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Abstract

This thesis presents a novel method for estimating the three-dimensional shape of pitched

roofs in monocular satellite/aerial images by utilizing the acquisition geometry (both sun

and camera). This method consists of four steps: rooftop extraction, texture and vent

removal, identification of planar sections, and 3D roof model generation. During the fourth

step, 3D reconstruction candidates are partially rendered and iteratively compared against

the original image to evaluate a fitness function. The experimental results illustrate that

the proposed framework can derive 3D building rooftop models, including estimates for roof

pitch, from single satellite/aerial images in situations where previous techniques fail.
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Chapter 1

Introduction

Three-dimensional (3D) rooftop reconstruction from a single monocular electro-optic image

is a compelling prospect for a variety of purposes, including architectural design, 3D map

generation, urban planning, real estate marketing, insurance assessment, and population

density estimation.

Previous approaches to three-dimensional rooftop reconstruction have typically relied on

imaging technologies such as stereo or photometric imaging, multi-ray photogrammetry, or

LiDAR (Light Detection And Ranging)-based sampled data [44]. This requirement generally

makes these approaches more expensive as they require specialized equipment with lower

update rates. For instance, LiDAR frequently costs one to four dollars per hectare whereas

aerial photography frequently costs pennies per hectare [33]. Additionally, downward-facing

LiDAR data used to produce digital elevation models (DEMs) are often more limited in

spatial resolution than in aerial photography.

Considering the expense and limitations of other approaches to three-dimensional rooftop

reconstruction, there is great interest in alternative methods that might utilize less expen-

sive, higher resolution or more frequently updated imaging technologies.

1.1 Thesis Objective

The objective of this thesis is the development of a framework for estimating the three-

dimensional shape of pitched rooftops from a single monocular electro-optic satellite or nadir

aerial image. The technical details, applicability, performance, computational requirements,

and limitations of this method are presented along with a survey of other related methods.

1



CHAPTER 1. INTRODUCTION 2

1.2 Contribution

This thesis proposes a novel framework for three-dimensional rooftop reconstruction from

a single photometric colour image, combined with image acquisition geometry, and builds

upon previous work for determining building boundaries automatically [23]. This approach

requires only a single monocular electro-optic image for its reconstruction. It has been

implemented using a cross-platform framework to leverage Graphics Processing Unit (GPU)

hardware, thereby reducing the algorithm’s run time [3].

Additionally, the proposed framework utilizes a minimization technique that imposes

constraints on the recovered three-dimensional shapes. We are able to impose these con-

straints because we know that the objects that we are recovering are rooftops that share

common characteristics such as straight lines, flat, downwardly-pitched surfaces, and typi-

cally are made of asphalt tiled roofing material.

Some novel aspects of the proposed framework include:

• The application of histogram equalization, thresholding, and Telea inpainting [37] to

automatically remove rooftop features such as vents, chimneys, and skylights (de-

scribed in Section 3.4.1) to aide in further processing.

• The utilization of Canny edge detection [5] and morphological dilation for automati-

cally producing seed regions for watershed segmentation [31] of rooftops (described in

Section 3.5.1).

• The iterative refinement of a 3D rooftop model by successively rendering hypothesized

models and comparing them with the input image (described in Section 3.6).

1.3 Thesis Organization

The remainder of this thesis is divided into five chapters. Chapter 2 presents the state of the

art in three-dimensional rooftop reconstruction, with a description of the wider shape-from-

shading category of problems. Chapter 3 summarizes the main contributions described in the

thesis and explains in detail the proposed algorithm for the three-dimensional reconstruction

of pitched roofs from single nadir aerial/satellite images. Chapter 4 outlines the experimental

results derived from the proposed framework. Finally, Chapter 5 presents conclusions and

opportunities for future research.



Chapter 2

State of the Art in Single-Image

3D Reconstruction

Although it is a long-standing problem in computer vision, there has yet to be a generic

method that is capable of reliably reconstructing a three-dimensional shape given only a

single monocular electro-optic image. In this chapter, we summarize some of the previous

approaches for 3D reconstruction that are particularly relevant.

2.1 The Problem of 3D Reconstruction

2.1.1 Interactive Approaches

Reconstructing the three-dimensional shape of an object from its single monocular electro-

optic image is a difficult problem to achieve automatically. Yet, the human visual system

(HVS) is usually able to easily estimate three-dimensional shape from such images. For

instance, artists are able to produce sculptures of scenes and faces based only on a pho-

tograph or sometimes even a painting of a scene or person. To leverage this capability of

the human visual system, many approaches to 3D reconstruction are interactive, relying on

input from a skilled human operator to shape the reconstructed three-dimensional model in

conjunction with an algorithm running on a computer.

3



CHAPTER 2. STATE OF THE ART IN SINGLE-IMAGE 3D RECONSTRUCTION 4

Google Earth and Google Building Maker

Google Building Maker is a web application that utilizes the Google Earth browser plug-

in to enable users to design 3D models of buildings – in any of 127 different cities as of

July 2012 – for inclusion in Google Earth [28]. This web application does not provide any

means to automatically reconstruct building models; rather, it provides a set of common

three-dimensional shapes to be used as building blocks for 3D buildings. The user overlays

these three-dimensional building blocks over-top of aerial images of buildings. For instance,

Figure 2.1 shows a portion of a building being matched to a rectangular prism shape (shown

using red lines) manually.

Figure 2.1: Example screen-shot from Google Building Maker, showing the user fitting a
rectangular prism outline to an image.

The user repeats this shape-matching process on images of the building from several

different perspectives (six are initially provided) and Google Building Maker combines these

matched shapes to provide a final textured 3D model. The three-dimensional model is then

reviewed for inclusion in Google Earth.

This approach of constructing potentially complex three-dimensional building models out

of relatively simple components such as rectangular and triangular prisms works well because

many typical building shapes can be closely approximated by intersecting rectangular and

triangular prisms. By providing these shapes as building blocks, Google Building Maker

leverages this common characteristic of buildings to facilitate easier reconstruction of three-

dimensional building models.
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User-Assisted Segmentation and 3D Reconstruction in Medicine

Although separate from three-dimensional reconstruction of buildings or rooftops, recon-

structing the 3D shape of objects within the body using a series of CT (Computerized

Tomography) scanned images requires many of the same computer vision tasks as does re-

constructing the three-dimensional shape of buildings or rooftops. For example, in medical

tomography, image segmentation and information about the image acquisition geometry is

frequently utilized by the three-dimensional reconstruction algorithm. Both of these are

also utilized by the framework proposed in this thesis.

Medical technicians may segment medical images to highlight particular organs or other

objects of interest. If each image is a slice through a three-dimensional object, multiple seg-

mentations can be combined to create a three-dimensional model of the object of interest.

One technique described by Cates and Whitaker [24] uses a hierarchical watershed segmen-

tation algorithm whereby the user is able to select watershed basins for various levels in a

segmentation hierarchy. If the image was initially over-segmented using watershed segmen-

tation, the user could then select segments to merge as needed. Similarly, the user could add

more catchment basins to achieve a satisfactory segmentation. The paper studied actual

users performing segmentation using their user-assisted watershed segmentation program

and found that the results compared favourably compared to manual segmentation.

2.1.2 Automatic Approaches

In addition to the interactive approaches, there are also several fully automatic approaches

to estimating three-dimensional shape from a single monocular electro-optic image.

Template-Matching Approaches

When a complete list of possible building models is known, an approach to reconstructing a

three-dimensional model of a neighbourhood is to exhaustively compare each building in an

aerial image against each of the known models to associate a known model with each building

in the image. This general approach works very well but variations in lighting resulting from

weather, time of day or year, or geographical location may result in dramatically varying

image intensities in different images of the same rooftop. Consequently, a simple test for

correlation between the pixels in a template and the aerial image is not sufficient unless the

lighting direction in the template image is the same as the lighting direction in the aerial
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Figure 2.2: Screen capture of the watershed-assisted segmentation program described in the
paper by Cates and Whitaker [24].

image.

An alternative to simply testing a template against an aerial image for pixel-by-pixel

correlation that does not depend heavily on lighting involves computing the directed Haus-

dorff distance h(M, I) [1] between the edge image of the template M and the edge image of

the aerial image I.

Using this approach, the directed Hausdorff distance h(M, I) between the edge image

of the template and the edge image of the aerial image, represented by point sets M =

{m1, ...,mn} and I = {m1, ...,mn}, can be calculated as

h(M, I) = max
m∈M

min
i∈I
‖m− i‖. (2.1)

The directed Hausdorff distance has several desirable characteristics:

• The distance between two identical shapes is always zero (the identity property).

• Small perturbations, noise, or occlusions such as those resulting from vegetation near

buildings only affect the distance by a proportionally small amount.
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Some weaknesses of the directed Hausdorff distance are:

• It is susceptible to noise in the form of outlier points because outliers often contribute

to the minimum and maximum terms in the Hausdorff distance.

• It may be slow to compute for large images (typically > 5 s for 800 × 600 natural

images) because (at least for the näıve algorithm implementation) it requires that

every point in the model be compared against every point in the image.

To overcome these weaknesses, we have experimented with a modified Hausdorff distance

known as the partial directed Hausdorff distance:

h(M, I) = f thm∈M min
i∈I
‖m− i‖ (2.2)

where f th(x) is the f th percentile of x instead of the maximum. The value of f can be

adjusted to make the distance more or less tolerant of outlier noise.

To reduce the time required to process large images, we have taken advantage of the fact

that the right-most term in (2.1) (mini∈I ‖m− i‖) is simply the distance transformation of

I, defined as:

Id(m) = min
i∈I
‖m− i‖ (2.3)

Therefore, for searching applications where the Hausdorff distance would be calculated many

times, there are typically time savings of at least one order of magnitude in calculating first

the distance transformation of I.

For instance, in Figure 2.3, we have taken an aerial image of Simon Fraser University

and extracted strong edges within that image using a Canny edge detector [5]. Then,

using the edge image, we found the position that minimized the directed Hausdorff distance

between a template of an administrative building and the edge image. This approach also

works well in residential areas where there are many nearly identical buildings present in

a neighbourhood. For example, in Figure 2.4, we were able to identify all occurrences of

a particular model of home in a residential area in about five seconds when running the

algorithm on an 800 MHz AMD (Advanced Micro Devices) Athlon(tm)-based machine. If

a three-dimensional model for each identified model of home is available in a database, a

three-dimensional reconstruction of a neighbourhood could be reconstructed in this way.
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Figure 2.3: An example of an aerial edge image and a match to a known template (found
in 6.5 seconds).

Shape from Shading Approaches

Algorithms that recover a three-dimensional shape from a single 2D image based on shading

are said to be “shape-from-shading” (SFS) algorithms. Although SFS is one of the classic

problems in computer vision, there is yet to be a single algorithm that performs well in all

situations [46]. SFS algorithms have been applied to a variety of problems, from estimating

the shape of microscopic objects to estimating the shape of geographical features [29].

Many previous SFS approaches assume a surface with Lambertian reflectance, meaning

that light reflected from the surface is reflected in all directions equally and the irradiance

emitted from the surface is proportional to the cosine of the angle of the incident light.

This is a mathematically simple model named after its discoverer Johann Heinrich Lambert

for an ideal diffusely reflecting surface. Lambertian reflectance closely approximates the

reflectance of very matte materials such as plaster, but is not a good approximation of the

reflectance of typical roofing shingles [27].

In an image of a surface exhibiting Lambertian reflectance, the pixel intensity E(x, y)
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Figure 2.4: An example of identifying all of the occurrences of a particular model of a home
(shown at the top) in an aerial photo of a residential area.

at any point is given by the equation:

E(x, y) =
cos(σ) + p cos(τ) sin(σ) + q sin(τ) sin(σ)√

1 + p2 + q2
. (2.4)

where τ is the tilt of the illuminant, σ is the slant of the illuminant, and p and q define

the surface orientation in terms of the partial derivatives p = ∂Z
∂x and q = ∂Z

∂y . An impor-

tant consequence of Lambertian surfaces reflecting light equally in all directions is that the

perceived brightness of such a surface does not depend on the viewing angle. By knowing

the orientation of the surface and light source, we can compute a reflectance map, which

projects surface gradients onto expected image pixel intensities. For instance, Figure 2.5
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shows a reflectance map for a Lambertian surface.

Figure 2.5: An example of a reflectance map for a Lambertian surface. Each curve identifies
a range of surface gradients (p, q) that would result in identical brightness.

Given the brightness of an individual point on a surface, there are generally an infinite

number of possible surface orientations that would result in that brightness. Each curve

shown on Figure 2.5 corresponds to a particular reflectance — or brightness — and each

point along any given curve identifies a surface gradient (p, q) that would result in that

reflectance. Most SFS techniques utilize such a reflectance map although a reflectance map

only enables an algorithm to directly calculate a range of possible surface orientations for

each point on the surface. Consequently, various SFS approaches differ in large part by how

they choose to combine local orientation information to reconstruct a three-dimensional

shape [46]. In general, SFS approaches may be grouped into four categories: propagation

approaches, local approaches, linear approaches, and minimization-based approaches [46].
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Propagation approaches Propagation approaches, such as those described by Horn [21],

were some of the first to be developed. They rely on propagating shape information outward

from a set of initially chosen singular points at which the depth is known. In the algorithm

proposed by Horn, the term “characteristic strips” is used to describe the paths emanating

from the singular points along which the depth is estimated [21].

Local approaches Local approaches compute the depth at each point based on the point’s

intensity value and the first and the second derivatives of the intensity with respect to space.

They operate under the assumption that the surface at each point is approximately spherical

and the radius of curvature of the surface at each point varies. One of the most influential

papers on a local SFS approach was published by Pentland [34].

Linear approaches Linear approaches rely on a linear approximation of the reflectance

function. An example is the Tsai-Shah method for extracting shape from shading using

linear approximation [39]. Some results from that algorithm are shown in Figure 2.6.

The original technical report by Tsai and Shah provided a link to a program written

in the C programming language that implemented the algorithm. The program accepted a

portable grey map (PGM) image and a description of the light source direction as an input,

and output a depth map. For a 128 × 128 image, the program completed 5 iterations in a

fraction of a second while running on an 800 MHz machine. The gnuplot utility was used

to generate three-dimensional surface plots of the resulting depth maps. The results were

good for the sample images but were not as good for other images. The resulting depth

maps seem to closely resemble the original images themselves.

Minimization Approaches Minimization approaches, explored by many different re-

searchers, recover a three-dimensional shape by minimizing an energy function over the

entire image [46]. For each pixel value, only the intensity is initially known. From that

single piece of data, the shape-from-shading algorithm attempts to determine both the hor-

izontal and vertical gradient of the surface at that point. Clearly, solving for two unknowns

given only a single known quantity (the intensity) is an under-constrained problem, and so

we must employ additional constraints to find a unique solution.

Therefore, the energy function applied to the entire image necessarily must place a

constraint on the shape-from-shading problem. Some common types of constraints include:

• brightness constraints
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Figure 2.6: Two examples of images and their corresponding estimated 3D shapes using the
Tsai-Shah method [39].
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• smoothness constraints

• intensity gradient constraints

The brightness constraint attempts to minimize the total brightness error of the recon-

structed image compared to the input image. This is what the algorithm in this thesis

proposes, so it could be classified as a minimization approach that utilizes a brightness con-

straint. The function that is minimized for methods that utilize a brightness constraint is

given by, ∫∫
(I(x, y)−R(x, y))2 dx dy, (2.5)

where I is the original image, and R is the reconstructed image.

The smoothness constraint attempts to minimize the rate at which the surface gradient

changes over the x and y directions by utilizing an energy function that penalizes rapid

changes in surface orientation. This favours surfaces that are smooth over those that have

sharp discontinuities. Consequently, methods that impose a smoothness constraint use an

energy function of the form, ∫∫
(p2
x + p2

y + q2
x + q2

y) dx dy, (2.6)

where px, py, qx, and qy are the partial derivatives of the components of the surface gradient

vector (p, q) with respect to x and y.

The intensity gradient constraint attempts to minimize the difference between the inten-

sity gradient of the original image and that of the reconstructed image. The energy function

used to impose an intensity gradient constraint takes the form,∫∫
(Rx(x, y)− Ix(x, y))2 + (Ry(x, y)− Iy(x, y))2 dx dy. (2.7)

where Rx and Ry are the reconstructed image’s intensity gradients along the x and y axis,

and Ix and Iy are the original image’s intensity gradients along the x and y axis. The

gradient images Rx, Ry, Ix, and Iy could be computed by convolving R and I with a Sobel

filter.

Limitations and Challenges

Unfortunately, the approaches listed above are generally intolerant to noise or rely on as-

sumptions that are hard to be realized for satellite/aerial images of cities. For instance,
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in propagation-based shape-from-shading methods, noise can accumulate as it propagates

from one part of the image to the other, and most of these approaches are unable to han-

dle non-Lambertian reflectance, inter-reflections, and other complex lighting. Furthermore,

reconstructing a shape from shading information, without constraints or further informa-

tion is an under-constrained problem, so for any given image, multiple recovered shapes are

possible [46].

For instance, when applying Bichsel and Pentland’s algorithm [2] to a very simple rooftop

image, the best results are often not realistic-looking shapes.

Figure 2.7: An example of preprocessed and final 3D shapes generated from Bichsel and
Pentland’s [2] SFS algorithm.

Consequently, some practical approaches rely on user input during segmentation to

achieve satisfactory results [11]. Another way to overcome these limitations is by utiliz-

ing constraints based on the type of objects being reconstructed [36].

The objective of this thesis is the development of a method for estimating the three-

dimensional shape of pitched rooftops from a single monocular electro-optic satellite or aerial

image that overcomes some of these limitations of other SFS methods. The applicability,

performance, computational requirements, and limitations of this method are presented.



Chapter 3

A Novel 3D Rooftop

Reconstruction System

3.1 Overview

The proposed algorithm in this thesis consists of four general steps: extracting each rooftop

from a larger image; preprocessing to remove details like vents; segmenting into polygonal

planar surfaces; and generating a three-dimensional model from the planar surfaces. Fig-

ure 3.1 provides a general overview of these steps, and the following sections describe each

step in detail.

3.2 Extracting Roofs From Nadir Aerial Images

The first step, extracting roofs from nadir aerial images, is performed using a hierarchical

feature-based image segmentation algorithm [9]. The input of this step is a colour satellite

or aerial image of an area containing buildings with pitched roofs, and the output of this

step is a set of regions within the image that have been identified as rooftop boundaries. A

MATLAB (matrix laboratory) implementation of this algorithm was used. These regions

are then cropped automatically out of the image, and for each individual rooftop image, we

perform the remaining steps of the algorithm.

The MATLAB program outputs the coordinates of the outlines of each building in the

aerial image, in an XML file as shown in Figure 3.2. Using those XML files, we can extract

each rooftop from the image, as illustrated in Figure 3.3.

15
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Figure 3.1: System overview of the pitched rooftop 3D reconstruction algorithm.

<?xml version="1.0" encoding="utf -8"?>

<Rooftop_Images >

<roof>

<vertice >162.000000 ,26.000000 </vertice >

<vertice >156.000000 ,28.000000 </vertice >

<vertice >356.000000 ,87.000000 </vertice >

<area>161.815542 </area>

</roof>

...

<roof>

...

</roof>

</Rooftop_Images >

Figure 3.2: Example of the XML output by the rooftop identification program.
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Figure 3.3: Example of the original aerial image, and the extracted rooftop outlines (shown
in blue).

The roof detection implementation includes a GUI (Graphical User Interface) with which

a user may interact with the system, shown in Figure 3.4.

Figure 3.4: Building extraction GUI.
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3.2.1 Rooftop Extraction Using Corners and Variational Level Set Evo-

lution

The algorithm used for automatically extracting roof boundaries is described in a paper by

Cote and Saeedi [8].

There are three stages of this algorithm:

1. Reference points identification.

2. Rooftop detection.

3. Rooftop candidates assessment.

These three stages are somewhat of an oversimiplification of the algorithm, which is

illustrated with greater detail in Figure 3.5, so the following paragraphs will explain each

stage in depth.

Figure 3.5: Overview of the roof boundary extraction algorithm.
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Reference Point Identification

The first stage, reference point identification, involves locating an initial point inside the

boundary of each rooftop (referred to as reference point). These reference points are identi-

fied using a k-means clustering algorithm to iteratively converge on a set of k clusters within

the image, where the pixels within each cluster have similar hue and saturation values. Only

the hue and saturation components of the image are considered, so that variations in illu-

mination across rooftops do not interferere with their detection. This is important, because

certain classes of rooftops — such as the pitched rooftops described in this thesis — exhibit

large variations in illumination on different faces of the rooftop.

The value of k and the initial centroid locations {kci} are extracted from the 2D his-

togram computed for the hue-saturation image. Each rooftop is assumed to be made pre-

dominantly of one uniform material, so each rooftop will correspond to a peak in the hue-

saturation histogram. Consequently, the initial value of k and kci is given by

k = |{h, s : H(h, s) = regional maximum}| (3.1)

{kci} = {h, s : H(h, s) = regional maximum} (3.2)

Next, each of the k clusters are further refined, with some clusters being split in two and

others being discarded. A morphological opening operation with a square 5× 5 structuring

element eliminates small, disconnected, or narrow clusters and smooths the remaining cluster

boundaries. Clusters that are divided by strong edges are split into smaller clusters. Finally,

clusters are evaluated against several criteria, and those that do not satisfy the criteria are

discarded:

• Clusters that are connected to the image border are discarded because they correspond

to roofs that are not fully within the image.

• Clusters with highly eccentric shapes are also discarded because they are unlikely to

correspond to rooftops.

• Clusters smaller than 400 square pixels, or 9 m2 are discarded because they are too

small to correspond to most buildings.

• Clusters with a center of gravity outside the cluster are discarded.

• Clusters with hue and saturation values common to vegetation are discarded.
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The centroids of each of the remaining clusters are used as reference points for subsequent

steps of the algorithm. A reference radius is also computed for each reference point that is

proportional to the size of the cluster but is restricted to a range within 1 m and 2 m.

Rooftop Detection

Corners have been found to be one of the most robustly-detectable features of a rooftop, so

they are leveraged to produce a rough estimate of the building boundary. Consequently, the

algorithm relies on the assumption that the building has distinctive corners (as identified

using a Harris corner detector [18]), and the roofing material is of a roughly uniform colour

and reflectance. These limitations are not too restrictive because most buildings have corners

and a uniform roof material but they do make this algorithm inappropriate for identifying

unusual buildings such as grain silos or water towers, which are typically cylindrical in shape.

Prior to corner detection, the image is transformed using multiple colour and colour-

invariant spaces to attenuate differences in pixel values due to illumination and amplify

differences due to colour variations. Specifically, the algorithm uses a Gaussian colour

invariance image produced using an algorithm proposed by Geusebroek et al [14], the hue-

saturation image, and a mean-squared error image. The Gaussian colour invariance image

is defined by

Γ = (Eλ/E,Eλλ/E) (3.3)

where 
E

Eλ

Eλλ

 =


0.3 0.58 0.11

0.25 0.25 −0.05

0.5 −0.5 0



R

G

B

 . (3.4)

The hue-saturation image is defined more simply as the image generated by converting

the HSV image to an RGB image with the following mapping:
R

G

B

 =


H

S

0

 (3.5)

Using these spaces, the algorithm identifies and localizes the corners of the building

using a Harris corner detector [18]. By using these alternative spaces for edge detection, the

algorithm is more robustly able to identify the corners of roofs that exhibit varying levels

of illumination, such as pitched roofs.
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In general, more corners will be detected than correspond to the corners of buildings, so

the detected corners are evaluated using two criteria:

• Similarity of the neighborhood around each corner (WCi) with that of the reference

point on the Gaussian colour invariance image, Γ.

• Smoothness of the MSE (mean-squared error) profile along the segment SCi between

Ci and the center of the reference point.

The corners that satisfy the criteria are then connected in the order of their polar angles

with respect to the center of the reference point to create a polygonal representation of

the roof boundary P . This polygonal representation is an approximation of the true roof

boundary, so subsequent steps refine that boundary using level set evolution.

To provide the initial contour for the level set evolution algorithm, the polygonal rep-

resentation is shrunken by 1 m on all sides. Shrinking the contour is necessary because

the parameters of the energy functional are set to drive the contour outward, so the initial

contour must lie within the true roof boundary. The level set evolution algorithm then

iteratively perturbs this contour to minimize an energy functional that drives the contour

to the image features in the mean-squared-error image.

Rooftop Candidates Assessment

Once the level set evolution algorithm has converged to a solution, the resulting rooftop

boundary candidate is assessed, such that regions that exhibit some rooftop-like properties

but which are not actual rooftops can be discarded. Each rooftop boundary candidate is

assessed against several criteria:

1. Boundaries within which there is a lot of intensity variation in the Gaussian color

invariance space are discarded, because true rooftops are relatively uniform in intensity

within the Gaussian color invariance space.

2. Boundaries that have low solidity, defined as the ratio of their area to the area of their

convex hull are also discarded.

3. Boundaries that do not comply closely with the edges in the edge image are also

discarded.
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4. When two or more detected boundaries are identical, only one is kept and the others

are discarded.

5. Boundaries that are connected to other boundaries containing similar colour are joined

and their centroid is used for a second pass of the algorithm, because such boundaries

likely correspond to different parts of the same rooftop.

3.3 Determining the Position of the Sun

Aerial and satellite imagery is often accompanied by meta-data describing the time and date

of the image acquisition, as well as the orientation of the camera when the image was taken.

Using this information, it is possible to calculate the angle of the sun’s rays relative to the

Earth, and therefore also relative to the buildings photographed. Figure 3.6 illustrates how

the position of the sun can be described using polar coordinates.

Figure 3.6: Position of the sun can be described using polar coordinates.

3.4 Removing Insignificant Rooftop Details

Some relatively small rooftop details, such as vents, chimneys, shingles, and skylights, are

not necessary for estimating the the larger-scale three-dimensional shape of the rooftop.

Rooftop ridges and boundaries are sufficient for estimating the three-dimensional shape of

the rooftop, and other details simply interfere with the robust detection of rooftop ridges

and boundaries.

For instance, skylights and rooftop vents frequently appear white or black from aerial or

satellite imagery. Therefore, when we use a Canny edge detector [5] to identify the strong

edges in the image, the edges from skylights and rooftop vents appear predominantly in

the edge map. In some cases, these vents or skylights are far enough from other sources
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of edges, like rooftop ridges, that they could be identified and removed on the basis that

they are not connected to other edges in the edge map. However, vents and skylights are

frequently near rooftop ridges, or positioned in a line on the rooftop, such that subsequent

edge linking steps are unable to differentiate between edges corresponding to a line of vents

or skylights and edges corresponding to rooftop ridges.

3.4.1 Identification and Removal of Vents, Skylights, and Other Fixtures

Removing outlier regions (corresponding to vents, skylights, etc.) involves performing a

threshold-based operation to find very bright or very dark small regions within the rooftop

area. These regions typically correspond to rooftop vents or skylights, which if not removed,

may negatively affect subsequent segmentation steps.

To identify the outlier regions, we convert the colour image given as the input to a

grayscale image, with each pixel’s grayscale intensity ranging from 0 (black) to 255 (white).

We then perform histogram equalization on the image to stretch its contrast. In a histogram-

equalized image, we found that pixels with intensities greater than 180 on a 0 to 255 scale

typically corresponded with white plastic vents, and pixels with intensities less than 90

typically corresponded to black plastic vents or skylights.

Once these outlier regions have been identified, extremely small regions (those with areas

of less than 0.5 m2) are removed by a morphological opening operation. The remaining

regions are then used as a mask to identify the regions that must be inpainted (a technique

typically applied to photo restoration that replaces masked-off regions of an image with

content generated from the surrounding pixels) [37]. After inpainting, the vents and skylights

on the roof appear to have disappeared, because the surrounding pixels have been used to fill

in the area that they previously occupied. Figure 3.7 illustrates this inpainting algorithm.

Figure 3.7: Illustration of how thresholding and inpainting are used together to remove
vents and skylights.

There are a variety of inpainting algorithms available but we chose to use a relatively
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simple but effective algorithm that was developed by Alexandru Telea [37]. Appendix A

describes the Telea inpainting algorithm in more detail.

Figure 3.8 illustrates the output of this vent removal process.

Figure 3.8: Two examples of an original rooftop image (left) and the processed image with
the vents removed (right).

3.4.2 Smoothing Texture While Extracting Differences Due to Shading

Next, we apply an edge preserving filter to reduce the rough texture of the rooftop while

maintaining the important edges in the image. The classic median filter produces good

results but both mean-shift filtering [6] and bilateral filtering qualitatively produced images

that better captured the relevant edges while smoothing irrelevant details. In the imple-

mentation of this algorithm, we experimented with both mean-shift filtering and bilateral

filter, but chose the bilateral filtering because of its slightly better runtime performance.

This difference in runtime performance is the result the bilateral filter only requiring one

pass over the image, while mean-shift filtering requires several iterations to converge on a

solution. Appendix B describes the bilateral filtering algorithm in finer detail.

We may quantitatively evaluate the effect of various filters by computing the mean-

squared-error (MSE) or peak signal-to-noise ratio (PSNR) of the smoothed image relative

to the original image. A filter that qualitatively smooths insignificant details while either

minimizing the MSE or maximizing the PSNR is ideal, because such a filter enables the

smoothed image to retain important information. Equation 3.6 shows how the MSE may
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be computed for two images, I and K, both of which are m× n in size.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (3.6)

The peak signal-to-noise ratio (PSNR) of a smoothed image may be computed by com-

paring the smoothed image to the original image using the formula

PSNR = 10 · log10

(
MAX 2

I

MSE

)
(3.7)

= 20 · log10

(
MAX I√

MSE

)
(3.8)

= 20 · log10 (MAX I)− 10 · log10 (MSE ) (3.9)

Table 3.1 compares the PSNR of blurred rooftop images using a Gaussian filter and

compares them with the PSNR of images blurred using a bilateral filter. The images blurred

with a bilateral filter have a higher PSNR than those blurred with the Gaussian filter, which

is a consequence of the bilateral filter keeping more image detail around edges than the

Gaussian filter, which blurs all parts of the image equally.

Finally, we apply a histogram equalization to the image to increase the contrast within

the image. This step is important for the following steps, which rely on the contrast between

rooftop regions to identify edges.

Histogram equalization Histogram equalization proceeds by first calculating the his-

togram for the grey-scale image. Next, it computes the cumulative distribution function

(cdf) for the histogram, such that cdf(v) denotes the number of pixels in the image whose

intensity is less than or equal to v. Using cdf(v), we are then able to map each pixel value

v in the image to a new pixel value, h(v), using the formula

h(v) = round

(
cdf(v)− cdfmin
cdfmax − cdfmin

× 255

)
(3.10)

where cdfmin is the minimum value of the cumulative distribution function, and cdfmax

denotes the number of pixels in the image.

3.5 Identifying Planar Rooftop Surfaces

Pitched roofs (as opposed to flat roofs) consist of a set of planar intersecting surfaces that

slope downward. Where these planar surfaces intersect, there is a rooftop ridge. The
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Image # Bilateral filter PSNR Gaussian filter PSNR

1 21.34 17.76
2 18.75 16.44
3 21.58 19.14
4 21.71 19.17
5 21.40 18.86
6 20.57 17.49
7 19.56 16.52
8 21.30 17.87
9 19.23 15.83
10 22.47 18.96
11 23.68 19.96
12 24.13 20.81
13 15.13 13.58
14 23.06 19.94
15 21.05 17.45
16 21.95 18.60
17 21.29 17.54
18 19.15 15.68
19 21.33 18.39
20 20.63 17.58
21 20.88 18.35
22 21.10 18.59
23 20.00 17.20
24 21.15 19.06

Average 20.94 17.95

Table 3.1: Peak signal-to-noise-ratio (PSNR) of an image blurred with a 5 × 5 Gaussian
filter vs. an image blurred with a bilateral filter with a 5 × 5 spatial kernel and a 3 × 3
colour kernel.
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simplest pitched roof is a gabled roof, consisting of just two flat surfaces, joined together

to form a single rooftop ridge. Slightly more complicated pitched roofs include the hipped

roof, mansard roof, and half-hip roof, but many other variants also exist. Figure 3.9 shows

some common types of pitched roofs.

a b c

Figure 3.9: (a) A hip roof, (b) a square hip roof, and (c) a gabled roof.

3.5.1 Roof Ridge Identification and Linking

Segmentation starts by identifying straight edges in the image. We used the Canny algorithm

for edge detection with a lower threshold of 250 and an upper threshold of 300 [5]. The

Canny edge detector is applied to the histogram equalized image, described in Section 3.4.2.

Canny edge detector To understand the significance of these two thresholds, it is im-

portant to first understand how the Canny algorithm for edge detection identifies edges in

an image. The Canny algorithm first computes the intensity gradient in the image by con-

volving the image with a discrete differentiation filter; in the proposed algorithm, a Sobel

filter was used. Next, the Canny algorithm performs non-maxima suppression, in which it

computes the angle of the gradient at each point, and zeros the gradient magnitude of all

pixels that are not local maxima. This step has the effect of thinning all of the edges iden-

tified in the gradient magnitude image such that each is only one pixel thick. The final step

in the Canny algorithm—and the one that utilizes the lower and upper threshold values—is

hysteresis thresholding. At this step, each pixel with a gradient magnitude greater than

the upper threshold is identified as an edge. Connected pixels whose gradient magnitude is

greater than the lower threshold are also identified as being part of an edge.

Alternative edge detectors were also explored. Combining several Prewitt edge filters

[15] (each one oriented to find edges along likely angles like 0, 45, and 90 degrees) worked

fairly well, as illustrated in Figure 3.10. However, the Canny edge detector, which does not

rely on as many assumptions about the angle of the edges, worked well also, especially when
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especially short and disconnected edges are removed [5]. Figure 3.11 shows the output of the

Canny edge detector on the same image as in Figure 3.10. Although the lines detected are

not as straight as those found using the Prewitt edge detector, they do not rely on knowing

the orientation of the roofline ridges, as the Prewitt edge detector requires.

Figure 3.10: Edges and lines detected at several angles using a Prewitt edge detector (top
row) and Hough line detector (bottom row).

Figure 3.11: Edges detected by the Canny edge detector.

Next, we applied a morphological dilation operation to the binary edge image to connect

nearby edges and identify large edge-less regions. These edge-less regions are then used as

markers for a watershed segmentation [31] of the rooftop image, with the strong edges that
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were previously identified used as barriers. Figure 3.12 illustrates the results of this segmen-

tation step, and Appendix C describes the mark-based watershed segmentation algorithm

in detail.

Original Preprocessed Segmented into
polygons

Figure 3.12: Some examples of original, preprocessed, and segmented rooftop images.

Marker-based Watershed segmentation Table 3.2 shows some examples of segmented

images produced using this algorithm, along with some metrics relating to the segmentation

accuracy.



CHAPTER 3. A NOVEL 3D ROOFTOP RECONSTRUCTION SYSTEM 30

% of the incorrectly Image size Elapsed time Original, ground truth,
segmented pixels (pixels) (s) and segmented

4.20% 64× 64 0.019

2.00% 48× 52 0.011

6.04% 48× 60 0.008

7.71% 57× 58 0.007

Average: 4.99%

Table 3.2: Percent of the incorrectly segmented pixels, relative to ground truth segmenta-
tions generated by manually segmenting the rooftop images.

3.5.2 Segmentation Into Polygonal Shapes

For each found segment using the watershed algorithm, we apply the Ramer-Douglas-

Peucker algorithm [10] to approximate the contour with a polygon of just a few vertices.

Ramer-Douglas-Peucker algorithm The Ramer-Douglas-Peucker algorithm is an it-

erative algorithm that operates by progressively adding vertices to approximate the input

contour until the maximum distance between the simplified and original contour has reached

a threshold value. Generally, the algorithm may be described as a series of simple steps that

are repeated recursively until an error threshold is met:

1. Find the point c on the actual contour C whose distance, d, is greatest from the

approximated contour, C̃.

2. If d is less than the chosen threshold value t, terminate.

3. Insert c into the approximated contour C̃.

4. Return to step 1.
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Figure 3.13 illustrates how the Ramer-Douglas-Peucker algorithm iteratively adds ver-

tices to the approximated contour to progressively reduce the error in the approximation.

Figure 3.13: The iterative procedure of the Ramer-Douglas-Peucker algorithm as it adds
progressively more vertices to approximate a contour.

With an appropriate threshold, the Ramer-Douglas-Peucker algorithm usually results in

polygonal regions with three to five vertices, depending on the complexity of the contour.

Choosing too small a threshold results in a closer approximation to the segmented contour

but it also may result in more vertices in the simplified contour than are really necessary.

Choosing too large a threshold, however, results in a poorly approximated contour. Fig-

ure 3.14 illustrates the result of using too large a threshold, using an appropriate threshold,

and using too small a threshold.

Original image Too large threshold Appropriate threshold Too small threshold

Figure 3.14: The effect of different thresholds chosen for the Ramer-Douglas-Peucker algo-
rithm.

The result of this Ramer-Douglas-Peucker algorithm is a set of simple polygonal shapes,

such as those shown in Figure 3.15, which illustrates the results of the edge-detection,

segmentation, and shape simplification steps. After this set of polygons is computed, nearby

vertices of adjacent polygons are combined into a single shared vertex, thereby producing a

graph that partitions the entire rooftop.
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a b c d

Figure 3.15: (a) The preprocessed image, (b) the image after edge detection, (c) the image
after watershed segmentation, and (d) the image after simplifying the regions into simpler
polygons.

3.5.3 Representing Rooftop Structure

Once all the polygons that partition the rooftop are identified, they must be represented by

an appropriate data structure so that subsequent states can utilize them. An appropriate

data structure consists of an ordered pair, G = (V,E). The first set, V , is the set of vertices,

each of which consists of a vector in (x, y, z). The second set E is the set of edges joining

vertices in V , and can be represented in software as a vector (e1, e2), where e1 and e2 are

indexes into a list representing V . This data structure G = (V,E) is an undirected graph.

Because the graph G represents the geometrical arrangement of a rooftop, it is con-

strained in its structure. For instance, any valid graph G must be a planar graph, meaning

that no two edges intersect one-another when the graph is embedded in a plane. Addition-

ally, all of the vertices in the graph must have degree of two or more, because each simple

cycle in the graph identifies a polygon, and each vertex is a member of a cycle.

3.6 Deducing Depth From Shading

In the previous section, we partitioned the rooftop into polygonal shapes, each of which

represents a planar section of the rooftop surface. Without depth information, however, we

cannot estimate the angles between adjacent polygons, and thus cannot estimate the height

or pitch of the roof. To estimate these quantities, we must utilize lighting and shading

information from the image and its associated acquisition geometry to estimate the surface

normals of each polygon. Computer Aided Design (CAD) software and three-dimensional

computer games regularly do the reverse of this process— computing the shading of a
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(0,0,0) (150,0,0)

(74,80,0)

(76,128,0)

(0,208,0) (150,208,0)

(1,2)

(1,3) (2,3)

(1,5)
(3,4)

(2,6)

(4,6)(4,5)

(5,6)

a b

Figure 3.16: (a) An example segmented rooftop, and (b) the resulting graph data structure
used to represent the segmentation.

polygon given its orientation—but because multiple possible orientations of a single polygon

may result in the same shading, this problem is generally under-constrained. However, we

can constrain the problem by considering the resulting shading of the entire rooftop, with

all polygons connected, rather than solving for the orientation of each polygon individually.

3.6.1 Shape Models and the BRDF

In general, the shading of a particular material is determined by a BRDF, or Bidirectional

Reflectance Distribution Function. Given a ray of incoming light, with radiance Li, the

BRDF calculates the distribution of angles along which the light is reflected from the surface.

In general, the BRDF is a function with four parameters, because the amount of incident

light that is reflected in a particular direction depends on the angle of the incident light,

and the angle to the viewer, both of which consist of both an azimuth angle and a zenith

angle.

BRDFs that depend on the value of the incoming and outgoing azimuth angles, rather
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than merely their difference, are called anisotropic BRDFs, and are functions of four pa-

rameters. Anisotropic BRDFs approximate materials like brushed aluminum, which exhibit

different reflectance properties if you were to rotate them on a plane. Many surfaces are

well approximated with BRDFs that do not depend on the incoming and outgoing azimuth

angles, however, and instead depend only on the difference between them. Such BRDFs are

called isotropic, and are functions of only three parameters: the incident zenith angle, θi,

the reflected zenith angle, θr and the difference between the incident and reflected azimuth

angles, φ = (φi − φr). Isotropic BRDFs approximate the reflectance of most materials well,

including rooftop shingles.

Another way to look at the BRDF is as a function that defines the ratio of the light

incident on a surface from an angle ωi that is then reflected from the surface in a particular

viewing angle ωo, both of which are measured from the normal of the surface:

fr(ωi, ωo) =
dLr(ωo)

dEi(ωi)
dLr(ωo)

Li(ωi) cos(θi)dωi

(3.11)

The BRDF for a particular material (e.g. rooftop shingles) can be measured using a

device called a gonioreflectometer [13], which consists of a movable light source, a movable

light sensor, and a stationary pedestal on which to place the material to be measured.

Some research already exists where the BRDF of roofing shingles have been measured

[27]. For instance Figure 3.17 shows a roofing shingle in a gonioreflectometer ready to have

its BRDF measured. Generally, however, measured BRDFs are unavailable or too complex

for use in rendering, so certain phenomenological models are used instead to approximate

real BRDFs with simpler mathematical functions.

Figure 3.17: Gonioreflectometer setup for measuring the BRDF of a rooftop shingle. Figure
from [27].
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Measurements of the BRDF for rooftop shingles wrapped on a sphere have shown that

they have a very flat appearance, with virtually no specular component [27]. In fact, they

are flatter than an ideal Lambertian surface, indicating that the Blinn-Phong shader [4] may

not be able to account for such a surface. For instance, the spheres in the image below both

have the same colour, with the one on the right exhibiting completely diffuse (Lambertian)

reflection, and the one on the right exhibiting reflection similar to that seen on rooftop

shingles, where the appearance is flatter than Lambertian[27].

Figure 3.18: Comparison of measured BRDFs for a roughly Lambertian surface (plaster)
and rooftop shingles. Figure from [27].

This additional flatness is a characteristic of the roughness of the rooftop shingles. An

alternative model that better accounts for materials like rooftop shingles or sandpaper is the

Oren-Nayar shading model[3]. The Oren/Nayar shading model incorporates an additional

parameter, sigma, which is a measure of the roughness of a surface. The rougher the surface,

the flatter it tends to appear on a sphere.

To estimate the depth from shading information, we need to first know the BRDF

(Bidirectional Reflectance Distribution Function) that best models the rooftop material. By

default, OpenGL (Open Graphics Library) uses a shading model called Blinn-Phong, which

models a generic BRDF as the weighted sum of three components: an ambient component,

a diffuse component, and a glossy specular component [43].

The Blinn-Phong model does not model the roughness of roof shingles well, however.

The roughness tends to reduce the dependence of the perceived brightness of a surface on

the viewing angle. A better model for rough surfaces is the Oren-Nayer model [41]. Here

the reflected radiance Lr is a function of the incident and reflected angles, as well as two

parameters, ρ, the albedo of the surface, and σ, the roughness of the surface. Roofing

shingles are well modelled with ρ = 0.20 and σ = 0.82 [27].

The reflected radiance, Lr, then, is given by the formula,

Lr =
ρ

π
cos(θi) (A+ (Bmax(0, cos(φi − φr)) sin(α) tan(β))Li, (3.12)
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where Li is the irradiance incident on the rooftop, and

A = 1− 0.5
σ2

σ2 + 0.33
(3.13)

B = 0.45
σ2

σ2 + 0.09
(3.14)

α = max(θi, θr) (3.15)

β = max(θi, θr) (3.16)

The angles θi and θr are the incident and reflected angles, respectively, both of which

are measured from the normal of the surface. The angle θi is therefore determined by the

position of the light source relative to the surface, and θr is determined by the position of

the camera relative to the surface. Figure 3.19 illustrates this scenario.

n

θ
θi

rLi Lr

Figure 3.19: Reflected light from a rooftop showing Li, θi, Lr, θr, and their relationship to
the light source, surface, and viewer.

We extract the lighting information from the acquisition geometry included along with

the image meta-data. This acquisition geometry describes the sensor and the sun azimuth

and elevation angles [23].

3.6.2 Model Candidate Reconstructions

Once we have BRDF and lighting information, we can render our hypothesized three-

dimensional shapes using OpenGL. The rendered image of the three-dimensional model

as seen from above is then compared against the original image (with vents removed) to

calculate a fitness measure of the hypothesized three-dimensional shape.

Initially, we start with a model where all of the flat surfaces identified earlier lie on the

same plane. In subsequent steps, we adjust the z-value of certain vertices while maintaining
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the flatness of each identified plane to arrive at alternative hypothesized three-dimensional

shapes.

3.6.3 Evaluating Candidate Reconstructions for Goodness-of-Fit

In the algorithm, a subtraction-based correlation with the original image is utilized as a

fitness measure, F , where

F =
∑

(x,y)∈I1

(I1(x, y)− I2(x, y))2 . (3.17)

I1 and I2 are the original and rendered images, respectively. A smaller value for F indicates

a better model.

3.6.4 Evolution of a Solution Using Gradient Descent

The algorithm then perturbs the z coordinates of the vertices in the rendered rooftop model

slightly and renders it again to reduce F . Figure 3.20 illustrates how the z coordinates of

the vertices of the rooftop may be varied to construct different hypothesized rooftop shapes.

Figure 3.20: Example of a simple rooftop model (seen from the side), with varying z coor-
dinates for its internal vertices.

The z coordinates are perturbed according to a gradient descent equation. The set of

all z values for all of the vertices are used to form a vector z. Thus, given a set of z values

zi at the ith iteration, the set of z values at the (i+ 1)th iteration is given by,

zi+1 = zi +∇F (zi) (3.18)

where ∇F (zi) is computed by incrementing the z value of each vertex individually and

recording the resulting change in the fitness measure F .
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We also experimented with random perturbations of one vertex at a time, reverting any

change that did not decrease the mean-squared error (MSE), and keeping any change that

did decrease the mean-squared error. That approach worked nearly as well as the gradient

descent method, but we found that the gradient descent method approached a solution in a

more predictable time frame, so it was preferred. Figure 3.21 shows how the mean-squared

error decreases with the number of iterations.

Figure 3.21: Mean-squared error (MSE) relative to the number of iterations.

Once a reconstruction is established that achieves a desired fitness measure, the algo-

rithm stops iterating and the final image is rendered. Alternatively, if for eight consecutive

iterations, the fitness measure does not decrease, or if the algorithm has already iterated

a maximum number of times (50 iterations seemed to work well) the algorithm also stops.

Two examples of reconstructed three-dimensional rooftops using this processes are shown in

Figure 3.22. The results on the second row of this figure correspond to the example shown

in Figure 3.22.
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Original Rendered 3D Model

Figure 3.22: Example of the rendered 3D model generated for an image.

3.6.5 Incorporating Constraints Into the 3D Shapes

As the algorithm iteratively guesses and tries new hypothesized three-dimensional shapes, it

applies certain general constraints to the three-dimensional shapes. For instance, hypothe-

sized three-dimensional shapes whose exterior planes do not pitch downwards are discarded,

because any realistically-shaped rooftop must pitch downwards to deflect rain and snow

away from the building.

Similarly, regions where there are two adjacent planes whose shapes are near mirror-

images of one another usually indicate that both regions have the same downward pitch.

The simplest example is a pitched rooftop consisting of two rectangular planes that connect

along one edge.

3.6.6 Why Not Use a System of Linear Equations?

The solution to our gradient descent algorithm is a vector of z coordinates, so an obvious

question is to ask whether this problem could be reduced to a system of linear equations.

Unfortunately, even the simplest BRDF is non-linear, so one cannot reduce the problem to

a system of linear equations.

3.7 Software Implementation

3.7.1 Software Architecture

We implemented the algorithm described in this thesis as a single application written in

C++, which utilized several libraries, including Qt, OpenGL, and OpenCV. We used Qt for

developing the user interface, OpenGL for rendering hypothesized rooftops, and OpenCV

for preprocessing and segmenting the satellite or aerial rooftop images.
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The application consists of two important compilation units: main.cpp, and roofrenderer.cpp.

The main.cpp file contains code that deals with segmenting the aerial or satellite images, and

roofrenderer.cpp contains code that renders the hypothesized three-dimensional rooftop

models.

3.7.2 Leveraging OpenCV for Rooftop Segmentation

OpenCV includes implementations of many useful computer vision and digital image pro-

cessing algorithms. For instance, it provides a cvInpaint() function that implements the

inpainting algorithm we used for removing rooftop vents and skylights.

3.7.3 Rendering Roofs in OpenGL

OpenGL (Open Graphics Library) enables rendering of three-dimensional models, generally

using direct lighting, and utilizing graphics processing units (GPUs) on the host PC, if any

are available. OpenGL is an open standard and can be used on all major platforms, including

Windows, Linux, and Mac OSX. Unlike other image synthesis techniques such as ray tracing

or ray casting that generally are incapable of rendering images in real-time, OpenGL can

frequently render scenes within a small fraction of a second. For this reason, OpenGL has

become popular among game developers, where the game-play consists of three-dimensional

scenes rendered in real-time.

OpenGL, by default, defines a “viewing volume in the three-dimensional world space. If

any object or any part of an object lies outside that viewing volume, it is clipped and not

rendered in the resulting image. The default view volume is a cube centred at the origin,

with each side having a length of 2.

OpenGL uses a right-handed coordinate system, meaning that the z-axis points out

of the screen towards the viewer. Thus, with the camera located at the origin ((0, 0, 0)),

objects are only visible if they exist in the half of the viewing volume with negative z values.

In other words, only those objects that exist entirely in the space where (−1 < x < 1),

(−1 < y < 1), and (−1 < z < 0) will not be clipped.

The solution to this problem is to either guarantee that any objects to be rendered fit

completely within the default viewing volume, or to specify a different viewing volume by

modifying the projection transformation matrix. The projection matrix defines how objects

are projected onto the screen, and also defines the viewing volume, outside of which objects
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are clipped.

I am able to specify a projection transformation matrix using code like that in Fig-

ure 3.23.

glMatrixMode(GL_PROJECTION);

glLoadIdentity ();

Figure 3.23: C++ code snippet illustrating how one can specify the viewing volume.

The default projection matrix is the identity matrix but I can specify a custom one using

the glFrustum() function.

Taking a flat region of the rooftop and applying it to an three-dimensional model in

OpenGL as a texture results in a rendered image that looks very similar to the original

rooftop image, as shown in Figure 3.24.

(a) (b)

Figure 3.24: (a) the original rooftop image, and (b) the resulting image rendered in OpenGL.

An example of a simple OpenGL code snippet that would draw the rooftop above is

shown in Figure 3.25.

It’s interesting to note that for each vertex, one must specify the normal vector explicitly

using the glNormal3f() function.

GL Shader Language (GLSL) and the programmable graphics pipeline When

rendering the hypothesized rooftop models, it is important to colour each face of the rooftop

appropriately. As mentioned earlier, the default OpenGL shader is based on Blinn-Phong

shading, but we would like to use something that better approximates the appearance of a



CHAPTER 3. A NOVEL 3D ROOFTOP RECONSTRUCTION SYSTEM 42

glBegin(GL_QUADS);

// Top surface

glNormal3f (0.0f, 0.5f, 0.5f);

glTexCoord2f (0.0f, 0.0f); glVertex3f (-0.5f, -1.0f, -0.5f);

glTexCoord2f (1.0f, 0.0f); glVertex3f (0.5f, -1.0f, -0.5f);

glTexCoord2f (0.5f, 1.0f); glVertex3f (0.0f, -0.5f, 0.5f);

glTexCoord2f (0.5f, 1.01f); glVertex3f (0.0f, -0.501f, 0.5f);

glEnd ();

glBegin(GL_QUADS);

// Right surface

glNormal3f (0.5f, 0.0f, 0.5f);

glTexCoord2f (0.0f, 0.0f); glVertex3f (0.0f, -0.5f, 0.5f);

glTexCoord2f (1.0f, 0.0f); glVertex3f (0.5f, -1.0f, -0.5f);

glTexCoord2f (1.0f, 1.0f); glVertex3f (0.5f, 1.0f, -0.5f);

glTexCoord2f (0.0f, 1.0f); glVertex3f (0.0f, 0.5f, 0.5f);

glEnd ();

glBegin(GL_QUADS);

// Bottom surface

glNormal3f (0.0f, -0.5f, 0.5f);

glTexCoord2f (1.0f, 1.0f); glVertex3f (0.0f, 0.5f, 0.5f);

glTexCoord2f (1.0f, 0.0f); glVertex3f (0.5f, 1.0f, -0.5f);

glTexCoord2f (0.0f, 0.0f); glVertex3f (-0.5f, 1.0f, -0.5f);

glTexCoord2f (0.01f, 0.0f); glVertex3f ( -0.501f, 1.0f, -0.5f);

glEnd ();

glBegin(GL_QUADS);

// Left surface

glNormal3f (-0.5f, 0.0f, 0.5f);

glTexCoord2f (0.0f, 1.0f); glVertex3f (0.0f, 0.5f, 0.5f);

glTexCoord2f (1.0f, 1.0f); glVertex3f (-0.5f, 1.0f, -0.5f);

glTexCoord2f (1.0f, 0.0f); glVertex3f (-0.5f, -1.0f, -0.5f);

glTexCoord2f (0.0f, 0.0f); glVertex3f (0.0f, -0.5f, 0.5f);

glEnd ();

Figure 3.25: C++ code snippet illustrating drawing a simple roof top.



CHAPTER 3. A NOVEL 3D ROOFTOP RECONSTRUCTION SYSTEM 43

real shingle rooftop (such as an Oren-Nayer shader). To do this, we have to write a custom

shader program, which runs on the GPU during rendering.

Modern GPU hardware is heavily pipelined, enabling multiple units within the GPU

to execute in parallel. Figure 3.26 illustrates how a set of vertices passed to the GPU are

processed by several pipeline stages before eventually resulting in pixels being written to

the framebuffer (for display on the screen).

Vertex Data

Vertex Shader

Primitive Assembly

Rasterization

Fragment Shader

Per-Fragment Operations

Framebuffer

Figure 3.26: A typical graphics rendering pipeline for a modern graphics processing unit.

Most of these pipeline stages typically are fixed in function, but modern graphics cards

now enable both the vertex shader and fragment shader to execute small, custom programs

written in a C-like language called GLSL (GL Shader Language). GLSL vertex shaders
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can be used to modify vertex attributes such as position and color, whereas GLSL frag-

ment shaders are are responsible for computing the final pixel color of each rendered pixel.

Consequently, GLSL fragment shaders can be used to simulate the reflectance of a custom

material.

uniform vec4 Ka;

uniform vec4 Kd;

uniform sampler2D lookup;

varying vec3 N;

varying vec3 V;

void main(void)

{

vec3 Pn = -normalize(V);

vec3 Nn = normalize(N);

float roughnessSquared = 0.5;

float A = 1. - (0.5* roughnessSquared)/( roughnessSquared +0.33);

float B = 1. - (0.45* roughnessSquared)/( roughnessSquared +0.09);

vec4 color = vec4(0., 0., 0., 0.);

vec3 L = normalize(gl_LightSource [0]. position.xyz - V);

float VdotN = dot(Pn, Nn);

float LdotN = dot(L, Nn);

float irradiance = max(0., LdotN);

float angleDifference = max(0., dot(normalize(Pn-Nn*VdotN),

normalize(L-Nn*LdotN)));

float lut_val = texture2D( lookup , vec2(VdotN , LdotN)*0.5+0.5).a; \

color += gl_LightSource [0]. ambient*Ka+gl_LightSource [0]. diffuse*Kd

*(A+B*angleDifference*lut_val)*irradiance;

gl_FragColor = color;

}

Figure 3.27: GLSL fragment shader for implementing Oren-Nayer shading (adapted from
glslang-library [7]).
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3.7.4 Alternatives to OpenGL for Rendering Rooftops

OpenGL renders graphics using direct lighting only. Consequently, it cannot automatically

render complex lighting conditions such as inter-reflections resulting from light bouncing off

multiple surfaces. An alternative rendering approach, known as ray tracing, may produce

much more photo-realistic images, at the expense of greatly increased rendering time.

To explore this possibility, we experimented with rendering hypothesized rooftops using

an open-source ray tracing system called PBRT (physics based ray tracer). PBRT offers

an unprecedented degree of flexibility for rendering, allowing for rendering rooftops with

arbitrary BSDF (Bidirectional scattering distribution function) functions, lighting, haze,

non-point-source light sources, and lens effects.

For example, Figure 3.28 shows the same building model rendered in two different ways.

The first, rendered with OpenGL, is less realistic-looking than the second, which was ren-

dered using PBRT (ray traced), but the OpenGL rendering took only a small fraction of

the rendering time.

Rendered with OpenGL Rendered with PBRT (ray traced)

Figure 3.28: Comparison of the same building rendered using OpenGL and PBRT.

3.7.5 Combining OpenCV and OpenGL for Computer Vision

One of the first steps in integrating OpenGL and OpenCV (or any other image-processing

library) is to determine how to retrieve a pointer to the image data rendered by OpenGL.

This can be achieved using the code snippet in Figure 3.29.

The first line is important, because by default, when glReadPixels() aligns the data,

it will write to the buffer on a 4-byte boundary. Thus, if the supplied buffer was not

already aligned on a 4-byte boundary, glReadPixels() would skip up to three bytes at
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// Tell OpenGL to use 1-byte alignment (i.e. no alignment)

glPixelStorei(GL_PACK_ALIGNMENT , 1);

// Allocate a buffer to store pixel data

std:: size_t bufferSize = windowWidth * windowHeight * 3;

char* buf = new char[bufferSize ];

// Copy the pixel data to the buffer for use by other libraries

glReadPixels (0, 0, windowWidth , windowHeight , GL_RGB , GL_BYTE , buf);

Figure 3.29: C++ code snippet illustrating how one can retrieve pixel data from an image
rendered with OpenGL.

the start of the buffer and thus write past the end of the buffer by up to three bytes. The

4-byte alignment can be disabled using the statement below, which simply specifies 1-byte

alignment (i.e. no alignment). glPixelStorei(GL_PACK_ALIGNMENT, 1).

In Figure 3.29, we are using a pixel format identified by GL_RGB and GL_BYTE, which

indicates that three bytes will be used for each pixel (one for red, one for green, and one

for blue). Other options are available, but this format is convenient for use with a variety

of libraries, including OpenCV.

3.7.6 Optimizing Tight Loops in C++ Image Processing Programs

Many computer-vision algorithms involve looping over each pixel in an image and performing

a simple image processing operation. These types of algorithms are largely limited by

memory latency because the computation done is trivial, but large amounts of data are

processed. In this situation, it is important that the CPU’s cache is able to effectively hide

the slow DRAM (dynamic random access memory) memory latency and avoid cache misses.

For instance, a programmer might write the code in Figure 3.30 to apply a threshold

operation to the image (setting all pixels with value less than 127 to 0, and all others to

255). The code works but it takes about 12 seconds to enhance just one image.

The iteration is much slower than necessary because it iterates over y in the inner loop

instead of x, which means that memory locations in the image that are very far apart are

accessed in rapid succession. The CPU relies on spatial locality in memory to choose what

to put in the cache, so jumping around in memory means that there will be a lot of cache

misses and performance will suffer as a result.
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#include <stdio.h>

int main()

{

const int width = 262144;

const int height = 1024;

unsigned char* image = new unsigned char[width*height ];

loadImage(image);

for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)

{

if (image[y*width + x] < 127)

image[y*width + x] = 0;

else

image[y*width + x] = 255;

}

}

saveImage(image);

delete [] image;

return 0;

}

Figure 3.30: Example of a C++ program that applies a threshold to an image inefficiently.

If, instead of iterating over y in the inner loop, we iterate over x, the memory will be

accessed in consecutive locations, and the CPU cache will be able to effectively hide the

memory latency and improve performance.

The original code took about 12 seconds to run but after the simple change below, it

took about 2 seconds. Thus, this simple change can result in a substantial performance

improvement.

These kinds of simple optimizations are something to be mindful of because they do not

reduce the clarity of the algorithm, but substantially reduce the run time by more effectively

utilizing CPU cache.

3.7.7 Utilizing Qt for Cross-Platform Applications

Qt (pronounced “cute” or “QT”) is a cross-platform C++ application development frame-

work that was first publicly available in 1995 by Trolltech. Qt is available under commercial,
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#include <stdio.h>

int main()

{

const int width = 262144;

const int height = 1024;

unsigned char* image = new unsigned char[width*height ];

loadImage(image);

// Transposed order of iteration to reduce cache misses

for (int y = 0; y < height; y++)

{

for (int x = 0; x < width; x++)

{

// Calculate the offset into the array just once

unsigned char& pixel = image[y*width + x];

pixel = (pixel < 127) ? 0 : 255;

}

}

saveImage(image);

delete [] image;

return 0;

}

Figure 3.31: Example of a C++ program that applies a threshold to an image efficiently.

GNU General Public License (GPL) and GNU Lesser General Public License (LGPL) li-

censes, making it free to use for non-commercial purposes, provided that the license and

source are distributed according to the chosen non-commercial license.

Computer vision applications such as the one described in this thesis benefit from Qt

for a number of reasons. Qt is free, open-source and cross-platform. Being cross-platform

means that software can be developed just once, and may then be built for any of the most

popular platforms without modifying the source code. For instance, Qt supports Microsoft

Windows, Linux, Mac OS X, and even mobile platforms like Symbian and Android. Also, the

Qt application framework is very comprehensive, and provides built-in support for displaying

image data of a variety of formats.

Specifically, Qt provides a C++ class called QImage, which represents an image and

can be painted on the screen or printed using Qt’s QPainter class. QImage provides a

constructor that accepts a pointer to a buffer containing image data, the pixel format, and

the image resolution. This constructor provides a means to read and display image data
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generated by a variety of systems, including OpenCV.

3.8 Utilizing GPU Hardware

A large class of image processing algorithms (e.g. blurring, sharpening, edge detection)

perform a relatively simple operation on each pixel or neighbourhood of pixels within an

image, thus exhibiting a large degree of data parallelism. Using technologies such as CUDA

(Compute Unified Device Architecture), OpenCL (Open Compute Language), or Microsoft’s

DirectCompute, tremendous speedups can be achieved by executing these types of data-

parallel image processing algorithms on the multiple cores available in GPUs.

In the implementation of this algorithm, we utilized OpenGL to offload computations

pertaining to the rendering of the hypothesized three-dimensional rooftops to the GPU, if

present. For platforms without a GPU, however, there is often a software fall-back that may

be utilized, instead.



Chapter 4

Experimental Results

As was described in the previous sections, this algorithm consists of several steps: extracting

rooftops from a larger image, removing insignificant details, segmenting the rooftop into

planar sections, and reconstructing a three-dimensional model. Each of these steps may

be considered separately in terms of the results it produces. For instance, it is helpful to

consider the accuracy of the first step in its ability to precisely determine the boundaries of

rooftops for cropping. Similarly, it is interesting to compare the quality of the segmentation

achieved in the third step against a ground truth segmentation.

Additionally, the quality of the three-dimensional reconstructions may be evaluated using

various different metrics. For instance, the accuracy of the roof pitch estimations is useful

to quantify.

4.1 Examples of Rooftop Segmentation

Figure 4.1 shows several examples of rooftop segmentation performed by the algorithm

proposed in this thesis.

4.2 Examples of 3D Reconstructions

Figure 4.2 shows some examples of the 3D reconstructions produced by this algorithm.

In comparison to the output of other shape from shading algorithms, the proposed

algorithm tends produce much more accurate 3D models. For instance, Figure 4.3 compares

50
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Original Preprocessed Segmented Simplified
polygons

Figure 4.1: Examples of original, preprocessed, segmented, and simplified polygon images.
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Original Rendered 3D Model

Figure 4.2: Examples of original images and reconstructed 3D models.

the 3D model generated by Bichsel and Pentland against the 3D model produced by this

algorithm.

Original Bichsel and Pentland Proposed Algorithm

Figure 4.3: Comparison of 3D reconstruction for Bichsel and Penland’s algorithm [2] and
the proposed algorithm.

4.3 Rooftop Pitch Estimation

The accuracy of the roof pitch estimation was tested for several building examples. Our

main constraint here was the ground truth had to be created manually by travelling to the

site and physically measuring rooftop slopes. We found that the estimated roof pitches were

usually within a few degrees of the true roof pitches.

Table 4.1 lists the true and estimated pitches for some of the tested buildings, and

Figure 4.4 shows some of the imagery used.

One strategy used to measure the actual pitch or rooftops is to take photos of the houses,
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Rooftop Actual Estimated Image
Pitch Pitch

#1 (Chilcotin House) 26 ◦ 28 ◦

#2 (Kelowna Res.) 26 ◦ 28 ◦

#3 (Curtis Road #1) 29 ◦ 30 ◦

#4 (Curtis Road #2) 30 ◦ 30 ◦

#5 (House on 194A St) 20 ◦ 23 ◦

#6 (Cross Twn Food Market) 26 ◦ 28 ◦

#7 (Fort Lang. Hall) 28 ◦ 28 ◦

#8 (Aldergrove Store) 47 ◦ 45 ◦

#9 (Langley Hall) 44 ◦ 45 ◦

#10 (C. & G. Howe School) 16 ◦ 18 ◦

Average. Error: 1.5 ◦

Table 4.1: Rooftop pitch estimation.
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(a) (b)

Figure 4.4: The Crosstown Food Market from (a) above and (b) street level. These images
are from Google Maps [16].

and then using the measurement tool of the Gimp image processing application. This is

shown in Figure 4.5. Using this approach, it is important to consider the impact of tilt or

pan in the image relative to the rooftop surface.

Figure 4.5: Measuring roof pitch using the Gimp.

To estimate rooftop pitches more accurately, the algorithm rounded its estimated pitches

to one of the common rooftop pitches used in construction. Specifically, rooftop pitches are

generally specified in terms of the integer number of inches the roof rises over 12 inches of

horizontal run. Consequently, there are only 12 distinct roof pitches that are commonly
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used, ranging from 1:12 to 12:12, with most roofs being pitched near the middle of that

range. Figure 4.6 illustrates this discrete set of likely roof pitches.

One foot run (12")

0"

2"

4"

6"

8"

10"

12"

Figure 4.6: Roofs are designed to have only certain discrete pitches, identified by a whole
number of inches in vertical rise over 12 inches of vertical run.

Consequently, given an estimated surface gradient, the algorithm computes the angle, θ

between vertical and the surface normal, or, equivalently, the angle between the surface and

horizontal. Using that angle, the algorithm rounds the pitch to the nearest pitch that can

be expressed with the ratio n/12, where n is a positive integer. This is accomplished using

the formula,

n = b12.0 tan(θ) + 0.5c. (4.1)

4.4 Run-Time Considerations

The implementation of this algorithm operates in a reasonable time and with reasonable

memory requirements. Our test machine was a Toshiba Satellite laptop with an AMD

(Advanced Micro Devices) Athlon(tm) 64 X2 processor running at 800 MHz. Our imple-

mentation was not multi-threaded, so it utilized only one of the two cores available on

the machine. For 160 × 160 pixel colour images, the algorithm takes about 5.8 seconds to

complete.
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Rooftop Image Runtime Maximum memory usage

#1 (160x224) 5.970s 23860K
#2 (160x160) 4.996s 23632K
#3 (160x224) 6.704s 23856K
#4 (160x160) 5.577s 23632K

Table 4.2: Processor and memory utilization.

As shown in Table 4.2, the algorithm took about 5.8 s to complete, and used approxi-

mately 23 MB of memory. Most of this memory was accounted for by libraries linked to the

executable (e.g. OpenCV, OpenGL, GLUT), which could be linked dynamically, instead, if

multiple instances of the algorithm were to run concurrently.

4.5 Limitations and Assumptions

Minimum Image Resolution This algorithm requires sufficient resolution and contrast

to identify rooftop features. We found that the algorithm works well with images that

have a minimum resolution of about 0.2 m per pixel. At that resolution, edges that are

shorter than approximately 1 m are sometimes lost, because such short edges are ignored as

potential noise or combined with other nearby edges.

Image Captured on a Clear Day Additionally, those images taken on clear days in the

morning and evening typically have the highest contrast, and therefore result in more robust

segmentation. On overcast days, especially around noon, the light incident on the rooftop

is very diffuse and tends to illuminate all faces of a nearly equally, resulting in images that

have too low contrast to be used by this algorithm.

Nadir Image Capture or Orthorectified Image The algorithm assumes that the

input images are taken from directly above — or that the images have been orthorectified

to remove any distortion due to perspective projection — such that the images contain

approximately orthogonal projections of the buildings and rooftops.

Rooftop Complexity Additionally, the proposed algorithm currently works reliably only

for relatively simple rooftop shapes, such as those with two to five planar regions that are

connected edge-to-edge. Ledges and sharp discontinuities in the rooftop surface cannot

easily be accounted for, because, in general, two disconnected rooftop surfaces that are
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separated only by a vertical gap look exactly the same as two connected rooftop surfaces

when seen from above. Therefore, the algorithm assumes that the rooftop is a continuous

surface, without sheer vertical drops or ledges.

4.6 Sensitivity Analysis and Portability Issues

The algorithm utilizes several parameters that must be set to appropriate values based on

the type of input images being processed. Table 4.3 describes these parameters, and lists

the values that were found to work well for the images tested. Table 4.4 then lists the effects

increasing or decreasing each parameter has on the execution of the algorithm.
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Section Parameter Description Value

3.4.1 Vent high
threshold

Pixel intensity (ranging from 0 to 255) threshold
above which pixels are marked as belonging to a
light-coloured vent.

180

3.4.1 Vent low
threshold

Pixel intensity (ranging from 0 to 255) threshold
below which pixels are marked as belonging to a
dark-coloured vent

90

3.4.1 Inpaint radius The radius of the region considered when inpaint-
ing each pixel

7.0

3.4.2 Bilateral filter
aperture size

The size of the mask used when applying the bi-
lateral filter to each pixel in the image.

5× 5

3.4.2 Spatial sigma Affects the degree to which the value of pixels far
from the central pixel in the mask are considered.

40.0

3.4.2 Intensity sigma Affects the degree to which the value of pixels
that are very different in intensity to the central
pixel are considered.

5.0

3.5.1 Canny low
threshold

Threshold for labelling pixels adjacent to
already-labelled strong edges as edges.

150

3.5.1 Canny high
threshold

Threshold for labelling pixels as strong edges. 300

3.5.1 Structuring el-
ement

The size of the structuring element used for mor-
phological erosion and dilation operations.

3× 3

3.5.1 Dilation itera-
tions

The number of times morphological dilation is
applied to the binary image.

8

3.5.1 Watershed
seed region
minimum area

The minimum size of a connected component re-
gion that may be selected as a seed region for
watershed segmentation.

40
pixels
squared

3.5.2 Approximation
accuracy
threshold

The minimum approximation accuracy required
for the Ramer-Douglas-Peucker algorithm [10] to
terminate.

0.0035×
(contourlength)

3.5.3 Maximum ver-
tex combining
distance

The furthest that two points on adjacent poly-
gons can be and still be combined into a single
vertex in the graph partitioning the rooftop.

0.0001×
w × h

3.6.3 Maximum iter-
ations of algo-
rithm

The maximum number of iterations the render-
ing stage of the algorithm will perform while at-
tempting to minimize the mean-squared error be-
tween the rendered and original images.

500

Table 4.3: Free parameters of the algorithm.
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Section Parameter Change Trend ↓ Change Trend ↑
3.4.1 Vent high

threshold
Some light areas, typically
surrounding light-coloured
vents will be inpainted
unnecessarily.

Some light-coloured vents
may not be inpainted, and
the edges of others may not
be inpainted.

3.4.1 Vent low
threshold

Some dark-coloured vents
may not be inpainted, and
the edges of others may not
be inpainted.

Some dark areas, typically
surrounding dark-coloured
vents will be inpainted
unnecessarily.

3.4.1 Inpaint radius Minor details of the roof
surrounded areas to be in-
painted may be accentuated
in the inpainted region.

The inpainted region may
lose definition of sharp edges
that pass through it.

3.4.2 Bilateral filter
aperture size

The image will generally be
smoothed less.

The image will generally be
smoothed more.

3.4.2 Spatial sigma The image will generally be
smoothed less.

The image will generally be
smoothed more.

3.4.2 Intensity sigma Strong edges in the image
will be smoothed more.

Strong edges in the image
will be smoothed less.

3.5.1 Canny low
threshold

More edges will be detected. Fewer edges will be detected,
and fewer strong edges will
be linked.

3.5.1 Canny high
threshold

More strong edges will be de-
tected.

Fewer strong edges will be
detected.

3.5.1 Structuring el-
ement

Fewer edges will be joined to-
gether and linked.

More edges will be joined to-
gether and linked, but some
small regions may be erased.

3.5.1 Dilation itera-
tions

Fewer edges will be joined to-
gether and linked.

More edges will be joined to-
gether and linked, but some
small regions may be erased.

3.5.1 Watershed
seed region
minimum area

Smaller rooftop regions may
be identified.

Some small rooftop regions
may be misidentified and in-
cluded in the segmentation.

3.5.2 Approximation
accuracy
threshold

The perimeter of each planar
region identified will consist
of more points.

The perimeter of each pla-
nar region identified will con-
sist of fewer points, making
rendering and optimization
faster.

3.5.3 Maximum ver-
tex combining
distance

The graph of the rooftop will
be more complex.

The graph of the rooftop will
be simpler and faster to ren-
der.

3.6.3 Maximum iter-
ations of algo-
rithm

A less accurate 3D model
may be estimated.

A more optimal 3D model
may be estimated, at the ex-
pense of greater computation
time.

Table 4.4: Change trends of the free parameters.
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Conclusions

5.1 Summary of Contributions

This thesis presented an algorithm for estimating the three-dimensional shape of a pitched

roof, using just a single image. This approach differs from previous approaches, many

of which require specialized equipment for laser ranging, or multiple images taken from

different vantage points. We found that this algorithm usually accurately estimates the

three-dimensional shape of gabled rooftops, especially when the images have high resolution

and good contrast.

Our objective is to create the three-dimensional models of building rooftops given the

orthographic view of a rooftop. This work adds on to the previous work in our group that

addressed the height estimation of buildings (average height from the borders of the roof-

lines to ground). Using the rooftop models, a more complete reconstruction using singular

electro-optical imagery is possible.

5.2 Potential Applications

Estimating the three-dimensional shape of pitched roofs from nadir aerial or satellite im-

agery is of interest to both governments and industry. The most direct applications of this

technology is to realistic three-dimensional map building, but other less obvious applications

may also be possible, such as in architectural design, real estate marketing, and insurance

assessment.
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5.2.1 Map Generation and City Planning

Google Maps has enjoyed incredible success on the Web as a source of reliable and free

location and direction information. This service combines street maps, satellite imagery, and

aerial imagery from about 800–1500 feet from the ground into a relatively easy-to-use web

application hosted on Google’s servers [16]. A closely related product, Google Earth, also

incorporates three-dimensional building and landscape models, which are designed manually

using 3D modelling software such as Google’s Building Maker [28].

With the increased prevalence of hand-held devices such as smart-phones and tablet

computers, many users now access Google Maps using mobile devices. Consequently, in

addition to their Google Maps web page, Google has also released a Google Maps application

for Android-based smart phones. The screen-shot shown in Figure 5.1 was taken from

an Android-based smart phone running the Google Maps application, and illustrates one

way in which the Google Maps application uses 3D-rendered buildings to help users orient

themselves in a map.

Similarly, a competing product to Google Maps, named Microsoft Bing Maps (formerly

Microsoft Virtual Earth), also incorporates some three-dimensional building models into

their map software. They have utilized software by Vexcel Imaging to combine thousands of

aerial images acquired using multi-ray aerial photography to automatically generate three-

dimensional building models for inclusion in Bing Maps [42].

5.2.2 Architectural Design

Some structural engineers and architects use software like “Truss 3D” from FINE civil

engineering, shown in Figure 5.2, to design pitched roofs like those commonly found on

wood-framed residences. These applications typically enable an engineer to view a rendered

three-dimensional model of a building being designed. It may also be useful to estimate

the three-dimensional model of a building in an aerial or satellite image so that it may be

imported into the software for further design.

For instance, if a customer is working with an architect to design a new home, he or she

may request that their new home have a rooftop shaped like another house they have seen.

Normally, if the architect didn’t have plans for that house, they would have to manually

enter the shape of the example rooftop into their design software.

Using a framework like the one proposed in this thesis, however, the architect may be
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Figure 5.1: A screen-shot of the Android Google Maps 5.0 application, captured by user
Wikipedia user ’Zouzzou’.



CHAPTER 5. CONCLUSIONS 63

able to automatically import the estimated shape of the rooftop given a satellite or aerial

image of the home, such as one found easily through Google Maps. Although the proposed

framework relies on the availability of image acquisition geometry information (particularly

the position of the sun relative to the image) to estimate the height and slopes of rooftop

surfaces, if that information was not available, it could be estimated by a human operator

to get an approximate three-dimensional reconstruction.

Figure 5.2: A screen-shot of the “Truss 3D” software from FINE civil engineering software
[12].

5.2.3 Real Estate

There is a growing trend in real estate for real estate brokers to use the Internet, and es-

pecially the World Wide Web to communicate with clients and promote properties for sale

[25]. The ability to automatically construct three-dimensional models of residential areas

where pitched roofs are common would enable the creation of interactive tours of areas

where real-estate is for sale to potential buyers. Web technologies with 3D graphics capabil-

ities, such as VRML (virtual reality markup language), Adobe Flash, Microsoft Silverlight,
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and WebGL (Web Graphics Library) all provide potential opportunities for sharing such

immersive tours through buyers’ web browsers.

5.2.4 Insurance Assessment

Insurance companies currently employ assessors to travel to insured properties to estimate

building properties including rooftop models and slopes of each piece. The volume, variabil-

ity, complexity of digital geo-spatial images, and the large liability for supporting assessor

site visits mandate fully-automated three-dimensional rooftop modelling and reconstruction

capabilities.

Some architectural design software enables the user to estimate the cost of building

the home being designed. For instance, HomeDesign is a piece of software that offers a

cost estimating feature [35]. If the size and shape of a home could be estimated using the

algorithm described in this thesis, such information could be utilized — along with other

relevant information such as flooring, lumber type, etc. — to estimate the cost of a building

and spare the expense and liability of supporting assessor visits.

5.2.5 Population Estimation

Medical aid organizations utilize population estimates when deciding how to best distribute

aide. Traditionally, if census data is unavailable, population estimates are computed after a

time-consuming and costly survey performed by physically visiting each home. Many areas

that are served by aide organizations are difficult to access, change frequently, and do not

have accurate census data, so estimating population density using traditional methods is

not ideal.

Automated systems that are capable of identifying the number and type of buildings in

a region from satellite or aerial imagery can be an appealing alternative to manual surveys

for rapidly and inexpensively estimating population density. The Medecins Sans Frontieres

organization, for instance, relies on manual surveys for population estimates to plan its

interventions [17].
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5.3 Future Research

There are several opportunities for future work that derive from this work. For instance,

the implemented algorithm currently requires that the direction of the light source (the

sun) be specified. A desirable enhancement to this algorithm would be to remove that

requirement, and instead automatically deduce the direction of the light source (the sun),

perhaps with the aide of several different images taken of the same buildings from different

perspectives. Another possible enhancement would be to enable the algorithm to combine

single images from different orientations or times of day to achieve additional accuracy.

One of the primary benefits of this algorithm over others is that it only requires one image.

However, often multiple images may be available, and it would be beneficial to be able to

utilize them.
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Telea Inpainting

This method calculates the value of each pixel a in the region to be inpainted, Ω, by using

a weighted average of the estimates computed considering each pixel b in the surrounding

neighbourhood B. Figure A.1 illustrates this setup involving a, Ω, b, and B.

Figure A.1: Telea inpainting.

For each individual pixel b in B, Telea’s inpainting algorithm calculates an estimate ˜Ib(a)

for the value of the pixel to be inpainted, a, by performing a simple linear approximation

involving the value of b and the image gradient ∆I(b),

˜Ib(a) = I(b) + ∆I(b)(a− b). (A.1)

The algorithm then computes a weighted average of these estimates for each point b in

B using the weights w(a, b) and the equation

˜I(a) =
∑
b∈B

w(a, b) ˜Ib(a). (A.2)

such that ∑
b∈B

w(a, b) = 1.0. (A.3)
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Applying this equation to each pixel inside the boundary of the region to be inpainted,

Telea’s inpainting algorithm is able to inpaint the outer-most one-pixel-thick strip within

the region Ω. Consequently, Ω can be reduced in size by one pixel on all sides, such that it

contains only those pixels that have yet to be inpainted. This advancement of the boundary

of Ω, which we can denote δΩ, into the interior of Ω is performed using the fast marching

method (FMM). Telea’s algorithm then repeats, until the inpainted region Ω contains no

pixels.



Appendix B

Bilateral Filtering

Bilateral filtering convolves parts of the image without sharp discontinuities with a Gaussian

kernel to smooth them, while convolving parts of the image with sharp discontinuities with

a kernel that doesn’t smooth those discontinuities [38]. To achieve this, the bilateral filter

must recompute the weights in its convolution kernel for each pixel in the image, taking into

account not only the Euclidean distance of each weight from the centre of the kernel (as in

a Gaussian filter) but also the differences in pixel intensity of the central pixel relative to

neighbouring pixels. Consequently, pixels with intensities that are very different from the

intensity of the central pixel receive a smaller weight in the convolution kernel even though

their Euclidean distance to the central pixel may be small.

The bilateral filtering of a pixel a in an image A is given by

˜I(a) =
1

η

∑
b∈Ω

w(a, b)φ(I(a), I(b))I(b) (B.1)

where

η =
∑
b∈Ω

w(a, b)φ(I(a), I(b)) (B.2)

and Ω is the set of pixels surrounding a that fall under the mask being computed for the

bilateral filter. For instance, if the bilateral filter was using a 5× 5 mask size, then Ω would

consist of a 5 × 5 set of pixels centred on a. The function w(a, b) measures the Euclidean

distance between a and b, and φ(I(a), I(b)) measures the difference in pixel intensity between

a and b.
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Figure B.1: Comparison of the preservation of strong edges by the Gaussian filter (top) and
Bilateral filter (bottom).



Appendix C

Marker-based Watershed

Segmentation

Watershed segmentation operates on the monochrome gradient image, |grad(I)|, of the

rooftop. Edges, or regions of high variability appear lighter, and flat regions appear darker

in the gradient image. This gradient image may be visualized as a topographic relief, with

valleys and ridges corresponding to the dark and light regions of the image, respectively. The

altitude of a point in the topographic relief is therefore proportional to the intensity value

of the corresponding pixel in the gradient image. Conceptually, watershed segmentation

operates by emulating the way water would flow into catchment basins in the topographic

relief. Each edge-less marker region identified earlier may be thought of as a coloured stream

of water being poured on this topographic relief from the position of the marker. As the

basins fill with differently-coloured water, the water level in each basin rises, and eventually

adjacent basins begin to overflow. At that point, the watershed segmentation algorithm

defines a barrier between the two adjacent basins to prevent them from mixing. As this

process continues, eventually all of the basins overflow, such that the entire topographic

relief is covered with differently-coloured basins of water separated by barriers. When this

occurs, the entire image can be thought of as being segmented.

We used a particular variant of marker-based watershed segmentation developed by F.

Meyer [31]. In this implementation, the algorithm proceeds by executing the following steps:

1. The set of marker regions, {M}, to start the segmentation process is selected.

2. Each marker region, Mi, is assigned a unique label, and each pixel within the region
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is also assigned that label.

3. The neighbouring pixels of each marker region, Si, are inserted into a priority queue,

S, with the priority corresponding to the intensity of the pixel.

4. The pixel, s with the highest priority in S (corresponding to the darkest pixel in the

gradient image) is selected.

5. If the pixels that are adjacent to s and labelled all have the same label, s is assigned

that label.

6. The non-labelled neighbours of s are then added to S with priorities corresponding to

their intensity levels.

7. The previous three steps are repeated until S is empty.



Bibliography

[1] H. S. Alhichri and M. Kamel. Integrated image and graphics technologies. chapter
Multi-resolution image registration using multi-class Hausdorff fraction, pages 393–405.
Kluwer Academic Publishers, Norwell, MA, USA, 2004.

[2] M. Bichsel and A. P. Pentland. A simple algorithm for shape from shading. In Computer
Vision and Pattern Recognition, 1992. Proceedings CVPR ’92., 1992 IEEE Computer
Society Conference on, pages 459–465, 1992.

[3] Z. Blair and P. Saeedi. Towards automatic 3d reconstruction of pitched roofs in monocu-
lar satellite/aerial images. In International Conference on Image Processing, Computer
Vision, and Pattern Recognition, 2012.

[4] J. F. Blinn. Models of light reflection for computer synthesized pictures. SIGGRAPH
Comput. Graph., 11(2):192–198, 1977.

[5] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, (6):679–698, 1986.

[6] D. Comaniciu and P. Meer. Mean shift analysis and applications. In International
Conference on Computer Vision (ICCV), pages 1197–1203, 1999.

[7] Various contributors. The glslang shader library. http://code.google.com/p/

glslang-library/, 2012.

[8] M. Cote and P. Saeedi. Automatic rooftop extraction in nadir aerial imagery of sub-
urban regions using corners and variational level set evolution. IEEE transactions on
geoscience and remote sensing, 99:1–16, 2012.

[9] M. Cote and P. Saeedi. A star-corner algorithm for building extraction in satellite/aerial
images. In International Conference on Image Processing, Computer Vision, and Pat-
tern Recognition, 2012.

[10] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Canadian Cartographer,
10:112–122, 1973.

72



BIBLIOGRAPHY 73

[11] C. Feng. Semi-automatic 3d reconstruction of piecewise planar building models from
single image. In International Conference on Construction Applications of Virtual
Reality (CONVR), 2010.

[12] FINE. Truss 3d — roof truss design truss4 — fine. http://www.finesoftware.eu/

roof-truss-design/truss-3d/, 2012.

[13] S. C. Foo. A gonioreflectometer for measuring the bidirectional reflectance of materials
for use in illumination computations. Master’s thesis, Cornell University, 1997.

[14] J. M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and H. Geerts.
Color invariance. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(12):1338–1350, 2001.

[15] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2001.

[16] Google. Blurry or outdated imagery. http://support.google.com/earth/bin/

answer.py?hl=en&answer=21417, 2012.

[17] C. Grundy. Validation of satellite imagery methods to estimate population size. New
Scientist, 214(2867):18, 2012.

[18] C. Harris and M. Stephens. A combined corner and edge detector. In In Proc. of Fourth
Alvey Vision Conference, pages 147–151, 1988.

[19] L. Hazelhoff and P. H. N. de With. Robust model-based detection of gable roofs in
very-high-resolution aerial images. In Proceedings of the 14th international conference
on Computer analysis of images and patterns - Volume Part I, CAIP’11, pages 598–605,
Berlin, Heidelberg, 2011.

[20] C. Heipke, C. Steger, and R. Multhammer. A hierarchical approach to automatic road
extraction from aerial imagery. In in Integrating Photogrammetric Techniques with
Scene Analysis and Machine Vision II, pages 222–231, 1995.

[21] B. K. P. Horn. Obtaining shape from shading information. In Shape from Shading,
pages 123–173, 1975.

[22] B. K. P. Horn. Robot Vision (MIT Electrical Engineering and Computer Science). The
MIT Press, mit press ed edition, 1986.

[23] M. Izadi and P. Saeedi. 3d polygonal building detection in monocular satellite images.
In IEEE Transactions on Geoscience and Remote Sensing (IEEE-TGARS), 2012.

[24] R. T. Whitaker J. E. Cates and G. M. Jones. Case study: an evaluation of user-assisted
hierarchical watershed segmentation. Medical image analysis, 9(6):566–78, December
2005.



BIBLIOGRAPHY 74

[25] G. D. Jud, D. T. Winkler, and G. S. Sirmans. The impact of information technology on
real estate licensee income. Journal of Real Estate Practice and Education, 5(1):1–16,
2002.

[26] D. A. Kleffner and V. S. Ramachandran. On the perception of shape from shading.
Perception & Psychophysics, 52:18–36, 1992.

[27] J. J. Koenderink, S. K. Nayar, B. van Ginneken, and K. J. Dana. Reflectance and
texture of real-world surfaces. In Image Understanding Workshop, pages 1419–1424,
1997.

[28] M. Limber and M. Simpson. Introducing google building maker. http://googleblog.
blogspot.ca/2009/10/introducing-google-building-maker.html, 2009.

[29] H. Liu. Derivation of surface topography and terrain parameters from single satellite
image using shape-from-shading technique. Computers & Geosciences, 29(10):1229–
1239, 2003.

[30] F. Meyer. Color image segmentation. In Proc. of the 4th Conference on Image Pro-
cessing and its Applications, pages 302–306, 1992.

[31] F. Meyer. Integrals, gradients and watershed lines. In J. Serra and P. Salembier, editors,
Mathematical morphology and its applications to signal processing, pages 70–75, 1993.

[32] Y. Morgenstern, R. F. Murray, and L. R. Harris. The human visual systems assumption
that light comes from above is weak. Proceedings of the National Academy of Sciences
(PNAS), 108(30):12551–12553, 2011.

[33] L. M. Moskal. Lidar fundamentals, part one and part two. Technical report, Center for
Urban Horticulture, College of Forest Resources, Univ of Washington, Seattle, WA.,
2008.

[34] A. P. Pentland. Linear shape from shading. International Journal of Computer Vision
(IJCV), 4(2):153–162, 1990.

[35] Chief Architect Software. Chief architect home designer. http://www.

homedesignersoftware.com/homedesign/, 2012.

[36] I. Suveg and G. Vosselman. 3d building reconstruction by map based generation and
evaluation of hypotheses. In British Machine Vision Conference (BMVC), 2001.

[37] A. Telea. An image inpainting technique based on the fast marching method. Journal
of Graphics Tools (JGT), 9(1):23–34, 2004.

[38] R. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceed-
ings of the Sixth International Conference on Computer Vision, ICCV ’98, page 839,
Washington, DC, USA, 1998. IEEE Computer Society.



BIBLIOGRAPHY 75

[39] P. S. Tsai and M. Shah. Shape from shading using linear approximation. Technical
report, 1992.

[40] P. S. Tsai and M. Shah. Shape from shading with variable albedo. Optical Engineering,
37(4):1212–1220, 1998.

[41] S. H. Westin. A comparison of four brdf models. Technical report, Cornel University,
2004.

[42] A. Wiechert and M. Gruber. Aerial perspective: Photogrammetry versus lidar. Pro-
fessional Surveyor Magazine, 29(8):1–3, 2009.

[43] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 3rd edition, 1999.

[44] J. Zhang, F. Mai, Y. S. Hung, and G. Chesi. 3d model reconstruction from turntable
sequence with multiple -view triangulation. In Proceedings of the 5th International Sym-
posium on Advances in Visual Computing: Part II, ISVC ’09, pages 470–479, Berlin,
Heidelberg, 2009.

[45] R. Zhang, P. Tsai, J. E. Cryer, and M. Shah. Commercial satellite imagery comes of
age. Issues in Science and Technology, 16(1), 1999.

[46] R. Zhang, P. Tsai, J. E. Cryer, and M. Shah. Shape from shading: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(8):690–706, 1999.


