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Abstract

Worms such as Slammer, Nimda, and Code Red I are anomalies that affect performance of

the global Internet Border Gateway Protocol (BGP). BGP anomalies also include Internet

Protocol (IP) prefix hijacks, miss-configurations, and electrical failures. In this Thesis,

we analyzed the feature selection process to choose the most correlated features for an

anomaly class. We compare the Fisher, minimum redundancy maximum relevance (mRMR),

odds ratio (OR), extended/multi-class/weighted odds ratio (EOR/MOR/WOR), and class

discriminating measure (CDM) feature selection algorithms. We extend the odds ratio

algorithms to use both continuous and discrete features.

We also introduce new classification features and apply Support Vector Machine (SVM)

models, Hidden Markov Models (HMMs), and naive Bayes (NB) models to design anomaly

detection algorithms. We apply multi classification models to correctly classify test datasets

and identify the correct anomaly types. The proposed models are tested with collected BGP

traffic traces from RIPE and BCNET and are employed to successfully classify and detect

various BGP anomalies.
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Chapter 1

Introduction

1.1 Introduction

Border Gateway Protocol (BGP) routes the Internet traffic [1]. BGP is de facto Inter-

Autonomous System (AS) routing protocol. An AS is a group of BGP peers that are

administrated by a single administrator. The BGP peers are routers that use BGP as

an exterior routing protocol and participate in BGP sessions to exchange BGP messages.

An AS usually relies on an Interior Gateway Protocol (IGP) protocol to route the traffic

within itself [2]. The AS numbers are assigned by the Internet Assigned Numbers Authority

(IANA) [3]. Peer routers exchange four types of messages: open, update, notification, and

keepalive. The main function of BGP is to exchange reachability information among BGP

peers based on a set of metrics: policy decision, the shortest AS-path, and the nearest

next-hop router. BGP operates over a Transmission Control Protocol (TCP) using port

179.

BGP anomalies often occur and techniques for their detection have recently gained

visible attention and importance. Recent research reports describe a number of anomaly

detection techniques. One of the most common approaches is based on a statistical pattern

recognition model that is implemented as an anomaly classifier [4]. Its main disadvantage is

the difficulty in estimating distributions of higher dimensions. Other proposed techniques

are rule-based and require a priori knowledge of network conditions. An example is the

Internet Routing Forensics (IRF) that is applied to classify anomaly events [5]. However,

rule-based techniques are not adaptable learning mechanisms, are slow, and have a high

degree of computational complexity.

1



CHAPTER 1. INTRODUCTION 2

Various anomalies affect Internet servers and hosts and, consequently, slow down the

Internet traffic. Three worms have been considered in this thesis: Slammer, Nimda, and

Code Red I.

The Structured Query Language (SQL) Slammer worm attacked Microsoft SQL servers

on January 25, 2003. The Slammer worm is a code that generates random IP addresses and

replicates itself by sending 376 bytes of code to randomly generated IP addresses. If the

IP address happens to be a Microsoft SQL server or a user PC with Microsoft SQL Server

Data Engine (MSDE) installed, the server becomes infected and begins infecting other

servers [6]. Microsoft released a patch to fix the vulnerability six months before the worm’s

attack. However, the infected servers were never patched. The slowdown of the Internet

traffic was caused by the crashed BGP routers that could not handle the high volume of

the worm traffic. The first flood of BGP update messages was sent to the neighbouring

BGP routers so they could update entries of the crashed routers in the BGP routing tables.

The Slammer worm performed a Denial of Service (DoS) attack. The Internet Service

Provider (ISP) network administrators restarted the routers thus causing a second flood of

BGP update messages. As a result, the update messages consumed most of the routers’

bandwidth, slowed down the routers, and in some cases caused the routers to crash. To

resolve this issue, network administrators blocked port 1434 (the SQL Server Resolution

Service port). Later on, network security companies such as Symantec released patches to

detect the worm payload [7].

The Nimda worm is most known for its very fast spreading. It propagated through the

Internet within 22 minutes. The worm was released on September 18, 2001. It propagated

through email, web browsers, and file systems. In the email propagation, the worm took

the advantage of the vulnerability in the Microsoft Internet Explorer 5.5 SP1 (or earlier

versions) that automatically displayed an attachment included in the email message. The

worm payload is triggered by viewing the email message. In the browsers propagation, the

worm modified the content of the web document file (.htm, .html, or .asp) in the infected

hosts. As a result, the browsed web content, whether it is accessed locally or via a web

server, may download a copy of the worm. In the file system propagation, the worm copies

itself (using the extensions .eml or .nws) in all local host directories including those residing

in the network that the user may access [8].

The Code Red I worm attacked Microsoft Internet Information Services (IIS) web servers

on July 13, 2001. The worm took the advantage of a vulnerability in the indexing software
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in IIS. By July 19th, the worm affected 359,000 hosts. The worm triggered a buffer overflow

in the infected hosts by writing to the buffers without bounds checking. An infected host

interprets the worms’ message as a computer instruction, which causes the worm to prop-

agate. The worm spreads by generating random IP addresses to get itself replicated and

causes a DoS attack. The worm checks the system’s time. If the date is beyond the 20th of

the month, the worm sends 100 kB of data to port 80 of www.whitehouse.gov. Otherwise,

the worm tries to find new web servers to infect [9]. The worm affected approximately half

a million IP addresses a day.

Variety of behaviours and targets of the described worms increase the importance of

classifying network traffic to detect anomalies [10]. Furthermore, identifying the exact type

of the anomaly helps network administrators protect the company’s data and services.

In this thesis, we employ machine learning techniques to develop models for detecting

BGP anomalies. We extract various BGP features in order to achieve reliable classification

results. We use Support Vector Machine (SVM) models to train and test various datasets.

Hidden Markov Models (HMMs) and naive Bayes (NB) models are also employed to eval-

uate the effectiveness of the extracted traffic features. We then compare the classification

performance of these three algorithms.

1.2 Defining the Problem

Anomaly detection has gained a high importance within the research community and in-

dustry development teams in terms of research projects and developed models. BGP worms

frequently affect the economic growth of the Internet. Many application domains are con-

cerned with anomaly detection. Intrusion, distributed denial of service attacks (DDoS), and

BGP anomaly detections have similar characteristics and use similar detection techniques.

The consensus between researchers and industry on the harmful effects of anomalies is based

on the following properties of the Internet [11]:

• The Internet openness allows attackers to have a cheap, difficult to trace, and easy

way to attack other servers or machines.

• Rapid development of the Internet allows users to devise new ways and tools to attack

and harm other services.
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• Most Internet traffic is not encrypted, which permits intruders to attack and threaten

the confidentiality and integrity of many web services.

• Due to the rapid growth of the Internet, many applications are designed without taking

into consideration secure ways to access the Internet. This downside makes these

applications vulnerable to frequent attacks and makes the availability of adequate

detection models a crucial factor for the Internet usability.

Technical vulnerabilities that the attackers exploited are software or protocol designs

(Slammer and Code Red I) or system/network configurations (Nimda).

1.3 Purpose of Research

In this thesis, we adapt machine learning algorithms to detect BGP anomalies. The following

issues are addressed:

• We investigate the features and correlations among features in order to identify any

test data point whether a test data point is an anomaly or regular traffic. We develop

a tool to extract 37 BGP features from the BGP traffic. We also explore the effect of

each feature on the classification results. Among the 37 extracted features, we use 21

new features that have not been introduced in the literature.

• We select the best combination of features to achieve the best classification accuracy by

applying and extending some of the existing feature selection algorithms. We compare

the feature selection methods for each classification algorithm and identify the best

features combination for each case.

• We adapt machine learning techniques to classify and detect BGP anomalies. Each

technique has multiple variants that work well for a particular anomaly. We adapt

these variants to maximize the accuracy of detecting the targeted BGP anomalies.

1.4 Literature Review

Many classification techniques have been implemented to detect BGP anomalies. During

the last decade, statistical techniques were dominating classification of BGP anomalies.

Recently, a number of machine learning techniques have been investigated to enhance the
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performance of anomaly detection techniques [12]. In this Section, we review some well-

known mechanisms for anomaly detection. We group the anomaly detection approaches in

order to compare machine learning techniques used for anomaly detection and evaluate their

advantages and disadvantages.

1.4.1 Statistical techniques

The statistical techniques detect anomalies under the assumption that anomalous traffic oc-

curs with small probability when tested using stochastic models built for regular traffic [13].

Various statistical techniques have been implemented, such as wavelet analysis, covariance

matrix analysis, and principal component analysis. For any statistical techniques, three steps

should be performed: data prepossessing and filtering, statistical analysis, and threshold de-

termination and anomaly detection [12]. The main disadvantage of statistical techniques is

that they assume that the regular traffic is generated from a certain distribution, which is

generally not correct. However, if the assumption of the traffic distribution is valid, their

performance is excellent [14].

1.4.2 Clustering techniques

Clustering belongs to the unsupervised detection techniques. The key principle is to cluster

the regular traffic into one cluster and classify the remaining data points as anomalous

traffic [13]. Clustering groups similar traffic data points into clusters. A strong assumption

of the clustering techniques is that all regular traffic data points belong to one cluster while

anomalous data points may belong to multiple clusters. The main disadvantage of the

clustering techniques is that they are optimized to find the regular traffic rather than the

anomalous traffic that is usually the goal of the detection techniques.

1.4.3 Rule-based techniques

Rule-based techniques build classifiers based on a set of rules. If a test data point is not

matched by any rule, it is classified as an anomaly. A rule-based technique has been im-

plemented [15] where the rules that maximize the classification error were discarded. The

rule-based techniques require a priori knowledge of network conditions. Their main advan-

tage is that they enable multiclass classification. However, the labels for various classes

are not always available. Another advantage is their simplicity that enables them to be
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visualized as decision trees and interpreted using the classification criteria. For example, if

the number of BGP announcements exceeds certain threshold, it is easy to infer that the

BGP traffic at that time is considered as an anomaly.

1.4.4 Neural network techniques

Many classification models have been implemented using neural networks [16], [17]. A neural

network is a set of neurons that are connected by weighted links that pass signals between

neurons [18]. Neural networks are mathematical models that adapt to the changes in the

layer states by constantly changing structure of the neural model based on the connection

flows in the training stage. Although neural networks have the ability to detect the complex

relationship among features, they have many drawbacks. For example, the high computa-

tional complexity and the high probability of overfitting encouraged researches to use other

classification mechanisms.

1.4.5 Support Vector Machines (SVM) techniques

SVM detects the anomaly patterns in data using nonlinear classification functions. SVM

algorithm classifies each data point based on its value obtained by the classifier function.

SVM builds a classification model that maximizes the margin between the data points

that belong to each class. Figure 1.1 (left) illustrates the margin that SVM maximizes. The

margin is the distance between the SVM classifier (dashed line) and data points (solid lines).

Figure 1.1 (right) illustrates the SVM solution. The maximum margin is the perpendicular

distance between the SVM classifier function (dashed line) and the closest support vectors

(solid lines). The complexity of the SVM model depends on the number of the support

vectors because they control the dimensionality of the classifier function. The complexity of

the SVM model decreases as the numbers of the support vectors decreases. Several variants

of SVM detection techniques are introduced and evaluated [18]. The SVM algorithm has a

high computational complexity because of the quadratic optimization problem that needs

to be solved. However, SVM usually exhibits the best performance in terms of accuracy

and F-score performance indices [19].
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Class a data point
Class b data point
Classi�er function
Margin

Class a data point
Class b data point

Classi�er function
Margin

Support vector

Figure 1.1: The margin between the decision boundary and the closest data points (left).

SVM maximises the margin to a particular choice of decision boundary (right).

1.4.6 Bayesian networks based approaches

Bayesian approaches are used in many real-time classification systems because of their low

time complexity. Time complexity is a function of input length and measures the execution

time of an algorithm. The Bayesian networks rely on two assumptions: the features are con-

ditionally independent given a target class and the posterior probability is the classification

criteria between any two data point. The posterior probability is calculated based on the

Bayes theorem. Many anomaly detection schemas have implemented variants of Bayesian

networks [20]. The main advantage of Bayesian networks is their low complexity that allows

them to be implemented as online detection systems [21]. Another advantage is that the

testing stage has a constant time computational complexity [22].

1.5 Research Contributions

During the process of investigating the best models for BGP anomaly detection, we address

and solve several issues related to the development of the proposed models. The main

contributions of this thesis are:

• We extract and process BGP traffic data from thesis [23] and BCNET [24] to define

37 BGP features. These features permit us to classify and determine whether a data

point instance is an anomaly.
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• We investigate the effect of applying feature selection algorithms along with the pro-

posed classifiers. We extend the usage of several algorithms to fit the type of certain

features. For example, we apply the Odds Ratio [25] selection algorithm for both

binary and continuous sets of features. We also discuss a methodology for identifying

the relationship between the category of the features and the classification results.

• We use several machine learning algorithms to classify BGP anomalies. For example,

we use HMM classifiers to classify and detect a sequence of BGP data points. In order

to adapt HMM to detect BGP anomalies, we choose a two-layer, fully connected,

supervised, 10-fold, Balm-Walch trained HMM classifier to detect anomalies in two-

way and four-way classes. We propose efficient models to classify and test sequence of

BGP packets.

• We propose four-way classifiers where the classifier will classify whether the data point

instance is an anomaly and will also classify it into the correct type: Slammer, Nimda,

or Code Red I. This thesis introduces the first multi-classification of BGP anomalies.

• We build a graphical user interface (GUI) tool named BGPAD [26] to classify BGP

anomalies for the extracted BGP datasets and for any user specific datasets. The tool

permits the user to upload a dataset to be tested by the trained models.

1.6 Structure of this Thesis

This thesis is outlined as follows. In Chapter 2, a detailed methodology of features extraction

is proposed. Furthermore, several feature selection algorithms are addressed. In Section 3.1,

the supervised classification process of BGP anomalies is described. Proposed methodologies

based on SVM, HMM, and NB are presented in Sections 3.2, 3.3, and 3.4, respectively. A

user guide for the BGPAD tool is given in Chapter 4. We discuss the results in Chapter 5.

Conclusions are summarized in Chapter 6 along with suggestions for future research.



Chapter 2

Feature Processing

2.1 Extraction of Features

In 2001, Réseaux IP Européens (RIPE) [23] initiated the Routing Information Service (RIS)

project to collect BGP update messages. Real-time BGP data are also collected by the Route

Views project at the University of Oregon, USA [27]. The RIPE and Route Views BGP

update messages are available to the research community in the multi-threaded routing

toolkit (MRT) binary format [28], which was introduced by the Internet Engineering Task

Force (IETF) to export routing protocol messages, state changes, and contents of the routing

information base (RIB). RIPE and RouteViews projects enlist end-points (routers) to collect

BGP traffic. We collect the BGP update messages that originated from AS 513 (RIPE RIS,

rcc04, CIXP, Geneva) and include a sample of the BGP traffic during time periods when

the Internet experienced BGP anomalies. Various ASes and end-points may be chosen from

RIPE and Route Views to collect the BGP update messages. Due to the global effect of

BGP worms, similar results are obtained. During a worm attack, routing tables of the

entire Internet are affected and, hence, similar traffic trends are observed at different end-

points. We use the Zebra tool [29] to convert MRT to ASCII format and then extract traffic

features. Traffic traces of three BGP anomalies along with regular RIPE traffic are shown in

Figure 2.1. A sample of the BGP update message format is shown in Table 2.1. It contains

two Network Layer Reachability Information (NLRI) announcements, which share attributes

such as the AS-PATH. The AS-PATH attribute in the BGP update message indicates the

path that a BGP packet traverses among Autonomous System (AS) peers. The AS-PATH

attribute enables BGP to route packets via the best path.

9
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Figure 2.1: Number of BGP announcements in Slammer (top left), Nimda (top right), Code

Red I (bottom left), and regular RIPE (bottom right).

Table 2.1: Sample of a BGP update packet.

Field Value

TIME 2003 1 24 00:39:53

FROM 192.65.184.3

TO 193.0.4.28

BGP PACKET TYPE UPDATE

ORIGIN IGP

AS-PATH 513 3320 7176 15570 7246 7246 7246

7246 7246 7246 7246 7246 7246

NEXT-HOP 192.65.184.3

ANNOUNCED NLRI PREFIX 198.155.189.0/24

ANNOUNCED NLRI PREFIX 198.155.241.0/24
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We collect the BGP update messages that originated from:

• RIPE: Routing Information Service (RIS) project

• Autonomous System (AS 513) for European Organization for Nuclear Research Checker

number four

• CERN Internet Exchange Point (CIXP) distributed neutral Internet exchange point

for the Geneva area

• Routing Registry Consistency Check (rcc04) or Routing Configuration.

We filter the collected traffic for BGP update messages during time periods when the

Internet experienced BGP anomalies. Details of the three anomalies and two regular traf-

fic events considered in this thesis are listed in Table 2.2. Shown are the time range in

minutes of the training and testing datasets during a five-day interval of the anomaly. For

example, traffic between 3,212 and 4,080 minutes of the Slammer worm dataset are consid-

ered as anomalous traffic. The regular BCNET dataset is collected at the BCNET network

operation center (NOC) located in Vancouver, British Columbia, Canada [2], [30].

Table 2.2: Details of BGP datasets.

Class Date Duration (h) Training set data points Testing set data points

Slammer Anomaly January 25, 2003 16 3212:4080 1:3211, 4081:7200

Nimda Anomaly September 18, 2001 59 3680:7200 1:3679

Code Red I Anomaly July 19, 2001 10 3681:4280 1:3680, 4281:7200

RIPE Regular July 14, 2001 24 None 1:1440

BCNET Regular December 20, 2011 24 None 1:1440

We develop a tool written in C# to parse the ASCII files and to extract statistics of

the desired features. These features are sampled every minute during a five-day interval,

producing 7,200 samples for each anomaly event. They are used as inputs for classification

models. Samples from two days before and after each event are considered to be regular

test datasets. The third day is the peak of activity for each anomaly. The features are

normalized to have zero mean and unit variance. This normalization reduces the effect

of the Internet growth between 2003 and 2011. The motivation for normalization is that

most of machine learning classifiers depend on the distances between data points and the

discriminant function. If a feature has high range of values, these distances are governed
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by this specific feature. Extracted features, shown in Table 2.3, are categorized as volume

(number of BGP announcements) and AS-path (maximum edit distance) features. Listed

are the three types of features: continuous, categorical, and binary. The feature types are

defined in Section 3.1. The effect of Slammer worm on volume and AS-path features is

illustrated in Figure 2.2.

Table 2.3: Extracted features.

Feature Definition Type Category

1 Number of announcements continuous volume

2 Number of withdrawals continuous volume

3 Number of announced NLRI prefixes continuous volume

4 Number of withdrawn NLRI prefixes continuous volume

5 Average AS-PATH length categorical AS-path

6 Maximum AS-PATH length categorical AS-path

7 Average unique AS-PATH length continuous volume

8 Number of duplicate announcements continuous volume

9 Number of duplicate withdrawals continuous volume

10 Number of implicit withdrawals continuous volume

11 Average edit distance categorical AS-path

12 Maximum edit distance categorical AS-path

13 Inter-arrival time continuous volume

14-24 Maximum edit distance = n, where n = (7, ..., 17) binary AS-path

25-33 Maximum AS-path length = n, where n = (7, ..., 15) binary AS-path

34 Number of Interior Gateway Protocol packets continuous volume

35 Number of Exterior Gateway Protocol packets continuous volume

36 Number of incomplete packets continuous volume

37 Packet size (B) continuous volume

The BGP generates four types of messages: open, update, keepalive, and notification.

We only consider BGP update messages because they contain all information about the

BGP status and configuration that is needed to extract the features defined in this thesis.

The BGP update messages are either announcement or withdrawal messages for the NLRI

prefixes.
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Figure 2.2: Samples of extracted BGP features during the Slammer worm attack. Shown
are the samples of (a) number of announcements, (b) number of announcements prefixes, (c)
number of withdrawal, (d) number of withdrawals prefixes, (e) average unique AS-PATH,
(f) average AS-PATH, (g) average edit distance AS-PATH, (h) duplicate announcements,
(i) duplicate withdrawal, (j) implicit withdrawals, (k) inter-arrival time, (l) maximum AS-
PATH, (m) maximum edit distance, (n) number of EGP packets, (o) number of IGP packets,
and (p) number of incomplete packets features.
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Feature statistics are computed over one-minute time interval. The NLRI prefixes that

have identical BGP attributes are encapsulated and sent in one BGP packet [31]. Hence,

a BGP packet may contain more than one announced or withdrawal NLRI prefix. While

feature 5 and feature 6 are the average and the maximum number of AS peers in the AS-

PATH BGP attribute, respectively, feature 7 only considers the unique AS-PATH attributes.

Duplicate announcements are the BGP update packets that have identical NLRI prefixes

and AS-PATH attributes. Implicit withdrawals are the BGP announcements with different

AS-PATHs for already announced NLRI prefixes [32]. An example is shown in Table 2.4.

The edit distance between two AS-PATH attributes is the minimum number of insertions,

deletions, or substitutions that need to be executed in order to match the two attributes.

The value of the edit distance feature is extracted by computing the edit distance between

the AS-PATH attributes in each one-minute time interval [4]. For example, the edit distance

between AS-PATH 513 940 and AS-PATH 513 4567 1318 is two because one insertion and

one substitution are sufficient to match the two AS-PATHs. The most frequent values of the

maximum AS-PATH length and the maximum edit distance are used to calculate features

14 to 33. Maximum AS-PATH length and maximum edit distance distributions for the

Slammer worm are shown in Figure 2.3.

Table 2.4: Sample of BGP features definition.

Time Definition BGP update type NLRI AS-PATH

t0 Announcement announcement 199.60.12.130 13455 614

t1 Withdrawal withdrawal 199.60.12.130 13455 614

t2 Duplicate announcement announcement 199.60.12.130 13455 614

t3 Implicit withdrawal announcement 199.60.12.130 16180 614

t4 Duplicate withdrawal withdrawal 199.60.12.130 13455 614

We introduce three new features (34, 35, and 36) shown in Table 2.3, which are based

on distinct values of the ORIGIN attribute that specifies the origin of a BGP update packet

and may assume three values: IGP (generated by an Interior Gateway Protocol), EGP

(generated by the Exterior Gateway Protocol), and incomplete. The EGP is the BGP

predecessor not currently used by the Internet Service Providers (ISPs). However, EGP

packets still appear in traffic traces containing BGP update messages. Under a worm attack,
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BGP traces contain a large number of EGP packets [32]. The incomplete update messages

imply that the announced NLRI prefixes are generated from unknown sources. They usually

originate from BGP redistribution configurations [31].
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Figure 2.3: Distributions of the maximum AS-PATH length (left) and the maximum edit

distance (right).
Description of the extracted features:

1. Feature 1: The number of BGP update messages with the Type field set to announce-

ment during a one minute interval.

2. Feature 2: The number of BGP update messages with the Type field set to withdrawal

during a one minute interval.

3. Feature 3: The number of announced NLRI prefixes inside BGP update messages with

the Type field set to announcement during a one minute interval.

4. Feature 4: The number of withdrawn NLRI prefixes inside BGP update messages with

the Type field set to withdrawal during a one minute interval.

5. Feature 5: The average length of AS-PATHs of all messages during a one minute

interval.

6. Feature 6: The maximum length of AS-PATHs of all messages during a one minute

interval.

7. Feature 7: The average of unique length of AS-PATHs of all messages during a one

minute interval. The maximum unique AS-PATH is not computed because it is iden-

tical to the maximum AS-PATH.
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8. Feature 8: The number of duplicate BGP update messages with the Type field set to

announcement during a one minute interval. The message that is counted more than

one time is counted as one duplication.

9. Feature 9: The number of duplicate BGP update messages with the Type field set to

withdrawal during a one minute interval. The message that is duplicated more than

one time is counted as one duplication.

10. Feature 10: The number of BGP update messages during a one minute interval that

have an announcement type and then a withdrawal for the same prefix has been re-

ceived. If another announcement is received after the implicit withdrawal, the message

is considered as a new announcement (feature 1).

11. Feature 11: The average of edit distances among all the messages during a one minute

interval. Listed is the implementation of the edit distance algorithm:

1 Function EditDistance ( [ ] a , [ ] b )

{
3 [ , ] EditDistanceArray = new [ a . Length + 1 , b . Length + 1 ]

f o r i = 0 to a . Length

5 EditDistanceArray [ i , 0 ] = i

f o r j = 0 to b . Length

7 EditDistanceArray [ 0 , j ] = j

9 f o r i = 1 to a . Length

{
11 f o r j = 1 to b . Length

{
13 i f ( a [ i − 1 ] ) = (b [ j − 1 ] )

EditDistanceArray [ i , j ] = EditDistanceArray [ i − 1 , j −
1 ]

15 e l s e

EditDistanceArray [ i , j ] = Math .Min(

17 EditDistanceArray [ i − 1 , j ] + 1 ,

Math .Min(

19 EditDistanceArray [ i , j − 1 ] + 1 ,

EditDistanceArray [ i − 1 , j − 1 ] + 1)

21 )

}
23 }

r e turn EditDistanceArray [ a . Length , b . Length ]

25 }

27 Function AVG and MAX EditDistnace ( L i s t a )
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{
29 max = 0

min = 1000

31 sum = 0

// break AS−PATH to a l i s t o f s t r i n g s

33 f o r each x in a

{
35 AsPathList .Add(x . S p l i t ( ’ ’ ) )

}
37

f o r i = 0 to a . Count

39 {
f o r j = 0 to i

41 {
cur rent = EditDistance ( AsPathList [ i ] , AsPathList [ j ] )

43 sum += current

i f cur r ent > max

45 max = current

i f ( cur r ent < min) and ( i != j ) //Avoid d i s t na c e s with zero

va lue s

47 min = current

}
49 }

51 [ ] temp = new [ 3 ]

temp [ 0 ] = max

53 temp [ 1 ] = Math . Ce i l i n g ( ( sum ∗ 1 . 0 ) / ( a . Count ∗ a . Count ) )

temp [ 2 ] = min

55

r e turn temp

57 }

12. Feature 12: The maximum edit distance of all messages during a one minute time

interval.

13. Feature 13: The average inter-arrival time of all messages during a one minute time

interval.

14. Feature 34: The number of BGP update messages that are generated by an Interior

Gateway Protocol (IGP) such as OSPF.

15. Feature 35: The number of BGP update messages that are generated by EGP, which

is the BGP predecessor. Since the value of the BGP update message type is one of
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the BGP policies, network administrators may configure the attribute value so that

they may reroute the BGP packets based on BGP policies.

16. Feature 36: The incomplete update messages imply that the announced NLRI prefixes

are generated from unknown sources. They usually originate from BGP redistribution

configurations [31].

17. Feature 37: The average of all BGP update messages in bytes.

2.2 Selection of Features

To highlight the importance of feature selection algorithms, we first define dimensionality

as the number of features for each data sample. As shown in Table 2.3, 37 features are

extracted. High dimensionality of the design matrix is considered undesirable because it

increases the computational complexity and memory usage [11]. It also leads to poor

classification results. To reduce the dimensionality, a subset of the original set of features

should be selected or a transformation of a subset of features to new features is needed.

Hence, before applying machine learning algorithms, we address the dimensionality of the

design matrix and try to reduce the number of extracted features. We use the Fisher [34], [35]

and minimum Redundancy Maximum Relevance (mRMR) [36] feature selection algorithms

to select the most relevant features. These algorithms measure the correlation and relevancy

among features and, hence, help improve the classification accuracy. We select the top ten

features for the Fisher feature selection and, thus, neglect the weak and distorted features

in the classification models [4].

Each training datasets is represented as a real matrix X7200×37. Each column vector

Xk, k = 1, ..., 37, corresponds to one feature. The Fisher score for Xk is computed as:

Fisher score =
m2

a −m2
r

s2a + s2r

ma =
1

Na

∑
i∈anomaly

xik

mr =
1

Nr

∑
i∈regular

xik
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s2a =
1

Na

∑
i∈anomaly

(xik −ma)2

s2r =
1

Nr

∑
i∈regular

(xik −mr)
2, (2.1)

where Na and Nr are the number of anomaly and regular data points, respectively; and ma

and s2a (mr and s2r) are the mean and the variance for the anomaly (regular) class, respec-

tively. The Fisher algorithm maximizes the inter-class separation m2
a −m2

r and minimizes

the intra-class variances s2a and s2r .

The mRMR algorithm minimizes the redundancy among features while maximizing

the relevance of features with respect to the target class. We use three variants of the

mRMR algorithm: Mutual Information Difference (MID), Mutual Information Quotient

(MIQ), and Mutual Information Base (MIBASE). The mRMR relevance of a feature set

S = {X1, ...,Xk,Xl, ...,X37} for a class vector Y is based on the mutual information func-

tion I:

I(Xk,Xl) =
∑
k,l

p(Xk,Xl)log
p(Xk,Xl)

p(Xk)p(Xl)
. (2.2)

The mRMR variants are defined by the criteria:

MID: max [V (I)−W (I)]

MIQ: max [V (I)/W (I)], (2.3)

where:

V (I) =
1

|S|
∑
Xk∈S

I(Xk,Y)

W (I) =
1

|S|2
∑

Xk,Xl∈S
I(Xk,Xl)

and constant |S| is the length of the set S. The MIBASE feature scores are ordered based

on their values (2.2). The Fisher and mRMR scores are obtained for a set of features of

arbitrary captured BGP messages during a one-day interval on January 25, 2003. The set

contains 1,440 samples, where 869 samples are labeled as anomalies. The top ten features

using the Fisher and mRMR algorithms are listed in Table 2.5. They are evaluated in

Section 3.2 by using the SVM classification.
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Table 2.5: Top ten features used for selection algorithms.

mRMR

Fisher MID MIQ MIBASE

Feature Score Feature Score Feature Score Feature Score

11 0.39 34 0.94 34 0.94 34 0.94

6 0.35 32 0.02 2 0.33 36 0.63

25 0.29 33 0.02 8 0.34 2 0.47

9 0.27 2 0.01 24 0.31 8 0.34

2 0.18 31 0.02 9 0.33 9 0.27

36 0.12 24 0.01 14 0.30 3 0.13

37 0.12 8 0.01 1 0.35 1 0.13

24 0.12 14 0.02 36 0.36 6 0.10

8 0.11 30 0.02 3 0.30 12 0.08

14 0.08 22 0.02 25 0.27 11 0.06

The scatterings of anomalous and regular classes for feature 6 (AS-path) vs. feature 1

(volume) and feature 6 (AS-path) vs. feature 2 (volume) in two-way classifications are shown

in Figure 2.4 (left) and Figure 2.4 (right), respectively. The graphs indicate spatial separa-

tion of features. While selecting feature 1 and feature 6 may lead to a feasible classification

based on visible clusters ({and ∗), using only feature 2 and feature 6 would lead to poor

classification. Hence, selecting an appropriate combination of features is essential for an

accurate classification. The scatterings of anomalous and regular classes for all features vs.

feature 1 (volume) and vs. feature 2 (volume) are shown in Figure 2.5.
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Figure 2.4: Scattered graph of feature 6 vs. feature 1 (left) and vs. feature 2 (right)

extracted from the BCNET traffic. Feature values are normalized to have zero mean and

unit variance. Shown are two traffic classes: regular ({) and anomaly (∗).
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Performance of anomaly classifiers depends on the feature selection algorithms [33]. We

calculate the top ten features listed in Table 2.5 to be used in SVM, HMM, and NB classifiers.

In case of SVM, we use the top ten features from each method listed in Table 2.5 as input

for each classifier. In case of HMM, we arbitrarily select four features from the top ten

features (two volume features and two AS-path) features to investigate the effect of feature

categories on the detection performance. These four features are mapped to sequences and

are then used as input to HMM classifiers. Other features could have been also used. For

NB classification, we ignore binary features 14 through 33 because we use continuous and

categorical features. The combination of the continuous and categorical features shows

better performance than the combination of all feature types. We illustrate the difference

among continuous, categorical, and binary features in Section 3.1. The extracted features

for NB are listed in Table 2.6. The extracted features are considered as a feature design

matrix for NB models in Section 3.4. We apply the same top ten features shown in Table 2.5.

We also introduce a set of features selection algorithms that work well only with Bayesian

classifiers. The applied algorithms are: odds ratio (OR), extended/multiclass/weighted odds

ratio (EOR/MOR/WOR), and the class discriminating measure (CDM) [25].

Table 2.6: List of features extracted for naive Bayes.

Feature (F) Definition Category

1 Number of announcements volume
2 Number of withdrawals volume
3 Number of announced NLRI prefixes volume
4 Number of withdrawn NLRI prefixes volume
5 Average AS-PATH length AS-path
6 Maximum AS-PATH length AS-path
7 Average unique AS-PATH length AS-path
8 Number of duplicate announcements volume
9 Number of duplicate withdrawals volume
10 Number of implicit withdrawals volume
11 Average edit distance AS-path
12 Maximum edit distance AS-path
13 Inter-arrival time volume
14 Number of Interior Gateway Protocol packets volume
15 Number of Exterior Gateway Protocol packets volume
16 Number of incomplete packets volume
17 Packet size volume
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The OR algorithm and its variants perform well for selecting features to be used in

binary classification with NB models. In binary classification with two target classes c and

c̄, the odds ratio of feature Xk is calculated as:

OR(Xk) = log
Pr(Xk|c)

(
1− Pr(Xk|c̄)

)
Pr(Xk|c̄)

(
1− Pr(Xk|c)

) , (2.4)

where Pr(Xk|c) and Pr(Xk|c̄) are the probabilities of feature Xk being in classes c and c̄,

respectively.

The EOR, WOR, MOR, and CDM are variants that enable multiclass feature selection.

In case of a classification problem with γ = {c1, c2, . . . , cJ} classes:

EOR(Xk) =
J∑

j=1

log
Pr(Xk|cj)

(
1− Pr(Xk|c̄j)

)
Pr(Xk|c̄j)

(
1− Pr(Xk|cj)

)
WOR(Xk) =

J∑
j=1

Pr(cj)× log
Pr(Xk|cj)

(
1− Pr(Xk|c̄j)

)
Pr(Xk|c̄j)

(
1− Pr(Xk|cj)

)

MOR(Xk) =
J∑

j=1

∣∣∣∣∣ log
Pr(Xk|cj)

(
1− Pr(Xk|c̄j)

)
Pr(Xk|c̄j)

(
1− Pr(Xk|cj)

)∣∣∣∣∣
CDM(Xk) =

J∑
j=1

∣∣∣∣∣ log
Pr(Xk|cj)
Pr(Xk|c̄j)

∣∣∣∣∣, (2.5)

where Pr(Xk|cj) is the conditional probability of Xk given the class cj and Pr(cj) is the

probability of occurrence of the jth class. The OR algorithm may be extended by computing

Pr(Xk|cj) for continuous features. If the sample points are independent and identically

distributed, (2.4) may be written as:

OR(Xk) =

|Xk|∑
i=1

log
Pr(Xik = xik|c)

(
1− Pr(Xik = xik|c̄)

)
Pr(Xik = xik|c̄)

(
1− Pr(Xik = xik|c)

) ,
where |Xk| and Xik denote the size and the ith element of the kth feature vector, respectively.

A realization of the random variable Xik is denoted by xik. Other variants of the OR

algorithm may be extended to continuous cases in a similar manner. The top ten selected

features are listed in Table 2.7.
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Table 2.7: The top ten selected features F based on the scores calculated by various feature selection algorithms.

Fisher mRMR Odds Ratio variants

MID MIQ MIBASE OR EOR WOR MOR CMD

F Score F Score F Score F Score F Score F Score F Score F Score F Score

11 0.397758 15 0.94 15 0.94 15 0.94 10 1.3602 5 2.1645 5 1.3963 6 2.3588 5 8.5959

6 0.354740 5 0.12 12 0.36 17 0.63 4 1.3085 7 2.1512 7 1.3762 5 2.3486 11 6.9743

9 0.271961 12 0.11 3 0.35 2 0.47 1 1.1088 6 2.1438 6 1.3648 11 2.3465 9 3.0844

2 0.185844 7 0.10 8 0.34 8 0.34 14 1.1080 11 2.1340 11 1.3495 17 2.3350 2 2.3485

16 0.123742 4 0.07 1 0.32 6 0.27 12 1.0973 10 2.0954 13 1.1963 16 2.3247 8 2.2402

17 0.121633 10 0.07 6 0.30 3 0.13 3 1.0797 4 2.0954 9 1.0921 14 2.1228 16 2.0985

8 0.116092 8 0.04 4 0.27 1 0.13 15 1.0465 13 2.0502 2 1.0198 1 2.1109 3 2.0606

3 0.086124 13 0.04 17 0.26 9 0.10 8 1.0342 9 2.0127 16 0.9850 2 2.1017 14 2.0506

1 0.081760 2 0.03 9 0.25 12 0.08 17 1.0304 1 2.0107 17 0.9778 7 2.0968 1 2.0417

14 0.081751 14 0.03 2 0.24 11 0.06 16 1.0202 14 2.0105 8 0.9751 3 2.0897 17 2.0213



Chapter 3

Classification

3.1 BGP Anomaly Detection

3.1.1 Definitions

BGP anomalies are the BGP packets that exhibit unusual patterns. They are also referred to

as outliers. The BGP anomaly detection classifier is a machine learning model that learns

how to change its internal structure based on external feedback [38]. Machine learning

models learn to classify data points using a feature matrix. The matrix rows correspond to

data points while the columns correspond to the feature values. A feature is a measurable

property of the system that may be observed. Even though machine learning may provide

general models to classify anomalies, it may easily misclassify test data points. By providing

a sufficient and related set of features, machine learning models may overcome this deficiency

and may help built a generalized model to classify data with the least error rate.

3.1.2 Type of Anomalies

Anomaly detection techniques consider these three types of anomalies:

• Point anomalies: If each data point of the training dataset may be considered as

anomaly.

• Contextual anomalies: The term contextual anomaly [40] refers to an anomaly as the

behaviour of a data instance in a specific context. For example, a large number of

BGP packets may be considered as regular traffic during the peak activity hours of

25
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the working days. However, the same pattern may be classified as an anomaly in the

off-peak hours.

• Collective anomalies: A sequence of data points is considered anomalous relative to

the entire set. One data point may be considered as regular traffic. However, it is

considered as anomaly with a collection of neighbouring data points. This type of

anomaly is the most difficult to capture because the classifier should recognize the

temporal relationship among the data points [42].

BGP anomalies in this thesis are treated as point anomalies. The BGP packets are

grouped for each one minute interval. Each training data point may be classified as anomaly

or regular class.

3.1.3 Type of Features

The type of the features determines the applicable classification technique. For example,

the NB classifier works very well with categorical features while statistical models work well

with continuous and categorical features. The features represented in this thesis belong to

three types:

• Binary: Feature may have two values.

• Categorical: Feature may have finite number of values.

• Continuous: Feature may have infinite number of values. Sampling techniques dis-

cretize the continuous features into the categorical type.

The proposed BGP features listed in Table 2.3 belong to all the three types.

3.1.4 Supervised Classification

Supervised classification is one aspect of learning that has supervised (observed) measure-

ments that are labeled with a pre-defined class. During the test stage, the data points

are classified as one of the predefined classes. In unsupervised classification, the task is to

establish the existence of classes or clusters in the training data. Classification is one of the

machine learning categories. Other categories include regression and reinforcement. Learn-

ing implies that given a training dataset, a task is performed after learning the system’s

performance. The performance is measured by a performance index. The efficiency of the
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proposed machine learning models is discussed in Section 3.1.5. The task in classification is

to categorize the test labels into pre-defined classes. We define two-way and four-way clas-

sifications. In the two-way classification, two classes are defined: anomalous and regular.

In the four-way classification, four classes are defined: Slammer, Nimda, Code Red I, and

Regular. General steps of a classification process are shown in Figure 3.1. In the training

stage, the training set consists of the sample data points and the associated labels. A sample

data point consists of a set of predefined features. Next, the training dataset is fed into a

machine learning model to build a classifier model that is used later to examine the test

datasets. The classifier model is the criteria set by a machine learning model. In the testing

stage, a testing dataset is processed to extract the design matrix. Next, a classifier model is

applied to the design matrix to generate labels. The last step in the supervised classification

process is to compare this generated set of labels from the testing step with the training set

of labels to evaluate the performance of the model. For example, if the training datasets

are the collected BGP update messages, the task is to classify each data point to anomaly

or regular and the performance measure is F-score (3.5).

Feature 

extraction

Machine 

learning 

algorithm

Feature 

extraction

Classifier 

model
Labels

Training 

dataset

Testing 

dataset

Features

Features

Labels

Training

Testing

Figure 3.1: Supervised classification process.

In the training stage, a common procedure named cross-validation is usually performed
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to remedy the drawback of overfitting the classifier function. Overfitting phenomenon im-

plies the fact that the testing classification accuracy may not be as good as the training

accuracy. Overfitting is undesired behaviour in machine learning and it is usually caused

by rather complex trained models. For example, in curve fitting problems, if a 9th degree

polynomial is used to fit 3 points, then it is highly probable that poor fitting will result in

the testing stage because test data points will be scattered on a linear, 2nd, or 3rd polyno-

mial function while the fitting polynomial function has a the degree 9. A cross-validation

process is usually used to reduce the overfitting effect. The concept of cross-validation is

to choose the best parameters of the machine learning model parameters that reduce the

training error. A 4-fold cross-validation process is shown in Figure 3.2. To choose the best

value of a parameter, four runs are needed to cover the case of using each fold as a testing

set and the other three as training sets.

Figure 3.2: 4-fold cross-validation process.

The training dataset portion should be larger than the test dataset in order to capture

the anomalous trends. In 2-fold cross-validation, the training dataset portion is equal to

the testing dataset. A 10-fold cross-validation is commonly used as a compromise [39].

Parameters used in this thesis are given in Appendix A.

3.1.5 Performance Evaluation

We measure the performance of the models based on statistical indices. We consider ac-

curacy, balanced accuracy, and F-score as performance indices to compare the proposed

models. They are calculated based on the following definitions:

• True positive (TP): The number of anomalous training data points that are classified

as anomaly.

• True negative (TN): The number of regular training data points that are classified as

regular.
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• False positive (FP): The number of regular training data points that are classified as

anomaly.

• False negative (FN): The number of anomalous training data points that are classified

as regular.

These definitions are shown in Table 3.1.

Table 3.1: Confusion matrix.

Actual class

True (anomaly) False (regular)

Anomaly test outcome
Positive TP FP

Negative FN TN

We aim to classify a single class (anomaly), which usually has a smaller portion of

the training dataset. Hence, we aim to find the proper performance indices that reflect the

accuracy and precision of the classifier for anomaly training data points. These performance

measures are calculated as:

sensitivity =
TP

TP + FN

(3.1)

precision =
TP

TP + FP
.

(3.2)

The performance indices are calculated as:

accuracy =
TP + TN

TP + TN + FP + FN

(3.3)

balanced accuracy =
sensitivity + precision

2
.

(3.4)

Sensitivity, also known as recall, measures the ability of the model to identify the anomalies

(TP) among all labeled anomalies (true). Precision is the ability of the model to identify the
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anomalies (TP) among all data points that are identified as anomalous (positive). Speci-

ficity reflects the ability of the model to identify the regular traffic (true negative) among

all regular traffic (false). Accuracy treats the regular data points as important as anoma-

lous training data. Hence, it is not a good measure to compare performance of classifiers

performance. For example, if a dataset contains 900 regular and 100 anomalous data points

and the NB model classifies the 1,000 training data points as regular, then the accuracy is

90%. At the first glance, this accuracy seems high. However, no anomalous data point is

correctly classified. F-score is often used as a performance index to compare performance

of classification models. It is the harmonic mean of the sensitivity and the precision:

F-score = 2× precision× sensitivity
precision+ sensitivity

.

(3.5)

The harmonic mean tends to be closer to the smaller of the two. Hence, to obtain a large

score value, both precision and sensitivity should be large.

The balanced accuracy is an alternative performance index that is equal to the aver-

age of sensitivity and specificity. F-score reflects the success of detecting anomalies rather

than detecting both anomalies and regular data points. While accuracy and balanced accu-

racy give equal importance to the regular and the anomaly traffic, F-score emphasizes the

anomaly classification rate. Hence, we used F-score to measure the performance of SVM,

HMM, and NB models.

3.2 Classification with Support Vector Machine Models

Support vector machines were introduced by V. Vapnik in the 1970s [41]. SVMs are linear

classifiers that find a hyperplane to separate two classes of data: positive and negative. SVM

are extended for non linear separation using kernels. In real world classification problems,

SVM performs more accurately than most other machine learning models, especially for

datasets with very high dimensional complexity.

We use the SVM classification as a supervised deterministic model to classify BGP

anomalies. MATLAB libsvm-3.1 toolbox [43] is used to train and test the SVM classifiers.

The dimensions of the feature matrix is 7, 200×10, which corresponds to a five-day interval.

Each matrix row corresponds to the top ten selected features during the one-minute interval.
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For each training dataset X7200×37, we target two classes: anomaly (true) and regular (false).

The SVM algorithms solves an optimization problem [44] with the constraints:

minC
M∑

m=1

ξm +
1

2
‖w‖2

tmy(Xm) ≥ 1− ξm. (3.6)

Constant C > 0 controls the importance of the margin while slack variable ξm solves the

non-separable data points classification problem. A regularization parameter 1
2‖w‖

2 is used

to avoid the overfitting. SVM classifies each data point Xm with a training target class

tm either as anomaly y = 1 or regular traffic y equal −1. Xm corresponds to a row vector

where m = 1, ..., 7200. The SVM solution maximizes the margin between the data points

and the decision boundary. Data points that are closest to the decision boundary are called

support vectors. The Radial Basis Function (RBF) kernel is used to avoid the using of the

feature matrix of high dimension by mapping the feature space into a linear space:

K(Xk,Xl) = exp(−γ ∗ ‖Xk −Xl‖2). (3.7)

The RBF kernel K depends on the Euclidean distance between Xk and Xl features [45].

Constant γ influences the number of support vectors. The datasets are trained using 10-fold

cross validation to select parameters (C, γ) that provide the best accuracy. We apply SVM

on sets listed in Table 3.2 to classify BGP anomalies. The SVM classification process is

shown in Figure 3.3.

First, a batch of BGP update messages is processed to generate the feature matrix as

discussed in Chapter 2. Next, the training process takes the design matrix as an input

and cross-validates C and γ to generate the best classifier model. In the testing stage, the

classifier model is used to evaluate the testing datasets and to generate its labels that are

later used to calculate the performance indices.

Table 3.2: The SVM training datasets for two-way classifiers.

NB Training dataset Test dataset

SVM1 Slammer and Nimda Code Red I
SVM2 Slammer and Code Red I Nimda
SVM3 Nimda and Code Red I Slammer
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Figure 3.3: The SVM classification process.
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3.2.1 Two-Way Classification

In a two-way classification, all anomalies are treated as one class. Their performance is

shown in Table 3.3. SVM3 model achieves the best F-score (86.1%) using features selected

by the MIQ feature selection algorithm. We check the validity of the proposed models by

applying the two-way SVM classification on the BGP traffic trace that was collected from

the BCNET [24] on December 20, 2011. All data points in the BCNET traffic trace are

labeled as regular traffic. Hence, parameter y = −1. The classification accuracy of 79.2%

indicates the number of data points that are classified as regular traffic. The best two-way

classification result is achieved by using SVM2. Since all data points in BCNET and RIPE

test datasets contain no anomalies, they have low sensitivities and, hence, low F-scores.

Therefore, we calculate instead accuracy as the performance measure. Data points that are

classified as anomalies (false positive) are shown in Figure 3.4.

Table 3.3: Performance of the two-way SVM classification.

Performance index

Accuracy (%) F-score (%)

SVM Feature Test

dataset

(anomaly)

RIPE

(regular)

BCNET

(regular)

Test

dataset

(anomaly)

SVM1 All features 64.1 55.0 62.0 63.2

SVM1 Fisher 72.6 63.2 58.5 73.4

SVM1 MID 63.1 52.2 59.4 61.2

SVM1 MIQ 60.7 47.9 61.7 57.8

SVM1 MIBASE 79.1 74.3 60.9 80.1

SVM2 All features 68.6 97.7 79.2 22.2

SVM2 Fisher 67.4 96.6 74.8 16.3

SVM2 MID 67.9 97.4 72.5 19.3

SVM2 MIQ 67.7 97.5 76.2 15.3

SVM2 MIBASE 67.5 96.8 78.8 17.8

SVM3 All features 81.5 92.0 69.2 84.6

SVM3 Fisher 89.3 93.8 68.4 75.2

SVM3 MID 75.4 92.8 71.7 79.2

SVM3 MIQ 85.1 92.2 73.2 86.1

SVM3 MIBASE 89.3 89.7 69.7 80.1
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Test data points from various worms that are incorrectly classified in the two-way classi-

fication (false positives and false negatives) are shown in Figure 3.5 (left column). Correctly

classified as anomalies (true positives) are shown in Figure 3.5 (right column).
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Figure 3.4: Shown in red is incorrectly classified (anomaly) traffic.
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Figure 3.5: Shown in red are incorrectly classified regular and anomaly traffic for Slammer

(top left), Nimda (middle left), and Code Red I (bottom left) and correctly classified anomaly

traffic for Slammer (top right), Nimda (middle right), and Code Red I (bottom right).
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3.2.2 Four-Way Classification

We extend the proposed classifier to implement multiclass SVMs and used one-versus-one

multiclass classification [46] on four training datasets: Slammer, Nimda, Code Red I, and

RIPE. A multiclass classification combines a number of two-class classifications. To cover

all classification combinations, data points are classified by n(n− 1)/2 classifiers, where n

is the number of classes. Each data point is classified according to the maximum value

of the classifier function [44]. The four-way classification detects and classifies the specific

type of traffic: Slammer, Nimda, Code Red I, or Regular. Classification performance is

shown in Table 3.4. The BCNET dataset is also tested using the multiclass SVM. The

average accuracy achieved by using BCNET dataset is 91.4%. This is an example of how

the proposed multiclass models perform a recently collected BGP datasets. It shows that

the proposed model has 91.4% probability to classify data points to the correct class type.

The miss-classified data points show that the proposed model may be improved. Possible

solutions are discussed in Chapter 5.

Table 3.4: Accuracy of the four-way SVM classification.

Average accuracy (%)

(3 anomalies concatenated with 1 regular)

Feature RIPE BCNET

All features 77.1 91.4

Fisher 82.8 85.7

MID 67.8 78.7

MIQ 71.3 89.1

MIBASE 72.8 90.2

3.3 Classification with Hidden Markov Models

The second model for classification is based on the first order Hidden Markov Models

(HMMs). HMMs are statistical tools that are used to model stochastic processes that consist

of two embedded processes: the observable process that maps BGP features and the unob-

served hidden process that has the Markovian property. We assume that the observations

are independent and identically distributed. Even though HMMs belong to non-parametric
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supervised classification methods, we use 10-fold cross validation to select number of hidden

states as a parameter in order to improve the accuracy of the model. We implement the

HMMs using the MATLAB statistical toolbox. A first order HMM processes is shown in

Figure 3.6. Each HMM model is specified by a tuple λ = (N,M,α, β, π), where:

States

Observations

Figure 3.6: The first order HMM with two processes.

N = number of hidden states (cross-validated)

M = number of observations (11)

α = transition probability distribution N ×N matrix

β = emission probability distribution N ×M matrix

π = initial state probability distribution matrix.

The proposed detection model consists of three stages:

• Sequence extractor and mapping: All features are mapped to 1-D observation vector.

• Training: Two HMMs for two-way classification and four HMMs for four-way classifi-

cation are trained to identify the best α and β for each class. HMMs are trained and

validated for various number of hidden states N .

• Classification: The maximum likelihood probability p(x|λ) is used to classify the test
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observation sequences.

The HMM classification algorithm is illustrated in Figure 3.7.
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HMM 3
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Figure 3.7: The HMM classification process.

In the sequence extraction stage, the BGP feature matrix is mapped to a sequence

of observations by adding the BGP announcements (feature 1) and the BGP withdrawals

(feature 2) for each data point. We also add the maximum AS-PATH length (feature 6)

and the maximum edit distance (feature 12). In both cases, we divide the result arbitrary

to eleven observations using a logarithmic scale. This transformation solves the high skew

problem of heavy tailed probability distribution of the BGP volume features in the training

datasets. We evaluate 10, 11, and 12 observations for the mapping function. HMMs provides

best results with 11 observations [47]. After the transformation, instead of having an infinite

number of observations, each HMM model is trained with 11 distinct values. The mapping
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function for features Xk and Xl is:

log(Xk +Xl)

11
. (3.8)

The distribution for BGP announcements during the Code Red I worm attack is shown in

Figure 3.8.
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Figure 3.8: Distribution of the number of BGP announcements (left) and withdrawals (right)

for the Code Red I worm.

HMMs are trained and validated for a various number of hidden states. A 10-fold cross-

validation with the Balm-Welch algorithm [44] is used for training to find the best α and

β for each HMM. The best transition and emission matrices are validated by obtaining

the largest maximum likelihood probability p(x|λHMMx
). We construct 6 and 12 HMM

models for two-way and four-way classifications, respectively. Various HMMs are listed in

Table 3.5 and Table 3.6. We evaluate the test observation sequences and calculate maximum

likelihood probability for each HMM.

In the classification stage, each test observation sequence is classified based on the largest

maximum likelihood probability for HMMs with the same number of hidden states. For

example, HMM1, HMM4, HMM7, and HMM10 shown in Table 3.6 correspond to HMMs

with two hidden states for various training datasets.
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Table 3.5: Hidden Markov Models: two-way classification.

Number of hidden states

Training dataset 2 4 6

Slammer, Nimda, and Code Red I HMM1 HMM2 HMM3

RIPE/BCNET HMM4 HMM5 HMM6

Table 3.6: Hidden Markov Models: four-way classification.

Number of hidden states

Training dataset 2 4 6

Slammer HMM1 HMM2 HMM3

Nimda HMM4 HMM5 HMM6

Code Red I HMM7 HMM8 HMM9

RIPE/BCNET HMM10 HMM11 HMM12

The accuracy of each HMM is defined as:

Number of correctly classified observation sequences

Total number of observation sequences
. (3.9)

The numerator is calculated using the highest maximum likelihood probability p(x|λHMMx
).

Sequences in the denominator share the same number of hidden states. The correctly

classified observation sequence is generated by a model that has the highest probability

when tested with itself.

We use RIPE and BCNET datasets to test the three anomalies. Two sets of features

(volume) and (AS-path) are mapped to create one observation sequence for each HMM. We

map volume feature set (1, 2) and AS-path feature set (6, 12) to two observation sequences.

HMMs achieve better F-scores using set (1, 2) than set (6, 12), as shown in Table 3.7. The

RIPE and BCNET datasets have the highest F-scores when tested using HMMs with two

hidden states.

The performance indices for regular RIPE and BCNET are shown in Table 3.8 and

Table 3.9, respectively.
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Table 3.7: Accuracy of the two-way HMM classification.

Performance index

Accuracy (%)
3 anomalies concatenated with one

regular

F-score (%)
3 anomalies concatenated with one

regular
N Feature set RIPE BCNET RIPE BCNET

2 (1,2) 86.0 94.0 84.4 93.8

2 (6,12) 79.0 71.0 76.2 60.7

4 (1,2) 78.0 87.0 72.2 85.0

4 (6,12) 64.0 60.0 48.0 35.9

6 (1,2) 85.0 91.0 84.3 90.1

6 (6,12) 81.0 65.0 80.1 50.2

Table 3.8: Performance of the two-way HMM classification: regular RIPE dataset.

Performance index

N Feature set Accuracy Precision Sensitivity Specificity Balanced

accuracy

F-score

2 (1,2) 86.0 97.3 74.0 98.0 86.0 84.4

2 (6,12) 79.0 93.9 62.0 96.0 79.0 76.2

4 (1,2) 78.0 96.6 58.0 98.0 78.0 72.2

4 (6,12) 64.0 91.1 62.0 94.0 78.0 48.0

6 (1,2) 85.0 90.0 78.0 92.0 85.0 84.3

6 (6,12) 81.0 88.5 62.0 90.0 77.0 80.1

Table 3.9: Performance of the two-way HMM classification: BCNET dataset.

Performance index

N Feature set Accuracy Precision Sensitivity Specificity Balanced

accuracy

F-score

2 (1,2) 94.0 97.8 90.0 98.0 94.0 93.8

2 (6,12) 71.0 100 62.0 100 81.0 60.7

4 (1,2) 87.0 100 74.0 100 87.8 85.0

4 (6,12) 60.0 94.0 66.0 96.0 81.0 35.9

6 (1,2) 91.0 100 82.0 100 91.0 90.1

6 (6,12) 65.0 77.7 14.0 96.0 55.0 50.2
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Each test is applied using RIPE and BCNET datasets with the four-way HMM classifi-

cation. The classification accuracies are averaged over four HMMs for each dataset and are

listed in Table. 3.10.

Table 3.10: Accuracy of the four-way HMM classification.

Average accuracy (%)

3 anomalies concatenated with 1 regular

N Feature set RIPE BCNET

2 (1,2) 72.50 77.50

2 (6,12) 38.75 41.25

4 (1,2) 66.25 76.25

4 (6,12) 26.25 33.75

6 (1,2) 70.00 76.25

6 (6,12) 43.75 42.50

3.4 Classification with naive Bayes Models

The Bayesian classifiers are among the most efficient machine learning classification tools.

These classifiers assume conditional independence among features. Hence:

Pr(Xk = xxxk,Xl = xxxl|cj) =

Pr(Xk = xxxk|cj) Pr(Xl = xxxl|cj), (3.10)

where xxxk and xxxl are realizations of feature vectors Xk and Xl, respectively. In a two-way

classification, classes c1 and c2 denote anomalous and regular data points, respectively. We

arbitrarily assign labels c1 = 1 and c2 = −1. For a four-way classification, we define four

classes c1 = 1, c2 = 2, c3 = 3, and c4 = 4 that correspond to Slammer, Nimda, Code Red

I, and Regular data points, respectively. Even though it is naive to assume that features

are conditionally independent on a given class (3.10), NB classifiers perform better for some

applications compared to other classifiers. They also have low complexity and may be

trained effectively using smaller datasets.

We train generative Bayesian models that may be used as classifiers using labeled

datasets. In such models, the probability distributions of the priors Pr(cj) and the like-

lihoods Pr(Xi = xxxi|cj) are estimated using the training datasets. Posterior probability of a
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data point, represented as a row vector xxxi, is calculated using the Bayes rule:

Pr(cj |Xi = xxxi) =
Pr(Xi = xxxi|cj) Pr(cj)

Pr(Xi = xxxi)

∝ Pr(Xi = xxxi|cj) Pr(cj). (3.11)

The naive assumption of independence among features helps calculate the likelihood of a

data point as:

Pr(Xi = xxxi|cj) =

K∏
k=1

Pr(Xik = xik|cj), (3.12)

where K denotes the number of features. The probabilities on the right-hand side (3.12)

are calculated using the Gaussian distribution:

Pr(Xik = xik|cj , µk, σk) = N (Xik = xik|cj , µk, σk), (3.13)

where µk and σk are the mean and standard deviation of the kth feature, respectively. We

assume that priors are equal to the relative frequencies of the training data points for each

class cj . Hence:

Pr(cj) =
Nj

N
, (3.14)

where Nj is the number of training data points that belong to the jth class and N is the

total number of training points.

The parameters of two-way and four-way classifiers are estimated and validated by a

10-fold cross-validation. In a two-way classification, an arbitrary training data point xxxi is

classified as anomalous if the posterior Pr(c1|Xi = xxxi) is larger than Pr(c2|Xi = xxxi).

We use the MATLAB statistical toolbox to develop NB classifiers. The feature matrix

consists of 7,200 rows for each dataset corresponding to the number of training data points

and 17 columns representing features for each data point. Two classes are targeted: anoma-

lous (true) and regular (false). In a two-way classification, all anomalies are treated to be of

one type while in a four-way classification each training data point is classified as Slammer,

Nimda, Code Red I, or Regular. We use three datasets listed in Table 3.11 to train the

two-way classifiers. Performances of two-way and four-way classifiers are evaluated using

various datasets. The results are verified by using regular RIPE and regular BCNET [24]

datasets. Classifiers are trained using the top selected features listed in Table. 2.7. We

compare the proposed models using the accuracy and F-score as performance measures.
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Table 3.11: The NB training datasets for the two-way classifiers.

NB Training dataset Test dataset

NB1 Slammer and Nimda Code Red I
NB2 Slammer and Code Red I Nimda
NB3 Nimda and Code Red I Slammer

3.4.1 Two-Way Classification

The results of the two-way classification are shown in Table 3.12. The combination of Nimda

and Code Red I training data points (NB3) achieves the best classification results. The NB

models classify the training data points of regular RIPE and regular BCNET datasets with

95.8% and 95.5% accuracies, respectively. There are no anomalous data points in these

datasets and, thus, both TP and FN values are zero. Hence, the sensitivity (3.1) is not

defined and precision (3.2) is equal to zero. Consequently, the F-score (3.5) is not defined

for these cases and the accuracy (3.3) reduces to:

accuracy =
TN

TN + FP
. (3.15)

Classifiers trained based on features selected by the OR algorithms often achieve higher

accuracies and F-scores for training and test datasets listed in Table 3.11. The OR selection

algorithms perform well when used with the NB classifiers because the feature score (2.4)

is calculated using the probability distribution that the NB classifiers use for posterior

calculations (3.11). Hence, the features selected by the OR variants are expected to have a

stronger influence on the posteriors calculated by the NB classifiers [48]. The WOR feature

selection algorithm achieves the best F-score for all NB classifiers.

The test data points generated by various worms that are incorrectly classified in the two-

way classification (false positive and false negative) are shown in Figure 3.9 (left column).

The correctly classified traffic data points as anomaly (true positive) are shown in Figure 3.9

(right column).
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Table 3.12: Performance of the two-way naive Bayes classification.

Performance index

Accuracy (%) F-score (%)

No. NB Feature Test

dataset

(anomaly)

RIPE

(regular)

BCNET

(regular)

Test

dataset

(anomaly)

1 NB1 All features 87.6 91.1 77.3 2.31

2 NB1 Fisher 62.5 97.0 76.3 12.5

3 NB1 MID 72.3 93.1 82.3 26.9

4 NB1 MIQ 70.8 92.3 75.4 46.9

5 NB1 MIBASE 83.0 90.6 74.0 47.8

6 NB1 OR 52.0 80.4 85.3 43.9

7 NB1 EOR 53.1 81.1 77.7 39.2

8 NB1 WOR 97.5 87.1 77.1 48.0

9 NB1 MOR 62.6 80.9 79.8 34.3

10 NB1 CDM 55.1 94.0 82.6 16.4

11 NB2 All features 85.8 92.2 87.1 23.5

12 NB2 Fisher 64.2 97.5 89.0 4.87

13 NB2 MID 70.3 94.3 95.0 10.7

14 NB2 MIQ 85.7 94.0 90.0 22.9

15 NB2 MIBASE 87.9 92.1 87.2 23.1

16 NB2 OR 69.4 81.2 90.4 23.2

17 NB2 EOR 67.1 81.8 89.8 18.4

18 NB2 WOR 70.7 88.3 86.9 35.8

19 NB2 MOR 73.9 81.9 90.6 25.2

20 NB2 CDM 77.5 94.3 93.0 21.5

21 NB3 All features 89.1 91.8 85.9 53.2

22 NB3 Fisher 77.1 92.5 85.9 19.8

23 NB3 MID 76.6 45.2 92.5 46.1

24 NB3 MIQ 90.4 91.8 87.2 63.5

25 NB3 MIBASE 82.9 91.3 86.1 57.6

26 NB3 OR 45.9 76.3 88.1 55.6

27 NB3 EOR 63.3 78.8 88.9 61.3

28 NB3 WOR 83.1 88.1 86.3 60.3

29 NB3 MOR 58.6 81.6 89.2 59.8

30 NB3 CDM 46.3 95.6 91.9 32.5



CHAPTER 3. CLASSIFICATION 45

01/25 01/27
0

1

2

3

4

5
x 10

4

Time

N
u

m
b

e
r 

o
f 

IG
P

 p
a

ck
e

ts Slammer

Red: FP and FN

Blue: TP and TN

01/25 01/27
0

1

2

3

4

5
x 10

4

Time

N
u

m
b

e
r 

o
f 

IG
P

 p
a

ck
e

ts

Slammer

Red: TP

Blue: TN, FN, and FP

09/20 09/22
0

0.5

1

1.5

2

x 10
4

Time

N
u

m
b

e
r 

o
f 

IG
P

 p
a

ck
e

ts Nimda

Red: FP and FN

Blue: TP and TN

09/20 09/22
0

0.5

1

1.5

2

x 10
4

Time

N
u

m
b

e
r 

o
f 

IG
P

 p
a

ck
e

ts Nimda

Red: TP

Blue: TN, FN, and FP

07/23
0

0.5

1

1.5

2

x 10
4

Time

N
u

m
b

e
r 

o
f 

IG
P

 p
a

ck
e

ts

Code Red I

Red: FP and FN

Blue: TP and TN

07/23
0

0.5

1

1.5

2

x 10
4

Time

N
u

m
b

e
r 

o
f 

IG
P

 p
a

ck
e

ts

Code Red I

Red: TP

Blue: TN, FN, and FP

Figure 3.9: Shown in red are incorrectly classified regular and anomaly traffic for Slammer

(top left), Nimda (middle left), and Code Red I (bottom left); and correctly classified

anomaly traffic for Slammer (top right), Nimda (middle right), and Code Red I (bottom

right)

3.4.2 Four-Way Classification

The four-way classification results are shown in Table 3.13. The four-way NB model classifies

data points as Slammer, Nimda, Code Red I, or Regular. Both regular RIPE and regular

BCNET datasets are tested. The regular BCNET dataset classification results are also
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listed in order to verify the performance of the proposed classifiers. Although it is difficult

to classify four distinct classes. The classifier trained based on the features selected by the

MOR algorithm achieves 68.7% accuracy.

Table 3.13: Accuracy of the four-way naive Bayes classification.

Average accuracy (%)

3 anomalies concatenated with

1 regular

No. Feature set RIPE BCNET

1 All features 74.3 67.6

2 Fisher 24.7 34.3

3 MID 74.9 33.1

4 MIQ 24.6 34.8

5 MIBASE 75.4 33.1

6 OR 25.5 36.7

7 EOR 75.3 68.1

8 WOR 75.8 53.2

9 MOR 77.7 68.7

10 CDM 24.8 34.5

Performance of the NB classifiers is often inferior to the SVM and HMM classifiers [49], [50].

However, the NB2 classifier trained on the Slammer and Code Red I datasets (F-score =

32.1%) performs better than the SVM classifier (F-score = 22.2%).
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BGPAD Tool

We develop a graphical user interface for the MATLAB code to allow the users to inspect

BGP packets for anomalies. It supports both PCAP and MRT formats. A complete code

for the tool is available [26]. BGPAD tool provides the following functionalities:

• An option to convert a MRT ASCII format to feature set file.

• An option to convert a PCAP ASCII format to feature set file.

• Generated statistics of various features for any BGP trace.

• Test performance indices and displays anomalous traffic.

• An option to select classification two-way or four-way classification algorithms (SVM,

HMM, and NB).

• An option to parametrize each algorithm and to achieve the best performance.

• An option to upload PCAP files to be tested on the trained models [49].

• An option to save the results as tables and graphs.

The feature set file is an input file that is formatted so that rows correspond to traffic data

points and columns correspond to values of the extracted features.

47
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The extracted feature values along with their distribution for various datasets are shown

in Figure 4.1. BGPAD provides the functionality to change the number of the bins of the

distribution and to save the graphs to the user local machine.

Code Red I Code Red I

Figure 4.1: Inspection of BGP PCAPs and MRT files statistics.

The SVM two-way classification’s GUI is shown in Figure 4.2. It provides full control

of SVM parameters including C, γ, and the number of folds for cross-validation. It also

provides an option to choose the feature selection algorithm. Various test datasets are

available including the test datasets listed in Table 2.2. BGPAD permits to upload a test

dataset to evaluate the proposed SVM models. Various performance indices are shown after

the testing is completed. The GUI also allows the user to generate and save the graphs of

false negatives/false positives and the true positives. The Test button provides an option

to evaluate a test dataset based on the best trained SVM model [49].
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Figure 4.2: GUI for two-way SVM models.
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The generated graphs of Slammer, Nimda, and Code Red I test datasets used along with

training datasets (Table 3.2) are shown in Figure 4.3. Shown in red are incorrectly classified

regular and anomaly traffic for Slammer (top left), Nimda (top right), and Code Red I (top

middle) and correctly classified anomaly traffic for Slammer (bottom left), Nimda (bottom

right), and Code Red I (bottom middle).

Figure 4.3: Two-way SVM graphs.
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The GUI for four-way SVM classification is shown in Figure 4.4. It provides an option

to choose one test dataset along with the three SVM training datasets listed in Table 3.2.

The Test button provides the option to evaluate a test dataset based on the best trained

four-way SVM model [49].

Figure 4.4: GUI for four-way SVM models.
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HMM two-way classification GUI is shown in Figure 4.5. In two-way classification, a

five training datasets are provided. The user has an option to choose three anomalous

training datasets and one regular. The regular dataset options are BCNET or RIPE. The

test datasets should also contain three anomalies and one regular dataset. The GUI also

provides an option to choose one of the feature selection algorithms and the number of hidden

states. The Test button evaluates a test dataset on the best trained HMM model [49].

Figure 4.5: GUI for two-way HMM models.
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The HMM four-way classification GUI is shown in Figure 4.6. In four-way classification,

a five training datasets are provided from which four datasets should be selected. The GUI

provides an option to choose one of the three anomalous datasets and one regular testing

dataset (BCNET, RIPE, or user specific dataset).

Figure 4.6: GUI for four-way HMM models.
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Two-way and four-way NB classification GUIs are shown in Figure 4.7 and Figure 4.8,

respectively. The available options are similar to those in SVM classification GUI.

Figure 4.7: GUI for two-way NB models.
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Figure 4.8: GUI for four-way NB models.
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Analysis of Classification Results

and Discussion

Performance of the BGP is based on trust among BGP peers because they assume that the

interchanged announcements are accurate and reliable. This trust relationship is vulnerable

during BGP anomalies. For example, during BGP hijacks, a BGP peer may announce

unauthorized prefixes that indicate to other peers that it is the originating peer. These

false announcements propagate across the Internet to other BGP peers and, hence, affect

the number of BGP announcements (updates and withdrawals) worldwide. This storm of

BGP announcements affects the quantity of volume features. As shown in Table 2.5, 65% of

the selected features are volume features. Hence, volume features are more relevant to the

anomaly class than the AS-path features, which confirms the known effect of BGP anomalies

on the volume of the BGP announcements. To illustrate the effect of volume features and

AS-path features, we apply two-way SVM classification separately with volume and with

AS-path features. The results are shown in Table 5.1.

The top selected AS-path features that appear on the boundaries of the distributions

are shown in Figure 2.3. For example, AS-path features 24, 25, and 32 have the highest

MIQ, Fisher, and MID scores, respectively. This indicates that during BGP anomalies, the

edit distance and AS-PATH length of the BGP announcements tend to have a very high or

a very low value and, hence, large variance. This implies that during an anomaly attack,

AS-path features are the distribution outliers.
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Table 5.1: Comparison of feature categories in two-way SVM classification.

Performance index

SVM Category Accuracy Precision Sensitivity Specificity Balanced accuracy F-score

SVM1 volume 68.5 53.6 16.6 73.2 44.9 27.1

SVM1 AS-path 56.4 6.12 29.5 58.8 44.1 3.93

SVM2 volume 87.0 69.6 12.5 99.1 55.8 22.3

SVM2 AS-path 86.0 38.7 1.19 99.6 50.4 2.36

SVM3 volume 94.8 79.7 76.4 97.3 86.8 85.0

SVM3 AS-path 56.9 19.1 79.4 53.8 66.6 64.1

Approximately 58% of the AS-path features shown in Table 2.5 are larger than the

distribution mean. For example, large length of the AS-PATH BGP attribute implies that

the packet is routed via a longer path to its destination, which causes large routing delays

during BGP anomalies [32]. In a similar case, very short lengths of AS-PATH attributes

occur during BGP hijacks when the new (false) originator usually gains a preferred or shorter

path to the destination [51]. The SVM models exhibit better performance than the HMMs

in two-way and four-way classifications. The SVM models based on Nimda and Code Red I

datasets and the HMMs with two hidden states have the highest accuracies. HMMs based on

the number of announcements and number of withdrawals (feature 1 and feature 2) achieve

better accuracy in two-way and four-way classifications than models based on the maximum

number of AS-PATH length (feature 6) and the maximum edit distance (feature 12). Both

SVM and HMM two-way classifications produced better results than four-way classifications

because of the common semantics among BGP anomalies. For example, Slammer worm is

more correlated to Nimda than to regular RIPE mapped sequence.

We compare the proposed results to rule-based and behavioural techniques by comparing

the proposed models with models proposed in the research literature. Table 5.2 illustrates

that using rule-based technique [52], the classifier performs worse than the proposed models

in two datasets (Nimda and Code Red I) out of three datasets. However, the proposed mod-

els achieve better accuracy compared to behavioural techniques [53]. The shaded columns

show that the model does not consider the difference among the three anomalies. Instead,

it takes into account that the dataset is anomaly rather than specifying the type of anomaly

(Slammer, Nimda, and Code Red I). Although it is difficult to make fair comparison be-

cause of the differences between the datasets class ranges, feature selection algorithms, and
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dataset sources, models proposed in this thesis show better overall results than the two

models reported in the literature. It is also important to mention that, to the best of our

knowledge, there are no proposed multi-classification models of BGP worms reported in the

literature.

Table 5.2: Performance comparison of anomaly detection models.

Proposed models

Dataset SVM

two-way

SVM

four-way

HMM

two-way

HMM

four-way

NB

two-way

NB

four-way

Rule-based

techniques

Behavioural

techniques

Slammer 89.3 82.8 86.0 70.0 87.4 77.7 94.4 74.0

Nimda 68.6 82.8 86.0 70.0 70.1 77.7 84.1 74.0

Code Red I 79.1 82.8 86.0 70.0 74.1 77.7 74.9 74.0

The development of the proposed models greatly depends on several factors:

• Domain experts involvement: Most labeling assumptions for the BGP worms datasets

are based on the technical reports that were released after the worm attacks. There are

no agreed time limits to label the data points. In this thesis, we rely on the literature

reviews [4] and the visual effect of worms on volume features to decide the limits for

each dataset.

• Confidentiality of data: Most Internet service providers restrict the access to the

collected BGP traffic. Most application layer protocols contain confidential user infor-

mation. These application layer packets are confidential because they contain private

information about the Internet users. Anonymization tools may remove these privacy

concerns.

• The Internet rapid development: Due to the fast development of the Internet services,

many legitimate traffic data points are captured by the proposed models as anomalous

traffic. Hence, a periodic training may be necessary to adapt the proposed models to

these new services [11].
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Conclusions

In this thesis, we have analysed BGP anomalies such as Slammer, Nimda, and Code Red I.

We compare feature selection algorithms to choose the most correlated features for anomaly

class. We introduce new classification features and apply various machine learning algo-

rithms. The proposed models show better performance compared to models proposed in

the literature.

We have investigated BGP anomalies and proposed detection models based on the SVM,

HMM, and NB classifiers. Classification results show that the best achieved F-scores of the

SVM, HMM, and NB models are 86.1%, 84.4%, and 69.7%, respectively. Furthermore,

volume mapped sequences generate models with better accuracy than AS-path mapped

sequences. Hence, using the BGP volume features is a viable approach for detecting possible

worm attacks. The extracted features share similar statistical semantics and, hence, are

grouped into two categories. Since BGP anomalies have similar properties and effect on

BGP features, the proposed models may be used as online mechanisms to predict new BGP

anomalies and detect the onset of worm attacks.

Further investigation of the effect of anomalies and worms on BGP may lead to a bet-

ter feature extraction process. Furthermore, applying better feature selection algorithms

may generate more correlated features of the anomaly class and, hence, may improve the

performance of the detection models. Further analysis on the results may lead to better

understanding of the performance indices. For example, receiver operating characteristic

(ROC) analysis may generate better performance measure than the F-score index. ROC

curve shows the relationship between false positive and true positive ratios for various pa-

rameters of the machine learning model. An online version of BGPAD tool is developed to

59



CHAPTER 6. CONCLUSIONS 60

provide a web interface for the end users [26]. Spatio-temporal network anomaly detection is

one of the proposed models to build the online system because it takes in consideration the

dependency of the data points among each other [54]. Spatio-temporal statistical approach

may discover new anomalies that are not present in the training dataset.
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Appendix A

Parameter Assumptions

Table A.1 shows the parameters used in this Thesis.

Table A.1: Sample of a BGP update packet.

Parameter Value Explanation

Number of portions in HMM mapping function 11 Heuristic

Number of HMMs 6, 12 All combinations of three values of

hidden states and four datasets

in two-way and four-way classifications

Number of folds in cross-validation 10 Heuristic

Number of SVM features 37 The total number of defined features

Number of features per HMM observation sequence 2 Arbitrary chosen. More accurate results may be

achieved by performing cross-validations

Number of NB features 17 Using continuous and categorical features gives better

results than using the combination of continuous, cat-

egorical, and binary features

Number of the top selected features 10 Heuristic
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