.969

Another metric we use is the effective diameter [86] of the social network. All comparison

partners generate social networks with effective diameter of 6 in Epinions and 4.8 in Flickr, which

are the same as the effective diameters of the real data set.

To conclude, evaluation on general structural properties showed that all models generate SRNs

that are generally similar to the real data set.

Evaluation of social influence

We use an influence model proposed in [4] to compare the degree of influence in SRNs generated

by the various models and the real data set.

At each timestamp t, each user u is exposed to some items. A user u is k-exposed to an item i at

time t if that individual has not rated item i and has exactly k ≥ 1 direct neighbors who have rated i

by time t and the latest rating of i among the direct neighbors of u is in the interval [t− δ0,t]. Each

item i is exposed to u at timestamp t by au,i,t users. The probability P (u, i, t) of user u rating item

i in a time window of size δ after t is modeled as follows:

6http://en.wikipedia.org/wiki/Power law
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P (u, i, t) =
eα ln (au,i,t+1)+β

1 + eα ln (au,i,t+1)+β
(3.16)

Let Au,t denote the set of items user u has not yet rated but is exposed to at time t. Then we can

compute the likelihood of the given data D as follows:

P (D) =
∏
t

∏
u

∏
i∈Au,t

P (u, i, t)Yu,i,t(1− P (u, i, t))1−Yu,i,t (3.17)

where Yu,i,t is a boolean random variable that takes the value 1 if user u rates item i in the time

window [t,t+δ]7.

By maximizing the above likelihood we estimate the values of α and β. As discussed in [4], the

coefficient α is considered as the measure of influence by the neighbors for selecting an item to rate:

ln(
P (u, i, t)

1− P (u, i, t)
) = α ln (au,i,t) + β

We call this influence coefficient the item adoption influence since only the event of rating an

item (but not the value of the rating) is taken into account. We can also model the probability

P (u, i, t) of user u rating item i within distance 0.5 of the average of ratings of his neighbors on i.

We call this influence coefficient the rating adoption influence. The social influence measures for

different models and the real data set are presented in Table 3.3. Note that since ratings in Flickr

have binary values, rating adoption influence is not applicable to Flickr. As shown in this table,

FullModel has the social influence measures that are closest among all comparison partners to those

of the real data set in both Epinions and Flickr. Surprisingly, the SimilarityOnly model that uses

only the effect of similar users comes fairly close to the real data set in terms of social influence

coefficients in both data sets. All other models exhibit social influence coefficients that are much

smaller than in the real data set. These results show that correlational influence play a very important

role in rating behavior of users and neglecting it is not realistic.

Measuring the effect of social relations on the growth of similarity of rating patterns

When user u creates a social relation to user v, then according to social influence, u will consider

ratings of v in his future actions. Thus, the similarity of ratings of users u and v should grow after

7For the sake of efficiency, we consider only 12 timestamps in our experiment to compute the exposures in Epinions
(2001/02/17, 2001/03/17, ... 2002/01/17). δ and δ0 are set to 30 days in our experiments with Epinions. In Flickr, we
consider 8 timestamps (2006/02/15, 2006/03/01, ..., 2007/03/01). δ and δ0 are set to 15 days
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Table 3.3: Influence coefficients for item and rating adoption in the social rating network generated
by different models and the real data set in Epinions and Flickr.

Model
Epinions Flickr

item adoption influence rating adoption influence item adoption influence
Real Data 2.1436 2.195 1.41
FullModel 2.186 2.252 1.32

CrossModel 1.170 1.314 1.14
SocialOnly 0.966 1.079 1.21

SimilarityOnly 1.951 2.008 1.56
Baseline 0.687 0.820 0.74

creation of the social relation. The more actions they do, the more similar they are supposed to get.

The difference between the similarity of u and v at the end of the evolution of the SRN and at the

moment of creating the social relation is called the similarity growth for users u and v. In our SRN,

users may perform different numbers of actions after creating a social relation. We group pairs of

users (u, v) based on the number of rating actions u performs after creating the social relation to v.

Figure 3.6 shows the similarity growth versus the number of actions for the different models on the

Figure 3.6: Comparison of Similarity Growth after creation of social relation for different models
in Epinions.
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Epinions data set. FullModel follows the pattern of similarity growth in the real data more closely

than other models. There are some interesting and surprising results in Figure 3.6. The SimilarOnly

and CrossModel tend to have higher growth of similarity compared to the real data, while SocialOnly

tends to have a lower growth of similarity compared to both real data and FullModel. SimilarOnly

and CrossModel use selection for link creation, but SocialOnly uses the transitivity for link creation.

The similarity growth versus the number of actions for the different models in the Flickr data set

is depicted in Figure 3.7. Again FullModel has the closest pattern of similarity growth to that of

the real data. In a way, the results show that users who are already similar before creating a social

relation, tend to get more similar compared to users who are not that similar when creating the social

relation. FullModel is a tradeoff between these two cases and our experiments show that it behaves

much more similar to the real data.

Figure 3.7: Comparison of Similarity Growth after creation of social relation for different models
in Flickr.

Measuring the transitivity influence

Transitivity of social relations is an important property which affects the creation of social relations

between users. The distribution of the shortest distance between users u and v, at the moment when

u creates a social relation to v, can measure the transitivity effect. If the probability of short distances

(i.e. 2) is high, then the transitivity has been an influential factor in trust creation. We compute the
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average shortest distance of pairs of users at the moment of creating a social relation between these

two users. Table 3.4 compares the average shortest distance of user pairs at the moment of creating

Table 3.4: Average shortest distance of user pair at the moment of creating social relations (dmin)
in different models and the real data set for Epinions and Flickr.

Model
dmin

Epinions Flickr
Real Data 3.93 2.73
FullModel 4.05 2.86

CrossModel 5.59 3.636
SocialOnly 3.24 2.68
SimilarOnly 5.59 3.64

Baseline 5.21 4.76

social relations (dmin) in different models and the real data set for both Epinions and Flickr. Note

that pairs of users who are not reachable at the time of the creation of a social relation are considered

to have distance 7. As shown in this table, the average shortest distance for FullModel is the closest

one to that of the real data set. SocialOnly achieves lower average distance since it only relies on

neighbors and does not consider the selection effect. CrossModel, SimilarityOnly, and Baseline have

a higher average shortest distance, likely because they are ignoring transitivity which according to

our experiments is a very important factor in the creation of social relations.

Measuring the effect of selection

To evaluate the effect of selection, we compute the average similarity of users when creating a

social relation. Table 3.5 presents the average similarity of user pairs at the moment of creating

social relations for different models and for the real data in both Epinions and Flickr. In this table,

we only consider the pairs of users for which we can compute the similarity. Table 3.5 also shows

the percentage of user pairs for which we can compute the similarity in each comparison partner.

Again, FullModel is clearly the closest to the real data set in both Flickr and Epinions. CrossModel

and SimilarOnly have higher average similarity since they only rely on similar users for creating

social relations and ignore the transitivity effect. The SocialOnly model, however, has an average

similarity close to that of the real data set. This seems to be due to the fact that strength of selection

in Epinions and Flickr is very low compared to transitivity. The FullModel is also closest to the real
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data set in terms of the percentage of user pairs creating social relation for which we can compute

the similarity.

Table 3.5: Average similarity of user pairs at the moment of creating social relations in different
models and the real data set for both Epinions and Flickr.

Model
Epinions Flickr

Average Similarity % of non-zero
similarity pairs

Average Similarity % of non-zero
similarity pairs

Real Data 0.381 3.07 0.618 6.2
FullModel 0.375 3.21 0.627 5.4

CrossModel 0.524 11.78 0.703 16.8
SocialOnly 0.365 2.01 0.716 4.3
SimilarOnly 0.558 12.03 0.681 15.7

Baseline 0.253 2.40 0.728 5.09

3.6 Conclusion

In this Chapter we analyzed and modeled the temporal behavior of users in an SRN using bidirec-

tional effects of rating patterns and social relationships. Our model is based on our observations

of the behavior of user while expressing ratings or creating social relations. While existing models

for other types of social networks have captured some of the factors, our model is the first one to

represent all four factors, i.e. social relations-on-ratings (social influence), social relations-on-social

relations (transitivity), ratings-on-social relations (selection), and ratings-on-ratings (correlational

influence).

Based on our observations, these effects are dynamic. In other words, the strength of each

effect is not constant throughout the evolution of an SRN. We analyzed and modeled the temporal

dynamism of these effects by defining them to be functions of the dynamic features of an evolving

SRN. Given the sensitive nature of social network data, there are only very few public SRN data sets.

This motivates the development of a model to capture the temporal dynamics of users’ behaviors and

to create such synthetic data sets for research purposes. To evaluate the accuracy of our model, we

compared the synthetic SRN generated by our model with the real data and with SRN generated by

other models that have been proposed in the literature.

Our experimental study on the Epinions data set and the Flickr data set demonstrated that the
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proposed model produces social rating networks that agree with real world data on a comprehensive

set of evaluation criteria much better than existing models. These criteria included the relevant

degree distributions and measures of the four major influence factors that we identified for social

rating networks. In addition, our experimental study provided interesting insights into the factors

driving the evolution of SRNs. In particular, we found that transitivity plays a much bigger role in

the creation of social relations than selection, although the most closely related generative model

[26] does not even consider transitivity.

Inspired by our investigations in this chapter, in the next chapters we present models that exploit

different effects in social rating networks to perform recommendation for a user.



Chapter 4

Random Walk Models for Combining
Social Network-based and
Similarity-based Recommendation

4.1 Introduction

In this chapter, we employ the effects influencing the behavior of users in an SRN and propose

methods based on random walks on the SRN for rating prediction, link prediction and top-N recom-

mendation. Random walk methods provide a principled approach to define the similarity between

two users u and v in a network based only on the network topology. The similarity is defined by

the steady state probability of a walk starting from u reaching v. Random walk models have been

employed to address the link prediction problem, incorporating the transitivity effect into link pre-

diction. In Chapter 3, we observed that transitivity plays a very important role in the formation of

social relations in a social rating network [53].

We first present a novel random walk model for rating prediction called TrustWalker [47]. Trust-

Walker performs random walks on the social rating network to find predictions for the source user

u on the target item i. When going far away from the source user u in the social network, the trust

between these users and the source user will become fairly weak and their ratings will be noisy and

unreliable. Therefore, the ratings expressed by users in the neighborhood close to the user u are pre-

ferred. However, in this case the probability of finding a rating expressed on the item will be very

low and a prediction can not be computed. In order to consider enough ratings without suffering

54
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from noisy data, TrustWalker combines social network-based and item-based recommendation and

considers not only ratings of the target item, but also those of similar items. The probability of using

the rating of a similar item instead of a rating for the target item increases with increasing length of

the walk. Basically, TrustWalker performs random walks to compute the probability of using rating

rv,j by user v on item j while trying to predict the rating r̂u,i of user u on the target item i. The

main intuition is to prefer users closer in the network and more similar to the source user u and

also items more similar to the target item i. TrustWalker not only exploits the transitivity effect, but

similar to other social network-based recommenders makes advantage of social influence [33] by

using the ratings expressed by the users in the direct/indirect neighborhood. Moreover, TrustWalker

takes correlational influence discussed in Chapter 3 into account by considering the user similarities

in the transition probabilities in the random walks.

We employ the ideas introduced in TrustWalker to also address the link prediction problem:

Given a user u0, recommend top-N users whom u0 is more likely to trust and create a social relation

to. The proposed model, LinkWalker [51], performs random walks on the social network to find rec-

ommended users, rather than predicted ratings. LinkWalker is actually an extension of the random

walk with restart method [89] for social rating networks, considering rating pattern similarities for

the choice of transition and restart probabilities. Basically, by considering the rating pattern similar-

ities for prediction of a link, LinkWalker takes into account the social selection effect [65][78] that

have been discussed in Chapter 3. As stated before, since LinkWalker performs random walks to

compute the recommended users, it also incorporates transitivity in the process of link prediction.

In this chapter, we also explore the social network-based approach to top-N item recommenda-

tion [48]. First, we extend TrustWalker for top-N recommendation. However, since we use leave-

one-out method for evaluation and it is very unlikely that users in the direct or indirect neighborhood

rate the exact withheld items, direct extension of TrustWalker does not achieve substantial gain over

existing methods. Therefore, we propose a second method for top-N item recommendation which

combines the social network-based and the collaborative filtering approach, performing a weighted

merge of the results from both approaches. This method combines the strength of collaborative filter-

ing, higher density of the neighborhood for normal users, with the strength of social network-based

recommendation, good performance for cold start users. Again, similar to TrustWalker, the top-N

recommender method proposed in this chapter also takes into account transitivity, social influence,

and correlational influence.

Note that all the methods introduced in this chapter are memory-based approaches in which we

explore the social rating network for recommendation of ratings, items, or users.



CHAPTER 4. RANDOM WALK BASED RECOMMENDATION IN SRNS 56

We perform experimental studies on two real life data sets: the public domain Epinions data set,

and the Flixster data set we crawled and prepared for this research.

The rest of this chapter is organized as follows: Section 4.2 discusses some random walk models

for recommendation and the foundations behind using random walk based approaches. We present

the details of the TrustWalker model in Section 4.3. The LinkWalker model is introduced in Section

4.4. We present our proposed models for top-N recommendation in Section 4.5. In Section 4.6, we

introduce the real life data sets used in our experiments. The experimental results and comparison

with existing methods are discussed in Section 4.7. Finally we conclude the chapter in section 8.

4.2 Random Walk Methods for Recommendation

In this section, we motivate our random walk based approach to recommendation of items and links.

Random walk methods have been proposed to address the link prediction problem [89, 116, 108, 32].

Random walks are used to compute the pairwise node similarities based on the network structure

only [32]. More specifically, to predict links for a node u in a network, random walk with restart

(RWR) works as follows: Consider a walker that starts from source node u. The walker iteratively

walks to its neighborhood with the probability that is proportional to the edge weights. Also at

each step, it has some probability c to return to the node u. The relevance score of node v with

respect to node u is defined as the steady-state probability that the walker will finally stay at node v

[89]. Nodes with highest relevance scores are returned as the top-N recommended users. The edge

weights are computed by normalizing the adjacency matrix of the graph. The restart probability c

is constant in RWR and does not distinguish different nodes in the network for restarting criteria.

Note that in RWR, relevance score of node v with respect to node u is in fact a similarity measure

between two nodes based on the network topology only [32].

The main intuition behind RWR is transitivity of social relations [94] [44]. In other words,

neighbors of a neighbor are considered to be worth creating a social relation to. RWR considers only

social networks as graphs with nodes and edges. In a social rating network, we have user ratings

on top of the link structure of the social network. Sociologists believe that users tend to form social

relations to users who have similar interests [65][78]. This phenomenon is called homophily or

social selection [65]. Social selection has already been investigated as one of the effects influencing

user while creating social relations [26][53]. To take user similarity (social selection) into account

in RWR, we consider the rating pattern similarity of users as edge weights in the social network.

Also we use the similarity of the source user u and other users to compute the restart probability in
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a random walk. We discuss more details in the following sections.

The RWR method is traditionally employed for link prediction to estimate the likelihood of

creation of a link. However, the main problem we address in this chapter is rating prediction. In the

following section, we describe how we extend random walk methods for rating prediction. Basically,

we perform random walks to compute the probability of using rating rv,j by user v on item j to

predict the rating r̂u,i of user u on target item i. The main intuition is that the closer the user v is to

user u in the social network, the more likely that we use ratings expressed by v for prediction for u.

Also, the more similar item j is to the target item i, the more likely we use a rating expressed on item

j for prediction of a rating on item i. All the details and how we exploit social correlation, transitivity

and correlational influence in random walk based methods are discussed in the next sections.

4.3 TrustWalker: Rating Prediction Model

The main challenge in trust-based rating prediction is to decide how far to go in exploring the

network. There is a tradeoff between precision and coverage: the further you go, the more likely to

find raters, but the less trust-worthy their ratings become. Our approach to find a good tradeoff is

based on the following observation. Ratings expressed by strongly trusted friends on similar items

are more reliable than ratings expressed by weakly trusted far neighbors on the exact target item.

This motivates us to combine the trust-based and item-based approach.

We propose a random walk model, called TrustWalker, which considers not only ratings of the

target item, but also those of similar items. The probability of using the rating of a similar item

instead of a rating for the target item increases with increasing length of the walk. Basically, our

model consists of two major components: the random walk on the trust network and the probabilistic

item selection. The random walk performs the search in the trust network, and the item selection part

considers ratings on similar items to avoid going too deep in the network. So our model improves

the precision by preferring raters at a nearer distance and improves the coverage by considering

similar items as well as the exact target item.

To predict a rating for a source user u0 on target item i, we perform random walks on the trust

network, each starting at u0 to find a user having expressed rating for i or items similar to i. The

details of the random walks will be discussed later in this section. Each random walk returns a

rating. We perform several random walks, and the aggregation of all ratings returned by different

random walks are considered as the predicted rating r̂u0,i.

In the following subsections, we will discuss the details of our random walk model. In our
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notations, we use symbols u, v, w, ... for users, i, j, ... for items, and k for the step of a random

walk. Table 4.1 lists all notations used in our model.

Table 4.1: Notations used in TrustWalker. RV stands for Random Variable. All the notations have
index i denoting target item i.

Notation Description
φu,i,k probability of stopping the random walk at node u in step k.
Xu,i,k RV for being at node v in k steps starting from u

Xu,i RV for being at node v at some steps starting from node u
Su RV for selecting a user v out of members of set Nu.
Yu,i RV for selecting item j amongst items rated by u
XYu,i RV for stopping at node v and selecting item j rated by v, while starting from u.
ru,i The rating expressed by u on item i

r̂u,i The predicted rating of user u on i
tu,v The trust value among users u and v

4.3.1 A Single Random Walk

Every random walk in TrustWalker starts from source user u0. At each step k of a random walk, we

are at a certain node u. If u already has the rating on target item i, then the random walk stops and

returns ru,i as the result of random walk. If u does not have a rating on i, then there are two options:

• With probability φu,i,k, the random walk stops at node u and randomly selects one of the items

(j) similar to i rated by u and return ru,j .

• With probability 1 − φu,i,k, the random walk continues to another user v who is one of u’s

direct trusted neighbors (v ∈ Nu).

If the random walk decides to continue at node u, one of directly trusted neighbors of u has to be

selected for the random walk to continue the walk to that user. We define Su as the random variable

for selecting a user v from Nu:

P (Su = v) =
sim+(u, v)∑

w∈Nu
sim+(u,w)

(4.1)

where sim+
u,v denotes the similarity of u and v which is positive number in range [0,1]. The

probability of continuing the random walk to a direct neighbor v is proportional to the similarity
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of u and v. The similarity measure is defined later in this section. It should be noted that in our

previous work [47], we did not take the similarity into account and considered a uniform distribution

for Su among neighbors of u. Note that considering the user similarities for transition probabilities

represents the modeling of correlational influence discussed in Chapter 3.

Now, the probability of being at node v in step k + 1 while looking for a prediction on target

item i for source user u0 and being at node u in previous step is defined as follows:

P (Xu0,i,k+1 = v|Xu0,i,k = u, R̃u,i) = (1− φu,i,k)× P (Su = v)) =

(1− φu,i)×
sim+(u, v)∑

w∈Nu
sim+(u,w)

(4.2)

Here, Xu0,i,k denotes the random variable for being at node v in step k while looking for a

prediction on target item i for source user u0. Details of computing P (Xu,i,k = v) are discussed

later. Also we have a condition that the user u in step k-1 does not have the rating for item i (denoted

by R̃u,i). The probability of walking from user u to v is independent of previous steps. However,

since φu,i,k depends on the step k, it is not independent of the step of the random walk.

With probability φu,i,k, if the random walk decides to stay at a user u, one of the items rated by

u which is similar to the target item i is selected and the rating expressed on that item is returned as

the result of this random walk. The idea is that we define a similarity measure between items, and

for each item j ∈ RIu, we assign a probability of selecting proportional to the similarity of i andj.

We discuss the details of the similarity metric later.

P (Yu,i = j) =
sim(i, j)∑
l∈Ru

sim(i, l)
(4.3)

In this equation Yu,i denotes the random variable for selecting item j amongst items rated by u

while looking for an item similar to target item i. We return ru,j as the result of this random walk.

To define the whole probability distribution, we define the probabilities for conditions where

Ru,i is true, or for items not rated by u as follows:

∀v 6= u P (Xu0,i,k+1 = v|Xu0,i,k = u,Ru,i) = 0 (4.4)

∀j.j /∈ Ru P (Yu,i = j) = 0 (4.5)
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Item Similarities

In content-based recommendation, the similarity of items can be computed using their features.

However in collaborative filtering, the only information available about items is their ratings. Hence,

to compute the similarity of two items, we use the Pearson Correlation of ratings expressed for

both items, as used in [101]. Values of the Pearson correlation are in the range [-1,1]. Negative

correlations mean that the ratings expressed for two items are in opposite directions, so these items

are not useful for our purpose. Therefore, we only consider items with positive correlation. As

discussed in Section 2.4.1, the Pearson correlation is computed as follows:

corr(i, j) =

∑
u∈Ci,j

(ru,i − ru)(ru,j − ru)√∑
u∈Ci,j

(ru,i − ru)2
√∑

u∈U (ru,i − ru)2
(4.6)

Ci,j is the set of common users who have rated both items i and j (Ri ∩Rj), and ru denotes the

average of ratings expressed by u. corr(i, j) denotes the correlation of items i,j.

The size of the set of common users is also important. For example, if corr(i, j) = corr(i, l),

but |Ci,j | > |Ci,l|, then, since i and j have been rated by more common users, so the correlation

between them is stronger and sim(i, j) should be greater than sim(i, l). We consider |Ci,j | in the

similarity measure as follows:

sim(i, j) =
1

1 + e−
|Ci,j |

2

× corr(i, j) (4.7)

We used the sigmoid function to avoid favoring the size of Ci,j too much and to keep the simi-

larity value in the range [0,1]. If the size of the set of common users is big enough, then the first part

of Equation (4.7) would converge to 1, but for small sets of common users, the factor would be 0.6.

The number 2 in the denominator of the exponent is because we wanted to have a factor of greater

than .9 if the size is greater than 5.

User Similarities

Similarity of two users is defines similar to the definition of similarity of items.

sim(u, v) =
1

1 + e−
|Cu,v |

2

× corr(u, v) (4.8)

where Cu,v is the set of common items that have been rated by both users u and v (Ru ∪ Rv).

Also corr(u, v) denotes the Pearson correlation of the ratings expressed by u and v.
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The values of sim(u, v) are in range [-1,1]. However, in our model we use similarity to compute

probabilities. Hence, we scale the similarities to the range [0,1] as follows:

sim+(u, v) =
1 + sim(u, v)

2
(4.9)

Termination of a Single Random Walk

At each user u, the random walk has a probability φu,i,k of staying at u to select one of his items at

step k of the random walk, while looking for a prediction on target item i. This probability should be

related to the similarities of items rated by u and the target item i. Similarity values are real numbers

in [0, 1], so they can also be considered as probabilities. We consider the maximum similarity of

items rated by u with target item i as the probability of staying at node u.

Furthermore, ratings on target item i from users far away from source user u0 are noisy, but

ratings expressed by trusted users nearby in the network are more reliable. So, the deeper we go into

the network, the probability of continuing our random walk should decrease and so φu,i,k should

increase.

To inject the factor k in φu,i,k, we should use a function f(k) which gives value 1 for big values

of k, and a small value for small values of k. Since the sigmoid function satisfies these constraints,

we consider a sigmoid function of the k as another factor affecting φu,i,k:

φu,i,k = max
j∈Ru

sim(i, j)× 1

1 + e−
k
2

(4.10)

Each random walk has three alternatives to stop:

1. Reaching a node which has expressed a rating on the target item i.

2. At some user node u, we decide to stay at the node and select one of the items rated by u and

return the rating for that item as the result of random walk.

3. There is chance for a single random walk to continue for ever. To avoid such a case in our

implementation of random walk, we terminate the random walk when we go very far from the

source user (k > max-depth). Based on the idea of “six-degrees of separation” [79], we set

max-depth = 6.



CHAPTER 4. RANDOM WALK BASED RECOMMENDATION IN SRNS 62

4.3.2 Rating Prediction in TrustWalker

In TrustWalker, we have the probability of selecting items rated by different users and returning that

rating as the result of a random walk. These items could be either the exact target item i, or another

item. The estimated rating for source user u on target item i would be the expected value of ratings

returned by different random walks.

r̂u,i =
∑

{(v,j)|Rv,j}

P (XYu,i = (v, j)) rv,j (4.11)

In the above equation, XYu,i is the random variable for stopping the random walk at node v

and selecting item j rated by v, while we start the random walk from source user u looking for

target item i. Notice that the value for XY are ordered pairs. As used before, Rv,j is a boolean

variable denoting whether v has a rating on item j. Basically, P (XYu,i = (v, j)) is the steady state

probability that a random walker starting from u looking for target item i stays at node v and item

j. Now we have:

P (XYu,i = (v, j)) =



P (Xu,i = v)φu,iP (Yv,i = j) v 6= u;i 6= j

P (Xu,i = v) v 6= u;i = j

φv,i,1P (Yv,i = j), v = u;i 6= j

(4.12)

In this equation, Xu,i is the random variable for being at node v at some step in a random walk

starting from source user u looking for item i. Notice that in above formula, we used φu,i instead

of φu,i,k for the first case. Since we do not know the number of steps needed to reach v, we do

not consider the factor k (Actually φu,i = φu,i,∞). It should be noted that if we actually perform

random walks, we can consider the step k in the first case. But to have a closed form formula, we

ignore the factor k at the last user v which gives us a pretty good approximation of the probability.

Also, we should note that the case v = u and i = j is trivial since the user himself has the rating on

the target item.

A random walk starting from u can reach v using different number of steps. As mentioned

before, we use random variable Xu,i,k for being at node v in k steps

P (Xu,i,k = v) =
∑
w∈U

P (Xu,i,k−1 = w)(1− φw,i,k)P (Sw = v) (4.13)
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Also we have P (Xu,i,0 = u) = 1 as the base for the above equation. Since the random walks

have a probability of stopping at each step,
∑

v∈U P (Xu,i,k = v) 6= 1. To make P (Xu,i,k = v) a

probability distribution, we define a dead state ⊥ to which all users go after deciding to terminate

that random walk. So, we have

P (Xu,i,k = ⊥) = 1−
∑
v∈U

P (Xu,i,k = v)

This state ⊥ will be added to U for convenience in formalization of our method, but we do not

consider this state in any actual random walk. Now, we can compute P (Xu,i = v) as follows:

P (Xu,i = v) =

∑∞
k=1 P (Xu,i,k = v)∑

w∈U
∑∞

k=1 P (Xu,i,k = w)
(4.14)

4.3.3 Matrix Notation of TrustWalker

Similar to any random walk model, we can represent TrustWalker using matrix notations. We con-

sider a probability matrix P in which Pu,v = P (Su = v) = 1
|Nu| for all users u and v for which

tu,v = 1. To formulate the values of φu,i,k in matrix notation, we define a diagonal matrix Φk,i for

each item i and step k. Φk,i is a |U | × |U | matrix containing 1− φu,i,k in its diagonal elements. In

other words, Φk,iu,u = 1− φu,i,k.

It is easy to check that the elements of Φ1,iP are the probabilities of reaching from u to v in

step 1. We can also define a closure on the Φk,iP as follows:

P∗i =

∞∑
K=1

K∏
k=1

Φk,iP = Φ1,iP + Φ1,iPΦ2,iP + Φ1,iPΦ2,iPΦ3,iP + ...

= Φ1,iP(I + Φ2,iP(I + Φ3,iP(...))) (4.15)∏K
k=1 Φd,iP is the matrix containing P (Xu,i,K) = v in its cells. In the above equation, k de-

notes the current step of each single random walk and K denotes then number of steps each random

walk has. Now, we can compute P̂i (corresponding to Equation (4.14)) which is the probability

matrix containing P (Xu,i = v) in its elements as follows:

P̂i = CiP
∗
i (4.16)

Here, Ci is an N × N diagonal matrix used for normalization. The values of the diagonal are

Ciu,u = 1∑
w∈U P∗i u,w

. Now we can use P̂i to compute P (Xu,i = v) in Equation (4.14).
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If we do not consider step k as a factor in φu,i, it can be proved that P∗i has a closed formula

solution, and this closed formula is (I − ΦiP)−1ΦiP. In this formula, Φi is the same as Φk,i

ignoring the factor k. In Appendix A.1, we provide the proof of convergence of P∗i if we ignore step

k in computing φu,i,k
Since matrices Φk,i are different for different k values, we can not compute a closed formula for

P∗i . We propose two alternatives to compute Equation (4.15):

• Performing the random walks. This way, we can see the results in action and the estimated

value would be the aggregation of results of different random walks.

• Based on the idea of “six degrees of separation” [79], most nodes would be reachable with a

walk of length at most 6. So, we can have a pretty good approximation of P∗i by

P∗i =

6∑
K=1

K∏
k=1

Φk,iP (4.17)

This formula can be easily computed, but there is a problem with the second approach. P∗i

associated with each item hast to be stored, which is expensive. For example, if there are 10K

items and 40K users, and each cell of the matrix occupies just one byte, then each matrix P∗i would

occupy almost 1.6GB memory. To store all matrices we would need 16TB of memory, which is not

feasible. This issue motivates performing actual random walk and aggregate the results of different

random walks. Moreover, computing this matrix needs a global information on the whole network,

but TrustWalker can be computed in in a local manner.

Notice that there are major differences between our random walk model and existing random

walk approaches such as [20] and [115]. In PageRank [20], there is a random walk on the links

among WebPages, which correspond to users. But there is no item in PageRank and walks do not

depend on the step of the random walk. Moreover, PageRank is a global reputation metric. These

differences make PageRank simpler than TrustWalker to find the closed form solution. Nevertheless,

they do not compute the closed formula because of the scale of network. In [115], they have an item

graph on which they perform the random walk. This graph is independent of users, and hence they

do not perform random walks on users. Also, unlike TrustWalker, their walks are independent of

step k of the random walk. Having a simpler model, they are able to compute the closed formula for

walking on the item graph.
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4.3.4 Termination of the Overall Method

The results of performing actual random walks approximate the results given by Equation (4.15).

TrustWalker performs several random walks to be able to get a more reliable prediction. TrustWalker

needs to be able to decide when we have done enough random walks to have a precise estimate of

r̂u,i.

TrustWalker computes the variance in the results of all the walks as follows:

σ2 =

∑T
i=1 (ri − r)2

T

Here, ri is the result of ith random walk, and r denotes the average of the ratings returned by random

walks. T is the number of random walks we perform to compute the prediction. We also define σ2i
as the variance in the results of the first i random walks. Since the values of ratings are in finite

range of [1,5], it can be proved that σ2 converges to a constant value (see the Appendix A.2). So

TrustWalker terminates if |σ2i+1 − σ2i | ≤ ε.
It should be noted that we have a constant threshold of 10000 for the maximum number of

unsuccessful random walks, and after that we consider the pair < user, item > as non-covered.

4.3.5 Special Cases of TrustWalker

TrustWalker includes Item-based Collaborative Filtering and pure Trust-based Recommendation as

its extreme special cases. If φu,i = 1 for all u ∈ U , then our random walk will never start, and it

will return the rating expressed by the source user u0 on one of its rated items. Since the probability

of selecting an item is proportional to its similarity to the target item i, the expected value of the

recommended rating would be the weighted average of the ratings on items in RIu0 with weights

proportional to the similarities of these items to the target item i. This is the same as the result of

Item-based collaborative filtering proposed in [101].

On the other hand, if we set φu,i = 0 for all u ∈ U , then all random walks will continue until they

have found a rating for the exact target item i. The recommended rating would be the aggregation

of ratings expressed by users having the rating on i weighted by the probability of reaching these

users from u0. Existing methods [36][74] try to approximate these probabilities by simplifying the

problem. So our TrustWalker, in one of its extreme cases, can be considered as an ideal trust-based

recommender.
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4.3.6 Notes on computational complexity of TrustWalker

Every single walk in TrustWalker has the length of D on average, where D is the diameter of the

social network. In every step of the random walk, similarity of a user with all its neighbors is

computed. Also, similarity of the items rated by a user and the target item is computed. To compute

the similarity of two users, items rated by them are compared. Also to compute the similarity of two

items, users rating these two items are compared. Overall, the complexity of a single random walk

is as follows:

D ×
( |E|
|U |
|R|
|U |

+
|R|
|U |
|R|
|I|
)

where |E||U | is the average number of neighbors per user, |R||U | is the average number of ratings per

user, and |R||I| is the average number of ratings per item. Complexity of rating prediction is T times

the complexity of a random walk, where T is the number of walks TrustWalker performs to compute

the prediction.

4.4 LinkWalker: Top-N Link Prediction Model

In this section we employ the ideas introduced in TrustWalker and propose the LinkWalker model

to address the top-N link prediction problem. LinkWalker is in fact an extension of the RWR model

where the transition probabilities and restart probabilities are modified to capture the similarity

of user rating patterns. As discussed before, LinkWalker incorporates both transitivity and social

selection discussed in Chapter 3 to compute the top-N recommended users.

TrustWalker performs a series of random walks to predict the rating for a target item. However,

in the top-N link prediction problem, the goal is to recommend trustworthy users rather than predict-

ing ratings for a given item. In TrustWalker, after each random walk stops, one of the items rated by

the current user will be randomly selected, and the rating expressed for that item is returned as the

result of the random walk. However, in LinkWalker, there is no target item and the user at whom

the random walk stops is returned as the result of the random walk (see Section 4.4.1). Furthermore,

LinkWalker returns a list of users instead of a single predicted rating in TrustWalker (see Section

4.4.2).

To recommend top-N links to a source user u0, LinkWalker performs random walks on the trust

network each starting at user u0 to find users who are likely trustworthy for u0. The details of the

random walk will be discussed in SEction 4.4.1. Each random walk returns a recommended user
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to create the trust link to. LinkWalker performs a series of random walks and uses the N most

frequently returned users as top-N recommended users to create trust link to. Unlike TrustWalker,

there is no target item, but only a source user. Therefore, the termination criteria in a random walk in

LinkWalker is different from that of TrustWalker and needs to be independent of a specific item (see

Section 4.4.1). Since LinkWalker is returning a list of users rather than a single rating prediction,

the termination criteria for the overall method in LinkWalker is different from that of TrustWalker.

TrustWalker uses the variance of the recommended ratings to decide on the termination, while in

LinkWalker the stability of the list of top N recommended users is used for the termination criteria

(see Section 4.4.3).

4.4.1 A single random walk in LinkWalker

Every random walk starts at user u0. At each step k, the random walk is at a certain node u. Now

there are two alternative options:

• With probability φu,u0,k, the random walk does not continue. It stops at user u and returns u.

• With probability 1 − φu,u0,k, the random walk continues to another user v who is one of u’s

directly trusted neighbors v ∈ Nu.

If the random walk decides to continue walking at node u, one of the directly trusted neighbors

of u has to be selected to continue the random walk to that node. The random variable Su for

selecting a user v from Nu is defined in the same way as for TrustWalker, as defined in Equation

(4.1).

Now, the probability of being at node v in step k + 1 while looking for a recommended trust-

worthy user for u0 and being at node u in step k is defined as follows:

P (Zu0.k+1 = v|Zu0,k = u) =

(1− φu,u0,k)× P (Su = v) = (1− φu,u0,k)×
sim+(u, v)∑

w∈Nu
sim+(u, v)

(4.18)

Here, Zu0,k denotes the random variable for being at node v in step k while looking for a rec-

ommended user for u0. Note that the termination probability in LinkWalker, φu,u0,k, is different

from that in TrustWalker (φu,i,k). In LinkWalker, the termination criteria depends on the similarity

of the source user u0 and the current user u. However, in TrustWalker, the termination criteria is
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independent of the source user and depends on the similarity of items rated by u and the target item

i.

Termination of a single random walk in LinkWalker

At each user u,there is a probability φu0,u,k of terminating the random walk and returning u as

the result of that random walk. Different from TrustWalker, the termination criteria in LinkWalker

depends on the similarity of the source user u0 and the current user u, rather than depending on the

similarity of the target item and the items rated by u, as used in TrustWalker. Similar to TrustWalker,

the current step k is taken into account in LinkWalker by defining φu0,u,k as follows:

φu0,u,k =



0 u = u0 or u ∈ Nu0

1 |Nu| = 0

sim+(u, u0)× 1

1+e−
k
2

otherwise

(4.19)

If u has no neighbors and u ∈ Nu0 , then the random walk returns no user.

4.4.2 Top-N Link Prediction in LinkWalker

In LinkWalker, the results of all random walks are collected to create a list of recommended users.

Each user u in this list is associated with a frequency denoting the number of times u has been

returned as the result of a random walk. The list of users is sorted with respect to the frequency, and

LinkWalker returns the top N users in this list as the top N recommended users to create trust link

to.

Similar to TrustWalker, we can formulate the LinkWalker model with matrix notations. Authors

of [89] have proposed a fast algorithm to approximate the probability of reaching user u in a random

walk starting from u0 for all pairs (u0, u). However, in LinkWalker, we do not need to compute the

probability for all pairs of users. We only need to compute the top-N high probable users reachable

from u0. The proposed recommendation model in this section approximates this by actually per-

forming the random walks and considering the top-N users in the list of users returned by different

random walks as the top-N probable users reachable from u0.
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4.4.3 Termination of the overall method in LinkWalker

LinkWalker performs several random walks to get a more reliable recommendation. LinkWalker

needs to be able to decide when enough random walks have been done to produce a precise list of

top-N recommended users.

After every K random walks, LinkWalker computes a weight vector for users in the list of top-N

users and compares it to the current weight vector. To compute the weight for each user u, denoted

by wu, in the list of top-N users, the frequency associated with u in the list is divided by the sum of

the frequencies of all top-N users.

Suppose that the list of top-N users from previous random walks is L′. Every user u ∈ L′ is

associated with a weight w′u. After every K random walks, this list is updated to a new list L with

associated weights wu for users u ∈ L. To compare two lists of top-N users L and L′, we could

compute the distance of the two lists as follows:

diff(L,L′) =

√ ∑
u∈L∩L′

(wu − w′u)2

The above equation computes the “Euclidian distance” of the weight “vectors” including users

who appear in both lists L and L′. However, the lists may have only a few users in common and

most of the users in the lists may be different. To penalize lists having many users not in common,

LinkWalker assigns the maximum distance 1 to every user in L that does not appear in L′ and defines

the difference between lists L and L′ as follows:

diff(L,L′) =

√ ∑
u∈L∩L′

(wu − w′u)2 +
∑

u∈L,u6∈L′
1 (4.20)

The weights are in the range [0,1]. Hence the terms (wu − w′u)2 are also in the range [0,1],

and each single penalty has the maximum value of one. LinkWalker continues performing further

random walks until diff(L,L′) ≤ ε1.

4.4.4 LinkWalker as generalization of RWR

Random walk based methods have already been used to perform link prediction [116]. Actually, the

RWR model [89] can be considered as a special case of LinkWalker. In RWR, there is a probability

c for the random walk to restart. If we choose a fixed termination criteria in LinkWalker by setting

φu,u0,k = c and employ a uniform walking process by setting P (Su = v) = 1
|Nu| , then LinkWalker
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will be identical to RWR. In other words, LinkWalker is a generalization of RWR which takes into

account the similarity of users’ rating patterns and the length of random walks.

4.5 Social Network-based Approaches to Top-N Recommendation

In this section, we propose novel memory-based approaches that exploit social networks to im-

prove the quality of top-N recommendation. The first approach is an extension of the idea proposed

in TrustWalker and the second method is a combined model aggregating a social network-based

method and a collaborative filtering based approach.

4.5.1 Random Walk Approach

In this subsection, we extend TrustWalker to recommend top-N items for a source user u. Note

that the problem definition is to compute a list of top-N desired items for a given user u. Starting

from user u, we perform a random walk on the social network. Each random walk stops at a

certain user. Then the items rated highly by that user will be considered as the recommended items,

ordered according to the ratings expressed by that user. We perform several random walks to gather

more information and compute a more confident result. The estimated rating of each item is the

average of ratings for that item over all raters considered. At the end, we output items with the

highest estimated rating as top-N recommended items. Similar to TrustWalker [47], we compute the

variance of the estimated rating for items and continue performing further random walks until the

variance converges.

Now, we discuss the details of a single random walk. We start each random walk from the source

user u. At each node v, with probability φu,v, we stop the random walk and return items rated by

v. With probability 1− φu,v, we continue the random walk to one of the neighbors of v. We select

the neighbor of v uniformly from directly trusted neighbors of v. φu,v depends on the similarity of

user v with the source user u. The more similar they are the more likely the random walk stops at

v. Also, the further away from the source user we go in the network, the probability of stopping the

random walk should get higher to avoid noisy data located far from the source user u. So we denote

the probability of stopping at node v by φu,v,k where k is the current step of the random walk. We

define this probability as follows:

φu,v,k = (0.5 +
simu,v

2
)× 1

1 + e−k/2
(4.21)
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In the above equation, simu,v is computed using Equation (4.8). Since the values of simu,v

are in the range [-1,1], we shift the values of similarity to get a value in the range [0,1] that can be

interpreted as a probability. Basically, if v is not similar to u at all (simu,v is a very small positive

number), this offset allows the random walk to still have the possibility to stop at v. However, if

simu,v is close to -1, the probability of stopping at v would be very close to zero, and the random

walk will most likely continue to find another user in the network.

Notice that the factor 1
1+e−k/2 is a sigmoid function which injects the effect of the current step

of random walk into the stopping probability. φu,v,k depends on the similarity of users u and v,

while the stopping criteria in [47] depends on the similarity of items rated by v and the target item.

This is due to the different tasks being performed, in particular there is no target item in top-N

recommendation. The intuition behind the new stopping probability in this section is that users with

similar rating patterns are more likely to agree on their top-N items.

It should be noted that we also associate a parametermaxDepthwith the random walk approach

which determines the maximum depth to which a random walk can be continued. Random walks

are forced to terminate after maxDepth steps.

4.5.2 Combined Approach

When a user u trusts another user v it does not necessarily mean that they rate the same items.

Basically, when u trusts v, it means that if they both rate an item, it’s more likely for them to rate

this item in a similar way. So, if we use leave-one-out method and ask the trust-based approach to

recommend top-N items, it may not be able to recommend the exact withheld item, although the

recommended items are actually interesting for the source user. On the other hand, in the collabo-

rative filtering approach, we consider users who have similar rating patterns. Two users who have

already rated some common items, tend to rate more items in common. Hence, it’s more likely for

users with similar rating patterns to the source users to also rate the withheld item.

Our experiments confirm this effect, which causes collaborative filtering to slightly outperform

the trust-based random walk. Therefore we propose a combined approach to benefit from properties

of both trust-based and collaborative filtering approaches.

In this approach, we compute the top K trusted users in the network and rank the items rated

by these trusted users to compute top-N recommended items. We use the collaborative filtering

approach to compute another set of top-N recommended items. Finally we merge these two lists to

produce a combined lit of top-N recommended items.
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This approach uses similar users which are more likely to have the withheld items, and it also

uses a trust network to deal with cold start users. Notice that half of the users are cold start users,

and collaborative filtering is not successful in finding similar users for these users.

To compute top K trusted users, we can use two different alternatives:

• Breadth First Search.

• Random Walk in the social network.

Breadth First Search (BFS). In this approach, we perform a BFS to find k2 closest users to the

source user u in the social network. Then, we merge the items rated by these trusted users to find

the top-N recommended items returned by social network-based approach (We denote these items

as TRu). We estimate the rating of items rated by trusted neighbors as follows:

r̂tu,i =

∑
v∈Ntu,i∈Iv wt(u, v)× rv,i∑

v∈Ntu,i∈Iv wt(u, v)
(4.22)

In the above equation, r̂tu,i denotes the estimated rating using the trusted neighborhood. Also

Ntu denotes the top k2 trusted users found by BFS. wt(u, v) is the influence coefficient of each user

in the trusted neighborhood. We define wt(u, v) = 1/dv, where dv is the depth at which we found

v in the BFS starting from u.

Random Walk. In the random walk approach, we perform random walks similar to the ones

introduced in the previous subsection. Each random walk stops at a certain user. This user will be

considered as a trusted user. We continue performing random walks until we get k2 users. The rest

is the same as BFS approach, with wt(u, v) equal to the number of times user v has been returned

as the result of a random walk.

After finding top k2 trusted users (with either approach), we combine the results of the trust-

based approach and the CF based approach. Suppose that in the CF based approach we use k1 top

similar users and merge their items. We denote the items returned by CF approach as CFu. Now we

define the merge method as follows:

r̂u,i =



r̂cu,i+r̂tu,i
2 i ∈ TRu ; i ∈ CFu

r̂tu,i i ∈ TRu ; i /∈ CFu

r̂cu,i i ∈ CFu ; i /∈ TRu

(4.23)
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The top-N items with highest values of r̂u,i will be returned as the top-N recommended items.

It should be noted that we could do a weighted averaging instead of just taking the means for items

which appear in both TRu and CFu. To consider the weights, we define r̂u,i as follows:

r̂u,i =
k1 × r̂cu,i + k2 × r̂tu,i

k1 + k2

We discuss the effect of weighted merging of results of CF approach and social network-based

approach in the experiments section.

4.6 Data Sets

In this section we briefly introduce the data sets used in our experiments: the Flixster data set, which

we crawled and prepared, and the public domain Epinions data set. The data sets introduced in this

section are the basis for most of our experiments in the next chapters.

4.6.1 Epinions data set

To the best of our knowledge, before publication of the Flixster data set, the Epinions1 data set

was the only trust network data set publicly available that also includes ratings expressed by users.

Epinions.com is a product reviewing websites in which users can express trust on other users besides

writing reviews on different products.

We used the version of the Epinions data set2 published by the authors of [98]. Table 4.2 shows

the statistics of the Epinions data set. Each user has on average 8.1 expressed ratings and 7.2 direct

neighbors. The social relations in Epinions are directed. The distribution of the number of ratings

per user follows a power law. The items in Epinions are products from different categories such

as cameras, dvd players, music, etc. Users are allowed to write reviews on products, rate items

(products), or both. Also, users can rate the reviews written by other users on products. In this

dissertation, we only use the ratings expressed by users on items and do not consider the content of

reviews.

1www.epinions.com
2http://alchemy.cs.washington.edu/data/epinions/
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Table 4.2: General statistics of the Flixster and Epinions

Statistics Flixster Epinions
Users 1M 71K

Social Relations 26.7M 508K
Ratings 8.2M 575K
Items 49K 104K

Users with Rating 150K 47K
Users with Neighbors 980K 60K

4.6.2 Flixster data set

We crawled a large scale data set from the Flixster website3. Flixster is a social networking service

in which users can rate movies. Users can also add some users to their friend list and create a social

network. Note that unlike Epinions, social relations in Flixster are undirected. General statistics of

the Flixster data set is presented in Table 4.2.

Flixster has many ways to gather ratings from users. First, users can go online, log into Flixster.com

and rate some movies or make friendship connections to other users. In addition, Flixster uses some

applications to gather ratings from users. There are two Flixster applications which are very famous

in Facebook4 and Myspace5. When users of facebook or myspace install these applications on their

profile, they will be asked to rate different movies. Initially, they are presented with a fixed set of

50 movies to rate. Many users of Flixster rate only these movies. As a results the rating counts for

these 50 movies are extraordinarily high. Hence, we remove the ratings for these movies to reduce

the bias of the data set. Although this information could be useful in a real recommender system,

we ignore it to have a less biased data set in our research.

Possible rating values in Flixster are 10 discrete numbers in the range [0.5,5] with step size 0.5.

Users are also allowed to rate the items with two other nominal values: “Want To See” and “Not

Interested”. These two types of rating also include some information and may be useful for some

research purposes. However, nominal ratings are not considered in the rest of this dissertation since

we can not easily convert them to numerical rating values. Almost half of the ratings are numerical

values. The statistics in Table 4.2 are only for the numerical ratings.

3www.flixster.com
4http://apps.facebook.com/flixster/
5http://www.myspace.com/flixstermovies
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The Flixster data set contains ratings expressed by users during the period from November 2005

to November 2009. The data set is now publicly available at www.cs.sfu.ca/∼sja25/personal/datasets/

.

According to the statistics presented in Table 4.2, the Flixster data set is denser than the Epinions

data set. The number of ratings and neighbors per user is larger in the Flixster data set. A large

portion of users in Flixster data set have no expressed ratings, but most of them have social relations.

Users without any ratings are also important. They may not be useful to compute the prediction for

other users based on their own ratings, but they may allow us to connect indirectly to other users

who have rated items.

We consider users with less than 5 ratings as cold start users (similar to [74]). 49% of users in

Epinions are cold start users which is a very large portion of users. Also 53% of users in Flixster

who have rated at least one item are cold start users. So, considering the performance of the recom-

mendation for cold start users is very important.

Note that the Flixster data set is a binary social network and not an explicit trust network. How-

ever, as discussed before, we consider it as a trust network in this thesis. Also, unlike Epinions,

Flixster is undirected. We convert each undirected edge into two directed edges.

4.7 Experiments

In this section, we present our experimental results for TrustWalker, LinkWalker, and for top-N

recommendation.

4.7.1 Experiments with TrustWalker

This subsection reports our experimental results comparing TrustWalker against state-of-the-art

methods for trust-based and item-based recommendation. We implemented TrustWalker as well as

the MoleTrust recommendation proposed by Massa [74] and TidalTrust proposed by Golbeck [36].

We also implemented standard user-based collaborative filtering [37] and item-based collaborative

filtering [101] as two fundamental similarity-based recommendation methods.

Comparison Partners for TrustWalker

In our experiments, we compare the results for different methods. Following is the description of

labels we use to denote each of these algorithms:
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• TidalTrust. This is the trust-based approach of [36].

• MoleTrust. This is the approach used in [74]. It should be noted that we usemax−depth = 6

for ModelTrust as well.

• CF Pearson. We implemented the user-based collaborative filtering [37], with the Pearson

Correlation as similarity measure.

• Item-based. We also implemented the item-based collaborative filtering [101] using Pearson

Correlation as the item similarity metric.

• Random Walk This is one of the special cases of TrustWalker with φu,i,k = 0 for all (u, i, k).

Also we set different thresholds on the number of steps a random walk. Random Walk 1

represents the case in which we just walk for one step, and in Random Walk 6 each random

walk could continue until 6 steps.

• TrustWalker. This is the TrustWalker method introduced in this Chapter.

• TrustWalker-orig. This is the TrustWalker method originally introduce in [47]. This version of

TrustWalker does not consider the similarity of users in the probability in computing P (Su =

v).

We set ε = 0.0001 for our termination condition. Note that in [47], we performed experiments

on several settings of the parameters in TrustWalker. For instance, we reported experimental results

on a version of TrustWalker where φu,i is independent from k, or the version of TrustWalker where

similarity of two items i, j is independent from the size of the set of common users rating them

(UCi,j). The results showed that the complete model where all the parameters are taken into account

outperforms the other models. For the details please refer to the original paper [47].

Evaluation Metrics

To perform experiments, we split the data set into train and test data. We used 5-fold cross validation

in our experiments. As used in the most recent research papers [115] [58], we use the Root Mean

Squared Error (RMSE) to measure the error in recommendation (see Section 2.3 for details). The

smaller the value of RMSE, the more precise a prediction.

Exploiting social network in recommenders does not necessarily enhance the precision of pre-

diction, but it allows to compute the prediction for more pairs of (u, i). In other words, using a social
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network enhances the coverage of a recommender system without sacrificing the precision. So we

define the coverage metric which is the percentage of pairs of < user, item > for which we can

predict a rating.

We also use F-measure as an evaluation metric. F-measure is a well-known measure of accu-

racy in the information retrieval and machine learning community that considers both precision and

coverage [9]. Precision is conceptually the opposite of the error metric, and precision values are in

the range [0,1]. Since RMSE is in the range [0,4], we use the following formula to convert RMSE

into a precision metric:

Precision = 1− RMSE

4
(4.24)

Now we adopt the standard definition of F-measure [9] as follows:

FMeasure =
2× Precision× Coverage
Precision+ Coverage

(4.25)

If none of the random walks can find a prediction on the rating, then we say that the recommender

can not cover this pair of < user, item >.

Experimental Results with TrustWalker

Table 4.3 shows the RMSE, Coverage, and F-Measure for all comparison partners in Epinions, once

for cold start users and once for all users. Table 4.4 shows the same measures for the Flixster data

set. In the following, we first discuss the results for cold start users and then for all users.

Table 4.3: Experimental results for cold start users and all users in Epinions.

Method Cold Start Users All Users
RMSE Coverage(%) F-Measure RMSE Coverage(%) F-Measure

Item-based 1.551 21.26 0.316 1.232 68.91 0.691
CF Pearson 1.498 16.34 0.259 1.277 67.54 0.688
MoleTrust 1.441 55.36 0.594 1.104 81.03 0.765
TidalTrust 1.223 56.92 0.626 1.109 82.37 0.770

RandomWalk 1 1.105 11.68 0.201 1.168 29.12 0.413
RandomWalk 6 1.221 58.71 0.636 1.101 85.14 0.783

TrustWalker-orig 1.209 70.32 0.700 1.097 93.31 0.816
TrustWalker 1.201 70.17 0.701 1.079 93.22 0.819
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Table 4.4: Experimental results for cold start users and all users in Flixster.

Method Cold Start Users All Users
RMSE Coverage(%) F-Measure RMSE Coverage(%) F-Measure

Item-based 1.097 71.59 0.721 0.8938 94.27 0.852
CF Pearson 1.114 69.86 0.710 0.9132 90.37 0.833
MoleTrust 1.083 95.93 0.829 0.8997 95.46 0.856
Tidal Trust 1.106 96.11 0.826 0.8821 96.12 0.861

RandomWalk 1 1.009 65.23 0.697 0.9002 87.32 0.821
RandomWalk 6 1.087 80.21 0.763 0.9032 95.65 0.856

TrustWalker-orig 1.051 97.06 0.838 0.8522 99.89 0.880
TrustWalker 1.042 96.51 0.837 0.8413 99.63 0.881

As shown in the left part of Table 4.3, for cold start users in Epinions TrustWalker achieves lower

error than all the other methods except for RandomWalk1. Note that RandomWalk1 has extremely

low coverage (12%). In other words, RandomWalk1 can not compute a prediction for most cases,

but for those that it can, RandomWalk1 produces high quality results, since it only uses the infor-

mation provided by direct neighbors. Table 4.3 shows that both versions of TrustWalker outperform

all other methods according to the combination of precision and coverage (F-measure). Notice that

TidalTrust[36] achieves an RMSE which is only slightly higher than TrustWalker. However, Trust-

Walker’s coverage is 13% more than that of TidalTrust, which makes TrustWalker better in terms of

F-Measure.

The results on cold start users for Flixster are presented in Table 4.4. As shown in this table,

TrustWalker outperforms existing methods in the Flixster data set, although by a smaller margin than

on Epinions. We believe, this is mainly due to the fact that Flixster is generally denser than Epinions,

and only using the ratings may provide enough information to perform high quality predictions.

The results for all users in Epinions are shown in right side of Table 4.3. We observe similar

relative performance of all methods as for cold start users. It should be noted that all methods

perform significantly better over all users since there is less information available for cold start

users. TrustWalker outperforms all other methods in terms of F-Measure, although the gain for all

users is less than the gain for cold start users. Notice that the errors of both TidalTrust and MoleTrust

for all users are very close to TrustWalker, but TrustWalker clearly has a better coverage.

Table 4.4 presents the result for all users in Flixster. Again TrustWalker achieves better results

against comparison partners. However the performance gain in Flixster is lower than the gain in
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Epinions.

In summary, TrustWalker substantially improves the coverage of existing trust-based approaches

while maintaining the same or even slightly better precision. This improvement is achieved by con-

sidering ratings for similar items as well as the exact target item. TrustWalker also clearly out-

performs collaborative filtering (both user-based and item-based) in terms of coverage because of

exploiting the trust-network in its random walks. Moreover, TrustWalker clearly outperforms col-

laborative filtering methods in terms of precision due to the restriction to ratings from highly trusted

users. Since cold start users have only a few ratings, the improvement of coverage using trust-based

approaches (specially TrustWalker) compared to collaborative filtering is much more for cold start

users than for all users.

For example, in Epinions,TrustWalker’s coverage is 70% for cold start users while collaborative

filtering approaches have coverage of 16% and 21%. But in case of all users, TrustWalker’s coverage

is 93% while collaborative filtering approaches have coverage of 69%. TidalTrust and MoleTrust

have coverage of 57% and 55% respectively for cold start users while their coverage is 82% and

81% in case of all users.

4.7.2 Experiments with LinkWalker

In this subsection, we report our experimental results for LinkWalker. For each user u, we randomly

withhold one of his direct neighbors (v) in the trust network and ask LinkWalker to recommend top

N users to u. If v is among the recommended users, then a hit has occurred. The evaluation metric

we use is “accuracy” and is defined as the percentage of hits.

We repeat the experiments 10 times and take the average of accuracy over different runs for

N=10, N=20, N=50, and N=100, where N is the number of recommended users. The threshold ε1
is set to 0.005, and we set K=2000 for termination of the overall method, where K is the number of

random walks to be performed before updating the list of top-N users.

The comparison partner we use in our experiments is the RWR method proposed in [89]. As

already pointed out, RWR is a special case of LinkWalker where φu,u0,k = 0.5 and similarity if

rating patterns among users is ignored (∀u, v : sim(u, v) = 1). Note that if similarity of a source

user u and other users can not be computed (due to not having enough items rated), then LinkWalker

can perform no better than RWR for that user u. Therefore we also report results on a subset of users

for whom we can compute the similarity with at least one direct neighbor. We call these users as

“warm users”. LinkWalker can actually make a difference compared to RWR for warm users since
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it can exploit the rating patterns in the recommendation process.

Tables 4.5 and 4.6 present the accuracy of link prediction on the two real life data sets for all

users and warm users for different settings of N.

Table 4.5: Accuracy of Link Prediction for LinkWalker and RWR in Epinions. The results are
presented for N=10, 20, 50 and 100. Also, the accuracy of link prediction on warm users for who
whom we can compute the similarity with at least one direct neighbor is presented. All accuracy
values are percentages.

Model N=10 N=20 N=50 N=100

All Users
LinkWalker 11.1 16.36 24.12 30.24

RWR 9.73 14.12 22.41 28.46

Warm Users
LinkWalker 21.98 28.21 37.65 43.31

RWR 10.07 15.03 23.82 29.12

Table 4.6: Accuracy of Link Prediction for LinkWalker and RWR in Flixster. The results are pre-
sented for N=10, 20, 50 and 100. Also, the accuracy of link prediction on warm users for who whom
we can compute the similarity with at least one direct neighbor is presented. All accuracy values are
percentages.

Model N=10 N=20 N=50 N=100

All Users
LinkWalker 5.82 8.87 14.63 20.11

RWR 5.09 7.94 13.01 18.58

Warm Users
LinkWalker 10.19 15.1 23.72 30.8

RWR 5.33 8.23 13.95 19.27

We observe that LinkWalker obtains higher accuracy than RWR in both Epinions and Flixster.

In particular, for warm users the accuracy gain of LinkWalker against RWR is very substantial,

e.g., LinkWalker doubles the accuracy for N=10 on both data sets. The substantial gain difference

between the results for all users and warm users is due to the fact that most users are not among

warm users and therefore the results for these users are the same in LinkWalker and RWR. Note

that 20% of the users in Epinions and 8% of the users in Flixster are warm users. Hence, if we only

focus on warm users where LinkWalker is different from RWR, we can highlight the influence of

using rating patterns in LinkWalker on the quality of recommendations.

We would like to mention that all the accuracy values are fairly low for both data sets and for

all values of N. We believe that this is mainly due to the strict evaluation procedure and the sparsity
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of the data sets. There are many users in the trust network, and many of them could be trustworthy

for the source user. LinkWalker may recommend a relatively short list of users that does not include

the withheld user, and the evaluation procedure does not consider this as a hit, but in reality the

recommended list may actually be trustworthy for the source user. Moreover, it should be noted that

both LinkWalker and RWR can preform recommendations for all users, and hence there is no need

to compare the coverage of the comparison partners.

4.7.3 Experiments with Top-N Item Recommendation

In this subsection we report our experimental results on top-N item recommendation method pro-

posed in this chapter. In our experiments we set N = 100 for the following reasons. Note that

we performed experiments on different values of N (i.e. 10,20, and 50) and all them led to similar

relative results.

As discussed in Chapter 2, collaborative filtering approaches use a neighborhood size of k and

aggregate the items rated by these neighbors to recommend top-N items. Therefore, we report the

results of user-based collaborative filtering for different values of k.

In the combined approach, we merge the result of collaborative filtering and trust-based ap-

proach. The number of neighbors considered in CF approaches is k1, and the number of trusted

neighbors being considered in trust-based approach is k2. We performed experiments on different

settings of different models and reported the results in the original paper [48]. In this section, we

only report the results for the best setting of each model. Here is the list of comparison partners in

our experiments:

• CF-User: User-based collaborative filtering approach extended for top-N recommendation.

• CF-Item: Item-based collaborative filtering approach extended for top-N recommendation.

• TrustWalkerList: This is the Random Walk approach. Note that maxDepth=2 leads to the best

results [48].

• Trust-CF-RW is combined method where the top-K trusted users are computed using random

walks. Our experiments in [48] demonstrate that using random walk for computing the top-

K trusted users leads to better results compared to using BFS. It should also be noted that

we only present the results for a fixed k1 and varying values of k2. k1 is fixed using the

optimum value based on our experiments with CF-User (k1 = 70 for Epinions and k1 = 40

for Flixster). Again, for more detailed results, please refer to [48].
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Evaluation Metrics

Typically, the leave-one-out method is used to evaluate recommendation systems [36, 74, 101]. In

the leave-one-out method for predicting a single rating, we withhold a rating and try to predict it

using the trust network and the remaining ratings. For top-N recommendation, we have to adjust

the leave-one-out method. We withhold a user’s rating on an item, and ask the recommender to

recommend top-N items for this user. If the withheld item is among the N recommended items, then

we say that a hit has occurred. We compute the recall as follows:

recall =
#hits

L
(4.26)

where L is the number of pairs of <user,item> being considered in the leave-one-out method. It

should be noted that in the leave-one-out method we do not withhold all items of a user. Only items

which have been highly rated will be withheld. In our experiments, we computed the maximum

rating value expressed by each user and then we considered only items rated with the value of that

maximum rating as items being withheld. It should be noted that recall has been also called hit-ratio

in related works [30][56][57].

Experimental Results

In this section, we report our experimental results for all users and cold start users on both Epinions

and Flixster.

Figure 4.1 shows the recall of comparison partners on all users. Note that neighborhood size

is only a parameter for CF-based and combined approaches, so random walk based approaches

produce constant curves. The figure shows that the optimum k for user-based collaborative filtering

is 70 for Epinions leading to a recall of 16.66% and 40 for Flixster which leads to a recall of 24.78%.

Also, the results on Flixster are generally better than the results on Epinions. There could be two

possible explanation for this: The Epinions data set has relatively higher number of items compared

to Flixster, which could lead to a more divers list of top-N recommendation. Also, items in Flixster

are movies only while items in epinions are from different product categories which again can lead

to more diversity in the recommended items and lower recall values.

The item-based collaborative filtering achieves poor results compared to the user-based CF, as

shown in Figure 4.1. User-based CF for top-N recommendation relies on similar users which have

similar rating patterns. These users are more likely to rate the withheld item. But item-based CF

relies on items similar to items rated by the user. The withheld item is not necessarily among items



CHAPTER 4. RANDOM WALK BASED RECOMMENDATION IN SRNS 83

(a) Results on Epinions (b) Results on Flixster

Figure 4.1: Experimental results with top-N recommendation on all users for different comparison
partners. In each model, only the setting with the best results are shown.

similar to items rated by the user unless this withheld item is actually similar to other items rated by

the user (which is not always true). So, the results of item-based CF for top-N recommendation are

generally poor compared to user-based CF.

Intuitively, TrustWalkerList should perform better than CF-User since it is using extra informa-

tion embedded in the social network, but the results do not show the better performance. We believe

that this is due to the leave-one-out method used for evaluation. When a user u trusts another user

v it does not necessarily mean that they rate the same items. It means that if they both rate an item,

it is more likely for them to rate this item in a similar way. But using leave-one-out and recall as

evaluation criteria, we are explicitly looking for the withheld items which may have not been rated

by trusted users. Manually checking the results revealed that the recommended items are actually

related to the interests of a user, but leave-one-out and recall are unable to capture this. On the

other hand, in CF-User we select users who have rated items in a similar way to the source user and

aggregate their ratings. If two users rate similar items (they have similar rating patterns), then it is

more likely that a similar user also rates the withheld item. Hence, the recall of CF-User is better

than that of TrustWalkerList.

The combined model, Trust-CF-RW, makes advantage of the properties of both collaborative

filtering and social network-based models. Therefore, as shown in Figure 4.1 outperforms all the

comparison partners. In Epinions, the best recall for Trust-CF-RW is 19.26% as opposed to 16.66%

for CF-User, which leads to an improvement of 15.5% over CF-User. In Flixster, the recall improve-

ment of the combined model over collaborative filtering based approach is 7.6%.
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Cold start users are very important in recommender systems. As discussed before, approxi-

mately 50% of users in both data sets are cold start. Figure 4.2 present the experimental results

on cold start users for both data sets. For cold start users, all approaches exploiting a social net-

work outperform collaborative filtering based approaches. This is an evidence for confirmation of

the claim that using a social network improves the quality of recommendation for cold start users.

In Epinions, Trust-CF-RW improves the recall for cold start users by 50.1% which is substantial

compared to the 15.5% improvement for all users. Similarly in Flixster, Trust-CF-RW improves the

recall for cold start users by 45.6% compared to 7.6% recall improvement for all users. This great

improvement for cold start users is mainly due to the fact that very few ratings are expressed by cold

start users which makes it hard for collaborative filtering approaches to find similar users or items.

(a) Results on Epinions (b) Results on Flixster

Figure 4.2: Experimental results with top-N recommendation on cold start users for different com-
parison partners. In each model, only the setting with the best results are shown.

4.8 Conclusion

In this Chapter we proposed memory-based approaches for recommendation in social network. Our

proposed method, TrustWalker, is a random walk based method that combines social network-based

and similarity-based approaches for recommendation. TrustWalker performs random walks on the

social rating network to compute the estimated rating for a specific user on the target item. In each

walk, TrustWalker considers not only ratings on the target item, but also those of similar items,

with probability increasing with increasing length of the walk. TrustWalker employs transitivity and

social correlation for recommendation in social networks.

The idea of TrustWalker was employed to propose LinkWalker, a random walk based method
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for top-N link prediction. Random walks in LinkWalker return recommended users rather than rec-

ommended ratings as done in TrustWalker. LinkWalker incorporates both transitivity and social

selection into link prediction. Finally, we extended TrustWalker to address the top-N item recom-

mendation. Random walks in this model return the items rather than ratings. Again, social corre-

lation and transitivity have been taken into account for recommendation. Experimental results on

Flixster and Epinions demonstrated that our proposed models outperform existing state-of-the-art

models, in particular for cold start users.

In the next chapter, we propose a model-based approach for recommendation in social network

extending matrix factorization.



Chapter 5

Regularized Matrix Factorization for
Cold Start Recommendation in Social
Rating Networks

5.1 Introduction

One of the major challenges in recommender systems is the cold start problem, which comes in

two flavors: cold start users and cold start items. Cold start users are users for whom there is no or

limited history of ratings, mainly because they have recently joined the system. For cold start users,

there is not enough information to confidently determine the relevant neighbors in memory-based

approaches or to train the user model, e.g., latent user factors in model-based recommendation. The

cold start user problem has been recognized in the literature and has been addressed by various

authors [47][119][74][69]. Cold start items are items that have been rated by very few users, of-

ten because the items have only been recently added to the system. Again, methods only based on

ratings perform poorly for cold start items since there are few ratings of the cold start item in the

neighborhood in memory-based methods or since the item model (e.g. item latent factors) cannot be

computed accurately in model-based approaches. The cold start item problem is very important in

practice, because new items need more promotion than old, well-known items and hence companies

are interested in cold start items for their revenue improvements. Unlike the cold start user problem,

the cold start item problem has received surprisingly little attention in the literature with the excep-

tion of [102] and [113]. To emphasize the importance of the cold start problems, it should be noted

86
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that in the real life data sets used in our experiments (and in other existing data sets), approximately

50% of the users and items are cold start.

Social network-based recommenders are particularly helpful for cold start users and can make

recommendations as long as the user is connected to a large enough component of the social network.

As stated before, most existing works on social network-based recommendation are memory-based.

Recently, the model-based approach for recommendation in social rating networks has been inves-

tigated [69][71]. These methods exploit the matrix factorization technique to learn latent factors

for users and items from the observed ratings. Although transitivity of trust has been addressed

in memory-based approaches [74][36][47][120], but memory-based approaches do not consider the

propagation of trust. Since cold start users are more dependent on the social network compared to

users with more ratings, the effect of using trust propagation gets more important for cold start users.

In this chapter, we introduce a comprehensive matrix factorization model, SocialItemMF [52],

consisting of two main components to deal with cold start users (SocialMF [49] [50]) and cold

start items (ItemMF [52]). Note that the problem definition we address in this section is the rating

prediction problem defined in Chapter 2.

In SocialMF, we regularize the latent factors of a user by the latent factors of his direct neighbors

in the social network. Regularization by direct neighbors represents social correlation in a matrix

factorization model. Using this idea, latent factors of users indirectly connected in the social net-

work will be dependent and hence trust propagation is incorporated into the model. In other words,

SocialMF incorporates the effects of social influence [33], social selection [94] [44] and transitiv-

ity [44] [94] into matrix factorization to improve the recommendation accuracy. Note that matrix

factorization based models, including SocialMF, also take into account the correlational influence (

see Chapter 3) since the latent factors are learned using the observed ratings and users with similar

rating behaviors will have similar latent factors.

Another advantage of SocialMF over existing models is the ability of learning the latent variable

of a user even if no rating has been observed for the user. In many real life social rating networks a

very large portion of users do not express any ratings, and they only participate in the social network.

Hence, using only the observed ratings does not allow to learn the user factors.

To address cold start items, we propose ItemMF, in which the latent factor of an item is regular-

ized by the latent factors of its neighbors in the item similarity graph. The item similarity graph is a

network among items which contains information about items independent from their rating history.

To construct the item similarity graph, we exploit publicly available information (such as genre and

IMDB rating for movies) to define a similarity measure among items. The details of building an
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item graph are described in Section 5.5. The assumption behind the use of an item graph is that

neighboring items have similar features (e.g., similar genre and IMDB rating for movies) an there-

fore similar ratings. The item graph is particularly helpful for cold start items, and direct neighbors

of an item can be exploited to learn the latent factors of a cold start item more confidently.

Finally, we combine the ideas employed in SocialMF and ItemMF to present a comprehensive

model, SocialItemMF. In SocialItemMF, the latent factors for both users and items are regularized

by the social network and item graph, which enables SocialItemMF to handle both cold start users

and cold start items. Experimental results on two real life data sets from Epinions and Flixster show

that SocialItemMF outperforms existing models. In particular for cold start users and items, the

accuracy gain for SocialItemMF compared to the state-of-the-art methods is substantial.

The rest of this chapter is organized as follows: Some related work is discussed in Section 5.2.

We introduce SocialMF in Section 5.3. Then, we present ItemMF and how it can be integrated with

SocialMF to form SocialItemMF in Section 5.4. Section 5.5 describes how we build item similarity

graphs in the real life data sets in our experiments. Our experimental results are reported in Section

5.6.

5.2 Related Work

Most related work such as matrix factorization [99], memory-based approaches for recommendation

in social network (e.g., TidalTrust [36], MoleTrust [74], etc.) and model-based approaches for social

network-based recommendation (e.g., STE [69] and Sorec [71]) have been discussed in Chapter 2.

The social network-based approaches discussed deal with cold start users. As mentioned before,

cold start items have not received many attentions from the literature. In this section, we review two

works addressing cold start items.

The authors of [102] propose methods for cold start movie recommendation. They assume that

actors of movies are surrogates for the movies and recommend movies to a user based on how similar

the cast is to movies the user has already rated.

The proposed model in [113] combines Latent Dirichlet Allocation (LDA) [18] and matrix fac-

torization for recommendation of scientific papers. An LDA model is learned from the content of

the papers and the item factors are assumed to depend on the topic distribution of the item (paper).

This model requires rich textual content to be available for items which is not the case in many

applications.
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5.3 The SocialMF Model

In this section, we present our approach to incorporate trust propagation into a matrix factoriza-

tion model for recommendation in social networks. Note that the social network employed in the

proposed model can come from different sources. It could be an explicit online social relation as

those existing in Facebook, an email exchange network extracted from email logs, or even real life

friendships. Basically any graph of users containing data about social engagement among users and

carrying information independent from those embedded in the rating data can be used as the input

social network for the proposed model. On the other hand, the similarity graph built based upon the

similarity of rating patterns contain no information independent from the rating data itself and has

no added value.

5.3.1 The Model

Due to social influence [33], the behavior of a user u is affected by his direct neighbors Nu. In other

words, the latent factor of u is dependent on the latent factors of all his direct neighbors v ∈ Nu.

We formulate this influence as follows:

Ûu =

∑
v∈Nu

Tu,vUv∑
v∈Nu

Tu,v
=

∑
v∈Nu

Tu,vUv

|Nu|
(5.1)

where Ûu is the estimated latent factor of u given the latent factors of his direct neighbors. Since

the social networks we are working with are all binary social networks, all none-zero values of Tu,v
are 1. We normalize each row of the trust matrix so that

∑N
v=1 Tu,v = 1. Now, we have:

Ûu =
∑
v∈Nu

Tu,vUv (5.2)

The above equation indicates that the estimate of the latent factor of a user is the weighted

average of the latent factors of his direct neighbors. The estimated latent factor of user u can be

inferred as: 
Ûu,1

Ûu,2

...

Ûu,K

 =


U1,1 U2,1 ... UN,1

U1,2 U2,2 ... UN,2

... .. ... ...

U1,K U2,K ... UN,K




Tu,1

Tu,2

...

Tu,N

 (5.3)



CHAPTER 5. REGULARIZED MF MODELS FOR COLD START RECOMMENDATION 90

Note that taking the social network into account does not change the equation for the conditional

distribution of the observed ratings. It only affects the user latent factors. So the conditional proba-

bility of observed rating is the same as the conditional probability in the original matrix factorization

approach:

p(R|U, V, σ2R) =
N∏
u=1

M∏
i=1

[
N
(
Ru,i|g(UTu Vi), σ

2
r

)]IRu,i
(5.4)

For the user latent variables, we have two factors: The zero-mean Gaussian prior to avoid over-

fitting, and the conditional distribution of user latent factors given the latent factors of his direct

neighbors. Therefore,

p(U |T, σ2U , σ2T ) ∝ p(U |σ2U )× p(U |T, σ2T )

=

N∏
u=1

N
(
Uu|0, σ2U I

)
×

N∏
u=1

N
(
Uu|

∑
v∈Nu

Tu,vUv, σ
2
T I
)

(5.5)

The above distribution is a normal distribution which is a product of two different normal distri-

butions to keep the user latent factors both small and close to the factors of their direct neighbors.

Through a Bayesian inference, we have the following equation for the posterior probability of

latent factors given the rating and social trust matrices:

p(U, V |R, T, σ2R, σ2T , σ2U , σ2V ) ∝ p(R|U, V, σ2R)p(U |T, σ2U , σ2T )p(V |σ2V )

=
N∏
u=1

M∏
i=1

[
N
(
Ru,i|g(UTu Vi), σ

2
r

)]IRu,i × N∏
u=1

N
(
Uu|

∑
v∈Nu

Tu,vUv, σ
2
T I
)

×
N∏
u=1

N
(
Uu|0, σ2U I

)
×

M∏
i=1

N
(
Vi|0, σ2V I

)
(5.6)

The graphical model corresponding Equation (5.6) is shown in Figure 5.1. Note that the trust

matrix in the above equation is not explicitly shown in the figure. However, the edges among the

latent factors of users are representatives of the trust network among users and the degree of trust of

user u on user v is Tu,v.

The log of the posterior probability can be computed as follows:



CHAPTER 5. REGULARIZED MF MODELS FOR COLD START RECOMMENDATION 91

Figure 5.1: SocialMF: Proposed Graphical Model to consider the social network in the factorization
of user-item rating matrix.

lnp(U, V |R, T, σ2R, σ2T , σ2U , σ2V ) =

− 1

2σ2R

N∑
u=1

M∑
i=1

IRu,i(Ru,i − g(UTu Vi))
2 − 1

2σ2U

N∑
u=1

UTu Uu −
1

2σ2V

M∑
i=1

V T
i Vi

− 1

2σ2T

N∑
u=1

(
(Uu −

∑
v∈Nu

Tu,vUv)
T (Uu −

∑
v∈Nu

Tu,vUv)
)
− 1

2
(

N∑
u=1

M∑
i=1

IRu,i) lnσ2R

− 1

2
((N × K) lnσ2U + (M × K) lnσ2V + (N × K) lnσ2T ) + C (5.7)

Keeping the parameters (observation noise variance and prior variance) fixed, maximizing the

log-posterior over latent factors of users and items is equivalent to minimizing the following objec-

tive function, which is a sum of squared errors with quadratic regularization terms:

L(R, T, U, V ) =
1

2

N∑
u=1

M∑
i=1

IRu,i(Ru,i − g(UTu Vi))
2 +

λU
2

N∑
u=1

UTu Uu +
λV
2

M∑
i=1

V T
i Vi

+
λT
2

N∑
u=1

(
(Uu −

∑
v∈Nu

Tu,vUv)
T (Uu −

∑
v∈Nu

Tu,vUv)
)

(5.8)
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In the above equation, λU = σ2R/σ
2
U , λV = σ2R/σ

2
V , and λT = σ2R/σ

2
T . We can find a local

minimum of the objective function in Equation (5.8) by performing stochastic gradient descent on

Uu and Vi for all users u and all items i.

5.3.2 Discussion

In this section, we discuss some desirable properties of SocialMF and compare it against the closely

related STE model [69].

The SocialMF model addresses the transitivity of trust in social networks. In other words, our

model takes the trust propagation into account. According to the graphical model, the latent factor

of any user is dependent on the latent factors of his direct neighbors. Recursively, the latent factor of

each direct neighbor is dependent on the latent factor of his direct neighbors. This effect is modeled

in the conditional distributions by considering the latent factor of a user being a normal distribution

around the average of the latent factors of his neighbors. On the other hand, the STE model [69]

does not support trust propagation and they list trust propagation as future work.

In the baseline MF approach [99] and the STE model [69], the latent factors are being learned

based only on the observed ratings. However, in real life social rating networks, a huge portion of

users have expressed no ratings and they participate only in the social network. So their factors can

not be learned based on their observed ratings. However, our model can handle these users very

well. The SocialMF model learns to tune the latent factors of these users close to their neighbors.

So, despite not having any expressed ratings, the latent factors of these users will be learned to be

close to their neighbors. Basically, the social trust relations among users is an observed dependency

among the latent factors of users. It should be noted that since evaluating the learned factors is

typically based on the withheld observed ratings, we are currently not able to evaluate the latent

factors learned for users with no expressed ratings.

5.3.3 Complexity analysis

The main cost in learning the parameters is computing L and its gradients against latent factors of

users and items. Assuming the average number of ratings per user is r, and the average number of

direct neighbors per user is t, the complexity of evaluation of L is O(NrK+NtK). Since both the

rating matrix R and trust matrix T are very sparse, t and r are relatively small. So the computation

of the objective function L is very fast and linear with respect to the number of users in the social

rating network. The computational complexity of computing the gradients is O(NrK + Nt
2
K)
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which is linear with respect to the number of users in the social rating network. Note that the cost

of computing the gradient in STE [69] is O(Nrt
2
K). So SocialMF is rt

2

r+t
2 times faster than STE in

computing the gradient in each iteration of parameter learning process.

For each rating estimation, the model proposed in [69] needs to take the average of estimated

ratings for direct neighbors which makes it slower in prediction compared to SocialMF proposed in

this dissertation.

5.4 The ItemMF and the SocialItemMF model

In this section, we present our proposed model to extend matrix factorization for addressing cold

start items. We first describe ItemMF, a matrix factorization based model in which latent factors of

every item is regularized by the latent factors of its neighbors in the item similarity graph. Then we

combine ItemMF with SocialMF to present SocialItemMF, a model to address both cold start users

and cold start items.

An item similarity graph S (or item graph for short) is a graph among items where items with

high similarity are connected by edges. The edge weights denote the similarity values between

items. To construct the similarity graph, we use information independent from the rating history of

items. We can exploit the public domain data available for items in each specific data set to compute

the similarity of items. For instance, in a movie data set (Flixster), we can use the IMDB rating of

the movie together with the movie genre to compute a similarity measure. In a product review data

set (Epinions), we can use the product name and the product category to compute item similarities.

The computed similarities are pruned to eliminate low similarity pairs of items from the item graph.

The details of item graph construction for different data sets in our experiments are discussed in

Section 5.5.

The item graph is represented by its adjacency matrix S = [Si,j ]M×M . Non-zero cells Si,j in S

denote the existence of an edge < i, j > in the item graph with weight Si,j , the value of similarity

between u and v. Obviously, S is an undirected graph.

5.4.1 The ItemMF model

Properties of an item are similar to the properties of its direct neighbors, Ni, in the item graph S.

In other words, the latent factor of an item i is dependent on the latent factors of all its neighbors

j ∈ Ni. Similar to SocialMF, we formulate this correlation as follows:
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V̂i =

∑
j∈Ni

Si,jVj∑
j∈Ni

Si,j
(5.9)

where V̂j is the estimate latent factor of the item i given the latent factors of its direct neighbor

in the item graph. If we normalize each row of the adjacency matrix S so that
∑M

j=1 Si,j = 1, we

will have:

V̂i =
∑
j∈Ni

Si,jVj (5.10)

Figure 5.2: The graphical model for ItemMF

Figure 5.2 presents the graphical model corresponding to ItemMF. Similar to SocialMF, the

conditional probability of the observed ratings can be computed using Equation (5.4). Through a

Bayesian inference, the posterior likelihood of the latent factors given the ratings and the item graph

is computed as follows:
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p(U, V |R,S, σ2R, σ2S , σ2U , σ2V ) ∝ p(R|U, V, σ2R)p(U |σ2U )p(V |S, σ2V , σ2S)

=
N∏
u=1

M∏
i=1

[
N
(
Ru,i|g(UTu Vi), σ

2
R

)]IRu,i × M∏
i=1

N
(
Vi|
∑
j∈Ni

Si,jVj , σ
2
SI
)

×
N∏
u=1

N
(
Uu|0, σ2U I

)
×

M∏
i=1

N
(
Vi|0, σ2V I

)
(5.11)

Similar to the procedure in SocialMF, maximizing the log-posterior over latent factors of users

and items is equivalent to minimizing the following objective function, which is again a sum of

squared errors with quadratic regularization terms:

L(R,S, U, V ) =
1

2

N∑
u=1

M∑
i=1

IRu,i(Ru,i − g(UTu Vi))
2 +

λU
2

N∑
u=1

UTu Uu +
λV
2

M∑
i=1

V T
i Vi

+
λS
2

M∑
i=1

(
(Vi −

∑
j∈Ni

Si,jVj)
T (Vi −

∑
j∈Ni

Si,jVj)
)

(5.12)

In the above equation, λU = σ2R/σ
2
U , λV = σ2R/σ

2
V , and λS = σ2R/σ

2
S .

Using stochastic gradient descent on Uu and Vi, we compute the optimized latent factor with

respect to the objective function described above.

5.4.2 The SocialItemMF model

SocialMF employs a social network to address cold start users. ItemMF uses an item graph to handle

the cold start items issue. In this section we combine the ideas presented in SocialMF and ItemMF

to present SocialItemMF, a comprehensive model that is able to handle both cold start users and

cold start items. In SocialItemMF, latent factors of users are regularized by the latent factors of their

direct neighbors in the social network. Also, latent factors of items are regularized by those of the

direct neighbors in the item graph. In other words, the user and item latent factors are estimated as

follows:

Ûu =
∑
v∈Nu

Tu,vUv (5.13)

V̂i =
∑
j∈Ni

Si,jVj (5.14)
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Note that both Tu,v and Si,j are normalized so that
∑N

i=1 Tu,v = 1 and
∑M

j=1 Si,j = 1. Figure

5.3 illustrates the graphical model corresponding the SocialItemMF model. Again, the conditional

probability of the rating can be computed as follows:

p(R|U, V, σ2R) =
N∏
u=1

M∏
i=1

[
N
(
Ru,i|g(UTu Vi), σ

2
r

)]IRu,i
(5.15)

Figure 5.3: The graphical model for SocialItemMF

The posterior likelihood of the latent factors given the observed rating, the social network and

the item similarity graph can be computed using a Bayesian inference as follows:

p(U, V |R, T, S, σ2R, σ2T , σ2S , σ2U , σ2V ) ∝ p(R|U, V, σ2R)p(U |T, σ2U , σ2T )p(V |S, σ2V , σ2S)

=
N∏
u=1

M∏
i=1

[
N
(
Ru,i|g(UTu Vi), σ

2
R

)]IRu,i
×

N∏
u=1

N
(
Uu|

∑
v∈Nu

Tu,vUv, σ
2
T I
)
×

M∏
i=1

N
(
Vi|
∑
j∈Ni

Si,jVj , σ
2
SI
)

×
N∏
u=1

N
(
Uu|0, σ2U I

)
×

M∏
i=1

N
(
Vi|0, σ2V I

)
(5.16)

Maximizing the log-posterior is equivalent to minimizing the following objective function, which

is a sum of squared errors with quadratic regularization terms for both user and item latent factors:



CHAPTER 5. REGULARIZED MF MODELS FOR COLD START RECOMMENDATION 97

L(R, T, S, U, V ) =
1

2

N∑
u=1

M∑
i=1

IRu,i(Ru,i − g(UTu Vi))
2 +

λU
2

N∑
u=1

UTu Uu +
λV
2

M∑
i=1

V T
i Vi

+
λT
2

N∑
u=1

(
(Uu −

∑
v∈Nu

Tu,vUv)
T (Uu −

∑
v∈Nu

Tu,vUv)
)

+
λS
2

M∑
i=1

(
(Vi −

∑
j∈Ni

Si,jVj)
T (Vi −

∑
j∈Ni

Si,jVj)
)

(5.17)

In the above Equation, λU = σ2R/σ
2
U , λV = σ2R/σ

2
V , λS = σ2R/σ

2
S , and λT = σ2R/σ

2
T .

We use stochastic gradient descent to optimize the latent factors with respect to the objective

function. Gradients of the objective function L with respect to Uu and Vi is computed as follows:

∂L
∂Uu

=
M∑
i=1

IRu,iVig
′(UTu Vi)(g(UTu Vi)−Ru,i) + λUUu

+ λT (Uu −
∑
v∈Nu

Tu,vUv))− λT
∑

{v|u∈Nv}

Tv,u

(
Uv −

∑
w∈Nv

Tv,wUw

)
(5.18)

∂L
∂Vi

=
N∑
u=1

IRu,iUvg
′(UTu Vi)(g(UTu Vi)−Ru,i) + λV Vi

+ λS(Vi −
∑
j∈Ni

Si,jVj))− λS
∑

{j|i∈Nj}

Sj,i

(
Vj −

∑
l∈Nj

Sj,lVl

)
(5.19)

where g′(x) is the derivative of logistic function and is equal to g′(x) = e−x/(1 + e−x)2. To

reduce the model complexity, we set λU = λV in all our experiments. The initial values of U and

V are samples from normal noises with zero mean. In each iteration, U and V are updated based on

the latent variables from the previous iteration.

Note that in both ItemMF and SocialItemMF, latent factors for an item can be learned even

if ratings are not provided for items. This is particularly helpful for cold start items, or items in

reviewing websites that despite having some reviews not explicit rating has been expressed for the

item.

5.4.3 Complexity analysis

Similar to the discussion in Section 5.3.3, the main computational cost in each iteration of learning in

ItemMF and SocialItemMF is computation of the gradients. Table 5.1 compares the computational
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costs of the proposed models in this chapter and the stat-of-the-art model STE [69] from literature.

Table 5.1: Comparison of computational complexity for computing the gradients in different models

Model Computational Cost

STE O(Nrt
2
K)

SocialMF O(NrK +Nt
2
K)

ItemMF O(NrK +Ms2K)

SocialItemMF O(NrK +Nt
2
K +Ms2K)

Here, r is the average number of ratings per user, t is the average number of direct neighbors

per user in the social network, and s is the average number of direct neighbors per item in the item

similarity graph. Since the matrices corresponding the ratings, social network, and the item graph

are very sparse, r, t, and s are relatively small. Therefore, computational complexity of computation

of the objective function L and its derivatives is very fast and linear with respect to the number of

users and items.

5.5 Data sets and Construction of Item Graphs

In our experiments we used two real life data sets from Epinions.com and Flixster.com. For a

detailed description of the data sets, please refer to Chapter 4. In the following, we describe how we

build an item similarity graph for each data set.

To construct the item (similarity) graphs, we use information independent from the rating history

of items. We exploit the public domain data available for both Flixster and Epinions to compute the

similarity of item pairs. After computation of similarities for all possible pairs, we prune the graph

by setting similarity in a way that the average number of neighbors for items is close to the average

number of neighbors for users to have item graphs with density similar to the social network among

users. In the following, we describe the details of construction of item graphs in the Flixster and the

Epinions data sets.
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Item Graph in Epinions

In Epinions, product name and product category are publicly available for all products and can

be easily collected. Fortunately, the version of the Epinions data set we used in our experiments1

provides both product name and product category for all items. Product names can contain more

than one word. After stemming and removing stop words from product names, we used the Jaccard

coefficient between the bag-of-words representing items as the similarity measure. Note that only

items from the same category are considered to be similar and items from different categories are

always considered to have zero similarity.

sim(i, j) = I(cati, catj) ∈
|namei ∩ namej |
|namei ∪ namej |

(5.20)

In the above equation, I(cati, catj) is an indicator that takes the value 1 if items i and j are from

the same category and 0 otherwise. namei is the set of keywords representing the product name of

item i.

Item Graph in Flixster

The items in Flixster are all movies. Therefore, we used the publicly available data from IMDB.com

to extract the genre and IMDB ratings of movies. IMDB rating for a movie i, imdbi, is a real number

in the range [0,1]. A movie can have more than one genre, and we denote the set of genres for movie i

by genresi. Similarity of movies according their IMDB ratings is computed using a simple distance

measure and similarity of items according to their genre is computed using the Jaccard coefficient.

We compute the product of these two similarity metrics to obtain the overall movie similarity as

follows:

sim(i, j) =
10− |imdbi − imdbj |

10
× |genresi ∩ genresj |
|genresi ∪ genresj |

(5.21)

It should be noted that the information exploited to construct the item graphs in both data sets are

from public domains. We argue that similar public domain information is available for many other

recommendation data sets. As long as the information used in the item graph is orthogonal to the

information in the rating matrix, the item graph can help to improve the quality of recommendation

for cold start items.

1http://alchemy.cs.washington.edu/data/epinions/
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5.6 Experiments

In this section, we report our experimental results including those for existing methods. In particular,

we present the results for cold start users and cold start items.

5.6.1 Experimental Setup

We perform 5-fold cross validation in our experiments. In each fold we have 80% of data as the

training set and the remaining 20% as the test data. The evaluation metric we use in our experiments

is RMSE (see Section 2.3 for details). To evaluate the performance of our method we consider three

comparison partners:

• CF: This is the well-known user-based collaborative filtering method which is a memory-

based approach.

• BaseMF: This method is the baseline matrix factorization approach proposed in [99], which

does not take the social network into account.

• STE: This is the model proposed in [69], which takes into account the social network in a way

different from SocialMF. We set α = 0.4 for STE in our experiments which is the optimum

value according to the results of experiments in [69].

• MA: This is the model proposed by Ma et al. in [70]2.

• SocialMF: The proposed model for social network-based recommendation that extends matrix

factorization by regularizing latent user factors. SocialMF is particularly designed to help with

cold start users.

• ItemMF: The proposed model to address cold start items that extends matrix factorization by

regularizing latent item factors.

• SocialItemMF: The comprehensive model that combines SocialMF and ItemMF by regular-

izing both user and item latent factors.

In all our experiments, we set λU = λV = 0.13.

2As in our paper [49], we are using STE as the main comparison partner in this section. The experimental evaluation
of MA [70] was performed only in 2012 to make the comparison more comprehensive.

3These values have been experimentally tuned.
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5.6.2 Experimental Results

Table 5.2 reports the RMSE values of all comparison partners on the Epinions data set. The pa-

rameter λT is set to 5 for experiments on Epinions. Table 5.2 shows that SocialMF outperforms the

existing methods. Note that since collaborative filtering has no latent factors, there is no dimension-

ality K associated with it and hence the result for different values of K are the same.

SocialItemMF improves the RMSE of STE by 7.9% for K=5 and by 7.1% for K=10. To show

how substantial our gain is, note that the gain of STE over the baseline MF method is 2.5% and

the gain of SocialMF over STE is more than 3 times that gain. As another evidence for substantial-

ity of these RMSE reductions, note that in the Netflix prize competition4, there was a $1 Million

reward for a reduction of the RMSE by 10%. Also, SocialItemMF achieves a light gain of 1.3%

over SocialMF, demonstrating that regularizing item factors further improves the quality of recom-

mendation achieved by regularizing the user latent factors in SocialMF. Note that ItemMF performs

worse than SocialMF, meaning that the social network is much more important than the item graph

for rating prediction in Epinions.

Table 5.2: RMSE values for comparison partners on Epinions with different settings of dimension-
ality K.

Method K=5 K=10
CF 1.180 1.180

BaseMF 1.175 1.195
STE 1.145 1.150
MA 1.113 1.120

SocialMF 1.075 1.085
ItemMF 1.147 1.159

SocialItemMF 1.061 1.074

RMSE values for Flixster are presented in Table 5.3. Again, SocialItemMF clearly outperforms

the existing methods. In Flixster, the improvement of the RMSE for SocialItemMF over STE is

8.4% which is more than 5 times of the gain of STE over baseline MF (1.5%).

It should be noted that the results for Flixster are generally better than the results for Epinions for

all methods. This may be because of the fact that the items in Epinions are from multiple categories

such as DVD players, cameras, printers, laptops, etc., while the items in Flixster are all movies,

4http://www.netflixprize.com
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which simplifies the recommendation task. Another explanation for the better results on Flixster

could be that Flixster is a denser data set since there are more social relations and ratings per user in

Flixster compared to Epinions.

Table 5.3: RMSE values for comparison partners on Flixster with different settings of dimensionality
K.

Method K=5 K=10
CF 0.911 0.911

BaseMF 0.878 0.863
STE 0.864 0.852
MA 0.842 0.831

SocialMF 0.821 0.815
ItemMF 0.853 0.842

SocialItemMF 0.795 0.786

Intuitively, increasing K should add more flexibility to the model and hence should improve

the results. However, comparing results of Tables 5.2 and 5.3 for different values of K shows

that increasing K in Epinions did not improve the results, while increasing K in Flixster improved

the results. We believe that these results for Epinions are due to the fact that the Epinions data

set is smaller than Flixster and increasing K means more parameters in the model which leads to

overfitting. Flixster, on the other hand, is a huge data set, and increasing K to 10 does not lead to

overfitting.

5.6.3 Impact of λT and λS on results

Parameter λT controls the influence of the social network on the behavior of users. Larger values

of λT in the objective function of Equation (5.17) indicate more impact of the social network on

the behavior of users. Very small values of λT make our model close to the baseline MF approach.

However, very large values of λT lead to a model in which having latent factors close to those of

direct neighbors dominates having a lower squared error in the training phase. Similarly, λS controls

the influence of the item graph on the behavior of items.

Figure 5.4 compares the RMSE of the SocialMF model for a range of values for λT in both data

sets. As shown in this figure, SocialMF achieves its best results on Epinions for λT = 5, and λT = 1

for Flixster. Note that a fairly broad range of λT values is close to optimal and the same value of 2
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could be chosen in both data sets as a near optimal λT value.

Figure 5.4: Impact of different values of λT on the performance of prediction in SocialMF for
Epinions and Flixster.

Figure 5.5 compares the RMSE of the ItemMF model for different a range of values for λS in

both data sets. As shown in these Figures, ItemMF has its best results on Epinions for λS = 7, and

λS = 2 for Flixster. Again, the optimal values are similar in both datasets, and a value in the range

[2,5] achieves near optimal performance in both data sets.

Figure 5.5: Impact of different values of λS on the performance of prediction in ItemMF for Epin-
ions and Flixster.

In all experimental results, the values of λS and λT are set to their optimum value according to

the sensitivity analysis shown in Figures 5.4 and 5.5.
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5.6.4 Performance on cold start users and items

The main goal of using social networks and item graph in a recommender system is to improve the

quality of recommendation, in particular for cold start users and items. We consider users who have

expressed less than 5 ratings as cold start users [75][47] and items with less than 5 ratings as cold

start items. Note that in both Flixster and Epinions more than 50% of users are cold start users5 and

48% of items in Flixster and 80% of items in Epinions are cold start items. Hence accuracy of any

recommendation algorithm for cold start users and items becomes very important.

Table 5.4 shows that for cold start user, proposed SocialItemMF outperforms all other methods.

The improvement of the RMSE for cold start users compared to STE is 13.1% for Epinions and

12.1% for Flixster. The gain for cold start users is more than the gain for all users which we discussed

in previous subsection. This implies that SocialItemMF handles cold start users better than STE. We

believe this is mainly due to the consideration of trust propagation in our model. Note that SocialMF

also achieves a substantial RMSE gain against the STE model, although it is less significant than

that of SocialItemMF. Not surprisingly, ItemMF does not perform very well for cold start users and

only outperforms the baselineMF model.

Table 5.4: RMSE values on cold start users.

Method Epinions Flixster
CF 1.361 1.228

BaseMF 1.352 1.213
STE 1.295 1.152
MA 1.224 1.101

SocialMF 1.159 1.057
ItemMF 1.327 1.186

SocialItemMF 1.145 1.028

Table 5.5 compares the RMSE values of the comparison partners for cold start items in both

data sets. According to this Table, the improvement of RMSE for cold start items for SocialItemMF

compared to STE is 20.6% in Epinions and 47.9% in Flixster. The RMSE gain for cold start items is

very substantial compared to that of all items, implying that SocialItemMF is particularly handling

cold start items better than existing models. Also, compared to the RMSE gain for cold start users,

5In Flixster, we do not take into account the users with no ratings in this statistics.
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the improvement for cold start items is much more substantial than the improvement for cold start

users, confirming the importance of item graphs for cold start items.

Table 5.5: RMSE values on cold start items.

Method Epinions Flixster
CF 1.408 1.483

BaseMF 1.392 1.471
STE 1.351 1.403
MA 1.275 1.361

SocialMF 1.214 1.328
ItemMF 1.175 1.083

SocialItemMF 1.112 0.948

Note that the RMSE gain for ItemMF is more substantial in Flixter than in Epinions. We believe

this is mainly due to the nature of the item graphs for these two data sets. In Epinions, the item

similarities are computed based on product names and categories, while the item similarities in

Flixster are computed based on genres and IMDB ratings of the movies. The IMDB rating is clearly

more indicative of the quality of an item than the product name. Therefore, similar items in Flixster

are more likely to have similar quality and rating, leading to a more informative item graph.

Figure 5.6 summarizes the improvement of RMSE in SocialItemMF over STE for cold start

users and items.

5.6.5 Analysis of learning runtime

In section 4 and 5, we analyzed the runtime complexity, i.e. the complexity of computing the gra-

dients of the objective function L in our proposed models (SocialMF, ItemMF, and SocialItemMF)

and STE. In this section we compare the actual runtimes, conducting experiments on a Core2 Duo

2.16 GHz machine with Windows XP and 2 GB of memory.

Table 5.6 compares the actual runtime of a single iteration of the training phase for the compar-

ison partners.

Note that according to our discussion in the previous sections, SocialMF should theoretically

be rt
2

r+t
2 times faster than STE. Since the Flixster data set is denser than the Epinions data set, the

improvement of runtime efficiency for Flixster is stronger than for Epinions.
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(a) RMSE gain for cold start users

(b) RMSE gain for cold start items

Figure 5.6: Comparison of RMSE gain of SocialItemMF over STE for cold start users and cold start
items

It should also be noted that the average number of iterations for SocialMF and ItemMF to con-

verge is around 700, while the number of iterations for SocialItemMF is close to 750 and the number

of iterations for STE is around 550. Table 5.7 shows the total time required to learn the parameters

for each model. As shown in this Table, the STE model is much slower than SocialMF, ItemMF

and SocialItemMF. The training phase of SocialMF is 40 times faster than that of the STE model for

Flixster and more than 7 times faster for Epinions.

5.7 Conclusions

In this Chapter, we proposed a comprehensive matrix factorization based model, SocialItemMF,

consisting of two main components to deal with cold start users (SocialMF) and cold start items
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Table 5.6: Runtime comparison of a single iteration in training.

Model Epinions Flixster
SocialMF 2.8 sec 29 sec
ItemMF 2.7 sec 31 sec

SocialItemMF 4.0 sec 41 sec
STE 37 sec 27 min

Table 5.7: Total time required to learn the parameters of models.

Model Epinions Flixster
SocialMF 40 min 5.5 hr
ItemMF 37 min 5.6 hr

SocialItemMF 61 min 7.8 hr
STE 5 hr 9 days

(ItemMF). SocialMF regularizes the latent factors of a user by the latent factors of his direct neigh-

bors in the social network, representing the effect of social influence in the model. Similar to the

most related model, STE, presented in [69], SocialMF learns the latent factors of users and items.

Different from STE, the latent factor of each user is dependent on the latent factors of his direct

neighbors in the social network. This allows SocialMF to handle the transitivity of trust and trust

propagation, which is not captured by the STE model. Trust propagation has been shown to be a

crucial phenomenon in the social sciences, in social network analysis and in social network-based

recommendation. Also if a user has not expressed any ratings, his latent factors can be learned as

long as he is connected to the social network via a social relation.

In ItemMF, the latent factors of items are regularized by the latent factors of their neighbors in

the item (similarity) graph. The item graphs are constructed using public domain data available for

items that are independent from the rating history, e.g. movie genres and IMDB ratings in Flixster

and product name and category in Epinions. The assumption behind the use of an item graph is

that neighboring items have similar features and therefore similar ratings. The use of an item graph

is particularly helpful for cold start items. Note that even if there are no ratings for an item, its

latent factors can be learned by ItemMF using the latent factors of its neighbors in the item graph.

The proposed SocialItemMF model is a combination of SocialMF and ItemMF, in which the latent
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factors for both users and items are regularized by the social network and item graph, respectively.

Therefore SocialItemMF can handle both cold start users and cold start items.

We performed experiments on two real life data sets from Epinions and Flixster, demonstrating

the merits of our proposed models. SocialMF achieves substantial RMSE gain over existing models,

in particular for cold start users. ItemMF outperforms the comparison partners, particularly for cold

start items. Experimental results show that SocialItemMF benefits from the desirable properties of

both SocialMF and ItemMF and outperforms state-of-the-art models. In particular, SocialItemMF

achieves substantial RMSE gain over comparison partners for cold start users and cold start items.

In the next Chapter, we propose an advanced model-based approach that not only addresses

the rating prediction problem but can also be employed to perform link prediction and community

inference.



Chapter 6

A Generalized Stochastic Block Model
for Comprehensive Community-based
Recommendation in Social Rating
Networks

6.1 Introduction

Exploiting social networks in recommendation works because of the effects of selection [94] [44]

and social influence [33]. These effects have been modeled in Chapter 3 and have been exploited

in recommender systems in Chapters 4 and 5. Social influence and selection together lead to the

formation of communities of like-minded and well-connected users. Social influence can produce

network-wide uniformity, as a new behavior spreads across the links. Selection, on the other hand,

tends to drive the network toward smaller clusters of like-minded individuals [45]. The tendency

of people to come together and form groups is inherent in the structure of society [8], and studying

the ways in which such groups take shape and evolve over time is a theme that runs through large

parts of social science research [25]. Users may belong to multiple groups, i.e., when a social actor

interacts with different partners, different social contexts may apply and thus the actor may be acting

according to the different roles they can possibly play [3]. For example, when a university professor

interacts with his student on a social networking website, he belongs to the professors’ group, but

when interacting with his son on the same social networking website, he will play the role of a

109
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father rather than a university professor. Similarly, in a social rating network, the context or group

of an item could be different when different users from different groups rate it. For example, a

digital camera may belong to the group of advanced cameras when being rated by a professional

photographer, and the same camera can be considered in the group of expensive cameras for an

amateur photographer.

Exploiting the clustering of users is one of the most important approaches for model-based rec-

ommendation [109]. To make a recommendation for a user, a clustering-based approach aggregates

the ratings in the cluster of that user. However, only a few clustering algorithms allow clusters to

overlap, which is crucial for communities in social rating networks. One of these methods, the

probabilistic EM clustering method [17], assumes that data has been generated from a mixture of

Gaussian models and learns for every data point a distribution of membership over the groups.

Mixture models are not immediately applicable to relational data such as social networks because

they assume that the objects are conditionally independent given their cluster assignments [3]. The

stochastic blockmodel [104] is an adaptation of mixture modeling to relational data. In that model,

each object belongs to one cluster and the relationships between objects are governed by their corre-

sponding pair of clusters. The stochastic blockmodel suffers from the limitation that each object can

only belong to one cluster, or in other words, can play a single latent role. The mixed membership

stochastic blockmodel (MMB) [3] relaxes the assumption of single-latent role for actors and learns

a membership distribution over different groups. Every user is associated with a probability distri-

bution over the groups, i.e., he belongs to each group with a different degree of membership. Mixed

membership models, such as LDA [18], have re-emerged in recent years as a flexible modeling tool

for data where the single cluster assumption is violated [3].

In this chapter, we introduce a generalized stochastic blockmodel (GSBM) [54] that models

not only the social relations but also the rating behavior. The proposed model learns the mixed

group membership assignments for both users and items in an SRN. GSBM fills the gap between

cluster-based models and social network-based approaches for recommendation. GSBM is capable

of predicting both types of user behavior, rating of items and the creation of links to other users.

Basically, GSBM is a generative model that captures the behavior of users in a social rating

network, including the creation of social relations and the ratings of items. Every user acts according

to different groups he belongs to in each of his actions, whether he is creating a social relation or

is rating an item. The items that are being rated by users also belong to different groups based on

the users and the context in which they are being rated. The proposed GSBM ia a probabilistic

method for finding communities in a social rating network taking into account both types of users
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behaviors. Every user and every item has a mixed membership assignment latent vector. In every

action (creating a social relation, or rating an item), the user is probabilistically considered to be

acting as a member of one of the groups. Also every item is considered to belong to a latent group

when it is being rated.

The rest of this chapter is organized as follows: In Section 6.2, some related work are discussed.

The generalized stochastic block model is proposed in Section 6.3. The variational inference method

for learning the model parameters is discussed in Section 6.4. Implementation details for GSBM are

discussed in Section 6.5. Section 6.6 presents the design of experiments and the experimental results

on two real life data sets.

6.2 Related Work

Related work on recommendation in social networks, both memory-based and model-based ap-

proaches, have already been discussed in Chapter 2. In this chapter, we review clustering-based

approaches for recommendation. Then, we briefly discuss the mixed membership stochastic block

model (MMB) that is the basis for our proposed model.

Since GSBM is a clustering-based model for social rating networks, we briefly review the

clustering-based approaches for recommendation. EM clustering has already been discussed in the

introduction. A standard model-based recommendation algorithm uses k-means to cluster similar

users [109]. Given a set of user rating profiles, the space is partitioned into k groups of users that are

close to each other based on a measure of similarity. The discovered user clusters are then applied to

the user-based neighborhood formation task, rather than individual profiles as used in the user-based

collaborative filtering. To make a recommendation for a user u and target item i, a neighborhood

of users belonging to the same group as the user u who also have rated i are considered and their

ratings on item i are aggregated to compute the prediction.

The mixed membership stochastic blockmodel (MMB) [3] is a generative model to capture

the behavior of users when creating social relations. Every user is associated with a probability

distribution over the groups. For every user pair (u, v), the group assignments of u and v are sampled

from the probability distribution associated to them. The probabilities of interaction among different

groups are defined by a matrix of Bernoulli rates. The link creation from u to v is then sampled from

the Bernoulli distribution corresponding to the interaction probability of the groups assigned to the

users. MMB only models the social relations and does not model the rating behavior of users. We

extend MMB to also capture the rating behavior of users.
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6.3 The Generalized Stochastic Blockmodel

The effects of social influence and selection in an SRN lead to the formation of groups of users

and items. EM clustering methods assume overlapping group assignments among users based on

a mixture of Gaussian models, but they cluster the users based only on their attributes and do not

consider the social relations. On the other hand, mixed membership stochastic blockmodels (MMB)

offer a mixed membership model for relational data, considering only the relational data but not

the attributes of users. In this section, we extend MMB and propose a generalized stochastic block

model (GSBM) to capture the groups of users and items in SRNs.

In this chapter, we assume that a social rating network is given. The set of users in the SRN

is denoted by U where |U| = N and the set of items is denoted by I where |I| = M . The social

relations are considered to be directed, and tu,v is the binary random variable indicating whether

there is a social relation from user u to user v. Rating values are assumed to be integer numbers in

the range [1,5]. Hence the rating of a user u on an item i can be represented by an indicator vector
−→
Ru,i in which all elements are set to zero except for the one corresponding to the rating value.

6.3.1 The proposed GSBM

GSBM assumes K1 groups among users and K2 groups among items. Every user u is associated

with a latent group assignment vector
−→
Πu, where Πu,t denotes the probability of user u belonging to

group t. Similarly, every item i is associated with a latent group membership vector
−→
∆ i. For every

user u, the indicator vector −→z u→v denotes the group membership of user u when interacting with

user v. Also −→z u←v denotes the group membership of user v when being interacted by user u. The

probabilities of interactions among different groups of users are defined by a matrix of Bernoulli

rates BT(K1×K1)
, where BTl,t represents the probability of having a social relation between a user

from group l and a user from group t.

Indicator vector −→x u→i denotes the group membership of user u while rating item i, and −→x u←i
denotes the group membership of item i when being rated by user u. These indicator vectors are

sampled from the latent group membership vectors
−→
Πu and

−→
∆ i. The multinomial distribution of

the rating expressed by a user from a particular user group on an item from a specific item group is

defined by a matrix BR(K1×K2)
, where BRl,t

is a probability vector representing the probabilities of

the multinomial distribution for the rating expressed by a user in group l on an item in group t.

The proposed GSBM assumes the following generative model for social relations and ratings:
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• For each user u ∈ U :

– Draw a K1 dimensional mixed membership vector:
−→
Πu ∼ Dirichlet(−→α )

• For each item i ∈ I:

– Draw a K2 dimensional mixed membership vector:
−→
∆ i ∼ Dirichlet(

−→
β )

• For each pair of users (u, v) ∈ U × U :

– Draw membership indicator for the initiator: −→z u→v ∼Multinomial(
−→
Πu)

– Draw membership indicator for the receiver: −→z u←v ∼Multinomial(
−→
Π v)

– Sample the social relation: tu,v ∼ Bernoulli(−→z >u→vBT−→z u←v)

• For each pair of a user and an item (u, i) ∈ U × I:

– Draw membership indicator for the user: −→x u→i ∼Multinomial(
−→
Πu)

– Draw membership indicator for the item: −→x u←i ∼Multinomial(
−→
∆ i)

– Sample the rating value:
−→
Ru,i ∼Multinomial(−→x >u→iBR

−→x u←i)

6.3.2 Modeling the Sparsity

It is useful to distinguish two sources of non-interaction among users: they may be the results of

rarity of interactions in general, or they may be an indication that the pair of relevant groups rarely in-

teract. Thus, the authors of [3] introduced a sparsity parameter ρT ∈ [0, 1] to characterize the source

of non-interaction. Instead of sampling tu,v directly from Bernoulli with aforementioned parameter,

they down-weight the probability of successful social interaction to (1− ρT )−→z >u→vBT−→z u←v.

For ratings, we introduce two levels of sparsity: A general sparsity parameter ρR, and a group

level sparsity matrixBY whose elements indicate the rarity of ratings by a group of users on a group

of items. In this case the process of generating a rating would be as follows:

For every pair of a user and item (u, i) ∈ U × I:

• Draw membership indicator for the initiator: −→x u→i ∼Multinomial(
−→
Πu)

• Draw membership indicator for the receiver: −→x u←i ∼Multinomial(
−→
∆ i)

• Sample the rating decision maker: Yu,i ∼ Bernoulli((1− ρR)−→x u→iBY−→x u←i)
where BY is a K1 ×K2 matrix indicating the rating probabilities among different groups of

users and items. ρR is the general rating sparsity parameter.
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• Sample the rating value:
−→
Ru,i ∼Multinomial(−→x >u→iBR

−→x u←i)
Note that this step will be skipped if Yu,i = 0.

Figure 6.1: The graphical model underlying GSBM.

Figure 6.1 illustrates the graphical model underlying the proposed GSBM. Note that the random

variable tu,v is a binary variable and is observed for all user pairs (u, v). If the social relation does

not exist, then tu,v = 0. Also, it should be noted that Yu,i is as an observed binary random variable

defined for all pairs (u, i). Basically, Yu,i is the binary version of the observed ratings. If a rating

Ru,i does not exist, then Yu,i = 0, i.e. it is observed as zero.

6.4 Posterior Inference and Parameter Estimation

As proposed in [3] for the MMB model, we use variational-EM1 to learn the parameters of the

GSBM model. The E-step is a variational inference on the latent variables. After learning the

variational parameters for the latent variables, we perform the M-step similar to the conventional

EM algorithm.

1Note that EM is the Expectation Maximization [29] algorithm used in machine learning. For details, please refer to
[17, 29].
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6.4.1 Variational Inference

The likelihood of the set of observed social relations T is computed as follows:

p(T,Z→, Z←|BT ,
−→
Π 1:N , ρT ) =∏

u

∏
v

P (tu,v|−→z u→v,−→z u←v, BT , ρT )P (−→z u→v|
−→
Πu)P (−→z u←v|

−→
Π v) (6.1)

The likelihood of the set of observed ratings R is computed as following:

p(R, Y,X→, X←|BR, BY ,
−→
Π 1:N ,

−→
∆1:M , ρR) =∏

u

∏
i

p(
−→
Ru,i|−→x u→i,−→x u←i, BR, Yu,i)p(Yu,i|−→x u→i,−→x u←i, BY , ρR)

× p(−→x u→i|
−→
Πu)p(−→x u←i|

−→
∆ i) (6.2)

Now, the likelihood of the complete observed data is as follows:

p(T,R, Y, Z→, Z←, X→, X←,
−→
Π 1:N ,

−→
∆1:M |α, β,BT , BR, BY , ρT , ρR) =

p(T,Z→, Z←|BT ,
−→
Π 1:N , ρT )p(R, Y,X→, X←|BR, BY

−→
Π 1:N ,

−→
∆1:M , ρR)

×
∏
u

p(
−→
Πu|−→α )

∏
i

p(
−→
∆ i|
−→
β ) (6.3)

To learn the values for the latent variables we need to compute the posterior distribution of the

latent variables given the observed data. The normalization constant of this posterior distribution is

the marginal probability of the data which requires integral over all latent variables. This integral is

not solvable in closed form. We use variational inference to approximate this. The main idea behind

variational inference is to assume a distribution of the latent variables with free parameters, and

then fit those parameters such that the distribution is close in KL-divergence to the true posterior.

The variational distribution is simpler than the true posterior since it approximates the posterior by

assuming independence among different latent variables.
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The log of the marginal probability is bounded using Jensen’s inequality2 as follows:

log p(T,R, Y, α, β,BT , BR, BY , ρT , ρR) ≥

Eq
[

log p(T,R, Y, Z→, Z←, X→, X←,
−→
Π 1:N ,

−→
∆1:M

|α, β,BT , BR, BY , ρT , ρR)
]

− Eq
[

log q(Z→, Z←, X→, X←,
−→
Π 1:N ,

−→
∆1:M )

]
(6.4)

The right hand side of Equation (6.4) is a lower bound for the log likelihood and we denote it by L
in the rest of this chapter.

We introduce a distribution q of the latent variables depending on a set of free variational pa-

rameters γ, δ, φ, and ω. We specify q in a fully-factorized way as follows:

q(
−→
Π 1:N ,

−→
∆1:M , Z→, Z←, X→, X←|−→γ 1:N ,

−→
δ 1:M ,Φ→,Φ←,Ω→,Ω←) =∏

u

q1(
−→
Πu|−→γ u)

∏
u

∏
v

q2(
−→z u→v|

−→
φ u→v)q3(

−→z u←v|
−→
φ u←v)∏

i

q4(
−→
∆ i|
−→
δ i)

∏
u

∏
i

q5(
−→x u→i|−→ω u→i)q6(

−→x u←i|−→ω u←i) (6.5)

In the above equation, q1 and q4 are Dirichlet distributions (similar to the distribution in the

generative model). q2, q3, q5 and q6 are multinomial distributions with variational parameters. To

optimize the variational parameters, we compute the derivatives of the lower bound for the likelihood

with respect to all variational parameters and set them to zero. The learned variational parameters

are as follows3:

φu→vl ∝ exp
(
ψ(γu,l)− ψ(

K1∑
t=1

γu,t)
)
×

K1∏
t=1

[
((1− ρT )BTl,t)

tu,vφu←vt (1− (1− ρT )BTl,t)
(1−tu,v)φu←vt

]
(6.6)

2http://en.wikipedia.org/wiki/Jensen’s inequality
3For details of the computation of the lower bound and its derivatives, please refer to Appendix B



CHAPTER 6. GSBM: COMMUNITY BASED RECOMMENDATION IN SRNS 117

φu←vl ∝ exp
(
ψ(γv,l)− ψ(

K1∑
t=1

γv,t)
)
×

K1∏
t=1

[
((1− ρT )BTl,t)

tu,vφu→vt (1− (1− ρT )BTl,t)
(1−tu,v)φu→vt

]
(6.7)

In the above equation, ψ is the digamma function. Also for ω values, we have:

ωu→il ∝ exp
(
ψ(γu,l)− ψ(

K1∑
t=1

γu,t
)

×
( K2∏
n=1

[ 5∏
t=1

BRl,n,t

Ru,i,t
]ωu←in

)Yu,i
×

K2∏
n=1

[
((1− ρR)BYl,n)Yu,iωu←in (1− (1− ρR)BYl,n)(1−Yu,i)ωu←in

]
(6.8)

ωu←il ∝ exp
(
ψ(δi,l)− ψ(

K2∑
t=1

δi,t
)

×
( K1∏
m=1

[ 5∏
t=1

BRm,l,t

Ru,i,t
]ωu→im

)Yu,i
×

K1∏
m=1

[
((1− ρR)BYl,m)Yu,iωu→im

(1− (1− ρR)BYl,m)(1−Yu,i)ωu→im
]

(6.9)

The learned variational parameters for group memberships are as follows:

γu,l = αl +
∑
v

φu→vl +
∑
v

φv←ul +
∑
i

ωu→il (6.10)

δi,l = βl +
∑
u

ωu←il (6.11)

6.4.2 Parameter Estimation

We compute the empirical Bayes estimates of the model hyper parameters {−→α ,
−→
β ,BT , BR, ρT , ρR}

in the M-step of the variational expectation-maximization (EM) algorithm. A closed form solution

for the approximate maximum likelihood estimate of −→α and
−→
β does not exist [3]. We use a linear
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time Newton-Raphson method. The approximate maximum likelihood estimator of BT , BY and

BR are:

BTi,j =

∑
u

∑
v tu,vφu→viφu←vj

(1− ρT )
∑

u

∑
v φu→viφu←vj

(6.12)

BYm,n =

∑
u

∑
i Yu,iωu→imωu←in

(1− ρR)
∑

u

∑
i ωu→imωu←in

(6.13)

BRm,n,l
=

∑
u

∑
i Yu,i(ωu→imωu←inRu,i,l)∑

u

∑
i Yu,i(ωu→imωu←in)

(6.14)

Also, for the sparsity parameter, we have:

1− ρT =

∑
u

∑
v

∑
i

∑
j φu→viφu←vj tu,v∑

u

∑
v

∑
i

∑
j φu→viφu←vjBTi,j

(6.15)

1− ρR =

∑
u

∑
i

∑
m

∑
n ωu→imωu←inYu,i∑

u

∑
i

∑
m

∑
n ωu→imωu←inBYm,n

(6.16)

6.5 Implementation

The variational-EM algorithm requires a lot of memory and needs to storeNK1+2N2K1+MK2+

NMK1 + NMK2 variational parameters for the latent variables which is O(N2K1 + NMK1 +

NMK2). To reduce the space complexity, we use the nested variational algorithm introduced in

[3]. In each variational cycle, the nested variational algorithm (presented in algorithm 1) only needs

to store NK1 + 2K1 +NK2 +MK2 +K1 +K2 parameters which is O(NK1 +NK2 +MK2).

Algorithm 1 presents the nested variational inference method for the GSBM model. In this

algorithm, γu, γv, δi, the interaction probability matrices BT , By and BR are partially updated in

each iteration. The main idea behind nested variational inference is the scheduling of updates for

variational parameters. In the nested variational algorithm, variational parameters γ and δ and the

interaction probability matrices BT , By and BR are partially updated in the E-step which leads to a

great reduction in space requirement of the algorithm.

Algorithms 2 and 3 are used to compute the variational parameters φ and ω. Note that functions

f1 and f2 in lines 5 and 9 of Algorithm 2 correspond to Equations (6.6) and (6.7), respectively. Also,

functions f3 and f4 in lines 5 and 9 of Algorithm 3 correspond to Equations (6.8) and (6.9), respec-

tively. While being much more space efficient, the nested variational inference leads to increased

runtime due to the partial updates, However, algorithm 1 is easily parallizable on a shared memory
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Algorithm 1 Variational Inference for Parameters

1: Input: BT , BR, −→α ,
−→
β , ρT , ρR

2: initialize ∀u, l : γu,l = 2N
K1

and ∀i, s : δi,s = 2M
K2

3: repeat
4: for u = 1 to N do
5: for v = 1 to N do
6: using Algorithm 2, compute variational φt+1

u→v, φt+1
u←v.

7: partially update γt+1
u , γt+1

v and Bt+1
T

8: end for
9: for i = 1 to M do

10: using Algorithm 3, compute variational ωt+1
u→i, ω

t+1
u←i.

11: partially update γt+1
u , δt+1

i , Bt+1
Y and Bt+1

R

12: end for
13: end for
14: until convergence

architecture. It should be noted that variational parameters γ and δ, and the interaction probability

matrices BT , BY and BR are shared by all the processors. The main for loop in Algorithm 1 (lines

4-13) can be run in parallel since different iterations are independent. Therefore, GSBM gains linear

speedup when it runs in parallel. We used Intel Cilk Plus4 to implement the parallel version of our

algorithm. Intel Cilk Plus is an extension to C and C++ that offers a quick, easy and reliable way

to improve the performance of programs on multi-core processors. We used Cilk to implement the

nested variational method presented in Algorithm 1 on a 20 core server using 16 GB of the available

main memory.

6.6 Experiments

In this section, we present our experimental studies on two real life data sets from Epinions and

Flixster. The detailed description and some statistics of these data sets are presented in the following

subsection. We split the data set into 80% training and 20% test data, splitting both the set of social

relations and the set of ratings expressed by users. We learn a GSBM using the training data. As

discussed before, GSBM has two major applications: prediction of user behavior, and discovery

of communities. We perform experiments to evaluate the accuracy of GSBM in predicting user

behavior, in terms of both rating prediction and link prediction. We make predictions for withheld

4http://software.intel.com/en-us/articles/intel-cilk-plus/
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Algorithm 2 Variational Computation for φu→v, φu←v

1: Input: −→γu,
−→γv ,

2: initialize ∀l : φ0u→vl = φ0u←vl = 1
K1

.
3: repeat
4: for l = 1 to K1 do
5: update φs+1

u→v ∝ f1(φsu←v,
−→γu, BT )

6: end for
7: normalize φs+1

u→v to sum to 1
8: for l = 1 to K1 do
9: update φs+1

u←v ∝ f2(φsu→v,
−→γv , BT )

10: end for
11: normalize φs+1

u←v to sum to 1
12: until convergence

Algorithm 3 Variational Computation for ωu→i, ωu←i

1: Input: −→γu,
−→
δi ,

2: initialize ∀l : ω0
u→vl = 1

K1
, ∀m : ω0

u←im = 1
K2

.
3: repeat
4: for l = 1 to K1 do
5: update ωs+1

u→i ∝ f3(ωsu←i,
−→γu, BR)

6: end for
7: normalize ωs+1

u→i to sum to 1
8: for m = 1 to K2 do
9: update ωs+1

u←i ∝ f4(ωsu→i,
−→
δi , BR)

10: end for
11: normalize ωs+1

u←i to sum to 1
12: until convergence

links/ratings by applying the trained model and compare the predictions to the withheld ground

truth. Since there is no ground truth for communities in the social rating networks, we cannot

directly evaluate the quality of community discovery. However, since prediction of user behavior is

based on the community inference made by GSBM, the quality of predicting user behavior indirectly

indicates the quality of community discovery performed by GSBM.

6.6.1 Data Sets

In our experiments, we used the real life data sets described in Chapter 4. Since GSBM, like MMB,

models the behavior of users at the interaction level, it learns many latent variables. Therefore,
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the model is slower than existing models. On the other hand, the model is capable of not only

performing rating prediction, but also link prediction and community discovery. For the sake of

efficiency, we used random samples of the Flixster and the Epinions data set in our experiments.

Table 6.1 shows the general statistics of the sampled data sets from Epinions and Flixster used in

our experiments. Note that the size of our samples is still fairly large compared to the data set used

in [3] (which contained less than 1000 users). It should be noted that convergence of Algorithm 1

on each data set takes around 24 hours in the implementation described in section 6.4.

Table 6.1: General statistics of the Flixster and the Epinions data set used in the experiments with
GSBM.

Statistics Flixster Epinions
Social Relations 41.5K 41.8K

Ratings 55.2K 62.2K
Users 10.6K 11.5K
Items 4.1K 8.8K

6.6.2 Experiments on Rating Prediction

GSBM can be used for rating prediction. After learning the parameters of GSBM from the training

data, rating prediction can be performed using the learned latent variables. Given a user u and an

item i we compute the predicted rating r̂u,i as follows:

r̂u,i =

∑K1
m=1

∑K2
n=1

(
γu,mδi,n

∑5
l=1(l ×BRm,n,l

)
)

(∑K1
m=1 γu,m

)(∑K2
n=1 δi,n

) (6.17)

As is the standard in recommender systems, we use RMSE (root mean squared error) to evaluate

the accuracy of the recommendations inferred from GSBM comparing them to the withheld ground

truth ratings in the test data. We chose the following comparison partners:

• State-of-the-art methods for recommendation in social networks: TrustWalker [47], Tidal-

Trust [36], MoleTrust [74] and SocialMF [49].

• State-of-the-art methods for recommendation using only the user item matrix: user based

collaborative filtering method (CF [37]) and matrix factorization based approach (MF [99]).
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Table 6.2: RMSE values of different comparison partners on Flixster and Epinions.

Model Flixster Epinions
CF 0.913 1.181
MF 0.911 1.175

TrustWalker 0.841 1.079
TidalTrust 0.887 1.109
MoleTrust 0.899 1.104
SocialMF 0.815 1.075

GSBM 0.884 1.092

Figure 6.2: RMSE values for the comparison partners on Epinions.

Table 6.2 and Figures 6.2 and 6.3 present the RMSE values for the comparison partners. The

proposed GSBM achieves a very good RMSE, clearly outperforming the standard recommendation

methods CF and MF and social network-based approaches such as MoleTrust and TidalTrust. Com-

pared to the more sophisticated methods for recommendation in social networks, such as SocialMF

and TrustWalker, GSBM achieves lower but rather close performance. Note that all the comparison

partners do only rating prediction, while GSBM is more comprehensive and also performs link pre-

diction as well as community discovery. A more detailed discussion of the experimental results is

presented in Section 6.4.
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Figure 6.3: RMSE values for the comparison partners on Flixster.

6.6.3 Experiments on Link Prediction

The trained model can be employed for the task of link prediction in a social rating network. The

probability p(tu,v) of a link from user u to user v can be computed as follows:

p(tu,v) ∝
∑K1

m=1

∑K1
n=1

(
γu,mγv,nBTm,n

)(∑K1
m=1 γu,m

)(∑K1
n=1 γv,n

) (6.18)

We threshold the link probability to predict whether or not u creates a link to v. We use the

ROC curve5, more specifically the area under the ROC curve, to compare our proposed model with

existing models. Note that since we need to determine the false positive rate, we randomly add

some pairs of users who do not have a social relation in the training data to the test data to have

some ground truth for negative results6. We consider the mixed membership stochastic blockmodel

(MMB) as the baseline method. We use the random walk with restart method (RWR) [89] as another

comparison partner. RWR is a state-of-the-art probabilistic method for link prediction in social

networks. The probabilistic nature of RWR together with its good performance allows us to generate

ROC curves used in our performance evaluation.

Figure 6.4 presents the ROC curves for link prediction with GSBM, MMB and RWR on Flixster

and Epinions. As shown in the figure, both GSBM and MMB clearly outperform RWR in Flixster

and Epinions. Comparing the ROC curves of GSBM and MMB, we observe that GSBM achieves

slightly better performance. We believe that this improvement is due to the exploitation of the

5http://en.wikipedia.org/wiki/Receiver operating characteristic
6The number of positive and negative test data is the same in our experiments.
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(a) Epinions (b) Flixster

Figure 6.4: ROC curves for link prediction in GSBM.

additional information in the user rating matrix which allows GSBM to take the selection effect into

account.

6.6.4 Discussion

Our experimental results show that GSBM achieves high quality both in rating prediction and link

prediction. In rating prediction, GSBM clearly outperforms all comparison partners that only con-

sider the rating matrix (CF and MF) and also outperforms the social recommenders that do not take

the rating patterns into account for guiding the traversal of the social network (TidalTrust and Mo-

leTrust). The more sophisticated social recommender methods that use the rating patterns in the

search of the social network, however, slightly outperform GSBM. Note that all these comparison

partners do only rating prediction, while GSBM covers more tasks and also performs link prediction

as well as community discovery. Therefore, GSBM is generally expected to sacrifice some rating

prediction accuracy in order to optimize all three tasks simultaneously.

In link prediction, GSBM achieves better quality than all the comparison partners. We believe

that this is mainly due to the fact that GSBM can exploit the selection effect in social networks by

also considering the rating patterns for the link prediction task. To summarize, our experimental

results demonstrate that GSBM achieves high quality in both rating prediction and link prediction

while providing a more comprehensive framework than existing methods that perform only one of

these tasks.
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6.7 Conclusion

In this chapter, we adopted the idea of overlapping and probabilistic group membership presented in

the mixed membership stochastic blockmodel (MMB) [3] and extended it to model not only the cre-

ation of the social relations, but also the rating behavior for groups of users and items. The proposed

generalized stochastic blockmodel, GSBM, is capable of predicting the future behavior of users,

both the social relation creation and the ratings of items. Besides, GSBM can infer communities

among users with probabilistic membership assignments.

We performed experiments on two real life data sets from Flixster.com and Epinions.com, em-

ploying GSBM for rating prediction and link prediction. Experimental results show that GSBM

achieves high quality results in both tasks. Although GSBM does not outperform all comparison

partners in rating prediction, it achieves results very close to the state-of-the-art methods while be-

ing able to perform multiple tasks (community discovery, rating prediction and link prediction). Due

to exploitation of the rating matrix, the link prediction quality of GSBM is better than that of MMB.

In other words, GSBM takes the selection effect into account which improves the performance in

link prediction.



Chapter 7

Discussion

In this thesis we investigated several models for recommendation in social rating networks, includ-

ing both memory-based and model-based approaches. We performed experiments on two real life

data sets demonstrating that the proposed models achieve high quality compared to state-of-the-art

methods. Yet, there are questions that we have not addressed in this dissertation. Questions such as:

Given a social rating network data set, how do you say whether social network-based recommen-

dation works on this data set? How can we compare the different models proposed in this thesis?

What are the principles behind these models that could be extended to other problems and the whole

field of social network-based recommendation? The proposed models substantially improve the

state-of-the-art models, but how significant are the results? To what extent we can attribute the re-

sults to randomness? Finally, social network-based recommendation is particularly helpful for cold

start users. Basically, if a user has expressed enough ratings, then the social network may not even

be necessary for him to get high quality recommendation. In other words, we may not need the

social network to model users with enough ratings. Now, the question is what is enough? How

many ratings should a user have so that the difference of the social network-based and traditional

recommendation for him is very little?

In this chapter, we discuss the above mentioned questions and propose some statistics to present

more insights on social network-based recommendation, the proposed models, and the experimental

results.

126
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7.1 Is it helpful to use social network-based recommendation?

Given a social rating network data set, before performing the actual evaluation of a social network-

based recommender, is it possible to verify whether social network-based recommendation is useful?

Is it worth investing on collecting a social network among users? In this section we address these

questions.

The social network-based approach is most effective in systems where users’ evaluations of

items are subjective rather than objective. In other words, any social network in which people can

have different tastes on items is potentially a strong candidate for social network-based recommen-

dation. Movies, books, music and travel are examples of items that fit the social network-based

approach. On the other hand, cameras, printers, etc. are items for which opinions of friends in a

social network are not as important. Basically, items for which relevant features (e.g. resolution,

zoom, and shutter lag for digital cameras) can be identified are potentially not so dependent on the

social data. However, for cold start users, all these data sets might require the additional information

provided by social network.

The above discussions are all based on intuitions and provide a general guideline. In addition, we

can perform some statistical test to check whether social networks make a difference in the quality

of recommendation in a data set. To illustrate the significance of the effect of social networks in

modeling users’ behavior, we compare the similarity of ratings expressed on common items by

random pairs of users against pairs of users that are direct neighbors in the social network. Basically

for every single item rated by both users in a pair, we compute the Manhattan distance1 of their

ratings on the item and compute the average of these differences over all pairs of users to define a

metric of similarity among a specific set of user pairs in a data set.

FP =

∑
(u,v)∈P

(∑
i∈Cu,v

|ru,i − rv,i|
)

∑
(u,v)∈P (

∑
i∈Cu,v

1)
(7.1)

In Equation (7.1), FP is the metric computing the similarity of ratings expressed by the set P

of user pairs on common rated items. In our experiments we have a set of all possible pairs of users

and a set of pairs of users that are direct neighbors in the social network. Also, Cu,v is the set of

items rated by both users u and v.

Table 7.1 compares the F value for random pairs of users and direct neighbors in both Epinions

1http://en.wikipedia.org/wiki/Manhattan distance
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Table 7.1: Comparison of similarities in different set of user pairs

Data set
FP

Random User Pairs Direct Neighbors
Epinions 1.106 0.972
Flixster 1.155 1.081

and Flixster. As shown in this table, on average direct neighbors rate items in a substantially more

similar way compared to random pairs of users. To show the significance of the difference and to

make sure that the different is not attributed to random noise, we performed a statistical Z-test2. Our

results show that the differences are statistically significant.

The results presented in Table 7.1 show that there is some non-random information embedded

in the social networks of Epinions and Flixster, and it is up to social network-based models for

recommendation to dig into the social network and make advantage of the additional information in

the social network. Therefore, using a social network-based approach is potentially promising for

Epinions and Flixster.

7.2 Comparison of different proposed models

In this thesis, we proposed several methods for recommendation in social networks, including both

memory-based and model-based approaches. In this section we compare these models and present

their commonalities and differences. Also, we discuss the principles and intuitions behind these

models and how we can employ and extend them to other problems, particulary recommendation

problems in social networks. In the following, we first discuss the general properties of the models

proposed in this dissertation.

• TrustWalker [47] is a memory-based approach. The main advantage of a memory-based

approach is that there is no training phase. On the other hand, the main disadvantage of Trust-

Walker as a memory-based approach is its low speed in the prediction (test) phase. Trust-

Walker needs to explore the social rating network in order to look for predicted ratings for

an item, which is time consuming. Although TrustWalker is slow in predictions, since it is

clear what ratings from which users are being used to compute the prediction, TrustWalker is

2http://en.wikipedia.org/wiki/Z-test
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explainable compared to model-based approaches where we only learn latent factors for users

and items which might not be easily interpretable.

• SocialMF [49] is a model-based approach extending matrix factorization. SocialMF has a

training phase to learn the latent factors for users and items. On the other hand, SocialMF

is very fast in the prediction (test) phase since it uses the learned latent factors to predict the

ratings and does not explore the social rating network for prediction. The dependency on the

learning phase means that newly arrived data is not considered in the model until the model

is re-trained. It should be noted though that online learning methods for matrix factorization

[111] [22] have been presented that are able to learn the factors incrementally.

• GSBM [54] is a model-based approach generalizing stochastic block models. GSBM is a

comprehensive model capable of performing rating prediction, link prediction, and clustering.

Therefore, there is a trade-off between the accuracy of rating prediction and the range of tasks

that GSBM is able to deal with.

Generally, model-based approaches are expected to achieve better results in terms of RMSE

compared to memory-based approaches. The reason is that model-based approaches learn the be-

havior of users and can uncover the latent factors affecting the behavior of users in a rating system.

However, since model-based approaches rely on the learned models only and ignore the rating data

in the prediction phase, they may loose some informative data that has not been capture by the model

but is available to be used by memory-based approaches. Overall, it all depends on how effective

the modeling is, or how well a memory-based approach can exploit the information available. In our

experiments, SocialMF slightly outperforms TrustWalker. Also, GSBM achieves results comparable

to the results of SocialMF and TrustWalker but not as good as them. One explanation could be the

fact that GSBM is a comprehensive model capable of performing rating, link prediction and com-

munity inference which leads to a trade-off between the accuracy and the number of tasks GSBM

is capable of addressing. Note that TrustWalker, SocialMF, and GSBM outperform all the state-of-

the-art methods for recommendation in social networks, both memory-based and model-based ones.

Also, GSBM outperforms existing models for link prediction.

There is another difference between SocialMF and TrustWalker. In TrustWalker, the social net-

work has higher priority than the rating matrix. Basically, TrustWalker walks on the social network

and the rating matrix is used for transition probabilities, stopping criteria, and item selection. In

other words, if a user is not connected to the network but has a lot of expressed ratings, TrustWalker
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is not able to compute any recommendation for this user. On the other hand, SocialMF decomposes

the rating matrix into the product of the latent factors of users and items. The social network is

used to regularize the latent factors. In SocialMF (see Equation (5.8)), if a user has expressed many

ratings, then the effect of the social network in the learning phase would be less than the effect for

cold start users. As we discuss later in section 7.4, if a user has expressed enough ratings the social

network does not improve the recommendation accuracy substantially. Therefore, this property of

SocialMF is actually an advantage over TrustWalker.

The decision of what method to employ for a recommendation system depends on various issues.

If the objective is to have the lowest average error and fast prediction, then model-based approaches

such as SocialMF are recommended. If one does not want to spend time and resources on the

training phase while having high quality recommendations, it is better to go for a memory-based

approach such as TrustWalker. If explainability of the recommendations is an issue, memory-based

approaches such as TrustWalker are preferable over model-based approaches. Finally, if one is look-

ing for a more comprehensive model that is capable of performing rating prediction, link prediction,

and clustering, GSBM is the model of choice. However, due to the large number of parameters to

be learned by GSBM, it is not very scalable.

The principles and intuitions of the models proposed in this dissertation can be extended to other

problems of social network-based recommendation. For example, the general idea of performing

random walks on graphs with attributes on nodes can be extended to problems from other domains,

e.g. in crime networks to suggest criminal suspects [106]. The input data for the CrimeWalker model

proposed in [106] is the crime data consisting of the history of crimes and the criminals involved

in each crime. We used the crime data to construct a co-crime network among criminals. Then

given a set of arrested criminals in a crime, CrimeWalker performs random walks similar to those in

TrustWalker to suggest new suspects for the crime.

Generally, random walks such as those in TrustWalker compute a similarity measure between

any pair of users in graph with attributes on nodes. Moreover, note that social rating networks can

be considered as a combination of a graph among users and a bipartite graph among users and items.

Social rating networks can be generalized to include multiple entities (i.e., user, item, etc.) and the

graphs among them. Predicting a rating for a user can be considered as computing the affinity of a

user to an item [40] [118]. In the general form, random walk methods can be used to compute the

affinity of one entity to another entity. These entities could be either from the same type, e.g., in link

prediction, or from different types, e.g, in rating prediction.



CHAPTER 7. DISCUSSION 131

The regularization idea proposed in SocialMF can generally be employed to address cold start

problems. As discussed in Chapter 5 we can regularize the item factors to deal with cold start items.

Generally any network among users or items can be employed for regularization to enhance the

modeling in a recommender system. Also, the matrix factorization base approach can be extended

to N-dimensional tensor factorization to learn the latent factors for more than two entity types [64].

For instance, we used tensor factorization in opinion mining to learn the latent factors of reviewers,

raters, and products [82]. It should be noted that the model proposed in [82] can extended to exploit

social regularization to regularize the latent factors for reviewers and raters. Tensor factorization has

also been employed for context-aware recommendation [55] and social tag recommendation [95].

Finally, the idea proposed in GSBM [54] may be applicable in protein-protein interaction (PPI)

networks. Protein-protein interactions occur when two or more proteins bind together, often to carry

out their biological function. Every protein interacts with specific proteins to perform a particular

function (corresponding to different groups in GSBM). Interactions in PPI networks can be mod-

eled by the ideas proposed in GSBM. Basically, every protein would have a mixed membership

functionality assignment.

7.3 Significance of the experimental results

Assessing the significance of data mining results is an important step in the knowledge discovery

process. While results might appear interesting at a first glance, they can often be explained by

already known characteristics of the data. Randomization is an established technique for significance

testing, and methods to assess data mining results on vector data or network data were proposed [34]

[39]. Basically, large number of randomized data sets are generated and a experiments are performed

on every randomized data set. The experimental results for the randomized data sets are compared

to the results on the original data set to test the significance of the results on the original data set.

In this section we assess the significance of the experimental results for the SocialMF model

presented in this dissertation3. The randomization method is based on the model proposed in [35]

that randomizes both ratings data and the social network while keeping some fundamental charac-

teristics of the social rating network. Basically, the randomization model proposed in [35] preserves

correlation information between the ratings and social relation, i.e. social influence, homophily,

etc. In other words, the novelty of the proposed model in [35] lays in taking the dependency of

3Note that we picked SocialMF over TrustWalker and GSBM since it achieves best RMSE results.
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ratings and social relations into account. We introduced a swap randomization technique that ex-

ploits an adaptive Metropolis sampling [6] [15] and interweaves attribute randomization and graph

randomization steps [35].

In the following, we report our experimental results for the significance of results in SocialMF on

both Flixster and Epinions. The significance of the RMSE results on the SRN is determined by the

(one-tailed) empirical p-value4. If the p-value is sufficiently small, the null hypothesis is rejected,

i.e. we can assume that the obtained results are not a consequence of the preserved background

knowledge. In other words, a small p-value in a data set means that the result of SocialMF on that

data set is significant.

Table 7.2: RMSE and significance test results for SocialMF

Data set RMSE orig. RMSE random. p-value
Epinions 1.153 1.214 0.01
Flixster 0.875 0.945 0.01

Table 7.2 presents the results of significance test for SocialMF on both Flixster and Epinions5. In

both data sets, the average RMSE of the models learned for the randomized data sets is substantially

higher than the RMSE for the original data set. The p-values are smaller or equal to 0.01, i.e., with

probability of at least 99% the results achieved by SocialMF are not attributed to the characteristics

of the data sets preserved in the randomization [35].

7.4 How many ratings are enough for recommendation?

In this thesis, we have shown that exploiting social networks can improves the quality of recommen-

dation, particularly for cold start users. The RMSE gain for cold start users is substantially higher

for cold start users compared to all users. An important question to be answered in social network-

based recommendation is that whether we always need to use the help of social networks for high

quality recommendation. As discussed before, if a user has already expressed enough ratings, the

gain achieved by social network-based recommendation is not substantial.

4http://en.wikipedia.org/wiki/P-value
5Note that both the swap randomization of the data sets and the learning of many models (one for each randomized

data set) are computationally expensive. Therefore, we sampled the data sets in order to be able to efficiently learn models
for several randomized data sets.
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In this section, we perform more fine grained analysis to compare the results of recommendation

models on users with different numbers of ratings. Figures 7.1 and 7.2 compare the RMSE of

SocialMF [49] and BaseMF [99] for users with different number of ratings per user. As shown in

Figure 7.1, if a user has more than 9 ratings in Epinions, the RMSE difference of the social network-

based approach (SocialMF) and the baseline matrix factorization based method (BaseMF) is less

than 5%. Similarly, the RMSE gain of SocialMF over BaseMF for users with more than 12 ratings

in Flixster is less than 5%. Note that the gain for users with only one rating is 24% in Epinions

and 19% in Flixster. The experimental results presented in Figures 7.1 and 7.2 confirm that the

more ratings a user has, the less dependent the recommender system will be on the social network

to model this user’s behavior.

Figure 7.1: Distribution of RMSE of SocialMF for users with different number of ratings in Epinions
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Figure 7.2: Distribution of RMSE of SocialMF for users with different number of ratings in Flixster



Chapter 8

Conclusion

Recommender systems have emerged as tools of choice to select the online information relevant

to a given user. Collaborative filtering and matrix factorization are the most popular approaches to

building recommender systems and have been successfully employed in many applications. How-

ever, these methods perform poorly for cold start users.

With the advent of online social networks, exploiting the information hidden in the social net-

work to predict the behavior of users has attracted a lot of attention. Therefore, social network-based

approaches for recommendation have emerged. Social network-based recommendation is particu-

larly helpful for cold start users. The input data for recommendation in social networks is a social

rating network, i.e., a social network together with the users’ item ratings

Exploiting social networks in recommendation works because of the effects of selection and

social influence. Social selection means that people tend to create social relations to people with

similar attributes. Social influence implies that people adopt the rating behavior of their friends.

Before proposing recommendation models in this dissertation, in Chapter 3, we first modeled the

temporal dynamics of user behavior in social rating networks to capture these effects and to better

understand the underlying mechanisms of user behavior in a social network.

In this thesis, we proposed several probabilistic methods for recommendation in social networks,

including memory-based and model-based approaches. We proposed a memory-based approach,

TrustWalker [47], in Chapter 4. TrustWalker is a random walk based method that combines social

network-based and similarity-based approaches for recommendation. TrustWalker performs random

walks on the social rating network to compute the estimated rating for a specific user on the target

item. In each walk, TrustWalker considers not only ratings on the target item, but also those of sim-

ilar items, with probability increasing with increasing length of the walk. Experimental results on

135
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two real life data sets from Flixster.com and Epinions.com show that TrustWalker outperform state-

of-the-art memory-based approaches for recommendation in social networks. We also extended the

idea of TrustWalker to other recommendation problems such as top-N recommendation [48] and link

prediction [51]. Experiments on Flixster and Epinions demonstrate that the proposed models outper-

form the comparison partners for top-N recommendation and link prediction. Note the the Flixster

data set used in this thesis has been crawled and made publicly available for research purposed as

part of this thesis.

As our first model-based approach, we proposed SocialItemMF [52], a comprehensive matrix

factorization model consisting of two main components to deal with cold start users (SocialMF [49]

[50]) and cold start items (ItemMF [52]). In SocialMF, the latent factors of users are regularized by

the latent factors of their direct neighbors in the social network. As discussed in Chapter 5, deal-

ing with cold start items is also very important. ItemMF has been proposed to address cold start

items, in which the latent factor of an item is regularized by the latent factors of its neighbors in

the item similarity graph. We combined the ideas employed in SocialMF and ItemMF to present a

comprehensive model, SocialItemMF. In SocialItemMF, the latent factors for both users and items

are regularized by the social network and item graph, which enables SocialItemMF to handle both

cold start users and cold start items. Experimental results on Epinions and Flixster show that So-

cialItemMF outperforms existing models. In particular for cold start users and items, the accuracy

gain for SocialItemMF compared to the state-of-the-art methods is substantial.

In Chapter 6, we proposed GSBM [54], a generalized stochastic blockmodel that models both

social relations and the the rating behaviors. GSBM extends the idea proposed in stochastic block

models and learns the mixed group membership assignments for both users and items in an SRN.

GSBM fills the gap between clustering-based models and social network-based approaches for rec-

ommendation. GSBM is capable of predicting both types of user behavior, rating of items and the

creation of links to other users. Compared to other model-based approaches for recommendation,

GSBM is very comprehensive and able to perform multiple task simultaneously. However, experi-

mental results show that although it achieves comparable high quality results on both link prediction

and rating prediction, but GSBM does not outperform all the state-of-the-art models in rating pre-

diction. It should be noted that methods outperforming GSBM in our experiments are TrustWalker

and SocialMF that have been proposed in this thesis. In other words, GSBM outperforms all the

existing models that have not been proposed in this dissertation.

In Chapter 7, we discussed some insightful questions regarding social network-based recom-

mendation. We discussed about the characteristics of the data sets in which social network-based
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recommendation potentially works and presented a statistical test to check whether social networks

can add value to a recommender system. We also compared the different models in this disserta-

tion and discussed which model to pick for different cases. We also applied a data randomization

method to verify the significance of some of the experimental results in this dissertation. Finally,

we experimentally evaluated the importance of social networks for cold start users, addressing the

question of how many ratings are required for a user so that social network-based recommendation

would not be necessary for him.

8.1 Future Work

This research suggests interesting directions for future work. In this section, we briefly discuss such

directions for future research in the field of social network-based recommendation.

Enhancing the proposed models There are some enhancements that can improve the proposed

models in this thesis. For instance, in SocialMF the hyper-parameters are not learned. If

we use EM for learning, we will be able to learn the hyper-parameters in the M-step. Also,

matrix factorization based models are potentially parallizable. Another improvement on So-

cialItemMF could be working on implementing a parallel version of SocialItemMF. Moreover,

extending the idea in SocialMF to address the link prediction problem is also interesting. Fi-

nally, experimental results showed that GSBM does not outperform SocialMF or TrustWalker.

We mentioned that one explanation could be the fact that GSBM is optimizing not only for

rating prediction but also for link prediction which might lead to a tradeoff on the quality of

recommendation. Working on the stochastic block model itself and how to model different

components of GSBM could also lead to a better modeling of user behavior and therefore

better results.

Distributed SRNs In this thesis and in the related work, the ratings are assumed to be stored in a

centralized repository. However, applications such as mobile social networks require a dis-

tributed recommender, and a random walk model is a promising approach for such scenarios.

Context aware trust The trust concept we considered in this dissertation is context independent.

However, people may trust other people in some context while they do not trust those people

in other contexts. Investigating context-based trust models for recommendations is also an

interesting direction for future work.
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Temporal Recommendation Ratings expressed by users have a temporal dimensions. Basically,

there is a difference between the ratings that have been expressed recently and the ratings

expressed long time ago. Temporal aspects of ratings have been investigated for traditional

recommender systems [59]. Incorporating the temporal dynamics of ratings in social network-

based recommendation is a potential direction for future work that has not been investigated

yet.

Multiple social networks Existing models for recommendation and personalization in social net-

works assume that a single social network is given as the input, and the social relations are

explicitly expressed by users. However, in practice users are reluctant to reveal their social

relations, mainly due to the additional effort required to express and maintain these relations,

and also due to privacy concerns. On the other hand, users interact with each other exten-

sively on social media sites, e.g., by commenting on a news article or replying to another

users comment. These interactions lead to the formation of implicit social networks. Multiple

implicit social networks can be inferred based on various interactions among users in differ-

ent contexts. Employing multiple social networks in the recommendation process is a very

interesting direction to extend this thesis.

Negative Trust Social relations in this thesis and most related work are considered to imply a pos-

itive correlation between the two corresponding users. However, in some online social net-

works (including Epinions.com) user can expressed a negative social relation or so-called dis-

trust to other users. Handling negative social relations is very different from handling positive

social relations [38]. Taking distrust into account for social network-based recommendation

has received very little attention [70] and is a potentially interesting direction for future work.

Online learning Model-based approaches for recommendation require a training phase to learn the

model parameters. Training is expensive and can not be done very frequently, especially if the

data sets are very large. Continuous streams of rating data are arriving at the system. Since

the training is far less frequent than the arrival of the new rating data, it takes a while for

newly arrived ratings to affect the user/item modeling of the system. To address this issue,

online learning [111] [22] has emerged that is able to learn the latent factors incrementally

and one instance at a time. Working on online learning methods for the proposed model in

this dissertation is very useful and interesting.



Appendix A

Proof of Convergence of P∗i and
Variance in TrustWalker

In this appendix we provide proofs for convergence of P∗i and variance of the results of different

random walks in the TrustWalker model presented in Chapter 4.

A.1 Convergence of P∗i

If we consider a square matrix A, then the geometric series on A can be defined as
∑∞

k=1 Ak.

Lemma 1 (I−A)(A + A2 + A3 + ...+ Ak) = (I−Ak) If all λi values for A are nonequal

to 1, then (I−A) is invertible, and we’ll have:

(A + A2 + A3 + ...+ Ak) = (I−A)−1(A−Ak). (A.1)

Theorem 1 If |λi| < 1 for each eigenvalue |λi| of A, the geometric series generated by A con-

verges. Then, we will have:
∞∑
k=1

Ak = (I−A)−1A (A.2)

Proof According to eigen decomposition of matrices, we can decompose the matrix as A =

VDV−1, where D is a diagonal matrix formed from the eigenvalues of A, and the columns of

V are the corresponding eigenvectors of A. If we expand this decomposition, we will get:

A =
N∑
i=1

λiVi
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Ak =
N∑
i=1

λkiV
k
i

In the above equation, each Vi is a matrix built from eigenvector corresponding λi. Vi has the

property that Vk
i = Vi. As a result,

Ak =
N∑
i=1

λkiVi

Since we have |λi| < 1, we will have:

lim
k→∞

Ak = lim
k→∞

N∑
i=1

λkiV
k
i = lim

k→∞

N∑
i=1

0×Vi = 0

Using lemma 1, we will get:
∞∑
k=1

Ak = (I−A)−1(A−Ak) = (I−A)−1A

Lemma 2 Assume P is a probability matrix. If we multiply at least one row of the matrix by a

positive real number α < 1, then |λi| < 1 for all eigenvalues of the P.

Proof According to Perron-Frobenius theorem1, if P is a probability matrix, then |λi| ≤ 1 for all

eigenvalues of the P. We can easily check that if we multiply one row of the matrix by α < 1, then

|λi| 6= 1.

Theorem 2 If we do not consider step k as a factor in φu,i, then P∗i will converge and the expres-

sion representing P∗i can be simplified.

Proof Since we are not considering k, all matrices Φk,i are the same and we will refer to them by

Φi. Now, we can rewrite Equation (4.15) as follows:

P∗i =

∞∑
k=1

(ΦiP)k (A.3)

Since multiplying Φi into P will multiply at least one of the rows of P by a positive real number

α < 1, using lemma 2, we will have |λi| < 1 for all eigenvalues of ΦiP. Now, using theorem 1, we

will get:

P∗i =

∞∑
k=1

(ΦiP)k = (I−ΦiP)−1ΦiP (A.4)

1http://en.wikipedia.org/wiki/Perron-Frobenius theorem
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If we consider step k in Φk,i, the proof for convergence of P∗i would be similar. However, since

matrices Φk,i are different for different values of k, we can not simplify P∗i . Therefore, unless we

want to ignore the factor k, we can not have a closed form solution, and as we see in the experimental

results section, the step k is influential in the quality of predictions.

A.2 Convergence of Variance

Lemma 3 The mean of the results of different random walks will converge to a constant value.

Proof If we show the result ofN th random walk by rN , and the mean of results up toN th random

walk as r̄N , then we will have:

r̄N+1 =
(N × r̄N ) + rN+1

N + 1

Since the result of each random walk is a rating, and ratings are in finite ranges, we will have:

lim
N→∞

r̄N+1 − r̄N = lim
N→∞

(N × r̄N ) + rN+1

N + 1
− r̄N = 0;

So, the average of ratings will converge to a constant r̄. Note that if ratings are in infinite range, then

we can not prove this, but typically the ratings are in finite range

Lemma 4 The variance in the results of random walk will converge to a constant value. In other

words, the rate of change in variance will converge to zero.

Proof We prove that the variance of the results up to N random walks, denoted by σN , converges

as follows:

lim
N→∞

σ2N+1 − σ2N = lim
N→∞

∑N+1
k=1 (rk − r̄N+1)

2

N + 1
−
∑N

k=1 (rk − r̄N )2

N

= lim
N→∞

N × σ2N + (rN+1 − r̄)2

N + 1
− σ2N = 0 (A.5)



Appendix B

Posterior Inference and Parameter
Estimation in GSBM

In this appendix, we provide the details of the learning phase for the GSBM[54] model introduced

in Chapter 6. We use variational-EM to learn the parameters of the proposed model. The E-step is a

variational inference on the latent variables. After learning the variational parameters for the latent

variables, we perform the M-step similar to the conventional EM algorithm.

B.1 Variational Inference in GSBM

For each of the rating and social interactions processes, the likelihood is computed as follows:

p(T,Z→, Z←|BT ,
−→
Π 1:N , ρT )

=
∏
u

∏
v

P (tu,v|−→z u→v,−→z u←v, BT , ρT )P (−→z u→v|
−→
Πu)P (−→z u←v|

−→
Π v) (B.1)

and

p(R, Y,X→, X←|BR, BY ,
−→
Π 1:N ,

−→
∆1:M , ρR)

=
∏
u

∏
i

p(
−→
Ru,i|−→x u→i,−→x u←i, BR, Yu,i)p(Yu,i|−→x u→i,−→x u←i, BY , ρR)

× p(−→x u→i|
−→
Πu)p(−→x u←i|

−→
∆ i) (B.2)
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Now, the likelihood of the complete data is as follows:

p(T,R, Y, Z→, Z←, X→, X←,
−→
Π 1:N ,

−→
∆1:M |α, β,BT , BR, BY , ρT , ρR)

= p(T,Z→, Z←|BT ,
−→
Π 1:N , ρT )p(R, Y,X→, X←|BR, BY

−→
Π 1:N ,

−→
∆1:M , ρR)

×
∏
u

p(
−→
Πu|−→α )

∏
i

p(
−→
∆ i|
−→
β ) (B.3)

Using Jensen’s inequality, we have:

log p(T,R, Y, α, β,BT , BR, BY , ρT , ρR) ≥

Eq
[

log p(T,R, Y, Z→, Z←, X→, X←,
−→
Π 1:N ,

−→
∆1:M |α, β,BT , BR, BY , ρT , ρR)

]
− Eq

[
log q(Z→, Z←, X→, X←,

−→
Π 1:N ,

−→
∆1:M )

]
(B.4)

The right hand side of equation 4 is the lower bound for log likelihood and we denote it by L in

the rest of this section.

We introduce a distribution of the latent variables q depending on a set of free variational pa-

rameters. We specify q in a fully-factorized way as follows:

q(
−→
Π 1:N ,

−→
∆1:M , Z→, Z←, X→, X←|−→γ 1:N ,

−→
δ 1:M ,Φ→,Φ←,Ω→,Ω←) =∏

u

q(
−→
Πu|−→γ u)

∏
u

∏
v

q(−→z u→v|
−→
φ u→v)q(

−→z u←v|
−→
φ u←v)∏

i

q(
−→
∆ i|
−→
δ i)

∏
u

∏
i

q(−→x u→i|−→ω u→i)q(
−→x u←i|−→ω u←i) (B.5)
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The lower bound for the log likelihood can be expanded as follows:

L = Eq
[∑

u

∑
v

ln p(tu,v|−→z u→v−→z u←v, BT , ρT )
]

+ Eq
[∑

u

∑
v

ln p(−→z u→v|
−→
Πu)

]
+ Eq

[∑
u

∑
v

ln p(−→z u←v|
−→
Π v)

]
+ Eq

[∑
u

∑
i

ln p(
−−→
Ru,i|−→x u→i−→x u←i, BR)

]
+ Eq

[∑
u

∑
i

ln p(Yu,i|−→x u→i−→x u←i, BY , ρR)
]

+ Eq
[∑

u

∑
i

ln p(−→x u→i|
−→
Πu)

]
+ Eq

[∑
u

∑
i

ln p(−→x u←i|
−→
∆ i)

]
+ Eq

[∑
u

ln p(
−→
Πu|−→α )

]
+ Eq

[∑
i

ln p(
−→
∆ i|
−→
β )
]

− Eq
[∑

u

ln q(
−→
Πu|−→γ u)

]
− Eq

[∑
u

∑
v

ln q(−→z u→v|
−→
φ u→v)

]
− Eq

[∑
u

∑
v

ln q(−→z u←v|
−→
φ u←v)

]
− Eq

[∑
i

ln q(
−→
∆ i|
−→
δ i)
]
− Eq

[∑
u

∑
i

ln q(−→x u→i|−→ω u→i)
]
− Eq

[∑
u

∑
i

ln q(−→x u←i|−→ω u←i)
]

(B.6)

Now, we compute the details of each segment of the lower bound one by one in the following

equations.

Eq
[∑

u

∑
v

ln p(tu,v|−→z u→v−→z u←v, BT , ρT )
]

=

Eq
[∑

u

∑
v

K1∑
i=1

K1∑
j=1

[
zu→vizu←vj

(
tu,v ln (1− ρT )BTi,j + (1− tu,v) ln(1− (1− ρT )BTi,j )

)]]
=

∑
u

∑
v

K1∑
i=1

K1∑
j=1

[
φu→viφu←vj

(
tu,v ln(1− ρT )BTi,j + (1− tu,v) ln(1− (1− ρT )BTi,j )

)]
(B.7)

Similarly, we have

Eq
[∑

u

∑
i

ln p(Yu,i|−→x u→i−→x u←i, BY , ρR)
]

=

∑
u

∑
i

K1∑
m=1

K2∑
n=1

[
ωu→imωu←in

(
Yu,i ln(1− ρR)BYm,n + (1− Yu,i) ln(1− (1− ρR)BYm,n)

)]
(B.8)
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The expected values of membership indicators are computed as follows:

Eq
[∑

u

∑
v

ln p(−→z u→v|
−→
Πu)

]
= Eq

[∑
u

∑
v

ln
( K1∏
l=1

Π
zu→vl
u,l

)]
= Eq

[∑
u

∑
v

K1∑
l=1

(
zu→vl ln Πu,l

)]
=
∑
u

∑
v

K1∑
l=1

[
φu→vl

(
ψ(γu,l)− ψ(

K1∑
t=1

γu,t)
)]

(B.9)

Eq
[∑

u

∑
v

ln p(−→z u←v|
−→
Π v)

]
=

∑
u

∑
v

K1∑
l=1

[
φu←vl

(
ψ(γv,l) − ψ(

K1∑
t=1

γv,t)
)]

(B.10)

Eq
[∑

u

∑
i

ln p(−→x u→i|
−→
Πu)

]
=

∑
u

∑
i

K1∑
l=1

[
ωu→il

(
ψ(γu,l) − ψ(

K1∑
t=1

γu,t)
)]

(B.11)

Eq
[∑

u

∑
i

ln p(−→x u←i|
−→
∆ i)

]
=

∑
u

∑
i

K2∑
l=1

[
ωu←il

(
ψ(δi,l) − ψ(

K2∑
t=1

δi,t)
)]

(B.12)

Eq
[∑

u

∑
i

ln p(Ru,i|−→x u→i−→x u←i, BR, Yu,i)
]

=

Eq

[∑
u

∑
i

ln
[( K1∏

m=1

K2∏
n=1

[ 5∏
l=1

(BRm,n,l
)Ru,il

]xu→imxu←in

)Yu,i]]

= Eq

[∑
u

∑
i

[
Yu,i

K1∑
m=1

K2∑
n=1

[
xu→imxu←i,n

( 5∑
l=1

Ru,i,l lnBRm,n,l

)]]]

=
∑
u

∑
i

[
Yu,i

K1∑
m=1

K2∑
n=1

[
ωu→imωu←in

( 5∑
l=1

Ru,i,l lnBRm,n,l

)]]
(B.13)

Eq
[∑

u

ln p(
−→
Πu|−→α )

]
=

∑
u

[
ln Γ(

K1∑
l=1

αl)−
K1∑
l=1

ln Γ(αl) +

K1∑
l=1

[
(αl − 1)

(
ψ(γu,l)− ψ(

K1∑
t=1

γu,t)
)]]

(B.14)
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Eq
[∑

i

ln p(
−→
∆ i|
−→
β )
]

=

∑
i

[
ln Γ(

K2∑
l=1

βl)−
K2∑
l=1

ln Γ(βl) +

K2∑
l=1

[
(βl − 1)

(
ψ(δu,l)− ψ(

K2∑
t=1

δu,t)
)]]

(B.15)

Eq
[∑

u

ln q(
−→
Πu|−→γ u)

]
=

∑
u

[
ln Γ(

K1∑
l=1

γu,l)−
K1∑
l=1

ln Γ(γu,l) +

K1∑
l=1

[
(γu,l − 1)

(
ψ(γu,l)− ψ(

K1∑
t=1

γu,t)
)]]

(B.16)

Eq
[∑
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(
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)
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To find the optimum variational parameters, we compute the derivatives of the lower bound

function with respect to all variational parameters and set them to zero.

∂L
∂φu→vl

=

K1∑
t=1

[
φu←vt

(
tu,v ln

(
(1− ρT )BTl,t

)
+ (1− tu,v) ln(1− (1− ρT )BTl,t)

)]
− lnφu→vl + (ψ(γu,l)− ψ(

K1∑
t=1

γu,t) (B.22)

Setting the derivative to zero, we have:

φu→vl ∝ exp
(
ψ(γu,l)− ψ(

K1∑
t=1

γu,t
)
·
K1∏
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[
((1− ρT )BTl,t)

tu,vφu←vt (1− (1− ρT )BTl,t)
(1−tu,v)φu←vt

]
(B.23)

Similarly,

φu←vl ∝ exp
(
ψ(γv,l)− ψ(

K1∑
t=1

γv,t
)
·
K1∏
t=1

[
((1− ρT )BTl,t)

tu,vφu→vt (1− (1− ρT )BTl,t)
(1−tu,v)φu→vt

]
(B.24)

For variational parameters creating a rating, we have:

∂L
∂ωu→il

=

K2∑
n=1

[
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( 5∑
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Ru,i,t lnBRl,n,t

)]
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)]
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K1∑
t=1

γu,t) (B.25)

Hence,

ωu→il ∝ exp
(
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·
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]
(B.26)
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Similarly,

ωu←il ∝ exp
(
ψ(δi,l)− ψ(
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·
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]
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The priors for mixed membership assignments can also be computed as follows:
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∂γu,l
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Therefore,

γu,l = αl +
∑
v

φu→vl +
∑
v
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∑
i

ωu→il (B.29)
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βt − δi,t +

∑
u

ωu←it

)]
(B.30)

Therefore,

δi,l = βl +
∑
u

ωu←il (B.31)

B.2 Parameter Estimation in GSBM

We compute the empirical Bayes estimates of the model hyper parameters {−→α ,
−→
β ,BT , BR, ρT , ρR}

with a variational expectation-maximization (EM) algorithm.

A closed form solution for the approximate maximum likelihood estimate of −→α and
−→
β does not

exist [3]. We use a linear time Newton-Raphson method, where the gradient and Hessian are
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∂L
∂αl

= N ×
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The approximate MLE of BT and BR are:

BTi,j =

∑
u

∑
v tu,vφu→viφu←vj

(1− ρT )
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u

∑
v φu→viφu←vj
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Also, for the sparsity parameter, we have:
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1− ρR =

∑
u

∑
i

∑
m

∑
n ωu→imωu←inYu,i∑

u

∑
i

∑
m

∑
n ωu→inωu←inBYm,n

(B.40)



Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6):734–749, 2005.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in
large databases. In VLDB ’94: Proceedings of the 20th International Conference on Very
Large Data Bases, pages 487–492, 1994.

[3] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed member-
ship stochastic blockmodels. Journal of Machine Learning Research, 9:1981–2014, 2008.

[4] Aris Anagnostopoulos, Ravi Kumar, and Mohammad Mahdian. Influence and correlatino
in social networks. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’08, pages 7–15, 2008.

[5] Reid Andersen, Christian Borgs, Jennifer Chayes, Uriel Feige, Abraham Flaxman, Adam
Kalai, Vahab Mirrokni, and Moshe Tennenholtz. Trust-based recommendation systems: an
axiomatic approach. In WWW’08: 17th International World Wide Web Conference, pages
199–208, 2008.

[6] Yves Atchade, Gersende Fort, Eric Moulines, and Pierre Priouret. Adaptive Markov chain
Monte Carlo : Theory and Methods, chapter Bayesian Time Series Models, pages 32–51.
Cambridge University Press, 2011.

[7] Paolo Avesani, Paolo Massa, and Roberto Tiella. Moleskiing.it: a trust-aware recommender
system for ski mountaineering. International Journal for Infonomics, 2005.

[8] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group formation in
large social networks: membership, growth, and evolution. In KDD’06, pages 44–54, 2006.

[9] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1st edition, 1999.

[10] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

150



BIBLIOGRAPHY 151
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