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Abstract

Over the past 10 years we have seen the transition from single core computer to multicore

computing, with high end consumer computers advertising marketing up to 12 cores. How-

ever, taking advantage of these cores is non-trivial. Simply using twice as many cores does

not immediately generate twice the performance. Yet performance debugging of parallel

programs can be extremely difficult.

Our experience in tuning parallel applications led us to discover that performance tuning

can be considerably simplified, and even to some degree automated, if profiling measure-

ments are organized according to several intuitive performance factors common to most

parallel programs. In this work we present these factors and propose a hierarchical frame-

work composing them. We present various case studies where analyzing profiling data

according to the proposed principle led us to improve performance of parallel programs by

significant factors (up to 20x). Our work lays foundation for new ways of organizing and

visualizing profiling data in performance tuning tools.

iii



Acknowledgments

Special thanks go to my supervisor Sasha Fedorova for supporting me throughout my grad-

uate carrier. I would also like to thank my fellow Cascade teammates Craig, Shane and

Micah.

iv



Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

1 Introduction 1

1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Framework 6

2.1 Factors of Parallel Performance Overhead . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Visual Representation of Performance Factors . . . . . . . . . . . . . . . . . . 8

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Measuring software-induced overhead . . . . . . . . . . . . . . . . . . 11

2.3.2 Inferring hardware-related overheads . . . . . . . . . . . . . . . . . . . 13

2.3.3 Our implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



3 Case Studies 15

3.1 Load Imbalance in Swaptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Inefficient Barrier Implementation . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Partition Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Fluidanimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Partition Refinement Algorithm . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Mandlebrot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Related Work 32

5 Conclusion 35

Appendix A Parallel Partitioner 36

Appendix B Spin Barrier 40

Bibliography 42

vi



List of Figures

1.1 Performance profile of Swaptions from 1 - 24 cores for sim medium input. (a)

Factor decomposition (b) Speedup chart . . . . . . . . . . . . . . . . . . . . . 3

2.1 Deconstruction Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Activity Graph example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Example showing how a parallel depth first search could execute less code by

finding an early termination condition. Nodes checked are highlighted black.

Target node in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Breakdown of overhead in Swaptions according to performance factors: orig-

inal pthread implementation (top) and the improved load-balanced imple-

mentation (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Swaptions activity graph showing load imbalance of original pthread imple-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Parallel performance decomposition of Streamcluster with simlarge, simmedium,

and simsmall inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Activity graph of streamcluster covering a 5 millisecond interval. Visible

execution chunks are associated with calculating a distance cost function

(streamcluster.cpp:1036-1067). Additional execution chunks are present, but

are too small to be visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Performance comparison of pthread barriers and spin barriers in the Stream-

cluster benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vii



3.6 (a) Percentage of cells requiring locking as number of participating cores

increases. (b) Speedup comparison of the implementation using Multi-colour

Partitioning vs. the original pthread implementation (simlarge). Pthread

version is restricted to core counts of powers of two. . . . . . . . . . . . . . . 22

3.7 Unlike red-black partitioning, Multi-colour Partitioning applies to problems

where exclusive access constraint includes diagonal cells. . . . . . . . . . . . . 23

3.8 Speedup values are highly dependent on partition size. No single partition size

will be optimal for all input and core counts. Black ticks indicate partition

sizes required to give each core 8 partitions. . . . . . . . . . . . . . . . . . . . 25

3.9 Histogram of experimental data points under partition refinement. In most

experiments partition refinement performs very closely to the optimal config-

uration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10 Summary of improvement of dynamic partition refinement over static parti-

tioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.11 Activity graph of Mandlebrot viewer with default OpenMP partitioning . . . 29

3.12 Average completion time for each run. Time measured in ms . . . . . . . . . 29

3.13 Mandlebrot fractal. For each run, the screened was centred on one of the

circles and zoomed in repeatedly 50 times, each time magnifying the area 10% 30

3.14 Performance of the Partition Refinement Algorithm and fixed partition sizes

over successive frames. Each graph is for one of the 5 zoom points of interest. 31

viii



Chapter 1

Introduction

1.1 Purpose

In the early 2000’s, something interesting happened in the world of computing. Processors

stopped getting faster. This did not invalidate Moore’s Law [37], which only states that the

number of transistors on a chip will double every 18 months; and says nothing about the

speed at which the chips will operate at.

From the 1970’s to the early 2000’s computers were getting faster for two reasons. The

first being that smaller transistors allowed for faster switching frequencies as the transistors

could be packed more tightly together. The second reason is that the extra transistors were

used to support enhanced features such as additional instructions (e.g. floating point, SSE,

MMX), branch predictors, out of order execution units, and increased caches. Unfortunately,

both of these pathways to faster computing had limits.

For frequency scaling this limit was set by the laws of physics. As transistors became

smaller, electrons had an easier time to leak out of the circuit. Trying to increase the voltage

to combat the issue would only accelerate the process and cause the chip to melt.

On the other hand, using transistors to support extra features has diminishing returns.

Caches for example do not do any computation, they only allow faster access to data.

For computations that already fit into cache, adding more will not help. Moreover, branch

predictors and out of order execution are only effective over very small time windows. Lastly,

creating new hardware instructions will only benefit the programs that can make use of those

instructions. As the instructions become more specialized, so do the programs that make

use of them.

1
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Scaling of single core performance gave everyone a free lunch [43] for a long time. One

would simply have to wait for about a year and receive an automatic doubling of performance

without needing to change a single line of code. This all stopped in the early 2000’s.

However, manufactures were prepared for this and the age of multicore computing was

born. Moore’s Law still holds to this day, but instead of having higher transistor density

lead to increased single core performance scaling, we now have increasing core counts.

However, increasing core counts does not automatically lead to increased program per-

formance. Programs now need to be re-factored to take advantage of these additional cores.

Yet, merely writing a program to be parallel is not sufficient. Effects such as scheduling

and contention often prevent a program from making full use of the computational resources

available. In the worst case, parallelizing a program can even result in much slower execution

than if it was not parallelized.

Performance debugging of parallel programs is a difficult process. The purpose of this

thesis is to provide insight into parallel performance debugging and provide a systematic

way of analyzing performance.

1.2 Overview

As parallel computing becomes more and more prevalent, proper diagnosis of scalability

problems in parallel programs becomes increasingly important. In the recent literature,

limiting factors to parallel performance are often deduced based on aggregate and general

metrics such as overall speedup, rather than being concretely identified and measured [4, 45,

44, 28, 11, 16, 18, 23, 27, 5, 30, 24, 19, 33]. There is a lack of formal mechanisms for this type

of performance analysis and a corresponding lack of automatic tools to aid programmers.

Our experience in tuning parallel performance led us to derive several intuitive perfor-

mance factors that are common to most parallel programs, and the corresponding hierar-

chical framework to organize these factors. In this work, we present a method for decom-

posing the program overhead according to these factors and demonstrate, using multiple

case studies, how this decomposition method helped us identify performance bugs and im-

prove performance of three PARSEC [8] applications by 6-20× on a 24 core AMD Opteron

platform. Our work lays the foundation for more effective organization and visualization of

profiling data in performance tuning tools.
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Figure 1.1: Performance profile of Swaptions from 1 - 24 cores for sim medium input. (a)
Factor decomposition (b) Speedup chart

At the top of our hierarchy are three key factors: Work (time spent on ‘useful’ instruc-

tions), Distribution (the overhead of distributing work to processors and any load imbalance

or idleness), and Delay (the slow-down due to contention, or cpu resources spent on ‘non-

useful’ instructions such as failed transactions). These three factors are aggregate values

and can be decomposed into finer-grained factors, as will be shown in in Section 2.1.

A concrete preview of applying the framework can be found in Figure 1.1(a), which shows

the breakdown of the performance factors for the Swaptions program in the PARSEC 2.1

suite [8]. The performance factors we chose account for the entire execution time of the

program, so charts such as Figure 1.1(a) succinctly summarize program behaviour as the

number of threads increases. We see that in Swaptions, Distribution constitutes a very

large fraction of the overhead. This breakdown immediately tells us that there are some

inefficiencies in how the work is distributed among the cores. Analyzing work distribution

lets us quickly pin-point the problem: load imbalance. Compare this to a typical speedup

chart such as in Figure 1.1(b) which does show a scaling issue, but does not immediately

tell us where to look. Addressing the load imbalance reduced the Distribution factor and

improved performance of Swaptions by as much as a factor of six. This process and the

results are detailed in Section 3.1.

The primary contributions of our work can be summarized as follows:
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• Elicitation of key performance factors contributing to scalability issues in parallel

programs.

• A new framework for hierarchically organizing these factors. The hierarchical orga-

nization is critical as it allows the inference of some factors when they cannot be

measured directly.

• Case studies showing the framework applied to parallel scalability issues that led us

to improve performance of PARSEC benchmarks by as much as 20 times in one case.

• Design and implementation of an automatic tuning algorithm Partition Refinement

that dynamically selects the best partition size in a data-parallel program based on

the measurements supplied by the framework.

1.3 Objective

This work is intended to provided insight on how to view parallel performance. In this paper

we provide a categorization framework and an algorithm for on-line performance tuning.

However, the primary idea that this work attempts to convey is that a holistic approach is

required when analyzing parallel programs. Focusing on just one aspect, e.g. minimizing

lock contention, creates a perspective which ignores other possible performance issues. By

putting all possible parallel performance factors into a single framework, it becomes easier to

create quantifiable metrics that were perviously incomparable. For example, how does the

cost of the number of lock acquisitions compare to the time waiting at a barrier? However,

with this new frame work, we can now make cost comparisons between arbitrary metrics

such as locks and scheduling overhead. This is done by creating a common denominator

for performance. Moreover, this comparison can be done between varying core counts and

allows for new ways of analyzing performance data.

We outline the methodology required to instrument the high level performance factors.

We do not provide a magic bullet to fix performance problems. Moreover, we do not provide

a method to measure each individual factor. As we will discover later, not all performance

factors can be measured directly and need to be inferred. Low level hardware factors will

remain a challenge, but we will demonstrate that even with limited knowledge that practical

algorithms can be developed. Like all academic work, this is still a work in progress, but

we hope to show that this is a step in the right direction.
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1.4 Organization

The rest of the thesis is organized as follows. Section 2.1 presents the performance factors

and the framework. Section 2.2 introduces visual representation of performance factors

and explains their hierarchical composition. Section 2.3 explains what changes must be

made to a parallel program or runtime library in order to categorize the overhead according

to the framework. Sections 3.1-3.3 present case studies. Section 3.3 also presents the

partition refinement algorithm. Section 4 discusses related work and Section 5 presents our

conclusions.



Chapter 2

Framework

2.1 Factors of Parallel Performance Overhead

NUMA

Parallel Performance Factors

Work Delay Work 
Distribution

Software Hardware Scheduling 
Overhead

Load 
imbalance Serialization

Locks Transactions Cache Memory 
Subsystems Hyperthreading

Figure 2.1: Deconstruction Framework

The premise underlying the overhead decomposition method is that most parallel pro-

grams spend their time in one of the following states: doing actual work, scheduling activities

(both scheduling and waiting for work), and resource competition. This leads to the highest

level categories of our performance factor hierarchy which are as follows:

6
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Work: cycles spent on executing the actual logic of the program; and is the same as

the number of cycles the program would execute in a pure serial implementation.

Distribution: cycles spent on distributing the work across processors or waiting for

work when none is available.

Delay: Cycles wasted when the components of the program that run in parallel

compete for resources. The resources can be software-constructed (e.g., locks) or can

be actual hardware resources (e.g., caches, memory controllers, etc.). These can also

be cycles wasted on superfluous calculations such as a failed transaction.

Figure 2.1 expands on these factors for deconstructing overhead and we now elaborate

on the factors comprising Distribution and Delay.

2.1.1 Distribution

Distribution is the process of dealing work to processors, rebalancing the work when needed,

and waiting for its completion. These tasks are usually performed by a parallel runtime sys-

tem such as OpenMP [15], Intel TBB, Cilk [9] or Map/Reduce [17]), which are responsible for

creating and mapping tasks or threads to processors, pre-empting processors when needed,

and supplying work to idle processors. These scheduling actions can add to the runtime of

the program. They are identified in our framework as Scheduling Overhead.

Serial sections in the algorithm will affect parallel speedup, so it is crucial for the pro-

grammer to be aware of them. This overhead is labeled in our framework as Serialization.

If the scheduler assigns work such that some processors are working while others are

idle, performance of the parallel program may suffer. In that case, it is important to know

about the number of cycles that are unnecessarily idle when work is available. We refer to

this class of overhead as Load Imbalance.

Serialization and Load Imbalance have a high degree of similarity as they both manifest

as idle time on some processors while others are doing work, but it is important that

they be separated as each requires a different class of remedies. Serialization overhead

dictates changes to the algorithm to produce more parallelism. Load Imbalance can often

be addressed entirely by the scheduler, without changing the underlying algorithm, through

better distribution of work.
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2.1.2 Delay

When work is performed in parallel, performance may be limited by availability of hardware

and software resources. When tasks or threads compete for these resources they are unable

to make as much progress as when they are running in isolation and so parallel scalability

is limited.

Delay in our framework is subdivided into two components: Software and Hardware.

Software delay accounts for time spent waiting on synchronization primitives (e.g., locks)

or re-executing aborted software transactions. Hardware Delay accounts for cycles wasted on

contention for resources such as the processor pipeline in hyperthreaded processors, shared

caches when the cache miss rate increases because the data is evicted by another core, or

other memory subsystem components, such as memory buses, memory controllers, system

request queues or hardware pre-fetchers [47].

There can be some ambiguity in distinguishing locking overhead from serialization as

serial regions would need to be protected by locks. The distinctions would run along a

continuum where long held locks would clearly represent serialization, and short held locks

would primarily be classified as locking overhead. However, it is important that for account-

ing purposes that the cycles of a particular region are only counted to one category in order

to maintain the hierarchy.

The category Memory subsystem also includes the memory access overhead and commu-

nication latencies on systems with non-uniform memory (NUMA) hierarchies. On NUMA

systems the latency of data exchange depends on relative locations of the cores involved in

the exchange. Furthermore, accesses to a remote memory node take more time than local

accesses.

2.2 Visual Representation of Performance Factors

Before we explain how we measured the performance factors introduced in the previous

section and how we used the resulting analysis to track scalability issues, we introduce the

concept of an activity graph, which visually demonstrates how the running time is subdivided

according to various components of the program.

Figure 2.2 shows an example of an activity graph. The y-axis denotes time and the

x-axis shows the physical cores running the application. Colour-coded blocks show how the

running time is subdivided between Application logic, Scheduling, and Idleness. Application
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Figure 2.2: Activity Graph example

logic in this context corresponds to the combined Work and Delay factor as the application

logic may be slowed down due to contention. Scheduling corresponds to the Scheduling

overhead factor in the Distribution category, and idleness corresponds to Load Imbalance

(also in the Distribution category).

The total time accounted by the activity graph, Ttotal, is:

Ttotal = Tp × P (2.1)

Where Tp is the absolute start to finish time of the application and P is the number of cores.

Each of the performance factors in the framework accounts for the fraction of Ttotal, and so

we naturally have the following relationship:

Work +Delay +Distribution = 100% (2.2)

The real benefit of expressing each of these performance factors as a fraction of Ttotal is it

creates a standard metric. Using this standard metric allows us to make performance and

overhead comparisons between different platforms, implementations, program regions, and

core counts. It also allows for the direct comparison between different sources of parallel

overhead.

Ideally, we would like to see very little idle and scheduling time on an activity graph.

The portion that these two components cover the activity graph constitutes the Distribution

factor of the parallel run time and is calculated as:

Distribution =
Scheduling + Idle

Tp × P
(2.3)
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(a) Serial DFS (b) Parallel DFS

Figure 2.3: Example showing how a parallel depth first search could execute less code by
finding an early termination condition. Nodes checked are highlighted black. Target node
in red.

As mentioned earlier, the Work time is equal to the amount of time that application

would take to run serially, and therefore the Work factor is:

Work =
Ts

Tp × P
(2.4)

Where Ts is the serial run time.

Likewise, the Delay component can be computed by taking the difference between the

sum of the Application logic in the parallel and serial executions. Alternatively, any one of

these three components can be inferred if the other two are known since the sum of all three

must add to 100%. This rule generalizes to all levels of the hierarchical framework. The

overheads represented by a set of sibling nodes add up to the overheads represented by their

parent. For instance, Scheduling Overhead, Load Imbalance and Serialization must add up

to the overhead accounted by Distribution. The identification of these subcomponents in

some cases can be done with the use of finer grained labelling in the activity graph. In other

cases such as distinguishing cache contention from memory controller contention, heuristic

measures would currently need to be used. However, the use of a hierarchical system allows

us to place bounds on how much those factors are limiting scalability of the program. These

complexities are explained further in Section 2.3

Before concluding this section, we bring up two important points about negative delay

and super-linear speedup.

An interesting characteristic of Delay is that it can be negative under some circum-

stances. The parallel version may execute less code by finding an early exit condition as

with the parallel depth first search as seen in figure 2.3. Properties of hardware may also

produce this effect as when cores that share the same cache exhibit a cooperating behaviour

by sharing data or when the application is too large to fit in a single CPU’s cache but is

small enough to fit into the aggregate cache of multiple CPU’s.
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If the Delay is negative but the Distribution is zero, then the Work must be greater

than one. A Work greater than one indicates that super-linear speedup occurred. However,

having negative delay does not guarantee super-linear performance as the performance gain

can be offset by performance loss of Distribution. This highlights the need for fine-grained

performance factors. It is possible that an application may exhibit P times improvement

on P cores, but be capable of having a greater than P times improvement; a situation that

would be undetectable without looking for cases such as negative Delay.

2.3 Implementation

In this section we describe how to measure and categorize the overhead according to the

framework in a practical implementation. Some of the overhead sources, especially those

induced by the software, can be measured directly. Those stemming from the hardware are

difficult to measure directly on modern systems and thus need to be inferred.

2.3.1 Measuring software-induced overhead

Measuring overhead related to software (Distribution and Software Delay) is relatively sim-

ple. The software needs to be instrumented to measure the timings of all program compo-

nents (functions) that define the boundaries of various performance factors related to work

distribution and software contention: e.g., Scheduling Overhead, Load Imbalance, etc.

Load Imbalance and Serialization can be measured by counting the cycles when a core

is idle (and not waiting on synchronization primitives) while another core (or cores) are

busy doing work1. Distinguishing between Load Imbalance and Serialization is tricky, as

they both show up as processor idle cycles while a thread is either busy-waiting or sleeping.

The way to address this issue is to label the idle cycles as Load Imbalance or Serialization

depending on how the parallel work is generated in a given section of code. For example, in

the parallel section of code created from a parallel-for loop in OpenMP or a map directive

in a Map/Reduce framework, idle cycles would be labeled as Load Imbalance, because there

is a high probability (although not always) that the idle cycles could be created by inef-

ficient distribution of work by the schedulers. For instance, when scheduling data-parallel

operations, if the scheduler gives an equal number of work items to each processor, but the

1We assume that the program is not I/O-bound.



CHAPTER 2. FRAMEWORK 12

amount of computation per work item is not fixed or if some processors are running slower

than others due to system asymmetry, some processors will end up being idle while others

are doing work. In that case, work must be re-distributed, as is commonly done in Map/Re-

duce frameworks. Labelling these idle cycles as Load Imbalance will signal the programmer

(or the auto-tuning algorithm) that it the parameters affecting work distribution may need

to be altered.

The easiest way to implement the overhead profiling and categorization is inside a par-

allel runtime, where parallelism is extracted automatically by the parallelizing runtime or

compiler. In this case, parallelism is harvested by way of directives in the serial code (e.g.,

parallel-for in OpenMP) or by explicitly invoking the interfaces that assist in parallelization

(e.g., in Intel TBB). This gives us a very clear separation of application code (code required

in a serial implementation) from parallel library code. For categorization of paralleliza-

tion overheads, it is relatively easy for the developer implementing the library to add the

instrumentation and labelling according to the desired categories.

When parallelization is performed directly by the programmer using low-level tools such

as pthreads, instrumentation could be inserted automatically, by typical profiling tools or

by a binary instrumentation tool such as Pin. The programmer, however, needs to provide a

mapping between a function name and the overhead type. This can be a cumbersome process

and relies on the programmer to correctly distinguishing, so our hope is that the proposed

overhead-deconstruction framework will be primarily implemented de facto in massively

emerging parallel programs and frameworks, as opposed to added to existing programs as

an afterthought.

Identifying synchronization-contention overhead deserves special discussion. Overall, it

is trivial to measure the time spent while waiting on locks, barriers or other synchronization

primitives. It is worth noting, however, that some of that overhead comes from the hardware,

such as coherence protocol latency when multiple cores are using the lock. However, for the

purposes of fixing scalability issues it is more convenient to classify this overhead as Lock

Contention as opposed to Hardware, and so we treat it as such.

Another interesting point related to synchronization is how to treat busy-waiting and

blocking. In the implementation of synchronization primitives, blocking is sometimes used

to give up the processor when waiting for the primitive takes too long. While blocking is

definitely a part of lock contention, it is also arguably a part of scheduling, as effectively

argued in the work by Johnson [31]. Essentially, the action of giving up the processor to
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make way for other threads is a scheduling activity, and it may be more convenient, for

performance debugging purposes, to treat it as such. This is what we chose to do in our

framework, and so processor-idle cycles occurring because a thread blocks on a lock show

up as Load Imbalance.

The key take-away from this section is that all performance factors induced by software

can be measured directly by automatic or manual instrumentation. Next we discuss how to

infer hardware-related overheads.

2.3.2 Inferring hardware-related overheads

Hardware overheads are difficult to quantify, because the additional cycles that they generate

cannot be measured directly. Despite hundreds of hardware performance events available for

monitoring on modern processors, it is very difficult to determine precisely how many cycles

are being wasted due to contention for caches or other hardware in the memory system.

Performance modelling can be used to estimate hardware-related overhead, as was done

in [42], but given complexity of a typical system no model can be completely accurate.

We observe that hardware contention related to parallelization will show up as the

increase in the time attributed to the total Delay factor. If both total delay and software

delay factors are known, then the hardware overhead is simply the difference between the

two. However, to compute the total delay, we must know the values of Work factor and

Distribution factor. Since theDistribution factor is entirely software related, we can compute

this value. And the Work factor is the serial time divided by Ttotal (time parallel × number

of cores). We can therefore infer the hardware contention portion.

Although this implies that Hardware overhead cannot be measured precisely without

having a serial execution time as a reference point, this does not discount implementation of

auto-tuning algorithms for “online” scenarios where this reference point is hard to obtain.

For long-running parallel programs that iteratively execute parallel sections many times (e.g.,

animation, simulation, image analysis and many others), the runtime system can search the

parameter configuration space by varying their settings and observing how they affect the

changes in the Hardware overhead. Recent work has shown that after enough repetitions,

we are statistically likely to arrive at the optimal configuration with a high probability [40].
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2.3.3 Our implementation

In order to perform our evaluations of this model, we were required to hand instrument

the timing events into the code base. This process is simple for programs which spawn one

worker thread per core as the chance of a thread being pre-empted by the OS is low. If a

thread were to be interrupted while a timer is running, then the time the thread was spent

suspended would also need to be taken into account. We instrumented selected benchmarks

from PARSEC suite that fit the one-worker-per-core model. For our timing implementation,

we measured the duration of each code segment which would also have been required to be

in the serial implementation. The time accumulated by all these code segments would equal

Work + Delay. Since Work is the serial completion time, we can infer both the Distribution

and Delay components with the given timing information. The program completion time

is measured as the time to complete the Region of Interest (ROI) [8], i.e. the main parallel

region of the benchmark. All benchmarks were averaged over 5 runs. The overhead induced

by the added timing code was less than standard deviation of the run, unless otherwise

noted.

Sections 3.1-3.3 will show how deconstructing parallel performance overheads even at a

coarse level can provide valuable insight into program behaviour. Sections 3.1 and 3.2 will

show how the factor analysis can be used in “manual” performance debugging. Section 3.3

will show how it can be used to implement an algorithm that automatically chooses the best

program configuration parameters based on repeated measurement.



Chapter 3

Case Studies

In this section we examine benchmarks taken primarily form the PARSEC [8] suite. PAR-

SEC is a collection of parallel applications meant to represent a diverse class of modern

parallel applications. The suite is approximately 5 years old and has close to a thousand

citations. We instrumented a large portion of the applications to calculate the overheads

represented by our framework. In cases where our frame work clearly identified a scaling

problem, we used our overhead factor analysis to resolve scaling issues.

Additionally, we use measurements of scheduling factors taken on-line to create an on-

line scheduling algorithm to dynamically adapt to the trade offs between load imbalance

and scheduling overhead. This is demonstrated on a modified version of the Fluidanimate

benchmark taken from PARSEC and a fractal [12] generation program.

3.1 Load Imbalance in Swaptions

Our first case study looks at how the framework helps us manually tune the Swaptions

benchmark from the PARSEC [8] suite. In this benchmark, Monte Carlo simulations are

used to price swaptions in a financial portfolio. The only synchronization mechanism for the

program is locks. Running a large simulation with 8 cores requires only 23 lock acquisitions

in total [8]. This program scales well with a small number of cores. However, with a

larger number, the parallel performance suffers greatly; obtaining only about a 3.5 times

speedup with 24 cores on the large input set. As the only synchronization in the program

is locks, a programmer may naively conclude that the poor parallel performance is due to

lock contention. However, by looking at the parallel factor analysis (top half of figure 3.1)

15
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Figure 3.1: Breakdown of overhead in Swaptions according to performance factors: original
pthread implementation (top) and the improved load-balanced implementation (bottom)

we see that poor scalability is mostly a Distribution issue.

If fine-granular timing information were incorporated into the parallel runtime environ-

ment (pthreads, in this case), then we would be able to automatically derive how much of

the distribution factor was due to overhead, serialization or imbalance. Even without this

detailed breakdown, analyzing the swaptions activity graph (Figure 3.2) tells us that the

work is not being distributed evenly amongst the cores. Taking advantage of our knowledge

that there is no sizeable serial region in this program, we conclude that the culprit is load

imbalance, and looking at the code that is responsible for distributing chunks of work in the

pthread implementation, we see why the load imbalance is occurring.
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Figure 3.2: Swaptions activity graph showing load imbalance of original pthread implemen-
tation

int chunksize = items/nThreads;

int beg = tid*chunksize;

int end = (tid+1)*chunksize;

if (tid == nThreads -1 )

end = items;

for(int i=beg; i < end; i++) {

...

}

What the code attempts to do is evenly distribute N swaptions to P threads by picking a

chunk size N/P and giving each thread N/P swaptions to compute. The very last thread

handles any odd swaptions left over. This works fine if there is a large number of swaptions

and a few cores, but that is not the case for this benchmark. For example, the simmedium

input set contains only 32 swaptions. If there were 16 threads, each thread would compute

two swaptions each and so the work would be evenly distributed among threads. But if

there were, for instance 17 threads, the first 16 would compute one swaption and the 17th

thread would compute the remaining 16, resulting in a very large load imbalance. Fixing

this imbalance and distributing work more evenly across the threads (as shown the top part
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of the figure) improves performance by as much as a factor of six in some cases.

This same load imbalance issue was also discovered in the work of Thread Reinforcer [39],

however that discovery was made with manual inspection and was not the result of the

Thread Reinforcer algorithm itself. In contract, our methodology clearly identified a schedul-

ing issue from the very start.

As we fix work distribution issues to improve concurrency, the performance impact of

contention starts to become the dominant factor. In the unmodified pthread implementation

with 24 cores and using the large input set, Delay contributed only 3% of performance issues

and Work Distribution contributed 83%. However, after the performance fix Delay is now

the larger factor at 19% and Work Distribution is reduced to 16%.

This was a relatively straight forward performance bug that could also have easily been

identified through other means such as measuring CPU utilization per threads. Next we

will see an example where measuring CPU usage or function times cannot help diagnose the

performance issue.

3.2 Inefficient Barrier Implementation
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Figure 3.3: Parallel performance decomposition of Streamcluster with simlarge, simmedium,
and simsmall inputs
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Streamcluster is a data-mining application from the PARSEC benchmark suite. We

observed that this particular benchmark had very poor scaling when run on a large number

of cores and that parallel performance gains were only realized when using a very large input.

Previous work on evaluating the performance of PARSEC note that for Streamcluster, “95%

of compute cycles are spent finding the Euclidean distance between two points” and that

“Scaling is sensitive to memory speeds and bus contention” [6]. However, our analysis

reveals that the performance issue for Streamcluster does not stem from where compute

cycles are being spent, but rather where they are not being spent.

It is immediately apparent from the top part of Figure 3.3 that Distribution is the pri-

mary cause of performance loss. Examining the activity graph of Streamcluster, Figure 3.4,

gives us a further insight and reveals a striking lack of activity, as indicated by the empty

portions of the activity graph. This idleness could indicate either blocking or executing in

the OS, as these cycles would not be captured by our simple user-level implementation.
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Figure 3.4: Activity graph of streamcluster covering a 5 millisecond interval. Visible execu-
tion chunks are associated with calculating a distance cost function (streamcluster.cpp:1036-
1067). Additional execution chunks are present, but are too small to be visible.

Observing that Streamcluster uses barriers for synchronization we suspected that this

may be the cause of the large amounts of inactivity. Code analysis revealed that the pthreads

library uses a yielding implementation of a barrier, where a thread voluntarily gives up the

CPU if it is unable to execute the barrier after initial spinning. Performance begins to suffer

when many successive barriers are used in a short timeframe. As more threads are added to

the system, the time they take to synchronize increases, and it becomes increasingly likely

that a thread will yield after a time-out at the barrier. When a thread yields and resumes,
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it will be delayed in starting the next stage and arrive at the next barrier late, causing the

other threads to spin too long and eventually yield, creating a vicious cycle.

As explained earlier, in our implementation we chose to represent blocking events (even

those resulting from failed synchronization attempts) as Load Imbalance, which falls under

the Distribution factor. Therefore, the inefficiencies associated with excessive yielding on

the barrier show up in Figure 3.3 under the Distribution category.
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Figure 3.5: Performance comparison of pthread barriers and spin barriers in the Stream-
cluster benchmark.

The detrimental effects of pthread barriers on this particular application can be alleviated

by replacing the yielding pthread barriers with a spinning implementation. The code for

the spinning implementation is given in Appendix B. The bottom of Figure 3.3 shows the

improved breakdown of execution time, as the Work factor takes a much larger portion of

time than Distribution and Delay. Figure 3.5(b) shows the performance difference between

the two implementations. The 24-core performance of the simsmall input set represents a

twenty times performance improvement as the pthread implementation is many times slower

than the serial version. Further investigation reveals that the remaining Distribution factor

that appears even with the spin barrier is due to serial sections of the application.

Even though the spin barrier implementation shows tremendous improvements over the
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pthread barrier for this benchmark in this case it is certainly not a solution for all barrier

related problems. If, for example, the number of threads exceeds the number of available

cores, then the performance of a spin barrier can degrade drastically. A dynamic locking

primitive that switches between spinning and blocking implementation depending on the

number of runnable threads has been proposed by Johnson [31] and could be used in this

case.

3.3 Partition Refinement

In the previous sections we showed how the performance analysis framework can be used for

the manual tuning of parallel programs. In this section we show how it can be used for au-

tomatic tuning. We incorporate it into an online algorithm to find an optimal configuration

for runtime parameters.

Our partition refinement algorithm addresses the problem of dynamically determining

the right size of a data partition in a data-parallel program. If the data partition is too

small, then the cost of creating and scheduling the tasks is large relative to the execution

time of the task. In other words, we suffer excessive Scheduling Overhead. On the other

hand, if the task is too large, we may find that some processors are idle and unable to steal

work, while others are working on very large tasks. This situation would show up as Load

Imbalance. During the runtime, our tuning algorithm will measure the Scheduling Overhead

compared to the Load imbalance and will dynamically change the size of the data partition

to arrive at the optimal task size.

Since the partition refinement algorithm works by observing the performance factors

and iteratively adjusting the partition size, it is applicable to programs that repeatedly

re-execute data-parallel code sections. The repeated processing pattern occurs often in sim-

ulation algorithms, video games, multimedia and many other interactive and soft-realtime

applications.

Note that even with homogeneous workloads, load balancing is non-trivial. Evenly

dividing a homogeneous workload where each work item requires the same amount of com-

putation across available cores does not necessarily ensure load balancing. Environments

such as NUMA and cores with heterogeneous clock rates can cause load imbalance even

with homogeneous workloads.
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3.3.1 Fluidanimate

To illustrate the algorithm, we use the Fluidanimate benchmark from the PARSEC suite.

This application operates on a 3D grid to simulate an incompressible fluid by modelling

the movements of particles in space. The fluid space is divided into cells, each holding a

maximum of 16 particles.

The cell size is chosen in such a way that the particles in one cell can only influence

the particles in the adjacent cells. If the cells are divided for parallel processing among the

threads, we must make sure to avoid race conditions, as it is possible that some cells could

be modified concurrently. Since each cell has a fixed ‘influence radius’ mutual exclusion

requirements for a cell are predictable from its coordinates alone.

A common technique to deal with the mutual exclusion requirement can be seen in

the pthread implementation of Fluidanimate. The cells of the simulation are divided into

roughly P equal partitions where P is the number of available threads. Cells that lie on

the border of these partitions must be locked before they can be modified. Using locks in

this scenario can severely limit scalability. In Figure 3.6(a) we can see that as we increase

the number of partitions, the percentage of cells that require locking increases to the point

where almost every cell requires a lock.
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(a) red black partitioning (b) Multi-colour partitioning

Figure 3.7: Unlike red-black partitioning, Multi-colour Partitioning applies to problems
where exclusive access constraint includes diagonal cells.

We applied a multi-color partitioning method [1], an extension of red-black partitioning,

which we use to eliminate the locks from the original version included with PARSEC. The

code to implement this feature is listed in Appendix A
Multi-colour partitioning is a variant and generalization of red-black partitioning, ap-

plicable for data in any number of dimensions and with diagonal dependencies of the cells

in the grid. With Multi-colour partitioning, the cells are divided into small partitions with

a minimum size of 2 × 2 × 2 when considering three dimensions; and in general, 2N in N

dimensions. These partitions are then coloured such that no partition is adjacent to an-

other partition with the same colour. The computation is then carried out in a sequence of

stages where each stage processes all the partitions of the same colour. Each colour parti-

tion can be computed independently without any synchronization. In order to satisfy the

exclusive access constraint of all neighbour cells, including diagonal cells, eight colours are

required with 3D grids. Figure 3.7 shows the difference between the red-black colouring and

Multi-colour Partitioning for a 2D grid.

We applied Multi-colour Partitioning to Fluidanimate using OpenMP and the conse-

quent elimination of locks allowed for distribution of work at a finer granularity. The

speedup of parallel regions using Multi-colour Partitioning is shown in Figure 3.6(b). Val-

ues are shown for combined times of Compute Densities and Compute Forces sections of
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the application as Multi-colour Partitioning was not applicable to other regions. These two

sections make up the bulk of the execution time for the benchmark.

As mentioned previously, there is a trade-off between Scheduling Overhead and Load

Imbalance. To highlight this effect, we magnified the possible work imbalance by padding

the simulation space with empty cells. This was done by increasing the simulation space

by a factor of 2 in each dimension, thereby increasing the total number of cells by a fac-

tor of 8. This enlarged simulation space is used for the partition refinement experiments.

Figure 3.8 shows combined speedup values, relative to the serial implementation, of the

Compute Densities and Compute Forces regions of the code over varying partition sizes,

program inputs, and core counts.

We observe that there is not a single fixed partition size that achieves the best speedup

across all core counts and input sizes. The black tick marks on the graph show what partition

size would have been chosen if each stage of the Multi-colour Partitioning had been divided

into 8× P partitions, where P is the number of cores. This value is chosen to demonstrate

that simply dividing the work into some multiple of P cannot find the optimal value across

a wide range of parameters.

3.3.2 Partition Refinement Algorithm

As mentioned previously, we focus on applications that exhibit periodic behaviour. We

are therefore able to take advantage of performance metrics measured in one iteration to

inform what changes need to be made in the next. The two metrics that we are interested

in are Scheduling Overhead and Load Imbalance. If the Scheduling Overhead is large, this

is a signal that the partition size should be increased. On the other hand, if the Load

Imbalance is large then this indicates that partition size should be decreased. However,

these adjustments must be made intelligently in order for the algorithm to converge quickly

and avoid large oscillations.

To satisfy these objectives, we imagine the worst case imbalanced scenario where there

are P cores and N items, but all the work items are assigned to only one core. In order to

rectify the situation, we must, at the very least, divide N items into P partitions. Another

way to perform that operation is to decrease the partition size by a factor of P (assuming

that the partition size is less than or equal to N ). Load Imbalance is, therefore, considered

as a force that decreases the partition size. If there is a maximum imbalance, then the

partition size is reduced by a factor of P. If there is no imbalance, then partition size is not
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reduced. We decrease the partition size in proportion to the measured Load Imbalance as

the fraction of the maximum possible Load Imbalance.

The maximum possible Load Imbalance is simply a function of the number of cores P

and can be computed as follows. Suppose that all work is done by a single core. We can

compute the Work factor by summing the execution of all the work kernels and dividing

it by Ttotal. Assuming that load imbalance is the only cause of overhead, all the execution

time Tp will be used to execute the work kernels (load imbalance shows up as idle time).

So the aggregate time spent in work kernels is simply Tp. The Work factor, in this case,

becomes Tp

Tp×P
, or simply 1

P
. Given our conservative assumption that Load Imbalance is the

only factor besides Work, then the maximum Load Imbalance is (1− 1
P
).

Just as Load Imbalance signals the need for a decrease in the partition size, Scheduling

Overhead signals a need for an increase. The equations below summarize how the partition

size is adjusted depending on the the values of Load Imbalance and Scheduling Overhead :

decrease% = P · LoadImbalance

(1− 1
P
)

(3.1)

increase% = P · Sch.Overhead

(1− 1
P
)

(3.2)

sizenew = sizeold
1 + increase%

1 + decrease%
(3.3)

sizenew = sizeold ·
1 + P · Sch.Overhead

(1− 1
P )

1 + P · LoadImbalance

(1− 1
P )

(3.4)

Simplification yields the formula:

sizenew = sizeold ·
P 2 · Sch.Overhead+ P − 1

P 2 · LoadImbalance+ P − 1
(3.5)

This removes the possibility of dividing by 0 when Load Imbalance is 0, except when the

core count is 1; in which case the partition refinement algorithm would not be needed.

3.3.3 Results

Since the partition refinement algorithm requires an initial partition size, we tried two

different initial starting sizes: the smallest (2x2x2) and the size obtained by dividing the

data into 2× P partitions, where P is the number of cores.
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For both starting configurations, we executed with all given input files and core counts.

These results are compared to the best measured speedup for each input and core config-

uration, which was determined experimentally. The summary of the results is shown as

a histogram in Figure 3.9. For the majority of the input configurations, the partition re-

finement algorithm works well and is able to converge to a value within 10% of the best

achievable performance as measured in Figure 3.8.
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Figure 3.9: Histogram of experimental data points under partition refinement. In most
experiments partition refinement performs very closely to the optimal configuration.

Figure 3.10 summarizes the performance improvements that the partition refinement

algorithm achieves over the implementation that partitions the data statically. We compare

to the two static partitioning scenarios that are used as the baseline for the partition re-

finement algorithm: the smallest possible (small start) and 2 · P . We observe that in most

cases performance improvements are very substantial: 20-80%.

Effective decomposition of profiling measurements into actionable performance factors,

Scheduling Overhead and Load Imbalance in this case, enabled us to quickly isolate performance-

limiting factors and design a simple algorithm that finds the best setting for a tuneable

parameter across many inputs and core counts.
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Figure 3.10: Summary of improvement of dynamic partition refinement over static parti-
tioning.

3.4 Mandlebrot

In this section, we demonstrate another implementation of partition refinement. In the

previous example of fluidanimate, there is a bug in the benchmark implementation that

causes it to recompute the same frame over and over again. We applied the dynamic

partitioning algorithm to fractal generation program in order to how the algorithm can

adapt to changes in workload.

Fractals [36] are recursive mathematical functions that have a striking self-similarity

property. We selected an open source Mandelbrot visualizer [12] found on GitHub and

modified it to use the Partition Refinement Algorithm. The program, parallelized using

OpenMP, allows a user to interactively move and zoom into different areas of the fractal.

This application wouldn’t execute properly on our primary test machine (due to it being

a remote machine with no display) and so we performed this test on an 8 core Intel Xeon

E5405 running at 2GHz. While the reasons for this switch are technical it also serves to

demonstrate that our technique is applicable to a variety of hardware.

Figure 3.11 shows the duration of thread activity and illustrates the imbalance of the

main computational kernel. The parallelization method employed by the original source

code was to partition along the x and y axis and gives each thread an equal chunk of pixels
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Figure 3.11: Activity graph of Mandlebrot viewer with default OpenMP partitioning
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Figure 3.13: Mandlebrot fractal. For each run, the screened was centred on one of the circles
and zoomed in repeatedly 50 times, each time magnifying the area 10%

to calculate. It used openMP as the parallelization framework. However, the execution

time of processing one pixel depends on when the termination condition of the calculation

is reached. The coloured pixels can terminate early in the calculation, whereas the black

pixels run until the threshold of iterations is reached. This differing end time is the reason

for the load imbalance.

To create the benchmark, the user interaction component was removed and instead

would zoom into a given coordinate for a fixed number of iterations. In order to ensure

that this experiment was not biased to a particular region of the fractal, five points of

interest were chosen as zoom targets. These five areas are highlighted in Figure 3.13. The

program zoomed into each area for 50 iterations with a magnification factor of 10%. These

parameters were chosen to produce a realistic usage scenario that had a noticeable variation

in work distribution.

We applied the Partition Refinement Algorithm and gave it the initial starting parameter

of using 1 partition per core. For comparison we used three fixed partition sizes 1, 100 and

the size necessary to give each core a single partition. Each test was repeated 5 times for

each of the 5 zoom points of interest. The average frame completion time across all runs

and zoom point is shown in Figure 3.12. As we can see, using a partition size of 1 or

splitting into equal partitions is not a good choice. The automatic partition refinement and

partition size 100 gives the best results. A space exploration of this application would show
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Figure 3.14: Performance of the Partition Refinement Algorithm and fixed partition sizes
over successive frames. Each graph is for one of the 5 zoom points of interest.

that there is a wide range of partition sizes that will give near optimal results. However,

there are many other variables other than the zoom location that could change the optimal

partition size. Most notably is the number of cores. As seen by the space exploration graph

for fluidanimate in Figure 3.8, the performance curve is also fairly flat for 8 cores, but

peaks sharply when the core count is increased to 24 cores. Another contributing factor

which would change the optimal partition size is the screen resolution which the fractal was

rendered. For this set of experiments, the screen resolution was fixed.

Figure 3.14 shows how the average execution time for each zoom stage varies for the

different points of interest. Each subgraph represents a different point of zoom as depicted

by Figure 3.13. The frame number is on the x axis, while the computation time for the

frame is the y axis. For clarity, the frame times are a running average over 5 frames. Each

colour represents the different partitioning method used.
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Related Work

There is a plethora of profiling tools that allow gathering and examining performance data,

but to the best of our knowledge none of them offers the analysis similar to what we proposed

in this work. Profilers such a gprof [26] can only tell use where a particular program

spends it’s time. More advanced profilers such as Intel’s VTune Amplifier [29] are able to

provider deeper insight by identifying locks that are contested or indicating areas that might

have optimization opportunities. However, these tools are unable to organize the data to

clearly attribute the factors responsible for lost scaling performance. The TAU Parallel

Performance System [41] provides a framework to gather and analyze a large number of

performance metrics. ; however, the framework does not propose a method to manipulate

and organize the data such that performance factors can be clearly identified. Bhattacharjee

and Martonosi [7] propose a method to identify critical threads in an application. Critical

threads are ones which impede the progress of other threads until that thread is complete

with it’s work. This would occur for critical sections and barriers. The idea is that a critical

thread would be given more resources, i.e. power to increase clock rate, in order to complete

faster. However, without considering software and hardware delays, it is difficult to create

an overall context of how much a critical thread is contributing towards parallel performance

loss. Per-thread cycle accounting [22] is a method of quantifying instruction slowdown for

multi application workloads. It worked by measuring the slowdown of instructions of an

application when run with interfering applications. However, this work did not identify

performance defects of the application itself, but rather how the application would slow

down when co-scheduled with another application.

Categorization of performance overhead is not entirely new. In 1994 Crovella and

32
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LeBlanc [14] introduced the concept of lost cycle analysis (LCA) to categorize and account

for aspects of parallel performance loss. Our contribution is the hierarchical organization of

performance factors (the importance of the hierarchical view is described in the following

section), and the definition of the factors that accounts for the realities of modern hardware

and software, which have changed drastically in the intervening decades.

LCA decomposes the execution time into the following components: load imbalance,

insufficient parallelism (serialization), synchronization contention, cache contention, and

resource contention. While these factors are similar to some used in our framework, our

contribution is a complete hierarchical framework that accounts for all sources of work and

overhead and can be thus used as the basis for automatic performance tuning. Completeness

and hierarchical organization are crucial, because not all of the performance factors can be

measured directly, and must be inferred from others. LCA also required completeness,

however, the authors were fortunate enough to work with a platform [20] that allowed for

direct measurement of all hardware delays.

One critical difference is that the hardware used by Crovella and LeBlanc allowed for

direct measurements of slowdown due to hardware. This hardware was much older and

simpler than current hardware. The use of shared caches and competition of shared resources

of modern hardware makes these measurement infeasible.

Moreover, their model does not take into account the additional computational work to

convert a serial workload into a parallel workload. Our observation is that the mere process

of making an application run in parallel can have drastic performance implication. For

example, the pthread implementation of Canneal from the Parsec suit takes an automatic

40% decrease compared to a pure serial implementation. The original serial implementation

of Canneal from Parsec 2.1 used an atomic pointer construct which is only required for the

multithreaded version. We replaced the atomic pointer with regular pointers resulting in a

40% performance difference.

Speedup Stacks [21] is a contemporary paper that identifies the lost scaling performance

using approximately the same categories which we identify. This work exemplifies what what

our framework would like to measure if we had perfect knowledge about the system. Speedup

Stacks was able to directly attribute cycles to fine grained components of the application with

the use of a simulator. Our method is limited in that only some performance categories can

be measured. However, with the use of a hierarchy, we were able to infer other performance

metrics. Furthermore, we demonstrated that the information gathered is sufficient to drive
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an adaptive algorithm which balances synchronization overhead with load imbalance.

Representing all performance factors as the fraction of total time, as is done in our

framework, helps design automatic tuning algorithms, such as partition refinement, that

examine the relative contribution of each factor and tune parameters based on this relation.

Another area of related work includes algorithms that automatically discover the right

configuration parameters for the parallel program. Examples of the more recent work in

this area include Thread Reinforcer [32] and Feedback-Driven Threading [42]. In both cases,

the algorithms aim to find the optimal number of threads in a parallel program, and show

a good example of the kind of optimization that could be built on top of our framework.

The strength of our framework is that it can be used to tune many parameters that are

responsible for various sources of overhead.

A more general approach to parameter tuning is via machine learning. Brewer investi-

gated machine learning techniques that find good configuration parameters for the appli-

cation [10]. Ganapathi, et al. also apply a machine learning technique to tune application

parameters [25]. Ganapathi’s technique reduces a large search space of 4× 107 parameters

down to 1500 random samples, and finds configurations for two programs that are within

1% and 18% of the version optimized by an expert. However, this is still an offline tech-

nique that takes hours. Our factor decomposition framework could be used to further guide

machine learning techniques to reduce the search space and identify the most crucial tuning

parameters.



Chapter 5

Conclusion

Through our experience of finding and fixing scalability bottlenecks in parallel applications,

we discovered that performance debugging can be substantially simplified if profiling mea-

surements are organized according to several intuitive performance factors, common to most

parallel programs. The key performance factors we proposed are Work, Delay and Distri-

bution; each of them is further decomposed into additional sub-factors, forming a hierarchy.

As the key contribution of our work we presented and described this hierarchy.

We further showed how the performance factor analysis can be used in practice for fixing

scalability issues in parallel applications. We discovered and eliminated an inefficient barrier

implementation in one application and improved a work distribution algorithm in another.

These changes led to performance improvements of 6-20×. Finally, to demonstrate how

the framework can be used for automatic performance analysis and tuning, we presented

a partition refinement algorithm that repeatedly compares Scheduling Overhead and Load

Imbalance, the components of Distribution, to balance between the two and obtain the

optimal partition size in data-parallel applications. This algorithm performs 20-80% better,

in most cases, than simple static partitioning and is robust across different inputs and core

counts.

Our hope is that the instrumentation required to measure the proposed performance

factors is incorporated in future parallel libraries, facilitating performance debugging and

enabling proliferation of automatic performance tuning techniques.
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Parallel Partitioner

1 /∗∗
2 ∗ A var i an t o f red black p a r t i t i o n i n g that a l l ows f o r the

3 ∗ p a r a l l e l computation o f non adjacent p a r t i t i o n s .

4 ∗ Par t i t i o n s i z e s must be a minimum of width 2 in a l l

5 ∗ dimensions .

6 ∗ Methods to p roce s s s e r i a l l y , 1D, 2D, and 3D are

7 ∗ provided .

8 ∗/
9

10 #pragma once

11 #i f n d e f P a r a l l e l P a r t i t i o n I t t r H

12 #de f i n e P a r a l l e l P a r t i t i o n I t t r H

13

14 c l a s s P a r a l l e l P a r t i t i o n I t t e r

15 {
16 pub l i c :

17 i n t nz , ny , nx ;

18 void (∗ ke rne l ) ( int , int , i n t ) ;

19

20 // nx , ny , nz are the dimensions o f the g r id

21 // ∗ ke rne l i s a func t i on po in t e r that computes

22 // a s i n g l e x , y , z c e l l .

23 P a r a l l e l P a r t i t i o n I t t e r ( i n t nx , i n t ny , i n t nz ,

24 void (∗ k e r n e l ) ( int , int , i n t ) ) {
25 nx = nx ;

26 ny = ny ;

36
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27 nz = nz ;

28 ke rne l = k e r n e l ;

29 }
30

31 i n l i n e void doLoop ( i n t zmin , i n t zmax , i n t ymin ,

32 i n t ymax , i n t xmin , i n t xmax) {
33 f o r ( i n t i z = zmin ; i z < zmax ; ++i z )

34 f o r ( i n t i y = ymin ; i y < ymax ; ++iy )

35 f o r ( i n t i x = xmin ; i x < xmax ; ++ix )

36 ke rne l ( ix , iy , i z ) ;

37 }
38

39 void p r o c e s s s e r i a l ( )

40 {
41 doLoop (0 , nz , 0 , ny , 0 , nx ) ;

42 }
43

44 i n l i n e void computeMinMaxOfPartition ( i n t ∗ min , i n t ∗ max ,

45 i n t p , i n t s , i n t n) {
46 ∗min = p∗ s ;
47 ∗max = ∗min+s ;

48 i f (∗max > n) {
49 ∗max = n ;

50 }
51 }
52

53 void process 1D ( i n t sz ) {
54 const i n t COLORS = 2 ;

55 f o r ( i n t c = 0 ; c < COLORS; ++c ) {
56 i n t maxPZ = ( nz + sz −1)/ sz ;

57 i n t minPZ = c & 1 ;

58

59 #pragma omp p a r a l l e l f o r schedu le ( dynamic )

60 f o r ( i n t pz = minPZ ; pz < maxPZ ; pz += 2) {
61 i n t minIZ , maxIZ ;

62 computeMinMaxOfPartition(&minIZ , &maxIZ , pz , sz , nz ) ;

63 doLoop (minIZ , maxIZ , 0 , ny , 0 , nx ) ;

64 }
65 }
66 }
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67

68 void process 2D ( i n t sz , i n t sy ) {
69 const i n t COLORS = 4 ;

70 f o r ( i n t c = 0 ; c < COLORS; ++c ) {
71 i n t maxPZ = ( nz + sz − 1)/ sz ;

72 i n t minPZ = c & 1 ;

73 i n t maxPY = (ny + sy − 1)/ sy ;

74 i n t minPY = ( c>>1) & 1 ;

75

76 #pragma omp p a r a l l e l f o r c o l l a p s e (2 ) schedu le ( dynamic )

77 f o r ( i n t pz = minPZ ; pz < maxPZ ; pz += 2) {
78 f o r ( i n t py = minPY ; py < maxPY; py +=2) {
79 i n t minIZ , maxIZ , minIY , maxIY ;

80 computeMinMaxOfPartition(&minIZ , &maxIZ , pz , sz , nz ) ;

81 computeMinMaxOfPartition(&minIY , &maxIY , py , sy , ny ) ;

82 doLoop (minIZ , maxIZ , minIY , maxIY , 0 , nx ) ;

83 }
84 }
85 }
86 }
87

88 void process 3D ( i n t sz , i n t sy , i n t sx ) {
89 const i n t COLORS = 8 ;

90 f o r ( i n t c = 0 ; c < COLORS; ++c ) {
91 i n t maxPZ = ( nz + sz − 1)/ sz ;

92 i n t minPZ = c & 1 ;

93 i n t maxPY = (ny + sy − 1)/ sy ;

94 i n t minPY = ( c>>1) & 1 ;

95 i n t maxPX = (nx + sx − 1)/ sx ;

96 i n t minPX = ( c>>2) & 1 ;

97

98 #pragma omp p a r a l l e l f o r c o l l a p s e (3 ) schedu le ( dynamic )

99 f o r ( i n t pz = minPZ ; pz < maxPZ ; pz += 2) {
100 f o r ( i n t py = minPY ; py < maxPY; py += 2) {
101 f o r ( i n t px = minPX ; px < maxPX; px += 2) {
102 i n t minIZ , maxIZ , minIY , maxIY , minIX , maxIX ;

103 computeMinMaxOfPartition(&minIZ , &maxIZ , pz , sz , nz ) ;

104 computeMinMaxOfPartition(&minIY , &maxIY , py , sy , ny ) ;

105 computeMinMaxOfPartition(&minIX , &maxIX , px , sx , nx ) ;

106 doLoop (minIZ , maxIZ , minIY , maxIY , minIX , maxIX ) ;



APPENDIX A. PARALLEL PARTITIONER 39

107 }
108 }
109 }
110 }
111 }
112

113

114 } ;
115 #end i f



Appendix B

Spin Barrier

1 #i f n d e f SPIN BARRIER H

2 #de f i n e SPIN BARRIER H

3 typede f s t r u c t {
4 // lazy padding

5 v o l a t i l e i n t ready [ 1 6 ] ;

6 v o l a t i l e i n t barNum [ 1 6 ] ;

7 // need to have two b a r r i e r p o s i t i o n s

8 // otherw i s e one thread may race ahead and

9 // increment the ready count again .

10 v o l a t i l e i n t b a r r i e r [ 3 2 ] ;

11 i n t N[ 1 6 ] ;

12 } s p i n b a r r i e r t ;

13

14 void s p i n b a r r i e r i n i t ( s p i n b a r r i e r t ∗ b , i n t n) {
15 b−>ba r r i e r [ 0 ] = 0 ;

16 b−>ba r r i e r [ 1 6 ] = 0 ;

17 b−>ready [ 0 ] = 0 ;

18 b−>barNum [ 0 ] = 0 ;

19 b−>N[ 0 ] = n ;

20

21 }
22

23 void s p i n b a r r i e r w a i t ( s p i n b a r r i e r t ∗ b) {
24 i n t myBarNum = b−>barNum [ 0 ] ∗ 1 6 ;
25 i n t barPos = sync add and f e t ch (&(b−>ready [ 0 ] ) , 1 ) ;

26 i f ( barPos == b−>N[ 0 ] ) {

40
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27 b−>ba r r i e r [ ! ( b−>barNum [ 0 ] ) ∗ 1 6 ] = 0 ;

28 b−>barNum [ 0 ] = ! ( b−>barNum [ 0 ] ) ;

29 b−>ready [ 0 ] = 0 ;

30 sync synch ron i z e ( ) ;

31 b−>ba r r i e r [myBarNum] = 1 ;

32 } e l s e {
33 whi l e (b−>ba r r i e r [myBarNum] == 0 ) ;

34 }
35 }
36 #end i f // SPIN BARRIER H
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