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Abstract

Visual servoing has been introduced as a promising solution for sensor-based robotic applica-

tions. The basic visual servoing task is to guide the motion of a robot with respect to a target

object based on the feedback obtained through a vision system. Despite their popularity,

Image-Based Visual Servoing (IBVS) schemes suffer from stability and convergence issues.

Moreover, in IBVS techniques, there is no direct control over the image/camera/robot tra-

jectories induced by the servoing loop in the image and physical spaces. Therefore, these

trajectories might violate the image and/or physical constraints usually encountered in vi-

sual servoing tasks. Incorporating path planning strategies into the visual servo loop is a

promising effort towards accounting for a variety of constraints.

In this thesis, we propose a general and global path planning framework for image-based

control built on the efficiency and success of randomized sampling-based path planning tech-

niques. The proposed planner explores the camera planning space for permissible camera

trajectories satisfying image constraints (e.g., camera field of view and occlusions) and si-

multaneously tracks these trajectories in the robot configuration space to check for robot

kinematic constraints and collision with obstacles. The exploration in camera planning

space follows a tree-based randomized planning scheme and a local controller is used to

track camera trajectories in the robot configuration space. The proposed framework yields

global trajectories for the whole robotic system. The solution trajectory is projected into

the image space to obtain the corresponding feature trajectories pertinent to a target ob-

ject. An image-based visual servoing scheme is then adopted to execute the solution feature

trajectories.

We implemented the proposed framework on a 6 degrees of freedom (DOF) robotic

arm and a 9-DOF wheeled mobile manipulator. The effectiveness of the proposed planning

scheme in accounting for a variety of image and physical constraints is shown through a

number of real world experiments. We also provide an empirical study on the performance

of the image-based trajectory tracking scheme under modeling and calibration uncertainties.
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Chapter 1

Introduction

1.1 Visual Servoing: Basic Techniques and Issues

The role of vision as a sensor for autonomous machines to interact with complex, unknown,

and dynamic environments is paramount. Visual servoing has been introduced as a promis-

ing approach for sensor-based robotic tasks such as positioning a robot with respect to a

target and tracking a moving target via estimating its 3D motion, i.e. egomotion analysis

using vision. The basic visual servoing task is to guide the motion of a robot with respect

to a target object based on the feedback obtained through a vision system [40]. Figure 1.1

shows an example of a visual servoing task where the aim is to reach the desired view of

the target features, i.e., black dots (Figure 1.1(b)) from the current location of the robot

(Figure 1.1(a)).

Usually an error function e (also called task function [30]) is defined as

e(t) = s(r(t))− sd (1.1)

where s and sd denote the current and desired features, respectively, extracted from the

image feedback, and r is the robot/camera location. The visual servoing objective is to

regulate this error to zero. The term s(r(t)) shows the fact that the features change as

the robot/camera location change with respect to the target object. In visual servoing this

change is captured in form of image interaction matrix, Ls i.e.

Ls =
∂s

∂r
(1.2)

The existing visual servoing techniques are classified into different categories based on

the definition of error function, the underlying control architecture, and the robot-camera

1
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Figure 1.1: The visual servoing task is to guide the motion of a robot with respect to a
target object based on the feedback obtained through a vision system. An error function
is defined between the current and the desired features extracted from the images taken at
the current (left) and the desired (right) robot/camera locations. The visual servoing task
is to regulate this error to zero.

configuration (i.e., eye-in-hand vs. eye-to-hand configuration1). For a detailed review on

existing techniques and their classification see [11], [12], and [40].

In contrast to position-based visual servoing (PBVS), where the control is performed in

the task space based on the 3-D information retrieved from image, in IBVS techniques, the

feedback is defined based on image features and the control loop is closed directly within

the image. This results in a more robust control in presence of calibration and modeling

errors [62], and hence adding to the popularity of IBVS methods.

In [10], through simple, yet, effective examples, Chaumette outlined the potential prob-

lems of stability and convergence of IBVS techniques: singularities in image Jacobian leading

to an unstable behavior, and reaching local minima due to the existence of multiple camera

poses yielding almost the same terminal image of the target. Moreover, in IBVS techniques

there is no direct control over the image/camera/robot trajectories induced by the servoing

loop in the image and physical spaces. Therefore, these trajectories might violate the image

and/or physical constraints.

The image constraints normally encountered in practice include: field of view limits, i.e.

the target may become invisible because it is outside of the camera’s field of view; occlusion

constraints, i.e., the target may be occluded due to obstacles, robot body, or self-occlusion;

the physical constraints include: robot kinematics such as joint limits, singularities in robot

Jacobian, robot/camera dynamic constraints, and collision with obstacles or self-collision.

1In an eye-in-hand configuration the camera is mounted on the end-effector of the robot and robot’s
motion results in camera’s motion while in an eye-to-hand configuration, the camera is stationary and looks
at the end-effector of the robot and robot’s motion does not affect the camera pose [40].
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These constraints are discussed with more details in Chapter 2 (also see [43]).

Since Chaumette’s article [10] on the stability and convergence problems of IBVS tech-

niques, research efforts in visual servoing have been devoted to incorporate the above image

and physical constraints into the reactive visual servoing loop. Earlier works include parti-

tioned and switched strategies. In contrast with partitioned strategies (e.g., [64, 33]), where

certain degrees of freedom are controlled via IBVS while others are controlled via PBVS,

switched strategies consist of a set of visual servo controllers along with a switching rule

(e.g., [27, 32]). Partitioned techniques take advantage of both IBVS and PBVS techniques in

avoiding some of the above constraints, while switched strategies enlarge the stability region

of classical visual servoing techniques by switching between a set of unstable controllers to

make the overall system stable.

Pertinent literature on partitioned and switched strategies indicated that only a small

subset of the above mentioned constraints can be incorporated (see the review in [43]).

Incorporating a global and general path planning strategy into the visual servo loop seems a

promising effort towards addressing all the aforementioned constraints, especially in complex

visual servoing scenarios.

1.1.1 Path Planning for Robust Visual Servoing

The main idea of path planning for visual servoing [69, 43] is to plan and generate feasible

image feature trajectories while accounting for the constraints, and then to servo the robot

along the planned trajectories. Overall, this results in a more robust servoing process with

respect to violation of image and physical constraints. Here we briefly discuss the major

works done in this area. The reader is referred to the comprehensive survey in Chapter 2

for more details.

Avoiding field of view limits and robustness to camera calibration and modeling errors

motivated a number of techniques aimed at interpolating a path directly in the image space

between the initial and desired images without using any knowledge of camera calibration

or target model. Various results from projective geometry have been applied in this context

including: epipolar geometry [38, 75], projective homography [70, 82, 51, 1, 8], and projective

invariance [62]. The main advantage of these approaches is their insensitivity to camera

calibration and/or object model errors. One of the difficulties in these techniques is that the

planned path in the image may not correspond to a feasible camera motion. Moreover, since

the planning is done directly in the image space, satisfying physical constraints (e.g., joint

limits and obstacles) will be very challenging through such approaches lending themselves
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to be ineffective in complex visual servoing scenarios.

Potential fields (as in [46]) have been employed in the context of visual servoing in face

of constraints (e.g., field of view and joint limits [69], or obstacle avoidance behavior [27])

by applying repulsive potentials in the image, joint, and/or task spaces. One of the main

advantages of potential field-based approaches is that they can be employed in real-time

applications. As an inherent deficiency of potential field-based path planning methods, the

above strategies are prone to getting trapped in local minima. As a remedy, global navigation

functions [55] could be employed instead. For example, a global stabilizing strategy using

navigation functions is presented in [22], which guarantees convergence to a visible goal from

almost every initial visible configuration while maintaining viability of all features along the

way. However, one should note that constructing such navigation functions is limited to

very simple scenarios only.

There is also a substantial body of literature aimed at finding globally optimal paths

with respect to various costs (e.g., distance from the image boundary, length of the path

traversed by the robot, energy expenditure, etc.): planning closed-form collineation paths

corresponding to minimum energy and minimum acceleration camera paths [70], optimiza-

tion over polynomial parametrization of the scaled camera paths [18, 16], convex optimiza-

tion using Linear Matrix Inequality (LMI) test [14], or techniques based on optimal control

theory such as the visual motion planning using Lagrange Multipliers [91], and geodesic

techniques [7, 59, 37, 79]. Although the above techniques provide a better insight into the

complexity of the problem in finding optimal paths, they are more or less limited to simple

scenarios. Introducing global image/physical constraints greatly adds to the complexity of

the optimization problem and hence, accounting for such constraints through the above

frameworks is either impossible or highly detrimental to their time complexity.

The convergence problems of potential field-based techniques on one hand and the ex-

pensive cost of the above optimization-based techniques on the other hand motivates the

need for general and, yet global, path planning approaches such as randomized sampling-

based techniques [55, 56]. For example, in [3] a probabilistic roadmap approach has been

utilized to plan minimal-occlusion paths for a camera with respect to a target object, which

requires explicit computation of the boundary of visible and occluded regions. They also

employed a dynamic collision checking strategy to check for the field of view limits along

the edges of the roadmap.
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Figure 1.2: Our proposed planning framework alternatively explores the camera planning
space and the robot configuration space (C-space) for feasible robot/camera paths to obtain
feasible feature trajectories in image space.

1.2 Randomized Path Planning for Visual Servoing

We incorporated sampling-based global path planning with visual servoing for a robotic arm

equipped with an in-hand camera [41]. The proposed planner explores the camera task space

(i.e., space of camera poses) for camera paths satisfying field of view limits and occlusion

constraints, and utilizes a local planner to track these paths in the robot’s joint space to

ensure feasible motions of the robot while accounting for robot’s joint limits and collision

with obstacles. The result is a search tree as in [50], which alternatively explores the camera

and joint spaces (see Fig.1.2). The solution camera trajectories are then projected into the

image space to obtain the corresponding image feature trajectories, which require proper

time-scaling and smoothing to be executed using an image-based visual servoing technique.

We extended the work in [41] and proposed a kinodynamic planning approach [42],

which performs kinodynamic planning for the camera in its state space while taking its

dynamic constraints into account. Unlike the kinematic path planning approach in [41],

which requires an additional (cubic) spline interpolation step to properly time scale the

feature trajectories and obtain smooth trajectories (e.g., see [69]), the solution trajectories

obtained using the proposed kinodynamic planning framework are (by construction) C1-

smooth with bounded acceleration and require no further post-processing to be executed

smoothly using an IBVS technique (see Figure 1.3).
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Figure 1.3: Our proposed randomized kinodynamic planner extends a search tree in camera
state space.

1.3 Contributions

The main contribution of this thesis is to incorporate randomized path planning techniques

with image-based control of robotic arms and wheeled mobile manipulators. To the best

of our knowledge, this is the first attempt on incorporating randomized path planning

approaches with image-based control. In contrast to previous works, the proposed planning

framework provides a general and efficient planning strategy, which incorporates a variety

of image and physical constraints encountered in visual servoing tasks.

The contributions of the thesis are detailed as follows:

• We carried out a comprehensive literature survey on existing path planning techniques

for visual servoing. The survey covers both basic and state of the art strategies in the

area, explains how each strategy works, and also discusses its benefits and drawbacks in

comparison with other techniques. This survey has been published as a book chapter

in [43] providing a unique and comprehensive background on path planning for visual

servoing.

• Inspired by the work of Yao and Gupta on path planning with general end-effector

constraints [90], we devised and implemented a kinematic planning strategy through

which feasible image feature trajectories are generated by alternate exploration of

camera workspace (i.e., space of camera poses) and robot configuration space. The

feature trajectories correspond to feasible camera-robot trajectories that satisfy image

and physical constraints imposed by the visual servoing tasks. The (kinematic) solu-

tion trajectories are non-smooth and require proper time-scaling/smoothing so they

can be executed using an image-based visual servoing strategy. This work has been
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published in [41].

• We extended the above kinematic planning approach by accounting for camera dy-

namics via a randomized kinodynamic planning strategy in camera state space, i.e.

space of camera poses and velocities [42]. The solution trajectories obtained using the

proposed kinodynamic planning approach are (by construction) C1-smooth trajecto-

ries with bounded acceleration and require no time-scaling/smoothing to be executed.

This thesis presents the development and implementation of the proposed randomized

kinodynamic planning strategy on a 6-DOF robotic arm with an in-hand camera. The

robotic arm is servo controlled along the planned feature trajectories using an image-

based visual servoing technique. We have performed a number of experiments on a real

6-DOF robotic arm to show the effectiveness of the proposed strategy in accounting

for image and physical constraints to accomplish visual servoing tasks in complex envi-

ronments. We also carried out an empirical study on the effect of modeling/calibration

uncertainties on the performance of the image-based trajectory tracking controller in

contrast with a joint space trajectory tracking strategy. This work has been published

in [45].

• We also extended the proposed planning framework to wheeled mobile manipulators.

Although the extension of the proposed planning framework to wheeled mobile manip-

ulators is straightforward and (almost) follows the same strategy developed for robotic

arms, we adapted a decoupled control strategy to execute the solution trajectories: the

on-board robotic arm is servo controlled along the planned feature trajectories using

an image-based visual servoing technique while the mobile platform is controlled along

its planned trajectory in the workspace. To the best of our knowledge, this is consid-

ered the first attempt to integrate the planning and image-based control for wheeled

mobile manipulators. We performed preliminary experiments by executing planned

trajectories on a 9-DOF wheeled mobile manipulator to accomplish a visual servoing

task. This work has been published in [44].

1.4 Outline of Thesis

This thesis is structured as follows:

• Chapter 2: provides a comprehensive literature survey on existing path planning
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techniques for visual servoing. It enumerates the image and physical constraints en-

countered in visual servoing tasks and explains their challenges. It categorizes the

existing path planning techniques into four groups: (1) direct path planning in image

space, (2) potential field-based strategies, (3) global parameterization and optimiza-

tion techniques, and (4) global path planning. This survey has been published as a

book chapter in [43].

• Chapter 3: explains the details of our proposed planning framework. It talks about

the solution methodology for incorporating path planning with image-based control.

We discuss the proposed randomized kinematic planning strategy and its extended

kinodynamic version. We also explain how each of the image and physical constraints

is accounted for through the proposed planning framework. We implemented the

proposed planning framework on a 6-DOF robotic arm (Chapter 4) as well as a 9-DOF

wheeled mobile manipulator (Chapter 5), a non-holonomic mobile platform with an

on-board robotic arm.

• Chapter 4: provides and discusses the implementation of the proposed kinodynamic

planning framework on a 6-DOF robotic arm with an in-hand camera. We explain

the implementation of the image-based visual servoing technique to track the planned

feature trajectories along with our system/software architecture. This chapter also

presents the results of our extensive experiments on our 6-DOF robotic arm to accom-

plish a number of visual servoing tasks in complex environments. The effectiveness of

the proposed planning framework in accounting for image and physical constraints is

demonstrated through the results presented in this chapter. Moreover, we also discuss

the effect of modeling/calibration uncertainties on the performance of the proposed

framework in tracking the planned trajectories through the results of a number of

simulated experiments presented in this chapter.

• Chapter 5: extends the implementation of the proposed framework to the case of a

9-DOF wheeled mobile manipulator. We explain the extension of the planning frame-

work by introducing a null-space optimization technique combined with a weighted

pseudo-inverse inverse kinematic control to benefit from the redundancy of such sys-

tems towards increasing the manipulability and achieving coordination along the so-

lution trajectories. We also explain the details of a decoupled control strategy that

was adapted and implemented on our 9-DOF wheeled mobile manipulator to execute

the solution trajectories.
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• Chapter 6: concludes the thesis and discusses future directions to this line of research.



Chapter 2

Literature Survey

This chapter provides a comprehensive technical review of existing major approaches to

path planning for visual servoing. We provide an overview of each planning approach,

explain the associated set of constraints and assumptions, and discuss the underlying path

planning techniques along with the issues regarding their integration with reactive visual

servo controllers.

2.1 Introduction

The existing visual servoing techniques are classified into different categories based on the

definition of error function, the underlying control architecture, and the robot-camera con-

figuration (i.e., eye-in-hand vs. eye-to-hand configuration). For a detailed review on ex-

isting techniques and their classification see [11], [12], and [40]. In summary, the existing

approaches can be classified into two main categories: (1) Position-Based Visual Servoing

(PBVS) where the feedback is dened in terms of the 3D Cartesian information derived from

the image(s), and (2) Image-Based Visual Servoing (IBVS) where the feedback is dened

directly in the image in terms of image features.

IBVS techniques have better local stability and convergence in presence of camera cali-

bration and modeling errors. However, they suffer from global convergence problems, and,

hence, will break down, in particular when the initial and desired camera poses are distant

[10]. For example some of the image features might leave the camera’s field of view and

consequently result in failure of the servoing task. Moreover, there is no direct control on

the robot/camera motion induced by the image-based control law. This might result in in-

feasible maneuvers due to the robot’s joint limits and/or collision with workspace obstacles.

10
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Amalgamation of path planning techniques with reactive image-based visual servoing

strategies can robustify existing image based tracking systems by accounting for critical

constraints and uncertainties in robotics applications where a high disparity between the

initial and desired views of a target is inevitable (e.g., target interception, space docking,

reaching and grasping, etc.). The main idea of path planning for visual servoing is to plan

and generate feasible image trajectories while accounting for certain constraints, and then

to servo the robot along the planned trajectories.

In this survey we provide a comprehensive technical review on existing and recent ap-

proaches to path planning for visual servoing. For each approach the set of constraints

and the assumptions are explained and the underlying path planning technique is discussed

along with the issues regarding its integration with the reactive image-based controllers.

In Section 2.2 we study the two sets of critical constraints in visual servoing context:

(1) image/camera, and (2) robot/physical constraints. The existence of such constraints

motivates the need for path planning techniques aimed at making the servoing process

more robust especially in complex visual servoing scenarios. In Section 2.3 a comprehensive

overview of these approaches and their categorization based on the underlying path planning

techniques are provided. In Section 2.4 we discuss the effect of uncertainties on visual

servoing and report on some recent works aimed at path planning under uncertainty for

visual servoing. Finally, we conclude the survey in Section 2.5.

2.2 Constraints in Visual Servoing

In [10], through simple, yet, effective examples, Chaumette outlined the potential problems

of stability and convergence in both IBVS and PBVS techniques imposed by a number of

constraints. Overall one can divide these constraints into two main categories: (1) Im-

age/Camera, and (2) Robot/Physical constraints. These two categories are detailed as

follows.

2.2.1 Image/Camera Constraints

The image/camera constraints are mainly due to the sensing limits of the vision system or

the inter-relationship between the optical flow (i.e., rate of change) of the features ṡ in the

image space and the camera’s Cartesian velocity ṙ defined through the image Jacobian (also

called interaction matrix) Ls related to image features [40]:

Ls =
∂s

∂r
(2.1)
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These constraints are: (1) field of view limits, (2) image local minima, and (3) singularities

in image Jacobian.

Field of View Limits The camera as a sensing system have certain limitations. For

example the 3D target features projected into the image plane of the camera are visible if

their projections fall inside the boundary of the image. The limits of the image are usually

represented by a rectangular region which determines the visible region of the image plane.

Although in IBVS context the control is directly defined in the image, there is still the

possibility that the features leave the camera’s field of view, in particular when the initial

and desired poses of the camera are distant [10].

Image Local Minima As shown in [10], in IBVS context, image local minima might

occur due to the existence of unrealizable image motions which do not belong to the range

space of image Jacobian Ls. Hence, there does not exist any camera motion able to produce

such unrealizable motions in the image. In general, determining the image local minima is

difficult without considering the specific target location and the initial and desired relative

camera-target locations, which in turn, leads to an exhaustive search for local minima in the

image for each instance of a visual servoing task. As demonstrated in [10], using a nominal

value of image Jacobian estimated at the desired location might be of help to avoid local

minima in visual servoing tasks. But this may lead to peculiar trajectories of features in

the image, which in turn, might violate field of view limits. One should note that the PBVS

techniques are known to be free of image local minima since the task function is defined in

the Cartesian space.

Singularities in Image Jacobian At these singularities, certain camera motions can-

not be achieved by the motion of image features in the image space. Several cases of image

singularities have been considered in [10]: the image Jacobian Ls is known to be singular if

the vector of image features s consists of the image of (1) three collinear points, or (2) three

points belonging to a cylinder containing the camera optical center. Although using more

than three non-coplanar points will avoid such singularities, the image Jacobian may still

become singular no matter how many feature points (irrespective of their arrangements)

are used to define the task function. For example, a visual servoing task involving a 180

degrees rotation around the optical axis results in a singular image Jacobian. As shown in

[10] using line features instead of points helps to avoid such singularities, however, it does

not completely eliminate the singularities in the image space. Motion Perceptibility [85] has

been proposed as a measure of closeness to image singularities.
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2.2.2 Robot/Physical Constraints

Motion of the robot/camera system induced by the visual servo control loop, especially in

IBVS, may also violate certain constraints imposed by the robot and/or physical obstacles

in the workspace. These are: (1) robot kinematics such as joint limits and singularities in

robot Jacobian, (2) robot dynamics, (3) collision with obstacles or self-collision, and (4)

occlusion due to obstacles, robot body, or self-occlusion by the target.

Over the past three decades a great deal of research in robotics community has been de-

voted to planning feasible paths avoiding robot kinematics and/or dynamics constraints and

collision with physical obstacles or self-collision in various environments (see e.g. [55] and

[56]). Path planning approaches have also considered occlusion constraints in applications

that require target visibility, e.g. [57] and [71].

Since Chaumette’s article [10] on the convergence and stability problems of classical

visual servoing techniques, most of the efforts in visual servoing community have been

devoted to taking the above image/camera and/or robot/physical constraints into account

and incorporating them into the reactive visual servoing control loop.

First a number of researchers proposed partitioned (or decoupled) control schemes in

which certain degrees of freedom are controlled in the manner of IBVS while others are

controlled in the manner of PBVS, thereby taking advantage of each individual technique’s

benefit in avoiding some of the above constraints (see e.g. [21], [25], [61], [64], [72]). Each

of these partitioned approaches has its own benefits and drawbacks in accounting for the

aforementioned constraints. A performance test has been presented in [33] comparing the

efficiency of some of the above partitioned strategies with IBVS technique.

Later on, inspired by the theory of hybrid systems, a number of researchers proposed

hybrid (or switched) strategies consisting a set of visual servo controllers along with a

switching rule to switch between them if required (see e.g., [15], [27], [32], [36]). Using

switched strategies it might be possible to enlarge the stability region of classical visual

servoing techniques and to switch between a set of unstable controllers to make the overall

system stable.

Each of the above partitioned or hybrid strategies deals with only a subset of the above

mentioned constraints. Incorporating all the image/camera and robot/physical constraints

into the visual servo control loop is, if at all practical, quite challenging. Clearly some sort

of path planning on top of the visual servo control loop is needed for incorporating all the

aforementioned constraints, especially in complex visual servoing scenarios.
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2.3 Path Planning for Visual Servoing

The main idea of path planning for visual servoing [69] is to plan and generate feasible image

trajectories while accounting for the constraints mentioned in the previous section, and then

to servo the robot along the planned trajectories. So, the initial large error is discretized

and the error to regulate at each cycle of the servoing loop remains small. Overall, this

results in a more robust servoing process with respect to the aforementioned image/camera

and robot/physical constraints.

Over the past decade research has been devoted to incorporate aspects of path planning

in visual servoing. Although there is no formal classification of the existing path planning

techniques for visual servoing, considering the underlying path planning approach and the

assumptions made in each technique, we divide them into four groups: (1) Image space path

planning, (2) Optimization-based path planning, (3) Potential Field-based path planning,

and (4) Global path planning. In this survey we discuss the major works done in each group

to describe the main idea and the underlying problems.

2.3.1 Image Space Path Planning

Image space path planning techniques aim at interpolating a path in the image space between

the initial and desired images without using any knowledge of camera calibration or target

model. One of the difficulty of such approaches is that the planned image space path

may not correspond to any single path for the camera. So, efforts have been devoted

to planning image paths which correspond to feasible (yet unknown) camera paths in an

uncalibrated domain. Various results from projective geometry have been applied in this

context including: epipolar geometry, projective homography, and projective invariance.

Epipolar Geometry Given multiple views of the same scene, epipolar geometry [35]

has been employed by a number of researchers for calibration-free visual servoing. In an

early work [38], a trajectory generator for visual servoing was proposed directly in the

image space based on epipolar constraints defined between the images obtained from a

stereo camera mounted on a robotic arm (eye-to-hand configuration). The task was to

accomplish obstacle avoidance (only for robot’s end-effector) in an unknown environment.

An uncalibrated visual servo controller based on a Jacobian estimator was used to track the

planned image trajectories without using any knowledge of the system or camera calibration.

Park and Chung proposed an image space path planning approach for an eye-to-hand

system using uncalibrated stereo cameras in a vision-based grasping scenario [75]. They
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generate a number of intermediate views of the robot’s gripper along a straight line between

the initial image and the final desired image in the projective space with the help of epipolar

geometry and without using any 3D information regarding either the gripper or the target

object. These intermediate views constitute the desired image trajectories. The robot is

then controlled along the image trajectories using the IBVS technique presented in [30].

When followed by the robot, the planned trajectories allow the robot’s gripper to track a

straight line in the 3D workspace and through out its motion a selected set of features on

the gripper are kept in the camera’s field of view.

Projective Homography To avoid explicit computation of feasible camera paths which

relies on the knowledge of the camera calibration and target model, a number of approaches

have been developed using the projective geometry [31] relationship established between the

initial and desired images. Working in projective space allows one to partially parameterize

the Euclidean displacement of the camera without explicit reconstruction of the Euclidean

components.

Projective homography matrix has been employed in the context of path planning for

visual servoing. Projective homography captures the relationship between the images taken

from different views of the same scene. Given the projective homogeneous coordinates

p = (u, v, 1)T and p∗ = (u∗, v∗, 1)T of a 3D point P in the current and desired images,

respectively, the projective homography matrix G, also called collineation matrix, is defined

(up to an scale αg) as

αgp = Gp∗ (2.2)

The projective homography matrix can be estimated from the knowledge of several features

such as points, lines, and contours matched between two images [17], [35], and [63].

In [70] a calibration-free path planning approach is proposed which consists of inter-

polating for the collineation matrix G between the initial and desired images to obtain

closed-form analytical collineation paths. The image feature trajectories are then derived

and followed using an IBVS technique. The proposed approach guarantees convergence

to the desired location, however, the convergence does not hold in presence of visibility

constraints such as field of view limits. This approach has been extended in [82] to take

visibility constraints into account by guiding the image of an arbitrary selected reference

point on the target along a straight line in the image which guarantees that the reference

point remains in the camera’s field of view. However, the camera will not follow a straight

line anymore and the other features may still leave camera’s field of view. A depth modula-

tion approach has been proposed to keep the visibility of other features by controlling the
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camera backwards along an optical ray whenever a feature reaches the borders of camera’s

field of view.

If the camera calibration is known, one could derive further information regarding the

camera transformation. In particular, one can compute the Euclidean homography matrix

H (up to a scale αh) as

αhH = K−1GK (2.3)

where K is a non-singular matrix and contains the camera intrinsic parameters. The Eu-

clidean homography (from a set of planar features) can be decomposed to obtain the corre-

sponding (Euclidean) camera transformation parameters as

H⇒
{

R,
t

d∗
,n∗
}

(2.4)

where R and t denote the translation and rotation from the desired to the current camera

frame, and d∗ is the distance of the plane containing the features from the desired camera

frame and n∗ is the normal to the plane expressed with respect to the desired frame.

Decomposition of Euclidean homography has been employed by some researchers to

plan for image paths corresponding to feasible (yet unknown) camera paths without explicit

reconstruction of the camera paths in the Cartesian space.

A shortest path approach has been proposed in [51] which avoids the use of 3D re-

construction by using homography-based partial pose estimation. The proposed approach

moves the in-hand camera directly along the direction (obtained through the homography

decomposition) towards the desired pose in the 3D workspace while maintaining the visibil-

ity of (only) a virtual point located at the origin of the target object. The virtual point is

used to control two degrees of rotation of the camera (around x− and y−axes) and the third

rotation axis (around camera optical axis) is controlled using the rotation matrix retrieved

from homography. This technique yields a straight line trajectory for the virtual point and,

hence, keeps the virtual point always in the camera’s field of view. However, the camera

can get too close to the target so that some features may get lost. Switching between visual

servoing strategies or using repulsive potentials can be employed to avoid such situations,

however, without ensuring straight line trajectories.

In [1] a similar approach has been proposed based on homography decomposition in

which helicoidal shape paths (instead of straight path) are chosen as the reference path to

represent camera translation from the initial position to the desired position. One should

note that since the homography is known only up to an unknown scale, the actual camera

path is not completely known and one can only determine its shape. However, regardless
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of the value of unknown scale factor, the entire image path will remain the same and

since the control is defined directly in the image, the positioning task can be successfully

accomplished given a feasible image path. In [8] a particular decomposition of homography

is used to interpolate a path for a planar object with known model from the initial image

to the desired final image. Given the known object model, the interpolated desired path is

then transformed to a camera path by using 3D reconstruction. The camera path can then

be checked for workspace boundary singularities.

Projective Invariance Malis [62] proposed an image-based path planning approach

in an invariant space defined through a projective transformation. The basic idea of using

projective invariance is to create a task function which is invariant to camera intrinsic

parameters and only depends on the position of the camera with respect to the observed

object and on its 3D structure. This allows one to generate a path for a feature vector in

the invariant space (independent of camera’s intrinsic parameters) which, when followed,

results in a straight line path for the camera in the workspace. The visibility of the features

is (partially) achieved using a motorized zooming mechanism available on the vision system.

The main advantage of direct path planning in image space is the independence of such

approaches from camera calibration and/or object model. On the other hand, since the

planning is done directly in the image space, robot/physical constraints cannot be handled

through such approaches and these techniques are shown to be ineffective in complex visual

servoing scenarios.

2.3.2 Optimization-based Path Planning

Planning optimal paths has absorbed a great amount of interest in robotics community. In a

visual servoing task, there might be many different paths, which when followed, will result in

successful accomplishment of the same task. This motivates optimization techniques aimed

at finding the optimal path with respect to various costs such as distance from the image

boundary, length of the path traversed by the robot, energy expenditure, etc.

In an early work [86], a path planning framework is proposed based on the concept of

Perceptual Control Manifold (PCM) defined on the product of the robot’s joint space and

the space of all image features related to a target object. PCM can be considered as a

mapping which relates a robot configuration to the vector of image features visible at that

configuration. Given the model of the camera, the object, and the robot kinematic model,

the PCM needs to be computed only once (in an eye-to-hand configuration) and is then

applicable to any manipulation task. Constraints such as the camera’s field of view and the
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robot joint limits and/or physical obstacles are mapped into the PCM to yield a subset of

PCM as the feasible solution space. This mapping could be quite time consuming considering

the number of constraints and the robot’s degrees of freedom. Various optimization criteria

such as minimum velocity, minimum interception time, and minimum robot movement have

been considered to plan optimal paths in the feasible subset of the PCM. The proposed

approach has been considered for the task of intercepting a moving target (with a known

trajectory) using the visual feedbacks obtained from a fixed camera which simultaneously

views both the robot’s end-effector and the moving target.

In [70] closed-form collineation paths corresponding to minimum energy and minimum

acceleration camera paths are planned in the image space. The proposed strategy is then

generalized to the case where a number of relay (intermediate) images are available in

addition of the initial and desired images. The proposed approach guarantees convergence,

however, it does not take visibility constraints into account and image features might leave

the camera’s field of view.

In [91] a motion generation approach called visual motion planning has been proposed

to plan optimal image paths for mobile robots under motion and visibility constraints. The

constraints on the motion of the robot along with the field of view limits are described in

form of a number of equalities and inequalities. An optimization problem is then solved

numerically using Lagrange Multipliers to obtain optimal image paths minimizing a given

weighted sum cost function (here kinetic energy). The proposed approach has been applied

only to mobile robots moving in 2D and 3D environments.

To pose the problem of path planning for visual servoing as an optimization problem

some researchers have introduced various parameterizations of camera trajectories. A poly-

nomial parametrization of the scaled camera paths has been proposed in [18] where the

translational path is linearly interpolated and Cayley’s rotation representation is employed

to rationally parameterize the rotation paths. This allows the distance of the image tra-

jectories from the boundary of image for a single path to be easily calculated as the root

of some polynomials. Hence, an optimization problem is then formulated to maximize the

distance to the boundary of the image with respect to all parameterized paths. By following

the planned image path, the camera follows a straight line in the workspace in the absence

of calibration errors. In presence of calibration errors, the camera does not follow a straight

line but moves along a different curve whose distance from the planned line grows as the

calibration errors increase.
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In [16] an optimal path planning approach is proposed which allows one to consider con-

straints on the camera’s field of view, workspace and joint limits, in the form of inequalities,

together with the objective of minimizing trajectory costs including spanned image area,

trajectory length, and curvature. A polynomial parametrization is devised to represent all

the camera paths connecting the initial and desired locations (up to a scale factor) through

an object reconstruction from image measurements and, if available, the target model. Oc-

clusion constraints and collision avoidance for the whole robot’s body cannot be represented

(in the form of inequality constraints) in their formulation. Moreover, the devised optimiza-

tion is nonconvex which may lead to multiple feasible regions and multiple locally optimal

solutions within each region and, hence, it makes it very difficult to find the global optimal

solution across all feasible regions.

In a similar work [14], a general parameterizations of trajectories from the initial to the

desired location is proposed via homogeneous forms and a parameter-dependent version of

the Rodrigues formula. The constraints are modeled using positivity conditions on suit-

able homogeneous forms. The solution trajectory is obtained by solving a Linear Matrix

Inequality (LMI) test which is a convex optimization. The proposed approach allows one

to maximize some desired performances such as distance of features from the boundary of

the image, camera’s distance from obstacles, and similarity between the planned trajectory

and a straight line.

Ideas from optimal control theory have been employed to devise image trajectories for

visual servoing under visibility constraints. Planning shortest path for a Differential Drive

Robot (DDR) maintaining the visibility of a landmark using a camera with limited field

of view has been considered in [7]. It is shown that the set of shortest (optimal) paths for

this system consist of curve segments that are either straight-line segments or that saturate

the camera’s field of view. The latter correspond to exponential spirals known as T-curves.

In [59] these shortest paths are followed using a switched homography-based visual servo

controller. The controls that move the robot along these paths are devised based on the

convergence of the elements of the homography matrix relating the current image to the final

desired image. In a recent work [37], a complete motion planner for a DDR is proposed in

which optimal curve segments obtained in [7] are used as motion primitives to devise locally

optimal paths in an environment cluttered with obstacles. The necessary and sufficient

conditions for the feasibility of a path for the DDR in the presence of obstacles and with

visibility constraints (i.e., sensing range and field of view limits) are also provided. In their

proposed planner, occlusions due to workspace obstacles are not considered and the obstacles
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are assumed to be transparent.

In [78] the set of optimal curves obtained in [7] are extended and also described in the

image space, so as to enable their execution using an IBVS controller directly in the image

space. Feedback control along these optimal paths in the image is achieved through a set of

Lyapunov controllers, each of which is in charge of a specific kind of maneuver. Nonetheless,

the complete characterization of all the shortest paths and their analytic descriptions remain

unsolved for a DDR.

Although the above optimization-based path planning techniques provide a better insight

into the complexity of the problem and feasible optimal paths, they are more or less limited

to simple scenarios and systems. Introducing general robot/physical constraints greatly adds

to the complexity of the optimization problem and, hence, accounting for such constraints

in the above frameworks would greatly increase the time complexity of such techniques.

2.3.3 Potential Field-based Path Planning

In the field of robot path planning, Potential Field method has been proposed as a promising

local and fast obstacle avoidance strategy to plan safe and real-time motions for a robot

in a constrained environment [46]. The main idea is to construct an artificial potential

field defined as the sum of attractive potentials, pulling the robot towards the desired

location, and repulsive potentials, pushing the robot away from various constraints such as

the obstacles or robot’s joint limits. A driving force computed along the negated gradient

of the potential field moves the robot towards the goal location.

Mezouar and Chaumette [69] introduced robust image-based control based on the Po-

tential Field method for a robotic arm with eye-in-hand configuration. In their proposed

approach, two types of constraints are considered: field of view and robot’s joint limits. To

obtain valid robot trajectories, the motion of the robot is first planned in the workspace and

then projected into the image space. The attractive potentials are defined in the workspace

to pull the robot towards the final desired configuration. To account for field of view limits,

repulsive potentials are defined in the image space pushing the image trajectories away from

the image boundary. Joint limits are avoided by imposing repulsive potentials in the joint

space of the robot. So, the total force applied to the robot is a weighted sum of the individual

forces computed as the negated gradient of the above potentials. The image trajectories are

obtained in an iterative scheme by moving along the direction of the total force applied to

the robot. The discrete image trajectories are then time scaled and tracked using an IBVS

technique. The above strategy has been applied to targets with known as well as unknown
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models. In the latter case, a scaled Euclidean reconstruction is employed to obtain scaled

camera paths in the workspace. Image local minima are automatically avoided by updating

the image Jacobian using the values of the current desired image features along the time

scaled feature trajectories.

As an inherent deficiency of Potential Field-based path planning method, the above

strategy might lead to local minima and the robot gets stuck. Although the authors reported

no encounter of such local minima in their experiments, imposing physical constraints such

as collisions with obstacles and occlusions highly increase the chance of having local minima

in the overall potential field.

In [27] a potential field-based strategy is employed to account for workspace obstacles,

field of view limits, and robot’s joint limits in a global planning framework. To escape local

minima generated by addition of the attractive and repulsive forces, Simulated Annealing

[47] is employed in which proper tuning of the initial temperature and the cooling rates are

required to probabilistically ensure the method to escape from local minima and converge to

the global minimum. In the proposed planning framework two different trajectory generation

strategies are employed: method A, in which a trajectory for the end-effector is planned with

respect to the stationary target frame, and method B, in which a trajectory for the target

is planned with respect to the current end-effector frame. The former results in a camera

path close to a straight line in the workspace, while in the latter the image trajectory

of the target’s origin is constrained to move as close as possible to a straight line in the

image which lessens the chance of image features leaving the camera’s field of view. A local

switching strategy is devised to switch from image-based control to position-based control

when closeness to image local minima and image singularities are detected along the planned

trajectories. This is done only once to avoid instability caused due to repetitive switching,

however there is no complete guarantee that the field of view and joint limits are always

ensured after the system is switched to position-based control.

One of the main advantage of Potential Field-based approaches is the fast computation

of driving force which makes these approaches suitable for real-time applications such as

visual servoing. For example, the above strategy can be employed when tracking image tra-

jectories to account for possible deviations from the planned trajectory due to uncertainties

in modeling and/or calibration (e.g. [16]).
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2.3.4 Global Path Planning

The convergence problems and deficiencies of the above path planning techniques in ac-

counting for all the constraints in visual servoing tasks motivates the need for general and

global path planning approaches. A great deal of research has been carried out on global

path planning for various robotic systems within the path planning community, see e.g.

[55] and [56]. Here we report on some of these techniques which have been successfully

incorporated into the visual servoing framework.

A global stabilizing strategy using navigation functions is presented in [22] which guar-

antees convergence to a visible goal from almost every initial visible configuration while

maintaining viability of all features along the way without following a predefined reference

image trajectory. One should note that constructing such navigation functions is limited to

very simple scenarios only.

In [4] a probabilistic roadmap approach has been utilized to plan minimal-occlusion

paths for an in-hand camera with respect to a target object. They employ the technique

proposed in [88] to compute the boundary separating the visible regions (from where the

target is visible) from the occluded regions (from where the target is not visible due to

occlusion by workspace obstacles). Their proposed algorithm then assigns penalties to cam-

era’s trajectories within a given probabilistic roadmap (for camera translation) proportional

to the distance the camera travels while outside the visible region. One should note that

camera’s orientation or field of view limits are not taken into account in their proposed

approach.

Inspired by the work in [90] on global path planning with general end-effector constraints,

we incorporated sampling-based global path planning with visual servoing for a robotic arm

equipped with an in-hand camera [41]. The proposed planner explores the camera task space

(i.e., space of camera poses) for camera paths satisfying field of view limits and occlusion

constraints, and utilizes a local planner to track these paths in the robot’s joint space to

ensure feasible motions of the robot while accounting for robot’s joint limits and collision

with obstacles. The result is a search tree as in [50] which alternatively explores the camera

and joint spaces (see Fig.1.2). The solution camera trajectories are then projected into the

image space to obtained the corresponding image feature trajectories which require proper

time-scaling and smoothing to be executed using an image-based visual servoing technique.

Proper time scaling of feature trajectories directly depends on the dynamic character-

istics of the underlying system and highly affects the performance at the execution stage.

Usually, the planning and execution stages are decoupled by first, solving the path planning
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problem and then either synthesizing a controller with the desired dynamic characteristics

of the underlying system to execute the planned trajectories (e.g., [73]), or performing op-

timization over the kinematically planned paths to satisfy the dynamic constraints (e.g.,

[53, 6]). However, the robot may not be able to execute the trajectories produced by the

kinematic planner due to its limits on actuator forces/torques and/or dynamic effects of

machine vision system (see [20]). We extended the work in [41] and proposed a kinody-

namic planning approach [42] which attempts to address this issue at the planning stage

by performing kinodynamic planning for the camera in its state space while taking its dy-

namic constraints into account. Unlike the kinematic path planning approach in [41] which

requires an additional (cubic) spline interpolation step to properly time scale the feature

trajectories and obtain smooth trajectories (e.g., see [69]), the solution trajectories obtained

using the proposed kinodynamic planning framework are (by construction) C1-smooth with

bounded acceleration and require no further post-processing to be executed smoothly us-

ing an IBVS technique preventing a stop-and-go motion, an effect which is inevitable in

kinematic planning as observed in our previous work [41].

To be successful, global path planning approaches require a complete and (relatively)

precise knowledge of the environment, camera calibration, and object model. These require-

ments can be limiting in many visual servoing scenarios. The need for such exact knowledge

can be relaxed by accounting for modeling and calibration uncertainties at planning stage.

In the following section we discuss the effects of uncertainties in visual servoing, especially

in tracking planned trajectories at the execution time, and report on a few recent works on

path planning under uncertainties for visual servoing.

2.4 Path Planning under Uncertainty for Visual Servoing

Planned paths need to be executed and the robot may not exactly follow the planned path

due to the uncertainties and in fact, in some cases, the followed paths in the workspace

and in the image space can be quite different from the planned ones thereby resulting in

violation of some of the constraints even if they have been fulfilled at the planning stage.

The influence of errors in intrinsic and extrinsic camera parameters on the performance of

visual servoing scheme has been examined in [29]. In [52] the propagation of image error

through pose estimation and visual servoing control law has been analyzed.

A number of researchers have proposed local and real-time techniques to account for

likely deviations from the planned path at the execution (tracking) stage. For example,
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these could be locally taken care of using Potential Field type techniques, however as men-

tioned before, such techniques are prone to failure due to local minima [69]. An alternative

framework to deal with unmodelled uncertainties is to retreat the robot/camera and/or

re-plan quickly when encountering violation in a constraint. A variable zooming technique

was suggested by [54] to bring the target back within the visibility range if occluded by an

obstacle. This zooming effect can also drastically improve the performance of the underly-

ing image-based visual servoing technique by reducing the measurement noise in fixed-size

objects viewed by a camera from distance.

Comport et al. [19] proposed an augmented reality approach for visual servoing. Al-

though their approach mainly focuses on camera pose estimation by means of a virtual

visual servoing method, but this can be extended to scenarios in which some feature points

on the target may go out of sight temporarily, e.g. due to unmodelled uncertainties. An

augmented reality approach can then be utilized to virtually position the missing feature

points in the image based on rudimentary information obtained from other objects in a

scene cluttered with known features, i.e. straight edges, etc. In this case, the target is used

as the primary object for visual servoing while other image features can contribute to the

pose estimation, and eventually to the servoing task, when a finite number of feature points

fall off the cameras field of view.

Non-linear model predictive control strategies have been proposed to account for un-

certainties in planned trajectories in visual servo control loop as well, e.g. [81]. Systems’

parameters would be corrected beyond a temporal receding horizon (i.e., the time span dur-

ing which the optimal control action is computed and executed) after each iteration. The

discrepancy between the predicted system’s behavior based on the computed control action

and that in real implementation is then used to further correct the estimates of the system’s

parameters. The time required to estimate these parameters via a non-linear optimization

technique must be way shorter than the receding horizon in which this optimization is car-

ried out. Otherwise, the applicability of this technique for real-time scenarios would be

questionable. Developing a guideline for selecting the optimal size for the receding horizon

for robust visual servoing in real time remains an open research area.

Robustness with respect to calibration errors in terms of the tracking error boundness

along the planned trajectories has been considered in [73]. Given a user defined bound

on the tracking error, they propose a control strategy to modulate control gains and/or

the desired tracking velocity to guarantee error boundness. Through the proposed velocity

modulation technique, one could use low control gains while keeping the tracking error
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bounded. While this technique and those mentioned above, to some extent, are expected to

take care of the deviations from the planned trajectories in the image space, the deviations

from the physical space trajectories can cause robot/physical constraints violations. The

above mentioned local strategies for accounting deviations from planned path are not general

enough to account for all types of constraints (and the related uncertainties), in particular

robot/physical constraints. Hence, there is need for taking the uncertainties into account in

a global as well as general manner at the planning stage.

The planned paths obtained based on only a nominal model of the camera and/or robot

may not be fully traversable by the robot without violating certain constraints. In a recent

work [13], Chesi proposed a planning approach to design a robust image trajectory that

satisfies the required constraints not only for the nominal model but rather for a family

of admissible models. In the proposed approach an uncertain model has been considered

for image correspondence between the initial and desired images, and the camera’s intrinsic

parameters are assumed to be affected by some unknown random errors with known bounds.

Given the above uncertain models, there are different admissible camera poses and conse-

quently different camera trajectories rather than a common and robust one. A polynomial

parametrization is proposed through which each camera trajectory is parameterized by a

possible camera pose and by a design variable which is common to all admissible trajecto-

ries. So, the robust trajectory is computed through an optimization problem determining

the common design variable that satisfies field of view limits and maximizes the distance of

the image features from the boundary of image on all parameterized trajectories.

Although the results obtained through the above approaches in taking calibration un-

certainty and measurement errors into account seem promising, more research needs to be

done. Physical constraints, especially collisions and occlusions, are highly affected by the

uncertainties in the modeling of the environment. Robot path planning considering un-

certainties in modeling, localization, and sensing has been studied for decades within path

planning community [56] yielded a number of promising approaches, e.g. [9], [39], [60], [68],

[76]. Incorporating the research results achieved through these approaches into the visual

servoing framework would be a promising future direction. Moreover, planning robust tra-

jectories for visual servoing tasks in unknown or partially known environments remains an

open research problem.
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2.5 Summary

We provided a comprehensive review of existing path planning for visual servoing techniques

aimed at making the visual servoing more robust in complex scenarios, especially in appli-

cations where the initial and desired views are distant. Considering the underlying path

planning approach, the existing techniques have been divided into four categories: (1) Image

space path planning, (2) Optimization-based path planning, (3) Potential Field-based path

planning, and (4) Global path planning. We reported on the previous works pertinent to

each category and for each technique we discussed the set of assumptions along with its

benefits and drawbacks and its integration with the reactive visual servo controllers.

Recent works (discussed in Section 2.4) demonstrated the effectiveness of accounting for

modeling/calibration uncertainties and measurement errors at the planning stage in gener-

ating robust trajectories for visual servoing scenarios where the available data are affected by

uncertainties. Towards that aim, incorporating the results achieved on robot path planning

under uncertainty within the path planning community is a promising direction to follow.



Chapter 3

Randomized Path Planning for

Visual Servoing

In this chapter, we present our proposed randomized path planning framework for visual

servoing tasks. We discuss the strategies through which the image and physical constraints

are taken into account within the proposed framework. We also explain the implementation

of two planning strategies: kinematic planning in camera task space (i.e., space of camera

poses), and kinodynamic planning in camera state space (i.e., space of camera poses and

velocities).

We first begin by explaining the preliminary concepts and giving an overview of the

proposed solution methodology as follows.

3.1 Preliminaries and overview

3.1.1 Notations

Consider a frontal pin-hole perspective camera model as shown in Figure 3.1. Let Pj be a

3D point with homogeneous coordinates [Xj Yj Zj 1]T in the camera frame Fc. Assuming

focal length f to be unit, the projection of Pj into the image plane of Fc is given as a point

with homogeneous coordinates mj = [xj yj 1]T where

xj =
1

Zj
Xj and yj =

1

Zj
Yj . (3.1)

The corresponding pixel coordinates can be calculated as pj = [uj , vj , 1]T = Amj , where

27
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Figure 3.1: A frontal pin-hole perspective camera model

matrix A contains the intrinsic parameters of camera as

A =


fpu 0 u0

0 fpv v0

0 0 1

 (3.2)

In (3.2), f denotes the focal length, u0 and v0 are the pixel coordinates of camera principal

point, pu and pv are the number of pixels per unit distance in image coordinates.

We use the 2-D images of a number of 3-D points Pj for j = 1, . . . , n as image features to

represent the solution trajectories in the image. Hence, a point s along a feature trajectory

is then represented as a vector s = [u1 v1 . . . un vn]T where uj and vj are the image pixel

coordinates of 3-D points Pj for j = 1, . . . , n.

Considering Fig.3.2, let Fo be the frame attached to the target, Fi and Fd denote

the camera frames at the initial and desired camera/robot location, and Fk denotes the

camera frame at an intermediate location. Given the coordinates of four or more point

features in the object frame Fo and knowing the correspondences between their initial and

desired image features, using techniques such as that in [26] and [66], one could compute

the transformation between the initial and desired camera frames, Fi and Fd respectively,

and the target object frame Fo, i.e. iRo,
ito,

dRo, and dto (see Fig.3.2).

3.1.2 Problem formulation and solution methodology

The aim of path planning for visual servoing is to plan feasible feature trajectories as a

sequence of image features s(t) for t ∈ [0, tf ] in the image space between initial and desired
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Figure 3.2: Robot/camera at the initial, intermediate, and desired configurations w.r.t. the
target object.

image features, s(0) = si and s(tf ) = sd, extracted from the images taken at the initial

and final desired camera poses, respectively. The time parameterization, i.e. t ∈ [0, tf ], is

usually determined as the result of underlying planning technique. Our proposed planning

approach is summarized in the following two steps:

Step1. Planning feasible robot/camera trajectories: first we plan a feasible

camera trajectory Γ(t) for t ∈ [0, tf ], in the camera planning space between the initial and

desired camera planning vectors, Γ(0) = xi and Γ(tf ) = xd, respectively. The definition

of the camera planning vector x(t) depends on the topology of the space in which the

camera trajectories are planned. The framework presented in this work is independent of

the topology of the camera planning space. We consider two alternatives (see Section 3.2.2):

camera configuration space, i.e., space of camera poses only , and camera state space, i.e.,

space of camera poses and velocities.

The camera trajectory is obtained by alternate exploration of the camera planning space

and robot joint space which corresponds to a feasible robot trajectory q(t) for t ∈ [0, tf ]

in the robot configuration space between the start and goal configurations, q(0) = qi and
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q(tf ) = qd, respectively. One should note that the goal configuration qd is not initially

known and will be determined as the result of the planning. The proposed planner explores

the camera planning space for permissible trajectories by iteratively extending a search tree

in this space and simultaneously tracking these trajectories in the robot configuration space.

The proposed planning framework is explained in more details in Section 3.2.

Step2. Computing image feature trajectories: the camera trajectory Γ(t) planned

in Step 1 is then utilized to project the 3D target feature points into the image space and

obtain the feature trajectories s(t) between the initial and desired image features in the

image space.

For a given camera frame denoted by a homogeneous rotation/translation transformation

[R(tk)|p(tk)] along the planned camera trajectory Γ(tk), the 2D image feature sj(tk) =

[uj(tk) vj(tk)]
T of the 3D target feature point Pj with homogeneous coordinates oPj in the

object frame is computed as

Zj(uj , vj , 1)T = A
[
RT
∣∣∣−RTp

]
oPj , (3.3)

where Zj is the depth of the target feature Pj in the camera frame. Similarly, all object

features Pj are projected to their pixel coordinates sj for j = 1, . . . , n. The above pro-

jection is repeated for all camera poses along the planned camera trajectory to obtain the

corresponding feature trajectories in the image.

3.2 Alternate exploration of camera planning space and robot

configuration space

Our proposed planning approach explores the camera planning space by extending an explor-

ing tree as in Rapidly-exploring Random Tree (RRT) approach [50] in the camera planning

space and simultaneously tracking the tree local paths in the robot configuration space.

So, through this strategy the search in the camera planning space is used to effectively

guide the search in the robot configuration space. The proposed strategy is summarized in

Algorithm 1. First, we provide an overview of Algorithm 1 below, and we will discuss its

implementation details next.
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Algorithm 1: Alternate camera planning space and robot C-space exploration

input : Camera initial and desired vectors, xi and xd
output: Camera trajectory Γ, or null in case of failure

1 begin
2 T ← InitializeTree(qi, xi);
3 repeat
4 xrand ← GenerateRandomCameraVector();
5 xnear ← FindNearestInTree(T , xrand);
6 (xnew, Ex) ← ExtendWithImageConstraints(xnear, xrand);
7 if Ex 6= null then
8 (qnew, Eq) ← TrackCameraPathInCSpace(Ex);
9 if Eq 6= null then

10 Add xnew and Ex to tree T ;
11 if rand() ≤ pgreedy then
12 (xd, Ex) ← ExtendGreedyToGoal(xnew, xd);
13 if Ex 6= null then
14 Add xd and Ex to tree T ;
15 Γ← RetrieveCameraTrajectory(T , xd);
16 return Γ;
17 until timeout;
18 return null;

3.2.1 Overview of the proposed approach

As shown in Algorithm 1, the exploring tree T is iteratively extended in the camera planning

space until either it reaches the goal or the planning time is up. Consider Fig. 3.3. At each

iteration a node with a random camera vector xrand is generated and the node with the

nearest vector xnear to xrand in the tree is found. Then, xnear is extended toward xrand.

The local path Ex obtained as the result of this extension is projected into the image space

to check for image constraints (i.e. field of view limits and occlusions of target object by

other obstacles or itself) by sampling synthetic images along the local path. As mentioned

earlier, the extension of the camera paths depends on the topology of the camera planning

space which will be discussed in more details later.

Given that the local camera path violates no image constraints, it is then tracked in

the robot configuration space using a local planner to check for physical constraints, i.e.

collision with obstacles and joint limits. Tracking camera paths in the robot configuration

space depends on the kinematic structure of the robot and one may adopt any desired local

planner as long as the constraint at the camera (or robot’s end-effector) is maintained.
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Figure 3.3: Alternate camera planning space and robot C-space exploration

We adopt an Inverse Kinematic controller where the robot is considered as a kinematic

structure for which the Jacobian that relates the robot generalized velocities (i.e., joint

space velocities) to its end-effector task space velocities is available. The details of the

inverse kinematic controller are provided in Section 3.2.6.

In case of successful tracking of the camera local path in robot configuration space, the

newly generated vector xnew (along with edge Ex) is added as a new node to the camera

tree. After each successful addition of a new node to the camera tree, with a probability

pgreedy, a greedy extension from the newly added node is attempted to reach the goal vector

xd. The greedy extension depends on the topology of the camera planning space and will

be explained accordingly.

3.2.2 Camera planning space

The algorithm starts off by initializing a tree structure T and generating the root of the

tree as its only node (Line 2). Each node of the tree embeds the following information:

• x, camera planning vector

• q, robot configuration

• Ex, camera sub-path from the parent node

• Eq, robot sub-path from the parent node

• a pointer to the parent node

The root node is initialized with the camera initial planning vector xi and the corresponding

robot initial configuration qi with a null parent pointer.
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The definition of camera planning vector x depends on the topology of the space in

which the camera trajectory is planned. Within the proposed framework, we consider two

alternatives:

• Camera configuration space (i.e., space of camera poses), where a vector x (also called

camera configuration) in this space is represented as

x =

 p

h

 (3.4)

where p = [px py pz]
T is the position of the camera frame and h = [h

−→
h T ]T denotes the

unit quaternion (with scalar part h and vector part
−→
h ) representation of the camera

orientation. This makes the x a 7-D vector, but the camera configuration space is 6-D

because of the constraint that the quaternion must be of unit norm.

• Camera state space (i.e., space of camera poses and velocities) where a vector x (also

called camera state) in this space is represented as

x =


p

h

v

ω

 (3.5)

where p and h are defined as in (3.4), and v = [vx vy vz]
T and ω = [ωx ωy ωz]

T denote

the camera linear and angular velocities, respectively. This makes the state x a 13-D

vector, but the state space is 12-D because of the constraint that the quaternion must

be of unit norm.

Extending the trajectories in the camera configuration space results in a kinematic plan-

ning scheme which yields C0-smooth trajectories with discontinuous velocities and infinite

acceleration, hence require smoothing and proper time-scaling to be executed on the robot.

Planning in camera state space (as opposed to camera configuration space) allows for taking

the camera dynamics as well as its kinematic constraints into account at the planning stage

leading to a kinodynamic planning scheme which yields C1-smooth with continuous veloci-

ties and bounded acceleration change and properly time-scaled trajectories. The extension

of the camera trajectories in the camera configuration and state spaces are discussed in

Section 3.2.5.
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3.2.3 Generating random camera vectors

At each iteration of Algorithm 1, a random camera planning vector xrand is generated.

In the case of planning in camera configuration space, a random camera configuration is

built by generating a uniform random camera position prand and a uniform random unit

quaternion hrand within the camera workspace. The random camera position is generated

as

prand =


xmin + (xmax − xmin)rx

ymin + (ymax − ymin)ry

zmin + (zmax − zmin)rz

 (3.6)

where rx, ry, rz are scalar values generated uniformly in the range [0, 1], and [xmin, xmax],

[ymin, ymax], [zmin, zmax] denote the limits of the camera workspace along XY Z axes. A

unit quaternion is generated uniformly as [49]

hrand =


cos(2πry)

√
rz

sin(2πrx)
√

1− rz
cos(2πrx)

√
1− rz

sin(2πry)
√
rz

 (3.7)

In case of planning in camera state space, a random camera state is built by extending

a random configuration as generated above and adding random uniform linear and angular

velocities as

vrand =


vxmin + (vxmax − vxmin)rx

vymin + (vymax − vymin)ry

vzmin + (vzmax − vzmin)rz

 and wrand =


ωxmin + (ωxmax − ωxmin)rx

ωymin + (ωymax − ωymin)ry

ωzmin + (ωzmax − ωzmin)rz


(3.8)

where [vxmax , vxmin ], [vymax , vymin ], and [vzmax , vzmin ] denote the limits of camera linear ve-

locities, and [ωxmax , ωxmin ], [ωymax , ωymin ], and [ωzmax , ωzmin ] are the limits of camera angular

velocities.

3.2.4 Finding nearest node in the tree

At each extension of the camera tree the tree node xnear with the closest distance to xrand

is found based on a metric ρ(x1,x2) defined as a measure of relative closeness between two

camera vectors, i.e., x1 and x2, in camera planning space.
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The metric ρ(x1,x2) in camera configuration space is defined as [58]

ρ(x1,x2) = wp‖p1 − p2‖+ wh(1− |h1.h2|), (3.9)

where p1 and p2 are the camera positions, h1.h2 denotes the inner product of unit quater-

nions corresponding to camera orientations pertinent to two poses, x1 and x2, respectively.

The weight coefficients wp and wh are user defined (in our implementation, we set wp = 0.6

and wh = 0.4).

When x1 and x2 represent camera states (as in kinodynamic planning scheme), the

closeness metric ρ(x1,x2) is defined as [58]

ρ(x1,x2) = wp‖p1 − p2‖+ wh(1− |h1.h2|) + wv‖v1 − v2‖+ wω‖ω1 − ω2‖, (3.10)

where v1 and v2 are the camera linear velocities, and ω1 and ω2 denote the camera angular

velocities pertinent to two states, x1 and x2, respectively. The weight coefficients wp, wh,

wv, and wω are user defined (in our implementation we set wp = 0.4, wh = 0.3, wv = 0.2,

and wω = 0.1).

3.2.5 Extending camera paths with image constraints

Once the tree node with the nearest camera vector, i.e. xnear, to xrand was found, the

camera vector xnear is extended toward xrand using a local controller. One may choose

any arbitrary controller as long as it extends xnear towards and close to xrand. In RRT-like

schemes designing a proper extension controller is a challenging task. Basically, the problem

is to find an appropriate control input u(t) which is applied based on the equation of motion

f to advance the state of the system, i.e.

ẋ(t) = f(x(t),u(t)) (3.11)

over a pre-defined time interval so that the new state reaches a desired state. This can be

formulated as a boundary value problem. The solution to such problem, depending on the

complexity of the system and the underlying constraints, can be as hard as the original

planning problem, if at all possible. Usually, in RRT literature (e.g., [58]), the input u is

chosen at random or by trying all the inputs from a discretized set of possible inputs and

choosing the one that yields a new state as close as possible to the randomly selected vector

xrand. Please note that this does not sacrifice the performance of the RRT extension since

extension is still achieved toward the randomly selected node and hence the tree will be
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expanded into the Voronoi region of the random node, thereby guaranteeing the extension

of the tree into less explored regions of the space [58].

The camera tree is extended from xnear by applying the control input u and integrating

(3.11) over a user-defined time step ∆t. The length of each extension has a direct relationship

with ∆t which can be chosen arbitrarily (but non-zero) with the knowledge that higher

values of ∆t (e.g., 2.0 seconds) yields longer tree edges (with higher probability of violating

a constraint along the extension in cluttered space) but faster extension of the tree in wide

open regions, while lower values of ∆t (e.g., 0.5 seconds) result in shorter edges, and slow

but dense extension of the tree into the space. Usually, in a cluttered environment lower

time steps are recommended. The above integration requires a numerical approximation

of (3.11): given the current state x(t) and input u(t) applied over a time interval ∆t, the

task is to compute the next state x(t + ∆t). For the extension strategies in this thesis,

we employ a simple fixed-step Euler method for numerical integration, i.e. x(t + δt) =

x(t) + δtf(x(t),u(t)), where δt is the integration time step (we used δt = 0.04 sec. in our

experiments).

We discuss the local control strategies for extending the tree in camera configuration

space as well as camera state space, as two alternative planning spaces for camera paths.

Kinematic extension in camera configuration space

The tree in camera configuration space is extended from xnear toward xrand by applying

appropriate linear and angular velocity control inputs, i.e., v(t) and ω(t). The equation of

motion for the camera under the influence of control input u(t) = (v(t),ω(t)) is given as

ẋ(t) = f(x(t),u(t)) =

 ṗ(t)

ḣ(t)

 =

 v(t)

1
2ω×(t).h(t)

 (3.12)

where ω×(t).h(t) denotes the quaternion dot product between [0 ωx ωy ωz]
T and h(t).

The control u must be chosen in a way to ensure extension of the xnear toward xrand. We

choose the directions of the linear and angular velocity inputs along the relative direction

of the position and orientation of the randomly selected configuration xrand with respect

to the current state, i.e. −→v =
−−−−−−−−−→
prand − pnear and −→ω is chosen as the axis of the quater-

nion representing the relative orientation between xnear and xrand computed as h−1
nearhrand.

The magnitude of the velocity inputs are chosen randomly from pre-defined intervals, i.e.,

‖ω‖ ∈ [0, ωmax] and ‖v‖ ∈ [0, vmax] (in our implementation, we set vmax = 0.1 meter/second

and ωmax = 5 degree/second). The proposed extension scheme results in C0-smooth camera
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trajectories with discontinuous velocities at each node, hence virtually assuming infinite ac-

celeration is achievable. Of course, such assumption cannot be guaranteed by the underlying

physical robot.

Kinodynamic extension in camera state space

For the case of planning in camera state space, the camera is modeled as an unconstrained

rigid body of mass M and inertia of I as required by the motion equation. The control

inputs are the force and torque which can be exerted to the camera as a rigid body to

change the course of its motion. The equation of motion for the camera under the influence

of control input u(t) = (f(t), τ (t)), i.e. the pair of force-torque input, is given as [2]

ẋ(t) = f(x(t),u(t)) =


ṗ(t)

ḣ(t)

v̇(t)

ω̇(t)

 =


v(t)

1
2ω×(t).h(t)

f(t)/M

R(t)I−1R(t)Tτ (t)

 (3.13)

where ω×(t).h(t) denotes the quaternion dot product between [0 ωx ωy ωz]
T and h(t). The

rotation matrix R(t) and its transpose R(t)T are computed by converting the quaternion

h(t) to its matrix representation.

We have defined nominal intervals for the amount of force and torque from which

the magnitudes of force and torque inputs are randomly selected for each extension, i.e.

‖f(t)‖ ∈ [0, fmax] and ‖τ (t)‖ ∈ [0, τmax]; and, similarly to the kinematic extension scheme

explained above, the directions of the force and torque inputs are computed along the relative

direction of the position and orientation of the randomly selected state xrand with respect

to the current state, i.e.
−→
f =

−−−−−−−−−→
prand − pnear and −→τ is chosen as the axis of the quaternion

representing the relative orientation between xnear and xrand computed as h−1
nearhrand.

Independent of the underlying local controller, the result of the tree extension (if suc-

cessful) is a camera sub-path Ex starting from xnear and ending at a new camera vector

xnew (see Figure 3.3). The camera sub-path Ex must then be checked for image constraints,

i.e. camera field of view and occlusion due to obstacles, as explained below.

Checking for camera field of view limits

The camera paths (as edges of the camera tree) should be examined for the camera field of

view constraints to ensure that the target features remain within the field of view through



CHAPTER 3. RANDOMIZED PATH PLANNING FOR VISUAL SERVOING 38

out the path. For this, we first use perspective projection to project object 3-D features into

the image space using (3.3). For a 3-D point Pj with coordinates [Xj Yj Zj ]
T in the camera

and image plane coordinates sj = [uj vj ]
T , following simple inequalities check weather Pj

remains in the camera field of view

umin < uj < umax

vmin < vj < vmax

Zj > 0

 for j = 1, . . . , n (3.14)

where umin, umax, vmin, and vmax define the field of view limits and n denotes the number

of target features. The last constraint in (3.14) merely guarantees that the target features

will remain in front of the camera.

Checking for occlusion due to physical obstacles

Target features’ occlusions (due to workspace obstacles, robot body, or the target itself) for

each camera pose along the camera paths are checked by ray-tracing from the camera optical

center towards each target feature. This is done by checking for collision between the ray

radiated from the target feature toward the camera optical center with the physical obstacles

including workspace obstacles, robot body, and target itself. One could also employ the

dynamic occlusion checking technique proposed in [3] to check for occlusion along the camera

sub-path. However, the technique in [3] requires explicit computation of the boundary of

occluded and visible regions.

3.2.6 Tracking camera paths in robot configuration space

The camera sub-path Ex must be tracked in the joint space to check its feasibility and obtain

the corresponding robot sub-path Eq which maintains the camera motion along Ex.

We adopt an inverse kinematic controller as in [89] to track the camera sub-paths in

the robot configuration space. Given a desired camera pose [pTd hTd ]T and velocity screw

[vTd ω
T
d ]T along a given camera path, the robot current configuration q(t) is advanced as

q(t+ dt) = q(t) + q̇dt (3.15)

with joint velocities computed as

q̇ = KpĴ
+

 ep

eo

+ Ĵ+

 vd

ωd

 (3.16)
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and where Ĵ+ is the pseudo-inverse of a nominal model of the robot Jacobian J = ∂r/∂q,

Kp is a positive proportional gain, dt is the integration time step, the position error ep is

calculated as

ep = pd − p, (3.17)

and the orientation error eo is given as [83]

eo = h
−→
hd − hd

−→
h − S(

−→
hd)
−→
h (3.18)

where h, hd and
−→
h ,
−→
hd are the scalar and vector parts of the corresponding quaternions,

i.e., h = [h
−→
h T ]T and hd = [hd

−→
hd

T ]T , and S(.) is the skew-symmetric operator.

The new configuration q(t + dt) is then checked for collision with obstacles and joint

limits as well as closeness to singularities in robot Jacobian and joint velocity limits. Af-

ter successful tracking of the entire camera sub-path Ex in joint space and obtaining the

corresponding joint space path Eq, a new edge is added to the tree along with a new node

containing Ex, Eq, and their end points.

3.2.7 Greedy extension of camera tree to the goal

Following each successful extension of the camera tree and with a probability of pgreedy

a greedy extension is attempted toward the desired camera goal vector xd defined by the

camera desired position and orientation, i.e. pd and hd, and in the case of kinodynamic

planning, zero linear and angular velocities, i.e., vd = 0 and ωd = 0 (the camera comes to

a stop at the goal).

In the case of kinematic extension in camera configuration space, we adopt a simple

linear interpolation (Lerp) between the newly generated configuration xnew and the goal

configuration of the camera, xd. The greedy trajectories for the camera position p(t) and

orientation h(t) paths are given as

p(t) = αpd + (1− α)pnew (3.19)

h(t) = αhd + (1− α)hnew (3.20)

for α ∈ [0, 1]. The linear interpolation in (3.20) results in a straight line in quaternion space

with non-unit quaternions along the path. Hence, the quaternions along h(t) need to be

normalized.

In case of kinodynamic planning in the camera state space, the above linear interpola-

tion is not sufficient since it may not satisfy the camera velocity constraints at the newly

generated state xnew and/or at the goal state xgoal. The greedy extension of the camera
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tree can be formulated in form of a boundary value problem: i.e., we are interested in com-

puting a camera trajectory x(t) for [t0, t1] from a given camera state x(t0) = xnew to the

desired camera state x(t1) = xd subjected to (3.13). The interval tg = t1− t0 is a predefined

greedy extension time. To solve the above boundary value problem one needs to design

proper force and torque input profiles for the entire greedy extension interval. However, we

devise a trajectory planning approach [23] by using cubic polynomials to generate camera

position and orientation trajectories along the greedy extension. Therefore, the trajectories

of camera position p(t) and orientation h(t) (represented as unit quaternion) are given as

p(t) = A3t
3 +A2t

2 +A1t+A0 (3.21)

h(t) = B3t
3 +B2t

2 +B1t+B0 (3.22)

for t ∈ [t0, t1] where Ai’s and Bi’s are coefficient matrices which can be computed given the

initial and end pose and velocity conditions imposed by x0 and xd, and also the termination

time.

3.3 Discusions

3.3.1 Kinodynamic vs. Kinematic Planning

In the above section we explained two alternative kinematic and kinodynamic extension

strategies. Although the proposed planning framework is independent of the chosen ex-

tension strategy, the performance of tracking solution trajectories at the execution stage is

highly affected by the quality (i.e., smoothness) of the planned trajectories.

The kinematic extension strategy results in C0-smooth trajectories with discontinuous

velocities (and infinite acceleration) at extension points, i.e., nodes of the tree. Hence,

the solution trajectories are not suitable to be executed directly on the robotic system and

require to be first smoothened and properly time-scaled. However, the smoothing comes with

the price of deviating from the solution trajectories close to the extension points (cutting

the corners) which may not be plausible without violating the image/physical constraints.

Hence, the robot needs to come to a full stop at extension points to be able to reach and

pass through the sharp corners, which is not desired when performing closed-loop control.

In [41] we show the planning results obtained using the kinematic planning scheme, but we

did not try executing the planned trajectories on a real system.
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On the other hand, the kinodynamic planning scheme, by construction, results in C1-

smooth trajectories with continuous velocities and bounded acceleration change, hence re-

quire no further smoothing/time-scaling to be executed on the robot. All the real world

experiments in this thesis use the kinodynamic planning scheme.

3.3.2 Remarks on Complexity

In practice, sampling-based planning algorithms (including RRT-based planners as we adopted

in this work) have been quite practically effective for high degree of freedom spaces. RRT

is probabilistically complete, i.e., the probability that a solution is found tends to 1 as the

number of sampling/extension iterations approach infinity (see [58] for the proof). Unfortu-

nately, as pointed out in [58], it remains a challenge to express the RRT convergence rate for

a particular problem in terms of parameters which can be measured easily. As a common

practice and also to give the reader a better understanding of problem complexity, we have

reported the planning time and the number of successfully explored nodes for each of the

experiments provided in this thesis.

3.4 Summary

In this chapter, we presented our proposed planning framework for visual servoing. The pro-

posed planning framework, built on randomized tree-based planning strategies, explores the

camera planning space for feasible camera trajectories and simultaneously tracks the planned

trajectories in the robot configuration space. The proposed planning scheme, considers the

robot as a kinematic mechanism with a Jacobian relating its task space velocities to the

generalized joint space velocities. This facilitates the application of the proposed framework

to both (serial chain) robotic arms (as shown in Chapter 4), and (non-holonomic) wheeled

mobile manipulators (as shown in Chapter 5).

We discussed the implementation details of planning algorithm, and proposed two al-

ternative kinematic and kinodynamic planning schemes. We explained the flexibility of the

proposed framework and showed how various image and physical constraints can be taken

into account. Table 3.1 lists the parameters used in our proposed planning scheme and their

typical values we used in our experiments.
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Typical value

Parameter Definition Kinematic Kinodynamic

ωp Position weight coefficient in closeness metric 0.6 0.4
ωh Orientation weight coefficient in closeness metric 0.4 0.3
ωv Linear velocity weight coefficient in closeness metric N/A 0.2
ωω Angular velocity coefficient in closeness metric N/A 0.1
∆t Camera tree extension time step (sec.) 2.0 1.0
δt Camera tree integration time step (sec.) 0.04 0.04
vmax Maximum linear velocity extension input (m/sec.) 0.1 N/A
ωmax Maximum angular velocity extension input (deg./sec.) 5 N/A
fmax Maximum force extension input (N) N/A 0.2
τmax Maximum torque extension input (N.m) N/A 0.2
tg Greedy extension time (sec.) 5 5

Table 3.1: List of parameters used in our proposed planning framework along with their
typical values we used in our experiments.



Chapter 4

Case Study I: 6-DOF Robotic Arm

In the previous chapter, we presented our proposed planning strategy to plan feasible cam-

era trajectories which are then projected into image space to obtain the desired feature

trajectories. In this chapter, we consider a 6-DOF robotic arm and explain the execution of

the planned feature trajectories using an image-based visual servoing technique. We present

real-world experimental results to show the merit of the proposed planning framework and

its effectiveness in accounting for various image and physical constraints in complex visual

servoing scenarios. We also provide an empirical comparison between the proposed image-

based trajectory tracking controller and a joint space trajectory tracking controller and show

the effect of modeling and calibration uncertainties on the performance of each controller.

4.1 Implementation

The software/system architecture of our proposed framework is shown in Fig. 4.1. The

proposed randomized kinodynamic planning approach has been implemented using our in-

house motion planning kernel (MPK) [34]. The obstacles are imported as known CAD

models into our planning environment. The MPK uses V/I-Collide library to perform

collision checking given the objects CAD models. Please note that the type of environment

representation does not affect the planning scheme given that proper constraint checker

(e.g., collision and occlusion) are in place for the specific representation of the environment.

For instance, in a future extension of our work, we can easily imagine that the environment

model can be acquired using perception techniques based on stereo/depth sensors. We used

the camera factory settings (i.e., intrinsic parameters) with no further calibration.

The initial and desired camera poses are computed using the Dementhon’s technique

43
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Figure 4.1: Software/system architecture of our proposed framework

[26] and the virtual visual servoing approach provided through the visual servoing plat-

form (ViSP) [67]. For visualization purposes the planning results including the planned

robot/camera trajectory and the camera tree are sent to an OpenRAVE [28] viewer plug-in

where the robot trajectory is visualized/animated. The planned feature trajectories are sent

to an IBVS controller which generates appropriate robot/camera velocity inputs to our 6-

DOF Schunck robotic arm with an in-hand camera. We employed the dot feature tracker in

ViSP to keep tracking of multiple black markers on the target object. The IBVS controller

is explained in more details as follows.

4.1.1 Tracking Feature Trajectories using IBVS

We adopt an image-based trajectory tracking controller as in [69] to track the desired feature

trajectories, s∗(t); the following error function is defined in the image space

es = s(r(q(t)))− s∗(t), (4.1)

where s(r(q(t))) is the vector of current image features at the current camera pose r specified

by the robot configuration q(t). Taking the derivative of (4.1) with respect to time, we have

ės =
∂s

∂r

∂r

∂q
q̇− ṡ∗

= LJq̇− ṡ∗, (4.2)

where L = ∂s
∂r denotes the image Jacobian and J = ∂r

∂q is the robot Jacobian. To impose

exponential decay of es(t) to zero, we let ės(t) = −λses, where λs is a positive gain. Hence,

we have

q̇ = J+L+(−λses + ṡ∗), (4.3)

where q̇ denotes the joints velocity input, and J+ and L+ are the pseudo-inverses of J and

L, respectively. For a 3-D point Pj with coordinates [Xj Yj Zj ]
T in the camera coordinate
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frame and with image pixel coordinates sj = [uj vj ]
T where [uj vj 1]T = A[xj yj 1]T , the

interaction matrix related to sj is given as

L(sj , Zj) =

 fpu 0

0 fpv

 − 1
Zj

0
xj
Zj

xjyj −1 + x2j yj

0 − 1
Zj

yj
Zj

1 + y2j −xjyj −xj


where xj = (uj − u0)/fpu and yj = (vj − v0)/fpv. The interaction matrix for n feature

points s = [sT1 . . . s
T
n ]T with corresponding depths Z = [Z1 . . . Zn]T can then be created by

stacking up the interaction matrices of all features as

L(s,Z) =
[
LT (s1, Z1) . . . L

T (sn, Zn)
]T

(4.4)

As it is seen the interaction matrix depends on the depth information which is not usually

available at the execution time. Hence, a nominal value is used instead [11]. Similarly to [69]

we use L̂ = L(s∗(t),Z∗(t)) as a nominal model of the interaction matrix which is created by

stacking up the interaction matrices related to all the current desired image features along

the planned trajectory. Moreover, the precise model of the robot kinematic may not be

achievable in practice. Hence, a nominal robot Jacobian Ĵ is used in the formulation of the

control law.

Finally, the control law can be written as

q̇ = Ĵ+L̂+(−λses + ṡ∗). (4.5)

In the following section, first we present results of our experiments demonstrating the

effectiveness of the proposed planning framework in accounting for image and physical con-

straints in visual servoing tasks.

4.2 Experimental Results

We validated the effectiveness of the proposed planning framework on a 6-DOF eye-in-hand

robotic arm. The target object is composed of black dots as shown in Fig. 4.2. For ease

of image processing, black dots on white background were used as features; but one could

easily substitute this step with more general features such as lines and contours as long as

real-time tracking is available for features of interest.

The focus of these experiments is to demonstrate the capabilities of the proposed ap-

proach in taking physical and image constraints into account. To better visualize and

illustrate the effectiveness of our approach, we first show how it is approachable to take care
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(a) (b)

Figure 4.2: Experimental setup: field of view and joint limits avoidance experiment

of field of view and joint limit constraints, and then show how it takes care of occlusion and

obstacle avoidance constraints in a cluttered workspace. We contrast our results with an

IBVS method in which the control law is given as

q̇ = −λsĴ+L̂+(s(t)− s∗), (4.6)

where s∗ = s∗(tf ) contains the fixed final desired features and the interaction matrix L̂ is

computed at (s∗,Z∗).

In all experiments we used the camera intrinsic parameters provided by the manufacture

with no further calibration. The video clips of these experiments are available on-line at

https://sites.google.com/site/moslemk/research/kinodynamic-planning-for-vs

4.2.1 Field of view and joint limits avoidance

The robot at the initial and desired configurations is shown in Fig. 4.2(a) and Fig. 4.2(b)

along with the corresponding initial and desired images on their right-bottom corners.

The corresponding camera displacement between the initial and desired camera frames is

[20 35 21]T centimeters in x-y-z translation and [34 26 8]T degrees in roll-pitch-yaw rotation.

Figure 4.3 shows the results obtained using the IBVS technique based on the control law in

(4.6). As is seen in Fig. 4.3(a), some of the feature trajectories (features 1 and 4 specifically)

leave the camera’s field of view. Figure 4.3(b) shows the corresponding joint trajectories.

All joint values have been normalized to [−1, 1] where 1 and −1 determine the upper and

lower limits for each joint, respectively. As shown in Fig. 4.3(b), the trajectories for joints 2

and 3 violate their limits. Either of the above violations results in failure of visual servoing

task.
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We applied our proposed approach to the same task and the results are presented in Fig.

4.4. Using our proposed approach we planned feasible feature trajectories in the image space

as shown in Fig. 4.4(a). These trajectories do not violate the camera field of view and robot

joint limits which have been taken into account at the planning stage. The robot has been

servo controlled along the planned feature trajectories using the tracking control law given

in (4.3). As shown in Fig. 4.4(b), the followed feature trajectories respect the camera field

of view and remain within the image limits. Figure 4.4(e) shows the corresponding joint

trajectories which are within their respective limits. The planned camera tree (in green)

along with the camera trajectory (in red) are shown in Fig. 4.4(h). The solution trajectory

was found in about 80 seconds after about 1500 states were successfully explored. Please

note that the transient tracking errors in image space (4.4(c)) are initially large (up to 30

pixels) primarily due to image measurement errors in segmenting the centers of 2D features

and slow tracking control loop (12Hz) due to the limited frame rate (15Hz) and delays in

processing the image. Supported by our empirical results presented in Section 4.3, and also

existing literature [69] we believe that a faster vision system (≈ 50Hz, as studied in [20])

will highly improve the tracking performance in the image space.

4.2.2 Obstacle collision and occlusion avoidance

In the following experiments the robot workspace is cluttered with obstacles (i.e., boxes)

which make some parts of the workspace unreachable by the robot (see Fig.4.5). The obsta-

cles also create occluded regions in the workspace from which the target object is occluded

and not visible in the camera image. The robot at its initial and desired configurations

along with the corresponding images taken by the camera are shown in Fig.4.5.

First, we employed the pure IBVS technique to carry out the task of servoing the robot

towards its desired configuration (see Fig. 4.6). The robot trajectory induced by the IBVS

technique results in both occlusion of the target object (see Fig.4.6 left-bottom) and robot

collision with workspace obstacles (see Fig. 4.6). Hence, the IBVS technique fails to ac-

complish this task and was stopped. Most of the previous approaches on path planning for

visual servoing (as reviewed in Chapter 2 and [43]) either fail to incorporate general occlu-

sion and collision avoidance constraints or are susceptible to local minima in such complex

environments.

Our proposed randomized planning framework can, however, effectively take care of

these constraints and, hence, ensures robust execution of the servoing task with respect to

the violation of image and physical constraints. The planned camera tree along with the
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camera trajectory have been visualized in Fig. 4.7(h). The solution trajectory was found

in about 200 seconds after about 900 states were successfully explored. The corresponding

feature trajectories, obtained by projecting the planned camera trajectory into the image

space, are shown in Fig. 4.7. The robot, when servo controlled along the desired feature

trajectories, reaches its desired configuration avoiding occlusion of any of the object features

while avoiding collision with workspace obstacles. The feature trajectories followed by the

servoing control law (4.3) are shown in Fig. 4.7(b). The corresponding planned and followed

robot joint trajectories are shown in Fig. 4.7(d) and Fig. 4.7(e), respectively.

As is apparent from Fig.4.7(f) the joint tracking error of up to about 9 degrees is some-

what more than desired and a systematic way to do this would be via a new controller that

regulates errors in both image and joint spaces, indeed a challenging task and future work.

4.3 Discussion

As mentioned earlier, in the current work the planning is performed without accounting for

uncertainties in modeling and calibration. Although we assume that the system is nominally

calibrated and we have access to robot model and camera parameters provided by the man-

ufacture, the effect of uncertainty may not be fully removed and the tracking performance

is highly affected as noticed through the results presented in previous section. We derive

the error dynamics in image and joint space, both for an IBVS controller (controller I) and

for a joint space controller (controller II). However, a definitive general statement thorough

analytical study of parameters’ uncertainty and their effects on errors in image and joint

spaces is not apparent from these expressions. Therefore, we also provide empirical results

on the effects of uncertainty on tracking errors in image and joint spaces for both controllers

and draw some empirical conclusions discussing the relative merits of the two controllers.

4.3.1 Image Space Trajectory Tracking (Controller I)

Error analysis in image space: replacing (4.5) in (4.2) we obtain the image error dy-

namics:

ės = −λsLJĴ+L̂+es + (LJĴ+L̂+ − I)ṡ∗. (4.7)

The error es will have an exponential decay if the term LJĴ+L̂+ remains positive definite

along the trajectory which can be ensured locally as long as the camera is controlled closely

along the desired feature trajectories. However, the error will converge to zero only if either

LJĴ+L̂+ = I or ṡ∗ = 0 which nullify the last term in (4.7). As also studied by Malis [62],
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setting a high gain λs or reducing the desired velocity ṡ∗ will reduce the tracking error.

We point out that, ensured by our kinodynamic planning approach, the desired velocity ṡ∗

approaches zero as the camera reaches its final desired pose xf , reducing the tracking error

towards the end of the trajectory. Malis and Rives [65] have also studied the stability of

Controller I and showed that it is fairly stable in presence of camera calibration errors, but

with a smaller stability domain when coarse features depth distribution is used.

Error analysis in joint space: the tracking error in joint space is defined as

eq(t) = q(t)− q∗(t) (4.8)

and we have

ėq(t) = q̇(t)− q̇∗(t) (4.9)

Inserting the commanded velocities (4.5) in the above, we obtain

ėq(t) = Ĵ+L̂+(−λses + ṡ∗)− q̇∗(t) (4.10)

, and knowing q̇∗(t) = Ĵ+L̂+ṡ∗ we have

ėq(t) = −λsĴ+L̂+es (4.11)

From (4.7) we obtain

−λsĴ+L̂+es = (LJ)+
[
ės − (LJĴ+L̂+ − I)ṡ∗

]
(4.12)

which away from singularities in J and L can be simplified as

−λsĴ+L̂+es = J+L+ės − J+L+(LJĴ+L̂+ − I)ṡ∗ (4.13)

Replacing the result in (4.11) we obtain the relationship between error dynamics in joint

and image spaces as

ėq = J+L+ės + J+L+(LJĴ+L̂+ − I)ṡ∗ (4.14)

The first term in (4.14) relates the dynamics between the image and joint spaces in

ideal conditions. But, in practice the second term is added and introduces disturbance to

joint space error dynamics, which in turn may reduce the tracking performance in joint

space; Although, as imposed by our proposed kinodynamic planning approach, the desired

feature trajectories velocities approach zero towards the end of the trajectory, ṡ∗(t)→ 0 as

t→ tf , tracking errors in joint space will be observed along the trajectory because of second

term in (4.14). Moreover, the rate of change of the tracking error is proportional to the
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desired tracking velocity ṡ∗ and is also affected by the singularities in robot Jacobian and

image interaction matrices. Our proposed planning framework yields trajectories away from

singularities in both robot Jacobian and image interaction matrices. Obviously, reducing

the tracking velocity helps to reduce the tracking error in joint space. Unfortunately, a full

analysis of uncertainties in the robot Jacobian and image Interaction matrices and their

effects on the performance of the proposed tracking algorithm remains to be out of reach

and requires further study.

4.3.2 Joint Space Trajectory Tracking (Controller II)

We start by deriving the joint trajectory tracking control law with the objective of tracking

a desired (planned) trajectory q∗(t). The error function in joint space is defined as

eq(t) = q(t)− q∗(t) (4.15)

and we obtain

ėq = q̇(t)− q̇∗(t) (4.16)

To ensure exponential decay of the error to zero, we impose ėq = −λqeq in the above

equation which yields the control law

q̇ = −λqeq + q̇∗ (4.17)

Error analysis in joint space: by closing the loop, i.e. replacing (4.17) in (4.16), the

control law in (4.17) guarantees exponential convergence of error to zero in joint space, i.e.

ėq = −λqeq (4.18)

Error analysis in image space: now, let us look at the error dynamics in the image space

under the control law given in (4.17). The error in the image space is defined as in (4.1)

with the dynamics given in (4.2). Solving (4.16) for q̇ and replacing the result in (4.2), we

obtain a relationship between the error dynamics in image and joint spaces as

ės = LJ(ėq + q̇∗)− ṡ∗ (4.19)

Knowing q̇∗ = Ĵ+L̂+ṡ∗, we obtain a relationship between the error dynamics in image and

joint spaces as

ės = LJėq + (LJĴ+L̂+ − I)ṡ∗ (4.20)

Given the above relationship, the error dynamics in joint space would translate to the error

dynamics in image space through the term LJ, i.e. the actual robot-image Jacobian. Hence,
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we would expect similar trends for error dynamics in both spaces if LJ remains positive

definite, i.e., decays (or growth) of the error in image space leads to decays (or growth)

of the error in joint space. However, the second term in (4.20) introduces an additional

error to the error dynamics in joint space. This additional term comes from the discrepancy

between the actual and nominal values for the image-robot Jacobian. Clearly, under ideal

conditions there is no such error.

Table 4.1 summarizes the image and joint trajectory tracking controllers given in (4.5)

and (4.17), respectively, along with their corresponding error dynamics in each space.

Controller I: image trajectory tracking Controller II: joint trajectory tracking

q̇ = Ĵ+L̂+(−λses + ṡ∗) q̇ = −λqeq + q̇∗

Image err dyn ės = −λsLJĴ+L̂+es + (LJĴ+L̂+ − I)ṡ∗ ės = LJėq + (LJĴ+L̂+ − I)ṡ∗

Joint err dyn ėq = J+L+ės + J+L+(LJĴ+L̂+ − I)ṡ∗ ėq = −λqeq

Table 4.1: Error dynamics in image and joint spaces for two controllers: image and joint
space trajectory tracking

4.3.3 Empirical study of calibration and modeling uncertainties

We provide an empirical comparison between the performance of the two controllers in Table

4.1 under various conditions: uncertainties in camera focal length and robot kinematics, and

image measurement errors. We consider a simple planning example for sake of simulations,

where the camera trajectory is defined as a 90 degrees rotation around its optical axis. The

target consists the vertices of a square with the optical axis of the camera passing through

its center and orthogonal to its plane. The camera is assumed to be mounted at the end-

effector of a 6-DOF robotic arm (the one we used for our experiments in previous section)

in a way that the 90 degree rotation of the camera can be achieved by rotating joint 6 only.

The desired feature and joint trajectories are shown in Fig.4.8. The total trajectory running

time is 30 seconds. We use the controllers in Table 4.1 to execute these trajectories and

compare their performance. Both controllers are simulated at 50Hz and have access to joint

encoder data and image measurements at the same rate.

Ideal conditions: First, as a reference, we simulate an ideal condition, i.e., no calibra-

tion/modeling uncertainty and away from singularities in robot-image Jacobian. Under

such ideal conditions both controllers demonstrate fairly similar performances as shown

through the tracking errors in both image and joint spaces in Fig.4.9. These results serve as

a reference to compare the performance of the controllers in Table 4.1 under the following
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conditions simulated individually:

• 5% error in camera focal length (Fig.4.10)

• up to 5 pixels (random) image measurement error (Fig.4.11)

• 1 cm position error and 1 degree orientation error in robot forward kinematic model

(Fig.4.12)

Summary of results: comparing the tracking errors obtained as the result of using Con-

troller I (i.e., image trajectory tracking) with those yielded through Controller II (i.e., joint

trajectory tracking) a somewhat expected trend is observed for all uncertainties. These re-

sults do confirm our intuitive expectation that neither the image trajectory tracking nor the

joint trajectory tracking can achieve low errors in both image and joint spaces. However,

relatively speaking, the image trajectory tracking performs well (i.e., yielding an exponential

decay of tracking error to zero) in image space (see subfigures (a) in Fig.4.10-4.12) while the

joint trajectories converge to within about 5 degree (i.e., not too large) steady state error

(see subfigures (b) in Fig.4.10-4.12). Joint trajectory tracking yields an exponential decay

of tracking error to zero in joint space (see subfigures (d) in Fig.4.10-4.12) but with poor

performance in image space (see subfigures (c) in Fig.4.10-4.12), particularly in presence of

forward kinematic errors (very large steady state image errors of up to about 50 pixels). This

lends some support to our decision to adopt an image space trajectory tracking controller.

We also note that the answer to the question - which controller should be used to

execute the planned trajectories - also depends on the task. That is, for example, if the

task objective requires a close tracking of feature trajectories within the image while the

error in joint space can be tolerated then the image trajectory tracking controller should be

adopted. For example, in MEMS micro-manipulation applications close tracking of micro-

parts trajectories is very crucial to avoid occlusion of micro-parts by the gripper or loosing

them from the field of view. Hence, an image-based trajectory tracking through out the

whole trajectory is advisable (e.g., as adopted in [87]).

Our current work does not account for calibration, modeling errors as well as sensing

and control errors that may result in deviations from planned (joint space) paths during

execution - such as the observed joint space tracking errors in our simulations and in exper-

iments. Such deviations may result in violation of, for example, physical constraints (joint

limits and collisions). However, we argue that it is indeed possible to extend the planning

framework to incorporate such errors. We outline such an approach.
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In order to account for such joint errors at planning stage, we need to know the error

bounds as a function of uncertainty parameters. In the absence of any analytical results

on these bounds so far, the key observation is that the joint space tracking errors can be

estimated via a simulated image-based trajectory tracking step. More precisely, after each

successful extension of the camera tree, the robot is simulated to move along the (locally)

extended image trajectory using the same controller as will be used in the actual execution

(say, Controller I, as explained above) with appropriate uncertainties on kinematic model

and/or camera parameters and thus determining the maximum deviation of joints from

the planned joint trajectory. Once this error bound is known, we can easily determine the

volume swept by the robot corresponding to the error bound (see the orientation slicing

method, Section 5.1, page 283 in [55]) and augment the robot size by this swept volume.

The RRT extension is then re-checked for collisions with the augmented robot and discarded

if there is collision, and kept otherwise.

However, one should note that the problem, in general, may not be convex, i.e., extreme

levels of uncertainty in parameters may not correspond to extreme joint tracking errors.

This makes determining joint error bounds while accounting for all uncertainties compu-

tationally intensive. For instance, if there were n uncertainty parameters, each discretized

to k quantization levels, one would need to run the simulated control kn times, and hence

determine the global bounds for the joint errors. An approximate and faster alternative

would be to consider only a subset of most influential parameters, e.g. camera intrinsic

parameters such as camera focal length.

We carried out some simulations allowing uncertainty in the camera focal length only.

Figure 4.13 shows the joint space tracking errors obtained for servoing the robot along the

image trajectories in Fig.4.8(a) under different amounts of uncertainty in focal length. As

shown, the joint tracking errors monotonically increase (or decrease) as the focal length

error increases (or decreases), i.e., extremes of the joint errors occur at extreme values of

uncertainty. This convexity property can be utilized towards providing general guidelines

for selecting the joint error bounds at the planning stage. Nonetheless, we point out that

this property may not always hold especially when including more than one source of un-

certainty, hence, one needs to calculate more conservative bounds by simulating over the

entire parameters uncertainty space.
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Figure 4.3: Results obtained using pure IBVS: as shown in (a) the feature trajectories
induced by the IBVS violate the virtual limits imposed on the camera field of view, and as
seen in (b) the joint trajectories violate the limits imposed on two robot joints.
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Figure 4.4: Results obtained using our proposed kinodynamic planning approach: as shown
in (b) the followed feature trajectories respect the field of view limits and as seen in (e) the
corresponding joint trajectories respect the joint limits. The planned camera tree (in green)
along the planned trajectory (in red) are shown in (h).
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(a) (b)

Figure 4.5: Experimental setup for the collision and occlusion avoidance experiment: in this
experiment the robot has to be servo controlled towards its desired configuration located
in narrow empty space between the obstacles which cause occlusion of the target and/or
collision with the robot.

Figure 4.6: Results obtained using pure IBVS: the trajectories induced by the IBVS tech-
nique results in occlusion of some of the target features by the workspace obstacles (see
the image at the bottom-left corner), and collision of the robot with workspace obstacles as
shown at the top-right corner. Hence, the servoing task fails.
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Figure 4.7: Results obtained using the proposed kinodynamic planning approach: the
planned camera tree (in green) along the planned trajectory (in red) are shown in (a).
The robot (servo controlled along the planned feature trajectories) moves towards its de-
sired configuration located in the narrow empty space between the obstacles while avoiding
collision with obstacles and keeping target in the field of view. So, the servoing task has
been performed successfully.
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Figure 4.8: (a) The desired trajectories pertinent to four point features: each feature moves
on a circular arc about 90 degrees around the camera optical center (b) the desired joint
trajectories related to the feature trajectories in (a)
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Figure 4.9: Tracking errors in image and joint spaces under ideal conditions, i.e., no cali-
bration/modeling uncertainties and away from singularities in robot-image Jacobian: (a)(b)
image trajectory tracking, and (c)(d) joint trajectory tracking
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Figure 4.10: Tracking errors in image and joint spaces in presence of 5% error in camera
focal length: (a)(b) image trajectory tracking, and (c)(d) joint trajectory tracking
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Figure 4.11: Tracking errors in image and joint spaces in presence of up to 5 pixels (random)
image measurement errors: (a)(b) image trajectory tracking, and (c)(d) joint trajectory
tracking
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Figure 4.12: Tracking errors in image and joint spaces in presence of 1 cm/deg error in
robot forward kinematic model: (a)(b) image trajectory tracking, and (c)(d) joint trajectory
tracking
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Figure 4.13: Joint tracking errors obtained by applying an image-based trajectory tracking
along the image trajectories in Fig.4.8(a) under (a) 0%, (b) 1%, (c) 2%, (d) 3%, (e) 4%, and
(f) 5% error on focal length. As shown, the joint tracking errors monotonically increase (or
decrease) as the focal length error increases (or decreases).



Chapter 5

Case Study II: 9-DOF Wheeled

Mobile Manipulator

Wheeled Mobile Manipulators (WMM) are major efforts to bring both mobility and ma-

nipulation capabilities to human environments (Figure 5.1). To move autonomously and

accomplish tasks robustly in complex environments high-level global motion planning tech-

niques should be closely integrated with sensor-based control of such systems. Many efforts

have been devoted to both motion planning and sensor-based control with promising ad-

vances in each individual area over the past decades. However, the integration of planning

and control, in particular for complex systems such as a WMM, remains a challenging topic,

and also crucial towards fully autonomous and robust solutions.

Despite many efforts on image-based control of robotic arms and mobile robots, there are

very few works extending classical image-based control techniques to mobile manipulators.

Wheeled mobile manipulators introduce two main challenges: non-holonomic kinematic

constraints at the mobile base, and task redundancy. In [77] an inverse kinematic control

is applied to servo control a mobile hand-eye system by deriving a Jacobian for the whole

system as a kinematic chain. The work in [24] benefited from the task redundancy through a

task sequencing strategy to avoid kinematic singularities during the servo control of a WMM.

Due to the complexity of WMM systems accounting for image and physical constraints

becomes even more challenging compared to robotic arms.

In this chapter, we extend our efforts on incorporating randomized path planning tech-

niques with image-based control of robotic arms ([41][42]) to wheeled mobile manipulators.

To the best of our knowledge, this is the first effort toward integrating path planning with

image-based control of wheeled mobile manipulators.

64
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Figure 5.1: SFU wheeled mobile manipulator system (a Powerbot mobile platform with
an on-board 6-DOF Schunck robotic arm) reaches a desired location by tracking a target
object.

We consider a visually-guided task [48], i.e., to move the robot from an initial to a desired

location with respect to a stationary target while keeping the target in the field of view of

the in-hand camera and avoiding occlusions/collisions (due to obstacles) without violating

the kinematic constraints of the robot (Figure 5.1).

5.1 Path Planning for Image-based Control of Wheeled Mo-

bile Manipulators

The two-step plan-then-execute methodology presented in Chapter 3 is also applied here:

first, we plan a feasible trajectory for the whole WMM system. The planned trajectory is

then projected into the image space to obtain the desired feature trajectories which are then

executed using a closed-loop feedback strategy.

5.1.1 Path planning with image and physical constraints

We employ the planning framework presented in Chapter 3 to plan feasible trajectories for

the whole WMM (as a kinematic chain) under image and physical constraints to accomplish

the above visually-guided task. The camera tree extension follows the kinodynamic exten-

sion in camera state space (as explained in Chapter 3). The local paths obtained as the

result of this extension are projected into the image space to check for image constraints, i.e.

field of view limits and occlusions of target object by other obstacles or itself. Given that

the local camera paths violate no image constraints, they are then tracked in the WMM
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configuration space (C-space) using a local planner to check for physical constraints, i.e.

collision with obstacles and joint limits. All the above steps follow the implementation ex-

plained in Chapter 3. However, to exploit the redundancy of the WMM system we employ

weighted pseudo-inverse Jacobian solutions combined with a null space optimization tech-

nique to effectively coordinate the motion of the mobile platform and the arm for tracking

the camera local paths in C-space.

The above planning stage yields a feasible trajectory for the whole WMM system from

which one may extract and generate individual trajectories for the mobile platform, on-

board robotic arm, in-hand camera, and image features. The planned trajectories are then

executed using a decoupled feedback control scheme as explained below.

5.1.2 Decoupled feedback control scheme

The planned trajectories could then be executed in different ways. An ideal and challenging

way would be to design a controller that reconciles errors in both C-space and image space

and is a future research topic. More simply, one could execute the WMM trajectory directly

in the WMM C-space. However, deviation may occur due to uncertainties in the motion

of the mobile platform. Using a feedback control strategy would help to reduce the mobile

platform tracking error. Nonetheless, even small tracking errors of the mobile platform may

result in large deviation of the camera at the end-effector, hence loosing the target in camera

field of view. This suggests the need for closing the loop within the image space to account

for potential tracking errors of the mobile platform.

Here we propose a decoupled feedback control strategy to move the WMM along the

above desired trajectories; we utilize an image-based control technique to servo control the

robotic arm along the desired feature trajectories, while a state feedback control is employed

to move the mobile platform along its desired trajectory in Cartesian space. These two

controllers run simultaneously in two separate threads to move the whole WMM along the

planned trajectories.

This chapter presents the preliminary results we obtained by planning feasible trajecto-

ries for the SFU 9-DOF WMM system with an in-hand camera to accomplish a visually-

guided task (Figure 5.1). We also show the results of executing the planned trajectories on

the real system using the above decoupled feedback control scheme.

First, we present the WMM kinematic modeling which is used to derive and implement

the planning and control schemes.
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FO
−→
i O

−→
j O

FM

−→
i M

−→
j M

N

θp

d

M

Figure 5.2: Differential-drive mobile platform

5.2 Kinematic Modeling

5.2.1 Mobile Platform Kinematics

We assume that the mobile platform moves on a planar surface (Fig. 5.2); and it has two

actuated wheels which can roll independently with fixed headings. We make the rolling-

without-slipping assumption for the wheels, i.e., the contact point of each wheel with the

ground has zero velocity which introduces a non-holonomic constraint in the kinematic

equations of the motion of the platform.

We follow the representation proposed by Samson and Ait-Abderrahim [80] in which the

mobile platform position (xp and yp) is represented as the components of the vector
−−→
NO in

the basis of mobile frame FM attached to the platform, i.e.
−−→
NO = xp

−→
i M + yp

−→
j M . The

point N is located at a distance d from the wheels axis such that
−−→
MN = d

−→
i M and point

O is the origin of the fixed frame FO. The platform orientation θp is chosen as the angle

between
−→
i O and

−→
i M . Hence, the platform configuration is given as qp = [xp, yp, θp]

T .

The above representation is well adapted to the strategy we adopted from [80] to track the

mobile platform along its planned trajectory in Cartesian space (see Section 5.4.2).

Considering the mobile platform as a kinematic system, we assume that the pseudo

velocity up = [vp ωp]
T where vp is the linear velocity along

−→
i M and ωp = θ̇p, can be taken

as the mobile platform control input.
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The state equation of the mobile platform is then given as [80]

q̇p = Gp(qp)up (5.1)

with

Gp(qp) =


−1 yp

0 −(d+ xp)

0 1

 (5.2)

5.2.2 Robotic Arm Kinematics

The C-space of the n-DOF robotic arm can be parameterized as qa = [qa1 qa2 . . . qan ]T

where qa1 , qa2 , . . . , qan are the individual joint values. The arm is a kinematically uncon-

strained, i.e. holonomic, system. Hence, the joint velocities q̇a can be independently speci-

fied at any configuration. So, the arm control input vector ua can be set as

ua = q̇a (5.3)

The pose of the arm’s (or equivalently, WMM’s) end-effector is represented as a 7-D vector

ξa = [pTξ hTξ ]T (5.4)

where pξ is a 3-D vector representing the end-effector position and hξ is a 4-D unit quater-

nion representing the end-effector orientation.

5.2.3 Mobile Manipulator Kinematics

The whole mobile manipulator C-space can be parameterized in terms of the configurations

of both the mobile platform and on-board robotic arm, i.e.

q =

 qp

qa

 (5.5)

The kinematic model of the mobile manipulator sets the location of its end-effector (equiv-

alently, the end-effector of the on-board robotic arm) as a function of its configuration,

i.e.

ξ = ξa = F(qp,qa) (5.6)
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By differentiating (5.6) with respect to time and using (5.2) we have

ξ̇ =
[

∂F(qp,qa)
∂qp

G(qp)
∂F(qp,qa)

∂qa

] up

ua


= J(qp,qa)u (5.7)

where u = [uTp uTa ]T denotes the mobile manipulator control input which is related to

C-space (generalized) velocities as

q̇ =

 Gp(qp) 03×n

0n×2 In×n

 up

ua

 = G(qp)u (5.8)

and to the end-effector velocity screw through the mobile manipulator Jacobian J(qp,qa).

5.3 Camera Trajectory Tracking in C-space

As explained before, we employ the same planning approach explained in Chapter 3 to plan

feasible trajectories for the whole WMM system. However, to exploit the redundancy of the

system and coordinate the motion of the mobile platform and the on-board arm, we extend

the local controller used to track the camera trajectories in the WMM C-space. We employ

an inverse kinematic control in which kinematic tracking control laws are designed using

the differential kinematic model in (5.7). This step extends our work in [42] on robotic arms

by coordinating the motion between the mobile platform and the arm through a weighted

pseudo-inverse Jacobian strategy, and performing null-space optimization to utilize the task

redundancy of the WMM.

Without loosing generality, we assume that the camera frame coincides with the robotic

arm end-effector which is effectively the WMM end-effector. Now, given an end-effector

trajectory ξ∗(t) (extracted from a camera local trajectory), the problem is to find control

input u(t), such that

ξ̇
∗
(t) = Ju(t) (5.9)

as in (5.7), which asymptotically stabilizes the task error e(t) = ξ(t)− ξ∗(t). All the exact

(least-squares) solutions which satisfy the end-effector task constraint (5.9) are given as

u(t) = J+ξ̇
∗
(t) + (I− J+J)z(t) (5.10)

in which J+ is the pseudo-inverse of J, the term I−J+J represents the orthogonal projection

matrix in the null space of J, and z(t) is an arbitrary input velocity vector. The second
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term of the solution is therefore a null space velocity which does not affect the task at the

end-effector (in Section 5.3.2 we will explain how the task redundancy is used to increase the

manipulability of the robotic arm along the planned trajectories). This solution minimizes

the Euclidean norm ‖ξ̇∗ − Ju‖.
Recalling q̇(t) = G(qp)u(t) from (5.1) we have

q̇(t) = GJ+ξ̇
∗
(t) +G(I− J+J)z(t) (5.11)

The corresponding C-space trajectory q∗(t) can then be reconstructed using a discrete

time integration technique, e.g., an Euler forward integration as

q∗(t+ ∆t) = q∗(t) + q̇(t)∆t (5.12)

where ∆t is the time step. To avoid drifting due to the numerical integration errors, and

hence to asymptotically stabilize the error e(t), a closed-loop inverse kinematic solution is

chosen instead, i.e.

q̇ = GJ+

[
ξ̇
∗ −Kξ(ξ − ξ∗)

]
+G(I− J+J)z (5.13)

where Kξ is a constant positive-definite gain matrix.

The C-space trajectory q∗(t) is then checked for collision between the WMM body and

the obstacles, as well as joint limits of the arm. Given that q∗(t) is collision free and does

not violate any joint limits, the camera trajectory ξ(t) is added to the tree along with its

end-point as a new node.

5.3.1 Motion Coordination via Weighted Pseudo-Inverse Jacobian:

The components of u(t) in (5.9) have different physical dimensions, i.e., it is composed of

two linear velocity and one angular velocity components for the mobile platform and six

angular velocity components of the arm joints. So, it would be necessary to evaluate the

magnitude of the solutions obtained using (5.13) based on appropriate weighting of the

components. For example, we prefer a weighting strategy in which the mobile platform has

a relatively bigger contribution in translational motions comparing to the robotic arm. This

can be done by obtaining weighted-norm solutions of (5.9) using a weighted pseudo-inverse

Jacobian formulation [74]. Let

J# = JQ−1
0

where Q0 is the square root of a symmetric and positive definite weighting matrix Q, i.e.,

Q = QT0Q0. Then, all the Q-weighted-norm solutions of (5.9) are given as

u(t) = Q−1
0 J#+

ξ̇
∗
(t) +Q−1

0 (I− J#+
J#)z(t) (5.14)
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Correspondingly, (5.13) can be written as

q̇ = GQ−1
0 J#+

[
ξ̇
∗ −Kξ(ξ − ξ∗)

]
+GQ−1

0 (I− J#+
J#)z (5.15)

The weights in Q can be either modified dynamically (on-line) based on some proper mea-

sures, or set fixed. We have chosen the latter approach in which we choose relatively smaller

weights for the mobile platform linear velocities, which in turn favors the motion of the mo-

bile platform over the arm’s in translation movements.

5.3.2 Improving Manipulability via Null Space Optimization:

The redundancy of the WMM with respect to the task at the end-effector (i.e., end-effector

trajectory tracking) can be used to improve the value of (configuration-dependent) scalar

performance criteria H(q), such as distance from singular configurations, joint limits, and/or

obstacles. This can be achieved by a gradient descent method in which the potential function

H(q) has its minimum value corresponding to the objective requirements. We can write the

time variation of the H(q(t)) as

Ḣ = ∇TH(q)q̇, (5.16)

and considering only the motion due to null space velocity term in (5.15), we have

Ḣ = ∇TH(q)GQ−1
0 (I− J#+

J#)z (5.17)

In order to decrease H, we need to ensure Ḣ ≤ 0. One choice for z can then be

z = −kH
[
∇TH(q)GQ−1

0 (I− J#+
J#)

]T
(5.18)

where kH is a positive scalar.

In our proposed planning framework, we use the problem redundancy to increase the

manipulability of the robotic arm only (not that of the whole WMM) through the above

local optimization strategy. The rational behind choosing this objective (and not others

mentioned above) goes back to our proposed decoupled control strategy in which the robotic

arm is servo controlled along the feature trajectories using a closed-loop (image-based)

inverse kinematic control; clearly, maintaining good manipulability for the robotic arm will

improve the performance of such controller which strongly relies on the Jacobian inverse.

It is also noteworthy that through some trajectories the robotic arm manipulability may

be poor whereas the whole WMM system keeps a good measure of manipulability, i.e.,

improving the latter does not necessary improves the former (see [5]).
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In its general form the manipulability measure is defined as µ =

√∣∣∣JJT
∣∣∣. For a square

Jacobian matrix, e.g., the case of 6-DOF robotic arm here, it is equivalent to the arm

Jacobian determinant µa =
∣∣∣Ja∣∣∣. Letting H = −µa(qa) in (5.18) will favor those null space

motions leading to trajectories (or configurations) with good manipulability for the robotic

arm. However, it must be noted that due to the local optimization nature of the above

scheme, one cannot guarantee its singularity avoidance and its performance may degrade

over long trajectories. Hence, the trajectory obtained through (5.15) needs to be checked

for singularities.

5.4 Decoupled Trajectory Tracking Scheme

The proposed path planning explained above yields a WMM trajectory q∗(t), which in

turn can be decomposed into the corresponding mobile platform trajectory q∗
p(t), robotic

arm trajectory q∗
a(t), camera trajectory ξ∗(t), and finally image features trajectories s∗(t)

pertinent to the object features, i.e.,

q∗(t)→ q∗
p(t), q∗

a(t), ξ
∗(t), s∗(t) (5.19)

We propose a preliminary version of a decoupled feedback control strategy to move the

WMM along the above desired trajectories; we utilize an image-based control technique

to servo control the robotic arm along the desired feature trajectories s∗(t), while a state

feedback control is employed to move the mobile platform along its desired trajectory q∗
p(t)

in Cartesian space. These two controllers run simultaneously in two separate threads to

move the whole WMM along the planned trajectories.

Remark: It must be noted that successful execution of the planned WMM trajectory

using the above decoupled control strategy relies on two assumptions: first, the robotic arm

and the mobile platform both are precisely controlled along their respective trajectories,

and second, the trajectory tracking threads are synchronized. The preliminary experiments

presented in this work were obtained without a synchronized tracking strategy which is the

subject of our future research.

5.4.1 Image-based control of the arm

In the proposed decoupled control scheme, the on-board arm is controlled along the planned

feature trajectories s∗(t) using the control scheme employed for the stationary arm in the

previous chapter. However, the the mobile platform motion contribution in the image must
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be taken into account. More precisely, the control law to servo control the arm along the

planned features trajectories is given as

q̇ = Ĵa
−1
(
L̂+(−λses + ṡ∗)− Ĵ

 u∗
p

0

) (5.20)

where u∗
p = [v∗p ω

∗
p]
T is the vector of linear and angular velocities of the mobile platform

along the planned trajectory, and Ĵ is the mobile manipulator Jacobian.

5.4.2 State feedback control of the mobile platform

We adapt the non-linear state feedback control law devised by [80] for stabilizing the non-

holonomic mobile platform to its planned trajectory q∗
p(t) = [x∗p(t) y

∗
p(t) θ

∗
p(t)]

T in the

Cartesian space. The linear and angular input velocities (ωp(t), vp(t)) are calculated as [80]

ωp(t) =
k3
k2
θ̃ − k1

k2
h2(ỹ + dθ̃) +

k6
k2
x̃ (5.21)

vp(t) = k3k5x̃+ (2k3k4 + h1 + k6)θ̃ + [(1− k1)ỹ − k1dθ̃](ωp(t) + θ̇∗p(t))

where

• θ̃p(t) = θp(t)− θ∗p(t), x̃p(t) = xp(t)− x∗p(t), and ỹp(t) = yp(t)− y∗p(t)

• h1(θ̃, t) = v∗p(t)
cos θ̃−1

θ̃
+ dθ∗p(t)

sin θ̃
θ̃

• h2(θ̃, t) = dθ∗p(t)
cos θ̃−1

θ̃
− v∗p(t) sin θ̃θ̃

• v∗p(t) is the desired linear velocity along the planned trajectory q∗
p(t)

• k1, . . . , k6 are constant gains

Mobile platform state estimation: As a property common to all such control laws,

they require a fairly precise estimate of the mobile robot state (or pose) to ensure local

stabilization to the desired trajectory. One can use existing localization techniques such

as Monte Carlo localization to localize the base. This might require other types of sensors

such as laser scanners to be incorporated, and hence increase the complexity of the overall

system. Moreover such approaches are relatively slow, and require multiple scans of the

scene to be able to provide a fairly precise estimate of the platform pose.

We implemented a state estimation strategy based on the image feedback from the

known target object: we first localize the camera with respect to the target object using the

technique in [66] where a virtual visual servoing techniques is used to estimate the camera
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pose. The estimated camera pose is then translated back to the arm base pose, i.e., the

mobile platform pose, using the known arm kinematic model and its joint encoder data.

The estimated pose is then used in the state feedback control law in (5.21). The above

localization process runs in real-time on a separate thread while both the arm and the

platform are controlled along their respective trajectories.

The decoupled feedback control scheme proposed above is our first effort to execute the

planned trajectories on the mobile manipulator. Other strategies are worth to be compared.

For example, one may control the robotic arm directly in the joint space (using, e.g., a simple

resolved rate motion controller) along its desired trajectory without closing the loop in the

image. However, through this approach the robotic arm is not constrained to track the

desired feature trajectories in the image, and even small errors in positioning of the mobile

platform will result in deviation of the robotic arm from the desired feature trajectories, and

hence loosing the target object in the camera field of view and not being able to localize

the platform through the image feedback. Closing the control loop in the image is an

interesting advantage of the proposed control strategy which compensates for the possible

errors in positioning of the mobile platform, and hence avoids deviation from the desired

feature trajectories.

5.5 Preliminary Experiments and Results

We implemented our proposed kinodynamic planning approach and feedback control schemes

on a wheeled mobile manipulator system which consists a Powerbot mobile platform with

an on-board 6-DOF Schunck robotic arm with a Bumblebee2 camera mounted at its end-

effector (see Fig. 5.5). Both the arm and the mobile platform are equipped with low-level

velocity controllers which facilitates the implementation of our proposed image and state

feedback trajectory tracking controllers.

We used the ViSP visual servoing platform [67] to implement the proposed image-based

trajectory tracking for the arm. We used the camera pose estimation using virtual visual

servoing [66] provided by ViSP for the real-time pose estimation of the mobile platform as

we explained in previous section.

Here we present the results of our first experiments on the WMM system to perform a

visually guided task: moving from an initial to a desired location while avoiding image and

physical constraints. The initial pose of the mobile platform is estimated using the initial

view, and the final configuration of the WMM is implicitly defined by the desired view at the
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Figure 5.3: Left: initial view and the desired feature trajectories, right: desired final view,
and the followed feature trajectories

Figure 5.4: Planning environment visualized in OpenRAVE: camera tree (in green) and the
planned trajectory (in red)

four coplanar dots (Fig. 5.3) on the target object. Please note that the final configuration

of the WMM falls out as the result of the planning which may vary on different runs but

will yield the same desired view which is the objective of the task.

As shown in Fig. 5.4, the desired location of the camera is located in between the long

obstacles on the sides of the target dots. To reach the desired location, the WMM system

needs to move around the obstacle in front of it while keeping the feature in view and

making sure that the long obstacles do not occlude its field of view. Planning in such a

constrained space is very challenging. Our proposed kinodynamic planner succeeds to find

a trajectory in about 200 seconds. The planned camera tree and its final trajectory are

shown in Fig.5.4. The planned camera trajectory was then projected into the image space

to obtain the feature trajectories as shown in Fig. 5.3(left).
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Figure 5.5 shows the snapshots of the WMM tracking the planned trajectories using

the proposed decoupled control scheme. As shown the WMM manages to move around

the obstacle at the front while keeping the features in the field of view and avoiding occlu-

sion/collision due to obstacles. The followed feature trajectories are shown in Fig. 5.3(right).

The video of this experiment is available on-line at http://youtu.be/m6HCwEctxj0

5.6 Discussions

The experiment presented above is our first effort on running the planned trajectories using

our proposed decoupled feedback control scheme. Through this experiment we had a few

observations which lead to our future research and developments:

• Developing a synchronization strategy between the motion of the mobile platform and

the arm is very crucial: we observed that due to the lag of the mobile platform in

responding to velocity control inputs (up to 5 cm/degrees in position/orientation) the

arm deviates from its desired trajectory (up to 20 degrees for some joints) to com-

pensate for the platform tracking error while achieving its feature trajectory tracking

task in image space.

• The performance of the mobile platform state estimation strategy degrades due to

shaky movements of the platform in particular at the beginning of the trajectory

and during the turns. Moreover, for a better estimation accuracy the image features

should be spread in the image which requires the camera to be close to the target. In

the above experiment the camera was initially located about 150 cm away from the

target. For distances above 100cm, or when the platform shakes during the tracking we

had to use the on-board odometry to maintain an estimate of the platform state. One

interesting direction is to combine the odometry with the image-based state estimation

for a better performance.

• Finally, although the error dynamics and stability of each individual controller used

in our decoupled control scheme has been studied previously ([80][30]), the overall

stability and performance of the proposed decoupled control scheme requires further

studies.
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5.7 Summary

In this chapter we extended our efforts on incorporating randomized path planning tech-

niques with image-based control of robotic arms to wheeled mobile manipulators. We

employed a two-step plan-then-execute strategy as proposed in Chapter 3. We used the

planning framework proposed in Chapter 3 to plan feasible trajectories for the whole mobile

manipulator system to accomplish a visually-guided task. We extended the inverse kine-

matic controller used to track the camera trajectories in the WMM configuration space,

by using weighted pseudo-inverse Jacobian solutions combined with a null space optimiza-

tion technique to effectively coordinate the motion of the mobile platform and the arm for

tracking the camera local paths in C-space.

We proposed a decoupled feedback control scheme to execute the planned trajecto-

ries: the on-board arm is servo controlled along the planned feature trajectories using an

image-based visual servoing scheme (as adapted for the 6-DOF robotic arm in Chapter 4).

Simultaneously, the mobile platform is controlled along its planned trajectory in Cartesian

space using a state feedback control scheme.

We presented our first results obtained by executing the planned trajectories on our

9-DOF WMM system using the above decoupled scheme to accomplish a visually-guided

task. This is the first step towards integrating path planning with image-based control of

wheeled mobile manipulators and, as discussed in previous section, some issues still remain

to be addressed before we can achieve robust execution of the planned trajectories.



CHAPTER 5. CASE STUDY II: 9-DOF WHEELED MOBILE MANIPULATOR 78

Figure 5.5: Snapshots of the wheeled mobile manipulator system following the planned
trajectories to reach the desired location while avoiding collision/occlusion due to obstacles
and keeping the target in the field of view.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

We presented our efforts on incorporating randomized path planning technique with image-

based control of robotic arms and wheeled mobile manipulators. We proposed and imple-

mented a general planning framework which effectively accounts for image and physical

constraints encountered in visual servoing tasks. The proposed planner explores the camera

planning space (using an RRT-like scheme) for feasible camera trajectories satisfying field

of view limits and occlusion constraints, and simultaneously the camera trajectories in the

robot configuration space and checks for robot kinematic constraints and collision with ob-

stacles. The result is a search tree which explores both camera planning space and robot

configuration space for feasible trajectories for the whole robot body. The solution camera

trajectories are then projected into the image space of the camera to be executed on the

robot using an image-based visual servoing scheme.

We developed two local planning scheme within the proposed framework: a kinematic

planning scheme in camera configuration space, i.e., space of camera poses, and a kinody-

namic planning scheme in camera state space, i.e., space of camera poses and velocities. In

contrast to the former, the latter approach results in smooth trajectories by construction

which require no further smoothing/time-scaling to be executed on the real robot.

We implemented the proposed framework on a 6-DOF robotic arm with an in-hand

camera. We implemented an image-based visual servoing scheme to execute the solution

feature trajectories on the 6-DOF robotic arm. We performed a number of real-world

experiments on the 6-DOF robotic arm to show the merit of the proposed planning scheme

and its effectiveness in accounting for a variety of image and physical constraints. Pertinent
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to the execution of solution trajectories, we also contrasted the image-based trajectory

tracking controller with a joint space trajectory tracking controller through a number of

simulation results. We provided an empirical study comparing the performance of the two

controllers under modeling and calibration uncertainties.

We also extended the proposed framework to path planning for image-based control

of wheeled mobile manipulators. We employed weighted pseudo-inverse Jacobian solutions

combined with a null space optimization technique to effectively coordinate the motion of

the mobile platform and the arm for tracking the camera local paths in the whole mobile

manipulator configuration space. We executed the solution trajectories on a 9-DOF wheeled

mobile manipulator system, i.e., a non-holonomic mobile platform with an on-board 6-DOF

robotic arm with an in-hand camera. We adopted a decoupled feedback control strategy

to execute the solution trajectories: the on-board robotic arm is controlled along the fea-

ture trajectories using an image-based visual servoing scheme while the mobile platform is

simultaneously controlled along its planned trajectory in Cartesian space. We presented

our first results obtained using the proposed scheme to accomplish the visually-guided task

of moving the mobile manipulator system from initial location to a desired location while

maintaining image and physical constraints.

To the best of our knowledge, this work is the first effort toward integrating random-

ized path planning techniques with image-based control of robotic arms and wheeled mobile

manipulators. The flexibility of the proposed framework in accounting for image and phys-

ical constraints facilitates further extensions and its application to complex scenarios. We

discuss some possible future directions as follows.

6.2 Future Work

Based on our observations through the experiments presented in Chapters 4 and 5, and also

considering the flexibility of the proposed framework, we suggest a few directions to enhance

this work, and also extend it further:

6.2.1 Planning under modeling and calibration uncertainties

As demonstrated through the results presented in Section 4.3, the tracking performance

in image and joint spaces is affected by inevitable modeling and calibration uncertainties.

Incorporating such uncertainties at the planning step will ensure more robust execution of

planned trajectories. The flexibility of framework presented here allows for such extension.



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 81

For example, in [68] each extension of the tree is treated as a stochastic process and is

simulated multiple times to account for uncertainties. Similar strategy can be adapted to

extend the camera tree in the proposed framework. More recently, followed by our work,

Shademan and Jagersand [84] incorporated an uncalibrated visual servoing scheme with a

RRT-like planning approach. Their technique achieves robustness with respect to outliers

using a statistically robust Jacobian estimation technique in the so called visual-motor space.

Such schemes can be readily incorporated within our proposed framework to account for

uncertainties.

6.2.2 Real-time constraint avoidance

Incorporating uncertainties at the planning stage, as suggested above, will increase the

robustness with respect to image and physical constraints at the execution stage, however,

this does not fully guarantee constraint avoidance due to inevitable deviations from planned

trajectories. Hence, to ensure successful execution of the visual servoing task, one may apply

real-time constraint avoidance strategies such as potential field [69] during the execution.

Please note that this does not eliminate the need for the global path planning stage since a

global plan is still necessary to guarantee reaching the goal. Real-time constraint avoidance

will allow for possible deviations (within a threshold) from planned trajectories while pushing

the robot away from constraints.

6.2.3 Motion coordination of wheeled mobile manipulator

Our preliminary experiments on the wheeled mobile manipulator showed us that a proper

synchronization between the motion of the on-board arm and the mobile platform is crucial

to ensure close tracking of feature trajectories. This may require dynamic time-scaling

of feature trajectories to compensate for the mobile platform inertia in responding to its

velocity command inputs along its trajectory in Cartesian space.
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