ROOTED MINORS AND DELTA-WYE TRANSFORMATIONS

by
Lino Demasi
B.Math., University of Waterloo, 2006
M.Math., University of Waterloo, 2008
A Thesis submitted in partial fulfillment
OF THE REQUIREMENTS FOR THE DEGREE OF
Doctor of Philosophy
in the
Department of Mathematics
Faculty of Science
(C) Lino Demasi 2012
SIMON FRASER UNIVERSITY

Fall 2012

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for "Fair Dealing."
Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately.

APPROVAL

Name:	Lino Demasi
Degree:	Doctor of Philosophy
Title of Thesis:	Rooted Minors and Delta-Wye Transformations

Examining Committee: Dr. Nilima Nigam, Associate Professor Chair

Dr. Bojan Mohar, Senior Supervisor
Professor

Dr. Matt DeVos, Supervisor
Assistant Professor

Dr. Karen Yeats, SFU Examiner
Assistant Professor

Dr. Frederic Havet, External Examiner,
CR1, CNRS, Projet Mascotte, I3S, Sophia-Antipolis

Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the "Institutional Repository" link of the SFU Library website (www.lib.sfu.ca) at http://summit/sfu.ca and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the thesis, project or extended essays, including the right to change the work for subsequent purposes, including editing and publishing the work in whole or in part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

Abstract

In this thesis, we study terminal minors and delta-wye reducibility. The concept of terminal minors extends the notion of graph minors to the case where we have a distinguished set of vertices T in our graph G that must correspond to a distinguished set of vertices Y in the minor. Delta-wye reducibility concerns the study of how graphs can be reduced under a set of six operations: the four series-parallel reductions, delta-wye, and wye-delta transformations.

For terminal minors, we completely characterize when, given a planar graph with four terminals, we can find a minor of $K_{2,4}$ in that graph with the four terminal vertices forming the larger part of the bipartition. This is an extension of a result due to Robertson and Seymour for the case when a graph contains three terminals. For delta-wye reducibility, we study the problem of reducibility for the class of graphs consisting of four-terminal planar graphs. Using the results about rooted $K_{2,4}$ minors, we are able to characterize when 3 -connected graphs in this class are reducible.

Acknowledgements

I would like to first thank my supervisors Bojan Mohar and Matt DeVos for helping me learn and grow as a mathematician. I would also like to thank the SFU math community for being a great place to work and study. A special thank you to my wife Kaitlyn for supporting me as I pursued my dreams. Last, but not least, I would like to thank all my friends and colleagues who have made my time here memorable.

Contents

Approval ii
Abstract iii
Acknowledgements iv
Contents v
List of Figures vii
1 Preliminaries 1
1.1 Definitions and Notation 1
1.2 Overview of the Thesis 3
1.3 Basic Results 4
1.3.1 Planar Graphs 4
1.3.2 Rooted Minors 4
1.3.3 Disjoint Paths 5
2 Rooted $K_{2,4}$ Minors in 4-Terminal Planar Graphs 6
2.1 Introduction 6
2.2 Low Connectivity Reductions 6
2.2.1 Disconnected Graphs 11
2.2.2 1-separations 11
2.2.3 \quad 2-separations 11
2.3 Three-Connected Graphs and the Main Theorem 19
2.3.1 Important results 20
2.3.2 The main theorem 23
2.3.3 Proof of the Theorem 2.3.5 23
2.4 Algorithm For Finding a Rooted $K_{2,4}$ Minor 47
3 Delta-Wye Transformations 51
3.1 Introduction 51
3.2 Four Terminal Planar Graphs 53
3.2.1 Irreducible graphs 58
3.3 Cubic Graphs 61
3.4 Planar Duality 62
4 Conclusion and Future Work 66
4.1 Rooted $K_{2,4}$ Minors 66
4.2 Delta Wye Transformations 67
Appendix A Graph Reductions 69
A. 1 Main Theorem Cases 70
A.1.1 Graphs with OWO Structure 70
A.1.2 Graphs with DF Structure 74
A.1.3 HF Structure 76
A.1.4 Graphs with DCJ Structure 79
A. 2 Doublecross Graphs and Starfish 80
A.2.1 Graphs with Doublecross Structure 80
A.2.2 Starfish 83
Bibliography 87

List of Figures

$2.1 \quad K_{2,4}$ obstructions 7
2.2 Low Connectivity Reductions 8
2.3 Vertices with multiple degree 2 neighbours 14
2.4 Structure of G when $v \in S_{1}, w \in S_{2}$ 17
2.5 Subcase of G when $v \in S_{1}, w \in S_{2}$ 18
2.6 (R3) Reduction 22
$2.7 \quad K_{2,4}$ obstructions 24
2.8 Possible structures for $H^{\prime \prime}$ 31
2.9 Graphs where A does not have the $K_{2,2}$ minor 32
2.10 Interesting cases for B 32
2.11 Structures of the 4 -cut from an (R2) edge 33
2.12 Structures of the 4 -cut from an (R1) edge 38
2.13 Special case of the 4 -cut from an (R1) edge 40
$2.14 \mathcal{J}_{1} O W O$ cases 41
$2.15 \mathcal{J}_{1} H F$ cases 42
$2.16 \mathcal{J}_{1} D C J$ cases 44
$2.17 \mathcal{J}_{2}$ Edge 45
2.18 Cases for a \mathcal{J}_{2} edge 46
$3.1 k \times k$ half grid for $k=6$ 54
$3.2 k \times k$ quarter grid for $k=6$ 55
3.34 terminal reduction to K_{4} 55
3.4 Reduciton of an extended K_{4} 56
3.5 4-terminals on a common face 58
3.6 Construction of a regular tetrahedron 60
3.7 Starfish 61
3.8 Irreducible graph with 2 terminal vertices and 2 terminal faces 65
A. 1 D2 Reduction 69
A. 2 D3 Reduction 69
A. 3 D4 Swap 70
A. 4 Diagonal fixing algorithm 71
A. 5 OWO after reducing to half and quarter grid 71
A. 6 OWO Reductions 1 72
A. 7 OWO Reductions 2 73
A. 8 DF afer reducing to quarter grids 74
A. 9 DF Reductions 75
A. 10 HF afer reducing to quarter grids and K_{4} 76
A. 11 HF Reductions 1 77
A. 12 HF Reductions 2 78
A. 13 DCJ afer reducing 79
A. 14 DCJ Reductions 79
A. 15 Doublecross reduced to a quarter grid 80
A. 16 Doublecross Reductions 1 81
A. 17 Doublecross Reductions 2 82
A. 18 Starfish Reductions 1 84
A. 19 Starfish Reductions 2 85
A. 20 Starfish Reductions 3 86

Chapter 1

Preliminaries

1.1 Definitions and Notation

In this section we provide the main definitions and terminology used in the thesis. We use standard terminology consistent with [17] unless otherwise noted.

We start with a few definitions. A graph $G=(V, E)$ consists of a set V of vertices and a set E of edges, where each edge consists of two vertices called its endpoints. We use the notation $u v$ for an edge joining vertices u and v. When such an edge $u v$ exists, the vertices u and v are said to be adjacent and are incident with the edge $u v$. A loop is an edge $v v \in E$ from a vertex v to itself. Multiple edges or parallel edges are edges having the same pair of endpoints. A graph is simple if it has no loops or parallel edges. Graphs in this thesis are assumed to be simple, except for those in Chapter 3, or where otherwise noted. The degree of a vertex v, denoted $\operatorname{deg}(v)$, is the number of edges incident with v, with loops counted twice. A subgraph of G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subset E(H)$. We denote this by $H \subseteq G$.

A path is a sequence of distinct vertices with each consecutive pair joined by an edge. The first and last vertices in the sequence are the endpoints of the path. A cycle is a path together with an edge between the endpoints. Two paths are internally disjoint if neither contains a non-endpoint vertex of the other. A graph G is connected if a path exists between each pair of vertices of G. A component of a graph is a maximal connected subgraph.

For $e=u v \in E(G)$, deletion of e is the operation of removing the edge e from $E(G)$. This is denoted $G-e$ or $G \backslash e$. Contraction of the edge $u v$ is an operation that replaces the vertices u and v by a single vertex incident with each edge that was previously incident
to u or v and deleting the edge $u v$. This is denoted by G / e. For a vertex $v, G-v$ is the graph obtained by deleting the vertex v and all edges incident with the vertex v. For a set of vertices, we define $G-\left\{v_{1}, \ldots, v_{k}\right\}$ in the obvious manner. A graph H is said to be a minor of a graph G if H can be obtained from G by a sequence of edge contractions and deletions. We denote this $H \leq_{M} G$. A model of a minor of H in G is a map ϕ from H to G where vertices of H map to disjoint connected subgraphs of G; edges of H map to internally disjoint paths of $G ; \phi(u v)$ is a path between a vertex in $\phi(v)$ and a vertex in $\phi(u)$ and no other vertex of $\phi(u v)$ is in $\phi(w)$ for any $w \in V(H)$.

For our purposes, a terminal graph (G, Y) consists of a graph G and a set $Y \subseteq V(G)$ whose elements are called terminals. If the set of terminals is clear from the context, then we can omit them. We say a terminal graph (H, Z) is a terminal minor or rooted minor of a terminal graph (G, Y) if $|Z|=|Y|$ and we can find a model of H in G such that $\phi(z) \cap Y \neq \emptyset$ for each $z \in Z$. A rooted $K_{2,4}$ is the graph on 6 vertices with 4 terminal vertices and an edge between each terminal vertex and each non-terminal vertex. When searching for a rooted $K_{2,4}$ minor in a graph G, we label the terminals of the minor t_{1}, \ldots, t_{4} and we label the corresponding subgraphs of G in the model T_{1}, \ldots, T_{4}. The non-terminal vertices we will refer to as big vertices. We label the subgraphs for these S_{1} and S_{2}.

A vertex cut of a graph G is a set $S \subseteq V(G)$ such that $G-S$ has more components than G. We will refer to this as a cut. We say a graph is k-connected if every cut has at least k vertices or it is a complete graph on $k+1$ vertices. We say a graph is internally k-connected if any cut of size $<k$ gives precisely 2 components, one of which is a single vertex. We call a pair $\{A, B\}$ a k-separation of a graph G or a terminal graph (G, Y) if $A \cup B=V(G)$, $|A \cap B|=k, A \backslash B \neq \emptyset, B \backslash A \neq \emptyset$, and there are no edges from $A \backslash B$ to $B \backslash A$. We call a set W of k vertices a k-cut if there exists a k-separation $\{A, B\}$ with $A \cap B=W$. We say such a cut is tight if no subset of W of size $1 \leq \ell \leq k-1$ is an ℓ-cut. We say a separation $\{A, B\}$ of a terminal graph (G, Y) isolates a terminal t if $(A \backslash B) \cap Y=\{t\}$ or $(B \backslash A) \cap Y=\{t\}$.

Given a graph, an embedding of the graph in the plane is a drawing of the graph in \mathbf{R}^{2} with points representing vertices and arcs representing edges such that arcs are pairwise internally disjoint and intersect vertices only at their endpoints. For a 2 -connected graph, a face of an embedding is a region of the plane bounded by a cycle C in the graph, such that all vertices and edges of G not in C are drawn on the other side of the cycle. This is called the bounding cycle for the face F. Vertices and edges contained in the bounding cycle of F are said to be incident with F and F is said to be incident with those vertices
and edges. Each face of an embedding induces two cyclic orderings of the vertices of that face, we will use the ordering which is clockwise with respect to the face when looking from a point inside that face. The facial neighbourhood of a vertex v is the cyclic ordering of the vertices on the face created after deleting the vertex v. The facial neighbourhood of a path is defined similarly on the face created by deleting the path. A facial walk is a sequence of vertices and edges occurring consecutively on a face of the given embedding.

For a facial walk F and vertices $v, w \in V(F)$ we define $P_{F}[v, w]$ to be the path from v to w clockwise along the face F. We similarly define $P_{F}(v, w), P_{F}(v, w]$, and $P_{F}[v, w)$ where ")" means we do not include the vertex w and the edge incident to it, and "(" means we do not include the vertex v and the edge incident to it. When $v=w$, we mean the path around the whole face and not the trivial 1-vertex path. We drop the subscript F when the face is clear from the context. To avoid any ambiguity, clockwise is always taken with respect to the face the path is on, so $P\left[c_{1}, c_{3}\right]$ on the Double Face diagram in Figure 2.7 will be along P_{2}. Note that clockwise in the infinite face looks like counter-clockwise with respect to the rest of the graph. Observe that if G is 3 -connected with a, b cofacial and $a b$ is not an edge, then a, b are on a unique face. If $a b$ is an edge, $P[a, b]$ is understood to not be that edge, but rather the rest of one of the faces containing $a, b . F_{I}$ will always denote the infinite face.

In all diagrams, black dots represent terminal vertices, and white dots represent nonterminal vertices. White regions are faces (this convention also applies to the outer face) and shaded regions are patches of the graph which may contain vertices and edges.

1.2 Overview of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we discuss rooted minors and prove a structural characterization for rooted $K_{2,4}$ minors in planar graphs. In chapter 3, we discuss delta-wye reducibility and prove a result on the reducibility of 4 -terminal planar graphs as well as some other minor results. In Chapter 4 we discuss future work and propose some conjectures for related problems.

1.3 Basic Results

1.3.1 Planar Graphs

In most places in this thesis, we will be working with planar graphs. An excellent introduction to the topic can be found in Chapter 2 of Graphs on Surfaces, by Mohar and Thomassen [8]. We mention two important basic definitions. A graph is planar if it can be embedded in the Euclidean plane with no edges crossing. A plane graph is a planar graph which is embedded in the plane. We will require the use of an important result from Whitney [18].

Lemma 1.3.1 ([18]). If G is 3-connected then it has an essentially unique planar embedding up to the choice of the infinite face and the orientation. For any embedding, the set of cycles which determine the facial boundaries will be the same, and at any vertex the order of the neighbours around that vertex will be the same.

The uniqueness of Lemma 1.3.1 is taken up to homotopy. We also include a few observations about planar graphs that we will use throughout the thesis.

Observation 1.3.2. If G is a simple 3-connected planar graph, then any pair of vertices u, v which are joined by an edge occur on exactly two common faces. Any pair not joined by an edge are on at most one common face.

Observation 1.3.3. If G is a simple 2-connected planar graph, then any pair of vertices u, v which do not form a 2-cut also satisfy Observation 1.3.2. If u, v form a 2-cut then the number of common faces they are on is equal to the number of components in $G-\{u, v\}$ (+1 if they are adjacent).

Observation 1.3.4. In a planar graph G, a set of vertices $v_{1}, \ldots v_{k}$ will be a tight k-cut if $k \geq 3$ and there is a cyclic ordering of v_{1}, \ldots, v_{k} such that consecutive pairs of vertices are cofacial and other pairs are not cofacial. If $k=3$ we must not have v_{1}, v_{2}, v_{3} on a single face.

1.3.2 Rooted Minors

Rooted minors appear as an important tool of Robertson and Seymour in their study of Graph Minors [10]. There have been some recent papers studying graph minor problems dealing mostly with extremal type results [6], [7], [19], [20]. In [11], Robertson and Seymour
prove an important result about when a $K_{2,3}$ minor exists in a graph with three terminal vertices which are to form the large side of the bipartition.

Theorem 1.3.5 ([11]). For distinct vertices a, b, c in a 3-connected graph G, there is a rooted $K_{2,3}$ minor using a, b, c unless G is planar with a, b, c on a common face.

There have also been structural results characterizing when a graph has a rooted K_{3} minor [21], or K_{4} minor [4]. We include the main results from these papers here.

Lemma 1.3.6 ([21]). For distinct vertices a,b,c in a graph G, there is a rooted K_{3} minor on a, b, c unless for some vertex $v \in V(G)$ at most one of a, b, c are in each component of $G-v$.

Theorem 1.3.7 ([4]). For distinct vertices, a, b, c, d in a 4-connected graph G, there is a rooted K_{4} minor on a, b, c, d unless G is planar with a, b, c, d on a common face.

Theorem 1.3.8 ([4]). For distinct vertices, a, b, c, d in a 3-connected planar graph G, there is a rooted K_{4} minor on a, b, c, d unless a, b, c, d are on a common face.

1.3.3 Disjoint Paths

A problem very closely related to rooted minors is the disjoint paths problem. Given a graph G and distinct vertices $s_{1}, \ldots s_{k}$ and $t_{1}, \ldots t_{k}$, when is it possible to find disjoint paths $P_{1}, P_{2}, \ldots P_{k} \in G$ such that P_{i} joins s_{i} to t_{i} for $i=1, \ldots, k$? The result for $k=2$ was given independently by Seymour [13] and Thomassen [14]. When we consider only 3 -connected planar graphs, the result can be stated as follows.

Theorem 1.3.9. Given distinct vertices $s_{1}, s_{2}, t_{1}, t_{2}$ in a 3 -connected planar graph G, we can find disjoint paths from s_{1} to t_{1} and from s_{2} to t_{2} respectively unless the vertices lie on a common face in the order $s_{1}, s_{2}, t_{1}, t_{2}$.

Theorem 1.3.9 has an algorithmic counterpart and the general k-linkage problem is polynomial time solvable.

Chapter 2

Rooted $K_{2,4}$ Minors in 4-Terminal Planar Graphs

2.1 Introduction

Our goal in this chapter is to prove a result of independent interest about existence of rooted $K_{2,4}$ minors in planar graphs. The proof is both long and complicated, and the result will be critical for proving our results about 4 -terminal delta-wye reducibility. For a graph of low connectivity, we show how to reduce to an equivalent problem where the graph is 3 connected. When the graph is 3 -connected, we provide a list of structures, such that the graph either has one of these structures or it has a rooted $K_{2,4}$ minor. This result provides a good characterization about rooted $K_{2,4}$ minors because no graph possessing a structure in the list can have a rooted $K_{2,4}$ minor. Checking for these structures requires determining if certain vertices are cofacial and determining if certain sets of vertices are 3-cuts that isolate terminals.

2.2 Low Connectivity Reductions

In this section we look at graphs which are not 3-connected. We begin by showing that we can easily reduce disconnected graphs to connected graphs (Section 2.2.1) and reduce graphs with cut vertices to 2 -connected graphs (Section 2.2.2). For graphs which are 2-connected but not 3-connected, we consider cases depending on how many terminals are on each side of a 2 -separation (Section 2.2.3). The cases where there is 0 or 2 terminals on one side

Figure 2.1: The five obstructions for the existence of a $K_{2,4}$ minor
of the separation are simple to check. For the case of a single terminal on one side of the separation, we show through a sequence of lemmas that an easy to describe minor of G, with fewer 2-separations, has a rooted $K_{2,4}$ if and only if G does.

Given a 4 -terminal planar graph (G, Y), we would like to determine whether G has a rooted $K_{2,4}$ minor or not. Graphs with higher connectivity have more structure that can be exploited so we first deal with graphs which have small vertex cuts. If G has a separation $\{A, B\}$ of small order with cut set W, and $|W| \leq 3$, we will show that either we can find a rooted $K_{2,4}$ minor in G, show that no rooted $K_{2,4}$ minor exists, or find G^{\prime} such that G^{\prime} has a rooted $K_{2,4}$ minor if and only if G^{\prime} does and G^{\prime} is formed from G by minor operations and potentially some of the following reductions:
(R1) If there exists a tight 3 -separation $\left\{C_{1}, C_{2}\right\}$ of G with $C_{1} \cap C_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left(C_{1} \backslash C_{2}\right) \cap Y=\emptyset$, we replace G by the subgraph induced by C_{2} and add the edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$ if they are not already present in G.
(R2) If there exists a tight 3 -separation $\left\{C_{1}, C_{2}\right\}$ of G with $C_{1} \cap C_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left(C_{1} \backslash C_{2}\right) \cap Y=\{t\}$, we replace G by the subgraph induced by C_{2} and the terminal t joined by edges to v_{1}, v_{2}, v_{3}. We also add the edge $v_{1} v_{2}$, unless v_{1}, v_{2}, t were on
a common face in an embedding of G (or the edge was already present in G), and similarly for the edges $v_{2} v_{3}$ and $v_{3} v_{1}$.

Moreover, we assume for an (R2) reduction that $C_{1} \backslash C_{2}$ has at least two vertices, since otherwise the reduction does not change the graph.
(R3) If a terminal t has exactly two non-terminal neighbours v_{1}, v_{2}, then if the edge $v_{1} v_{2}$ is present, it is deleted.

Figure 2.2: Low Connectivity Reductions

Figure 2.2 illustrates the three reductions. Before we proceed with the low connectivity cases, we prove a lemma which shows that performing these reductions does not affect the existence of a rooted $K_{2,4}$ minor.

Lemma 2.2.1. Let G^{\prime} be formed from G be performing one of the above reductions. Then G has a rooted $K_{2,4}$ minor if and only if G^{\prime} does.

Proof. Suppose we perform an (R1) on a graph G which has a rooted $K_{2,4}$ minor obtaining the graph G^{\prime}. Let $T_{1}, T_{2}, T_{3}, T_{4}, S_{1}, S_{2}$ form a model of the minor in G. Suppose $v \in C_{1}$ is
in T_{1}. Since $C_{1} \cap Y=\emptyset$ and T_{1} is connected, at least one of v_{1}, v_{2}, v_{3} is in T_{1}. Suppose $w \in V\left(C_{1}\right)$ is in S_{1}. Since S_{1} is connected and $C_{1} \cap Y=\emptyset$ and at most 3 of the T_{i} are incident with a vertex in C_{1}, in order for the minor to exist in G, at least one of v_{1}, v_{2}, v_{3} is in S_{1}. To construct subgraphs in G^{\prime} we take the intersection of the subgraphs in G with C_{2}. If this disconnected a subgraph T_{i} or S_{j}, it must have used a path in C_{1}, so we may assume that v_{1}, v_{2} are in that subgraph. In this case, we add the edge $v_{1} v_{2}$ to this subgraph and it is no longer disconnected (unless v_{3} is also in the subgraph, in which case we add $v_{1} v_{3}$ to the subgraph as well). If two subgraphs that were joined by an edge are no longer joined by an edge, the connection must have used a vertex in C_{1}. This means that the two subgraphs both had vertices in $\left\{v_{1}, v_{2}, v_{3}\right\}$, and so we may assume one uses v_{1} and the other uses v_{2}. But v_{1}, v_{2} are joined by an edge, so these subgraphs are joined by an edge in G^{\prime} as well.

Suppose we perform an (R1) on a graph G that does not have a rooted $K_{2,4}$ minor obtaining the graph G^{\prime}. If we contract C_{1} to a single vertex v, then we get a graph H that is a minor of G, so H also does not have a rooted $K_{2,4}$ minor. Suppose we have a rooted $K_{2,4}$ in G^{\prime} composed of subgraphs $T_{1}, T_{2}, T_{3}, T_{4}, S_{1}, S_{2}$. Since $K_{2,4}$ is triangle-free we may assume that the minor uses at most 2 edges of the triangle $\left\{v_{1}, v_{2}, v_{3}\right\}$. Say it does not use the edge v_{1}, v_{2}, so $G^{\prime}-v_{1} v_{2}$ also contains a rooted $K_{2,4}$ minor. However, contracting the edge $v v_{3}$ in H gives either G^{\prime} or $G^{\prime}-v_{1} v_{2}$. Thus, we can get $G^{\prime}-v_{1} v_{2}$ from G by minor operations and so it cannot have a rooted minor when G does not.

Suppose we perform an (R2) reduction on a graph G which has a rooted $K_{2,4}$ minor obtaining the graph G^{\prime}. Let $T_{1}, T_{2}, T_{3}, T_{4}, S_{1}, S_{2}$ form a model of the minor in G and assume that the terminal $t_{1}=t$. We let $T_{i}^{\prime}=T_{i}$ restricted to G^{\prime} and S_{i}^{\prime} similarly. If these do not give a model in G^{\prime} then either some subgraph is no longer connected or some pair that was previously connected is no longer. Notice that up to relabelling, we must have either $v_{1} \in S_{1}$ and $v_{2} \in S_{2}$ or $v_{1} \in T_{1}$ in order for T_{1} to be joined to S_{1} and S_{2}. Also, any subgraph other than T_{1} which had a vertex in C_{1} must contain at least one of v_{1}, v_{2}, v_{3}.

If $v_{1} \in S_{1}$ and $v_{2} \in S_{2}$ then we have a rooted $K_{2,4}$ minor in G^{\prime} unless we have disconnected either S_{1} or S_{2}, or if $v_{3} \in T_{2}$ and T_{2} is not connected to one of S_{1} or S_{2}. If we have disconnected S_{1} (or similarly S_{2}) then $v_{3} \in S_{1}$ and the edge $v_{1} v_{3}$ is not present, but the subgraphs were joined in C_{1} in G. This cannot occur, since if the edge is not present, v_{1}, v_{3}, t_{1} are on a common face and so connecting S_{1} in C_{1} would prevent T_{1} from connecting to S_{2}. Similarly, we cannot disconnect T_{2} from S_{1} or S_{2}, since if the edge $v_{1} v_{3}$ is not present, t_{1} was on that face and the t_{1} to v_{2} path in G would disconnect t_{2} from S_{1}.

If $v_{1} \in T_{1}$ then we may assume that v_{2} and v_{3} are not in S_{1} and S_{2}. Thus, restricting to G^{\prime} in this instance can only disconnect some subgraph that was using both v_{2} and v_{3}. However, this cannot occur, since if the edge $v_{2} v_{3}$ is present, the subgraph would be connected, and if it is not present, then v_{2} and v_{3} were not joined in the same subgraph in C_{1}.

Suppose we perform an (R2) on a graph G that does not have a rooted $K_{2,4}$ minor obtaining the graph G^{\prime}. If there are no 2 -cuts in C_{1}, then there are disjoint paths from t to v_{1}, v_{2}, v_{3}. We can contract these paths to single edges and contract the three regions in C_{1} bounded by these paths to single edges, obtaining G^{\prime} as a minor of G. Note that if t is on a face of the cut $\left\{v_{1}, v_{2}, v_{3}\right\}$ that we only get two regions, but still obtain G^{\prime} as a minor.

If there is a 2 -cut in C_{1} then it must isolate t, so we may assume that t is of degree 2 . If all three of the edges $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}\right\}$ are used in the model, then either they are all in a common subgraph, or they are used to pairwise join three of the vertices of the model. However, notice that we can find a model that only uses two, since if they are in a common subgraph, eliminating the edge will keep the subgraph connected, and there are no triangles in $K_{2,4}$ so we need not pairwise join three subgraphs. Thus, it suffices to show that for each of the three edges $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}\right\}$, if we delete that edge from G^{\prime} we get a minor of G. If we can find paths from t to v_{1} and v_{2} without going through v_{3} then we proceed as we did in the 3 -connected case. If we cannot find such paths, then v_{1}, v_{3} or $v_{2} v_{3}$ is a 2 -cut isolating t. This cannot occur, since then v_{1}, v_{2}, v_{3} instead gives an (R1) reduction or t is the only vertex in C_{1} and so there is no (R 2) reduction to perform. The same argument holds for the other two pairs of cut vertices.

Suppose we perform an (R3) reduction on G. Since G^{\prime} is a subgraph of G, if G^{\prime} has a rooted $K_{2,4}$ minor then so has G. If G has a rooted $K_{2,4}$ minor but G^{\prime} does not, then deleting the edge $v_{1} v_{2}$ must have either disconnected a subgraph or caused two subgraphs that need to be adjacent to no longer be. If deleting the edge caused a subgraph to be disconnected, then v_{1}, v_{2} are in the same subgraph. If this subgraph is not T_{1}, then T_{1} is only the vertex t_{1} and so it cannot be connected by an edge to both S_{1} and S_{2} in G. Thus we may assume that the subgraph is T_{1}, but in this case the subgraph is still connected after removing $v_{1} v_{2}$ since v_{1}, v_{2} are each connected by an edge to t_{1}. If deleting the edge caused two subgraphs to no longer be adjacent, then we may assume that v_{1} is in S_{1} and v_{2} is in one of the terminal subgraphs. If v_{2} was in a terminal subgraph other than T_{1}, then T_{1} would not be connected to S_{2} in G. Thus we may assume that v_{2} is in T_{1}, but in this case S_{1} and T_{1} are joined by the edge $v_{1} t_{1}$. Thus we see that performing an (R3) reduction
never creates or destroys a rooted $K_{2,4}$ minor.

2.2.1 Disconnected Graphs

Suppose that G is disconnected. Since $K_{2,4}$ is connected, G can have a rooted $K_{2,4}$ minor only if the terminal vertices are all in the same component. Given a disconnected graph, we can either find a connected component H which contains all the terminals, or we cannot. If such an H exists, then G has a rooted $K_{2,4}$ minor if and only if H does. If such an H does not exist, G does not have a rooted $K_{2,4}$ minor.

2.2.2 1-separations

Suppose $\{A, B\}$ is a 1 -separation of (G, Y) with cut vertex v such that $Y \subseteq A$. If G has no rooted $K_{2,4}$ minor, then clearly A also has none. If G has a rooted $K_{2,4}$ minor, then if, in a model of the minor, any subgraph S_{i} or T_{j} uses a vertex in B, it must also use the vertex v. Thus, at most one subgraph uses vertices in B, so we can find the same minor in A.

Suppose $B \cap Y=\left\{t_{1}\right\}$. If v was a terminal, then we have terminals in different components of $G-v$, meaning there is no rooted $K_{2,3}$ minor in $G-\{v\}$ and thus no rooted $K_{2,4}$ minor in G. When v is not a terminal, we obtain G^{\prime} by contracting B onto the vertex v and use this vertex in place of t_{1}. Since G^{\prime} is a minor of G, if G has no rooted $K_{2,4}$ minor, then G^{\prime} has no rooted $K_{2,4}$ minor. If G has a rooted $K_{2,4}$ minor, then the vertex v must be used in the subgraph T_{1} and all other subgraphs must be disjoint from B, otherwise we can not connect every S_{i} to every T_{j}. Thus, G^{\prime} would also have a rooted $K_{2,4}$ minor.

Suppose $B \backslash A$ contains two terminals t_{1} and t_{2} and $A \backslash B$ contains the other two terminals. We may assume that $v \notin T_{1}$ and $v \notin T_{3}$. Since every rooted $K_{2,4}$ minor contains two internally disjoint $\left(t_{1}, t_{3}\right)$-paths, and any such path must pass through v, we conclude that G has no rooted $K_{2,4}$ minor in this case.

2.2.3 2-separations

By the discussion in Section 2.2.2, we may assume that G is 2-connected. Suppose $\left\{C_{1}, C_{2}\right\}$ is a 2-separation of (G, Y) with $C_{1} \cap C_{2}=\{v, w\}$. We may assume that $\left|C_{1} \cap Y\right| \leq\left|C_{2} \cap Y\right|$ and we consider cases based on the value of $\left|C_{1} \cap Y\right|$ (i.e. the number of terminals in C_{1}). For each case, we either find a minor, show one does not exist, or reduce the problem to G^{\prime},
a minor of G, (or two minors) with fewer 2-cuts such that G has a rooted $K_{2,4}$ minor if and only G^{\prime} does.

No terminals in C_{1}

Suppose C_{1} contains no terminals. We construct G^{\prime} from G by contracting C_{1} to an edge between v and w; any resulting loops or parallel edges are deleted. If G had no rooted $K_{2,4}$ minor then clearly G^{\prime} also has none. If G had a rooted $K_{2,4}$ minor, then any subgraph S_{i} or T_{j} that used C_{1} must also use either v or w. Thus, in G^{\prime}, we use the subgraphs as in G, restricted to G^{\prime}. If some subgraph used both v and w, then we include the edge $v w$ in that subgraph to ensure it remains connected. This clearly gives a rooted $K_{2,4}$ minor in G^{\prime}.

Two terminals in C_{1}

Suppose C_{1} contains two terminals, t_{1} and t_{2}. If $t_{1}=v, t_{2}=w$, then clearly G has a rooted $K_{2,4}$ minor if and only if the subgraph induced by C_{2} does. If $t_{1}=v, t_{2} \neq w$, then it is easy to see that in any model of a $K_{2,4}$ minor in $G, w \in T_{2}$. Let H be the subgraph induced on C_{2} letting $w=t_{2}$. Then $H \leq_{M} G$ and G has a rooted $K_{2,4}$ minor if and only if H does. Thus, we may assume that $v, w \notin Y$.

When $v, w \notin Y$, we let H_{2} be the subgraph induced on C_{2} with $v=t_{1}$ and $w=t_{2}$ and H_{1} be defined symmetrically on C_{1} with t_{3} and t_{4}. We show that G has a rooted $K_{2,4}$ minor if and only if H_{1} has one, H_{2} has one, or H_{1} and H_{2} both have $K_{2,2}$ minors between $\left\{t_{1}, t_{2}\right\}$ and $\left\{t_{3}, t_{4}\right\}$. If H_{1} or H_{2} has a rooted $K_{2,4}$ minor, then clearly G does, since both graphs are minors of G. If the $K_{2,2}$ minors both exist, they can be composed to get a $K_{2,4}$ minor of G.

Suppose G has a rooted $K_{2,4}$ minor and let $T_{1}, T_{2}, T_{3}, T_{4}, S_{1}, S_{2}$ be a model of the minor. If $v \in S_{1}$, then $w \in S_{2}$ since it must connect to vertices in both C_{1} and C_{2}. This gives rooted $K_{2,2}$ minors in C_{1} and C_{2} between $\{v, w\}$ and $\left\{t_{1}, t_{2}\right\}$, or $\left\{t_{3}, t_{4}\right\}$, respectively. If instead $v \in T_{1}$ then $w \notin S_{1} \cup S_{2} \cup T_{1} \cup T_{3} \cup T_{4}$ since T_{2} would not be able to connect to both S_{1} and S_{2}, so $w \in T_{2}$. We see that H_{2} has a rooted $K_{2,4}$ minor. Similarly we have that if $v \in T_{3}$ then H_{1} has a rooted $K_{2,4}$ minor.

In the proceeding lemma we will show that finding rooted $K_{2,2}$ minors is equivalent to finding disjoint rooted paths. This is an important result that will be used throughout the thesis.

Lemma 2.2.2. Let $t_{1}, t_{2}, s_{1}, s_{2}$ be distinct vertices in a graph H. Then H contains a rooted $K_{2,2}$ minor between $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ if and only if there exists paths $P_{i, j}$ (where $P_{i, j}$ connects s_{i} to t_{j}) such that $P_{1,1} \cap P_{2,2}=\emptyset$ and $P_{1,2} \cap P_{2,1}=\emptyset$.

Proof. Clearly having a rooted $K_{2,2}$ minor gives us the desired paths. Suppose we have paths $P_{1,1}, P_{1,2}, P_{2,1}$, and $P_{2,2}$ that satisfy the stated properties. The proof that the subgraph $K=P_{1,1} \cup P_{1,2} \cup P_{2,1} \cup P_{2,2}$ of H contains a rooted $K_{2,2}$ minor is by induction on $|E(K)|$. If any non-end vertex has degree 2 , we can contract an edge incident with it and win. We can also contract any edge that is in two paths. If there is an edge of K between two non-adjacent vertices on a path, then we can reroute that path to use that edge, reducing the number of edges in K. Otherwise, the graph K has the property that each vertex is of degree 4 , except the endpoints of the paths which are of degree 2 .

Since any end vertex has degree 2 and is not adjacent to two vertices on the same path, there is an edge $s_{1} v_{1}$ of $P_{1,2}$ where $s_{1} \in P_{1,1}$ and $v_{1} \in P_{2,2}$ and there is an edge $s_{2} v_{2}$ of $P_{2,1}$ with $s_{2} \in P_{2,2}$ and $v_{2} \in P_{1,1}$. We can contract the portion of $P_{1,1}$ between t_{1} and v_{2} onto t_{1} and similarly contract a portion of $P_{2,2}$ onto v_{1}. We contract the remainder of $P_{1,1}$ and $P_{2,2}$ to be edges $s_{1} v_{2}$ and $s_{2} v_{1}$ respectively, giving us the desired $K_{2,2}$ minor.

One terminal in C_{1}

Suppose that t_{1} is the only terminal in C_{1}. If $t_{1}=v$, then based on arguments similar to the above cases we see that G has a rooted $K_{2,4}$ minor if and only if the graph formed by contracting $C_{1} \backslash C_{2}$ onto w does. Thus, we may assume that $Y \cap\left(C_{1} \cap C_{2}\right)=\emptyset$. If the subgraph induced on $C_{2} \backslash C_{1}$ is disconnected, then some component C_{3} of this contains zero or one terminal, then $\left\{C_{1} \cup C_{3}, C_{2} \backslash C_{3}\right\}$ or $\left\{C_{3} \cup\{v, w\}, C_{1} \cup C_{2} \backslash C_{3}\right\}$ would be 2-separations where one side has zero or two terminals. Since we have considered these cases previously, we may assume that $C_{2} \backslash C_{1}$ is connected.

Let G^{\prime} be formed by contracting $C_{1} \backslash C_{2}$ to the terminal t_{1}. We show that G^{\prime} has a rooted $K_{2,4}$ minor if and only if G does. Clearly if G^{\prime} has a rooted $K_{2,4}$ minor then so too does G, since G^{\prime} is a minor of G. If G has a rooted $K_{2,4}$ minor then in any model either S_{1} uses v and S_{2} uses w, or T_{1} uses at least one of v or w. If the former occurs, then we clearly still have the minor in G^{\prime}. If the latter occurs, we may assume that T_{1} uses w. If v was also used by T_{1} then the minor still exists in G^{\prime}. If v was in some other T_{i}, then it was not connecting to anything in C_{1} so the minor still exists in G^{\prime}. If v was in S_{1} or S_{2} (or not
part of the minor), then it is still connected to t_{1} and so the minor still exists. Thus, G^{\prime} has a rooted $K_{2,4}$ minor if and only if G does.

By Lemma 2.2 .1 we may assume the edge $v w$ is not present in G. If G has another 2-separation $\{A, B\}$, we may assume that the subgraph induced on A consists of a terminal joined by edges to two non-terminals. We know by the previous section that we cannot have $A \cap B=C_{1} \cap C_{2}$. Therefore G is a subdivision of a 3-connected graph, so G has a unique planar embedding. If a degree 2 terminal is cofacial with another terminal in this embedding, we can add an edge between them without changing the existence of a rooted $K_{2,4}$ minor. Thus, we may assume that t_{1} (and any other terminal of degree 2) is not cofacial with any other terminals.

Lemma 2.2.3. If G is as above then either G has a vertex with exactly one degree 2 neighbour or G has structure as shown in Figure 2.3.

Figure 2.3: Graphs where all vertices adjacent to a terminal of degree 2 have at least two neighbours of degree 2 .

Proof. Suppose G has no vertex with exactly one neighbour of degree 2 and consider the graph H with vertex set the vertices of G with a degree 2 neighbour, and an edge between them if they have a common degree 2 neighbour. The graph H has min degree ≥ 2, at most 4 edges and no parallel edges, so it must have a 3 -cycle or a 4 -cycle. This gives one of the obstructions depicted in Figure 2.3.

Suppose G has the first structure in Figure 2.3. If we can find disjoint paths between opposite pairs of the non-terminal "white" vertices shown in the figure, then we would have a rooted $K_{2,4}$ minor. If such paths exist, one would have to be in the interior region and the other in the exterior.

Let v_{1} be one of the "white" non-terminal vertices in the figure, with v_{2} and v_{3} being the non-terminal vertices cofacial with v_{1}. The facial neighbourhood of v_{2} gives two paths between the v_{2} and v_{3}. One such path will be in the interior region (and possibly contain the opposite non-terminal v_{4}) and the other path will be in the exterior region (and possibly contain v_{4}). So, if there is no path between v_{2} and v_{3} in one of the regions, then the facial path described above must use v_{4}, and so v_{1} and v_{4} are cofacial in that region, so there is no $K_{2,4}$ minor. If we consider paths from v_{1} to v_{4} in the facial neighbourhood of v_{3}, we can arrive at a similar conclusion. If we have a path from v_{1} to v_{4} in one region and a path from v_{2} to v_{3} in the other, we have our $K_{2,4}$ minor. If we do not have such paths, then either both pairs $\left(v_{1}, v_{4}\right)$ and $\left(v_{2}, v_{3}\right)$ are cofacial in the same region, or one pair (say $\left(v_{1}, v_{4}\right)$) is cofacial in both regions. If both pairs are cofacial in one region then all four vertices must be on a common face in that region and so we can embed the graph so that all 4 terminals are also in that face. If one pair is cofacial in both regions, then that pair gives a 2 -cut with two terminals on each side. We have already assumed that we do not have such a cut, so we either have the desired paths that give the minor, or we have the 4 terminals on a common face.

Suppose G has the second structure in Figure 2.3. We claim that in this case G does not have a rooted $K_{2,4}$ minor. Reductions $(R 1)-(R 3)$ give $G^{\prime}=K_{4}$, which does not have a rooted $K_{2,4}$ minor. By Lemma 2.2.1, G does not have a rooted $K_{2,4}$ minor.

Let t_{1} be a degree 2 terminal (with neighbours v and w) in a graph G such that G does not have the structures as shown in Figure 2.3, and let $G_{v}=G / t_{1} v$ and $G_{w}=G / t_{1} w$. Clearly, if G_{v} or G_{w} has a rooted $K_{2,4}$ minor then so does G. However, the converse does not hold. It may happen that G has a rooted $K_{2,4}$ minor but G_{v} and G_{w} do not. But this can happen only in very special situations as shown by the next lemma.

Lemma 2.2.4. Let G be a graph as above and let t_{1} be a terminal of degree 2 with neighbours v and w such that v has no other neighbours of degree 2 and such that there are no (R1), (R2) and (R3) reductions which can be performed on G. Then either t_{1} is cofacial with another terminal t_{2}, in which case G has a rooted $K_{2,4}$ minor if and only if the graph formed by adding the edge $t_{1} t_{2}$ does, or t_{1} is not cofacial with any other terminal, and G has a rooted $K_{2,4}$ minor if and only if at least one of G_{v} or G_{w} does.

Proof. It is clear that if t_{1}, t_{2} are cofacial that adding the edge $t_{1} t_{2}$ maintains planarity and does not affect the existence of a rooted $K_{2,4}$ minor. Thus, we may assume that t_{1}
is not cofacial with other terminals. It is also clear that if G has no rooted $K_{2,4}$ minor that neither G_{v} nor G_{w} will. Thus, we may assume that G has a rooted $K_{2,4}$ minor. Let $T_{1}, T_{2}, T_{3}, T_{4}, S_{1}, S_{2}$ form a model of such a minor. If $v \in T_{1}$ or $w \in T_{1}$ then G_{v} or G_{w} will have a rooted $K_{2,4}$ minor using the same model with the respective edge contracted. Thus, we may assume that in any such model $T_{1}=\left\{t_{1}\right\}$. Since T_{1} connects to S_{1} and S_{2}, we may also assume that $v \in S_{1}$ and $w \in S_{2}$.

We can always find a model where each $T_{i}(i \in\{2,3,4\})$ consists of a path from t_{i} to some vertex u_{i} (possibly $u_{i}=t_{i}$), where S_{1} and S_{2} are each joined by an edge to u_{i} and to no other vertices on the path. To see this, let us consider a model where T_{2}, T_{3}, T_{4} have the minimum number of edges. Each T_{i} is then clearly a tree. If any leaf vertex of this tree is adjacent to exactly one of S_{1} or S_{2}, then that vertex is t_{i} since otherwise that vertex could be added to the subgraph it is adjacent to. Thus, either $T_{i}=t_{i}$ or T_{i} has a leaf vertex which is adjacent to both S_{1} and S_{2} and so T_{i} must be the path between these 2 vertices. If S_{1} was joined to another vertex on the path, we could use a sub-path for t_{i} and add the rest to S_{2}, so it is not.

Subject to the above conditions on T_{2}, T_{3}, T_{4}, we can also assume that S_{1} and S_{2} are trees. Over all possible models, we will choose one that has the sizes of T_{2}, T_{3}, T_{4} minimum and subject to this, he sizes of S_{1} and S_{2} minimum. Since G_{v} and G_{w} have no rooted $K_{2,4}$ minor when G does, the vertex v must be a cut vertex of S_{1} and the vertex w must be a cut vertex of S_{2}. The embedding of the subgraph $S_{1}+v t_{1}$ induces a natural clockwise ordering of the vertices $t_{1}, u_{2}, u_{3}, u_{4}$ with respect to v (which we may assume appear in that order). The embedding of S_{2} also induces a clockwise ordering with respect to w, which must be the order $u_{4}, u_{3}, u_{2}, t_{1}$ (of Figure 2.4).

We can also see that u_{2} and u_{4} are not cofacial with t_{1}. Suppose $u_{2} \in P(w, v)$. We know that if this occurs, $u_{2} \neq t_{2}$, so there is an edge from u_{2} to some vertex $y \in T_{2}$. Looking at the facial neighbourhood of u_{2}, there is a vertex $g_{2} \in S_{2}, x$, and $g_{1} \in S_{1}$ which occur clockwise in that order. As we proceed clockwise starting from g_{2}, we will eventually arrive at a vertex z which is in $T_{2} \cup T_{3} \cup T_{4}$ (it will be x unless we arrive at some other vertex first). If we proceed counterclockwise from z around u_{2}, we will eventually get to a vertex in $S_{1} \cup S_{2}$. Since this facial path connects z to either S_{1} or S_{2}, by minimality we must have $z \in\left\{u_{3}, u_{4}\right\}$. We can repeat this argument going counterclockwise from g_{1} to x. From this we conclude that u_{3} and u_{4} are both cofacial with u_{2}. We may assume that u_{3} occurs first in the clockwise order. We observe that the paths in S_{1} to u_{3} and u_{2} will disconnect S_{2}
from u_{4}, meaning we would not have a $K_{2,4}$ minor. This is a contradiction, and so u_{2} and u_{4} cannot be cofacial with t_{1}.

Consider the subgraphs of S_{1} and S_{2} (together with edges to u_{2} and u_{4}) consisting of the paths from v and w to u_{2} and u_{4}. Let v_{2} be the last vertex in the facial neighbourhood of v on the path in S_{1} to u_{2} and define v_{4}, w_{2}, w_{4} in the obvious respective manners. This gives a partial representation of the model as shown in Figure 2.4 (where possibly $v_{2}=u_{2}$, etc.).

Figure 2.4: Structure of G when $v \in S_{1}, w \in S_{2}$
If the path P_{v} on the facial neighbourhood of v, clockwise from v_{2} to v_{4}, is disjoint from all subgraphs of the $K_{2,4}$ model aside from S_{1}, then we could use P_{v} and would not need the vertex v in S_{1}, implyingthat G_{v} has a rooted $K_{2,4}$ minor. Thus, we may assume that some vertex in $S_{2} \cup T_{2} \cup T_{3} \cup T_{4}$ is on P_{v}. A similar argument holds for the path P_{w} from w_{4} to w_{2} in the facial neighbourhood of w. Consider the vertex v_{2}^{\prime} on P_{v} that is closest to v_{2} and is also in $S_{2} \cup T_{2} \cup T_{3} \cup T_{4}$. If this vertex is in T_{i} and is different from u_{i}, then we could let the subpath of P_{v} from v_{2} to v_{2}^{\prime} be in S_{1} and find a model where T_{i} is smaller, contradicting minimality. We obtain similar conclusions for vertices $v_{4}^{\prime}, w_{2}^{\prime}, w_{4}^{\prime}$ whose definitions are similar to the definition of v_{2}^{\prime}. Thus, each of $v_{2}^{\prime}, v_{4}^{\prime},\left(w_{2}^{\prime}, w_{4}^{\prime}\right)$ is either u_{2}, u_{3}, u_{4} or a vertex in $S_{2}\left(S_{1}\right)$.

Since we assumed that no (R1), (R2) and (R3) reductions could be performed, it is clear that the facial neighbourhoods of v and w are disjoint aside from vertices which are also cofacial with t_{1}. Thus none of u_{2}, u_{3}, u_{4} can be in $P_{v} \cap P_{w}$. We observe that if $w_{4}^{\prime}=u_{2}$ then we can eliminate w from S_{2} by connecting to u_{2} along the path from w_{4} to w_{4}^{\prime} since u_{3} could not have connected to S_{2} along the path from w_{2} to u_{2}, as this would mean u_{3} could not connect to S_{1}. Similar conditions about $w_{2}^{\prime}, v_{2}^{\prime}$, and v_{4}^{\prime} follow. Also notice that
if u_{2} and u_{4} both occur in P_{w} then they are not consecutive in the facial neighbourhood, since we would not be able to connect S_{2} to u_{3}. Similarly for the facial neighbourhood of v. Moreover, there must be an edge from w to a vertex $w_{3} \in P_{w}$ and an edge from v to a vertex $v_{3} \in P_{3}$.

We observe that if $t_{2} \neq u_{2}$, then t_{2} is in the portion of graph bounded by the paths from v to w through u_{2} and u_{4}, since otherwise we could find a path from t_{2} to S_{1} or S_{2} that did not use u_{1}, contradicting the minimality of the size of T_{2}. Suppose that the path from v to u_{2} intersects P_{w} at a vertex x as in Figure 2.5. Then either we can reroute the path to use the facial neighbourhood of x (and henceforth be disjoint from P_{w}), or there is a vertex y in the path in S_{2} from w to u_{2} that is also in the facial neighbourhood of x and the corresponding face containing x and y is not contained in the disk that is shaded darker in Figure 2.5. If such a y exists, then it cannot be a facial neighbour of w, since then w, x, y would be a 3 -cut which isolates t_{2} and so by minimality, t_{2} is adjacent to w, and so y would not be in S_{2}. Since y is not a facial neighbour of w, we may assume it is on the path from w_{2} to u_{2}. In this case, we can reroute S_{2} to use the path from w_{2} to x and the path from x to u_{2} instead of the path from w_{2} to u_{2} and reroute S_{1} along the facial neighbourhood of x to the vertex y and the path from y to u_{2}. This allows us to assume that the path in S_{1} from v to u_{2} does not intersect P_{w}.

Figure 2.5: Structure of G when S_{1} intersects P_{w}.

Suppose that none of u_{2}, u_{3}, u_{4} are on $P_{v} \cup P_{w}$. If we consider the path in S_{2} from u_{3} to w, this path must intersect P_{w}; otherwise we could reroute S_{1} along P_{v} and G_{v} would thus have a rooted $K_{2,4}$ minor. Similarly, the path from in S_{1} from u_{3} to v must intersect the P_{w}. Now, consider the first time the paths from u_{3} to v and w hit a vertex on $P_{v} \cup P_{w}$. If one first hits P_{v} and the other P_{w}, then the subpaths to these segments along with P_{v} and P_{w} will give us a new model which shows that both G_{v} and G_{w} have rooted $K_{2,4}$ minors.

If both paths hit P_{w} first, we can follow P_{w} from u_{3} to S_{1} until it hits a vertex in S_{1}. This path cannot hit P_{w} again on the side opposite the intersection of the path in S_{2} from u_{3} to w. Thus, we can change S_{2} by adding a segment of P_{w} so that the path in the new S_{2} will not intersect P_{v} (and hence see that G_{v} has a rooted $K_{2,4}$ minor.

We can easily extend the above arguments to work if $u_{2} \in P_{w}$ and $u_{4} \notin P_{w}$ and $u_{3} \notin$ $P_{u} \cup P_{w}$. The only time this makes a difference is when both paths in $S_{1} \cup S_{2}$ from u_{3} to v and w hit P_{w} first. Here, we choose to continue the path which hits P_{w} closer to u_{2} until it hits P_{v} and then include this into S_{1}; next we change S_{2} by adding the second path from u_{3} to P_{w} together with a segment of P_{w} from this path to w_{4}. This gives rise to a $K_{w, 4}$ model in G_{v}.

We can also extend to the case where u_{2} and u_{4} are both P_{w} (or both in P_{v}). Again, the only difference is how we remake our model when the paths from u_{3} to v and w both intersect P_{w} first. We cannot have both paths, each P_{w}. Thus we choose to extend to v the path which only intersects P_{w} on one side of w_{3} (if one intersects w_{3}, we consider this as intersecting on both sides of w_{3}). This will allow us to find a model where S_{1} does not use v and so G_{v} has a rooted $K_{2,4}$ minor.

We are left to consider cases where $u_{3} \in P_{v} \cup P_{w}$. We may assume that $u_{3} \in P_{v}$. As long as $u_{4} \notin P_{v}$, we can find a path from u_{3} to P_{w}. If we consider this path to be in T_{3}, then we can connect S_{1} to T_{3} along P_{v}, and we can let P_{w} be in S_{2}, replacing w. Thus, G_{w} would have a rooted $K_{2,4}$ minor. We can do similarly if $u_{3} \in P_{v}$ and $u_{2} \notin P_{v}$.

Finally, if u_{2}, u_{3}, u_{4} are all in P_{v}, consider the vertex v_{3} defined earlier. As above, we can simply find a path in S_{2} between u_{3} and P_{w}. Letting this path be in T_{3} gives a model of a rooted $K_{2,4}$ minor where S_{2} does not use w, and so G_{w} has a rooted $K_{2,4}$ minor.

2.3 Three-Connected Graphs and the Main Theorem

For a 3 -connected 4 -terminal graph G, we define G^{*} as the graph obtained from G by performing the (R1), (R2), and (R3) reductions as described in Section 2.2. An (R2) reduction is only performed when there are no (R1) reductions to perform and an (R3) reduction is only performed when there are neither (R1) nor (R2) reductions to perform. This choice of ordering is important in reducing the number of cases we must consider in the sequel. Before stating the main theorem, we prove some preliminary results about 3 -connected planar graphs, the relationship between G and G^{*}, and the behaviour of the
reductions.
We prove our main theorem by considering a minimal counterexample to the claim that a graph has a rooted $K_{2,4}$ minor or it has one of the listed structures. Such a graph will have neither a structure nor the minor. Through a sequence of lemmas (2.3.7-2.3.10, we will continually strengthen the criteria for which graphs could be a minimal counterexample. After this, we consider several cases (Lemmas 2.3.14-2.3.18) which complete the proof of the theorem.

2.3.1 Important results

Our first three results deal with the connectivity and cut sets in 3-connected graphs.
Lemma 2.3.1. Let G be a 3-connected planar graph, and $W \subset V(G)$ a vertex set such that all vertices in W are on a common face. Then $G-W$ is connected. If W forms a path P in G, then contracting P to a single vertex gives a 2-connected graph.

Proof. Let $v, w \in V(G) \backslash W$ and let P_{1}, P_{2}, P_{3} be three internally disjoint paths in G between them. If P_{1}, P_{2}, P_{3} all intersected W, then we could embed $K_{3,3}$ in the plane by adding a vertex to the middle of the face containing W joined to a vertex of each path. Thus, at most two paths intersect W, so if we delete W, a path from v to w still exists and so $G-W$ is connected. If we contract P to a single vertex, we are using vertices from at most two of the given paths, so two paths must remain and G / W is 2-connected.

Lemma 2.3.2. Let G be a 3-connected planar graph, $W \subset V(G)$ and $x \in V(G)$ such that all vertices of W are on a common face. Then $H=G-(W \cup x)$ is connected unless there exists a 3-cut $\left\{x, w_{1}, w_{2}\right\}$ with $w_{1}, w_{2} \in W$, separating G into two components, each of which contains a vertex not in W.

Proof. If H is not connected, then by Observation 1.3.4 we have in G a tight cut set $\left\{v_{1}, v_{2}, \ldots v_{k}\right\} \subseteq(W \cup x)$ such that consecutive pairs of vertices are cofacial and other pairs are not. By Lemma 2.3 .1 this cutset must contain x. Since x is cofacial with all vertices $k \leq 3$, and since G is 3 -connected $k \geq 3$ and the result holds.

Lemma 2.3.3. Let G be a 3-connected planar graph, $W \subset V(G)$ and $x \in V(G)$ such that each vertex of W is cofacial with x (though not necessarily all on the same face) then $H=G-(W \cup x)$ is connected unless there exists a 3-cut $\left\{x, w_{1}, w_{2}\right\}$ with $w_{1}, w_{2} \in W$.

Proof. Suppose H is not connected. Then G has a tight cut set $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subset(W \cup$ x) such that there exists a vertex not in $W \cup x$ on each side of the cut, consecutive pairs of cut vertices are cofacial, and other pairs of cut vertices are not cofacial. This cutset will satisfy the requirement of the Lemma unless $x \notin S$. or $k \geq 4$. If $x \notin S$, then the component of $G-S$ containing x must contain at least one other vertex $y \notin(W \cup x$, and the other component contains a vertex $z \notin(W \cup x)$. If we consider the sets $\left\{v_{1}, v_{2}, x\right\},\left\{v_{2}, v_{3}, x\right\}, \ldots,\left\{v_{k}, v_{1}, x\right\}$ then one of these must be a cutset separating y and z. Thus we may assume that $x \in S$. We now need only consider the case when $k \geq 4$ and $x \in S$. Let $S=\left\{x, v_{2}, \ldots, v_{k}\right\}$. Each of the sets $\left\{x, v_{2}, v_{3}\right\}, \ldots,\left\{x, v_{k}, v_{2}\right\}$ will be a cutset unless the three vertices are on a common face. At least one such set must be a cutset, since otherwise S was not a cutset. Thus we can find a cutset of the form $\left\{x, w_{1}, w_{2}\right\}$.

We next turn our attention to the relationship between G and G^{*}. We showing that moving from G to G^{*} maintains 3-connectivity and does not change whether the graph has a rooted $K_{2,4}$ minor or not.

Lemma 2.3.4. If G is a 3-connected 4-terminal planar graph, so too is G^{*}.
Proof. Clearly all reductions (R1) - (R3) preserve the proper number of terminals and planarity. Thus, we only need to argue that 3 -connectivity is also maintained.

Suppose we perform an (R1) reduction on a 3 -connected graph G resulting in the graph G^{\prime}. Any pair of vertices that is cofacial in G^{\prime} was also cofacial in G. The only new facial adjacencies that are formed are between the vertices of the 3-cut used in the (R1) reduction, which may now be cofacial on an additional face (of size 3). Thus, if we have a 2 -cut in G^{\prime}, it must use some pair of these vertices. However, when the vertices of a 2 -cut are joined by an edge, they must be cofacial on at least three faces. This would imply they were cofacial on two faces in G, and not adjacent by an edge, contradicting the 3 -connectivity of G. Clearly the graph has no 1-cut, since no vertex is put onto a face with itself by the reduction.

Suppose we perform an (R2) reduction and the resulting graph G^{\prime} contains a 2-cut $\{v, w\}$. The vertices v and w appear on at least two common faces in G^{\prime}. They must be on a common face in G^{\prime} that they were not on in G since G is 3-connected. For each face of the 3 -cut used in the reduction, if the terminal t was on that face then we did not add the corresponding edge in G^{\prime}, and if t was not on that face, then it is now on a face of size 3 with the corresponding vertices of the 3 -cut. Thus, the only new facial adjacencies we created are between t and some of the vertices v_{1}, v_{2}, v_{3} or between a pair of $\left\{v_{1}, v_{2}, v_{3}\right\}$.

A 2-cut is not formed between a pair of $\left\{v_{1}, v_{2}, v_{3}\right\}$ by the same proof as in the (R1) case. Thus, if we have a 2 -cut, one of the vertices is t, and we may assume the other one is v_{1}.

Clearly the vertex t is on at most 3 faces and v_{1} is on at least two of these faces. If v_{1} was on the other face, then v_{1}, v_{2}, v_{3} would have been on a common face in G and so would not be a 3 -cut to use for an (R2) reduction. Thus v_{1} and t are on exactly two common faces, and they are joined by an edge. This cannot give a tight 2 -cut, since if we have a tight 2 -cut where the vertices are joined by an edge, they are on at least 3 common faces.

If G^{\prime} has a 1 -cut, then there is some vertex that is on the same face twice. The only new facial adjacencies we create are on the faces of size three that contain t, so any such vertex would have also been a cut vertex in G.

Figure 2.6: Performing an (R3) Reduction

Suppose we perform an (R3) reduction on G where neither (R1) nor (R2) reductions could be done. Let G^{\prime} be the resulting graph. It is clear from Menger's Theorem that deleting this single edge cannot create a cut vertex in the graph.

If G^{\prime} has a 2-cut, then it must use a pair of vertices that have a new facial adjacency. The only new facial adjacencies that are created are between t_{1} and vertices on the face F_{3} of G as seen in Figure 2.6. Thus, in G^{\prime} one of the vertices in the 2-cut is t_{1} and the other one is $v \in V\left(F_{5}\right)$. Since it is a 2-cut, v is on a second face with t_{1}, which we may assume is F_{1}. Clearly $v \neq v_{1}$. Since in G the faces F_{1} and F_{3} have two vertices v_{1} and v in common, those vertices must be adjacent. However this would mean v_{1} is a degree-3 non-terminal vertex in G, so we could have performed an (R1) reduction contradicting our assumption. This completes the proof.

If we apply Lemma 2.2.1 to G, it is clear that G has a rooted $K_{2,4}$ minor if and only if G^{*} does.

2.3.2 The main theorem

We are now ready to state the main theorem of this section.
Theorem 2.3.5. Let G be a 3-connected, 4-terminal planar graph. Then either G has a rooted $K_{2,4}$ minor, or the reduced graph G^{*} has one of the following five structures (for some ordering of its terminals $\left.t_{1}, \ldots, t_{4}\right)$:

1. (Three-Face - 3F) A face F such that $t_{1}, t_{2}, t_{3} \in V(F)$.
2. (One With Others - OWO) Three faces F_{1}, F_{2}, F_{3} such that $t_{1}, t_{2} \in V\left(F_{1}\right), t_{1}, t_{3} \in$ $V\left(F_{2}\right)$, and $t_{1}, t_{4} \in V\left(F_{3}\right)$.
3. (Double Face - DF) Three faces F_{1}, F_{2}, F_{3} and three vertices v_{1}, v_{2}, v_{3} such that $v_{1}, t_{1}, t_{2}, v_{2}$ appear clockwise in that order on F_{1}, the vertices $v_{2}, v_{3}, t_{4}, t_{3}$ appear clockwise in that order on F_{2}, and $v_{1}, v_{3} \in V\left(F_{3}\right)$.
4. (Happy Face - HF) Three faces F_{1}, F_{2}, F_{3} and vertices $v_{1}, \ldots v_{5}$ such that $v_{1}, t_{1}, t_{2}, v_{2}, v_{4}$ appear clockwise in that order around F_{1}, vertices $v_{2}, v_{3}, t_{3}, v_{5}$ appear clockwise in that order around F_{2}, vertices $v_{1}, v_{3} \in V\left(F_{3}\right)$ and v_{2}, v_{4}, v_{5} form a 3-cut separating t_{4} from all other terminals.
5. (Double Cut Join - DCJ) Two faces F_{1}, F_{2} and five vertices v_{1}, \ldots, v_{5} such that $t_{2}, t_{1}, v_{1}, v_{2}$ appear clockwise in that order around F_{1}, vertices $t_{1}, t_{2}, v_{4}, v_{3}$ appear clockwise in that order around F_{2}, vertices v_{1}, v_{2}, v_{5} form a 3 -cut separating t_{3} from all other terminals and v_{3}, v_{4}, v_{5} form a 3 -cut separating t_{4} from all other terminals. (The faces F_{1} and F_{2} may be the same face, when the edge $t_{1} t_{2}$ is not present).

Some of these vertices shown may be equal (unless that produces a 2-cut), e.g. it is allowed that $v_{1}=t_{1}$ in DF (but $v_{2}=t_{2}$ would give $3 F$) or $v_{1}=v_{4}$ in HF or even $v_{5}=t_{3}=v_{3}$ in HF. Figure 2.7 illustrates the structures. When showing the existence of one of the structures, we will use the notation present beneath the diagram to indicate the key vertices appearing in the structures.

2.3.3 Proof of the Theorem 2.3.5

We begin the proof of Theorem 2.3 .5 by showing that if a graph has one of the listed structures then it does not have a rooted $K_{2,4}$ minor.

Figure 2.7: The five obstructions for the existence of a $K_{2,4}$ minor

Lemma 2.3.6. Suppose G has one of the structures in Theorem 2.3.5. Then G has no rooted $K_{2,4}$ minor.

Proof. If G has 3 F structure, then there is no $K_{2,3}$ minor between some three of the terminals (if there was, we could add a vertex on the common face and get a planar embedding of $\left.K_{3,3}\right)$. So, there is also no $K_{2,4}$ minor. If G has $O W O\left(t_{1}\right)$ then $G-t_{1}$ has no rooted $K_{2,3}$ minor and so G has no rooted $K_{2,4}$ minor.

Suppose G has $D F\left(v_{1}, v_{2}, v_{3}\right)$ and a rooted $K_{2,4}$ minor. If v_{2} was in no subgraph of the model, $G-v_{2}$ would have the minor as well, but $G-v_{2}$ has 3 F. If $v_{2} \in T_{i}$, then we can contract the path from t_{i} to v_{2} and the resulting graph would have the minor, but, again it has 3 F . Thus, we may assume that $v_{2} \in S_{1}$. There is a path in $T_{1} \cup S_{1}$ from v_{2} to t_{1}. Deleting this path must leave the other terminals in the same component; otherwise S_{2} cannot connect to all of them. It is easy to see that the only way for this to happen is that $v_{1} \in S_{1} \cup T_{1}$. A similar argument shows that $v_{3} \in S_{1} \cup T_{4}$ and so S_{2} cannot connect to both T_{3} and T_{2}.

Suppose G has $H F\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ and a rooted $K_{2,4}$ minor. If any of v_{2}, v_{4}, v_{5} were in T_{4}, then we could contract T_{4} and get a graph with $3 F$ or $D F$ which has no rooted $K_{2,4}$
minor, so we may assume that $T_{4} \cap\left\{v_{2}, v_{4}, v_{5}\right\}=\emptyset$. Similarly to the $D F$ case, we may assume $v_{2} \in S_{1}$, otherwise we have an obstruction we have already discussed; similarly, $v_{1} \in T_{1} \cup S_{1}$. Further to this, we must also have $v_{4} \in T_{1} \cup S_{1}$, since otherwise $T_{1} \cup S_{1}$ would separate T_{4} from T_{2}. For S_{2} to connect to T_{2}, we must have $v_{3} \in T_{2} \cup S_{2}$. To connect S_{2} to T_{4}, we must have $v_{5} \in S_{2}$. However, then $S_{2} \cup T_{2}$ separates T_{3} from S_{1} and so G does not have a rooted $K_{2,4}$ minor.

Suppose G has $D C J\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$. Any rooted $K_{2,4}$ minor must induce a rooted $K_{2,2}$ minor on the terminals t_{1} and t_{2}. This minor contains two paths between t_{1} and t_{2} passing through S_{1} and S_{2} respectively. The only way the paths can be routed so that none of their deletions separates the remaining terminals is to route one through v_{1} and v_{2} and to route the other through v_{3} and v_{4}. Thus, we may assume that $\left\{v_{1}, v_{2}\right\} \subseteq S_{1} \cup T_{1} \cup T_{2}$ and $\left\{v_{3}, v_{4}\right\} \subseteq S_{2} \cup T_{1} \cup T_{2}$. However, this cannot be extended to a $K_{2,4}$ minor since v_{5} is needed to connect S_{1} to T_{4} and to connect S_{2} to T_{3}.

To show that graphs not having a structure from Theorem 2.3.5 have a rooted $K_{2,4}$ minor, we will consider a minimal counterexample to this claim. This will be a graph G such that G^{*} has no rooted $K_{2,4}$ minor nor a structure from the theorem. We may assume that $G=G^{*}$, since if $G \neq G^{*}$ then G^{*} is a smaller counterexample. We say that G is reduced when $G=G^{*}$. The following series of lemmas will put restrictions on what such a minimal counterexample would look like.

Lemma 2.3.7. Given a reduced 3-connected planar graph G such that one terminal (say t_{1}) is cofacial with two other terminals (say t_{2} and t_{3}) possibly on different faces, then either G has $3 F$ structure, or $O W O\left(t_{1}\right)$ or G has a rooted $K_{2,4}$ minor.

Proof. If t_{4} is cofacial with t_{1} or if t_{2} and t_{3} are cofacial, then G has $3 F$ structure or $O W O\left(t_{1}\right)$. If not, we consider the two paths P, Q from t_{2} to t_{3} in the facial neighbourhood of t_{1}. Since t_{2} and t_{3} are not cofacial, there is a vertex $p \in V(P) \backslash\left\{t_{1}, t_{3}\right\}$ that has a neighbour outside the facial neighbourhood of t_{1}. Similarly, there is a vertex $q \in V(Q) \backslash\left\{t_{2}, t_{3}\right\}$ that has a neighbour outside the facial neighbourhood of t_{1}. By Lemma 2.3 .3 we can find paths in $G-(V(P \cup Q) \backslash\{p, q\})$ from t_{4} to p and q, completing the $K_{2,4}$ minor, unless there is a 3 -cut which uses t_{1} and separates p or q from t_{4}. The existence of such a cut would either contradict that G is reduced or imply that t_{1} and t_{4} are cofacial, which we already said cannot occur.

From now on we shall frequently use the notation $P(a, b)$ introduced in Section 1.1, where a and b are cofacial vertices and $P(a, b)$ is the clockwise traversal of a facial walk containing a and b.

Lemma 2.3.8. Let G be a reduced, 3-connected planar graph such that two terminals t_{1} and t_{2} are cofacial. Then either G has one of the structures of Theorem 2.3.5 or G has a rooted $K_{2,4}$ minor.

Proof. Let $S_{1}=P\left(t_{1}, t_{2}\right), S_{2}=P\left(t_{2}, t_{1}\right)$ and let $G^{\prime}=G-\left\{t_{1}, t_{2}\right\}$. We will consider two cases, first the case where G^{\prime} is 3 -connected and then the case where G^{\prime} is not 3-connected.

1: We consider first the case where G^{\prime} is 3-connected. Let $G^{\prime \prime}=G /\left(E\left(S_{1}\right) \cup E\left(S_{2}\right)\right)$ and let s_{1}, s_{2} be the contracted vertices. To exhibit a $K_{2,4}$ minor in G, it is sufficient to exhibit a $K_{2,2}$ minor in $G^{\prime \prime}$ between $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{3}, t_{4}\right\}$. By Lemma 2.2.2, this minor exists if and only if we can find the pairs of disjoint paths mentioned in the lemma. We consider two possible cases, either $G^{\prime \prime}$ is 3 -connected or it is not.
1.1: Suppose that $G^{\prime \prime}$ is 3 -connected. Then we know that the required paths exist unless there is a face F containing $s_{1}, s_{2}, t_{3}, t_{4}$ in a bad order around the face (see Theorem 1.3.9). All vertices of S_{1} and S_{2} are on a common face in G^{\prime}, namely the face which used to contain t_{1}, t_{2}, so this must be the same face corresponding to F, since $G^{\prime \prime}$ is 3 -connected. All vertices on this face are cofacial in G with at least one of t_{1}, t_{2}, so t_{3}, t_{4} are cofacial with t_{1} or t_{2}. By Lemma 2.3.7 this graph either has a structure or the minor. This completes case 1.1, and we may now assume that $G^{\prime \prime}$ is not 3 -connected.
1.2: We now consider the case that $G^{\prime \prime}$ is not 3 -connected. If $G^{\prime \prime}$ has a 1 -cut $\{v\}$, then $v \in\left\{s_{1}, s_{2}\right\}$ and in G^{\prime} this would give a 2 -separation. Since G^{\prime} is 3 -connected, this is not possible and hence $G^{\prime \prime}$ is 2-connected. There are three types of 2-cuts which can exist in $G^{\prime \prime}$:
(1) The set $\left\{s_{1}, s_{2}\right\}$ could be a 2 -cut.
(2) The set $\left\{s_{1}, v\right\}$ (or $\left\{s_{2}, w\right\}$) could be a 2-cut that isolates t_{3} or t_{4}.
(3) The set $\left\{s_{1}, v\right\}$ (or $\left\{s_{2}, w\right\}$) could be a 2 -cut that has t_{3}, t_{4} on one side and s_{2} on the other (or t_{3}, t_{4} on one side, s_{1} on the other).

Note that cuts of type (1) cannot exist, since if such a cut existed, then in G^{\prime}, for some $v_{1} \in S_{1}$ and $v_{2} \in S_{2}$, the set $\left\{v_{1}, v_{2}\right\}$ would be a 2-cut (since contraction of part of a face
boundary does not introduce new cofacial pairs of vertices), but G^{\prime} is 3 -connected. We consider three possibilities, either we have only cuts of type (2), we have only cuts of type (3), or we have cuts of both types.
1.2.1: Suppose first that only cuts of type (2) exist. Since G is reduced, there are only three possibilities to consider: There is a single such cut; there are two such cuts, which both have s_{1} as an endpoint; or there are two such cuts, one using s_{1}, the other using s_{2}. We consider these three cases separately.
1.2.1.1: Suppose there is a single cut, $\left\{s_{1}, v\right\}$ that isolates t_{3}. In G^{\prime}, there is a corresponding 3 -cut of the form $\left\{v_{1}, w_{1}, v\right\}$, where $v_{1}, w_{1} \in S_{1}$, which also isolates t_{3}. This is also a 3 -cut in G, so it is reduced, and so the only vertex in the component containing t_{3} is the terminal t_{3}. In $G^{\prime \prime}$, if we contract $t_{3} v$ (creating a new vertex t_{3}) then the resulting graph H will be 3 -connected. We see that H will have the two disjoint paths unless $t_{3}, t_{4}, s_{1}, s_{2}$ are on a common face of H. As in case 1.1, we see that this corresponds to t_{4} being cofacial with t_{1} or t_{2} in G, so by Lemma 2.3.7, G has either a rooted $K_{2,4}$ minor or a structure. Thus, there is not a single cut of type (2), completing case 1.2.1.1.
1.2.1.2: Suppose there are two cuts, $\left\{s_{1}, v\right\},\left\{s_{1}, w\right\}$. As in case 1.2.1.1, the first cut corresponds to a cut $\left\{v_{1}, w_{1}, v\right\}$ in G^{\prime} and in G, and the second corresponds to a cut $\left\{v_{2}, w_{2}, w\right\}$ in G^{\prime} and G. Since G is reduced, t_{3} and t_{4} are the only vertices on the smaller side of their respective cuts. We have single-edge paths from s_{1} to t_{3} and t_{4}. If $v=w$, then we can find a path from s_{2} to v in $G^{\prime \prime}-\left\{s_{1}\right\}$ completing the $K_{2,4}$ minor. If $v \neq w$, we can find a path from s_{2} to t_{4} in $G^{\prime \prime}-\left\{v, s_{1}\right\}$ and we can find a path from s_{2} to t_{3} in $G^{\prime \prime}-\left\{w, s_{1}\right\}$. These paths give the desired $K_{2,4}$ minor, so we are done the case with two cuts using the same vertex, completing case 1.2.1.2.
1.2.1.3: Suppose there are two cuts $\left\{s_{1}, v\right\},\left\{s_{2}, w\right\}$. As in case 1.2.1.2, the first cut corresponds to a cut $\left\{v_{1}, w_{1}, v\right\}$ in G^{\prime} and in G, and the second corresponds to a cut $\left\{v_{2}, w_{2}, w\right\}$ in G^{\prime} and G. Since G is reduced, t_{3} and t_{4} are the only vertices on the smaller side of their respective cuts. If $v=w$, then G has $D C J\left(v_{1}, w_{1}, v_{2}, w_{2}, v\right\}$. When $v \neq w$, we contract the edge $t_{3} v$ and $t_{4} w$ to create vertices v^{\prime}, w^{\prime}. This new graph is 3 -connected, so we can find the desired paths unless $\left\{v, w, s_{1}, s_{2}\right\}$ are on a common face. We see that this must be the face which contained t_{1}, t_{2} in G, so we may assume that w is cofacial with t_{2}. Then the set $\left\{t_{2}, v_{2}, w\right\}$, must be a 3 -cut in G which isolates t_{4}, and since G is reduced, we can apply Lemma 2.3.7. This complete all cases where we have only cuts of type (2).
1.2.2: We next suppose that only cuts of type (3) exist. There could be multiple
such cuts which all use s_{1} and are laminar. We will consider the cut $\left\{s_{1}, v\right\}$ for which the component containing t_{3} and t_{4} is smallest possible. We create the graph H by contracting the component not containing t_{3}, t_{4} onto v. This will make an edge between s_{1}, v, and the resulting graph will be 3 -connected. If we can find a $K_{2,2}$ minor from $\left\{s_{1}, v\right\}$ to $\left\{t_{3}, t_{4}\right\}$ in H, then G has a rooted $K_{2,4}$ minor. If we cannot, s_{1}, w, t_{3}, t_{4} must be appear on a common face of H in a bad order. Since H is 3-connected, this must be one of the faces of H containing the edge $s_{1} v$. In G^{\prime} and G, this means we have a 3 -cut $\left\{v_{1}, w_{1}, v\right\}$ with $v_{1}, w_{1} \in S_{1}$ such that v_{1}, v, t_{3}, t_{4} appear on a common face in that order (up to swapping t_{3}, t_{4}). Then G has $D F\left(v, v_{1}, w_{1}\right)$ structure. Thus, we may assume that G does not have only cuts of type (3).
1.2.3: We now consider the case where cuts of both types (2) and (3) exist. As mentioned above, there may be multiple cuts of type (3), however we will take the smallest one, $\left\{s_{1}, v\right\}$. Any cuts of type (2) must be of the form $\left\{s_{1}, w\right\}$, since a cut of the form $\left\{s_{2}, x\right\}$ cannot isolate a terminal. We contract the component of the 2 -cut $\left\{s_{1}, v\right\}$ containing s_{2} onto v to create the graph H. The only 2-cuts in H are the cuts of type (2) which were also present in $G^{\prime \prime}$. If two such cuts exist, then as in cases 1.2 .1 .2 and $1,2,1,3$, we can find the desired paths and complete the $K_{2,4}$ minor. If there is only a single cut $\left\{s_{1}, w\right\}$, isolating t_{4}, then we consider $H^{\prime}=H / t_{4} w$, and let w^{\prime} denote the vertex formed after contracting $t_{4} w$. Note that $w^{\prime} \neq v$. The graph H^{\prime} will be 3 -connected, and so the desired paths exist unless $\left\{s_{1}, v, t_{3}, w^{\prime}\right\}$ are cofacial in that order. Note that here we cannot swap t_{3}, w^{\prime} in the ordering, since this would give a 2 -cut which would isolate t_{3}.

In G^{\prime} and G, the vertex s_{1} in the cut $\left\{s_{1}, v\right\}$ corresponds to $v_{1}, w_{1} \in V\left(S_{1}\right)$. Similarly, the cut $\left\{s_{1}, w\right\}$ corresponds to $v_{2}, w_{2} \in S_{1}$. The vertices occur in the order $v_{1}, v_{2}, w_{2}, w_{1}$ (say) in S_{1}. Recall that w is cofacial with v and v_{1} or with v and w_{1}; we may assume the former. Since G is reduced, we see that $v_{1}=v_{2}$. This corresponds to G having $H F\left(w_{1}, v_{1}, v, v_{2}, w\right)$ structure.

2: We lastly consider the case where G^{\prime} is not 3 -connected. If there was a 1 -cut, $\{v\}$ in G^{\prime}, then $\left\{t_{1}, t_{2}, v\right\}$ would be a 3 -cut in G. Since G is reduced, this would mean that each side of the 3 -cut consists of only one other terminal, and so G would be a graph on 5 vertices, with $3 F$ structure. Thus we may assume that G^{\prime} is 2 -connected. Let $\{v, w\}$ be a 2 -cut in G^{\prime}. If this 2 -cut corresponds to a 3 -cut $\left\{v, w, t_{1}\right\}$ (or similarly $\left\{v, w, t_{2}\right\}$) in G, then since G is reduced, t_{1} would be cofacial with another terminal t_{j} of degree 3 . Since $\{v, w\}$ is a 2 -cut in G^{\prime}, it is easy to see that $j \neq 2$. If $j \in\{3,4\}$, then we are done by Lemma 2.3.7. Therefore, we have $\left\{t_{1}, t_{2}, v, w\right\}$ is a 4 -cut in G, with the following pairs of
vertices cofacial (up to relabelling of v, w): $\left\{t_{1}, t_{2}\right\},\left\{t_{2}, v\right\},\{v, w\},\left\{w, t_{1}\right\}$. We consider two possibilities, either t_{3} and t_{4} are in the same component of the associated separation or they are in different components.
2.1: Suppose first that we have such a 4 -cut where t_{3} and $P\left(t_{1}, t_{2}\right)$ are on one side of the cut while t_{4} and $P\left(t_{2}, t_{1}\right)$ are on the other. We let $S_{1}=P\left(t_{1}, t_{2}\right) \cup P\left(t_{2}, v\right]$ and $S_{2}=P\left(t_{2}, t_{1}\right) \cup P\left(t_{1}, w\right]$. We can join the components of S_{1} in the facial neighbourhood of t_{2} and the components of S_{2} in the neighbourhood of t_{1}. If there is no path from t_{3} to w that does not intersect S_{1}, then applying Lemma 2.3.3, to $S_{1} \cup t_{2}$ we have a 3 -cut using the vertex t_{2} that isolates t_{3}. Since G is reduced, this would mean that t_{2} and t_{3} are cofacial, which would mean t_{2} was cofacial with two terminals and we could apply Lemma 2.3.7. By Lemma 2.3.3, we can find a path from t_{3} to S_{1} which is disjoint from $\left\{w, t_{1}, t_{2}\right\}$ unless those three vertices form a 3 -cut. If this occured, since G is reduced, t_{3} would actually be on a common face with t_{1} and t_{2} and G would have $3 F$ structure. Thus, we can always connect S_{1} and S_{2} to t_{3}. We can construct similar paths in the other component of the cut $\left\{v, w, t_{1}, t_{2}\right\}$ to complete the $K_{2,4}$ minor.
2.2: It remains to consider the case where every 2 -cut $\{v, w\}$ in G^{\prime} has both terminals on the same side. Again, we consider G and have the vertices $\left\{t_{1}, t_{2}, v, w\right\}$ being pairwise cofacial in the manner as stated above. There may be more than one such 2-cut, and we distinguish between two classes of cuts. Each cut separates $Q_{1}=P\left(t_{1}, t_{2}\right)$ from $Q_{2}=$ $P\left(t_{2}, t_{1}\right)$ and we classify cuts based on which of Q_{1} and Q_{2} is in the same component as t_{3} and t_{4}. We choose a cut $\left\{v_{1}, w_{1}\right\}$ such that Q_{1} is in the same component as t_{3} and t_{4} and this component is minimal. We choose a cut $\left\{v_{2}, v_{2}\right\}$ such that Q_{2} is in the same component as t_{3} and t_{4} and this component is minimal. At least one of the cuts $\left\{v_{1}, w_{1}\right\}$ and $\left\{v_{2}, w_{2}\right\}$ must exist and we may have $v_{1}=v_{2}$ or $w_{1}=w_{2}$ but not both pairs being equal.
2.2.1: We first assume that only one cut $\{v, w\}$ exists. Let H be the graph obtained from G by contracting the component with no terminals to be an edge between v and w. In $H^{\prime}=H-\left\{t_{1}, t_{2}\right\}$ there are no 2-cuts, since ours was chosen to be minimal. Notice that in H, the path $P\left(t_{2}, t_{1}\right)$ is replaced by the edge joining v and w. We construct $H^{\prime \prime}$ by contracting $P\left(t_{1}, t_{2}\right)$ to a vertex s_{1} and contracting the edge $v w$ into a vertex s_{2}. Let us remark that our goal is to find a $K_{2,4}$ minor in G is thus reduced to finding a $K_{2,2}$ minor in $H^{\prime \prime}$ joining $\left\{t_{3}, t_{4}\right\}$ and $\left\{s_{1}, s_{2}\right\}$.

We now proceed as in case 1.2, looking to find two pairs of disjoint paths, one pair joining s_{1}, t_{3} and s_{2}, t_{4} respectively, and the other joining s_{1}, t_{4} and s_{2}, t_{3} respectively. If $\left\{s_{1}, s_{2}\right\}$
would be a cut of type (1) in $H^{\prime \prime}$, then in G, some $v^{\prime} \in P\left(t_{1}, t_{2}\right)$ would be cofacial with v or w and therefore $\left\{v^{\prime}, w, t_{1}\right\}$ (or $\left\{v^{\prime}, v, t_{2}\right\}$) would be a 3 -cut. Since G is reduced, this 3 -cut would either separate one terminal (thus making it cofacial with t_{1} or t_{2}), or would contradict our choice of v and w.

If one side contained no terminals, then it would not be a 2 -cut in $H^{\prime \prime}$. If one side contained a single terminal, then that terminal would have to be t_{2} (or $\left.t_{1}\right)$), since otherwise we could apply Lemma 2.3.7. However, since G is reduced, this would imply that the vertex w (or v) did not exist, and so our cut $\{v, w\}$ would not exist. Thus, there can be no cut of type (1).

If there are no 2 -cuts in H^{\prime}, then the graph has a rooted $K_{2,4}$ minor, since if it did not, we would again have $\left\{v^{\prime}, w\right\}$ or $\left\{v^{\prime}, v\right\}$ cofacial for some $v^{\prime} \in P\left(t_{1}, t_{2}\right)$. If we only have cuts of type (2) or (3) in $H^{\prime \prime}$ which use s_{1}, then this is the same as above, thus there must be a 2 -cut of type (2) or (3) that uses s_{2}. When we have only cuts of type (2), if there is a single such cut $\left\{s_{2}, v\right\}$ which isolates t_{3}, then we have the minor unless there is a face containing s_{1}, s_{2}, t_{3}, x. This face must be the face containing t_{1} and w in G (or the face containing t_{2} and v in G), but then t_{1} and t_{3} or t_{2} and t_{3} are cofacial and we can apply Lemma 2.3.7. If we have two cuts, $\left\{s_{1}, x\right\}$ isolating t_{3} and $\left\{s_{2}, y\right\}$ isolating t_{4}, then similarly to above we have the minor unless there is a face in G containing w, x, y, v^{\prime} for some $v^{\prime} \in s_{1}$. The only face this can be is the face in G with t_{1} and w, in which case there will be a 3 -cut of the form $\left\{t_{1}, v^{\prime}, v^{\prime \prime}\right\}$ which isolates t_{3}, meaning Lemma 2.3.7 applies.

If we have only a cut of type (3), then G must be as in diagram 1 of Figure 2.8 (or we can find the paths), and if we have a cut of type (3) and a cut of type (2) it must be as in diagram 2. If G is as in diagram 1, we let $P\left(t_{1}, t_{2}\right) \cup P\left(t_{2}, w\right] \cup P[w, x] \subseteq S_{1}$ and $P\left(t_{2}, t_{1}\right) \cup P\left(t_{1}, v\right] \subseteq S_{2}$. We can join the components of S_{1} in the facial neighbourhood of t_{2} and join the components of S_{2} in the facial neighbourhood of t_{1}. We let $T_{3}=P\left(x, t_{3}\right]$, $T_{4}=P\left[t_{4}, w\right)$. We can join v to T_{3} in the facial neighbourhood of x and join v to T_{4} in the facial neighbourhood of w. We add these paths to S_{2}, completing the $K_{2,4}$ minor. Diagram 2 proceeds in a similar manner, except that $T_{4}=t_{4}$.
2.2.2: Let us now assume that cuts $\left\{v_{1}, w_{1}\right\}$ and $\left\{v_{2}, w_{2}\right\}$ both exist. The cuts $\left\{v_{1}, w_{1}\right\}$ and $\left\{v_{2}, w_{2}\right\}$ split G^{\prime} into three components. Let C_{1} be the component bounded by $\left\{t_{1}, v_{1}, w_{1}, t_{2}\right\}$ which contains no terminals. If we contract the interior of this component to the vertex v_{1}, then we claim that v_{1} will be adjacent to w_{1}, t_{1}, t_{2}. These edges must exist unless some three of the four vertices are pairwise cofacial. However, this cannot occur since G is reduced

Figure 2.8: Possible structures for $H^{\prime \prime}$
and $\left\{v_{1}, w_{1}\right\}$ is a cut. Similarly, we could contract this component to the vertex w_{1} and have w_{1} adjacent to t_{1}, v_{1}, t_{2}. We define C_{2} similarly with respect to v_{2}, w_{2} and see that we could contract C_{2} in a similar manner. We can obtain four different graphs $G_{1} \ldots G_{4}$ by contracting the two components in each of two different ways. By the minimality of cuts $\left\{v_{1}, w_{1}\right\}$ and $\left\{v_{2}, w_{2}\right\}$, each of these graphs is 3-connected.

For each graph G_{i}, we must have a $K_{2,2}$ minor (which extends to a $K_{2,4}$ minor of G) unless t_{3} and t_{4} are on a common face with $x_{1} \in\left\{v_{1}, w_{1}\right\}$ and $x_{2} \in\left\{v_{2}, w_{2}\right\}$. Over all four graphs, we must have that t_{3} and t_{4} are on common faces with each possible pair $\left\{x_{1}, x_{2}\right\}$. This cannot occur since G is 3 -connected, so we are done. Note that if $v_{1}=v_{2}$ we instead have three graphs G_{i} to consider, but the same conclusion arises. This completes the proof of the lemma.

Lemma 2.3.9. Let G be a reduced 3-connected graph with A, B a 3-separation, such that $t_{1}, t_{2} \in V(A), t_{3}, t_{4} \in V(B)$. Then G has a rooted $K_{2,4}$ minor or one of the structures from Theorem 2.3.5.

Proof. Let $A \cap B=\left\{v_{1}, v_{2}, v_{3}\right\}$. If one of these vertices is a terminal, say $v_{1}=t_{i}$ then t_{i} and another terminal are cofacial since G is reduced. Thus we are done by Lemma 2.3.8, and we may henceforth assume that $\left\{v_{1}, v_{2}, v_{3}\right\} \cap\left\{t_{1}, \ldots, t_{4}\right\}=\emptyset$.

In G, there may be many 3 -separations which have two terminals on each side. We choose one that has A minimal. Let $P_{i, j}$ be the facial path from v_{i} to v_{j} in A. Of the three such facial paths $P_{i, j}$, we may assume at least one of them does not contain a terminal, since if all three contained a terminal, then one terminal would be in two paths, and, since G is reduced, we would have t_{1}, t_{2} cofacial, and Lemma 2.3 .8 would apply. We may assume the path $P_{1,3}$ contains no terminals. Let A^{\prime} be the graph formed from A by contracting $P_{1,3}$ to a single vertex v. Since $P_{1,3}$ is a facial path, A^{\prime} is 2 -connected by Lemma 2.3.1. If there
is a 2 -cut in A^{\prime}, then it must use the vertex v. No such 2 -cut can isolate both terminals, since this 2 -cut would give rise to a 3 -cut in G that would contradict the minimality of A. Proceeding as in the proof of Lemma 2.3.8, we see that we can find a $K_{2,2}$ minor in A between $\left\{t_{1}, t_{2}\right\}$ and $\left\{P_{1,3}, v_{2}\right\}$ unless A has the structure as in Figure 2.9.

Figure 2.9: Graphs where A does not have the $K_{2,2}$ minor

We may assume A is not as in diagram 1 of Figure 2.9, since then Lemma 2.3.8 would be applicable. If A is as in diagram 2 , we can complete a $K_{2,2}$ minor between $\left\{t_{1}, t_{2}\right\}$ and $\left\{v_{1}, P_{2,3}\right\}$ by using $P\left[v_{1}, t_{2}\right)$ and the rest of the outer face boundary as shown in the diagram. We may thus assume that in A we can always find a $K_{2,2}$ minor between $\left\{t_{1}, t_{2}\right\}$ and $P_{1,3}, v_{2}$.

We now choose a 3 -separation such that B is minimal containing t_{3}, t_{4}. If the cut vertices are not the same as from the cut which made A minimal, we can find three disjoint paths between the vertices of the cuts by using Menger's theorem. Thus, we may assume they are the same vertices. Then it remains to show that in B, we can find a $K_{2,2}$ minor between $\left\{t_{3}, t_{4}\right\}$ and $\left\{v_{2},\left\{v_{1}, v_{3}\right\}\right\}$.

Using B, we create the graph B^{\prime} by identifying v_{1} and v_{3} to form the vertex w and need only find a $K_{2,2}$ minor in the planar graph B^{\prime} between $\left\{t_{3}, t_{4}\right\}$ and $\left\{w, v_{2}\right\}$. If B^{\prime} has a 2 -cut, then there must be a 3 -cut in B which uses v_{1}, v_{3}. Since B is minimal, such a cut would have to be as in diagrams 1 or 2 of Figure 2.10.

Figure 2.10: Interesting cases for B
If B is as in diagram 1 , by 3 -connectivity of G we can find disjoint paths from t_{3} to v_{1} and t_{4} to v_{2}. We can find a path Q from v_{2} to t_{3} in the facial neighbourhood of v_{1} unless v_{1} and t_{4} are cofacial. If we can not find a path from v_{3} to t_{4} which is disjoint from Q, then by Lemma 2.3.3, the vertex t_{4} is of degree 3 and is adjacent to v_{1}. Thus, we can complete the $K_{2,2}$ minor in this manner unless t_{4} is cofacial with v_{1}. If we swap v_{1} and v_{3} above, we can
complete the minor unless t_{4} and v_{3} are cofacial. One of these must work, since t_{4} being cofacial with v_{1} and v_{3} would mean t_{4} was cofacial with t_{1} and Lemma 2.3.8 would apply.

If B is as in diagram 2, then it only has the 6 indicated vertices. The edge $v_{2} x$ must be present, by minimality of B. Thus, since v_{3} is adjacent to both terminals and x is adjacent to both terminals and to v_{2}, we can complete the minor.

We last consider the case when B^{\prime} is 3 -connected. Then we can complete the minor unless $v_{1}, v_{2}, t_{1}, t_{2}$ are on a common face of B^{\prime} in the interlaced order, as in diagram 3 of Figure 2.10. If B has this structure, then Lemma 2.3.8 applies. Thus, we can always complete the $K_{2,4}$ minor.

Lemma 2.3.10. Let G be a reduced 3-connected planar graph such that no pair of terminals is cofacial and there is no 3-separation which has exactly two terminals on one side. If G has an edge $e=v_{1} t_{1}$ and two vertices v_{2}, v_{3} such that $\left\{v_{1}, t_{1}, v_{2}, v_{3}\right\}$ is a 4 -cut in G that isolates the terminal t_{2}, then G has a rooted $K_{2,4}$ minor.

Proof. Figure 2.11 shows what the structure of the 4-cut looks like for different scenarios in the proof. We attempt to construct a rooted $K_{2,2}$ minor in the component shown in diagram 1 by using $S_{1}=P\left(t_{1}, v_{2}\right]$ and $S_{2}=P\left[v_{3}, v_{1}\right]$. Since S_{1} and S_{2} are each on a single face, deleting either will not disconnect the graph, so by Lemma 2.3.1, we can get a $K_{2,2}$ minor between $\left\{S_{1}, S_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ unless $t_{2} \in P\left(v_{3}, v_{1}\right)$ and the edge $v_{1} v_{3}$ is not present, or there exists a vertex $v \in P\left(t_{1}, v_{2}\right) \cap P\left(v_{3}, v_{1}\right)$ and $v_{1} v_{3} \notin E(G)$. These possibilities are shown in diagrams 2 and 3 of Figure 2.11. In diagram 3, the edges $v_{3} v$ and $v_{3} v_{2}$ may not be present.

Figure 2.11: Structures of the 4-cut from an (R2) edge
We consider three cases: either S_{1} and S_{2} give a $K_{2,2}$ minor, or G is as in diagram 2, or G is as in diagram 3.

1: Let $H=G-\left\{t_{1}\right\}$. Then H is 3 -connected, since any 2-cut in H would correspond to a 3 -cut in G using t_{1}, and since G is reduced, one side either contains no vertices (and
so this is not a cut) or contains a single terminal (which would be cofacial with t_{1}). When the above $K_{2,2}$ minor exists, then from the proof of Lemma 2.3.9, we see that a rooted $K_{2,2}$ minor between $\left\{S_{1}, S_{2}\right\}$ and $\left\{t_{3}, t_{4}\right\}$ exists in H. This gives the desired rooted $K_{2,4}$ minor in G.

2: If G is as in diagram 2 of Figure 2.11 we attempt to construct a $K_{2,2}$ minor by letting $S_{1}=P\left(t_{1}, v_{2}\right] \cup P\left[v_{2}, v_{3}\right]$ and $S_{2}=P\left(t_{2}, v_{1}\right]$. By Lemma 2.3.2 $G-S_{1}$ is connected unless $\left\{w, v_{2}, x\right\}$ is a 3 -cut, where $w \in P\left(t_{1}, v_{2}\right)$ and $x \in P\left(v_{2}, v_{3}\right)$. Thus, we can ding a $K_{2,2}$ minor between $\left(S_{1}, S_{2}\right)$ and (t_{1}, t_{2}) unless $t_{2} \in P\left(v_{2}, v_{3}\right)$ and the edge $v_{2} v_{3}$ is not present (considered in case 2.1), or t_{2} is of degree 3 with neighbours $\left\{w, v_{2}, x\right\}$ where $w \in P\left(t_{1}, v_{2}\right)$ and $x \in P\left(v_{2}, v_{3}\right)$. If t_{2} has neighbours $\left\{w, v_{2}, x\right\}$ then $w \in P\left(t_{2}, v_{1}\right)$ and G is as in diagram 3 of Figure 2.11, except the edge $v v_{3}$ is not present (considered in case 3). If none of the exceptional cases occurs, we have the $K_{2,2}$ minor that can be extended to a rooted $K_{2,4}$ minor in G in the same way as explained in case 1 .
2.1: If $t_{2} \in P\left(v_{2}, v_{3}\right)$, then we see that t_{2} is on both faces containing v_{3} in the 4 -cut. In this instance, we let $S_{1}=P\left[v_{1}, v_{3}\right]$ and $S_{2}=v_{2}$. From the proof of Lemma 2.3.9, the only obstructions for extending this to a $K_{2,2}$ minor between $\left\{S_{1}, S_{2}\right\}$ and $\left\{t_{3}, t_{4}\right\}$ require at least one of t_{3} or t_{4} to be on a face of the cut (see Figure 2.9. This cannot occur, since t_{2} is on two of these faces and all vertices on the other face are in the facial neighbourhood of t_{1} in G. This can be extended to a $K_{2,4}$ minor in G, since S_{1} is connected to t_{1} and t_{2}, and S_{2} can be connected to both by 3 -connectivity.

3: Suppose G is as in diagram 3 of Figure 2.11. If none of the edges $v v_{3}$ and $v_{2} v_{3}$ are present, then t_{2} is on two faces of the 4 -cut in G and the above argument holds, so we may assume at least one of the edges is present. From the proof of Lemma 2.3.9, we see that we can find a $K_{2,2}$ minor in $H=G-t_{1}$ between $\left\{t_{3}, t_{4}\right\}$ and $\left\{P\left[v_{1}, v_{3}\right], v_{2}\right\}$ unless one of the terminals (say t_{3}) is on $P\left[v_{1}, v_{3}\right]$ or we have the situation shown in Figure 2.9. Since no terminals are cofacial in G, the first case of Figure 2.9 does not occur. The second case of Figure 2.9 gives t_{3} on a face F of the 3 -cut $\left\{v_{1}, v_{2}, v_{3}\right\}$ of H and t_{4} is of degree 3 with one neighbour in $V(F) \cap P\left[v_{1}, v_{3}\right]$, one additional neighbour in F and one additional neighbour in $P\left[v_{1}, v_{3}\right]$. We note that in this case, $F \supseteq P\left[v_{3}, v_{2}\right]$ since the face of the 3 -cut consists of the facial neighbourhood of t_{1} clockwise from v_{2} to v_{1}, and so cannot contain a terminal. Also note that if the edge $v_{1} v_{3}$ is present, we can use this edge and neither obstruction can occur.

If the $K_{2,2}$ minor between $\left\{t_{3}, t_{4}\right\}$ and $\left\{P\left[v_{1}, v_{3}\right], v_{2}\right\}$ exists, this extends to a rooted
$K_{2,4}$ minor in G since $P\left[v_{1}, v_{3}\right]$ is adjacent to t_{1} and t_{2}, while v_{2} is adjacent to v which is adjacent to t_{1} and t_{2}. Thus, we may assume that either $t_{3} \in P\left(v_{1}, v_{3}\right)$ or $t_{3} \in P\left(v_{3}, v_{2}\right)$ and t_{4} is of degree 3 . We consider these cases separately.
3.1: If $t_{3} \in P\left(v_{1}, v_{3}\right)$, then the edge $v v_{3}$ must be present since t_{2} and t_{3} are not cofacial. We can try to construct the $K_{2,2}$ minor between $\left\{S_{1}=P\left[v_{3}, v_{2}\right], S_{2}=v_{1}\right\}$ and $\left\{t_{3}, t_{4}\right\}$. This will work unless $t_{4} \in P\left(v_{3}, v_{2}\right)$ or t_{4} is of degree 3 with neighbours $w \in P\left(v_{1}, v_{3}\right), x \in$ $P\left(v_{3}, v_{2}\right)$ and v_{3}. If either of these occurs, we let S_{1} be the facial neighbourhood of t_{1} clockwise from v_{2} to v_{1} and $S_{2}=v_{3} . S_{1}$ and S_{2} both connect to $\left(t_{1}, t_{2}\right)$ since $v_{3} v$ is present. They also both connect to t_{3} along $P\left(v_{1}, v_{3}\right)$ and to t_{4} along $P\left(v_{3}, v_{2}\right)$ or
3.2: If $t_{3} \in P\left(v_{3}, v_{2}\right)$ and t_{4} is of degree 3 then the edge $v_{2} v_{3}$ is present. If the edge $v_{3} v$ is present, then letting $S_{1}=v_{3} v$ and letting S_{2} be the facial neighbourhood of t_{1} clockwise from v_{2} to v_{1} will work as in the above cases. If the edge $v_{3} v$ is not present, we let $S_{1}=P\left[v_{3}, t_{1}\right) \cup\left\{v_{2} v_{3}\right\}$ and $S_{2}=P\left[v_{1}, v_{3}\right) \cup\left\{v_{1} v\right\}$. By construction, S_{1} and S_{2} are each connected to t_{1}, t_{2}, t_{4}. We can connect t_{3} to S_{1} using $P\left(t_{3}, v_{2}\right)$. We can connect t_{3} to S_{2} using the facial neighbourhood of t_{4} unless some vertex $y \in P\left[v_{2}, t_{1}\right]$ is in the facial neighbourhood. However, if this occurs, then y, v, z (where z is the neighbour of t_{4} on $\left.P\left(v_{1}, v_{3}\right)\right)$ is a 3 -cut which isolates t_{1}. Since G is reduced, for this to occur, we must have $z=v_{1}$. This means that t_{4} is on $P\left[v_{1}, v_{3}\right]$ and would be cofacial with t_{2}. Since we know this does not occur, we must be able to connect S_{2} to t_{3}, completing the $K_{2,4}$ minor.

By Lemmas 2.3.7, 2.3.8, and 2.3.9, we need only prove Theorem 2.3.5 for reduced internally 3 -connected graphs G which have no pair of terminals cofacial. By Lemma 2.3.10 we may assume that in a minimal counterexample, G, there is no edge e incident with a terminal such that G / e admits an (R2) reduction.

Lemma 2.3.11. If a reduced graph G is a minimal counterexample to Theorem 2.3.5 and has no pair of terminals cofacial, then for any edge e incident with a terminal, G / e is a 3-connected 4-terminal planar graph.

Proof. Let $e=t_{1} v_{1}$. It's clear that G / e is planar. The vertex v_{1} cannot be a terminal, since t_{1} is not cofacial with any terminals. If G / e is not 3 -connected, then G has a 3 -cut of the form $\left\{t_{1}, v_{1}, v_{2}\right\}$ for some $v_{2} \in V(G)$. However such a cut cannot exist, since if it has 0 terminals on one side, then since G is reduced it would not be a cut, and if it had a single terminal on one side, that terminal would be cofacial with t_{1} since G is reduced. Thus G / e is 3 -connected.

Based on the above lemma, we see that for a minimal counterexample G, for any edge e incident with a terminal, $(G / e)^{*}$ must have one of the structures from Theorem 2.3.5. Before we proceed, we need the following lemmas about (R1) reductions.

Lemma 2.3.12. Performing a reduction of type (R1) does not create any new reductions of type (R1) or (R2).

Proof. To have a reduction of type (R1) or type (R2), it is necessary to for G to have 3 vertices which are pairwise cofacial. Performing an (R1) reduction, does not cause a pair of vertices that were not cofacial to become cofacial. So any 3 pairwise cofacial vertices after we perform an (R1) reduction were cofacial already before. Clearly we have not changed the location of any terminals with respect to the 3 cofacial vertices, so the number of terminals on each side of a 3 -cut is the same before and after the (R1) reduction.

It is not hard to see that the graph G^{\prime} that we obtain after performing all reductions of type (R1) does not depend on the order of the reductions made. The proof is omitted as this result is not required.

Lemma 2.3.13. Let G be a reduced 3-connected planar graph such that no pair of terminals is cofacial and there is no 3-separation which has exactly two terminals on one side and there is no edge $t_{1} v_{1}$ as in Lemma 2.3.10. Suppose that G has an edge $e=v_{1} t_{1}$ such that $\left\{v_{1}, t_{1}, v_{2}, v_{3}\right\}$ is a 4-cut in G and one side of the cut has no terminals. If G has no rooted $K_{2,4}$ minor then G / e has one of the structures from Theorem 2.3.5 if and only if the graph obtained by performing an (R1) reduction in G / e on $\left\{v_{2}, v_{3}, t_{1}\right\}$ has the structure (where t_{1} denotes the vertex formed by contracting e).

Proof. Let G and e be as described in the lemma. Suppose no pair of terminals is cofacial in G / e. Performing (R1) reductions in G / e will not make any pair be cofacial, and by Lemma 2.3.10 there are no (R2) reductions to perform. Thus neither G / e nor its reduction have a structure from Theorem 2.3.5. Thus, we may assume that some pair of terminals is cofacial in G / e. Since there were no cofacial terminals in G, one of the terminals is t_{1} and we may assume it is cofacial with t_{2}. We assume that the vertices $\left\{v_{1}, t_{1}, v_{2}, v_{3}\right\}$ are pairwise cofacial in the cyclic order given. We consider two cases, either v_{3} is a terminal or it is not.

1: We first consider the case where v_{3} is not a terminal. In this case, the terminal t_{2} is cofacial with v_{1} in G. If G / e has one of the structures from Theorem 2.3.5 then we are
done, so we assume it does not. Performing the (R1) reduction on $\left\{v_{2}, v_{3}, t_{1}\right\}$ creates a triangular face T incident with t_{1}. For this to be relevant to making one of the structures in Theorem 2.3.5, this new face must be one of the faces indicated in the statement of the theorem. This clearly cannot be one of the faces from $3 F$ or $O W O$ structures, since they all have more than a single terminal. This also cannot create $D F$ structure or $D C J$ structure, since the only faces which do not contain two terminals are faces where it only matters that a certain pair of vertices are cofacial, and the (R1) reduction did not make any new pairs of vertices cofacial. For $H F$ structure the face on the left has two cofacial terminals, so t_{1} is one of them. Observe that T is incident with t_{1} (but not with another terminal), so T does not participate in the structure.

2: Thus, we may assume that $v_{3}=t_{2}$. We consider two cases here, either t_{1} and t_{2} have v_{1} and v_{2} as their only common facial neighbours, or they have other common facial neighbours.
2.1: If t_{1} and t_{2} have no facial neighbours in common aside from v_{1} and v_{2}, then we can construct a rooted $K_{2,4}$ minor in G letting $S_{1}=P\left(t_{2}, v_{1}\right]$ and $S_{2}=P\left(t_{1}, v_{2}\right] \cup P\left[v_{2}, t_{2}\right)$. Since t_{1} and t_{2} have no other facial neighbours in common, if S_{1} and S_{2} intersect, it can only be at the vertex $w \in P\left(t_{2}, v_{1}\right) \cap P\left[v_{2}, t_{2}\right)$. If this happens, we let $T_{2}=t_{2} w$ and exclude w from S_{1} and S_{2}. Since w is adjacent to t_{2}, this will leave S_{1} and S_{2} connected. By construction, S_{1} and S_{2} are connected to t_{1} and t_{2}. Let $H=G-\left\{t_{1}, t_{2}\right\}$ and H^{\prime} be formed from H by contracting the side of the 2 -cut $\left\{v_{1}, v_{2}\right\}$ containing no terminals to a single edge. If G^{\prime} had a 1 -cut or a 2 -cut, then G would have a 3 -cut involving t_{1} and t_{2} or a 4 -cut involving t_{1}, t_{2} and vertices in S. Since t_{1} and t_{2} are not cofacial and their only common facial neighbours are v_{1} and v_{2}, this cannot happen. Thus H^{\prime} is 3 -connected. This means we can find a rooted $K_{2,2}$ minor between $\left\{t_{3}, t_{4}\right\}$ and $\left\{v_{1}, v_{2}\right\}$ in H^{\prime} unless the four vertices are on a common face in the interlaced order (by Lemma 2.2.2). However, this cannot happen since then t_{3} and t_{4} would be cofacial with either t_{1} or t_{2}.
2.2: We now consider the case where t_{1}, t_{2} have common facial neighbours $\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$ $(n \geq 3)$ which occur in that order clockwise around t_{1}. In $H=G-\left\{t_{1}, t_{2}\right\}$, the set $\left\{w_{i}, w_{i+1}\right\}$ is a 2 -cut or $w_{i} w_{i+1} \in E(H)$ for $1 \leq i \leq n$. Let C_{i} be the bridge of H with cut set $\left\{w_{i}, w_{i+1}\right\}$. We consider two cases, either t_{3}, t_{4} are in different components $C_{i}, C_{j}, i<j$ or both are in the same component C_{k}, as shown in Figure 2.12.
2.2.1: First, we suppose t_{3} and t_{4} are in different components, C_{i} and C_{j}, respectively where $1 \leq i<j \leq n$. We let S_{1} be a path from w_{i+1} to w_{j} clockwise in the facial

Figure 2.12: Structures of the 4-cut from an (R1) edge
neighbourhood of t_{1} combined with $P\left[w_{j}, t_{1}\right) \cup P\left[w_{i+1}, t_{2}\right)$, and let S_{2} be the path from w_{j+1} to w_{i} clockwise in the facial neighbourhood of t_{1} combined with $P\left[w_{j+1}, t_{2}\right) \cup P\left[w_{i}, t_{1}\right)$. By construction, S_{1} and S_{2} are connected to t_{1} and t_{2}. To see that t_{3} can be connected to S_{1}, we observe that by Lemma 2.3.2, either $G-\left(\left\{t_{2} \cup P\left[w_{i}, t_{1}\right]\right)\right.$ is connected or t_{2} and t_{3} are cofacial. Since the latter outcome does not happen, t_{3} can be connected to A_{1} without intersecting S_{2}, t_{1}, t_{2}. By symmetry, we can make the other necessary connections to complete the $K_{2,4}$ minor.
2.2.2: We now suppose that in G, the terminals t_{3} are t_{4} are both in the component C_{k} as in the right side drawing of Figure 2.12. We attempt to form a rooted $K_{2,4}$ minor using $S_{1}=P\left[w_{k}, t_{2}\right) \cup P\left(t_{1}, w_{k}\right]$ and $S_{2}=P\left(t_{2}, w_{k+1}\right] \cup P\left[w_{k+1}, t_{1}\right)$. We consider cases depending on if these two subgraphs are disjoint or if they intersect in different ways.
2.2.2.1: If these two subgraphs are disjoint, then they are each connected to t_{1} and t_{2}. Letting $H=G-\left\{t_{2}, t_{2}\right\}$ and then contracting the component separated by $\left\{w_{k}, w_{k+1}\right\}$ not containing any terminals to be a single edge to obtain the graph H^{\prime}. We see that H^{\prime} is 3 -connected in the same way as above. We can find a rooted $K_{2,2}$ minor between $\left\{t_{3}, t_{4}\right\}$ and $\left\{w_{k}, w_{k+1}\right\}$ unless the four vertices are on a common face. It is easy to argue that this cannot happen since no terminals are cofacial. this completes the proof when S_{1} and S_{2} are disjoint.
2.2.2.2: We next consider the possible ways for the subgraphs S_{1} and S_{2}, as defined in case 2.2.2, to intersect. We first suppose that there exists $v \in P\left[w_{k}, t_{2}\right) \cap P\left[w_{k+1}, t_{1}\right)$ (the case when there exists $v \in P\left(t_{1}, w_{k}\right] \cap P\left(t_{2}, w_{k+1}\right]$ proceeds similarly). Such a v means
that $\left\{v, t_{2}, w_{k+1}\right\}$ and $\left\{v, t_{1}, w_{k}\right\}$ are 3 -cuts in G, and, since G is reduced, v is the only vertex of G not in C_{k}. Since G is 3 -connected and reduced, v must have neighbour set $\left\{t_{1}, t_{2}, w_{k}, w_{k+1}\right\}$. Moreover, at least one of the edges $t_{1} w_{k}$ and $t_{1} w_{k+1}$ must be present, and is the edge e from the statement of the lemma. If both edges are present, we have a $K_{2,2}$ minor between $\left\{w_{k}, w_{k+1}\right\}$ and $\left\{t_{1}, t_{2} v\right\}$ which can be completed to a $K_{2,4}$ minor in G as before. If only the edge $t_{1} w_{k}$ is present, we consider two constructions of a $K_{2,2}$ minor minus an edge between $\left\{S_{1}, S_{2}\right\}$ and $\left\{T_{1}, T_{2}\right\}$. First, we take $S_{1}=w_{k}, S_{2}=w_{k+1}, T_{1}=$ $t_{1}, T_{2}=t_{2} v$. This gives a $K_{2,2}$ minor minus the edge between S_{2} and T_{1}. We can also take $S_{1}=w_{k}, S_{2}=w_{k+1} v, T_{1}=t_{1}, T_{2}=t_{2}$. This gives a $K_{2,2}$ minor minus the edge between S_{1} and T_{2}.

We would like to extend one of these to a $K_{2,4}$ minor in G, by finding a $K_{2,2}$ minor between $\left\{w_{k}, w_{k+1}\right\}$ and $\left\{t_{3}, t_{4}\right\}$ in C_{k}, while also making the connection for the edge missing from the first $K_{2,2}$. To get a $K_{2,2}$ minor plus the edge between S_{2} and T_{1}, we will take $S_{2}=P\left(t_{1}, w_{k+1}\right]$ and $S_{1}=w_{k}$. We know that H^{\prime}, the graph obtained from G by deleting t_{1} and t_{2}, and contracting the portion of the graph outside C_{k} to a single edge is 3 -connected. By Lemma 2.3.1, we know that if in H^{\prime} we contract S_{2} to a single vertex to form $H^{\prime \prime}$, that this graph is 2-connected, and any 2-cut uses the vertex s_{2} formed by the contraction. If $H^{\prime \prime}$ is 3 -connected, then we can complete the minor, since the only obstruction would be a face in G containing w_{k}, t_{3}, t_{4}, and some vertex in S_{2}, which cannot occur.

Any 2-cut in $H^{\prime \prime}$ gives a 3 -cut in G using two vertices in S_{2}, so it must isolate either t_{3} or t_{4} since G is reduced and has no 3 -cut which isolates both t_{3} and t_{4}. If cuts exist for both t_{3} and t_{4}, then S_{2} is connected to all terminals in H^{\prime} and by Lemma 2.3.1 we can connect $S_{1}=w_{k}$ to both terminals in $H^{\prime}-S_{2}$. If only one terminal, say t_{3} is isolated by a 2 -cut, say $\left\{s_{2}, z_{1}\right\}$ then t_{3} is of degree 3 in G and is adjacent to z_{1} and two vertices in $S+2$. From the proof of Lemma 2.3.8, we see that the only obstruction to finding the rooted $K_{2,2}$ minor is if, for some $u_{1} \in P\left(t_{1}, w_{k+1}\right)$ there is a face F_{1} in G containing $w_{k}, t_{4}, z_{1}, u_{1}$ (in the stated order). If this occurs, we attempt to extend the other possible $K_{2,2}$ minus an edge to a $K_{2,4}$ minor and see that this can be done unless t_{4} is of degree 3 with two neighbours in $P\left(t_{2}, w_{k}\right]$ and a third neighbour z_{2}, and for some $u_{2} \in P\left(t_{2}, w_{k}\right]$, we have a face F_{2} in G containing $w_{k+1}, t_{3}, x_{2}, u_{2}$ (in this order).

We observe that the vertices in each of sets $\left\{w_{k}, t_{1}, u_{1}\right\}$ and $\left\{w_{k+1}, t_{2}, u_{2}\right\}$ are pairwise cofacial in G. If either of these sets gave rise to a 3 -cut, it would have no terminals on one side and so each set is on a common face. Since $\operatorname{deg}\left(t_{3}\right)=3$ we see that z_{2} is also a
vertex on the face F_{1} and similarly, z_{1} is a vertex on the face F_{2}. Therefore $\left\{w_{k}, u_{2}, z_{1}\right\}$ and $\left\{w_{k+1}, u_{1}, z_{2}\right\}$ are 3-cuts. Combining these facts, we see that $z_{1}=z_{2}$ and that G has structure as in Figure 2.13. Here we can let $S_{1}=\left\{u_{2} z_{1}, z_{1} u_{1}\right\}$ and $S_{2}=\left\{w_{k} v, w_{k+1} v\right\}$ which will connect each to all terminals, completing the $K_{2,4}$ minor.

Figure 2.13: Special case of the 4-cut from an (R1) edge
2.2.2.3: We now need only consider the case where there exists $w \in P\left(w_{k}, t_{2}\right) \cap$ $P\left(t_{2}, w_{k+1}\right)$ or $x \in P\left(w_{k+1}, t_{1}\right) \cap P\left(t_{1}, w_{k}\right)$. In each case, the $K_{2,2}$ minor is easily found by letting $T_{2}=t_{2} w$ or $T_{1}=t_{1} x$, respectively, and so this can be completed to a $K_{2,4}$ minor in G as above.

Based on the above two lemmas, we see that for any minimal counterexample G and any edge $e \in E(G)$ incident with a terminal then either G / e has a structure from Theorem 2.3.5 or we can perform an (R3) reduction in G / e, possibly after performing some (R1) reductions. We let \mathcal{J}_{1} be the set of minimal counterexamples G where for some edge e incident with a terminal G / e has a structure from Theorem 2.3.5 and let \mathcal{J}_{2} be the set of minimal counterexamples G where for every edge e incident with a terminal, to arrive at $(G / e)^{*}$ we must perform an (R3) reduction.

Graphs in \mathcal{J}_{1}

For graphs G in \mathcal{J}_{1}, when we contract an edge e incident with a terminal we must immediately see one of the structures from Theorem 2.3.5. Through the following lemmas, we show that G has a rooted $K_{2,4}$ minor.

Lemma 2.3.14. If $G \in \mathcal{J}_{1}$, contracting an edge incident with a terminal does not create $3 F$ or DF structure

Proof. The only new facial adjacencies created by contracting the edge are between the terminal vertex t formed by the contraction of the edge e and other vertices. For any terminal, both $3 F$ and $D F$ structures have a pair of terminals cofacial that are not that terminal and so we do not create either structure.

Lemma 2.3.15. If $G \in \mathcal{J}_{1}$ has an edge e such that G / e gives $O W O$ structure then G has a rooted $K_{2,4}$ minor.

Proof. We first consider the possibility that G / e gives an instance of OWO structure. Since we may assume no pair of terminals are cofacial before contraction, after contraction our terminal is cofacial with all other terminals and so the only possible structure is that as in Figure 2.14.

Figure 2.14: Graphs in \mathcal{J}_{1} where contracting an edge gives $O W O$
Suppose G has structure as in Figure 2.14. Let $T_{i}=t_{i}$ for $1 \leq i \leq 4$. Observe that no vertex in $P\left[t_{4}, v_{7}\right]$ is cofacial with a vertex in $P\left[v_{2}, t_{2}\right]$ since this would give a v_{1} and t_{1} cofacial. Also, no vertex in $P\left[t_{4}, v_{7}\right]$ is cofacial with a vertex in $P\left[t_{2}, v_{3}\right]$ since this would give a 3 -cut with two terminals on each side. Similarly, no vertex in $P\left[v_{6}, t_{4}\right]$ is cofacial with a vertex in $P\left[v_{2}, t_{2}\right]$. Let Q be the path from v_{7} to v_{3} using the facial neighbourhood of $v_{1} t_{1}$ and the facial neighbourhood of $P\left[v_{2}, t_{2}\right]$. The part of the path cofacial with $v_{1} t_{1}$ cannot intersect $P\left[v_{4}, v_{5}\right]$ and the part cofacial with $P\left[v_{2}, t_{2}\right]$ cannot intersect $P\left[t_{3}, v_{5}\right]$. We let S_{1} be Q combined with the path in the facial neighbourhood of v_{1} form v_{3} to t_{3}. We let $S_{2}=P\left[v_{1}, t_{4}\right) \cup P\left[v_{1}, t_{2}\right) \cup P\left(t_{3}, v_{1}\right]$. By construction, all the desired connections have been made, completing the $K_{2,4}$ minor.

Lemma 2.3.16. If $G \in \mathcal{J}_{1}$ has an edge e such that G / e gives $H F$ structure then G has a rooted $K_{2,4}$ minor.

Proof. The terminal in G incident with e must be either t_{1} or t_{2} and must not be on the face F_{1} before contraction, since otherwise G has two terminals cofacial and we can apply Lemma 2.3.8. The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ cannot be a 3 -cut separating $\left\{t_{1}, t_{2}\right\}$ from $\left\{t_{3}, t_{4}\right\}$ before contraction, since then Lemma 2.3.9 would apply. Similarly, the terminal which is incident with the contracted edge cannot be in C_{3}. If the terminal incident with e is t_{1}, then in G, t_{1} can be in C_{3}, or the edge e can split C_{1} and C_{2} or split C_{1} and C_{3}. Note that if e splits C_{1} and C_{3} then t_{1} would be cofacial with t_{3}, so we need not consider that case and by Lemma 2.3 .10 we also need not consider the case where e splits C_{1} and C_{2}. The terminal incident with e cannot be t_{2}, since in G it cannot be in C_{1} or C_{3} and the edge e cannot split C_{1} and C_{3}, since then t_{2} would be cofacial with t_{3}. This gives the only possibility as seen in Figure 2.15.

Figure 2.15: Graphs in \mathcal{J}_{1} where contracting an edge gives $H F$

Suppose that G is as in Figure 2.15. Notice that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a 3 -cut, so t_{2} is of degree 3 with neighbours $\left\{v_{1}, v_{2}, v_{3}\right\}$. The edges $v_{2} v_{3}, v_{2} v_{5}, v_{2} v_{4}$ must be present, since otherwise G has an edge which can be contracted to give $3 F$. Let $T_{i}=t_{i}$ for $q \leq i \leq 4$. Let $P\left[v_{4}, v_{1}\right] \cup P\left(t_{3}, v_{5}\right] \subseteq S_{1}$ and $P\left[v_{2}, t_{3}\right) \subseteq S_{2}$. Note that $t_{1} \notin P\left[v_{4}, v_{1}\right]$ since otherwise contracting $t_{4} v_{2}$ would give 3 F structure. By construction, S_{2} is connected to all T_{2}, T_{3}, T_{4} and S_{1} is connected to each T_{i}, though S_{1} has two components. To join the components of S_{1}, we use the edge $v_{4} v_{5}$ if present, or the path $P\left[v_{5}, v_{4}\right]$ if the edge is not present. In the latter case, we may assume $t_{1} \notin P\left[v_{5}, v_{4}\right]$ since $G / t_{4} v_{2}$ would have OWO structure. We may also assume $t_{3} \notin P\left[v_{5}, v_{4}\right]$ since $\left\{t_{3}, v_{4}, v_{2}\right\}$ would be a 3 -cut isolating t_{4} but not minimal.

To connect S_{2} to T_{1}, we attempt to use the facial neighbourhood of v_{1}, clockwise from the edge e to the vertex v_{3}. This will connect S_{2} to T_{1} unless v_{1} had a facial neighbour $x \in P\left(v_{5}, v_{4}\right)$ and the edge $v_{4} v_{5}$ is not present, or v_{1} has a facial neighbour $y \in P\left[t_{3}, v_{5}\right]$. Suppose such a y exists. Then $\left\{y, v_{1}, v_{3}\right\}$ is a 3 -cut which isolates t_{3}. The edge $v_{1} v_{3}$ must
be present, since otherwise G / e has 3 F structure. In this case, we let $S_{1}=P\left[v_{4}, v_{1}\right] \cup\left\{v_{5}\right\}$ and $S_{2}=P\left[y, v_{2}\right]$, unless $y=t_{3}$, in which case we use $P\left(y, v_{2}\right]$. By construction, we have all desired connections except T_{1} to S_{2}. When $y \neq t_{3}$, there must be a path from t_{1} to S_{2} that is disjoint from S_{1} since $G-P\left[v_{4}, v_{1}\right]$ is connected. If $t_{3}=y$, then either such a path exists, or by Lemma 2.3.2 $\left\{t_{3}, v_{1}, z\right\}$ is a 3 -cut which isolates t_{1} for some $z \in P\left[v_{4}, v_{1}\right)$. Such a 3 -cut cannot exist, since by minimality we would have t_{1}, t_{2} cofacial, and $G / t_{4} v_{4}$ would have 3 F structure.

We may now assume that v_{1} has a facial neighbour $x \in P\left(v_{5}, v_{4}\right)$ and the edge $v_{4} v_{5}$ is not present. We consider two possibilities, either there exists $w \in P\left[v_{3}, t_{3}\right)$ such that $\left\{w, x, v_{5}\right\}$ isolates t_{3} or no such w exists. If no such w exists, then we let $S_{1}=P\left[v_{2}, t_{3}\right) \cup v_{2} v_{4}$ and $S_{2}=P\left[v_{5}, x\right] \cup P\left[x, v_{1}\right]$. These subgraphs as constructed must be disjoint, since if S_{1} and S_{2} intersected a vertex of intersection would be the w described above. Moreover, they connect S_{1} and S_{2} to each T_{1}, giving a $K_{2,4}$ minor. Next, we consider the case where a w as described exists. Let $S_{1}=v_{2} v_{5} \cup v_{5} x$ and $v_{1} v_{4} \subseteq S_{2}$. (Note that edge $v_{5} x$ exists since otherwise contracting $t_{1} v_{4}$ gives 3 F structure.) This has all the desired connections except for S_{2} to T_{3}. To connect S_{2} to T_{3}, we can connect v_{1} to w in the facial neighbourhood of x. This will work unless t_{2} is in the facial neighbourhood of x. Moreover, t_{2} is not in this facial neighbourhood, since $\left\{x, v_{4}, t_{2}\right\}$ would be a 3 -cut isolating t_{1} and contradicting minimality of G.

Lemma 2.3.17. If $G \in \mathcal{J}_{1}$ has an edge e such that G / e gives $D C J$ structure then G has a rooted $K_{2,4}$ minor.

Proof. If in G, the set v_{1}, v_{2}, v_{5} isolates t_{3} and $t_{1}, t_{2}, v_{1}, v_{2}$ are on a common face, then $G / t_{3} v_{1}$ would give $3 F$. Thus, either one end of e is one of $\left\{t_{1}, t_{2}\right\}$, or the contracted edge becomes v_{5}. Moreover, if t_{3} is contracted to become v_{5} then G / e has $\operatorname{HF}\left(v_{3}, v_{4}, t_{3}, v_{3}, t_{3}\right)$ structure and so was already considered previously. By symmetry, we may assume that t_{2} is contracted rather than t_{1}. Notice that in $G,\left\{v_{1}, v_{2}, v_{5}\right\}$ cannot separate $\left\{t_{2}, t_{3}\right\}$ from $\left\{t_{1}, t_{2}\right\}$, so the only possibility for G is as in Figure 2.16.

Suppose that G is as in Figure 2.16. We first observe that for $w \in P\left[v_{2}, v_{6}\right), x \in$ $P\left(v_{6}, v_{4}\right]$, if $\left\{w, x, v_{6}\right\}$ was a 3 -cut that isolated t_{2}, then $\left\{t_{1}, w, x\right\}$ would also be such a 3 -cut, and by minimality the edge e would not be present. Since the edge e is present, if we delete $P\left[v_{2}, v_{6}\right] \cup P\left[v_{6}, v_{4}\right]$ then by Lemma 2.3.3 the graph must remain connected, and so there is a path from t_{2} to v_{5} in C_{4} that is disjoint from F_{1}, F_{2}. Let $T_{i}=t_{i}$ for all i.

Figure 2.16: Graphs in \mathcal{J}_{1} where contracting an edge gives $D C J$
$S_{1}=P\left[v_{6}, v_{4}\right] \cup P\left[v_{2}, v_{6}\right], v_{5} \in S_{2}$. By construction, S_{1} is connected to each T_{i}, and S_{2} is connected to T_{2}, T_{3}, T_{4}. To connect to S_{2} to T_{1} it is sufficient to connect S_{2} to either v_{1}, v_{3} or t_{1}. We can make this connection using either of the edges $v_{5} v_{1}$ or $v_{5} v_{3}$ or one of the paths $P\left[v_{1}, v_{5}\right]$ or $P\left[v_{5}, v_{3}\right]$. If none of these was usable, then t_{3} and t_{4} would be cofacial in the infinite face, which we know does not occur, so we can complete the $K_{2,4}$ minor.

Combining Lemmas $2.3 .14,2.3 .15,2.3 .16,2.3 .17$ we see that for $G \in \mathcal{J}_{1}, G$ has a rooted $K_{2,4}$ minor and is not a minimal counterexample. Thus, any minimal counterexample must be in \mathcal{J}_{2}.

Graphs in \mathcal{J}_{2}

Suppose $G \in \mathcal{J}_{2}$. To create an (R3) reduction, after performing the edge contraction $t_{1} v_{1}$ and possibly some (R1) reductions, there must be a terminal vertex t with the following three properties: t has degree $3, t$ has exactly one terminal neighbour, and w_{1}, w_{2}, the two non-terminal neighbours of t are joined by an edge.

When performing an (R1) reduction, the only vertices that experience a change in their neighbours are those that are involved in the 3 -cut associated with the reduction. If we have a terminal t^{\prime} that has degree 3 after preforming an (R1) reduction, then t^{\prime} has neighbours $t^{\prime \prime}, v, w$ and the 3-cut for the (R1) reduction consisted of vertices $\left\{t^{\prime}, t^{\prime \prime}, v\right\}$. However, the set $t^{\prime \prime}, v, w$ would have given a 3 -cut which produces an (R2) reduction. Such a 3 -cut cannot exist, by Lemma 2.3.10. Thus, performing an (R1) reduction does not affect the neighbour set of t.

The only way performing an (R1) reduction can change the adjacency of any pair of terminals, is if both terminals are vertices in the 3-cut of the reduction. However, since an (R1) reduction does not change the facial adjacency of any pair of vertices, any such pair
of terminals was cofacial after contracting the edge $t_{1} v_{1}$, so the only way to add an edge between them is if there is

Performing an (R1) reduction can change whether there is an edge between a pair of non-terminals if those non-terminals are two vertices in the 3 -cut associated with the (R1) reduction. However, this cannot occur in this instance, since the (R1) reduction would have to be performed on the set $\left\{w_{1}, w_{2}, t_{1}\right\}$, where t_{1} was the vertex formed after contraction. We cannot have $t=t_{1}$ since then G would not be reduced, and we cannot have $\left\{w_{1}, w_{2}, t_{1}\right\}$ being the neighbours of t and giving an (R1) reduction. Thus, performing an (R1) reduciton does not create any possible (R3) reductions, so the only way we can get an (R3) reduction is as in Figure 2.17.

Figure 2.17: \mathcal{J}_{2} Edge
We observe that when we contract the edge f in Figure 2.17, we arrive at an (R3) reduction in a similar manner. Thus, we see that every vertex adjacent to a terminal (even if the terminal may have degree more than 3) is adjacent to at least two terminals of degree 3. Let v_{1} be a vertex in $V(G)$ that is adjacent to the largest number of terminals of degree 3. Suppose v_{1} is adjacent to four terminals. Then no other vertex is adjacent to more than two terminals, as this would give a 3 -cut which split the graph into more than two components. Thus, G is as in the first diagram in Figure 2.18. If v_{1} is adjacent to three terminals t_{1}, t_{2}, t_{3} of degree 3 , then no other vertex, v_{2}, can be adjacent to the same three terminals, as this would result in $\left\{v_{1}, v_{2}\right\}$ being a 2 -cut. Each terminal incident with v_{1} has two other neighbours. The remaining terminal t_{4} gives some required incidences with neighbours of the first three only when it is of degree 3 . In that case it can only be adjacent to at most three neighbours of t_{1}, t_{2}, t_{3}. We see that at least two pairs of these neighbours must coincide, thus G is as in the second diagram of Figure 2.18 (where possibly $v_{2}=v_{5}$).

The last possibility is that each non-terminal adjacent to a terminal of degree 3 is adjacent to exactly two such terminals. We first consider the possibility that there is a pair of terminals that have two common neighbours v_{1}, v_{2} and have third neighbours v_{3} and

Figure 2.18: Cases for a \mathcal{J}_{2} edge
v_{4}, respectively. If v_{3} and v_{4} were adjacent to the same second terminal of degree 3 , then v_{3} and v_{4} would be cofacial, and $\left\{v_{3}, v_{4}, v_{1}\right\}$ or $\left\{v_{3}, v_{4}, v_{2}\right\}$ would be a 3 -cut that would isolate two terminals. Since this does not occur, we must have G as in the third diagram of Figure 2.18. If each pair of terminals has at most one common neighbour then each pair must have exactly one common neighbour and G is the ten-vertex graph in the last diagram of Figure 2.18.

Lemma 2.3.18. Graphs in \mathcal{J}_{2} have rooted $K_{2,4}$ minors.
Proof. We have proved above that graphs in \mathcal{J}_{2} have one of the structures from Figure 2.18. If G is as in the first diagram, we can construct a $K_{2,4}$ minor letting $S_{1}=v_{1}$ and $S_{2}=$ $P\left[v_{2}, v_{3}\right] \cup P\left[v_{3}, v_{4}\right]$.

If G is as in the second diagram of Figure 2.18, we consider two possibilities, either $v_{2}=v_{5}$ or $v_{2} \neq v_{5}$. If $v_{2}=v_{5}$ then $\left\{v_{2}, v_{3}, v_{4}\right\}$ isolates the remaining terminal and so the graph has eight vertices and between each pair of non-terminals an edge is present. Thus, we can set $S_{1}=\left\{v_{1} v_{4}\right\}$ and $S_{2}=\left\{v_{2} v_{3}\right\}$. If $v_{2} \neq v_{5}$, then the remaining terminal is adjacent to v_{2}, v_{5} and not to v_{1}. By symmetry we may assume that it is adjacent to $\left\{v_{2}, v_{4}, v_{5}\right\}$. However, this gives $\left\{v_{1}, v_{2}, v_{4}\right\}$ as a 3 -cut with two terminals on each side, so we may assume this does not occur.

If G is as in the third diagram, we let S_{1} be the path in the facial neighbourhood of v_{3}, clockwise from v_{6} to v_{2} and let S_{2} be the path in the facial neighbourhood of v_{3} clockwise from v_{1} to v_{5}. Since G is 3 -connected, these paths cannot intersect and so this gives a rooted $K_{2,4}$ minor.

If G is as in the final diagram, then all indicated edges between non-terminals must be present, since each one is the unique edge deleted by an (R3) reduction created by the contraction of an edge. Thus, we let $S_{1}=\left\{v_{1} v_{2}, v_{2} v_{4}\right\}$ and $S_{2}=\left\{v_{3} v_{5}, v_{5} v_{6}\right\}$ giving us a rooted $K_{2,4}$ minor.

This completes the proof of Theorem 2.3.5, as Lemmas 2.3.7-2.3.10, and 2.3.13 show that any counterexample must be in \mathcal{J}_{1} or \mathcal{J}_{2} and Lemmas $2.3 .14-2.3 .18$ show that there is no counterexample in either set.

2.4 Algorithm For Finding a Rooted $K_{2,4}$ Minor

We define the problem ROOTED $K_{2,4}$ MINOR as follows:
Input: A graph G and a set of four terminal vertices $T \subseteq V(G)$.
Task: Find a $K_{2,4}$ minor in G with the four terminal vertices forming the larger side of the bipartition, or give a certificate that such a minor does not exist.

Theorem 2.4.1. There is a polynomial time algorithm that solves ROOTED $K_{2,4}$ MINOR on planar graphs.

The algorithm for Theorem 2.4.1 follows the proof contained in Sections 2.2 and 2.3. It can be summarized as follows.

Algorithm for ROOTED $K_{2,4}$ MINOR problem when G is planar:

1. If G is disconnected:
1.1 If G has a connected component C containing all four terminals take $G \leftarrow C$.
1.2 Otherwise, G does not have a rooted $K_{2,4}$ minor.
2. If G has a 1-separation $\{A, B\}$ with $A \cap B=\{v\}$, let A be the component of the separation containing the least number of terminals.
2.1 If A contains no terminals, take $G \leftarrow B$.
2.2 If A contains one terminal t, take $G \leftarrow B$, letting v be a new terminal in B replacing t.
2.3 If A contains two terminals, G has no rooted $K_{2,4}$ minor.
2.4 Repeat step 2 until G is 2-connected.
3. If G has a 2-separation $\{A, B\}$ with $A \cap B=\{v, w\}$, let A be the component of the separation containing the least number of terminals.
3.1 If A contains no terminals, take $G \leftarrow B+v w$.
3.2 If A contains two terminals:
3.2.1 If v is a terminal, we take $G \leftarrow B \cup v w$ with w being the other terminal from A. Similarly if w is a terminal. For the remaining subcases we assume v, w are not terminals.
3.2.2 If A contains a rooted $K_{2,2}$ minor between $\{v, w\}$ and the two terminals in A, and B contains a rooted $K_{2,2}$ minor between $\{v, w\}$ and the two terminals in B, then the composition of these gives a rooted $K_{2,4}$ minor in G. [See Remark 1]
3.2.3 If only A contains the rooted $K_{2,4}$ minor, let $G \leftarrow A+v w$ with v and w becoming the terminals from B.
3.2.4 If only B contains the rooted $K_{2,4}$ minor, let $G \leftarrow B+v w$ with v and w becoming the terminals from A.
3.3 If A contains one terminal:
3.3.1 If the terminal in A is cofacial with another terminal, add an edge between them.
3.3.2 If the four terminals are each of degree 2 and have a total of 4 distinct neighbours between them, the terminals can either all be made cofacial, in which case G has no rooted $K_{2,4}$ minor, or we can exhibit a $K_{2,4}$ minor as in the discussion in Section 2.2.2.
3.3.3 Otherwise Let $G_{v}=B+v w$, taking v to be the terminal from A and $G_{w}=$ $B+v w$, taking w to be the terminal from A. Take $G \leftarrow G_{v}$ and $G \leftarrow G_{v}$. If either has a rooted $K_{2,4}$ minor then G does, if neither does then G does not. [See Remark 2]
3.3.4 Repeat step 3 until G is 3 -connected.
4. Perform any (R1), (R2), and (R3) reductions on G. [See Remark 3]
5. If G has one of the five structures from Theorem 2.3.5 then it has no rooted $K_{2,4}$ minor. [See Remark 4]
6. If G has one terminal cofacial with two other terminals, exhibit a rooted $K_{2,4}$ minor by considering the construction from the proof of Lemma 2.3.7.
7. If G has a pair of cofacial terminals, exhibit a rooted $K_{2,4}$ minor by considering the construction from the proof of Lemma 2.3.8.
8. If G has a 3 -separation $\{\mathrm{A}, \mathrm{B}\}$ with two terminals in each of A, B, then exhibit a rooted $K_{2,4}$ minor by considering the construction from Lemma 2.3.9.
9. If G has an edge $e=v_{1} t_{1}$ and two vertices v_{2}, v_{3} such that $\left\{v_{1}, t_{1}, v_{2}, v_{3}\right\}$ is a 4-cut that isolates the terminal t_{2}, then exhibit a rooted $K_{2,4}$ minor as in the proof of Lemma 2.3.10.
10. Let L be the set of all edges in G. While there exists an edge $e \in L$ adjacent to a terminal, repeat the following steps:
10.1 Form $G^{\prime}=G / e$ and perform any (R1), (R2), and (R3) reductions on G^{\prime} to get $G^{\prime \prime}$. [See Remark 5]
10.1.1 If $G^{\prime \prime}$ has none of the five structure, let $G \leftarrow G^{\prime \prime}$. Add any new edges of $G^{\prime \prime}$ to L and remove any edges from L that are no longer present in G. [See Remark 6]
10.1.2 If $G^{\prime \prime}$ has one of the five structures, let $L \leftarrow L-\{e\}$.
11. For any edge e in $E(G)$ contracting e and performing reductions results in a graph with one of the five structures.
11.1 If G has one of the structures from case $6,7,8$, or 9 , use the appropriate construction to obtain a $K_{2,4}$ minor.
11.2 If there is an edge that gives $O W O$ after contraction, exhibit a rooted $K_{2,4}$ minor as in the proof of Lemma 2.3.15.
11.3 If there is an edge that gives $H F$ after contraction, exhibit a rooted $K_{2,4}$ minor as in the proof of Lemma 2.3.16.
11.4 If there is an edge that gives $D C J$ after contraction, exhibit a rooted $K_{2,4}$ minor as in the proof of Lemma 2.3.17.
11.5 If no edge contraction gives the structure, then each contraction gives an (R3) reduction, and G has one of the structures from Figure 2.18. We can exhibit a rooted $K_{2,4}$ minor by considering the constructions from Lemma 2.3.18

Remark 1. By Theorem 2.2.2, checking for a rooted $K_{2,2}$ minor is equivalent to checking twice for disjoint rooted paths. This can be done in polynomial time. See, for example, [9].

Remark 2. To avoid an exponential number of subcases, we always choose a cut that is maximal subject to isolating a single terminal. This means we will have at most one cut for each terminal, so at most 16 subcases to check.

Remark 3. Note that G remains 3-connected after performing these reductions.

Remark 4. For each structure, we can look at every possible set of vertices in separations that define the specific structure. (at most $O\left(n^{5}\right)$ cases) and see if the required terminals are on the correct faces. We only need to do this if there is at least one pair of cofacial terminals.

Remark 5. Note that by Lemma 2.3.11, $G^{\prime}=G /$ e remains 3-connected. If we choose our reductions carefully, we will be required to perform at most two ($R 1$) reductions. If we were able to perform an (R2) reduction, we could instead use step 9 and exhibit the minor.

Remark 6. Each reduction performed adds at most 3 edges to L. Each of these 3 edges is added to a face of G. The edges removed from that face by the (R1) reduction will be removed from L if they were still in it (in which case L does not grow in size). If none of those edges remained in L, then they were removed because contracting them would give a structure after reductions. Contracting this new edge will also give a structure, and so does not need to be added to L.

Chapter 3

Delta-Wye Transformations

3.1 Introduction

A connected graph G is said to be delta-wye reducible if G can be reduced to a single vertex by repeatedly applying the following four reductions and two transformations:

- Loop reduction - a loop can be deleted.
- Degree-one reduction - an edge incident with a vertex of degree one can be deleted along with the degree one vertex.
- Series reduction - if a vertex v has degree two and neighbours u, w, the edges $u v$ and $v w$ are replaced by an edge $u w$ and the vertex v is deleted.
- Parallel reduction - two edges having the same endpoints may be replaced by a single edge having the same endpoints.
- Delta-wye transformation - If edges $u v, v w, u w$ exist, they can be deleted and replaced by a new vertex x adjacent to u, v, w.
- Wye-delta transformation - If a vertex x has degree three with neighbours u, v, w, then v can be deleted and edges $u v, v w, u w$ can be added.

If G has a distinguished set of terminals T then we add the restriction that no operation can delete a terminal vertex and consider a graph reducible if we can arrive at a graph on the vertices of T.

We also allow the following additional operation:

- FP-assignment A terminal vertex of degree one whose neighbour is not a terminal can be reduced using a degree-one reduction, making the neighbour into a terminal.

As noted by Gitler [5], transformations of this type may affect the embedding but not the structure. For our purposes, there are times when we wish to not allow FP-assignments to be performed on certain terminal vertices. This allows us to ignore those restrictions and perform an inverse FP-assignment at the end of the reductions. In particular, when we are dealing with terminal vertices that arise from splitting a graph along a cut-set, we do not want to allow an FP-assignment on those vertices. When we are dealing with terminal vertices which are not placeholders, then we freely allow FP-assignments on those vertices.

The first important result in this area is due to Epifanov [3] who showed in 1966 that all (non-terminal) planar graphs are reducible. Gitler [5] later extended that result to graphs with no K_{5} minor and graphs with no $K_{3,3}$ minor. Truemper [16] showed the class of reducible graphs is minor closed. This result was later extended by Archdeacon et al. [2] to show that terminal reducibility is minor-closed.

Theorem 3.1.1 ([2]). Suppose that H is a terminal-minor of G. If G is terminal delta-wye reducible to a graph G^{\prime} then H is reducible to a minor of G^{\prime}. In particular, when G is reducible to only terminals, then so too is H.

There has been much work on finding the list of excluded minors for the class of graphs which are reducible. A known result from the literature gives the first known obstructions.

Lemma 3.1.2. The graphs of the Petersen Family, consisting of the seven graphs which are equivalent to the Petersen graph under delta-wye and wye-delta transformations are minor-minimal irreducible.

There has been additional progress in finding excluded minors by Yu [22], [23] showing (constructively) that there at least 68 billion minor-minimal obstructions. These obstructions fall into 20 delta-wye equivalent families.

Our main approach when it comes to trying to reduce large graphs will be to split them apart into smaller graphs and reduce each part individually. We must ensure that when doing this we remain faithful to the structure of the original graph so that the operations can be carried back to the larger graph. For example, we cannot perform a series reduction if the middle vertex has neighbours in the portion of the graph we are not currently considering, since we could not carry this operation back to the graph.

Lemma 3.1.3. Let $\{A, B\}$ be a separation of the graph G with terminal set T such that $A \cap B \cap T=\emptyset$. Let $A \cap B=W$. Define A^{\prime} to be the subgraph of G induced on A with terminal set $W \cup(T \cap A)$ and define B^{\prime} similarly. If A^{\prime} is delta-wye reducible to $A^{\prime \prime}$ and B^{\prime} is reducible to $B^{\prime \prime}$ without performing $F P$-assignments on vertices of W in either graph, then G is reducible to a minor of the graph $G^{\prime \prime}$ formed by identifying $A^{\prime \prime}$ and $B^{\prime \prime}$ on vertices of W.

Proof. Suppose we have a sequence of operations $\left\{O_{1}, O_{2}, \ldots O_{a}\right\}$ which were performed on A^{\prime} to arrive at $A^{\prime \prime}$ and a sequence of operations $\left\{N_{1}, N_{2}, \ldots, N_{b}\right\}$ which were performed on B^{\prime} to arrive at $B^{\prime \prime}$. Since A^{\prime} is an induced subgraph of G and none of the operations performed depended on the degree of a vertex in W, we can perform $\left\{O_{1}, \ldots, O_{a}\right\}$ on G to arrive at the graph G^{\prime}. In G^{\prime} the subgraph B looks as it did in G except for the possibility of adding or removing edges between vertices in W. Any edges added to W will not prevent us from performing $\left\{N_{1}, \ldots, N_{b}\right\}$ on G^{\prime} since none depend on the degree of vertices in W and if any edges are removed, then we have a minor of B in G^{\prime} and so we can reduce to a minor of B.

If we modify how we rejoin the graphs we can allow for FP-assignments on vertices in W. For any vertex in W which was reduced by an FP-assignment, we join the vertices in $A^{\prime \prime}$ and $B^{\prime \prime}$ by an edge instead of identifying them. This is easily seen to be equivalent.

3.2 Four Terminal Planar Graphs

We now consider the case of planar graphs G with 4 terminals, $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Our main goal is to classify when such a graph is reducible and when it is not.

Theorem 3.2.1. Let G be a 3-connected 4-terminal planar graph. Then G is delta-wye reducible if and only if it has no rooted $K_{2,4}$ minor on the same set of terminals.

We first show the easy direction.
Lemma 3.2.2. If a 4-terminal graph has a rooted $K_{2,4}$ minor then it is not delta-wye reducible.

Proof. We observe that the terminal graph $K_{2,4}$ with T consisting of the larger side of the bipartition is not delta-wye reducible. Combined with Theorem 3.1.1 we see that a graph with such a minor is not reducible.

To prove the other direction, we will use the structural characterization of when a graph has a rooted $K_{2,4}$ minor from Theorem 2.3.5. To help with this, we will make use of some prior results:

Theorem 3.2.3 (Gitler [5]). A 2-connected 3-terminal plane graph is reducible to a copy of K_{3} on the terminal vertices.

Moreover, it can be done in a planar manner. That is, a delta-wye transformation is only performed on a facial triangle, so that the resulting graph remains a plane graph. All future results discussing plane graphs also maintain planarity throughout the process.

Theorem 3.2.4 (Gitler [5]). A k-terminal planar graph with all terminals on a common face can be reduced to the $k \times k$ half grid (or a minor of it), that is shown in Figure 3.1.

Figure 3.1: $k \times k$ half grid for $k=6$
It is in fact possible to do this without using FP-assignments. Without using FPassignments, we are able to reduce to the graph in Figure 3.1 with the terminals being joined to the diagonal vertices by edgs. We can perform a series reduction to bring the outermost terminals back to the desired positions. We can perform Wye-Delta operations on the vertices indcident with the other terminals to get the figure shown plus diagonal edges. These edges can be eliminated by moving them to the bottom or right side of the grid and then performing series reductions.

Theorem 3.2.5 (Gitler [5]). $A k \times k$ half grid with terminals along the diagonal can be reduced to the $k \times k$ quarter grid (or a minor of it), that is shown in Figure 3.2.

Theorem 3.2.6 (Archdeacon et al. [2]). Let G be a 4-terminal planar graph with at least three terminals on a common face. Then G is reducible to a subgraph of K_{4}.

We also require the following lemmas which extend the above results.

Figure 3.2: $k \times k$ quarter grid for $k=6$

Lemma 3.2.7. Let G be a 4-terminal planar graph with three terminals on a common face. Then G can be reduced to a subgraph of K_{4} by performing $F P$-assignments on at most one of the terminal vertices.

Proof. Combining Theorem 3.2.6 and Gitler's observation about FP-assignments means that any such graph is reducible to a minor of the 8 -vertex graph in diagram 1 of Figure 3.3. We perform an FP-assignment on the middle terminal and then a delta-wye transformation on one of the triangles to arrive at the graph in diagram 2 . We perform a wye-delta transformation on the indicated vertex. This gives two new triangles. We perform a deltawye transformation on the one which does not reverse the first transformation and then an FP-assignment on the middle terminal to arrive at the graph in diagram 3. Performing a wye-delta on the indicated vertex brings us to a K_{4} with two dangling terminals. We can repeat this process starting with the other triangles to reduce the remaining dangling terminals, arriving at K_{4}. Notice that by symmetry, we can choose any of the terminals we wish and perform FP-assignments only on that terminal.

Figure 3.3: 4 terminal reduction to K_{4}
If G reduces to a minor of the 8 -vertex graph in Figure 3.3, then by Theorem 3.1.1 the above result still holds and we get a minor of K_{4} on the terminals.

The second lemma is similar, but the proof is simpler and so it is omitted.
Lemma 3.2.8. Let G be a 3-terminal planar graph. Then G can be reduced to a subgraph of K_{3} without performing FP-assignments.

Lemma 3.2.9. Let G be a 4-terminal planar graph. Adding or removing an edge between a pair of terminals on a common face does not affect the reducibility of G.

Proof. Let G^{+}be the graph formed by adding an edge between a pair of terminals on a common faces of G. Suppose G is not reducible. Then G^{+}is not reducible, since it contains G as a minor. Suppose G is reducible. We look at how we can preform our operations in G^{+}. It is easy to see that the ability to perform any of the four reductions is not affected. Any triangle in G will still be present after adding an edge as will any degree-3 non-terminal vertices. Thus, any delta-wye or wye-delta transformations that could be performed in G can also be preformed in G^{+}. We see that adding an edge may prevent us from performing an FP-assignment, but this is the only possibility. If this occurs, we recall that without FP-assignments we are able to reduce G to a subgraph of K_{4} with each terminal being one of the vertices of the K_{4} or connected to it by an edge. This means we can reduce G^{+}to the first graph shown in Figure 3.4. Performing a delta-wye transformation on the highlighted triangle gives the second graph in the figure. Performing wye-delta transformations on the highlighted terminals gives the third diagram. From this graph, we perform a delta-wye transformation on the highlighted triangle to arrive at the fourth diagram. From this graph, a wye-delta transformation on the indicated vertex and an FP-assignment on the degree 1 terminal give K_{4}. Therefore, G is reducible if and only if G^{+}is.

Figure 3.4: Reduction of an extended K_{4}
We will also use the following observations (see e.g. Gitler [5]):

- If two neighbours of a degree-3 nonterminal vertex are adjacent that edge can be deleted by a delta-wye transformation followed by a series reduction.
- If two consecutive neighbours of a degree-4 nonterminal vertex are adjacent the edge between them can be moved to be between the other pair of neighbours by a delta-wye transformation followed by a wye-delta transformation.

Lemma 3.2.10. A 3-connected 4-terminal planar graph which has one of the structures of Theorem 2.3.5 is delta-wye reducible.

Proof. We consider each of the five structures separately.

3F Structure: This is the result of Theorem 3.2.6.
OWO Structure: See Appendix A.1.1.
DF Structure: See Appendix A.1.2.
HF Structure: See Appendix A.1.3.
DCJ Structure: See Appendix A.1.4.
We recall from Theorem 2.3.5 that a graph has rooted $K_{2,4}$ minor unless possibly after preforming (R1), (R2), and (R3) reductions it has one of the five structures. Thus, we need also show that each reduction can be accomplished as a series of delta-wye operations.

Lemma 3.2.11. An (R1) reduction can be accomplished as a series of delta-wye operations.
Proof. We apply Lemma 3.1.3 along the cut vertices of the (R1) reduction. By Lemma 3.2.8 we can reduce the side with no terminals to a K_{3} on the cut vertices without using any FPassignments.

Lemma 3.2.12. An (R2) reduction can be accomplished as a series of delta-wye operations.
Proof. For an (R2) reduction, we consider cases based on the number of cut faces the interior vertex is incident with. If the internal terminal is not incident with any of the cut faces, we apply Lemma 3.1.3 and 3.2.7 and get a minor of K_{4} on the vertices while only performing FP-assignments on the internal terminal vertex. If the terminal is incident with two of the faces, we have a 3 -cut using the terminal that gives an (R1) reduction. Applying the proceeding lemma gives the desired result.

If the internal terminal is incident with a single face of the cut, then when we split that component along the cut (via 3.1.3), we have 4 terminals on a common face. By Lemma 3.2.4 we can reduce this to a 4×4 half grid without using FP-assignments. It is easy to check that this can be reduced to the graph in Figure 3.5. By a sequence of deltawye operations, we can let the dangling terminal be any of the four. Thus, we can let it be the terminal on the interior of the component. After preforming an FP-assignment on this terminal, we have the desired minor of K_{4}.

Lemma 3.2.13. An (R3) reduction can be accomplished as a series of delta-wye operations.
Proof. By Lemma 3.2.9 we can delete the edge between the pair of terminals without affecting the reducibility. We then perform a delta-wye on the triangle and then an FP-assignment

Figure 3.5: 4-terminals on a common face
on the terminal before adding the deleted edge back, arriving at the same graph as we obtained from performing the (R3) reduction.

Combining Lemmas 3.2.10-3.2.13 yields the other direction of Theorem 3.2.1, completing the proof.

3.2.1 Irreducible graphs

We have seen already that $K_{2,4}$ with terminals on the larger side of the bipartition is irreducible since it has all non-terminal vertices of degree 4 and the graph has no triangles. Not only is it minor-minimal irreducible, but no delta-wye or wye-delta transformations can be performed on it. This is different from say the Petersen family for non-terminal graphs, where we have the whole family being minor-minimal irreducible and delta-wye equivalent to each other. Let us examine what happens if we ignore the minor-minimality condition. In particular, what is the structure of a four-terminal planar graph which cannot have any delta-wye operations performed on it?

Lemma 3.2.14. Let G be a connected four-terminal planar graph such that no delta-wye operations, series-parallel operations, or $F P$-assignments can be performed on G. Then G is either a minor of K_{4} on the terminal vertices or all of the following properties would hold:
(I1) all terminal vertices of G are of degree 2,
(I2) all non-terminal vertices of G are of degree 4,
(I3) all faces of any planar embedding of G are of size 4.
Proof. We let $\mathcal{F}, \mathcal{E}, \mathcal{V}$ denote the set of faces, edges, and vertices of G, respectively. If G has only terminal vertices, then it is clear that G is a minor of K_{4}, so we may assume that G has at least one non-terminal vertex. Let t_{1} be a terminal vertex in G. If t_{1} had degree 1 , then its neighbour must be another terminal, since otherwise we could perform an FP-assignment
in G. However, we can apply Lemma 3.1.3 and see that $G-t_{1}$ is reducible to a subgraph of K_{3} and so the graph is not irreducible. Thus, any terminal vertex must have degree at least 2. For $v \in V(G)$ is a non-terminal vertex, $\operatorname{deg}(v) \geq 4$ since otherwise we could perform a degree- 1 reduction, a series reduction, or a wye-delta transformation. Let F be a face in an embedding of G. If $|F| \leq 3$ we could perform a loop reduction, a parallel reduction, or a delta-wye transformation, so we must have $|F| \geq 4$.

Combining the first two conditions we have that

$$
|\mathcal{V}| \leq \frac{|\mathcal{E}|}{2}+2
$$

and the last condition tells us that for any embedding

$$
|\mathcal{F}| \leq \frac{|\mathcal{E}|}{2} .
$$

Adding the two conditions yields

$$
|\mathcal{V}|+|\mathcal{F}| \leq|\mathcal{E}|+2
$$

which by Euler's formula must hold with equality. Thus, all inequalities must hold with equality and so we have the desired result.

We will describe a simple construction for all graphs satisfying (I1) - (I3). Given such a graph, we can construct a polygonal surface by identifying with each face of the graph a unit square and joining the squares at the corresponding edges. The theory of the intrinsic metric of polygonal surfaces due to Aleksandrov [1] tells us that there are two necessary and sufficient conditions for when such a construction will give us a convex polyhedron, so long as we consider a doubly-covered convex polygon to be a convex polyhedron.
(1) "The positive curvature condition": for each vertex, the sum of the angles glued together at this vertex must be at most 2π.
(2) "The Euler condition": if f, e, and v denote the number of faces, edges, and vertices respectively, then $f-e+v=2$ must hold.

Moreover, the vertices of the polyhedron will be at the vertices where the sum of the angles is less than 2π. For our construction, the first criteria holds since we are gluing either 2 or 4 squares together at each vertex, so the sum of the angles is π or 2π at each vertex.

Since there are four vertices where the sum of the angles is less than 2π, the polyhedron will have 4 vertices, and so is a (possibly degenerate) tetrahedron. Moreover, at these four points, the sum of the angles is equal to π, so if we cut the polyhedra along the three edges incident with a vertex, it will unfold into a triangle. Thus, the tetrahedron is an isosceles tetrahedron. The second criteria holds since our construction is from a connected planar graph.

Consider the infinite regular square tiling of the plane. If we choose any 3 non-collinear vertices of this tiling, we obtain a triangle. We can extend this triangle to a similar triangle with four times the area as in Figure 3.6 and fold it into a polyhedron. When one of the angles of the triangle is a right angle, this will give a doulbe sided polygon. We can let the vertices of the polyhedron be vertices of a (planar) graph with edges present if there is an edge of the grid between the vertices. This will give a graph with the desired structure. Thus, we see that there is a correspondence between graphs of the desired structure and graphs constructed from this, and so this construction gives all desired graphs. This can be seen as an extension of the results of Thurston [15] on triangulations of the sphere.

Figure 3.6: Construction of a regular tetrahedron

3.3 Cubic Graphs

A graph G is apex if it is non-planar and has a vertex $v \in V(G)$ such that $G-v$ is planar. A graph G is doublecross if any drawing of G in the plane has at least two pairs of crossing edges and there is a drawing of G in the plane with exactly two pairs of crossing edges, which cross in the same face. The graph Starfish is the 20 -vertex graph in Figure 3.7.

For $k \geq 1$, a graph is cyclically k-connected if G has girth $\geq k$, and $\left|\delta_{G}(X)\right| \geq k$ for every $X \subset V(G)$ such that both X and $V(G)-X$ include the vertex set of a cycle of G.

We say a graph G is theta-connected if G is cubic, cyclically 5-connected, and $\left|\delta_{G}(X)\right| \geq 6$ for all $X \subset V(G)$ with $|X|,|V(G)-X| \geq 7$. A cubic graph cannot be k-connected for k greater than three. However, if a cubic graph is theta-connected, it is in a sense highly connected, since one side of any small cutset has few vertices and no cycles.

The following characterization of theta-connected graphs is due to Robertson, Seymour, and Thomas.

Theorem 3.3.1 ([12]). Let G be a theta-connected cubic graph. Then G does not have the Petersen graph as a minor if and only if either G is apex, or G is doublecross, or G is isomorphic to Starfish.

Figure 3.7: Starfish

Theorem 3.3.2. Let G be a theta-connected cubic graph. Then either G is delta-wye reducible or G has a the Petersen graph as a minor, in which case G is not reducible.

Proof. By Theorem 3.3.1 we know that G either has the Petersen graph as a minor or G is apex, or G is double cross, or G is isomorphic to starfish. If G has the Petersen graph as a minor, then by contracting the paths $\nu(e), e \in E(G)$ to single edges gives a Petersen minor and hence G is not delta-wye reducible by Theorem 3.1.2. Suppose G is apex. By Theorem 3.2.3, we have that an apex graph where the apex vertex has degree 3 is delta-wye reducible. Since G is cubic, the apex vertex is of degree 3 and so G is reducible.

Suppose G is double cross. Then G has either two pairs of crossing edges in the infinite face or one edge e that crosses two other edges in the infinite face. If such an e exists then then G is apex, since deleting either end of e gives a planar graph. Thus, we may assume that G has two pairs of crossing edges. We can replace the eight endpoints of the four crossing edges with terminals and by Theorems 3.2.4 and 3.2.5 this is reducible to a minor of an 8×8 quarter grid. See Appendix A.2.1 for how this graph can be reduced.

Suppose G is isomorphic to starfish. Then it can be checked that G is delta-wye reducible.

3.4 Planar Duality

When we restrict ourself to planar graphs, a natural question to look at is what happens when we take planar duals. By Epifanov's result mentioned above we know that all planar graphs are delta-wye reducible, so taking the dual of a planar graph gives another reducible graph. However, a list of operations that reduce a plane graph give us a sequence of operations that reduce the dual graph, as described in the proceeding lemma.

Lemma 3.4.1. Suppose G is a plane graph with dual graph H. Performing a delta-wye transformation on a facial triangle of G (resp. H) corresponds to performing a wye-delta transformation on $H(G)$. Performing a series reduction on $G(H)$ corresponds to performing a parallel reduction on $H(G)$. Performing a loop deletion in $G(H)$ corresponds to performing a degree-one reduction in $H(G)$.

What happens if we take the planar dual of a terminal graph? Our graph now has special faces that are not allowed to be eliminated. We can also carry over our terminal operations and their restrictions to this new framework. We are not allowed to perform a delta-wye
operation on a terminal face and we cannot perform a parallel reduction if the face of size two is a terminal face. An FP-assignment corresponds to deleting a loop where one of the incident faces is a terminal face and making the other face incident with the loop into the a terminal face. This cannot be performed if the new face was already a terminal face. We call this new loop deletion operation an LD-assignment. If we have a loop edge e such that exactly one face incident with e is a terminal face, we perform an LD-assignment on e by deleting e and letting the new face formed be a terminal face.

Studying graphs with terminal faces is clearly equivalent to studying graphs with terminal vertices, so we would like to look at the interesting question of graphs with both terminal vertices and terminal faces. In this case, we will call a graph reducible if it can be reduced to a graph where all vertices are terminal vertices and all faces are terminal faces. We call these graphs doubly terminal. When we have a graph with certain faces labelled as terminals, an embedding of the graph in the plane is implicitly assumed. We begin by looking at the simplest case of graphs with one terminal vertex and one terminal face.

Theorem 3.4.2. Let G be a plane graph with one terminal vertex and one terminal face. Then G is reducible to an isolated terminal vertex surrounded by a terminal face.

Proof. We first observe that we are able to apply Lemma 3.1.3 to split the graph along the vertices of the terminal face and that any reductions that can be performed on the remainder of the graph can be performed on the entire graph.

If we ignore the restriction on the terminal face, then G is reducible to a single terminal by a series of operations $\left\{O_{i}\right\}_{i=1}^{k}$. If we now perform the O_{i} on G respecting the restrictions on the terminal face, we will either arrive at the desired single terminal graph or try to perform either a parallel reduction or delta-wye reduction on the terminal face. In either case, we can apply Lemma 3.1.3 arriving at either a three-terminal graph which is reducible to a subgraph of K_{3} or a four-terminal graph with all terminals on a common face which is reducible to a subgraph of K_{4}. If we now add the terminal face back to these graphs, it is routine to verify that each can be reduced to the single terminal.

As we increase the number of terminal vertices and faces, the problem becomes more difficult. If we allow two terminal vertices and one terminal face (which, by duality is the same as allowing two faces and one vertex) we have a partial result.

Theorem 3.4.3. Let G be a plane graph with two terminal vertices and one terminal face such that at least one terminal vertex is incident with the terminal face. Then G is reducible to a subgraph of K_{2} on the terminal vertices with a terminal face.

Proof. We first observe that once a terminal vertex is incident with a terminal face they can never become non-incident by performing any of the operations. Knowing that, we can simply repeat the proof of Theorem 3.4.2 and obtain the desired result.

Lemma 3.4.4. Let G be a connected plane graph with two terminal vertices and one terminal face. Then G is K_{2} with a terminal face or there is some operation (series-parallel reduction, $F P$-assignment, etc.) that can be performed on G.

Proof. Let V, E, and F be the number of vertices, edges, and faces respectively in the embedding of G. All faces have size at least 4, aside for possible the terminal face. If the terminal face had size one, we could perform an LD-assignment, so we assume it has size at least 2. So

$$
E \geq \frac{4(F-1)+2}{2}=2 F-1
$$

Each terminal vertex must have degree at least 2, since otherwise we could perform an FP-assignment, or the terminals would be adjacent, and the graph would be reducible to K_{2}. Each other vertex has degree at least 4. So

$$
E \geq \frac{4(V-2)+4}{2}=2 V-2 .
$$

Rearranging the above inequalities, we get $F \leq E+\frac{1}{2}$ and $V \leq \frac{E}{2}+1$. Combining these we get $F-E+V \leq \frac{3}{2}$, which violates Euler's Formula. Thus, there must be a non-terminal face of size at most 3 , or a non-terminal vertex of degree at most 3 .

We can also extend the results when we have terminal vertices incident with terminal faces. More generally, if we have one terminal face and k terminals, all incident with the terminal face, we can use Lemma 3.1.3 to obtain the following analog of Theorem 3.2.4.

Theorem 3.4.5. Let G be a plane graph with k terminal vertices and one terminal face such that all terminal vertices are incident with the terminal face. Then G is reducible to a subgraph of a $k \times k$ half grid with the terminal vertices on the diagonal and the infinite face as the terminal face.

In the proof of Theorem 3.2.4, the face with all the terminals is never eliminated, so the result follows directly. The last case we discuss here is when G has two terminal vertices and two terminal faces. We present the following minor-minimal irreducible graph.

Figure 3.8: Irreducible graph with 2 terminal vertices and 2 terminal faces

If G and H are planar duals of each other then an edge contraction in G corresponds to an edge deletion in H. This means that the idea of minors for graphs with terminal faces is well-defined. For doubly terminal graphs G and H, we say G is a doubly-terminal minor of H if we can obtain G from H be a series of edge deletions and contractions.

This notion of minors and the irreducible graph from Figure 3.8 tells us that when G has at least two terminal vertices and and two terminal faces it will in general not be reducible.

Chapter 4

Conclusion and Future Work

In this chapter, we outline possible directions for future research.

4.1 Rooted $K_{2,4}$ Minors

In the thesis, we found a characterization for when a four-terminal planar graph has a rooted $K_{2,4}$ minor. A natural question is what happens when we remove the restriction of planarity. If we take any of the planar obstructions and add edges between any pairs of terminals we wish, the resulting graph still has no rooted $K_{2,4}$ minor. We also note that the $O W O$ and $3 F$ obstructions have no rooted $K_{2,4}$ minor because there is no rooted $K_{2,3}$ minor for some three of the terminals. So, if we take a three-terminal planar graph with three terminals on a common face and add a terminal connected arbitrarily to the planar graph, this will not have a $K_{2,4}$ minor.

Notice also that if we start with any planar obstruction and join any non-planar graph to a vertex, edge or triangle in the graph that this will still be an obstruction. This tells us that we must again consider some low-connectivity reductions for these graphs. The reductions from the planar case for 1- and 2-cuts will behave in a similar manner for non-planar graphs, as will the (R1), (R2), and (R3) reductions.

Conjecture 4.1.1. Let G be a four-terminal graph. Let H be formed from G by performing all low-connectivity and (R1), (R2) and (R3) reductions. Then either H is planar and G has a rooted $K_{2,4}$ minor if and only if G does, or H has a terminal t such that H / t has no rooted $K_{2,3}$ minor, or G has a rooted $K_{2,4}$ minor.

There are many other natural extensions to this problem. One is to ask what would happen if we were looking for $K_{2, n}$ minors in n-terminal graphs. There are some asymptotic results due to Kawarabayashi [7], but a more general structural result would also be interesting. We can also look at the problem of specifying all 6 vertices of the $K_{2,4}$ minor. This problem can be modelled as finding a rooted $K_{2,6}$ minor where we specify the six vertices of the largesnt bipartite class. To see this, we take our graph where we wish to find a $K_{2,4}$ minor with all vertices specified and add two terminals adjacent to each of the two vertices required to be on the small side of the bipartition. It is easy to verify that any $K_{2,6}$ minor in this graph must use the two original vertices in distinct big vertices or that the original vertices are in the subgraphs for the two new terminals. It can be shown that if a minor of the second type exists that it can be reduced to a minor of the first type.

4.2 Delta Wye Transformations

The problem of determining the complete list of excluded minors is still open and is the most well known problem in the area. Terminal reducibility has been a useful tool for helping with general reducibility, since a terminal planar graph can be used to model an apex graph. However, studying terminal graphs does not give the complete picture for general reducibility. Consider the result from this thesis where we characterized that a suitably connected four-terminal planar graph is reducible if and only if it does not have a rooted $K_{2,4}$ minor. If we have an apex graph with the apex vertex having degree 4, we would model this using a four-terminal graph. If this terminal graph is reducible to $K_{2,4}$, then the apex graph is reducible. So while we know that 3 -apex graphs are reducible, the characterization of 4 -terminal planar graphs does not tell us the complete story for 4 -apex graphs. When is a 4-apex graph reducible and when is it not? What about for apex vertices of larger degree? Is there some number k such that if G is k-apex and not i-apex for any $i<k$ then G is not reducible?

Because terminal graphs were being used to study apex reducibility the focus has been on planar terminal graphs. If we consider terminal non-planar graphs there are some interesting questions we can ask. If we consider non-planar graphs which are reducible (e.g. K_{5}), we can add terminals to these graphs. When is such a graph with added terminals reducible? For a general graph G, it is reducible to some equivalent family of graphs \mathcal{F}. For what placement of terminals on G is the resulting graph reducible to a subfamily of \mathcal{F} with terminals on
some of the vertices?

Appendix A

Graph Reductions

Here we show that various graphs from the thesis are delta-wye reducible. We use the following three operations $D_{i}(i=2,3,4$, where i referes to the degree of the vertex involved) during our reductions. We show how each can be realized as a series of delta-wye operations.

D2: If a degree-2 terminal has neighbours v_{1}, v_{2}, the edge $v_{1} v_{2}$ can be deleted, if present. Figure A. 1 shows how this is done using a delta-wye transformation followed by an FPassignment.

Figure A.1: D2 Reduction

D3: If a degree-3 non-terminal has neighbours v_{1}, v_{2}, the edge $v_{1} v_{2}$ can be deleted, if present. Figure A. 2 shows how this is done using a delta-wye transformation followed by a series reduction.

Figure A.2: D3 Reduction
D4: If a degree-4 non-terminal has neighbours $v_{1}, v_{2}, v_{3}, v_{4}$, then if the edge $v_{1} v_{2}$ is present it can be replaced by the edge $v_{3} v_{4}$. Figure A. 3 shows how this is done using a
delta-wye transformation followed by a wye-delta transformation.

Figure A.3: D4 Swap

A. 1 Main Theorem Cases

Here we show how to reduce the various structures from Theorem 2.3.5.

A.1.1 Graphs with OWO Structure

Let G be a graph with OWO Structure. We apply Lemma 3.1.3 to the partition $\{H=$ $\left.G-t_{1}, N\left(t_{1}\right)\right\}$. We assume H has k terminals, which can be seen to lie on a common face of an embedding of H. By Theorem 3.2.4, we see that H can be reduced to a graph J which is a minor of a half $k \times k$ grid with the terminals along the diagonal. We may assume that J is the whole $k \times k$ grid, since it suffices to show the reducibility of this. By Lemma 3.1.3 this means that G can be reduced to a graph G^{\prime} consisting of a $k \times k$ grid with three terminals on the diagonal and the fourth terminal adjacent to all vertices on the diagonal.

If two consecutive diagonal vertices of G^{\prime} are non-terminal, we can reduce G^{\prime} to consist of t_{1} joined to the diagonal of a $(k-1) \times(k-1)$ grid by removing one of the consecutive pair via the diagonal fixing algorithm shown in Figure A.4. We represent the the diagonal vertices before and after the ones we are working with as square vertices. We notice that in the algorithm, the square vertices remain unchanged.

Thus, we may assume that G can be reduced to a minor of the first graph in Figure A.5. We apply Lemma 3.1.3 to this graph using the separation formed by cutting along the diagonal. By Lemma 3.2.5 this is reducible to the second graph in Figure A.5.

In Figures A. 6 and A.7, we show how to reduce this to a graph with three terminals on a common face. By Theorem 3.2.6, this is reducible, so all graphs with OWO structure are reducible.

Continue repeating the last two operations on successive layers of the grid until a series reduction is preformed on the boundary. This removes a row from the grid. Repeat on the other side to remove a column.

Figure A.4: Diagonal fixing algorithm

Figure A.5: OWO after reducing to half and quarter grid

Parallel reductions

Delete edge via D3

D4 Swap

Wye-Delta

Delete edges via D3

Delete edge via D3

Delete edge via D3, series reduction

Wye-Delta

Wye-Delta

Wye-Delta

Delta-Wye

D4 Swap

Delta-Wye

Delete edges via D2

Wye-Delta

Figure A.6: OWO Reductions 1

Figure A.7: OWO Reductions 2

A.1.2 Graphs with DF Structure

Let G be a graph with DF Structure. We split the graph into two subgraphs along the cut vertices v_{1}, v_{2}, v_{3} and make them terminals in each component. We can reduce each graph to a 5×5 quarter grid and then identify corresponding vertices. Figure A. 8 shows the graph before and after the two components have been joined together.

Figure A.8: DF afer reducing to quarter grids

Figure A. 9 shows how to reduce this to a graph with three terminals on a common face. By Theorem 3.2.6, this is reducible, so all graphs with DF structure are reducible.

Series reductions and FP-assignments

Delete edges via D2

Wye-Delta

Delete edge via D3

Wye-Delta

Wye-Delta

Delete edge via D3

Wye-Delta

D4 Swap

Delete edges via D2

Wye-Delta

Delete edge via D3

Delta-Wye

Delete edges via D2

Figure A.9: DF Reductions

A.1.3 HF Structure

Let G be a graph with HF Structure. We split the graph into three subgraphs by cutting on $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$. Two of these reduce to 5×5 quarter grids and the other reduces to a minor of K_{4}. We identify corresponding vertices. Figure A. 10 shows the graph before and after the three components have been joined together.

Figure A.10: HF afer reducing to quarter grids and K_{4}

In Figures A. 11 and A.12, we show how to reduce this to a graph with three terminals on a common face. By Theorem 3.2.6, this is reducible, so all graphs with HF structure are reducible.

Series reductions and FPassignment

Delete edge via D2

Wye-Delta

Wye-Delta

Delta-Wye

Wye-Delta

Delete edge via D3

Delete edge via D3

Delete edge via D3

Delete edges via D2

D4 Swap

Wye-Delta

Wye-Delta

Delta-Wye

Delete edge via D3

Delta-Wye

Figure A.11: HF Reductions 1

Figure A.12: HF Reductions 2

A.1.4 Graphs with DCJ Structure

Let G be a graph with DCJ structure. We split the graph into five pieces by cutting on $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, t_{1}, t_{2}$ (one piece is the single edge $t_{1} t_{2}$). Each of these is reducible to a graph on at most four vertices. Figure A. 13 shows the graph before and after the five components have been joined together.

Figure A.13: DCJ afer reducing
In Figure A.14, we show how to reduce this to a graph with OWO structure. By Appendix A.1.1 this graph is reducible, so all graphs with DCJ structure are reducible.

Delta-Wye

Repeat above steps symmetrically

Delete edge via D3

Delete edges via D2

Wye-Delta

Figure A.14: DCJ Reductions

A. 2 Doublecross Graphs and Starfish

In this section, we give reductions for two cases from Theorem 3.3.2. We consider graphs which have doublecross structure and the graph Starfish.

A.2.1 Graphs with Doublecross Structure

In the proof of Theorem 3.3.2, we show that graphs with doublecross structure are reducible to the graph in Figure A. 15

Figure A.15: Doublecross reduced to a quarter grid

In Figures A. 16 and A.17, we show how to reduce this to an apex graph, where the apex vertex has degree of 3. First, we implement the reductions of Fig A.16. These reductions have been contained to the right side of the graph, aside for needing that one vertex on the left was degree 3. We can mirror this set of reductions on the left of the graph and then implementing the reductions in Figure A.17. The resulting graph is apex, with an apex vertex of degree 3, so by Theorem 3.2.3, this graph is reducible, and so all doublecross graphs are reducible.

Figure A.16: Doublecross Reductions 1

Figure A.17: Doublecross Reductions 2

A.2.2 Starfish

Starfish is the graph from Figure 3.7. Because it is highly non-planar, to increase readability, we encode the graph as three embedded 5 -cycles and five vertices $\{1,2,3,4,5\}$. We label each embedded vertex in with which (if any) of the five vertices are adjacent to it. If we decompose the graph of starfish, we see that to start, each 5 -cycle will be labelled $\{1,2,3,4,5\}$ in the same cyclic order. In Figures A.18, A.19, and A.20, we show a series of steps that reduces starfish to an apex graph, where the apex vertex has degree 3. By theorem 3.2.3 this is reducible, so starfish is reducible.

Throughout the steps of the reduction, we update the labels on the vertices as the adjacencies change. We mention three operations that occur frequently and how the labels are update. When we perform a Wye-Delta operation on an embedded vertex with two embedded neighbours and one label, the neighbouring vertices will are joined together and the label is added to both vertices. We also can perform the inverse of this. If there are two adjacent embedded vertices v, w with a common label t, we can delete t from the labels of v, w, delete the edge $v w$, and add a new vertex x adjacent to v and w with the label t. When an embedded vertex v has two labels and the corresponding vertices are adjacent, we add a vertex w of degree 1 adjacent to v and move the labels from v to w.

Figure A.18: Starfish Reductions 1

Figure A.19: Starfish Reductions 2

Wye-Delta

Wye-Delta
parallel reduce one. Delta-Wye with 34.

D3

D3

D3

Delta-Wye with 3

Delta-Wye with 4

Embed 4

Figure A.20: Starfish Reductions 3

Bibliography

[1] A. D. Alexandrov. Convex polyhedra. Springer Monographs in Mathematics. SpringerVerlag, Berlin, 2005. Translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky, With comments and bibliography by V. A. Zalgaller and appendices by L. A. Shor and Yu. A. Volkov.
[2] Dan Archdeacon, Charles J. Colbourn, Isidoro Gitler, and J. Scott Provan. Fourterminal reducibility and projective-planar wye-delta-wye-reducible graphs. J. Graph Theory, 33(2):83-93, 2000.
[3] G. V. Epifanov. Reduction of a plane graph to an edge by star-triangle transformations. Dokl. Akad. Nauk SSSR, 166:19-22, 1966.
[4] Ruy Fabila-Monroy and David Wood. Rooted k_{4}-minors. Preprint, 2011.
[5] Isidoro Gitler. Delta-Wye-Delta transformations: Algorithms and applications. ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)-University of Waterloo (Canada).
[6] Leif K. Jørgensen and Ken-ichi Kawarabayashi. Extremal results for rooted minor problems. J. Graph Theory, 55(3):191-207, 2007.
[7] Ken-ichi Kawarabayashi. Rooted minor problems in highly connected graphs. Discrete Math., 287(1-3):121-123, 2004.
[8] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2001.
[9] Y. Perl and Y. Shiloach. Finding two disjoint paths between two pairs of vertices in a graph. J. Assoc. Comput. Mach., 25(1):1-9, 1978.
[10] Neil Robertson and P. D. Seymour. Graph minors. I - XXIII. J. Combin. Theory Ser. B, 1983-2012.
[11] Neil Robertson and P. D. Seymour. Graph minors. IX. Disjoint crossed paths. J. Combin. Theory Ser. B, 49(1):40-77, 1990.
[12] Neil Robertson, P. D. Seymour, and Robin Thomas. Tutte's edge-colouring conjecture. J. Combin. Theory Ser. B, 70(1):166-183, 1997.
[13] P. D. Seymour. Disjoint paths in graphs. Discrete Math., 29(3):293-309, 1980.
[14] Carsten Thomassen. 2-linked graphs. European J. Combin., 1(4):371-378, 1980.
[15] William P. Thurston. Shapes of polyhedra and triangulations of the sphere. In The Epstein birthday schrift, volume 1 of Geom. Topol. Monogr., pages 511-549. Geom. Topol. Publ., Coventry, 1998.
[16] K. Truemper. On the delta-wye reduction for planar graphs. J. Graph Theory, 13(2):141-148, 1989.
[17] Douglas B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ, 1996.
[18] Hassler Whitney. 2-Isomorphic Graphs. Amer. J. Math., 55(1-4):245-254, 1933.
[19] Paul Wollan. Extremal functions for graph linkages and rooted minors. ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-Georgia Institute of Technology.
[20] Paul Wollan. Extremal functions for rooted minors. J. Graph Theory, 58(2):159-178, 2008.
[21] David R. Wood and Svante Linusson. Thomassen's choosability argument revisited. SIAM J. Discrete Math., 24(4):1632-1637, 2010.
[22] Yaming Yu. Forbidden minors for wye-delta-wye reducibility. J. Graph Theory, 47(4):317-321, 2004.
[23] Yaming Yu. More forbidden minors for Wye-Delta-Wye reducibility. Electron. J. Combin., 13(1):Research Paper 7, 15, 2006.

