
ALGORITHMS FOR STRUCTURAL VARIATION DISCOVERY

AND PROTEIN-PROTEIN INTERACTION PREDICTION

by

Iman Hajirasouliha

M.Sc., Simon Fraser University, 2007

B.Sc., Sharif University of Technology, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the

School of Computing Science

Faculty of Applied Sciences

c© Iman Hajirasouliha 2012

SIMON FRASER UNIVERSITY

Summer 2012

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for ”Fair Dealing”. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Iman Hajirasouliha

Degree: Doctor of Philosophy

Title of thesis: Algorithms for structural variation discovery and protein-protein

interaction prediction

Examining Committee: Dr. Torsten Moller

Chair

Dr. S. Cenk Sahinalp, Senior Supervisor

Computing Science, Simon Fraser University

Dr. Petra Berenbrink, Supervisor

Computing Science, Simon Fraser University

Dr. Inanc Birol, Supervisor

Bioinformatics group leader, GSC, BC Cancer Agency

Dr. Martin Ester, SFU Examiner

Computing Science, Simon Fraser University

Dr. Eran Halperin, External Examiner

Computer Science, Tel-Aviv University

Date Approved:

ii

lib m-scan5
Typewritten Text
August 1, 2012

Partial Copyright Licence

Abstract

This thesis has two main parts. In the first part, we will give an introduction on human genomic

sequences, next-generation sequencing technologies, the structural differences among genomes of

different individuals, and the 1000 Genomes Project. We will then discuss the problems of finding

novel sequence insertions and mobile element insertions (e.g. Alu elements) in sequenced genomes.

To identify those genomic variations with much higher accuracy than what is currently possible,

we propose to move from the current model of (1) detecting genomic variations in individual next-

generation sequenced (NGS) donor genomes independently, and (2) checking whether two or more

donor genomes, indeed, agree or disagree on the variationswe will call this model the independent

structural variation detection and merging (ISV&M) framework. As an alternative, we propose a

new model in which genomic variation is detected among multiple genomes simultaneously.

The second part of the thesis focuses on a different project which is concerned with gene tree

alignment. The aim is to present the first efficient approach to the problem of determining the inter-

action partners among protein/domain families. This is a hard computational problem, in particular

in the presence of paralogous proteins. We devise a deterministic algorithm which directly max-

imizes the similarity between two leaf labeled trees with edge lengths, obtaining a score-optimal

alignment of the two trees in question.

iii

To Mom, Dad and Nima.

iv

“I’m not going to tell the story the way it happened. I’m going to tell it the way I remember it.”

v

Acknowledgments

I would like to express my utmost gratitude to my senior supervisor, Cenk Sahinalp. His continuous

and unconditional support made my Ph.D. work and studies at SFU extremely joyful and exciting.

I learnt a lot from Cenk during my time at SFU and the time we were visiting schools in Turkey on

his sabbatical leave. Discussions with him not only shaped my research directions and career path,

but also taught me many useful things at a higher schema. I feel incredibly indebted to him.

I have also been very fortunate to work with Evan Eichler and his group during my visits to

University of Washington, and remotely from Vancouver. Evan and his group introduced me to many

important biological problems, and helped me focus on Next Generation Sequencing problems. A

large fraction of the results in the first part of this thesis was obtained through collaborations with

them. Among the people in that group, I would like to especially thank Can Alkan for his continuing

help and support.

Many thanks to Inanc Birol and Petra Berenbrink, my co-supervisors here at SFU for their great

help and numerous insights on different research problems throughout my studies. I would also

like to thank Noga Alon, Colin Collins, Ben Raphael, Anna Lapuk, Stanislav Volik, Sohrab Shah,

Jeffrey M. Kidd, Peter Unrau, Fiona Brinkman, Martin Ester, Funda Ergun, Jens Stoye, Alexander

Schonhuth and Alfonso Valencia, some of the great researchers and scientists whom I had the chance

to talk or collaborate with, during my Ph.D studies. I have benefited a lot from their enlightening

insights and their help.

I was also very grateful to work with a number of great fellow lab members on various projects.

I would especially like to thank Fereydoun Hormozdiari for his great help and enthusiasm. Also,

many thanks to Phuong Dao, Faraz Hach, Rahele Salari, Andrew McPherson, Emre Karakoc, Deniz

Yorukoglu, Marzieh Bakhshi, Ibrahim Numanagic, Farhad Hormozdiari, Lucas Swanson, Reza

Shahidi-Nejad, Kendrik Wang, and Yen-Yi Lin.

I would also like to thank my dear friends, Majid Bagheri, Lisa Brunner, Bradley Coleman,

vi

Hossein Jowhari, Shilo StCyr, Murray Patterson, Robabe Sadr Eshkevari, Kamyar Khodamoradi,

Hamed Yaghoubi, Mohammad Tayebi, Hassan Khosravi, Sara Saghaei, Bamdad Hosseini, Alireza

Ghane, and Amir Hedayaty.

I should thank Eran Halperin for kindly serving as my external examiner, and also Vineet Bafna

who accepted to be an examiner initially.

I acknowledge Natural Sciences and Engineering Research Council of Canada (NSERC) for

supporting my Ph.D. studies with an NSERC Alexander Graham Bell Canada Graduate Scholarships

(CGS-D) and a Michael Smith Foreign Study Supplement scholarship.

Finally, I thank my family for the love and support they gave me in all these years. This thesis

is dedicated to them.

vii

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents viii

List of Tables xi

List of Figures xiii

Preface xviii

1 Next generation-genome sequencing 1
1.1 Mapping short reads onto a reference genome . 5

1.2 Methods for Structural variation discovery and their limitations 8

1.3 Read Pair methods . 9

1.4 Assembly methods (AS) . 15

1.5 Split Read methods . 16

1.6 Integrative models . 17

2 Optimal pooling for a genome re-sequencing experiment 19
2.1 Problem definition and general algorithmic approach 21

viii

2.1.1 The pooling problem . 22

2.2 Methods . 24

2.2.1 The pooling problem under f(Ci,b) =
(Ci,b

2

)
. 24

2.2.2 The balanced pooling problem under f(Ci,b) =
(Ci,b

2

)
. 27

2.2.3 The pooling problem under f(Ci,b) = Ci,b − 1 28

2.2.4 The balanced pooling problem under f(Ci,b) = Ci,b − 1 31

2.3 Results and discussion . 32

2.3.1 Pooling experiments with LSMnC/LSMnS algorithms 33

2.3.2 Pooling experiments with GAHP/GABHP algorithms 36

3 Novel sequence and transposon insertions discovery 43
3.1 Novel sequence insertion discovery . 44

3.1.1 Overview of the NovelSeq pipeline . 44

3.1.2 Methods . 47

3.1.3 Experimental results . 51

3.2 Transposon insertion discovery . 55

3.2.1 The formulation of transposition events 58

3.2.2 Experimental Results . 63

3.2.3 Familial Transmission . 68

4 Handling multiple genomes 73
4.1 Methods . 76

4.1.1 Simultaneous Structural Variation Discovery among Multiple Genomes . . 76

4.1.2 The Algorithmic Formulation of the SSV-MG Problem 77

4.1.3 Hardness of approximating the general SSV-MG problem 78

4.1.4 A simple approximation algorithm for SSV-MG problem 80

4.1.5 A maximum flow-based update for Red-Black Assignment 81

4.1.6 An O(1 + ωmax
ωmin

) approximation algorithm for limited read mapping loci . . 82

4.1.7 Efficient heuristic methods for the SSV-MG problem 85

4.2 Experimental Results . 86

4.2.1 Alu element insertions . 87

4.2.2 Deletions . 90

ix

lib m-scan5
Typewritten Text

5 Identifying pairs of interacting protein partners 93
5.1 Introduction . 93

5.2 Preliminaries and notations . 96

5.3 Methods . 98

5.4 Results . 104

5.5 Discussion . 105

6 Motif counting in protein-protein interaction networks 110
6.1 The Subgraph Counting Algorithm . 114

6.2 Color coding step . 115

6.3 Counting step . 116

6.4 Experimental Results . 118

6.5 Comparing PPI networks w.r.t. normalized treelet distribution 119

7 Conclusion 122

Appendix 125

A Maximum Parsimony SV with Conflict Resolution 125
A.1 Conflicting SV clusters in haploid and diploid genome sequences 125

A.2 Formal definition of the MPSV-CR problem . 127

A.2.1 The MPSV-CR problem is NP-hard . 128

A.3 An approximate solution to the MPSV-CR problem 129

A.4 Structural Variant Prediction with VariationHunter-CR 130

Bibliography 132

x

List of Tables

1.1 The runtime (h:min), percentage of reads, and number of mapping locations reported

(millions) by each aligner method. Note that, in this experience, 1 million paired-

end reads were mapped to the human build36. BWA* only reports a single mapping

location. 7

3.1 This table shows two different result sets depending on the minimum length of the

orphan contigs considered for the merging phase. For both AbySS and EULER con-

tigs, we show the number of orphan contigs that are merged with an OEA contig

(and hence anchored) with an alignment score ≥50. Same locus (table header) indi-

cates the number of orphan contigs with high sequence identity to a novel insertion

sequence detected by fosmids and loci in concordance with the fosmid-based pre-

dictions. Different locus (table header) indicates the number of orphan contigs with

high sequence identity to a novel insertion sequence detected by fosmids but with

loci not in concordance with the fosmid-based predictions. 54

3.2 The comparison of NA18507 orphan contigs with the WGS libraries and the Venter

genome. For different cases, the number of orphan contigs with a high similarity to

each library is given. 57

3.3 In this table we show the precision and recall of our transposon (Alu, NCAI, and

SVA) insertion discovery algorithm on Venter Genome. Our algorithm is run on

simulated short paired-end reads created from the assembled genome [89]. The

comparison is done against the Alu insertions found and validated by [157] using

the full assembled genome. As it can be seen in all the chromosomes that we exper-

imented, impressively our algorithm has a very high recall and precision. 65

3.4 Genome of eight donors studied for Alu insertions. 67

xi

4.1 Summary of the analyzed human genomes . 86

4.2 Comparison of deletions discovered in CEU and YRI trio against validated deletions 92

4.3 NA12878, NA12891 and NA12892 deletions discovered 92

5.1 Evaluation of different scoring schemes. COpt is ’TreeTopology’ in the other figures. 104

6.1 Number of unlabeled tree topologies, and the running time of our algorithm to count

them in the Yeast PPI network. 118

6.2 Number of vertices, edges, and average degree in the PPI networks studied. 118

xii

List of Figures

1.1 An example of paired-end fragment size distribution of the sequenced genome of

NA18507, a Yoruba individual, by the Illumina Genome Analyzer platform. 4

1.2 An example of read lengths of a sequenced E. coli K-12 produced by the 454 plat-

form as was shown in the company website (http://www.454.com/). In this

example, the average read length is 448 bp with a mode read length of 496 bp. . . . 5

1.3 Validated deletions from the 1000 Genomes pilot data [124]. As it can be seen no

method is comprehensive. This figure was presented in [6]. 7

1.4 Signatures for different types of structural variation event such as Deletion, Trans-

poson Insertion, Novel Sequence Insertion, Inversion, Interspersed Duplication and

Tandem Duplication are presented in this figure. 9

1.5 Transposon insertion misleading to a false negative deletion prediction. A discor-

dant paired-end read alignment due to a copy event shows identical pattern with a

discordant paired-end read alignment supporting a deletion event. 14

1.6 Signatures for different types of structural variation event such as Deletion, Trans-

poson Insertion, Novel Sequence Insertion, Inversion, Interspersed Duplication and

Tandem Duplication are presented in this figure. 15

1.7 Split read analysis for different types of variants is shown in the figure. As it can be

seen in the figure, using split reads helps pinpointing the breakpoints more precisely 17

2.1 The cost of ranPool (green) and LSMnC/LSMnS (red) methods with respect to the

number of pools: mean, upper quartile and lower quartile results reported on 5000

independent runs on the lymphoma data set. 34

2.2 The cost of ranPool (green) and LSMnC/LSMnS (red) methods with respect to the

number of pools: mean, upper quartile and lower quartile results reported on 5000

independent runs on the synthetic data set. 35

xiii

2.3 The distribution of cost obtained by ranPool and LSMnC/LSMnS for n = 15 on the

lymphoma data set after 5000 independent runs. 35

2.4 The distribution of cost obtained by ranPool and LSMnC/LSMnS for n = 15 on the

synthetic data set after 5000 independent runs. 36

2.5 The cost of ranPool (green) and GAHP/GABHP (red) methods (d = 3) with respect

to the number of pools: mean, upper quartile and lower quartile results reported on

5000 independent runs on the lymphoma data set. 38

2.6 The cost of ranPool (green) and GAHP/GABHP (red) methods (d = 3) with respect

to the number of pools: mean, upper quartile and lower quartile results reported on

5000 independent runs on the synthetic data set. 39

2.7 the mean value and error bounds of 5000 runs of GAHP (d = 2 and d = 3). 40

2.8 The distribution of hyperedge weights (in log scale) among 5000 BACs in the two

data sets considered. 41

2.9 The cost of LSMnC/LSMnS approach (red) with GAHP/GABHP method (green)

with respect to the number of pools: mean, upper quartile and lower quartile results

reported on 5000 independent runs on both data sets. 42

3.1 In this figure we illustrate the 5 stages of the NovelSeq pipeline. (a) Starts by map-

ping the paired-end reads to the reference genome, and classifies the paired-end

reads to OEA and Orphan reads. (b) Assembles the orphan paired-end reads using

available de novo assemblers, and removes any contigs which are result of con-

tamination. (c) Clusters the OEA reads into groups and finds the insertion locus

supported by each OEA cluster. (d) Assembles the unmapped end-read of paired-

end reads in each OEA cluster (the OEA reads with different orientation of mapping

should be assembled independently). (e) Merges the orphan contigs and OEA con-

tigs to find the locus of each orphan contig insertion. 45

xiv

3.2 This figure illustrates how to reduce the problem of merging the orphan contigs with

OEA contigs (note that each OEA cluster is in fact two contigs with different orien-

tations, which together represent an insertion) into a maximum weighted matching

problem in bipartite graphs. Each orphan contig is represented as a green node and

each pair of OEA contigs (the OEA contigs of end-reads with ′+′ and ′−′ orientation

mapping in the same OEA cluster) are represented as red nodes. The edge weights

are the total alignment suffix/prefix score between the two OEA contigs (different

orientations) and the orphan contigs. 51

3.3 Histogram of the length distribution (log scale) of all ABySS (blue) and EULER

(red) contigs of at least 200bp long. 53

3.4 Venn diagrams depicting pairwise comparisons of novel sequence assemblies gen-

erated by ABySS, EULER, SOAPdenovo [92], and fosmid end-sequences using

phrap. Note that we provide two numbers at the intersections, corresponding to

the numbers of contigs in each set that are almost identical to the contigs in the

reciprocal set. 56

3.5 The set of conditions for each case that suggests a transposition event in which the

transposed segment is copied in direct orientation (Class I). 60

3.6 The set of conditions for each case that suggests a transposition event in which the

transposed segment is copied in inverted orientation (Class II). 61

3.7 The length distribution of true positive and false negative Alu insertion predictions.

Note that all of the Alu consensus sequences used in creating chrN were longer than

250bp. 67

3.8 The Alu insertion loci are shown for the YRI trio in the order of NA18506, NA18507

and NA18508. 69

3.9 The Alu insertion loci are shown for 7 different individuals 70

3.10 Gene overlap analysis. 1437/4342 (33.1%) of predicted Alu insertions map within a

human gene as defined by RefSeq (green arrow). The histogram shows the expected

distribution of gene overlap based on 1000 permutations. 71

xv

3.11 Gene disruptions. The locations of three novel insertions within the coding exons of

PRAMEF4 (chr1:12,864,273-12,864,302), CHI3L2 (chr1:111,573,857-111,573,923),

and PARP4 (chr13:23,907,208-23,807,370) are shown. Unfilled black rectangles

represent the exons (and parts of exons) in the untranslated region (UTR), where

filled rectangles show protein-coding exons. First and third figures are two predicted

Alu insertions mapped within a coding region, while second figure is an insertion in

UTR. 72

3.12 A three-way comparison of novel Alu insertion polymorphisms in the YRI trio:

when they are predicted separately. 72

4.1 A maximum flow solution . 82

4.2 Alu insertion loci prediction and comparison with dbRIP: this figure shows the com-

parison of the Alu predictions made by the ISV&M, SSC and SSC-W algorithms

which match Alu insertion loci reported in dbRIP (true positive control set). The

x-axis represents the number of Alu insertions (with the highest support), while the

y-axis represents the number of these insertions which have a match in dbRIP. . . 89

4.3 (a), (b), and (c) detail the number of common and de novo events in each genome

for ISV&M, SSC and SSC-W methods, respectively for the YRI trio (the top 3000

predictions were considered). 90

5.1 Two isomorphic trees are shown as an example in this figure. The leaves of the

left tree are labeled with a1, a2, a3, a4 while the leaves of the tree on the right are

labeled with b1, b2, b3, b4. A possible mapping between the leaves that respect the

tree topology is (a1, b3), (a2, b4), (a3, b2), (a4, b1). 107

5.2 A gene tree (a), with an isolated node deletion, A5 (b) and a parallel deletion of the

nodes A5 and A6) (c). 107

5.3 Recall and Precision for the heuristic matrix-based approach (MatrixHeuristic, [66])

and the deterministic, tree-topology based approach (TreeTopology = Copt). Base-

line is determined as randomly pairing as many protein domain family members

as possible. Runtimes for MatrixHeuristic and TreeTopology are 730 hours and 1

minute respectively. 108

xvi

5.4 The comparison of our method with the heuristic search method reveals favorable

results for large trees (bottom row), x-axis indicates the size (number of leaves) of

the larger tree of the two trees paired and in particular for large search spaces, that

is for Space ≥11680 where Space is the product of the number of leaves of the two

trees paired. 109

6.1 Normalized treelet distribution of the Yeast PPI network (Red), E.coli (Green) and

H.pylori (Blue) . 120

6.2 Normalized treelet distribution of the Yeast PPI network (Red), E.coli (Green) ,

H.pylori (Blue) and C.elegans (Pink) . 121

A.1 In this figure, two valid clusters V clu1 and V clu2 are in conflict in a haploid genome.126

A.2 Comparison for VariationHunter (Orange), curated result presented in [55] (Green)

, BreakDancer (Blue) [29] and VariationHunter-CR (Red). The x-axis represents

the number of deletion calls predicted by each method, and y-axis is the number of

validated deletions form [75] which is found by each method. Thus, a result which

is able to find more validated calls with less number of total calls is desirable. For

VariationHunter and VariationHunter-CR we give the number of calls and number

of validated deletions found for different support levels (number of paired-end read

supporting them). As it can be seen VariationHunter-CR is given better results than

VariationHunter for all the support levels (the red plot is always on top of the or-

ange plot) and it also outperforms the result of BreakDancer published in [29]. In

addition, VariationHunter-CR also outperformed MoDil’s result published in [87],

however because focus of MoDil is mainly finding medium and small size varia-

tions, we did not include it in this figure. 131

xvii

Preface

High throughput - next generation sequencing (NGS) technologies are reducing the cost and increas-

ing the world-wide capacity for sequence production at an unprecedented rate. These sequencing

technologies have significantly changed how genomics research is conducted. In less than a decade

from the completion of the Human Genome Project, the efficiency of DNA sequencing has increased

by 100,000-fold and large scale projects based on sequencing of 2000 [5] or even 10000 individual

genomes [31] are now possible to study. Although the current next-generation sequencing technolo-

gies offer a very high throughout with an effective cost, they produce much shorter reads compared

to the traditional Sanger sequencing. The NGS reads are typically between 50 to 150bp, and this

makes the analysis of the sequenced genomes very challenging. Genome sequence analysis and in

particular the problems of identifying differences (variations) among individual genomes become

much harder when dealing with short reads, mainly due to the complex, and repetitive nature of

human genomes.

A fraction of genomic sequences translates to functional proteins. The vast majority of cellular

functions are exerted by combinations of interacting proteins and it is a well-known fact that isolated

cellular proteins are less likely to be functional. As a result, ”preservation of functionality” among

proteins and other gene products typically implies ”preservation of interactions” across species. A

major implication of this is that interacting proteins have a tendency to co-evolve, and the evolution-

ary trees behind two interacting protein families can look near-identical. Thus, assessing of two or

more proteins being interaction partners can be done by measuring how similarly they evolve across

related species. Understanding and accurate representations of interacting protein parteners and

protein-protein interaction networks in general contribute to our knowledge of biological functions,

as well as pathological states.

This thesis has two integral parts. The first part is focused on genome sequence analysis, in

particular development of computational methods for structural variation discovery in sequenced

xviii

genomes. We present our effort in developing novel algorithms for identifying deletions, novel se-

quence insertions, transposon insertions, as well as a new combinatorial framework for handling

structural variation discovery in multiple sample genomes. In this part, we also address an ex-

perimental design problem of re-sequencing experiments using the Illumina technology, based on

bacterial artificial chromosome (BAC) clones. The second part of the thesis is, however, focused

on computational problems related to protein interactions and their network. We first present an

efficient approach to the problem of determining the interaction partners among protein/domain

families, in particular in the presence of paralogous proteins. We also discuss topological features

of protein-protein intraction (PPI) networks and present algorithms for comparing PPI networks

among various organisms. Note that, while both parts of the thesis have strong connection to each

other from a methodological point of view, each part investigates different biological problems.

Chapter one is an introduction on genome sequence analysis, which includes an overview of

the human genome, next generation sequencing technologies and short read genomic data. In this

chapter, we also discuss available methods for aligning short reads to the reference genome; typically

the first step of the analysis of sequenced genomes. Later in this chapter, we talk about structural

differences among individual genomes and present some of the methods and techniques for detecting

these differences using short read data with a special focus on Variation Hunter, a combinatorial

method developed earlier in our group. Chapter two is focused on a problem related to efficient

use of next-generation sequencing technologies. Here our aim is to minimize the overlaps between

BAC clones (pieces of a human genome) to be sequenced through the Illumina technology (i.e.

one of the next generation sequencing technologies) so as to minimize potential genome sequence

assembly errors. This work was presented at the ISMB 2008 conference and was published in

[47]. Chapter three is the presentation of our effort in developing new methods for identifying

novel sequence insertions and transposon insertions, using next generatrion sequencing data. In this

chapter, we also present comprehesive experimental results on several whole genome sequencing

data sets. We first presented these results at ISMB 2010 and ISMB-SIG 2010 conferences. This

work was also published in [48, 57, 56]. Chapter four is focused on the CommonLAW package, our

recent development in detecting structural differences among multiple samples simeutaniously. We

also present the result of testing CommonLAW on high-coverage whole genome sequenced mother-

father-child trios, which concludes the first part of this thesis. I presented this work at the RECOMB

2011, while the full paper was published in [58].

The second part of the thesis begins with Chapter five, where we introduce computational

methods for identifying protein interaction parteners. In this chapter, we present our recent work in

xix

designing a novel and efficient algorithm based on the similarities between phylogenetic profile of

potential interactive partners. This work was published in [49]. Chapter six discribes a technique

for enumerating and counting specific subnetworks in protein-protein interaction networks, and uses

that technique to compare protein-protein intraction networks of several organism. We will conclude

each of these chapters by discussing future directions and related open problems. I presented the

ealier version of this work at the ISMB 2008 conference. This work was published in [10].

xx

Chapter 1

Next generation-genome sequencing

Recent years have witnessed an increase in research activity in analysis of human genomes. With the

introduction of next-generation sequencing (NGS) technologies, many groups have conducted ex-

tensive research on detecting genomic variations and their association to human disease. The advent

of next-generation sequencing technologies make it possible to extend the scope of these studies to a

point previously unimaginable as exemplied by the 1000 Genomes Project [5] and other large scale

genome sequencing projects. Thousands of more individual genomes are now being sequenced in

different institutions and genome centers around the world, including samples from patients suffer-

ing from diseases of genomic origins. Individual human genomes are different. Genomic variations

not only include single nucleotide polymorphisms (variants at the single base pair level) or small

indels (insertions or deletions of a few base pairs upto 50bps), but also larger and more complex

events. According to one definition, events of size greater than 50bp are called structural variations

[5]. Several types of structural variation events have been observed in human genomes; events such

as deletions, insertions (e.g. novel sequence insertions), inversions, transpositions (e.g. Alu element

insertions), translocations, or segmental duplications (i.e. duplicated sequences of size greater than

1000bp with sequence similarities of over 90%). The International HapMap Project genotyped 270

human individuals for 3.1 million SNPs [62, 63], and recently the 1000 Genomes Project1 charac-

terized human genetic variation with lower minor allele frequency by sequencing more than 1000

human genomes. In the first published result of the 1000 Genomes Project [5, 124], 15 million SNPs,

1 million short indels and 20,000 structural variants (SVs) were reported in 185 different individ-

ual genomes. Structural variation (SV) events significantly contribute to human genome diversity

1http://www.1000genomes.org

1

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 2

[147, 39, 81, 75, 99, 139, 5, 124]. Many structural variants are associated with genetic diseases such

as psoriasis [52] and Crohn’s disease [98], prompting an increased interest in structural variation

studies in recent years [147, 81, 55, 16, 80, 29, 136, 87, 48, 57, 58, 124]. Structural variation detec-

tion through NGS promises to be one of the key diagnostic tools for cancer and other diseases with

genomic origins [39, 138]. One recent study [85] for example, demonstrates that patient-specific

structural variants identified in blood samples could be used as personalized biomarkers for monitor-

ing tumor progression and responses to cancer therapies. The main potential use of NGS in clinical

applications, however, would be the identification of genomic variants including the structural ones

as recurrent biomarkers in patient subgroups which are scarcely observed in healthy tissues. Some

recent studies on specific cancer types, on the other hand, have not been able to identify recurrent

structural biomarkers (e.g. [30] or [95]). Although it is possible that such genomic signals simply

do not exist in the cancer types studied, a more likely explanation is that the computational tools

used in these studies were not sufficiently accurate to correctly identify and/or prioritize recurrent

structural variants. Thus, it is possible that the road from personalized genomics to personalized

medicine has been rough, partially due to the lack of sufficiently accurate computational tools for

identifying recurrent structural variants among a collection of genomes and transcriptomes. Since

the introduction of the paired-end sequencing of genome fragments, many research groups devel-

oped methods to detect and characterize different types of structural variations using next generation

sequencing. For some of those early work on this topic, please see [81, 75, 86, 16, 55]. Note that all

these works are based on mapping paired-end sequences onto a reference genome, which was intro-

duced a few years earlier in [149, 122, 147]. The focus of the first part of this thesis is algorithmic

methods for identifying structural variation events. In particular, chapter 3, which is the lengthiest

and most involved chapter of the thesis, focuses on two novel frameworks for detecting two classes

of structural variations; novel sequence insertions and transposon insertions. Less methods were

developed to identify these two classes of structural variation events recently, due to the challenges

we will discuss in chapter 3. In the current chapter, we first give an introduction to next generation

sequencing and then present some of the existing powerful algorithms for mapping short reads to a

reference genome. Next, we describe some of the recent techniques for structural variation discov-

ery in sequenced genomes, in more detail. We discuss the main ideas currently being employed in

these methods, and present the strengths of each method. We also argue that ignoring repeat regions

in the genome is not simply an answer to important biological question and focus on methods which

aim to handle repeat regions.

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 3

Next-generation sequenced human genomes The human genome makes up 23 choromosome

pairs and the haploid genome is estimated to have 3 billions base pairs (bp). Each base pair is

from the alphabetA,C,G, T (the first letters of the words adenine, cytosine, guanine, and thymine),

which are the four nucleobases in the nucleic acid of DNA. In 2003, after several years of work on a

large international consortium with a budget of 3 billion dollars, a (near) complete reference genome

as the result of the human genome project became available. The human reference genome contains

sequences mainly from a few individuals. Since then, researchers from all over the world were able

to download and use the reference genome for their studies. Parallel to the public effort by the human

genome project, Celera Corporation (a company led by Craig Venter) aimed to build a complete

reference genome from a pool of individual genomes which included Venter’s own genome. Later in

2007, Venter’s group published the first complete genome of an individual human, his own genome

[89]. The original human genome project generated approximately 30 million reads (500–1000 bps

per read) via Sanger sequencing. Currently, with the advent of the sequencing technologies, as

many as 6 billion reads (50-150bps per read) per run can be produced [146]. The recent Illumina

HiSeq technology is now being used widely and is capable of producing 2 × 100bp paired-end

reads in its High Output mode, and 2x150bp reads in its rapid mode [3]. Earlier Illumina platforms

such as Illumina Genome Analyzer are still being used by the sequencing centers around the globe.

Figure 1 shows the fragment size distribution of paired-end reads of a Yuroba genome which was

sequenced by the Illumina Genome Analyzer platform. Note that Illumina offers several thousand-

fold improvement over Sanger sequencing in terms of cost and the cost is now becoming feasible

for many biological and medical applications. Similarly, the pyrosequencing technology of 454

Life Sciences [96] uses massive parallelization of the sequencing process by the use of microchip

sensors, producing single reads of size approximately 400bp. Figure 1 shows an example of read

length distribution from a 454 GS Junior shotgun sequencing run (E. coli K-12). [1]. ABI solid

is another next generation sequencing technology which produces short color-space reads [2]. The

focus of our report is on data generated by Illumina platforms.

The 1000 Genomes Project An example of a large scale genome analysis project using massive

sequencing data is the 1000 genomes project. The aim of the project is to sequence and create a

fine scale map of genetic variation of 2500 unidentified individual genomes from 25 different pop-

ulations. Similar to the human genome project, the sequences and the results of this study will be

freely and publicly accessible to the community. In the pilot 1000 Genomes Project, 179 unrelated

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 4

Figure 1.1: An example of paired-end fragment size distribution of the sequenced genome of
NA18507, a Yoruba individual, by the Illumina Genome Analyzer platform.

individuals from diverse populations were sequenced to a low coverage using next-generation se-

quencing technologies. In addition, in a study known as the trio project, the genomes of a Yoruba

(from Ibadan, Nigeria) parent-offspring trio and a trio of European ancestry from Utah were each

sequenced to 30X coverage [5]. The pilot project generated a population-scale sequencing data set

(i.e. more than 4.1 Terabases of raw sequences) and reported the location and allele frequency of

approximately 15 million SNPs, 1 million short insertions and deletions and 20,000 structural vari-

ants, the majority of which were previously undescribed [5]. In a separate Nature publication [124],

the results of the 1000 Genomes Project Structural Variation subgroup was presented. In [124], the

authors presented the discovery and validation of structural variation events of greater than 50bp.

They also compared different discovery approaches using sequence data generated from both whole

genome pilot projects and developed a fine-scale map of this variation at the breakpoint level. The

focus of the study was initially on deletions, an SV class often associated with disease and for which

rich control datasets as well as diverse ascertainment approaches exist. Less focus then was placed

on insertions (including novel sequence insertions) and duplications. Specifically, in this study 44

SV discovery callsets (23 deletion, 11 insertion, and 10 duplication callsets) were generated. This

study showed that distinct SV discovery approaches ascertain SVs in a highly complementary fash-

ion, enabling us to exploit evidence from different approaches in an SV analysis framework for

constructing a comprehensive SV discovery set.

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 5

Figure 1.2: An example of read lengths of a sequenced E. coli K-12 produced by the 454 platform
as was shown in the company website (http://www.454.com/). In this example, the average
read length is 448 bp with a mode read length of 496 bp.

1.1 Mapping short reads onto a reference genome

In order to analyse high throughput sequenced genomes, the first step is usually to align the short

read data onto a reference genome. Given the large amount of data, it is very desirable to have

mapping methods that are not only reliable but also efficient in practice. In what follows, we discuss

a few popular mapping algorithms for short read data that are currently being used in genomic

applications.

BWA, Bowtie, and Bowtie2 The BWA [90] mapper works based on backward searching with

Burrows-Wheeler Transform (BWT) and is designed to align short reads onto a reference genome.

BWA is efficient and allows gapped alignments as well as mismatches. Note that the earlier align-

ment algorithms such as MAQ [91] were not able to handle gapped alignments and thus were not

scalable to the newer generation of reads, which are longer. Gapped alignments are particularly

important for aligning longer reads onto a reference genome because the probability of a short indel

is higher in those reads. Furthermore, BWA is more than 10-fold faster than MAQ, while achiev-

ing similar accuracy [90]. The speed is a key issue when dealing with resequencing of hundreds

of individuals. Bowtie [84] and Bowtie2 [83] are other fast and popular alignment tools widely

being used by the community. Bowtie also indexes the genome with a Burrows-Wheeler index for

memory purposes; however, it employs additional heuristics to be executed fast while maintaining a

high sensivity. Note that Bowtie is an ungapped aligner and is the basis for other tools for analysing

RNA-seq such as TopHat [145]: a splice junction mapper for RNA-seq reads, and Cufflinks [125],

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 6

a tool for isoform quantization and transcriptome assembly from RNA-seq reads. Bowtie2 [83] is a

very recent improvement over Bowtie which allows gapped alignments, particularly good for align-

ing Illumina reads of size about 50bp to 100bp. Bowtie2 also uses an index-based approach similar

to Bowtie but employs dynamic programming and benefits from the efficiency of single-instruction

multiple-data (SIMD) of current processors. [83]. Note that earlier developments of short read

aligners such as mrFAST [7] also used SIMD instructions for optimization purposes. mrFAST [7]

and its follow-up mrsFAST [46] were aligners designed in our group to map short reads generated

with the Illumina platform to reference genome assemblies in a fast and memory-efficient manner.

These aligners are the first step of our Structural Variation detection pipeline [55, 48, 57, 58] and,

in addition to the standard SAM format, produce output formats suitable for VariationHunter [55]

and NovelSeq [48], two of our pipelines. In the next section, we describe the core method used in

mrFAST and mrsFAST.

mrFAST and mrsFAST mrFAST, a micro-read Fast Alignment Search Tool, is an efficient gapped

aligner that reports all possible alignment locations of a read onto a limited number of mismatches

and indels (i.e. small insertions and deletions). It currently supports indels up to 8 bp (4 bp deletions

and 4 bp insertions) and outputs all possible alignments of the paired-end reads in the SAM format.

mrFAST was initially designed to count duplicated regions in personal genomes. The additional

features such as discordant and One end anchored (OEA) mapping options make it easier to use

mrFAST for structural variation discovery tools such as VariationHunter [55] and NovelSeq [48].

mrFAST is a seed and extend method and uses a collision-free hash table to index the reference

genome. Due to main memory constraints, mrFAST is not able to store the whole human genome

index and thus partitions the reference genome into smaller contigs; first partitioning along the

reference sequence gaps. Each `-mer of the genome (` ≈ 12) is stored in the hash table. When

mrFAST searches for the possible alignment location of a short read in the seed step, exact matches

of the seed will be selected; this step can be done very quickly using the hash table. In the extend

step, a dynamic programming approach based on the Smith-Waterman algorithm is used to find

mapping locations of each paired-end read with a high sequence similarity, allowing a small edit

distance. For additional optimization, mrFAST utilizes the SSE2 instruction set extensions available

in modern CPUs. Using SSE2, multiple values of the dynamic programming table can be found

with only a single instruction [7]. mrsFAST is a followup of the mrFAST algorithm. This short

read aligner does not allow indels (i.e. only mismatches are allowed) and thus executes faster than

mrFAST. Also, mrsFAST is a short read mapper, which means optimizes cache usage to get a higher

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 7

Read Length: 50 bp (3 errors) ———— Read Length: 75 bp (4 errors)
Time (%) Mapped Mappings (106) Time (%) Mapped Mappings (106)

Bowtie 3:13 92.73 610 NA NA NA
BWA 10:23 93.38 729 59:35:00 90.16 212
Maq 10:05 89.25 458 NA NA NA
mrFAST-CO 9:21 93.39 663 11:32 90.22 193
mrsFAST 1:55 92.91 613 2:00 89.35 177
BWA* 0:15 93.38 < 1 0:25 90.16 < 1

Table 1.1: The runtime (h:min), percentage of reads, and number of mapping locations reported
(millions) by each aligner method. Note that, in this experience, 1 million paired-end reads were
mapped to the human build36. BWA* only reports a single mapping location.

performance. This aligner indexes both the reference genome and the reads, and executes a simple

cache oblivious, all-to-all list comparison algorithm [46]. mrsFAST minimizes the total number of

cache misses. Table 1.1 is from part of a table presented in the mrsFAST paper [46] which compares

the performance of different alignment methods. It shows how different methods perform when

short reads of size 50bp and 75bp are aligned to the human reference genome.

486

4 3250

303

6855 (63%)

3223 (80%)

1772 (33%)

Read-Pair
N=6

Read-Depth
N=4

Split-Read
N=4

Figure 1.3: Validated deletions from the 1000 Genomes pilot data [124]. As it can be seen no method
is comprehensive. This figure was presented in [6].

The main developers of mr and mrsFAST also developed drFAST [54], an aligner for SOLiD

color space reads as well mrFAST-CO [46], which is the cache oblivious extension of mrFAST.

Other popular alignment tools, developed for aligning longer contigs, which used seed and extend

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 8

approach include BLAST [12] and BLAT [74].

1.2 Methods for Structural variation discovery and their limitations

In this section, we give a quick overview of the current structural variation (SV) discovery methods

with a special focus on VariationHunter [55]. Traditionally, SV discovery methods are classified

into four major categories, based on the general approach they use. The approach used in each

category is significantly different from other SV discovery approaches. In this section, we discuss

these categories. Figure 1.3 shows the common and specific deletion events found by methods

from different categories of the 1000 Genomes Project. As it can be seen, none of the methods are

comprehensive. Some groups have recently started working on integrative methods (i.e. discovery

methods which utilize signatures from two or more categories in order to achieve improvements).

At the end of this section, we review the recent integrative methods as well.

• Read Pair (RP) methods: use paired-end sequencing and detect structural variations by the

means of mapping paired-end reads to a reference genome and observing discordant map-

pings.

• Split Read (SP) methods: typically use gapped alignments of single reads to pinpoint the

(near) exact breakpoint of structural variation events. These methods can handle small inser-

tion and deletion events as well.

• Read Depth (RD) methods: use the signature of number of mapped short read in each window

of the reference genome to identify duplication regions or deletion regions in a sequenced

genome.

• Assembly (AS) methods: rely on de novo assembly of the sequenced genomes and compare

the assembled contigs against the reference to identify indels and structural variation events.

• Integrative methods: use sequence signatures from two or more of the above categories (e.g.

RD and RP)

In the following subsections, we discuss the power and limitations of each of the above structural

variation discovery methods, except the Read Depth methods, with a special focus on Read Pair

methods. We also highlight some of the popular methods, in each subsection.

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 9

1.3 Read Pair methods

A large fraction of the available methods for SV discovery employ paired-end sequencing: inserts

from a donor genome (from a tightly controlled length distribution) are read at two ends, which

are later aligned to a reference genome. In [147, 149], a general framework for detecting struc-

tural variation using long paired-end reads was introduced. This framework is based on aligning

the paired-end reads to the reference genome and observing the end-reads (i.e. the two ends of a

read pair) with discordant mapping. The paired-end reads with discordant mapping suggest either

insertion or deletion events or more complex events such as inversion, translocation, transposition,

and duplication. For example, an inversion event can be deduced when one of the two end-reads

of a paired-end read has a different mapping orientation than expected. In the standard library con-

struction of the Illumina platform, in the case of no inversions or duplications, the read that maps to

the proximal location is expected to be in the + strand, where its mate should be mapped to a distal

location in the − strand. However, if the read pair spans an inversion breakpoint, the mapping ori-

entations of the reads will be observed as either ++ or −−. Figure 1.4 shows sequence signatures

of different types of structural variation events. Later in this section, we will give a case study for

different events.

Figure 1.4: Signatures for different types of structural variation event such as Deletion, Transposon
Insertion, Novel Sequence Insertion, Inversion, Interspersed Duplication and Tandem Duplication
are presented in this figure.

With the advent of next-generation sequencing technologies, many groups used this general

framework to identify structural variation in high throughput sequenced genomes. PEmer [80] for

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 10

example, maps each paired-end read to a unique location through the mapping software MAQ [91].

A number of followup studies that employ a similar ”hard clustering” approach [105] including Pin-

del [158] and BreakDancer [29], all focus only on the ”best mapping” of each read, provided by

the mapping software in use. A survey by Medvedev et al.[105] summarizes the basis of decision

making for each of these methods and reports briefly on their performance. A more comprehensive

survey by Alkan et al. [6] reviews the advantages and limitations of different approaches for genome

structural variation discovery and genotyping. These methods typically work well on unique regions

of the human genome. However, they naturally ignore potential multiple alignment locations in re-

peat regions by either picking one arbitrary location among many possibilities or simply avoiding

the use of reads that have multiple mapping locations. As a result they cannot capture structural

variations in repetitive regions of the human genome. In a paper by our group [46], it was demon-

strated that ignoring possible mapping locations of a read may lead to significant loss of accuracy in

structural variation detection. Other striking examples were shown in a recent survey by Treangen

and Salzberg [146], proving that simply ignoring repeats is not an option. Ignoring repeats may

mean that very important biological phenomena are missed [146]. A 2x100bp read provided by

Illumina HiSeq2000 technology maps to more than 180 locations within 6 mismatches or indels.

Picking an arbitrary location among these as the mapping location of a read naturally leads to both

false positives and false negatives in SV discovery. To address the above problem, a number of ”soft

clustering” techniques [55, 7, 87] have been introduced in the past three years. Here, paired-end

reads are mapped to all potential locations - through the use of the mapping algorithms such as mr

and mrs FAST [7, 46] (See Section 1.1 for a more detailed description of these mapping algorithms.)

In soft clustering approaches, paired-end reads can have multiple mapping to the reference genome,

and thus suggest different variations. Each set of the discordant paired-end reads can be indicating

a real structural variation or just be an artifact of the multiple mapping. These clusters of paired-end

reads are denoted as soft-clusters [105]. VariationHunter [55] is one of those soft clustering methods

that aims to resolve repetitive regions of the human genome through a combinatorial optimization

framework for detecting insertion and deletion polymorphisms. Note that prior to the publication of

VariationHunter [55], a probabilistic framework by Lee et al. [86] was presented for detecting struc-

tural variation. In their work a scoring function for each SV was defined, as a weighted sum of (1)

sequence similarity, (2) length of SV and (3) the square of number of paired-end reads supporting

the SV. The scoring function was computed via hill climbing strategy to assign paired-end reads to

SVs [55]. The conducted experiments of [86] was based on capillary sequencing[89], but the frame-

work could be applied to next generation sequenced genomes as well. In [57], a novel algorithm

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 11

for transposon insertion discovery was introduced, while a new computational pipeline, NovelSeq,

for novel sequence insertion discovery was presented in [48]. Both of these methods employ soft

clustering techniques. MoDiL [87], as well as its followup MoGUL [88] evaluate the clusters of

reads that seem to indicate a structural variant using a probabilistic framework, while Hydra [119]

uses heuristics (based on the algorithmic strategies of VariationHunter) to detect structural variant

breakpoints in the mouse genome. MoGUL [88] focuses on finding common insertion and deletion

events in a pool of multiple low coverage sequenced genomes.

In MoGUL [88] a method based on Bayesian networks is suggested to predict common small

and medium size indels in a group of individuals sequenced in low coverage. Although the above

strategies are quite useful in detecting SVs between a donor genome and a reference genome, they

cannot be relied on when the goal is to discover SVs between two or more donor genomes. In the

rest of this section, we first give a short summary of BreakDancer [29], a Read Pair method which

uses best mappings (i.e. hard clustering). Next, we give a detailed presentation of the techniques

used in VariationHunter [55]. We remind the reader that VariationHunter and its followup methods

[55, 57, 48, 58] consider all ambiguous mappings in their core algorithms.

BreakDancer As we mentioned earlier, BreakDancer [29] utilizes only unique mappings pro-

duced by short read aligners such as MAQ [91] or BWA [90]. BreakDancer has two versions:

BreakDancerMax (which was designed for detecting events of size larger than 100bp), and Break-

DancerMini (which was designed for detecting events as small as 10bp and upto 100bp). In what

follows, we briefly review BreakDancerMax. After filtering low quality mappings, BreakDancer-

Max classifies read pair alignments as: Normal, deletion, insertion, inversion, intra-translocation or

inter-translocation. If an insert is not normal, it is called ARP (anomalous read pair) and an SV

event is reported, if at least 2 ARPs are the same genomic location. BreakDancerMax also assigns

confidence scores to each potential event. The probability of having more than the observed number

of inserts in a particular genomic region is given by P (ni ≥ ki), where i is the type of insert, ni is

a Poisson random variable with mean equal to λi (we will shortly show how λi is estimated), and ki
is the number of observed type i inserts in the region. λi is estimated with sNi

G , where s is the size

of the region in which ARPs are anchored, Ni is the total number of ARPs of type i in the dataset,

while G is the length of the reference genome. BreakDancer aims to find statistically significant

SVs. i.e. those events with p < 0.0001

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 12

VariationHunter VariationHunter [55] presents combinatorial algorithms for structural variation

detection using next generation sequencing. The authors of the paper introduced combinatorial

formulations for SV discovery in high-throughput sequenced genomes using next generation data.

Their formulations are based on the Maximum Parsimony principal. The algorithm aims to find the

minimum number of structural variation events such that all mappings which are not normal can be

explained. The authors modeled this problem with a combinatorial optimization problem based on

set cover. While this optimization problem is NP-hard, a O(log n) approximation algorithm was

given to solve this problem efficiently. Note that the initial implementation of VariationHunter was

designed to identify small insertion events, medium size and large deletion events, and inversions

[55]. Later, the VariationHunter method was extended to identify transposon insertions in sequenced

genomes. [57]. Moreover, this work extends the maximum parsimony approach to non-conflicting

maximum parsimony; a new formulation to discard potential events which have conflict with other

structural variation events in the sequenced genome. At the core of the above general strategy is the

computation of the expected distance between mate pairs in the donor genome, which is referred

to as insert size (InsSize). Previous works [147, 81, 86] assume that for all paired-ends, InsSize

is in some range [∆min,∆max] which can be calculated as described in [147]. An alignment of a

paired-end read to reference genome is called concordant [147], if the distance between an aligned

ends of a pair in the reference genome is in the range [∆min,∆max], and both the orientation and

the chromosome the paired-end read is aligned to are “correct”. For instance in Illumina platform

(for other platforms it might be different), a paired-end read is considered to be aligned in “correct”

orientation if the left mate pair is mapped to the “+” strand (which is represented by +), and the

right mate pair is mapped to the “-” strand (which is represented by -). A paired-end read which

has no concordant alignment in reference genome as defined in [147] and later used in [81, 86], is

called a discordant paired-end read (which indicates a possible structural variation). Note that this is

similar to what BreakDancer [29] calls not normal. However, in VariationHunter, these discordant

paired-end reads can have multiple locations in the genome that they can be aligned to with a high

sequence similarity [55]. The algorithms in VariationHunter will obtain a unique alignment for each

discordant paired-end read using a maximum parsimony approach. First, maximal sets of discor-

dant paired-end read mappings such that all of the mappings in each set support the same structural

variation event, are identified as maximal valid clusters. The Maximum Parsimony Structural Vari-

ation (MPSV) problem asks to compute a unique mapping for each discordant paired-end read in

the reference genome such that the total number of implied structural variants (SVs) is minimized.

It can be proved that the MPSV problem is NP-hard and an approximated solution exists, modeling

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 13

the problem with a set cover problem. For the details of the proofs, please see [55]. Note that a

modification of the MPSV problem [55] for discovery of gene fusions using RNA-Seq data was im-

plemented in [102], and later in [103, 104]. As we mentioned earlier, VariationHunter [55, 57] finds

all maximal valid clusters for different types of structural variation events such as small insertions,

deletions, inversions and transposon insertions. For each type, this can be done by an efficient tech-

nique to find all maximal intersecting intervals given a set of intervals in a one-dimensional space.

For details please see [55, 57]. In what follows, we briefly present the clustering rules (i.e. break-

points formula) for different types of structural variations. For full details and related algorithms,

we refer the reader to [55, 57].

• Insertion: A cluster C is a valid cluster supporting insertion events if there exists a locus

(breakpoint) in the reference genome where all of the paired-end read mappings in the cluster

C span it. Also, the length of the insertion must obey a rule (i.e. must be small enough in this

case). More formally:

∃loc,∀APE ∈ C : L(APE) < loc < R(APE) (1.1)

∃InsLen,∀APE ∈ C : ∆min−R(APE)+L(APE) < InsLen < ∆max−R(APE)+L(APE).

(1.2)

Where, in the above equations, ∆min,∆max refer to the minimum and maximum insert size

of the paired-end reads. APE is a paired-end alignment, and L(APE) and R(APE) the left

and right location of the alignment on the reference genome, respectively.

• Deletion: Deletion events have two breakpoints (denoted as Br` and Brr), and Variation-

Huner aims to find those breakpoints approximately. Again, pair-end read alignments must

obey certain rules in order to support a deletion event with breakpoints Br` and Brr on the

genome:

∆min < R`(APE)−Brr +Br` − Lr(APE) < ∆max (1.3)

Where R`(APE) and Lr(APE) are mapping locations of the paired-end read APE on the

genome. Again ,∆min,∆max are the minimum and maximum insert size of the paired-end

read, respectively.

• Transposon insertion: Another important type of structural variation is the transposition event,

where a segment of the genome (formally, a transposon) is copied to another location with a

small divergence. Examples of common transposon events include transpositions of Alu, SVA

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 14

and L1 elements. Most available methods designed to detect structural variation events (e.g.

[147, 81, 75, 16, 86, 87, 55, 29, 136]) were not able to identify transposition events, and their

focus was mainly on the discovery of deletions, insertions, and inversions. A more recent

algorithm, HYDRA, includes simple heuristics to detect transposon insertions [119]. Inter-

estingly, even if the goal of a method is to identify only insertions, deletions and inversions

in a sequenced genome, the presence of the transposition events will cause many false nega-

tive deletion and inversion predictions. Thus, for read pair signature of transposon insertions,

one has to be very careful since the signature can be easily mistaken for a deletion signature.

Figure 1.5 shows an example that a signature for a transposition event can be identical to a

deletion event:

Reference

Donorxx

xx

pe

ape

(a) The presence of a transposon in-
sertion in the donor genome and the
supporting discordant paired-end map-
ping.

Donor

Reference

x

pe

ape

Deletion

(b) The same discordant mapping as
above, however, suggests a large dele-
tion if the annotated repeat element is
not considered.

Figure 1.5: Transposon insertion misleading to a false negative deletion prediction. A discordant
paired-end read alignment due to a copy event shows identical pattern with a discordant paired-end
read alignment supporting a deletion event.

In this thesis, we will study two classes of transposition insertions and present the set of conditions

based on the map locations and orientations of the paired-end alignments. First, we will consider

those events in which the transposed segment is in direct orientation, and present the set of conditions

for all of the four different cases of this class (denoted as Class I). We denote this type of transposi-

tion event by SVCopy(LocL, LocR, LocBrL , LocBrR). This indicates a region being copied is a seg-

ment inside loci [LocL, LocR] (i.e. a substring of region [LocL, LocR]), and it is pasted (copied) to a

locus between LocBrL and LocBrR . We will also study the cases for Class II, where the transposon

is copied in inverted orientation, and we denote the event as SVCopy(LocL, LocR, LocBrL , LocBrR).

In chapter 3, we discuss our formulation and methods for identifying transposition insertion, in more

detail.

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 15

1.4 Assembly methods (AS)

Using de novo assembly of sequenced genomes is another way of identifying structural variation

events. The basic idea is to collect all reads and use an available assembly software to assemble the

read into contigs/scaffolds. By aligning larger contigs to the reference genome, structural variation

events may be identified. Velvet [160], EULER [115, 27, 28], ABySS [134, 23], Cortex [64], SOAP-

denovo [92], ALLPATHS-LG [25] are among notable de novo assembly algorithms. Note that most

of these assembly algorithms are based on de Bruijn graphs. They further divide reads into k-mers,

and build a de Bruijn graph on all the k-mers (i.e. for each k-mer, these is a node in the graph).

Each two k-mers which share a suffix-prefix of size k − 1 are connected via an edge [115]. After

an error correction step, these methods use various heuristics to find correct Eulerian-type paths in

the de Bruijn graph. Figure 1.6 shows the general framework of how assembled contigs help iden-

tifying structural variation events. For a summary of the popular de novo assembly software, and a

comparison study we refer the reader to the recent paper, Assemblathon [36].

Figure 1.6: Signatures for different types of structural variation event such as Deletion, Transposon
Insertion, Novel Sequence Insertion, Inversion, Interspersed Duplication and Tandem Duplication
are presented in this figure.

Novelseq [48] Novelseq is a method that uses assembly to detect and characterize sequences which

are present in sequenced genomes of study but missing in the reference. It is estimated that 19-40 Mb

of human genomic sequence is missing from the human genome reference assembly [92]. Although

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 16

the Human Genome Project revolutionized the field of genomics, the human sequences not repre-

sented in the reference genome leads to incomplete genome analysis. The missing sequences can

even harbour not-yet-discovered genes, or other types of sequences of functional importance. There

is a need to discover the locus and content of so called “novel sequence insertions” to build more a

comprehensive human reference genome to better analyze genomes of individuals from many dif-

ferent populations. To date, the most promising method to characterize longer DNA segments that

are not represented in the human reference genome has been building sequence assemblies from un-

mapped fosmid clone ends sequenced with the traditional Sanger-based capillary sequencing [75],

and sequencing the entire fosmid clones [77]. However, the higher cost of the capillary sequencing

is prohibitive to characterize genomes of thousands of more individuals. Next generation sequenc-

ing technologies make sequencing of thousands of genomes possible, and for the first time, give us

the opportunity to discover novel sequences across many human populations to build better genome

assemblies (or pan genomes[92]). Various computational methods were developed in the recent

years to characterize structural variation including deletions, insertions, inversions, and duplications

among human individuals using next generation sequencing (NGS) platforms [105]. Characteri-

zation of locus and content of longer novel sequences remained elusive due to the shorter insert

size and sequence length associated with the NGS methods. For example, using the end-sequence

profiling approach [149, 147, 81, 75] one cannot discover insertions > 100 bp when 200 bp insert

size is used with the Illumina platform [21, 55, 87, 29]. One applicable method for the discovery

of long novel insertions using NGS technologies is de novo sequence assembly [134, 28, 160, 92].

However, this approach requires large computational resources, and requires further processing to

anchor the sequences to the reference genome. Novelseq [48] utilizes de novo assembly together

with signatures from paired-end read to find the content and location of novel sequence insertion in

a sequenced genome.

1.5 Split Read methods

The lengths of the reads produced by sequencing technologies are becoming longer, and by the

means of Split Read approaches, it is now possible to pinpoint exact breakpoints of indels and

structural variation events, especially in unique regions. Figure 1.5 shows the general framework of

the Split Read (SR) approaches. Pindel [158] is one of the first published papers, using split reads

to identify structural variations. Pindel only allows unique mappings, and uses a pattern growth

approach to search for unique substrings of unmapped reads in the genome. The algorithm then

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 17

Figure 1.7: Split read analysis for different types of variants is shown in the figure. As it can be seen
in the figure, using split reads helps pinpointing the breakpoints more precisely

checks whether a complete unmapped read can be reconstructed combining the unique substrings

found in the previous step. SRiC [164] is a recent method designed for split read analysis of reads

from the 454 platform. Note that 454 reads are typically about 400bp long, and thus it is easier

to perform split read analysis on them, compared to Illumina reads. A very recent algorithm (i.e.

SPLITREAD) by Karakoc et al. [70] utilizes multiple mappings in a split read analysis framework.

The techniques used in [70], for clustering the alignments are based on the maximum parsimony

approach which was introduced in [55]. We should mention here that TopHat[145], specialized for

RNA alternative splicing, as well as Dissect [159] also uses split read alignments.

1.6 Integrative models

Due to the fact that none of the current methods for SV discovery in comprehensive, many re-

searches have started to look into ways to integrate multiple signatures in one pipeline to improve

the accuracy of SV discovery methods. Most of these integrative models combine signatures form

discordant paired-end reads and read depth signatures. For example, SPANNER by Stewart et al.

first finds candidate using read pair signatures, and then filter out some of those candidates using

read depth signatures as a post processing step. Genome STRiP [51] uses both read pair and read

depth signatures for structural variation discovery, similar to SPANNER. Moreover, Genome STRiP

CHAPTER 1. NEXT GENERATION-GENOME SEQUENCING 18

integrates multiple genomes in a population for genotyping purposes. CNVer by Medvedev et al.

[106] builds a graph using read pair signatures with weights obtained through read depth signatures.

CNVer aims to find copy number variants by modeling the problem with a minimum cost flow prob-

lem in the graph. Finally and very recently, Sindi et al. [135] introduced an integrative probabilistic

model that combines both read pair and read depth signatures. Their method, GASVPro, is based

on their earlier structural variation detection work [136] and uses soft clustering to handle multiple

mappings of reads in repeat regions.

Chapter 2

Optimal pooling for a genome
re-sequencing experiment

As we discussed in the previous chapter, after decades of research effort, the cost of sequencing

an individual human genome via Sanger sequencing [129] has now been reduced several orders of

magnitute. For example, the Illumina technology offers more than 1000-fold improvements over

Sanger sequencing in both cost and throughput. Similarly, the pyrosequencing technology of 454

Life Sciences [96] delivers massive parallelization of the sequencing process by the use of microchip

sensors, improving the speed of Sanger sequencing, significantly.

In addition to these, there are other commercial products such as SOLiD [2] perform either

clonal cluster sequencing, or single molecule sequencing.

Unfortunately, the massive increase in the throughput offered by the above technologies comes

with a shortened read length, and shorter the read length, the more problematic it is to work with a

genome that has many longer repeats. While Sanger sequencing offers 500 − −1000bps per read,

the read lengths of new technologies range from 36 to 150 (e.g. Illumina) to a few hundred base

pairs (e.g. 454). Although in practice most sequencing technologies can produce longer, as well as

paired end reads, but for the rest of this chapter we concentrate on the problem of resequencing of

genomes with short single end reads, and focus only on the Illumina technology.

The type of re-sequencing problem we consider in here is based on bacterial artificial chromo-

some (BAC) libraries. Benefits of using BACs in re-sequencing studies is 2-fold. (1) It is possible to

cluster the short reads obtained from each BAC into small local sets that represent the sequence of

one BAC where most of the repeat sequences have a unique copy. (2) One can a priori determine the

19

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 20

genomic neighbourhood the BAC is coming from; thus having the reference sequence provides an

essential backbone. This can be achieved, for instance, by using the results of fingerprinting or BAC

end sequencing experiments. Although on the face of it, a BAC-library-based sequencing effort

defeats the benefits of massive parallelization offered by new sequencing technologies, it enables

directed sequencing studies possible, where the interest is not on whole genome (re)sequencing,

but on investigating a region of interest. Furthermore, recent developments bring the throughput in

fingerprinting technology on par with new sequencing technologies [97].

Here we look at the problem of how to design resequencing experiments to decrease the com-

plexity of the downstream analysis. Resequencing is defined as using sequencing technologies to

identify sequence variation in individuals of a species for which a reference genome is available.

Conventional resequencing pipelines rely on PCR amplification of each region of interest, followed

by Sanger sequencing. Regions of interest might be sets of exons, full genes, or larger intervals.

The resequencing can also be done on genome BACs or fosmids clones. In a recent study [79] of

haplotype resolving for more than> 500, 000 fosmids clones, the set of clones were partitioned into

115 different groups (pools) for resequencing, using barcoding.

Our work is focused on BAC re-sequencing experiments, but it can also be applied to exome

sequencing experiments or fomisd resequencing. e.g. our algorithm can optimize the pooling of the

fosmids so that it reduces the overall ambiguity in read mapping for downstream analysis.

The Illumina sequencing experiments were run on a flow cell with eight lanes, each yielding in

the order of 108bps of sequence per run, at the time of our study. A typical BAC we consider has a

length ranging between 150Kbps to 250Kbps. Thus, if we sequence one BAC on each lane, a single

run would produce about a 1000-fold coverage per BAC, which is far beyond necessary in a re-

sequencing study. Therefore, in order to maximize the throughput of the Illumina technology, hence

minimize its cost, it is of key importance to utilize each lane in a more sensible way, such as by

sequencing more than one BAC per lane. However, sequencing multiple BACs per lane introduces

major difficulties due to repeat sequences that are present in two or more BACs, as they would cause

tanglement in their assemblies or ambiguous multiple mapping. In order to minimize the repeat

elements that are present in multiple BACs, novel algorithmic techniques must be developed.

Available algorithms for (short reads) DNA fragment assembly such as [27, 28, 153] all suffer

from the presence of repeats within the genome region to be assembled [96, 8, 146]. However, the

high potential of high-throughput short-read technologies have promoted the development of novel

protocols and algorithms such as the SHort Read Assembly Protocol (SHARP [140]) that aim to

address the shortcomings of short read technologies. Our goal in this chapter is to help the available

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 21

fragment assembly methods or variation discovery methods using mapping strategies by providing

(near) optimal utilization of the multiple lanes (or barcoding technologies) available by the Illumina

technology, while keeping the cost at a minimum. For this purpose, we present algorithms that

partition the input segments (e.g. BACs, fosmids or captured exons) into multiple lanes in a way to

minimize potential errors due to repeat sequences shared among segments in each lane.

In what follows, we will define the pooling problem formally and will show our algorithms are

quite efficient in practice and provide significant improvement to the cost of fragment assembly over

random partitioning strategies.

2.1 Problem definition and general algorithmic approach

Given a set of genome fragments from known specific genomic regions of interest (e.g. a set of

BACs), our ultimate goal is to construct the sequence of each fragment using the results of opti-

mally designed Illumina sequencing experiments. Consider a set of m BACs sequenced with a read

length of k (typically 25 to 150bps); the problem we address in this work is, how can we partition

this set into n groups (or pools) of approximately h = m/n segments, such that the identities of

individual reads can be as correctly as possible attributed to the segment they come from. In other

words, how can we minimize number of shared k-mers by multiple BACs in each pool in the overall

configuration?

Strictly speaking, the problem does not have an exact solution, because before conducting any

sequencing experiment, it is not possible to know how many shared k-mers the BACs in question

would have. However, note that our focus is on re-sequencing studies, and if we have even a crude

idea on the genomic coordinates of the BACs, we can approximate that missing information by using

the reference sequence.

One other hurdle in designing a globally optimal experiment is the rapid proliferation of number

of possible configurations. For instance, if we would like to pool m = 150 BACs into groups of

h = 10, we would need to consider

Π14
i=0

(
150−10i

10

)
15!

> 10152

configurations in an exhaustive search. Since it is not feasible to search all these configurations for

finding the global optimum, we propose an algorithmic approach to guide us to an approximately

optimal setup.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 22

Note that our goal is to partition a given set of m BACs into pools of size h each, with the

purpose of minimizing the number of potential resequencing errors due to sequences that repeat in

multiple segments within a pool. Potential assembly errors due to sequences that repeat within a

single BAC, on the other hand, are beyond the scope of this study and are not investigated here. We

define our problem more formally as follows.

2.1.1 The pooling problem

Given a set of m BACs that are to be placed into n pools of approximately h = m/n BACs in each,

let Ci,b be the number of BACs in a pool Pi that share a particular k-mer b. If we denote the cost of

b as f(Ci,b), we can write an overall cost function for a given configuration as

J =
n∑
i=1

∑
∀b∈Pi

f(Ci,b) (2.1)

and the problem becomes one of selecting the optimum partitioning P ∗ = {P ∗i } that minimizes the

cost J .

One can attribute alternative costs for shared k-mers b, two of which are

1. f(Ci,b) =
(Ci,b

2

)
;

2. f(Ci,b) = Ci,b − 1.

For the reminder of this chapter, we will restrict our attention to these two formulations for reasons

explained below.

The pooling problem under the cost function f(Ci,b) =
(Ci,b

2

)
is a minimization problem for the

number of k-mers that are shared between pairs of BACs which are in the same pool. This can be

reduced to a well known combinatorial problem called, n-clustering problem, as follows: construct

a complete graph G where each BAC B is represented with a unique vertex vB and given any pair

of BAC B and B′, set the weight of the edge (VB, V ′B) to the number of common k-mers in B and

B′. The n-clustering problem is a problem of partitioning G into vertex sets, such that the sum of

edge weights between vertices that belong to the same partition is minimized.

Unfortunately even obtaining a constant factor approximation to the n-clustering problem is NP-

hard [127]. Thus in Section 2.2.1, we first reduce this problem to another combinatorial problem

known as the max n-cut. Although this problem is also NP-hard [127], we solve it by the use of a

simple local search procedure within an approximation factor of 1− 1/n. For n = 15, this implies

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 23

an approximation factor of 0.93, while for n = 50 (using barcoding technologies) this implies an

approximation factor of 0.98. Although this approximate solution to the max n-cut problem does not

provide a guarantee on the approximation for the pooling problem, it gives good results in practice.

An extension to the pooling problem is the balanced pooling problem, where we seek to mini-

mize the cost of partitioning BACs of regions of interest into pools, such that the number of BACs

in each pool is exactly h = m/n. As can be expected, even approximating the balanced pooling

problem within a constant factor is NP-hard. Thus in section 2.2.2 we reduce the balanced pooling

problem to the max n-section problem, which is the balanced version of the max n-cut problem.

We again describe an algorithm to approximately solve this problem within a factor of 1 − 1/n.

Although the latter algorithm does not provide a guarantee on the approximation factor it obtains

for the balanced pooling problem, it yields good results in practice once again.

The pooling problem under the second cost function f(Ci,b) = Ci,b − 1 is a minimization

problem for the number of genome BACs within a pool that share each k-mer, summed over all

k-mers. This is a generalized version of the pooling problem with the first cost function as will be

explained below.

The pooling problem under the second cost function can be reduced to a hypergraph partitioning

problem as follows. LetG be a hypergraph where each genome BACB is represented with a unique

vertex vB and each subset of at most d vertices S are connected with a hyperedge eS . In other words,

d is the maximum number of vertices that can be incident to a hyperedge. In the most general case

of the problem d = m. The weight of eS , namely w(eS) is the number of k-mers that occur in all

BACs in S and occur in no other BACs. Consider a partition of G into non-overlapping vertex sets.

For a given subset S of vertices, let #(S) be the number of pools that have at least one vertex of S.

Then the cost of eS with respect to this partitioning is w(eS) · (|S| − #(S)); here |S| denotes the

number of BACs in set S.

Our hypergraph partitioning problem defines a search for partitioning G into vertex sets/pools

so as to minimize the total cost of the hyperedges with respect to this partition.

Unfortunately the above hypergraph partitioning problem requires O(
(
m
n

)
) space to just repre-

sent all the hyperedges. As this represents faster than exponential growth with the number of BACs,

even setting up an instance of the problem on a computer is not feasible for the parameter values we

are interested in.

Notice that if we restrict the maximum number of vertices that can be incident to a hyperedge,

d, to 2 (rather than m) then our hypergraph partition problem reduces to the n-clustering problem

and thus to the pooling problem with the first cost function. Now we can consider versions of the

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 24

hypergraph partition problem with d = 3, 4, · · · as “approximations” to our general hypergraph

partitioning problem with d = m.

Our hypergraph partitioning problem with d > 1 is NP-hard [127] even to approximate within

a constant factor. We reduce it to another hypergraph partitioning problem in which the cost of a

hyperedge eS with respect to a partitioning is w(eS) · (#(S) − 1) and the goal is to maximize the

total cost of all hyperedges. In this chapter we show how to solve this problem approximately within

a factor of 1 − d/2n. For d = 3 and n = 15, our algorithm provides a 0.9 approximation factor,

again sufficiently close to 1. The algorithm employs a greedy approach and is quite efficient.

We also consider a balanced version of this hypergraph partitioning problem which asks for

maximizing the total cost of all hyperedges with respect to a partition, provided that the number of

vertices per each pool is exactly h = m/n. Again we provide a (1−d/2n)-approximation algorithm

to this problem. This algorithm is quite involved, as further described in the next section, employing

a solution to the minimum weighted bipartite matching towards a greedy selection of the vertices in

each partition.

2.2 Methods

In this section we give detailed descriptions of the approximation algorithms we use for solving the

pooling problem, both balanced and unbalanced versions, under the two cost functions we presented

earlier.

2.2.1 The pooling problem under f(Ci,b) =
(
Ci,b

2

)
The pooling problem (unbalanced version) under our first cost function can be formulated as the

well known max n-cut problem as follows.

Input: A weighted undirected graph G(V,w), with the vertex set V representing the set B =

{B1, B2, · · · , Bm} of BACs, and the edge weights w. For any vertex pair vB, v′B , w(vB, v′B) is the

number of common k-mers in the corresponding BACs, B and B′.

Output: A partitioning of V into pools P = {P1, P2, · · · , Pn},
n⋃
i=1

Pi = V , which maximizes the

following objective function:

n∑
i=1

n∑
j=i+1

∑
vB∈Pi,v′B∈Pj

w(vB, v′B).

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 25

A local search algorithm for max n-cut (LSMnC)

1. Randomly partition the vertex set V of the graph G into n different pools.

2. If there exists a vertex v ∈ V such that it is assigned to pool Pi (v ∈ Pi) and there exists a

pool Pj such that
∑
u∈Pi

w(v, u) ≥
∑
x∈Pj

w(v, x) then move vertex v from the pool Pi into the

pool Pj .

3. Repeat second step until no change can occur.

The above simple local search algorithm, when applied to the general max n-cut problem may

take too much time before it terminates. However, for our specific problem, the running time of

the above algorithm is guaranteed to be polynomial with m and the maximum length of a BAC as

shown below.

Proof. Let t be the total weight of the edges of the graph G, which is polynomial with m and the

maximum number of k-mers in a BAC. It is clear that in each step of the local search algorithm, the

total weight of edges going between pools increases by at least one. Therefore in the worst case, this

algorithm terminates after t steps.

In practice, the running time of the above local search algorithm is in the order of a second for

m = 150, n = 15 and maximum BAC length of 250K. The approximation factor achieved by the

above algorithm is 1− 1/n as shown below.

Proof. Consider an arbitrary vertex v ∈ V and assume Pi is the cluster containing v after the

termination of the local search. We have:

∀1 ≤ j ≤ n :
∑
∀u∈Pi

w(v, u) ≤
∑
∀x∈Pj

w(v, x)⇒ (2.2)

∑
∀u∈Pi

w(v, u) ≤ 1
n

n∑
j=1

∑
∀x∈Pj

w(v, x)⇒ (2.3)

n∑
j=1,j 6=i

∑
∀u∈Pj

w(v, u) ≥ n− 1
n

n∑
j=1

∑
∀x∈Pj

w(v, x) (2.4)

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 26

The expression
n∑

j=1,j 6=i

∑
∀u∈Pj

w(u, v) in left hand side of last equation represents the total weight

of all edges in the “cut” incident to vertex v. Also, the expression
n∑
j=1

∑
∀x∈Pj

w(v, x) in the right hand

side of the same equation represents the total weight of all edges incident to vertex v. Since v has

been chosen arbitrary from the vertex set V , we have:

∑
∀v∈V

n∑
j=1,j 6=i

∑
∀u∈Pj

w(v, u) ≥
∑
∀v∈V

n− 1
n

n∑
j=1

∑
∀x∈Pj

w(v, x) (2.5)

According to the above inequality, the total weight of the edges which are incident to a pair of

vertices that do not belong to the same pool is at least n−1
n times the total weight of the edges in G,

and thus the local search provides a 1− 1/n approximation.

A randomized 1 − 1/n approximation Note that a random partition will provide the same the-

oretical guarantee. If we place each BAC into the pools uniformly at random (i.e. in each of the n

pools with probability of 1/n), each edge will have endpoints in two different pools with the prob-

ability 1− 1/n. Thus, due to linearity of expectation, the expected total weight of the edges which

are incident to a pair of vertices that do not belong to the same pool will be (1 − 1
n) times the total

weight of the edges. We implemented a simple randomized algorithm ranPool and compared the

results of the proposed local search algorithm with ranPool. The main motivation of using the local

search algorithm is not only that the local search always guarantees the 1− 1
n , but also the fact that

in practice, the local search gives close to optimal results. We tested ranPool several thousands

times, and compared the best result with our algorithm. Note that, when tested a sufficient number

of times, ranPool indeed achieves the 1− 1
n factor, but our algorithm is close to optimal in practice.

Please see the Result and Discussion section for more details and comparative figures.

remark The ranPool algorithm can be easily derandmized using either pairwise independent

hashing or the method of conditional probabilities. The main idea behind randomization using pair-

wise independent hashing in the fact that it is not really neccesary to assume mutually independence

random decisions for every vertex. Rather it is only sufficient that for every pair of vertices, the

probability of them making different decisions is 1/2. It can be proved that this property can be

achieved using only O(log n) independent random coin tosses, and thus we one can derandomize

this random process in polynomial time. Another classic way of derandomizing ranPool is using

the method of conditional probabilities. It can be shown that a greedy algorithm, in which BACs are

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 27

placed sequentially (i.e. one BAC at each step of the algorithm) can satisfy the necessary conditions

and give the 1 − 1/n worst-case factor. At each step of the greedy algorithm, the conditional ex-

pectation of the total weight of the final result will be the total weight of the edges whose endpoints

were places in different pools so far plus 1 − 1
n times the total weight of the edges with at least

one not-assigned endpoint. A simple algorithm, in which at each step a new vertex v is placed to

the pool where the total weight of the edges incident to v and inside the pool is minimized among

all n pools, will maximize the resulting value of the conditional expectation. Note that we did not

implement this deterministic version of the algorithm as we expect to see similar results compared

to our method.

2.2.2 The balanced pooling problem under f(Ci,b) =
(
Ci,b

2

)
The balanced pooling problem asks to partition m BACs into n pools so as to minimize the above

cost function, with the additional constraint that the number of BACs per each pool is exactly h =

m/n. This is known as max n-section problem for which a local search algorithm by [40] guaranties

an approximation factor of 1− 1/n.

For each vertex u ∈ V and for each set of vertices belonging to a pool Pi, let w(u, Pi) =∑
v∈Pi

w(u, v). The local search algorithm for the max n-section problem works as follows.

Local search algorithm for max n-section (LSMnS)

1. Initialization. Partition the vertices V into n pools P1, P2, · · · , Pn uniformly at random such

that |P1| ≤ |P2| ≤ · · · ≤ |Pn| ≤ |P1|+ 1.

2. Iterative step. Find a pair of vertices v ∈ Pi and u ∈ Pj (i 6= j), such that w(v, Pi − v) +

w(u, Pj − u) ≥ w(v, Pj − u) + w(u, Pi − v) If such a pair exists move u to the cluster Pi
and v to the cluster Pj .

3. Termination. If no pair of vertices is found in then terminate.

This algorithm is an extension to the local search algorithm described in section 2.2.1 and it

is easy to show that it terminates in time polynomial with m and the maximum length of a BAC.

Furthermore, it was shown in [40] that this algorithm has a guaranteed approximation factor of

1− 1/n.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 28

2.2.3 The pooling problem under f(Ci,b) = Ci,b − 1

We now focus on the cost function f(Ci,b) = Ci,b − 1. As we discussed in the problem definition

(see section 2.1), the pooling problem under cost function f(Ci,b) = Ci,b − 1 can be reduced

to a hypergraph partitioning problem as follows. Let G be a hypergraph where each BAC B is

represented with a unique vertex vB and each subset S of at most m vertices, are connected with a

hyperedge eS . The weight of eS , namely w(eS) is the number of k-mers that occur in all BACs in

S and occur in no other BACs.

Consider a partitioning of V , the vertex set ofG, into non-overlapping pools P = {P1, . . . , Pn}.
For a given subset S of vertices, let #(S) be the number of pools of Pi that have at least one vertex

of S. Then the cost of eS with respect to P is w(eS) · (|S| −#(S)) and the goal of the hypergraph

partitioning problem is to minimize the total cost of all hyperedges.

The “dual” of this hypergraph partitioning would be another partitioning problem where eS with

respect to P is w(eS) · (#(S)− 1), and the goal is to maximize the total cost of all hyperedges.1

Input: A weighted hypergraph G(V,w), with vertex set V , and weights w(eS) for each hyperedge

eS (which connects the set S ⊆ V for |S| ≤ d).

Output: A partitioning of vertices V into pools P = {P1, P2, · · · , Pn},
n⋃
i=1

Pi = V , which maxi-

mizes the following objective function:∑
S⊆V,|S|≤d

w(eS) · (#(S)− 1).

We give a greedy algorithm to solve the above hypergraph partitioning problem. The algorithm,

at each iteration x randomly picks a vertex vx ∈ V ′x, where V ′x is the set of vertices not processed so

far, adds it to one of the pools Pi.

Before we describe the algorithm we give some definitions. Let Px,i be the set of vertices in

pool Pi before iteration x and let Px = {Px,1, . . . , Px,n}. (Thus V ′x = V −
i=n⋃
i=1

Px,i.)

Given some S ⊂ V , let #Px(S) denote the number of pools Px,i ∈ Px which include at least

one vertex of S.

Also let #̃Px,k
(S) be a boolean function such that #̃Px,k

(S) = 1 if Px,k∩S = ∅ and #̃Px,k
(S) =

0 otherwise.

1The two problems are equivalent as |S| is a constant.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 29

A greedy algorithm for hypergraph partitioning problem (GAHP)

1. As an initial step, set V ′0 = V and ∀ni=1P0,i = ∅.

2. In each iteration x ∈ {1, . . . ,m}, randomly pick a vertex vx ∈ V ′x and put vx into the pool

kx = arg max
k

∑
S⊆V,vx∈S

w(eS) · #̃Px,k
(S).

(Thus, ∀i ≤ n, i 6= kx, Px+1,i = Px,i and Px+1,kx = Px,kx ∪ {vx}).

The above algorithm achieves an approximation factor of 1− d/2n as shown below.

Proof. First we need to find a lower bound on the total cost w(eS) · (#(S)− 1) with respect to the

pool set Pm+1 = {Pm+1,1, Pm+1,2, · · ·Pm+1,n} returned by the algorithm at the end of iteration m.

It is not hard to see that for any set of vertices S (for the remainder of the proof, all sets S we

consider will satisfy |S| ≤ d), for which vx ∈ S:

w(eS) ·#Px+1(S) =

w(eS) ·#Px(S) + w(eS) · #̃Px,kx
(S) (2.6)

Thus,

w(eS) ·#Pm+1(S) =
m∑

x=1,vx∈S
w(eS) · #̃Px,kx

(S).

Now taking the sum of above equation for all possible hyperedges we would get:

∑
S⊆V

w(eS) ·#Pm+1(S) =
∑
S⊆V

m∑
x=1,vx∈S

w(eS) · #̃Px,kx
(S)

=
m∑
x=1

∑
S⊆V,vx∈S

w(eS) · #̃Px,kx
(S) (2.7)

For bounding the left hand side of equation 2.7, we will consider an arbitrary iteration x.

n ·
∑

S⊆V,vx∈S
w(eS) · #̃Px,kx

(S) ≥
∑

S⊆V,vx∈S

n∑
i=1

w(eS) · #̃Px,i(S). (2.8)

By adding up the right hand side of equation 2.8 over all values of x we get:

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 30

m∑
x=1

∑
S⊆V,vx∈S

n∑
i=1

w(eS) · #̃Px,i(S) =

∑
S⊆V

m∑
x=1,vx∈S

n∑
i=1

w(eS) · #̃Px,i(S). (2.9)

.

For bounding equation 2.9 we first have to argue for any arbitrary S ⊆ V we have,

m∑
x=1,vx∈S

n∑
i=1

w(eS) · #̃Px,i(S) ≥ w(eS) · (n+ · · · (n− |S|+ 1))

Thus,

∑
S⊆V

m∑
x=1,vx∈S

n∑
i=1

w(eS) · #̃Px,i(S) ≥

∑
S⊆V

w(eS) · (n+ · · · (n− |S|+ 1)) (2.10)

Now using equations 2.8,2.9 and 2.10 we will have:

m∑
x=1

∑
S⊆V,vx∈S

w(eS) · #̃Px,1,kx(S) ≥∑
S⊆V w(eS) · (|S| · n− (1 + 2 + · · · (|S| − 1)))

n
. (2.11)

Utilizing equation 2.11 and 2.7 we conclude:∑
S⊆V

w(eS) · (#Pm+1(S)− 1) ≥

∑
S⊆V w(eS) · (|S| · n− |S|(|S|−1)

2)
n

−
∑
S⊆V

w(eS)

=
n ·
∑

S⊆V w(eS) · (|S| − 1)−
∑

S⊆V w(eS) · |S|(|S|−1)
2

n
(2.12)

Now to find the approximation factor for this greedy algorithm we need to find an upper bound

of the optimal solution. It is easy to see that for even optimal partitioning
∑

eS
w(eS) ·(#(S)−1) ≤

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 31

∑
eS
w(eS) · (|S| − 1). Thus, the approximation factor α can be bounded as:

α =

∑
S⊆V w(eS) · (#Pm+1(S)− 1)∑
S⊆V w(eS) · (#Popt(S)− 1)

≥
∑

S⊆V w(eS)((|S| − 1)n− |S|(|S|−1)
2)

n ·
∑

S⊆V w(eS) · (|S| − 1)

= 1−
∑

S⊆V w(eS) · |S|(|S|−1)
2

n ·
∑

S⊆V w(eS) · (|S| − 1)

= 1−
∑

S⊆V w(eS) · (|S| · (|S| − 1))
2n ·

∑
S⊆V w(eS) · (|S| − 1)

(2.13)

Now, as |S| < d we can easily see that α ≥ 1− d/2n.

2.2.4 The balanced pooling problem under f(Ci,b) = Ci,b − 1

Our last algorithm deals with the balanced pooling problem under the cost function f(Ci,b) =

Ci,b − 1, for which we give a greedy approximation algorithm. We remind the reader that there are

m = nh vertices to be assigned into n pools, and eventually each pool must have exactly h vertices.

A greedy algorithm for balanced hypergraph partitioning (GABHP)

The algorithm starts with a set of n empty pools, P = {P1, · · · , Pn}, and at each iteration x,

it selects a set of n arbitrary vertices, say Yx = {y1,x, · · · , yn,x}, which are not assigned to any

of the pools yet, and adds them to the pools such that each pool receives exactly one new vertex.

Let the set of vertices in pool Pi at the beginning of iteration x be denoted by Pi,x and let Px =

{Px,i, . . . , Px,n}. Thus, in iteration x, each yj,x is assigned to exactly one of the pools Px,i.

For any set of vertices S ∈ V , let λ(yj,x, Px,i, S) be a boolean function defined as follows.

λ(yj,x, Px,i, S) =

{
1 if ∃ y`,x 6= yj,x : y`,x ∈ S, y`,x ∈ Px,i
0 otherwise.

Intuitively, for a given vertex yj,x, a pool Px,i, and a vertex set S, λ(yj,x, Px,i, S) is equal to zero if

and only if no other vertex y`,x incident to the hyperedge eS has already been assigned to the pool

Px,i.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 32

Then, for each pool Px,i, we define the marginal cost function µ(yj,x, Px,i) with respect to the

potential assignment of yj,x to Px,i, as follows.

µ(yj,x, Px,i) =
∑

S⊆V,yj,x∈S
w(eS) · λ(yj,x, Px,i, S)

We now construct a new complete bipartite graphH with vertex sets Yx and Px such that for any

vertex yj,x ∈ Yx and pool Px,i ∈ Px, there exists an edge in H with weight µ(yj,x, Px,i). Then we

find a perfect minimum weighted matching for H , i.e. a perfect matching where the sum of weights

of the edges in the matching has the minimum possible value by using the well known Hungarian

algorithm ([109]).2

For each j, 1 ≤ j ≤ n, let π(yj,x) be the pool which is matched to yj,x in the prefect minimum

bipartite matching of the graph H . We add the vertex yj,x to the pool πx,i.

We run the above iterative step for x = 1 . . . h so as to assign each one of the m = nh vertices

into one pool in a balanced manner.

The above algorithm gives an approximation to the balanced hypergraph partitioning problem

within a factor of 1 − d
2n , where d is the maximum number of vertices that can be incident to a

hyperedge. The proof for the approximation factor is similar to that for the unbalanced hypergraph

partitioning problem and thus is omitted.

2.3 Results and discussion

We report results on two sets of BACs (with m = 150) on which we tested our algorithms for both

balanced and unbalanced pooling problem using both cost functions. We start by noting that for both

data sets the results obtained by the balanced pooling algorithms turned out to be almost identical to

those obtained by the unbalanced pooling algorithms for each of the two cost functions we used. In

other words, the cost of the partition obtained by the LSMnC algorithm was almost identical to that

of the LSMnS algorithm and the cost obtained by the GAHP algorithm was very similar to that of

the GABHP problem. It is also interesting to note that the unbalanced pooling algorithms returned

very balanced partitions.3 We compare the performance of these algorithms with that of random

partitioning of BACs into pools.

2We actually solve the dual, weight maximization problem after subtracting each edge weight from the maximum edge
weight.

3The number of BACs obtained by the unbalanced pooling algorithms were never less than 7 and never more than 12
in any pool.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 33

We measure the performance of our algorithms and that of random partitioning with respect to

our general cost function f(ci,b) = Ci,b − 1. The total cost of a particular partitioning of a set of

m BACs into pools P1, . . . , Pn, is J =
∑n

i=1

∑
∀b∈Pi

f(Ci,b). In order to compute the cost J for a

partitioning, we construct, for each pool Pi, the joint trie of the k-mers (for this study k = 50) of

all BACs in Pi, denoted Ti. The trie Ti can be constructed in time linear with the total lengths of

the BACs in Pi as per the linear time algorithms for suffix tree construction [100, 126]. During the

construction of Ti, at each leaf corresponding to a k-mer b, we maintain the labels of the specific

BACs that include b. By going through all leaves of each Ti, we compute J in time linear with the

total lengths of the BACs.

We used two data sets in our experiments, each consisting of 150 BACs. The first set of clones

were collected in the high-resolution analysis of lymphoma genomes project at the BC Genome

Sciences Center. They represent regions of interest in the genome of a tumor sample, where there

are marked local deviations from the reference human genome. The BAC coordinates are deduced by

aligning BAC fingerprints to the reference genome [82] and are confirmed by BAC end sequencing

experiments.

The second set is a synthetic library of clones with a mean size of 182kb and a standard deviation

of 34kb, representing a random sampling of the finished regions of the reference human genome,

hg18.

2.3.1 Pooling experiments with LSMnC/LSMnS algorithms

We first compare the performance of our local search methods LSMnC/LSMnS with random par-

titions (denoted ranPool). Although these methods were designed to minimize the cost of pooling

with respect to the cost function f(Ci,b) =
(Ci,b

2

)
, we report their performance with respect to the

second cost function, f(Ci,b) = Ci,b − 1, as it better captures the notion of performance we would

like to measure.

Note that ranPool is known to give an expected approximation factor of 1 − 1/n for the max

n-cut problem. However, LSMnC will guarantee a worst case approximation factor of 1 − 1/n for

the max n-cut problem.

In figures 2.1(a) and 2.2(a) we give the distribution (the mean value as well as the highest and

lowest 25%) of the cost obtained by 5000 independent runs of LSMnC/LSMnS and ranPool methods

on the lymphoma and the synthetic data sets. The figures show how the cost changes with respect

to the increasing number of pools. We also give how the ratio between the cost of the ranPool and

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 34

the LSMnC/LSMnS methods change with respect to the number of pools (again showing the mean

value, the highest and the lowest 25% of the ratio of the costs of ranPool and the LSMnC/LSMnS

methods) in figures 2.1(b) and 2.2(b). It is easy to see that by increasing the number of pools the

cost of ranPool and LSMnC/LSMnS would reduce. However, more interestingly by increasing the

number of pools, the ratio between cost of ranPool and LSMnC/LSMnS increases(Figure 2.1(b) and

2.2(b)), meaning that our proposed methods are more effective with higher number of pools.

 0

 50000

 100000

 150000

 200000

 4 6 8 10 12 14 16

m
ea

n
co

st
 o

f p
ar

tit
io

ni
ng

number of pools

LSMnC
ranPool

(a) The change of cost with respect to the number of pools.

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 4 6 8 10 12 14 16
ra

tio
 o

f c
os

t o
f p

ar
tit

io
ns

number of pools

ranPool/LSMnC

(b) The ratio between the costs of random partitioning and the
LSMnC/LSMnS algorithms.

Figure 2.1: The cost of ranPool (green) and LSMnC/LSMnS (red) methods with respect to the
number of pools: mean, upper quartile and lower quartile results reported on 5000 independent runs
on the lymphoma data set.

We finally give the distribution of the costs obtained in the 5000 independent runs of both ran-

Pool and the LSMnC/LSMnS methods on the lymphoma and the synthetic data sets in figures 2.3

and 2.4 respectively.

As can be observed, the results obtained by the LSMnC/LSMnS algorithms are typically much

better than that obtained by ranPool. At n = 15 the LSMnC/LSMnS approach provides a factor

2 improvement to the (mean) cost of random partitioning for the lymphoma data set. The cost

improvement is more than a factor of 1.4, even for the random partition with the lowest cost among

the 5000 independent trials(for synthetic data the cost improvement factor was 1.35 in comparison

to the lowest cost among 5000 independent trials).

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 35

 0

 50000

 100000

 150000

 200000

 4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

LSMnC
ranPool

(a) The change of cost with respect to the number of pools.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 4 6 8 10 12 14 16

ra
tio

 o
f c

os
t o

f p
ar

tit
io

ns

number of pools

ranPool/LSMnC

(b) The ratio between the costs of random partitioning and the
LSMnC/LSMnS algorithms.

Figure 2.2: The cost of ranPool (green) and LSMnC/LSMnS (red) methods with respect to the
number of pools: mean, upper quartile and lower quartile results reported on 5000 independent runs
on the synthetic data set.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20000 40000 60000 80000 100000

di
st

rib
ut

io
n

cost

LSMnC/LSMnS
ranPool

Figure 2.3: The distribution of cost obtained by ranPool and LSMnC/LSMnS for n = 15 on the
lymphoma data set after 5000 independent runs.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 36

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20000 40000 60000 80000 100000

di
st

rib
ut

io
n

cost

LSMnC/LSMnS
ranPool

Figure 2.4: The distribution of cost obtained by ranPool and LSMnC/LSMnS for n = 15 on the
synthetic data set after 5000 independent runs.

2.3.2 Pooling experiments with GAHP/GABHP algorithms

The local search algorithms LSMnC and LSMnS aim to “minimize” the cost of pooling with respect

to the cost function f(Ci,b) =
(Ci,b

2

)
; however the cost obtained by these algorithms were consid-

erably lower than that obtained by ranPool even with respect to the second cost function - which

provides a more accurate performance measure.

Our second set of algorithms, GAHP/GABHP are designed to “minimize” the cost with respect

to the second cost function. They are flexible in the sense that one can set up the value of d as

desired; for d = n, the optimal solution to the hypergraph partitioning indeed minimizes the cost

function f(Ci,b) = Ci,b − 1. We tried the two algorithms for both d = 2 and 3 in order to evaluate

their advantage over the local search algorithms as well as random partitioning. The running time

of both GAHP and the GABHP algorithms are exponential in d (the number of hyperedges grow

exponentially with increasing d) thus it is of crucial importance to know up to which value of d,

an improvement in performance could be expected. A significant performance improvement by

GAHP/GABHP methods using d = 3 over LSMnC/LSMnS methods (which solve the hypergraph

partitioning problem for d = 2) may imply that d should be increased to 4 or more for better

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 37

performance.4

In figures 2.5(a) and 2.6(a) we compare the distribution (the mean value as well as the highest and

lowest 25%) of the cost obtained by 5000 independent runs of GAHP/GABHP and ranPool methods

on the lymphoma and the synthetic data sets. The figures show how the cost changes with respect

to the increasing number of pools. We also show how the ratio between the cost of the ranPool and

the GAHP/GABHP methods change with respect to the number of pools (again showing the mean

value, the highest and the lowest 25% of the ratio of the costs of ranPool and the GAHP/GABHP

methods) in figures 2.7(a) and 2.7(b).

We also investigate the effect of using hypergraphs with d = 3 over the use of ordinary graphs

with d = 2 on the GAHP/GABHP methods. We again report the results of 5000 independent trials

on both data sets in figures 2.7(a) and 2.7(b).

The performance improvement achieved by increasing d form 2 to 3 is negligible for both data

sets. It may be possible to explain the relatively poor performance of GAHP/GABHP methods for

d = 3 (in comparison to d = 2) by investigating the distribution of repeat sequences among the

BACs in the two data sets. The number of k-mers which are repeated in exactly two BACs are

100 − 200 times more than those repeated in three BACs or more; see figures 2.8(a) and 2.8(b) for

the distribution of hyperedge weights in the the two data sets. Thus the total weight of hyperedges

incident to three vertices or more is insignificant in comparison to edges that are incident to exactly

two vertices. Thus, the hypergraph partitioning algorithms largely “ignore” the hyperedges whose

contribution to the total cost is very small. We expect that the performance of the GAHP/GABHP

methods for d = 3 is likely to be superior to that for d = 2 if highly repetitive BACs are sequenced.

We finally compare the two algorithmic approaches proposed in this chapter: GAHP/GABHP

(for d = 2) and LSMnC/LSMnS. Note that the cost function of GAHP/GABHP when d = 2 is

equivalent to the cost function used by LSMnC/LSMnS. In figure 2.9(a) and 2.9(b) a comparison

of the two approaches are provided for both data sets. Interestingly enough, the performance of

LSMnC/LSMnS approach is slightly better than the GAHP/GABHP approach for both data sets.

This behaviour demonstrates that a LSMnC/LSMnS (which finds a local optimum) outperforms a

greedy based method (GAHP/GABHP), which does not find a local optimum. However, it should

be noted that we believe if regions of DNA with high repetitions are used, GAHP/GABHP (when

d < 2) should give better results than LSMnC/LSMnS and GAHP/GABHP (when d = 2).

4Unfortunately the approximation factor achieved by the GAHP/GABHP methods deteriorate with increasing k. Note
that for d = 3, the approximation factor guaranteed by the GAHP/GABHP approach to the hypergraph partitioning
problem is 1− 3/2n which is equal to 0.9 for n = 15.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 38

 0

 50000

 100000

 150000

 200000

 4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

GAHP(d=3)
ranPool

(a) The change of cost with respect to the number of pools.

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 4 6 8 10 12 14 16

ra
tio

 o
f c

os
t o

f p
ar

tit
io

ni
ng

number of pools

ranPool/GAHP(d=3)

(b) The ratio between the costs of random partitioning and the
GAHP/GABHP algorithms.

Figure 2.5: The cost of ranPool (green) and GAHP/GABHP (red) methods (d = 3) with respect to
the number of pools: mean, upper quartile and lower quartile results reported on 5000 independent
runs on the lymphoma data set.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 39

 0

 50000

 100000

 150000

 200000

 4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

GAHP(d=3)
ranPool

(a) The change of cost with respect to the number of pools.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 4 6 8 10 12 14 16

ra
tio

 o
f c

os
t o

f p
ar

tit
io

ni
ng

number of pools

ranPool/GAHP(d=3)

(b) The ratio between the costs of random partitioning and the
GAHP/GABHP algorithms.

Figure 2.6: The cost of ranPool (green) and GAHP/GABHP (red) methods (d = 3) with respect to
the number of pools: mean, upper quartile and lower quartile results reported on 5000 independent
runs on the synthetic data set.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 40

 0

 20000

 40000

 60000

 80000

 100000

 4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

GAHP(d=2)
GAHP(d=3)

(a) Comparing the performance of GAHP/GABHP method for d = 2

and d = 3 on the lymphoma data set.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

GAHP(d=2)
GAHP(d=3)

(b) Comparing the performance of GAHP/GABHP method for d = 2

and d = 3 on the synthetic data set.

Figure 2.7: the mean value and error bounds of 5000 runs of GAHP (d = 2 and d = 3).

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 41

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60

to
ta

l w
ei

gh
t o

f h
yp

er
ed

ge
s

size of hyperedge(d)

(a) Distribution of hyperedge weights on the lymphoma data set.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60

to
ta

l w
ei

gh
t o

f h
yp

er
ed

ge
s

size of hyperedge(d)

(b) Distribution of hyperedge weights on the synthetic data set.

Figure 2.8: The distribution of hyperedge weights (in log scale) among 5000 BACs in the two data
sets considered.

CHAPTER 2. OPTIMAL POOLING FOR A GENOME RE-SEQUENCING EXPERIMENT 42

 0

 20000

 40000

 60000

 80000

 100000

 4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

LSMnC
GAHP(d=2)

(a) Comparing GAHP/GABHP approach to LSMnC/LSMnS ap-
proach on the lymphoma data set.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 4 6 8 10 12 14 16

co
st

 o
f p

ar
tit

io
ni

ng

number of pools

LSMnC
GAHP(d=2)

(b) Comparing GAHP/GABHP approach to LSMnC/LSMnS ap-
proach on the synthetic data set.

Figure 2.9: The cost of LSMnC/LSMnS approach (red) with GAHP/GABHP method (green) with
respect to the number of pools: mean, upper quartile and lower quartile results reported on 5000
independent runs on both data sets.

Chapter 3

Novel sequence and transposon
insertions discovery

As we discussed in the first chapter, the problem of discovering human genome structural varia-

tion (SV) enjoyed increased attention from the genomics research community, in the past few years.

Many studies were published to characterize short insertions, deletions, duplications, and inversions,

and associate copy number variants (CNVs) with disease. Although various computational meth-

ods have been developed for the types of SVs mentioned above, no good algorithm fully capable

of discovering transposon insertions or novel sequence insertion were developed. The discovery of

transposon insertions is particularly challanging because of the repetetive nature of the sequence

contents. Note that transposon insertions form a very important class of SVs to the study of hu-

man evolution and disease. Furthermore, detection of novel sequence insertions (i.e. sequences

in a doner genome which are missing in the reference genome) requires sequence data, however,

the “detectable” sequence length with read-pair analysis is limited by the insert size. Thus longer

sequence insertions that contribute to our genetic makeup are not extensively researched.

In this chapter, we will first present NovelSeq: a computational framework to discover the con-

tent and location of long novel sequence insertions using paired-end sequencing data generated by

the next generation sequencing platforms. Our framework can be built as part of a general sequence

analysis pipeline to discover multiple types of genetic variation (SNPs, structural variation, etc.),

thus it requires significantly less computational resources than de novo sequence assembly. We ap-

ply our methods to detect novel sequence insertions in the genome of an anonymous donor, and

validate our results by comparing with the insertions discovered in the same genome using various

43

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 44

sources of sequence data.

Next, we will provide a complete and novel formulation to discover both loci and classes of

transposons inserted into genomes, sequenced with high-throughput sequencing technologies. Our

focus will be especially on Alu insertions. We will also present how we developed an efficient

algorithm to discover transposons, and how the experimental results of our algorithm compare with

known results or available databases.

3.1 Novel sequence insertion discovery

Here we present a computational framework to discover the locus and content of novel sequence

insertions using the NGS platforms. We test our methods with the high-coverage (42X) short-insert

sequence library generated from the genome of a Yoruba African individual (NA18507) sequenced

using the Illumina platform [21]. We validate the content of the predicted novel sequence insertions

by comparing with sequences generated from fosmid end-sequence assembly [75], full fosmid se-

quencing [77], and de novo sequence assembly of the same Illumina WGS library [92]. We show

that our methods are reliable, and together with the cost optimizations introduced by the NGS plat-

forms, they can efficiently be used to characterize the DNA sequences missing from the reference

assembly to obtain a better picture of the human genome diversity.

A ”novel sequence insertion” refers to an insertion of a sequence into the donor genome where

no subsequence with high similarity to the inserted sequence exists in the reference genome. We

aim at identifying novel sequence insertions in a high-coverage sequenced donor genome through

our computational pipeline NovelSeq.

Note that the insertions of repeat sequences such as SINEs and LINEs do not constitute as novel

sequence insertions since paralogs of the same repeat sequence exists elsewhere in the reference

genome assembly. Therefore, the algorithms presented here will not be able to predict such repeat

sequence insertions unless the inserted sequence is highly divergent from other existing copies.

Those algorithms will be covered in the next section.

The presentation of the general approach of the NovelSeq pipeline is divided into five different

phases:

3.1.1 Overview of the NovelSeq pipeline

1-Mapping of the paired-end reads onto the reference genome: The computational pipeline

begins by mapping the WGS paired-end reads onto the reference genome using mrFAST [7] and

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 45

Figure 3.1: In this figure we illustrate the 5 stages of the NovelSeq pipeline. (a) Starts by mapping
the paired-end reads to the reference genome, and classifies the paired-end reads to OEA and Orphan
reads. (b) Assembles the orphan paired-end reads using available de novo assemblers, and removes
any contigs which are result of contamination. (c) Clusters the OEA reads into groups and finds the
insertion locus supported by each OEA cluster. (d) Assembles the unmapped end-read of paired-
end reads in each OEA cluster (the OEA reads with different orientation of mapping should be
assembled independently). (e) Merges the orphan contigs and OEA contigs to find the locus of each
orphan contig insertion.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 46

identifying orphan reads and one end anchored (OEA) reads. The paired-end reads where neither

end read 1 sequences can be mapped (with more than 95% similarity) to the reference genome

are classified as orphan reads. Following the nomenclature previously described [75], if only one

end-read is mapped onto the reference genome, such paired end reads are classified as One-End-

Anchored (OEA).

A hypothesis which can explain the existence of these orphan and OEA paired-end reads in a

sequenced donor genome is as follows: The unmapped reads of the OEA pairs, and the orphan

paired-end sequences both belong to novel sequence insertions (See phase (a) in Figure 3.1).

2-Orphan assembly and contamination removal: Using available de novo assembly algorithms

such as EULER-SR [28] or ABySS [134], we assemble all the orphan reads into longer contigs.

These contigs may later be identified as novel insertion sequences in the donor genome. In addition,

we perform an initial screening of the contigs using BLAST [12], and remove any contig that con-

tains sequences from known contaminants (e.g. Epstein-Barr, E. coli, vectors, etc). As a second test

to remove the mapping artifacts, we remove the contigs that can be aligned to the reference genome

with a sequence similarity more than 99%.

3-Clustering the OEA reads: We use a novel clustering algorithm mrCAR (micro-read Cluster

Anchored Reads) to cluster the OEA reads based on their mapping orientations and locations on the

reference genome such that those OEA reads which support the same insertion in the donor genome

are grouped together. Note that, from a biological point of view, for each potential novel sequence

insertion, there exists a group of OEA read alignments with ′+′ orientation (i.e. the single end

read that has an alignment on the reference genome is aligned to the forward strand) and a second

group of OEA read alignments with ′−′ orientation (i.e. the single end read is aligned to the reverse

strand). Throughout the section, we use the term OEA cluster to describe the two groups of OEA

reads which are both mapped to different strands yet support the same novel sequence insertion.

The goal of mrCAR is to identify these OEA clusters efficiently such that, with a minimum

number of novel sequence insertion prediction, all the OEA paired-end reads are explained (i.e. for

every OEA paired-end read oeai, there exists an insertion prediction that is supported by oeai).

4-The local assembly of the OEA clusters: All single end reads in the OEA clusters which were

formed in the previous phase are assembled into two OEA contigs using a local assembly routine,

1Each end sequence of a paired-end read is referred to as end-read.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 47

mrSAAB (micro-read Strand-Aware Assembly Builder).

For each OEA cluster, the goal is to assemble the unmapped OEA+ reads into a single contig

(i.e. OEA+ contig) and the unmapped OEA− into a single contig (i.e. OEA contig).

5-Merging the orphan contigs and the OEA contigs: In this phase of the pipeline, we aim to

merge the OEA contigs (from both forward and reverse strands) with the orphan contigs. Through

this merging step, we both provide more read support for the orphan contig, and obtain the approxi-

mate anchoring position of the novel sequence insertion to the reference genome.

Our merging algorithm mrBIG (micro-read Big Insertion Gluer) aims to report the maximum

number of orphan contigs which can be merged with OEA contigs with a high support. mrBIG was

developed based on a maximum weighted matching approach in a bipartite graph.

3.1.2 Methods

Notations and definitions

In what follows, we present the notations and new definitions which will be used in the rest of this

section. We define the set of paired-end reads of a sequenced donor genome asR = {pe1, pe2, · · · , pen}.
Each paired-end read pek may have multiple mapping locations on the reference genome. The set of

all alignments of pek is defined as Align(pek) = {a1pek, a2pek, · · · , ajpek}. Structural variation

discovery algorithms using read-pair analysis start by calculating the observed distance between

the two end reads of a paired-end read. This distance is referred to as the insert size (denoted by

InsSize). The InsSize is assumed to be in a range of [∆min,∆max] and can be calculated as

previously described[147, 55].

An alignment of a paired-end read to the reference genome is concordant, if the distance between

the aligned end reads is within the expected range of [∆min,∆max] and the paired-end alignment

orientation is +− (i.e. the end read which was aligned on the left side of its mate [i.e. that is the

other read from the same paired-end read] has an alignment orientation of ′+′ and the mate has an

orientation of ′−′).
The set of One End Anchored reads is represented as OEA and the set of orphan reads is repre-

sented as Orph. Note that Orph,OEA ⊂ R. The paired-end reads in OEA may also be mapped to

multiple locations on the reference genome. Given pe ∈ OEA, ape = (loc(ape), or(ape)), where

loc(ape) is the location the read is aligned to the reference genome and or(ape) is the alignment

orientation (i.e. or(ape) ∈ {+,−}) since only one end read aligns to the reference genome).

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 48

Clustering the OEA reads

In this section we formally describe a greedy algorithm which we named mrCAR to identify the

OEA clusters 2. We first mathematically formulate the conditions required by a group of OEA reads

so that they all support the same novel insertion. Next, similar to the approach introduced in [55]

for clustering the discordant paired-end reads, we present an efficient greedy algorithm to find the

minimum number of insertions such that all of the OEA reads would be “supporting” at least one

insertion (i.e. a maximum parsimonious explanation of all OEA reads [55]). We remind the reader

that although the mapping location of an OEA read serves as a guide to detect the locus of the novel

insertion sequence, the possibility of multiple mapping locations for an OEA read makes detecting

the correct locus a challenging task.

Clustering rules: A set of OEA reads clu ⊂ OEA supports the same insertion if the following

conditions hold:

• For every pair of OEA read alignments ρF ∈ clu and ρR ∈ clu (without loss of generality we

assume that ρF aligns onto the forward and ρR aligns onto the reverse strand), the mapping

location of ρF is before the mapping location of ρR.

• The maximum pairwise distances of the mapping locations of the OEA reads in clu with the

same mapping orientation must be less that the maximum InsSize, ∆max.

• The difference between the mapping locations of two OEA reads with different mapping

orientations should not exceed twice the maximum InsSize (2∆max).

Note that an OEA cluster c is called a “maximal valid cluster” if no more OEA read alignment

can be added to c that all the conditions noted above remain valid. Previous studies in identifying

structural variation events such as [55] and [136] also used a similar definition of a maximal valid

cluster.

By using an iterative method, we find all such maximal valid clusters in polynomial time. We

first order all the OEA read alignments based on their loc value, and start traversing the genome from

left to right. For each position of the genome k, we consider a window of size 2∆max centered at

k. Every OEA alignment inside the first half of the window with an orientation ′+′, and every OEA

alignment on the second half of the window with orientation of ′−′, is considered as one potential

2An OEA cluster is a group of OEA reads all supporting the same novel insertion.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 49

maximal valid clusters. Finally, a pairwise comparison is performed between all overlapping clusters

detected in the previous step and only the maximal clusters are reported.

Algorithm to select the minimum number of clusters We define the Maximum Parsimonious

Insertion Detection (MPID) problem as following: Given a set of OEA clusters where each cluster

potentially indicates a novel insertion, our goal is to select the minimum number of clusters (i.e.

minimizing the total number of insertions) such that all the OEA reads are aligned onto the reference

genome. We model this problem as a set cover problem and provide an O(log n) approximation

solution to it. Note that the set of all OEA reads is the universe of elements, and the clusters created

in the previous step are the sets which are selected to cover this universe. MPID is a necessary step

since an OEA can be present in multiple clusters.

Local assembly of the OEA clusters

The next step is to assemble the unmapped reads of OEA clusters that were created by the clustering

algorithm and selected by the set cover approach. Within a cluster, the OEA reads with an alignment

to the forward strand (i.e. + strand) must be assembled together and those with an alignment to

the reverse strand (i.e. − strand) must be assembled into OEA contigs independently. However, the

available de novo assemblers including EULER and ABySS do not provide the option of assembling

the reads of only a single strand 3. In the single-end option, both ABySS and EULER consider the

reverse complements of the read sequences as well. We therefore develop a local assembly routine

that makes use of the fact that all unmapped reads from a single OEA cluster originate from the single

strand reciprocal to the mapping orientation of the anchored reads from the same cluster. During the

traversal of the assembly graph, we do not allow two consecutive OEA reads such that the mapping

locations of their mates (from the corresponding paired-end reads) are too far from each other. The

map location of the anchored read dictates the approximate position of the unmapped read in the

local OEA assembly. The confidence interval for this position information depends on the InsSize

distribution.

Our local assembly routine is based on the standard overlap-layout-consensus graph approach.

Note that this routine can also be implemented with an Eulerian path approach assembly based on

a de Bruijn graph (e.g. through a modification to ABySS). In what follows, we briefly present this

routine.

3Personal communication with the main developers of the tools

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 50

Traversal of the overlay graph We first construct the overlay graph for all unmapped reads in an

OEA cluster whose mates are anchored to the same strand.

Note that for each OEA cluster, there will be two disjoint assembly graphs representing two

different strands. Given a pair of nodes u, v in the overlay graph (representing two OEA reads),

we add a weighted directed edge connecting u to v if there exists a suffix of u with a prefix of

v. The weight of the noted edge will be a function of the suffix-prefix overlap between them. We

implemented a greedy heuristic to find an assembly of the reads using both the edge weights and the

extra information of the mapping locations of the other mates.

Merging the OEA and orphan contigs

Given the set of OEA contigs and the orphan contigs, we would like to find the maximum number

of orphan contigs that can be merged with OEA contigs. We do not allow an orphan contig to merge

with OEA contigs of both strands (say oea+ and oea−) if the score of the prefix/suffix alignment

between the two ends of the orphan contig and oea+ and oea− is less than a user-defined threshold.

We mathematically model this problem as a maximum-weight bipartite matching problem and give

an exact solution based on the Hungarian method.

LetOrpco = {or1, or2, · · · , ork} be a set of orphan contigs andOEAco = {oea1, oea2, · · · , oeav}
be a set of OEA contigs where oeai is a pair of two OEA contigs from the local assembly of the

OEA cluster with id i. [i.e., oeai = (oeaiF , oeaiR)]. We would like to assign each element ofOrpco
(e.g ori) to an element in OEAco (e.g. oeaj) such that the total score of alignment of suffix of ori
with oeajF and the score of alignment of prefix of ori with oeajR is maximized.

We reduce this problem to the maximum-weight matching problem in the bipartite graphG(U, V,E)

where G is defined as follows:

• ∀ori ∈ Orpco : ∃ui ∈ U

• ∀oeaj ∈ OEAco : ∃vj ∈ V

• The weight of edge (ui, vj) is a function of the overlap between the the first ∆max base-pair

of ori and oeajF and the overlap between the last ∆max base-pair of ori with oeajR .

Figure 2 shows how we reduce the merging problem into a bipartite matching problem.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 51

Novel insertion {OEA(+), orphan contig, OEA (-) contigs}

Orphan 1

Orphan 2

Orphan 3

Orphan 4

Orphan 5

{OEA(+), OEA(-)} 1

{OEA(+), OEA(-)} 2

OEA (+) OEA (-)

Orphan

{OEA(+), OEA(-)} 3

{OEA(+), OEA(-)} 5

{OEA(+), OEA(-)} 7

{OEA(+), OEA(-)} 6

{OEA(+), OEA(-)} 4

w i,j

Figure 3.2: This figure illustrates how to reduce the problem of merging the orphan contigs with
OEA contigs (note that each OEA cluster is in fact two contigs with different orientations, which
together represent an insertion) into a maximum weighted matching problem in bipartite graphs.
Each orphan contig is represented as a green node and each pair of OEA contigs (the OEA contigs
of end-reads with ′+′ and ′−′ orientation mapping in the same OEA cluster) are represented as red
nodes. The edge weights are the total alignment suffix/prefix score between the two OEA contigs
(different orientations) and the orphan contigs.

3.1.3 Experimental results

We tested our framework using the whole genome shotgun (WGS) sequence library generated

from the genome of an anonymous Yoruba African donor (NA18507) generated with the Illumina

Genome Analyzer platform [21]. The genome of NA18507 has been previously studied by many

groups including us [55, 7] to discover structural variation and copy number polymorphism. This

dataset contains approximately 3.5 billion sequence reads (∼ 1.7 billion pairs) of length 36− 41bp

with an InsSize of ∼ 209bp [21, 55]. InsSize distribution of this dataset is shown in [55].

Preprocessing. Similar to the pre-screeing methodology used in [55], we removed any paired-end

reads from consideration if either (or both) end sequence has an average phred [38] quality value

less than 20, or if either (or both) sequence contain more than 2 unknown (i.e. N) characters.

Mapping onto the reference genome. After the preprocessing step, we mapped all the remaining

∼ 2.2 billion end sequences to the human genome reference assembly (UCSC build 36) using

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 52

mrFAST [7], allowing for edit distance ≤ 2. Note that mrFAST returns all possible map locations

of read sequences, thus an OEA read can be aligned to multiple locations in the reference genome.

In total, 15, 173, 562 pairs of reads (30, 347, 124 end-sequences) were identified as orphans, while

83, 662, 790 reads were identified as OEAs.

Orphan assembly. Using ABySS [134], we assembled the orphan paired-end reads into 4, 154

contigs of size ≥200bp. (N50 = 995). In the rest of this chapter we call these contigs as ABySS

contigs. As an independent assessment, we also generated the sequence assembly of the orphans

using the EULER [28] algorithm, which we call EULER contigs. EULER returned 4, 564 contigs of

size ≥200bp. (N50 = 730).

Contamination removal. Next, we screened the orphan contigs to test for contamination. Using

BLAST [12], we compared the orphan contigs with the nt database 4, and removed the contigs that

align to consensus sequences of known contaminants (Escherichia coli, bacteriophage, herpesvirus,

plasmid, Epstein-Barr, bacterium, bacteria) from further consideration. In total, 39 contigs were

removed from the ABySS contig set due to contamination, where the majority were due to Epstein-

Barr, a virus commonly used for cell immortalization. Figure 3.3 shows the length distribution

of the ABySS contigs of length ≥100bp after the contamination removal. Note that out of 4,115

ABySS contaminant-free contigs (≥200bp), 1,984 are ≥500bp and 778 are ≥1Kbp long. Among

the EULER contaminant-free contigs, 1, 690 are ≥500bp and 582 are ≥1 Kbp.

We then mapped the orphan contigs to the human genome reference assembly (both build35 and

build36) using BLAST in order to remove the orphan contigs with high sequence identity with the

reference genome. 493 of ABySS contigs of length ≥200bp could be mapped onto either build35

or build36 with more than 99% identity (548 of EULER contigs). We removed such contigs from

consideration in the remainder of the NovelSeq pipeline. The observation that 493 of the ABySS

contigs could be aligned to the reference genome (build35 or build36) can be explained as follows:

The orphan reads used in creating the ABySS contigs might be from regions of the genome with

a high abundant of SNPs or short indels and could not be mapped onto the reference genome with

a high similarity (edit distance ≤ 2). However, when using BLAST, the assmebly of those orphan

reads could be mapped onto the reference genome. Another reason could be that such contigs were

generated from the reads classified as orphans due to a low-quality sequence at the tails of the reads.

They can still be assembled into reliable contigs since both AbySS and EULER built de Bruijn

4http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastdb.html

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 53

Figure 3.3: Histogram of the length distribution (log scale) of all ABySS (blue) and EULER (red)
contigs of at least 200bp long.

graphs from 25bp subsequences of the reads, effectively discarding the sequence tails causing the

mapping artefacts.

We used our clustering algorithm followed by the set cover approach to cluster the OEA reads,

and obtained 10, 560 sets of OEA clusters with a high support 5 on each side (i.e. both + and -

strands). Each side (or strand) of the detected OEA clusters were independently assembled with

our local assembly routine, mrSAAB. Resulting OEA contigs were then processed together with the

orphan contigs in the last phase of the NovelSeq pipeline, mrBIG. In summary, we anchored 130

EULER contigs and 113 ABySS contigs independently to the reference genome using the NovelSeq

pipeline. In the merging phase of the orphan and OEA contigs (mrBIG), NovelSeq requires the

alignment score between the orphan contig and the OEA contig to be ≥50. The alignment score

is calculated as the score of the local alignment under affine gap model, where the match score is

+1, mismatch penalty is −1, and gap penalties are −16 and −4 for gap opening and extension,

respectively. The minimum requirement for the alignment score is a user defined parameter in the

NovelSeq pipeline. Clearly, the lower alignment score one chooses at the merging phase, the more

5We considered the OEA clusters supported by ≥10 OEA reads in both strands, where ≥20 OEA reads were required
to support the cluster in at least one strand.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 54

orphan contigs can be anchored to the reference assembly.

Recently, Kidd et al. sequenced all fosmid clones (∼40Kbp each) generated from the genome

of the same individual (NA18507) using the traditional Sanger method to build a map of novel

insertions with high quality sequence information [75]. We used this dataset as the gold standard

to test the accuracy of the NovelSeq pipeline. As shown in Table 3.1, we anchored >70% of the

orphan contigs (with high sequence identity to a novel insertion sequence detected by fosmids) to

locations in concordance with the fosmid-based predictions. Our concordance rate increases to 78%

for ABySS contigs of length ≥500bp. Note that some of the fosmid sequences were not anchored

to the human genome reference assembly, thus we were not able to test the accuracy of the loci we

predicted for the contigs that are highly identical to such fosmid sequences.

NA18507 # merged same locus different locus
minimum length 500bp 200bp 500bp 200bp 500bp 200bp

ABySS 78 113 37 50 10 21
EULER 85 130 35 51 14 23

Table 3.1: This table shows two different result sets depending on the minimum length of the or-
phan contigs considered for the merging phase. For both AbySS and EULER contigs, we show
the number of orphan contigs that are merged with an OEA contig (and hence anchored) with an
alignment score ≥50. Same locus (table header) indicates the number of orphan contigs with high
sequence identity to a novel insertion sequence detected by fosmids and loci in concordance with
the fosmid-based predictions. Different locus (table header) indicates the number of orphan contigs
with high sequence identity to a novel insertion sequence detected by fosmids but with loci not in
concordance with the fosmid-based predictions.

We need to re-emphasize that anchoring a novel insertion is not an easy task if there are repeat

sequences (that also are not represented in the reference genome) at the flanks of the inserted se-

quence. Note that the dataset used here is generated by the Illumina platform and the insert size is

very small (209bp). Any anchoring strategy that utilizes the OEA concept would fail to do so in

such cases, since the OEA read pair will be too short to span over the flanking repeat if the repeat

length is larger than the insert size (for example an Alu element is typically 300bp). For a more

reliable OEA/orphan anchoring step, longer insert sizes are required.

Comparison of the orphan contigs with the NA18507 fosmid shotgun sequence library

We compare the sequence content of both ABySS and EULER contigs with a set of 2, 509 sequence

contigs assembled from one end anchored fosmid end sequences as previously described by Kidd et

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 55

al. [75]. This fosmid resource was end-sequenced using capillary technology, and in the remainder of

this chapter, we denote the sequence assembly generated from this dataset as fosmid contigs. Using

cross match [42] with default parameters, we observed that 1, 789 (∼71%) fosmid contigs overlap

with the ABySS contigs, and 1, 754 (∼70%) fosmid contigs overlap with the EULER contigs. Figure

3.4(a) shows the comparison between ABySS and EULER contigs against the fosmid contigs. Next,

we compared both ABySS and EULER orphan contigs with the novel sequences found by a recent

study by Li et al. [92] (n=3,630; Figure 3.4(b)) based on whole-genome de novo sequence assembly

using SOAPdenovo [92]. The reader can easily verify that de novo sequence assembly using the

entire next-generation shotgun sequence read library requires extensive computational resources

that are not needed by our method. Finally, Figure 3.4(c) depicts the comparison between ABySS

and EULER contigs and the SOAPdenovo [92] and fosmid contigs.

Comparison with WGS libraries and the Venter genome

Finally, we used BLAST to compare the contaminant-free orphan contigs generated by ABySS

(n=4,115) and EULER (n=4,525) with the WGS library generated from the genome of the same

individual (NA18507) using Sanger sequencing, WGS library generated from the genome of Craig

Venter [89], as well as the sequence assembly of the Venter genome (HuRef [89]. In Table 3 we also

provide comparisons against human genome reference assembly (both build35 and build36). We

required 99% and 95% sequence identity to call a hit in the database search. In addition, we provide

the comparison statistics separated by the minimum contig length (i.e. ≥200bp and ≥500bp). We

observe that the novel sequences detected in NA18507 genome are also found in the Venter genome,

suggesting that these sequences correspond to rare deletions in the reference genome assembly.

3.2 Transposon insertion discovery

Transposons are repetitive elements in the genome that occupy a large fraction of the human genome,

including Alu, L1, and SVA elements [107]. Most of these elements are fixed in the human lineage;

however, around 0.05% of the transposons are still active, and the copy number and loci of these

active transposons vary in the genomes of different individuals. Many studies have demonstrated

that transpoable elements contribute to genome evolution and human genetic diversity. An inter-

esting case was shown by Bekpen el al. [20]: insertions of an Alu element were posited to cause

pseudogenization of the IRGM gene at the split of New World and Old World monkey lineages

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 56

1831 1791

1765 744

2012

1741

1965

768

ABySS

Fosmid

EULER-SR
Fosmid

(a) The comparison of ABySS and fosmid contigs (left), and
the comparison of EULER and fosmid contigs [75] (right)

(b) The comparison of ABySS and SOAPdenovo contigs [92]
(left), and the comparison of EULER and SOAPdenovo contigs
(right)

(c) The comparison of ABySS and EULER contigs (left), and the
comparison of SOAPdenovo [92] and fosmid contigs [75] (right)

Figure 3.4: Venn diagrams depicting pairwise comparisons of novel sequence assemblies generated
by ABySS, EULER, SOAPdenovo [92], and fosmid end-sequences using phrap. Note that we pro-
vide two numbers at the intersections, corresponding to the numbers of contigs in each set that are
almost identical to the contigs in the reciprocal set.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 57

NA18507 ≥ 200bp ≥ 500bp
database 95% 99% 95% 99%

ABySS build35 616 481 236 174
ABySS build36 611 475 222 159
ABySS NA18507 (fosmid end-seq.) 2305 1944 1253 1076
ABySS Venter WGS 3028 2938 1811 1798
ABySS HuRef 3815 3763 1512 1488

EULER build35 670 530 123 100
EULER build36 660 522 114 92
EULER NA18507 (fosmid end-seq.) 2530 2169 1055 933
EULER Venter WGS 4193 4131 1542 1536
EULER HuRef 3272 3127 1329 1309

Table 3.2: The comparison of NA18507 orphan contigs with the WGS libraries and the Venter
genome. For different cases, the number of orphan contigs with a high similarity to each library is
given.

35-40 million years ago (mya) by disrupting the open reading frame (ORF). A second transpo-

son integration (ERV9) restored the ORF ∼24 mya in the common ancestor of apes and humans,

demonstrating the first report on a “resurrected” gene. The human IRGM gene plays an important

role in the immune system [20] and is associated with Crohn’s disease [98]. Transpositions are as-

sociated with the expansion of interspersed segmental duplications [14] and can promote both the

creation of segmental duplication in human genomes [157] and the alteration of gene transcription

by gene-trapping and exonization.

The discovery of the Alu elements more than 30 years ago [130, 59] as 300 basepairs (bp) in-

terspersed repeat sequences commonly found within the introns of genes [34] prompted an active

area of research to address the role of transposable elements in genome evolution and human dis-

ease [17]. More than one million Alu retrotransposons comprise over 10% of the human genome

sequence [4, 17, 61]. They are partitioned into numerous subfamilies, which have been active at

different time points during primate evolution [117, 93]. Currently, 30 distinct categories of Alu

subfamilies are recognized [107] with AluYa5 and AluYb8 being most active in the human lineage

[26]. Alu retrotranspositions have numerous consequences leading to insertional mutations, gene

conversion, recombination, alterations in gene expression, pseudogenization, structural variation

and formation of segmental duplications [17, 14, 69, 157].

Traditional methods to detect Alu insertion polymorphisms involve polymerase chain reaction

(PCR) where putative polymorphic loci are genotyped one by one [15, 128, 32]. Recently, PCR-

based capture and high-throughput sequencing methods have been applied to quickly screen thou-

sands of transposition events [37, 155]. Although promising, these methods also require the design

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 58

of appropriate PCR primers and are susceptible to cloning failures. Other methods to detect retro-

transposons include paired-end and full fosmid sequencing [75, 19, 76], transposon insertion profil-

ing by microarray [60], and restriction enzyme profiling followed by Sanger and Roche 454 sequenc-

ing [65]. Whole-genome shotgun sequencing (WGS) of different individuals [89, 21, 152, 154, 101]

provides a resource to discover Alu element insertions at a much higher scale and throughput. How-

ever, such findings are limited by the read length of the sequencing platform [157], and few studies

have attempted to systematically discover these events at the individual genome level.

In what follows, we describe a computational method to discover transposon insertions in genomes

sequenced by paired-end next-generation sequencing (NGS) platforms. We demonstrate the sensi-

tivity and specificity of our algorithm by simulation, proving its detection power. We also apply this

algorithm to construct Alu retrotransposition maps from the genomes of eight human individuals

sequenced with the Illumina platform. In addition, we also analyze one Yoruban trio from Ibadan,

Nigeria, and describe the properties of parent-to-child Alu transmission.

3.2.1 The formulation of transposition events

In the first chapter, we discussed the general framework for detecting structural variation events us-

ing paired-end reads, based on aligning the paired-end reads to the reference genome and observing

the discordancies. For a full case study of deletion, small insertion and inversion events, we refer

the reader to [55]. In the previous section, we demonstrated framework to identify novel sequence

insertions, using paired-end sequencing. Here, we focus on identifying transposons in sequenced

genomes.

As usual, we denote a read pair as pei and the distance between the end coordinate of the

proximal read and the start coordinate of the distal read as the GapSize (i.e. the insert-size minus

the total length of the reads). An alignment of a read pair to the reference genome is denoted as

concordant [147] if the distance between the aligned end-reads is in the range [∆min,∆max] and the

alignment orientation is +−. The range [∆min,∆max] is empirically calculated by analyzing the

mapping span size distribution of the read pairs.

The set of discordant paired-end reads is represented as R = {pe1, pe2, · · · , pen}. Each discor-

dant paired-end read pei may be mapped to multiple locations in the reference genome. The set of

all alignments of pei is then defined as Align(pei) = {a1pei, a2pei, · · · , ajpei}.
Note that each alignment of pei to the reference genome (ajpei) is a 5-tuple that represents the

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 59

map locations of the end-reads and their alignment orientation. More formally,

ajpei = ((L`(pei), Lr(pei)), (R`(pei), Rr(pei)), or(pei))

where the pair (L`(pei), Lr(pei)) represents the map location (i.e. both start and end loci) of the left

end-read of pei, (R`(pei), Rr(pei)) is the mapping location of the right end-read of pei, and or(pei)

represents the map orientation of both ends. Note that or(pei) ∈ {+−,++,−−,−+}.
In what follows, we study two classes of transposition events and present the set of conditions

based on the map locations and orientations of the paired-end alignments that imply a transposi-

tion event within each of these classes. First, we consider those transposition events in which the

transposed segment is in direct orientation, and present the set of conditions for all of the four

different cases of this class (denoted as Class I). We denote this type of transposition event by

SVCopy(LocL, LocR, LocBrL , LocBrR). This indicates a region being copied is a segment inside

loci [LocL, LocR] (i.e. a substring of region [LocL, LocR]), and it is pasted (copied) to a locus be-

tween LocBrL and LocBrR . We also study the cases for Class II, where the transposon is copied in

inverted orientation, and we denote the event as SVCopy(LocL, LocR, LocBrL , LocBrR).

A transposition SV of Class I is defined as SVCopy(PosL, PosR, PosBr), where the genomic

segment from positions PosL to PosR is copied into location PosBr. Similarly, a copy event

SVCopy denotes a transposition event in inverted orientation.
One of the following four cases should hold for a paired-end read alignment ape that supports a

transposition event (Class I):

Case 1 (PosBr < PosL and or(ape) = +−) : ∆min < PosBr − Lr(ape) +R`(ape)− PosL < ∆max

(Figure 3.5(a))

Case 2 (PosBr < PosL and or(ape) = −+) : ∆min < L`(ape)− PosBr −Rr(ape) + PosR < ∆max

(Figure 3.5(b))

Case 3 (PosBr > PosR and or(ape) = +−) : ∆min < R`(ape)− PosBr + PosR − L`(ape) < ∆max

(Figure 3.5(c))

Case 4 (PosBr > PosR and or(ape) = −+) : ∆min < PosBr −Rr(ape) + L`(ape)− PosL < ∆max

(Figure 3.5(d))

Similarly, one of the following cases should hold for a transposition event of Class II:

Case 1 (PosBr < PosR and or(ape) = ++) : ∆min < PosBr − Lr(ape) + PosR −Rr(ape) < ∆max

(Figure 3.6(a))

Case 2 (PosBr < PosR and or(ape) = −−) : ∆min < L`(ape)− PosBr +R`(ape)− PosL < ∆max

(Figure 3.6(b))

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 60

Pos
Br

Reference

Donorxx

xx

Pos
L

Pos
R

(a) Case 1:PosBr < PosL and or(ape) = +−

Donor

Reference

xx

xx x

Pos
Br

Pos
L

Pos
R

(b) Case 2:PosBr < PosL and or(ape) = −+

Reference

Donorxx

xx

Pos
Br

L R
PosPos

(c) Case 3:PosBr > PosR and or(ape) = +−

Pos
L

Donor

Reference

xx

x x

Pos
Br

Pos
R

(d) Case 4:PosBr > PosR and or(ape) = −+

Figure 3.5: The set of conditions for each case that suggests a transposition event in which the
transposed segment is copied in direct orientation (Class I).

Case 3 (PosBr > PosR and or(ape) = ++) : ∆min < PosBr −Rr(ape) + PosR − Lr(ape) < ∆max

(Figure 3.6(c))

Case 4 (PosBr > PosR and or(ape) = −−) : ∆min < R`(ape)− PosBr + L`(ape)− PosL < ∆max

(Figure 3.6(d))

Maximal valid clusters and transposition event detection

A set of discordant paired-end read alignments that support the same potential transposition event is

called a “valid cluster” and denoted by V Clui = {ai′1pei1 , ai′2pei2 , · · · , ai′`pei`}.
As per [55], a “maximal valid cluster” is defined as a valid cluster where no additional paired-

end read alignments can be added such that the cluster remains valid. Note that all paired-end read

alignments in maximal valid clusters suggest the same potential structural variation. It was shown

that it is sufficient to calculate all maximal valid clusters to solve the maximum parsimony structural

variation (MPSV) problem. This can be done in polynomial time (with respect to the number of

paired-end alignments), where the computation of all valid clusters is unnecessary, and exponential

in run time. In [55, 136], efficient algorithms to find the maximal valid clusters are presented to

predict insertion, deletion, and inversion events.

To find all maximal valid clusters for transposition events, a naı̈ve method would investigate all

O(n3) possibilities of potential transposition events, for each of the locations PosBr, PosL, and

PosR between 1 an n, where n is the genome length. This can be done by first creating a cluster

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 61

���
�������
�������
�������

������
������
������
������

������
������
������
������

L
Pos

Reference

Donorxx

x x

Pos
Br

Pos
R

(a) Case 1:PosBr < PosR and or(ape) = ++

��������������������������

�������
�������
�������
�������

Donor

Reference

x

xx

x

x

Pos
Br

Pos
L

Pos
R

(b) Case 2:PosBr < PosR and or(ape) = −−

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

Reference

Donorxx

xx

Pos
Br

Pos
L

Pos
R

(c) Case 3:PosBr > PosR and or(ape) = ++

������
������
������
������

�������
�������
�������
�������

������������

xx

Reference

Donor

xx

Pos
Br

Pos
L

Pos
R

(d) Case 4:PosBr > PosR and or(ape) = −−

Figure 3.6: The set of conditions for each case that suggests a transposition event in which the
transposed segment is copied in inverted orientation (Class II).

for each possible values of PosBr, PosL, PosR, and then adding those paired-end reads that satisfy

the conditions given above to the appropriate cluster. Finally, a set of maximal clusters would be

selected. The above method guarantees to find all the maximal valid clusters but it would be time

consuming in practice. In what follows, we will present a more efficient method to find all the

maximal valid clusters provided that the potential positions of copied segments or copied sequences

are known.

We define Φ = {(φ1`
, φ1r), (φ2`

, φ2r), · · · , (φt` , φtr)} as the set of (non-overlapping) segments

that can be copied to other locations (Φ can represent the annotated transposons in the reference

genome assembly). Note that ∀ i ≤ t, φi` is the start location of the i-th segment and φir is the end

location. The coordinates for the intervals are referred to as “end-points” in the rest of this section

for simplicity.

For each paired-end read mapping ape with exactly one end-read mapped to a transposon

(e.g. φi = (φi` , φir)), there exists a range of locations, or “breakpoint intervals” Bri(ape) =

[BriL(ape), BriR(ape)], where ape supports a copy of subsequence φi = (φi` , φir) to any location

within Bri(ape) in the reference genome. Note that for a given ape and a segment φi = (φi` , φir),

the breakpoint interval Bri(ape) can easily be computed using the set of conditions given earlier in

this section.

Now we present an efficient algorithm to find the maximal valid clusters supporting copy of

segment φi = (φi` , φir) to any location in genome (the algorithm can trivially be extended for other

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 62

segments in Φ).

Without loss of generality we assume that there are total ofmi discordant mappings with exactly

one end mapped to φi (Please note thatm =
∑t

i=1mi, where total number of segments is t). Lets as-

sume WLOG the set of such discordant paired-end read mappings isApei = {ape1, ape2, · · · , apemi}.
In addition the set of breakpoint intervals for the paired-end read alignments in set Apei is denoted

as Bri = {[BriL(ape1), BriR(ape1)], [BriL(ape2), BriR(ape2)], · · · , [BriL(apemi), Br
i
R(apemi)]}.

It is trivial to see that finding maximal valid clusters for all copies of segment φi = (φi` , φir)

into any position in the genome is equivalent to finding all maximal intersecting breakpoint intervals

for all discordant paired-end read mappings apei, which have one end in the segment φi. Thus,

we are interested in finding all maximal intersections of the breakpoint intervals Bri. We present

an O(m logm) +O(size of output) algorithm which outputs all the maximal intersecting intervals.

This algorithm is the optimal solution to this problem.

Algorithm for finding all the maximal intersecting intervals

Given a set of intervals (with cardinality of mi), we want to find all the maximal intersecting inter-

vals. We first sort all the end points of the m intervals (2m endpoints) in ascending order based on

their values. We call this sorted list of intervals L where each interval appears twice in the list L.

We then scan the sorted list from left to right:

• If we observe a point which is at the left endpoint of an interval, we insert the interval to

a minimum heap data structure, denoted as heap1. The priority value of heap1 is the right

endpoint of the interval inserted to it. After each insertion of a new interval to heap1, we

assign a value true to a flag denoted as newIns.

• If we observe a point which is at the right endpoint of an interval, we first check the flag

newIns. If it isset to true, we output all the elements in heap1 as one maximal cluster and set

newIns to false. We then remove the interval from heap1 since it is guaranteed that the value

of the right endpoint of the interval removed from the heap is the same as the right endpoint

of the interval reached in scanned list L). We continue removing intervals from heap1 until

the priority value of the head element of the heap remains unchanged.

The above algorithm outputs all the maximal intersecting intervals, which are indeed equivalent

to the maximal valid clusters we were originally looking for.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 63

Complexity : It can be shown that the running time of the above algorithm is O(mi logmi +

s), where s is the size of output. The first step of the algorithm takes O(mi logmi), because of

the sorting procedure. In the worst case, since each removal/insertion operation in the heap takes

O(logm) time, the second step also takesO(m logm). It takesO(s) to write the output and generate

the maximal clusters. In addition, it is proven that even finding the maximum clique in an interval

graph has a lower bound of Ω(mi logmi) [45]. Thus, our algorithm gives the optimal solution for

finding all maximal clusters.

Detection of transposon insertion events from maximal valid clusters

Each maximal valid cluster for different SV types (i.e. insertion, inversion, deletion or transposition)

only suggests a potential structural variation event. The fact that each paired-end read can be mapped

to multiple locations that are included in multiple maximal valid clusters proves that some of these

implied potential variants are incorrect (i.e. some of the variations implied by maximal valid clusters

are not real).

In [55], a combinatorial method was presented to select the minimum number of these clusters

(which is equivalent to selecting the minimum number of structural variant events), such that each

discordant paired-end read has a mapping in to at least one of the selected valid clusters. This prob-

lem was called Maximum Parsimony Structural Variation (MPSV), and an approximation algorithm

was given. A similar algorithm to the one in [55] can be used to find transposon insertion events

from the maximal valid clusters created by the algorithms presented in the previous section.

In the next chapter, we will introduce an extension to Maximum Parsimony Structural Variation

problem, and provide an efcient method to solve it. We will show that our new method outperforms

our previous algorithm in [55].

3.2.2 Experimental Results

Implementation

It is well-known that the number of transposons in the human genome is quite large (around 1 mil-

lion for only Alu elements). Considering all known transpoable elements (segments in genome) as

potential transposon sequences for our algorithm would be very time consuming and unnecessary.

These transpoable elements can be clustered together as super-families; in fact, most of these fami-

lies are well known and their consensus sequences are available. In order to make experiments more

manageable and less time-consuming, we used the consensus sequence of these transposon families

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 64

(available from [137]) to represent each of the families. We create a new sequence, denoted as chrN,

by appending a poly N sequence to each of the consensus sequences from [137] and connecting

them to each other. In our experiments only Alu and SVA were considered.

For mapping purposes, we use mrsFAST [46], a cache-oblivious short read mapper which was

recently developed as an extension of mrFAST [7]. mrsFAST maps the paired-end reads to all

locations with Hamming distance less than a user-defined threshold ω. In this experiment, we set

ω = 2.

Before running our algorithm, we find the mappings needed for our transposon insertion discov-

ery algorithm in an efficient manner. Given paired-end short reads R = {pe1, pe2, · · · }, these are

the steps needed to find the mappings:

• First, we map all the paired-end reads to chrN via mrsFast and we discard the paired-end reads

if none of their end-reads map onto chrN. The remaining reads are the ones that have at least

one end mapped to chrN.

• Second, after all the reads returned in the first step are mapped to the reference genome, we

discard all the the paired end reads that have at least one concordant mapping.

• Third, we map the reads from step two as single-end reads to chrN and to the reference

genome. We post-process these mappings to get all the paired mapping locations that have

one end in chrN and the other end in the reference genome. The outcome of this step will be

used as the input mapping for our transposon algorithm described earlier.

Transposon insertion discovery on J.Craig Venter genome

A list of transposon insertions into the J. Craig Venter genome (HuRef) [89] in comparison to Build

36 of the NCBI reference genome was published [157]. We used the available HuRef genome to

produce short paired-end reads, very similar in theory to reads which are generated by the Illumina

technology (assuming Venter genome was sequenced by Illumina platform), to see how many of the

known/validated mobile insertions our algorithm is able to predict and test how many of the known

mobile insertions it will not find.

In our experiment, we examined our transposon insertion discovery algorithm on 22 chromo-

somes of HuRef (from chr1 to chr22). We created paired-end reads from the HuRef genome with

a read length of 36bp and coverage of 10x-fold. The fragment insert-sizes for paired-end reads

were chosen randomly from a normal distribution very similar to the fragment size distribution of

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 65

Chromosome Validated Predicted Found Recall Precision
Chromosome 1 41 Alu 42 Alu 40 88% 95%

4 NCAI
Chromosome 2 59 Alu 57 Alu 56 91% 98%

2 NCAI
Chromosome 3 42 Alu 40 Alu 40 90% 100%

1 NCAI
1 SVA

Chromosome 4 43 Alu 41 Alu 40 87% 97%
4 NCAI 1 NCAI 1

Chromosome 5 39 Alu 44 Alu 35 90% 80%
1 SVA 1 SVA 1

Chromosome 6 59 Alu 55 Alu 53 88% 96%
1 NCAI
1 SVA 1 SVA 1

Chromosome 7 24 Alu 22 Alu 20 83% 91%
Chromosome 8 34 Alu 33 Alu 33 92% 100%

2 NCAI
Chromosome 9 23 Alu 23 Alu 21 88% 92%

1 NCAI 1 NCAI 1
1 SVA

Chromosome 10 33 Alu 32 Alu 32 94% 100%
2 NCAI 1 NCAI 1

Chromosome 11 35 Alu 32 Alu 32 85% 100%
3 NCAI 1 NCAI 1
2 SVA 1 SVA 1

Chromosome 12 33 Alu 34 Alu 31 84% 91%
4 NCAI

Chromosome 13 34 Alu 34 Alu 34 90% 100%
3 NCAI
2 SVA 1 SVA 1

Chromosome 14 19 Alu 20 Alu 19 95% 95%
1 NCAI
2 SVA 2 SVA 2

Chromosome 15 24 Alu 21 Alu 20 83% 95%
Chromosome 16 12 Alu 12 Alu 12 80% 100%

3 NCAI 1 NCAI 1
Chromosome 17 9 Alu 9 Alu 9 77% 100%

2 NCAI
2 SVA 1 SVA 1

Chromosome 18 22 Alu 21 Alu 20 91% 95%
Chromosome 19 11 Alu 11 Alu 11 80% 100%

3 NCAI 1 NCAI 1
1 SVA

Chromosome 20 11 Alu 13 Alu 9 77% 71%
2 NCAI 1 NCAI 1

Chromosome 21 7 Alu 7 Alu 7 100% 100%
Chromosome 22 7 Alu 5 Alu 5 71% 100%

Table 3.3: In this table we show the precision and recall of our transposon (Alu, NCAI, and SVA) in-
sertion discovery algorithm on Venter Genome. Our algorithm is run on simulated short paired-end
reads created from the assembled genome [89]. The comparison is done against the Alu insertions
found and validated by [157] using the full assembled genome. As it can be seen in all the chromo-
somes that we experimented, impressively our algorithm has a very high recall and precision.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 66

NA18507 sequenced genome published by the Illumina technology [21]). We used simulated short

paired-end reads form HuRef genome, instead of using the real reads from NA18507 individual, be-

cause the list of validated mobile insertion elements for this individual is not yet known. See Table

3.2.2 for the results.

In our experiments we tried to recover Alu, NCAI (Non-classical Alu Insertion), and SVA in-

sertions. In Table 3.2.2, our results are compared with known transposon insertions on the HuRef

genome published in [157]. As you can see, our method is able to find most of the known/validated

transposon insertions (high recall rate - more than 85%) while the number of the predicted calls that

do not match the list of validated calls published in [157], is very low (high precision rate around

90%).

We also have made an interesting observation about the Alu insertions (Alu and NCAI) which

were not found by our algorithm. Most of the Alu insertions which were not found by our algorithm,

were much shorter than the set of Alu consensus sequences we used (the set of of Alu consensus

sequences is provided in [137]) in creating chrN for our mappings. We show the distribution of

length of Alu insertions which we were not able to find is very different from the length of the Alu

consensus sequences provided in [137]. This suggests that majority of the Alu insertions which were

not found by our algorithm is because of the lacking of their consensus sequence in chrN, not the

shortcoming of our discovery algorithm.

Figure 3.7 shows the rate of false and true discovery of our algorithm for differnet length ranges

of the Alu sequences. As it can be seen in the figure, the rate of true discovery of our alagorithm for

full-length Alu elements is near perfect.

Alu insertion discovery on 8 human whole genomes

We downloaded WGS data (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) from the genomes of

eight human individuals generated using the Illumina paired-end sequencing technology (Table

3.4). We considered individuals from different populations, including three Yoruban individuals

from Ibadan, Nigeria (YRI: NA18506, NA18507, and NA18508 [21]), one Centre d’Etude du Poly-

morphisme Humain (CEPH) individual of European origin (Utah resident with ancestry from north-

western Europe, CEU: NA10851 [111]), two Khoisan individuals from southern Africa (KB1 [131]

and HGDP01029 [43]), one Han Chinese (YH [152]), and one Altaic Korean (AK1 [78]). The three

Yoruban genomes constitute a parent-child trio providing us the opportunity to study transmission of

Alu insertions (Table 3.4). We computationally predicted novel Alu insertion loci using the method

we presented earlier in this section [57]. Briefly, we mapped the WGS data using mrFAST [7] to the

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 67

Figure 3.7: The length distribution of true positive and false negative Alu insertion predictions. Note
that all of the Alu consensus sequences used in creating chrN were longer than 250bp.

reference genome (National Center for Biotechnology Information (NCBI) build 36) and identified

all discordant read pairs. We then realigned such reads to both the reference genome and a database

of Alu consensus sequences using a modified version of mrsFAST [46]. We applied VariationHunter

to predict Alu insertions in the sequenced samples dynamically adjusting the minimum read support

as a function of sequence and physical coverage of each analyzed genome (Table 3.4).

In total, we predicted 2,913 novel Alu insertions not present in the human reference genome

for the YRI trio sequence data (see Figure 3.8) and a total of 4,342 Alu insertions in the entire

Individual Population # reads Read Insert Min # Alu dbRIP dbRIP
(M)illion Length (bp) size (bp) Support + Others

NA18506 YRI 3444M 35 222 6 1807 294 440
NA18507 [21] YRI 2261M 36-41 208 6 1377 292 435

NA18508 YRI 3175M 35 203 6 1714 310 451
NA10851 [111] CEU 1309M 36-101 132-384 5 1282 370 501

AK1 [78] Korean 1430M 36-106 132-384 2 909 225 327
YH [152] Han Chinese 979M 35 135-440 3 1160 307 462
KB1 [131] Khoisan 842M 36-37 181 2 457 92 144

HGDP01029 [43] Khoisan 161M 76 150-300 2 307 60 93

Table 3.4: Genome of eight donors studied for Alu insertions.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 68

set (see Figure 3.9). We find that only 13.2% (571/4,342) of these loci have been previously re-

ported in the database of retrotransposon insertion polymorphism (dbRIP) [67]. If we include two

additional, published surveys [65, 155], we find that 79.0% (3,432/4,342) of our calls are novel (

dbRIP+other column in table 3.4). Of the Alu integration sites, 33.1% (1,437/4,342) mapped within

genes as opposed to the expected 37.3% of the genome based on the most current (RefSeq) gene

definition (downloaded from University of California, Santa Cruz (UCSC) Genome Browser on

May 20, 2010). This represents a significant (p ≤ 0.001) depletion based on simulation confirming

potential selection and preferential integration within gene-poor regions of the human genome (see

Figure 3.10). We identified 31 Alu elements that retrotransposed within an exon, of which three are

predicted to disrupt a coding sequence (please see Figure 3.11).

Our collaborators at the Genome Sciences department of the University of Washington, exper-

imentally validated a set of Alu insertion predictions from seven of the eight genomes using PCR.

The combined validation results suggest excellent sensitivity (63/64 = 98.4%) for our algorithm, but

also suggest caution in interpreting the map location precision based strictly on in silico mapping.

The detail of the PCR experiments are beyond the scope of this thesis and we refer the curious reader

to the resource paper [56].

3.2.3 Familial Transmission

We focused on the parent-child trio (NA18506, NA18507 and NA18058) to assess the transmission

characteristics of the novel Alu insertions. We treated each genome individually and then com-

pared the genomes for unique and shared Alu retrotransposons. We found no significant difference

between non-transmitted and transmitted Alu elements from either parent, although slightly more

transmissions were predicted from the mother due to increased sequence coverage and X chromo-

some transmissions from the mother to the proband (NA18506) (please see Figure 3.12).

As it can be seen in the figure, the number of false-positive de novo events in the child is ex-

tremely high. We employed further heuristics on this data set, which led to the publication [56].

However, we do need further improved analysis to increase the sensitivity for transmitted Alu inser-

tions. We will discuss new strategies for handling multiple genomes in the next chapter, in detail.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 69

Figure 3.8: The Alu insertion loci are shown for the YRI trio in the order of NA18506, NA18507
and NA18508.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 70

Figure 3.9: The Alu insertion loci are shown for 7 different individuals

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 71

Figure 3.10: Gene overlap analysis. 1437/4342 (33.1%) of predicted Alu insertions map within a
human gene as defined by RefSeq (green arrow). The histogram shows the expected distribution of
gene overlap based on 1000 permutations.

CHAPTER 3. NOVEL SEQUENCE AND TRANSPOSON INSERTIONS DISCOVERY 72

Figure 3.11: Gene disruptions. The locations of three novel insertions within the coding exons of
PRAMEF4 (chr1:12,864,273-12,864,302), CHI3L2 (chr1:111,573,857-111,573,923), and PARP4
(chr13:23,907,208-23,807,370) are shown. Unfilled black rectangles represent the exons (and parts
of exons) in the untranslated region (UTR), where filled rectangles show protein-coding exons. First
and third figures are two predicted Alu insertions mapped within a coding region, while second
figure is an insertion in UTR.

Figure 3.12: A three-way comparison of novel Alu insertion polymorphisms in the YRI trio: when
they are predicted separately.

Chapter 4

Handling multiple genomes

With the increasing popularity of whole genome shotgun sequencing (WGSS) via high-throughput

sequencing technologies, it is becoming highly desirable to perform comparative studies involving

multiple individuals (from a specific population, race, or a group sharing a particular phenotype).

The conventional approach for a comparative genome variation study involves two key steps: i)

each paired-end high throughput sequenced genome is compared with a reference genome and its

(structural) differences are identified, ii) the list of structural variants in each genome are compared

against each other.

In order to identify genomic variations with much higher accuracy than what is currently pos-

sible, we propose to move from the current model of (1) detecting genomic variations in individual

next generation sequenced (NGS) donor genomes independently, and (2) checking whether two or

more donor genomes indeed agree or disagree on the variations - we will call this model, ”inde-

pendent structural variation detection and merging” (ISV&M) framework. As an alternative, we

introduce a new model in which genomic variation is detected among multiple genomes simultane-

ously.

Our new model can be likened to multiple sequence alignment methods which were introduced

to overcome the limitations of pairwise sequence aligners - the primary source of sequence analysis

in the early days of genomics. Pairwise sequence alignment methods implicitly aim to match iden-

tical regions among two input sequences which are not interrupted by mismatches or indels. They

achieve this under the maximum parsimony principle that suggests to minimize the (probabilisti-

cally weighted) number of single nucleotide insertions, deletions and mismatches in an alignment.

Unfortunately the most likely alignment is many times incorrect. Accuracy in sequence alignment

can be improved significantly by the use of multiple sequence aligners, provided that several related

73

CHAPTER 4. HANDLING MULTIPLE GENOMES 74

sequences are available for use. Today, at least for the purposes of identifying genomic variants at a

single nucleotide scale, multiple alignment is the ”technology” of choice.

The main contribution of this section is a set of novel algorithms for identifying structural dif-

ferences among multiple genomes through the use of multiple sequence comparison methods. Our

algorithms will help better analyze vast amounts of publicly available genomic sequence data (e.g.

1000 genomes project [5, 124]), which include WGSS data from diverse populations (and members

of the same population or even family).

Available methods for SV discovery typically employ paired-end sequencing: inserts from a

donor genome (from a tightly controlled length distribution) are read at two ends, which are later

aligned to a reference genome. Provided that the mapping loci is correctly identified, an increase

or decrease of the distance between the end reads indicate an insertion or a deletion. We refer the

reader to the Introduction section of this thesis for a summary of SV discovery methods, or the

surveys [6, 105]

In the previous chapter we demonstrated, for example, that on the well known NGS genomes of

the Yoruban family (involving a child, the mother and the father, NA18506, NA18507, NA18508)

[21], the independent application of VariationHunter (the only publicly available algorithm for Alu

discovery on NGS genomes) predicts up to 410 de novo Alu inserts in the child! A careful inspection

of the clusters obtained by VariationHunter on all three individuals on the other hand, reveals that

all of these 410 novel Alu inserts predicted are indeed false positives mostly due to single nucleic

variation (SNVs) or varying read coverage, etc.

Note that soft clustering strategies for SV detection between one donor genome and a reference

genome do provide both false positives, as well as false negatives, due to SNV effects and others.

However, the proportion of false positives among all positives predicted will be low because of the

high number of actual SVs typically observed between a donor and the reference. On the other

hand, when the goal is to identify structural differences between two highly related donors, i.e.

donor one by (D1) and donor two (D2), by using the reference (R) as an intermediary, while the

number of false positives (between D1 and R and D2 and R) will be of similar scale, the proportion

of false positives among all positives will be high, simply due to the low number of actual SVs

that would be present between the donor genomes. Thus although VariationHunter (and other soft

clustering strategies) may provide high levels of accuracy for SV detection between one donor and

the reference genome, it may provide a low level of accuracy when finding the structural differences

between two (or more) donor genomes.

CHAPTER 4. HANDLING MULTIPLE GENOMES 75

The CommonLAW Approach. For the purpose of addressing the above issues arising in soft clus-

tering techniques, we introduce the problem of simultaneous SV discovery among multiple paired-

end NGS donor genomes - with the help of a complete reference genome. In order to solve this

problem, we also introduce novel combinatorial algorithms, which we collectively call CommonLAW

(Common Loci structural Alteration discovery Widgets). CommonLAW aims to predict SVs in sev-

eral donor genomes by means of minimizing a weighted sum of structural differences between the

donor genomes as well as one reference genome.1 The (pairwise) weights are a function of (1) the

expected genomic proximity of the individual donors sequenced (see details in the Results Section),

and (2) type, loci and length of the individual structural alterations considered. The problem of min-

imizing (for example, sum-of-pairs) genomic alterations between multiple genomes is NP-hard. In

this section we describe a tight (i.e., asymptotically the best possible) approximation algorithm for

the general simultaneous SV discovery problem - this algorithm is at the heart of the CommonLAW

package. In addition, CommonLAW includes several efficient algorithms and heuristics for some

special cases of the problem.

We have tested CommonLAW on the genomes of three Yoruban (YRI) individuals (mother-father-

child trio) sequenced by Illumina Genome Analyzer with about 30x coverage (i.e. 3.24 × 1011 bp

of sequencing data), for the purpose of predicting deletions and Alu insertions. We compare the

deletion predictions with the validated deletions reported in [5, 124]. We compare the Alu insertion

predictions with Alu polymorphism loci reported in dbRIP [67]. In both cases we observe that

CommonLAW provides a much higher level of accuracy in comparison to VariationHunter, the only

publicly available computational method for Alu insertion discovery in NGS genomes.

In addition, we have tested CommonLAW on a high coverage parent-offspring trio of European

ancestry from Utah (CEU), recently sequenced and analyzed by the 1000 Genomes Project [5].

We demonstrate the predictive power of CommonLAW by comparing its calls with the validated

deletions reported in [5, 124].

1Although it is easy to generalize the formulation we provide here to multiple reference genomes, we do not explore
this problem here due to the lack of alternative, completely - and independently assembled reference genomes.

CHAPTER 4. HANDLING MULTIPLE GENOMES 76

4.1 Methods

4.1.1 Simultaneous Structural Variation Discovery among Multiple Genomes

Given a reference genome and a collection of paired-end sequenced genomes, G1, · · · , Gλ, Si-

multaneous Structural Variation Discovery among Multiple Genomes (SSV-MG) problem asks to

simultaneously analyze the genomes so as to predict structural differences between them and the

reference genome. For solving the SSV-MG problem, notice that a paired-end read from a genome

Gk with no concordant alignment on the reference genome suggests an SV event in Gk [147, 149].

Unfortunately, if the number of discordant alignment locations of a paired-end read is more than

one, the paired-end read potentially supports several SV events. The crucial question we try to an-

swer in this section is among all potential SV events supported by a discordant paired-end read,

which one is correct? In the presence of a single donor genome, one answer to this question was

given by Hormozdiari et al. [55] with the introduction of novel approximation algorithms for the

”Maximum Parsimony Structural Variation” (MPSV) discovery problem. In [55], a SV cluster is

defined as a set of discordant (paired-end read) alignments that can support the same potential SV

event; similarly, a maximal SV cluster is defined as an SV cluster to which no other alignments

could be added [16, 136, 55, 57, 48]. A maximal SV cluster is considered to be a valid cluster if it

satisfies a certain set of mathematical rules specifically defined for each SV event type. [55, 57, 48].

As defined in [55], the MPSV problem for a single donor genome asks to compute a unique

assignment for each discordant paired-end read to a maximal valid SV cluster such that the total

number of implied SVs is minimized. The SSV-MG problem, which generalizes the MPSV prob-

lem to multiple donor genomes, also asks to identify a set of maximal SV clusters to which each

discordant paired-end read can uniquely be assigned - under the maximum parsimony criteria. A

solution of the SSV-MG problem is said to provide support for each SV cluster as a function of

the discordant paired-end reads it assigns to the SV cluster. Intuitively, if the support comes from

paired-end reads from a large number of - especially highly related - genomes (e.g. members of a

family), the SV event is more likely to be ”correct”. The maximum parsimony criteria we employ

is formulated to reflect this observation as follows. Each SV event in a solution to the SSV-MG

problem is associated with a weight, which is a function of the set of the donor genomes on which

the SV event is present (i.e. has at least one discordant paired-end read mapping which is assigned

to the associated SV cluster). If an SV event is present among many donor genomes, its weight will

be relatively small; on the other hand a SV event which is unique to only one donor genome will

have a larger weight. In this setting, the SSV-MG problem asks to identify a set of SV events whose

CHAPTER 4. HANDLING MULTIPLE GENOMES 77

total weight is as small as possible.

4.1.2 The Algorithmic Formulation of the SSV-MG Problem

Given an NGS sequenced donor genome Gk, let the set of its discordant reads (i.e. the reads which

do not have a concordant mapping) be Rk = {pek1, pek2, · · · , peknk
}; thus nk denotes the number of

discordant reads of Gk. Let n =
∑λ

k=1 nk be the total number of discordant reads among all the

donor genomes and letR = R1∪R2∪· · ·∪Rλ be the set of all discordant reads. For the algorithmic

formulation of the SSV-MG problem, the donor genome Gk and all its discordant reads are said to

be of ”color” k.

Note that each discordant read may have several alignment locations on the reference genome

so, as we discussed earlier, the aim is to find a unique assignment of each discordant read in R

to exactly one of the maximal SV clusters (and, hence, to one potential SV event). (For detailed

definitions of discordant reads and multiple paired-end read alignments, please see [55].)

Let S be the set of all maximal valid clusters. For each r ∈ R, let ΨS(r) ⊆ S, denote the

set of all maximum valid clusters ”supported by” r, i.e. for which r has an associated alignment.

For each possible subset of colors (i.e. donor genomes) C ⊆ {1, · · · , λ}), we define a weight, ωC ,

as a measure of genetic affinity between the donor genomes in this subset. E.g. the weight of a

subset of two donor genomes can be defined as the estimated ratio of the total number of SVs in

the two genomes and the number of shared SVs in the genomes - i.e. the likelihood of an SV event

being shared among the two donor genomes, rather than being present in only one donor genome.

Note that currently in the implementation of the algorithm, the values of the weights ωC are set in

an ad-hoc manner, for related or unrelated genomes. We set the weights empirically and inversely

proportional to the number of events we expect to observe in each subset of genomes. Then we can

define the weight of an SV event (i.e. maximal valid cluster) s, denoted ws, as ωC(s) × ∆s where

C(s) is the set of donor genomes sharing the SV event s and ∆s is a measure of the likelihood of the

SV event s, which depends only on the length and the type of s.

Based on these notions, Simultaneous Structural Variation discovery among Multiple Genomes

(SSV-MG) problem asks to assign each discordant read r ∈ R to one of the maximal valid SV

clusters in ΨS(r) such that the following optimization function (COST) is minimized:

COST =
∑
∀s∈S

Is · ws =
∑
∀s∈S

Is · ωC(s) ·∆s.

Here Is is an indicator variable equal to one, if there if at least one discordant read assigned to s (i.e.

s is selected); otherwise Is is equal to zero.

CHAPTER 4. HANDLING MULTIPLE GENOMES 78

SSV-MG for two donor genomes. A special case of the SSV-MG problem is on comparing two

donor genomes by the use of a reference genome as an intermediary. The motivation for the study of

this special case is two-fold; From a theoretical point, we can guarantee that our proposed algorithm

is the best possible solution for this case. From a practical point, this case obviously applies to

two highly related genomes such as those from healthy v.s. tumor tissues of an individual, for the

purpose of identification of common and distinct SV events with respect to the reference genome,

and, as a result, the structural differences between them.

We study this case through a combinatorial problem, namely Red-Black-Assignment problem

where two colors, red and black are respectively associated with the two donor genomes (and their

discordant paired-end reads). We call an SV event, which has assigned paired-end reads from both

colors, multicolor and call an SV event which has assigned paired-end reads from a color red/black

respectively red or black. Clearly a multicolor SV event indicates no structural difference between

the two genomes whereas a red or a black SV event indicates a structural difference.

LetM be the set of multicolor SV events, R be the set of red events, and B be the set of black

events. SSV-MG problem for this particular case asks to find a solution that minimizes the follow-

ing cost function: cost = ω{red,black}
∑

sm∈M∆sm + ω{black}
∑

sb∈B∆sb
+ ω{red}

∑
sr∈R∆sr .

Clearly a lower value of ω{red,black} in comparison to ω{red} or ω{black} asks for a more conservative

estimate of the structural differences between the two genomes.

In the next section, we show that the SSV-MG problem is NP-hard to solve exactly. In fact, it

is also NP-hard to solve within an approximation factor of cωmax
ωmin

log n (for some constant c); this is

the case even when ∆s = 1 for all SV events s. Note that n is the total number of discordant reads,

ωmax and ωmin are the maximum and minimum possible weight for of an SV event, respectively.

(Intuitively, ωmin is the weight of a multicolor SV event which has assigned reads from all different

colors andwmax is the weight of an SV event which has only assigned reads from one specific color.)

4.1.3 Hardness of approximating the general SSV-MG problem

We use an approximation preserving reduction from the well known set cover problem. The set

cover problem is defined as follows: Given a universe U with n elements and a family S of subsets

of U (i.e S = {S1, · · · , Sm}), we want to find the minimum number of sets in S whose union is

U . Raz and Safra [120] proved that there exists a constant d such that the set cover problem cannot

be approximated within d log n unless P = NP . Alon, Moshkovitz and Safra [110] showed the

similar complexity result also holds with a smaller constant. We use this complexity result to prove

CHAPTER 4. HANDLING MULTIPLE GENOMES 79

that the SSV-MG problem cannot be approximated within a constant times ωmax
ωmin

log n.

Lemma 1. There exists a constant d such that the set cover problem cannot be approximated within

d log n even in the case where the size of the optimal solution for the problem is already known.

Proof. Given a set cover instance, we define OPT as the size of its optimal solution. Note that

OPT is always an integer smaller than or equal to m, where m is the size of the family of subsets

of S. We show that if there exists a black-box which finds a solution with a size d log n · OPT
for the case where OPT is already known, the set cover problem can also be approximated within

the same factor. This reduction would be in contradiction with the complexity result of Alon et

al. [110]. Assume there exists such a black-box that finds an approximated solution with at most

d log n · OPT in polynomial time. For each integer i ∈ {1, · · · ,m}, we can now guess the value

of OPT to be equal to i and execute m different black-boxes (i.e. for each i) in parallel. Next,

we verify the outputs of those black-boxes terminated in polynomial time and find an approximated

solution within the same factor for the general set cover problem.

Theorem 2. There exists a constant c such that SSV-MG has no approximation factor smaller than(
λ− 1 + ωmax

ωmin
· (c log n− λ+ 1)

)
, unless P = NP .

Proof. We use a reduction from the set cover problem where the size of its optimal solution is al-

ready known. For simplicity, we call this problem Set Cover Optimal Known (SC-OK) through-

out this proof. Suppose we are given an SC-OK instance with U = {x1, · · · , xn} and S =

{S1, · · · , Sm} as its universe and family of subsets, respectively, and let OPT be the size of its

optimal solution. We construct an instance of the SSV-MG problem as follows: For each color

`(1 ≤ ` ≤ λ − 1) and for each j(1 ≤ j ≤ OPT), we introduce a new element y`,j with the color

`. The color of the elements in U is set to λ. Let Y = {y`,j |1 ≤ ` ≤ λ − 1, 1 ≤ j ≤ OPT} be

the set of all these new elements. We define U ′ = U ∪ Y , as a new universe for the instance of

SSV-MG and construct its family of subsets S ′ as follows: Corresponding to each Si ∈ S, we have

a subset S′i = Si ∪ Y in S ′. In other words, all the subsets in the family will share all of the new

(λ− 1)OPT elements. It can be seen that an optimal solution for SC-OK gives an optimal solution

for SSV-MG with a cost equal to ωmin · OPT since all the selected subsets can have all different

λ colors assigned to them. Furthermore, any feasible solution for SC-OK with k ≥ (λ − 1)OPT

subsets gives a solution with the cost of at least ωmax · [k − (λ − 1)OPT] + ωmin · (λ − 1)OPT

for SSV-MG. We have (λ − 1)OPT new elements with colors from 1 to λ − 1 (i.e. other than λ)

and even if (1) we assign these new elements to (λ− 1)OPT different subsets and (2) ωmin is equal

CHAPTER 4. HANDLING MULTIPLE GENOMES 80

to the weight of an SV event with assigned paired-end reads from two colors, the cost of SSV-MG

cannot become less than ωmax · [k − (λ− 1)OPT] + ωmin · (λ− 1)OPT 2.

We claim that if there exists an algorithm which gives an approximate solution within a factor

of λ− 1 + ωmax
ωmin

· (c log n− λ+ 1) for the SSV-MG instance, then we can also give an approximate

solution within a factor of c log n for SC-OK. As discussed earlier, the optimal solution for this

SSV-MG instance has a cost ωmin ·OPT and if the algorithm guarantees the desired factor, the cost

of the solution would be at most ωmin · OPT ·
(
λ − 1 + ωmax

ωmin
· (c log n − λ + 1)

)
. Now we will

show that, in this case, the total number of subsets in the solution returned will become less than

c log n ·OPT which contradict with the result of Alon et al [110] for a small constant c.

Assuming k is the total number of subsets in the solution, we have:

(λ− 1)OPT ·ωmin + (k− (λ− 1)OPT) ·ωmax ≤ ωmin ·OPT ·
(
λ− 1 +

ωmax

ωmin
· (c log n−λ+ 1)

)
Thus,

λ−1+
k − (λ− 1)OPT

OPT
·ωmax

ωmin
≤ λ−1+(c log n−λ+1)

ωmax

ωmin
⇒ k − (λ− 1)OPT

OPT
≤ (c log n−λ+1)

Thus,

k ≤ (c log n ·OPT)

So these k subsets will give a feasible solution within c log n to SC-OK which contradicts the

complexity result of Alon et al. [110], for a sufficiently small constant c.

4.1.4 A simple approximation algorithm for SSV-MG problem

It is possible to obtain an approximate solution to the SSV-MG problem within an approximation

factor matching the lower bound mentioned above, when ∆s = 1 for all SV events s - in near-linear

time. For that we adopt the greedy algorithm for approximating the well known set cover problem

[148] to obtain a solution within O(log n · (ωmax/ωmin)) factor of the optimal solution for the SSV-

MG problem. (Again, ωmax and ωmin are the maximum and minimum possible weights among all

SV clusters.) The resulting algorithm, which we call Simultaneous Set Cover method (SSV), selects

sets iteratively: at each iteration, it selects the set which contains the largest number of elements not

2Note that, since ωmin is usually much smaller than the weight of events with two assigned colors and ωmax, we will
get a much better bound in reality.

CHAPTER 4. HANDLING MULTIPLE GENOMES 81

previously covered. For a given instance of the SSV-MG problem and its corresponding set cover

instance, we denote the respective sizes of their optimal solution by OPTSSV and OPTSC . It is

easy to see that OPTSSV ≥ ωmin · OPTSC , since at least OPTSC subsets have to be selected in

SSV-MG to cover all the elements of the universe and each of those subsets have a weight of at least

ωmin. The greedy solution for the set cover problem gives a solution of at most log n · OPTSC ,

hence, the same solution for SSV-MG will have a cost of at most ωmax log n · OPTSC . Thus, the

SSC method gives an O(log n · (ωmax/ωmin)) approximation for the SSV-MG problem - which

matches the lower bound indicated for the SSV-MG problem above.

4.1.5 A maximum flow-based update for Red-Black Assignment

Although SSV method described above is very fast, the results it provides could be far from opti-

mal. However it is possible to improve the results of the SSV method through an additional (post

processing) step as follows. The SSV method picks a collection of valid clusters such that each

discordant read is assigned to exactly one cluster. Each cluster is either multicolor or is considered

Red or Black depending on whether it contains reads from both colors (i.e. donor genomes) or from

a single color. The additional step we describe here does not change the clusters and the SV events

they support. Rather, assuming that the clusters are ”correct”, the additional step reassigns the dis-

cordant reads to the clusters so as to maximize the number of multicolored clusters. As a result of

this assignment, we may end up with empty clusters; we simply discard these clusters and return the

non-empty clusters as an (improved) solution to the SSV-MG problem. Note that the additional step

is guaranteed to return a solution which is at least as good as the one returned by the SSV method; in

many cases the solution will be much better. Unfortunately, it can only be applied to the SSV-MG

problem when the number of colors (i.e. donor genomes) is exactly two. Even for three colors, the

problem of maximizing multi-colored clusters (i.e. those clusters with reads coming from all three

donor genomes) is NP-hard (this is one of the first 21 NP-complete problems discovered by Karp

[71])

The additional step formulates the re-assignment problem (of discordant reads to clusters) as a

maximum flow problem as follows. Consider an instance of the Red-Black-Assignment problem

and let SSELECTED = {S1, · · · , Sk} be the subsets of the family S which are already selected in

a solution. Let R = {r1, · · · , rnR} be the set of red elements and B = {b1, · · · , bnB} be the set of

black elements, where nR + nB = n (i.e. the number of elements in the universe). We construct

a network G as follows: for 1 ≤ i ≤ k, each Si is represented by a vertex in the network and

CHAPTER 4. HANDLING MULTIPLE GENOMES 82

corresponding to every element in the universe, we have a vertex in the network in G. For every pair

(ri, Sp) such that ri is a member of Sp, we have an edge with a capacity equal to one and for every

pair (Sq, bj) such that bj is a member of Sq, we have an edge (Sq, bj) with a capacity one. A source

vertex SOURCE is connected to all vertexes in R and all vertexes in B are connected to a sink vertex

SINK. All the internal vertices (i.e. all vertices except the sink and the source) have capacity one as

well.

Figure 4.1: The set R = {r1, r2, r3, r4} represents the red elements and B = {b1, b2, · · · , b7} represents the black elements.
The selected subsets are S1 = {r1, r2, b1}, S2 = {r3, b1, b3}, S3 = {r4, b1, b4, b5, b6}, S4 = {b6}, S5 = {r4, b6, b7}. All the
edges and vertices have capacity one and the maximum flow is shown in dark blue. As it can be seen here, the maximum flow solution
re-assigns the reads so that three sets/clusters, s1, s2, s3, become multicolor and one set/cluster, s4 becomes empty - thus its associated
potential SV event will not be among the predicted SV events by our method.

Our additional postprocessing step computes the maximum (integral) flow from s to t, and iden-

tifies all edges (ri, S`) and (S`, bj) in G with unit flow in the network, and re-assigns the elements

r′i and b′j to the subset S`. Observe that a solution to this maximum flow problem will maximize

the number of multi-color subsets. Figure 4.1.5 demonstrates an example of how the network is

constructed and how a solution to the maximum flow problem re-assigns the discordant reads to

clusters.

4.1.6 An O(1 + ωmax

ωmin
) approximation algorithm for limited read mapping loci

It is possible to further improve the algorithms presented above for the special case where each

discordant read maps to a small number of loci on the genome. For simplicity, we present the

limited case that each discordant read maps to exactly two locations - i.e., in Red-Black assignment

problem terms, each element is a member of exactly two subsets. The generalization of this case to

a more general one, where each read can be present in at most f clusters is not very difficult and is

omitted.3

3E.g. for the generalization to the case where each element is in at most two subsets, observe that if an element is in
only one subset, that subset must be included in any feasible solution.

CHAPTER 4. HANDLING MULTIPLE GENOMES 83

The special case, which we denote as the Red-Black-Assignment-F2 problem, has a graph the-

oretical formulation similar to the vertex-cover problem. Let G be a simple graph for which there

is a vertex si corresponding to each subset Si in the family S and there is an edge e = (si, sj)

corresponding to each element e in U - provided e is in both Si and Sj . The edges of G are labeled

with the color of their corresponding elements (either red or black). In order to solve the Red-

Black-Assignment-F2 problem, all we need to do is to set an orientation to each edge: the vertex

(corresponding to a cluster) for which a given edge (corresponding to a read) is pointing to gives the

cluster to which a read is assigned. The Red-Black-Assignment-F2 problem thus reduces to setting

an orientation to the edges in this graph such that α · ωmin + β · ωmax is minimized: here α is the

number of vertices to which edges of both colors are pointing and β is the number of vertices to

which edges of only one color are pointing.4

Let OPT be the minimum number of vertices required to cover all the edges (i.e. the size

of a minimum vertex cover). It is easy to see that ωmin · OPT is a lower bound for Red-Black-

Assignment-F2 and the simple greedy algorithm of the vertex cover problem [148] gives a 2 · ωmax
ωmin

approximation.5 The following algorithm achieves a smaller (in fact, the best possible) approxima-

tion factor.

Denote the instance of orientation setting problem (to which the Red-Black-Assignment-F2

problem is reduced) by H . It is possible to compute a maximal matching (of vertices) in this graph

in polynomial time; let M denote this matching. Suppose M has p edges with red labels and q

edges with black labels where p + q = |M |. Let R = {r1, r2, · · · , rp} be the set of red edges and

B = {b1, b2, · · · , bq} be the set of black edges in the maximal matching.

(1) Consider an edge eM in this matching and suppose that the optimal solution to the orientation

setting problem points eM ∈ M to a multicolor vertex; also suppose that the other vertex eM is

incident to is not pointed by any other edge. Thus, in the optimal solution, the ”cost” of covering

each of the edges eM in the maximal matching m is at least ωmin. Our algorithm covers each such

edge eM by selecting both vertices it is incident to, incurring a cost of ωmax + ωmin.

(2) If the optimal solution covers eM with a unicolor vertex it is incident to, our algorithms covers it

with a cost of at most 2 · ωmax, again by picking both vertices.

Provided the two objectives above are achieved, our algorithm guarantees an approximation factor

of 1 + ωmax
ωmin

.

4without loss of generality, we assume that ω{red} = ω{black} = ωmax.
5The greedy algorithm selects at most 2OPT unicolor subsets.

CHAPTER 4. HANDLING MULTIPLE GENOMES 84

Theorem 3. Red-Black-Assignment-F2 problem can be approximated within a factor of 1 + ωmax
ωmin

.

Proof. Our algorithm first probes all the edges in R (the set of red edges in the maximal matching)

and assigns them to one of their vertices. Each red edge ri ∈ R is from one of the following

categories:

• There exists a black edge specific to ri in H: in other words, this black edge shares a vertex

with ri but does not share a vertex with any other red edge in R. In this case, the algorithm

simply orients both ri and the above-mentioned black edge to this shared vertex.

• ri does not share a vertex with a black edge in H: In this case the algorithm orients ri
arbitrarily.

• Each black edge sharing a vertex with ri has its other vertex shared by another red edge

rj ∈ R: Let R′ ⊆ R be the set of red edges which share a vertex with a black edge - not

specific to any red edge. We construct a new graph HR′ as follows: corresponding to each

edge r′j = (x′j , y
′
j) in R′ set up a vertex ρ′j in HR′ . For each pair of vertices ρ′k and ρ′` in HR′

and for each black edge in H which share vertices with both r′k and r′`, set up an edge e′k,`
connecting ρ′k and ρ′`. Note that HR′ is not necessarily a simple graph. Suppose HR′ has t

connected components denoted by C1, · · · , Ct. For each Ci, we first orient its edges such that

each vertex has an indegree at least 1. Note that such an orientation can always be discovered

via a Depth-first search (DFS) algorithm, unless Ci is a (simple) tree in which exactly one

vertex (the root of the DFS) would have indegree equal to zero (i.e. no edges terminating at

it). WLOG, let the direction of the edge e′k,` be from ρ′k to ρ′`. We orient the black edge e′k,`
towards its vertex (say x`), which is shared by r′`. The edge r′` will also be oriented to x`
and thus x` will be multicolor. This guarantees that all but one of the red edges in R′ will be

oriented towards a vertex, also oriented by a black edge.

We will use a similar strategy for the set of black edges in the matching and finally orient all

the remaining edges in H arbitrarily. This strategy will guarantee that even if the optimal solution

covers an edge eM ∈ M with a multicolor vertex and does not pick the other vertex of eM (i.e.

incurring a cost of only ωmin), eM can be covered with a cost of at most ωmax + ωmin by selecting

both of its vertices - which will ensure at least one of its vertices will be multicolor. If the optimal

solution covers eM with a single colored vertex, our strategy will cover it with a cost of at most

2 · ωmax, providing us a 1 + ωmax/ωmin approximation factor.

CHAPTER 4. HANDLING MULTIPLE GENOMES 85

4.1.7 Efficient heuristic methods for the SSV-MG problem

In addition to the approximation algorithms given above, we provide two heuristics for solving the

SSV-MG problem efficiently. The first heuristic uses the weights ωs to calculate a cost-effectiveness

value for each cluster s, while the second heuristic deploys the concept of conflict resolution (intro-

duced in [57]) to obtain more accurate results in diploid genomes.

Simultaneous Set Cover with Weights (SSC-W). The first heuristic is a greedy method similar

to the weighted set cover algorithm [148] with one major difference. Here the weight ws of each

subset s is not fixed throughout the algorithm, but rather is dependent on the elements which are

assigned to that subset - more precisely the weight is a function of how closely related the colors

(i.e. donor genomes) assigned to that subset are. Because during the execution of the method, the

colors assigned to each subset can change, so can the weight of that subset.

The method selects the SV clusters in an iterative greedy manner based on their ”cost-effectiveness”

value in each iteration. In a given iteration, the method selects the set with the highest ”cost-

effectiveness” value, based on the maximum number of colors that can be assigned to the set in

that iteration. The cost-effectiveness of a SV cluster s in the i iteration is equal to wsi
|si| , where wsi is

the weight of the subset of swhich is not yet covered (i.e. the reads in swhich are not covered till the

i iteration). Note that this greedy method will guarantee an approximation factor of O(ωmax
ωmin

log n).

Simultaneous Set Cover with Weights and Conflict Resolution (SSC-W-CR) The second heuris-

tic employs the concept of Conflict Resolution and takes the diploid nature of the human genome

into consideration. Hormozdiari et al. [57] introduced a set of mathematical rules to prevent se-

lecting SV events that cannot be happening simultaneously in reality in a haploid genome.6 The

Conflict Resolution feature of this heuristic is based on those rules. Note that in [57] we have mod-

eled the conflicting SV events in a “conflict graph” where each cluster is represented by a vertex.

Two vertices are connected with an edge if the two SVs implied by the clusters are in conflict (please

see A for a detailed case study). In SV detection in diploid genomes, a conflict free set of SVs is

equivalent to a set of vertices that do not create a ”triangle” in the conflict graph. In this heuristic we

extend the above notion from a single genome to multiple genomes, such that we are not allowed

to assign the same color to three clusters (vertices) forming a triangle in the conflict graph. We

have devised an iterative greedy method which selects clusters based on their cost-effectiveness: the

6E.g. two clusters which indicate a deletion and significantly overlap with each other are considered to be conflicting.

CHAPTER 4. HANDLING MULTIPLE GENOMES 86

cost-effectiveness of SV cluster s in iteration i is
ws′

i
|s′i|

, where s′i is the subset of paired-end reads in s

which are not covered until this iteration and do not conflict (i.e. create a triangle) with previously

selected SV clusters that have a common color. More formally suppose that given the conflict graph

G, for each of the sets picked prior to iteration i, a subset of λ colors have been assigned to them.

Any paired-end read r ∈ s is considered to be a member of s′i if:

• r is not covered by any of the i− 1 clusters picked prior to iteration i,

• there is no pair of clusters q and p that have been picked in earlier iterations, such that q, p and

r form a triangle and both q and p include the color of r.

The CommonLAW package is currently available at http://compbio.cs.sfu.ca/strvar.htm

.

4.2 Experimental Results

We investigated the structural variation content of six human genomes in order to establish the bene-

fits of Simultaneous Structural Variation discovery among Multiple Genomes (SSV-MG) compared

to the Independent Structural Variation Discovery and Merging (ISV&M) strategy. The two data sets

we investigate each constitutes a father-mother-child trio. The first trio is a Yoruba family living in

Ibadan, Nigeria (YRI: NA18506, NA18507, NA18508 [21]). The second trio is a family from Utah

with European ancestry (CEU: NA12878, NA12891, NA12892) sequenced with high coverage by

the 1000 Genomes Project [5]. We aligned the downloaded paired-end reads to the human reference

genome (NCBI Build 36) using mrFAST [7]. Statistics for each dataset are provided in table 4.1

(after removing low-quality paired-end reads).

Table 4.1: Summary of the analyzed human genomes
Individual Population # Reads Read Length Average Ins. size Sequence Cov. Physical Cov.

NA18506 YRI 3.444× 109 35bp 222bp 40.1× 255×
NA18507 YRI 2.261× 109 36-41bp 208bp 27.1× 157×
NA18508 YRI 3.175× 109 35bp 203bp 37× 214×

NA12878 CEU 1.049× 109 36-76bp 201bp 32.3× 70×
NA12892 CEU 0.510× 109 35-51bp 153bp 12.6× 26×
NA12891 CEU 0.551× 109 35-51bp 148bp 13.8× 27×

NA18506, NA18507 and NA18508 are the YRI child, father and mother respectively.

NA12878, NA12891 and NA12892 are the CEU child, father and mother respectively.

CHAPTER 4. HANDLING MULTIPLE GENOMES 87

We sought to establish whether simultaneous analysis of all 3 genomes (in each trio) would result

in more accurate detection of structural variation events in comparison to the conventional two step

approach of ISV&M. For each of the trios, we analyzed the three genomes independently using the

ISV&M based approach and simultaneously using the SSV-MG framework; we then compared the

results from each analysis.

For the ISV&M approach we proceeded as follows:

• The ISV step: We analyzed each genome independently, using VariationHunter [55] for dele-

tions and extended VariationHunter for Alu insertions [57]. 7.

• The M step: To identify common structural variation among different genomes, we compared

each data set and merged shared structural variation predictions. Two structural variation

predictions were considered to be “shared” (i.e. they are the same variation in two different

individuals) if the ends of each selected cluster were within 200bp from each other. Finally,

the support value of each shared SV is considered to be the total paired-end reads in the two

(or more) individuals which support that shared SV.

In these experiments we were purely interested in evaluating the added benefit of simultaneous

analysis over independent analysis. We used VariationHunter [55], a maximum parsimony based

approach, for the ISV&M analysis since all the SSV-MG methods proposed here are also maximum

parsimony based methods. In addition VariationHunter is one the very few tools with capability to

find transposon insertions.

The experiments in this section focus on two types of structural variations:

• Transposon insertions (i.e. Alu insertions) on YRI data set

• Medium and large-size deletions on YRI and CEU data sets

4.2.1 Alu element insertions

As we have described earlier [57, 56], it is possible to use VariationHunter within the ISV&M frame-

work, for discovering transposon insertions such as Alu elements on a WGSS donor genome with

respect to a reference genome. Below we compare this approach, as a representative of the ISV&M

framework, with the SSV-MG framework, more specifically SSC and SSC-W approximation algo-

rithms.

7Note that any other method such as BreakDancer, MoDil or GASV could have been used in this step

CHAPTER 4. HANDLING MULTIPLE GENOMES 88

We applied the ISV&M and the two SSV-MG approaches, namely SSC and SSC-W algorithms

(we set two potential Alu inserts that overlap highly as the same Alu; this implies that conflict

resolution is not necessary for this case) to the discovery of Alu insertions in the YRI trio. The

results from each analysis were then compared to Alu polymorphism loci reported in dbRIP[67] -

which provides an estimate on the tradeoff between the number of predictions made and the fraction

of the known Alu insertions captured Since the contents of dbRIP are curated from a variety of

data sources, for a given an Alu insertion prediction, a match in dbRIP is a good indicator that

the prediction is a true positive. (Figure 4.2 provides an indirect comparative measure for the true

positive/false negatives rate as a function of the calls made.) Note that we call a predicted Alu

insertion, a match to an Alu insertion locus reported in dbRIP [67], if the reported locus in dbRIP is

within 100bp of the breakpoints predicted.

For each method, we calculated the number of Alu insertions with a dbRIP match for a range of

thresholds for the read support for each Alu insertion. The fraction of dbRIP matching Alu insertions

is consistently higher for SSC and SSC-W methods in comparison to that of the ISV&M framework

for all threshold values for support; see Figure 4.2.

Since the two data sets we considered each involve members of a family, it is expected that many

of the Alu insertions observed are common to all three genomes. However, the ISV&M framework

predicted only 507 common Alu insertion loci common to all three individuals, in contrast to 1044

common inserts predicted by the SSC method and 1257 common inserts predicted by the SSC-W

method (See figures 4.3(a), 4.3(b), and 4.3(c)).

The rate of de novo Alu insertions is estimated to be one new Alu insertion per 20 births [33].

Thus, it is quite unlikely that the genome of the child (NA18506) in the YRI trio contains several

Alu insertions that are not present in the parent genomes. However, the ISV&M framework based

on VariationHunter [57], reported that among the top 3000 predicted loci 8, 410 were de novo (that

is, unique to the child). This number clearly is extremely high given our current knowledge of Alu

insertion rate. Thus the majority of these 410 events are likely to be misclassified as de novo events

by the ISV&M framework. Interestingly, using the SSC algorithm, this number was reduced to

only 20 de novo events among the top 3000 predictions (Figure 4.3(b)). Furthermore, the SSC-

W algorithm 9 reduces the number of de novo Alu insertions to zero in the top 3000 Alu insertion

predictions (see Figure 4.3(c)).

8The 3000 loci with the highest number of paired-end read support
9the weights used for SSC-W were derived from the fraction of Alu insertion common between the individuals reported

by the SSC results

CHAPTER 4. HANDLING MULTIPLE GENOMES 89

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

N
u
m

b
e
r

o
f
A

lu
 i
n
s
e

rt
io

n
 L

o
c
i
m

a
tc

h
in

g
 d

b
R

IP

Number of Alu insertion Loci predicted in Trio

ISV&M
SSC

SSC-W

Figure 4.2: Alu insertion loci prediction and comparison with dbRIP: this figure shows the com-

parison of the Alu predictions made by the ISV&M, SSC and SSC-W algorithms which match Alu

insertion loci reported in dbRIP (true positive control set). The x-axis represents the number of

Alu insertions (with the highest support), while the y-axis represents the number of these insertions

which have a match in dbRIP.

Note that one of the Alu insertion loci predicted as a de novo insertion in NA18506 by both the

SSC method and the ISV&M framework turned out to be a locus experimentally tested positive for

an Alu insertion by a Polymerase chain reaction (PCR) in the YRI trio ([56]). The result of PCR

indicates that there is indeed an Alu insertion in the above locus in NA18506. However, it turned

out that the insertion is not de novo but rather a transmission from the father (NA18507) to the

child (NA18506). SSC-W, on the other hand, was able to correctly identify the Alu insertion in both

NA18506 and NA18507 and thus was able to correctly classify the prediction as a transmitted event.

Note that a similar analysis on the CEU trio also revealed similar results to those we obtained

on the YRI trio; please see [58] for details.

CHAPTER 4. HANDLING MULTIPLE GENOMES 90

(a) ISV&M (b) SSC

(c) SSC-W

Figure 4.3: (a), (b), and (c) detail the number of common and de novo events in each genome for

ISV&M, SSC and SSC-W methods, respectively for the YRI trio (the top 3000 predictions were

considered).

4.2.2 Deletions

In this section we compare the deletion calls made by algorithms proposed within the SSV-MG

framework (i.e. SSC-W and SSC-W-CR) in comparison to those made by the ISV&M framework

(i.e. VariationHunter [55]). The deletions considered here are medium-to-large scale events (>

100bp and < 1Mbp) in both YRI and CEU trios. In order to verify (at least some of) the predictions

CHAPTER 4. HANDLING MULTIPLE GENOMES 91

made by the above algorithms, we used the validated SV events reported in the recent study by the

1000 Genomes Project Consortium ([124]). The results of this comparison are shown in table 4.2.

In order to make the comparison as thorough as possible, we considered various sized subsets of

calls for each method (obtained by varying the read support threshold on the predictions considered

for each method) 9. In comparison to the ISV&M framework, the SSV-MG algorithms consistently

produce a higher fraction of validated predictions in both YRI and CEU trios (see table 4.2)

We also compared the deletion predictions made by each one of the methods considered here on

each individual genome from the CEU trio, with the validated deletion calls on the same individual

genome by the above mentioned 1000 Genomes study ([124]). (Unfortunately such a set of validated

deletions does not exist for the YRI trio.) Table 4.3 provides the number of the validated deletion

calls from each specific genome in the CEU trio among the best supported 5000 calls made by each

one of the methods considered here. Note that the number of de novo deletions reported in the child

genome of CEU trio (NA12878) should not be high - as per the Alu insertions - as each deletion

is likely to have been inhereted from one of the parents. Among the top 5000 deletion loci (on the

child genome) predicted by the ISV&M framework, 84 were predicted to be de novo events. In

contrast, among the top 5000 deletion loci (on the child) reported by the SSC-W algorithm, only 39

were predicted to be de novo events.

This reduction of more than 50% on number of misclassified deletions as de novo events demon-

strates once again the improved predictive power of the SSV-MG framework over the ISV&M frame-

work.

CHAPTER 4. HANDLING MULTIPLE GENOMES 92

Table 4.2: Comparison of deletions discovered in CEU and YRI trio against validated deletions

Number of CEU (NA12878, NA12891, NA12892) YRI (NA18506, NA18507, NA18508)

Predictions ISV&M SSC-W SSC-W-CR ISV&M SSC-W SSC-W-CR

2000 728 (725) 755 (751) 1412 (1396) 1280 (1279) 1293 (1291) 1536 (1520)

3000 1058 (1058) 1106 (1106) 1780 (1763) 1794 (1789) 1797 (1794) 2098 (2082)

4000 1277 (1281) 1342 (1345) 2003 (1982) 2192 (2183) 2200 (2197) 2554 (2534)

5000 1449 (1457) 1517 (1527) 2139 (2121) 2518 (2508) 2537 (2534) 2920 (2900)

6000 1584 (1596) 1667 (1678) 2234 (2219) 2771 (2765) 2804 (2802) 3207 (3186)

7000 1659 (1674) 1775 (1796) 2314 (2305) 2997 (2996) 3040 (3042) 3453 (3446)

8000 1738 (1757) 1861 (1886) 2368 (2363) 3192 (3195) 3231 (3241) 3662 (3682)

9000 1797 (1816) 1933 (1962) 2398 (2396) 3382 (3388) 3417 (3434) 3830 (3887)

10000 1852 (1875) 2005 (2038) 2411 (2410) 3512 (3532) 3548 (3594) 3970 (4084)

11000 1892 (1918) 2064 (2099) 2420 (2422) 3651 (3687) 3694 (3757) 4084 (4270)

12000 1942 (1968) 2118 (2159) 2437 (2441) 3753 (3787) 3786 (3874) 4173 (4425)

13000 1960 (1988) 2151 (2195) 2445 (2457) 3851 (3907) 3887 (4003) 4247 (4602)

14000 1986 (2015) 2177 (2225) 2455 (2460) 3958 (4010) 3968 (4126) 4314 (4756)

Deletions discovered for YRI and CEU trios (by 3 different approaches of ISV&M, SSC-W and SSC-W-CR) were compared against

deletions reported by 1000 genomes project [124]. The loci of a reported deletion should be in the range of 300bp from a loci reported

in [124] to be consider a “match”. Different thresholds on number of predictions were considered for each method ranging from 2000 to

14000 (predictions by each method were sorted based on their support, and the top set of predictions were picked for comparison). The

numbers given in italic font represent number of deletions reported in [124] (form the high coverage set) which match calls found by our

methods, while the number in parenthesis represents number of deletions predicted by our methods (ISV&M, SSC-W and SSC-W-CR)

which match reported deletions in [124].

Table 4.3: NA12878, NA12891 and NA12892 deletions discovered

Individuals ISV&M SSC-W SSC-W-CR

NA12878 1349 1408 1723

NA12891 1191 1236 1468

NA12892 1351 1402 1814
The distribution of the validated deletion calls [124] among individual genomes in the CEU trio, specifically for the best supported 5000

predictions, by the three approaches.

Chapter 5

Identifying pairs of interacting protein
partners

5.1 Introduction

The vast majority of cellular functions are exerted by combinations of interacting gene products. As

a result, ”preservation of functionality” among proteins and other gene products typically implies

”preservation of interactions” across species. It is well established that protein-protein interactions

(both physical interactions as well as co-occurence of domains) are preserved through speciation

events (see [94, 113] and the references therein). A major implication of this is that the evolutionary

trees behind two interacting protein families can look near-identical.

As interacting proteins have a tendency to co-evolve, it may be possible to assess the poten-

tial of two or more proteins (or other gene products) being interaction partners by measuring how

similarly they evolve across related species. For this purpose a number of computational strate-

gies have been developed. Such strategies aim to compare the phylogenetic trees of two (or more)

protein or protein-domain families, where paralogs and orthologs are represented with leaves with

appropriate labels and internal vertices can be interpreted as either speciation or duplication events.

Among these strategies we will focus on mirrortree approaches, which explicitly or implicitly map

leaves of a pair of trees (belonging to two distinct proteins or gene products) onto one another such

that the leaves that are mapped to each other would be identified as potential interaction partners.

Mirrortree approaches aim at an overall quantification of ”family similarity” via a measure of tree

similarity. Typically these approaches do not aim to modify the specific topology of the underlying

93

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 94

phylogenetic trees and thus are different from tree reconciliation approaches [150]. They are also

distinct from phylogenetic profiling methods [114], which aim to measure the phylogenetic profiles

of proteins or domains to check for potential interaction partners.

The first mirrortree approach was proposed to discover protein-protein (rather than domain-

domain) interactions and was based on comparing the distance matrices 1 resulting from the multiple

alignment members of each protein family [112]. Note that one can interpret this as mapping leaves

onto one another, as will be explained below. Since this study, a number of mirrortree approaches

have been developed; almost all of these approaches are again based on comparing distance matrices

rather than the trees directly. (See the introductory paper by [112] and [113] for more references.) In

fact, direct comparison of gene trees has been considered as “... a problem yet to be fully resolved.”

[66, p. 2].

We consider a fresh approach to the problem of predicting protein or other gene product in-

teractions by comparing gene trees directly, without the aid of a distance matrix. Note that such

a distance matrix is a byproduct of the underlying phylogenetic tree: popular multiple sequence

alignment methods typically align sequences in the order imposed by their phylogenetic tree and

the ”distances” in the matrix correspond to the distances in the phylogenetic tree. As a result our

method should be considered as a more direct approach to mirroring trees.

In the case where there are no paralogs of any gene, assessing tree similarity is both computa-

tionally straightforward and reliable [113]. More specifically, if there is at most one family member

per species, the mapping problem reduces to the problem of finding out species where the interac-

tion is lost; after removal of such species, the topologies of the two trees will be identical i.e. the

leaf representing a particular species in one tree will correspond to the leaf representing the same

species in the other tree.

In the presence of paralogous genes (and thus proteins or gene products), however, the mapping

problem becomes much more complex. For example, if we have n paralogs per tree for one of

the species, we may need to evaluate more than n! many potential mappings. (n! is the number of

mappings where each paralog from one tree pairs with a paralog from the other tree. In addition,

there are mappings where one has to remove non-interacting paralogs. As was pointed out in [143],

protein interaction can be preserved during duplication, while interaction can be lost during speci-

ation.) Thus, the number of potential mappings is super-exponential in the number of paralogs per

species, implying a significant computational challenge.

1The distance matrix of a gene tree is comprised of entries (i, j) which represent the distance between leaves i and j.

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 95

There are a number of mirrortree approaches which address the presence of paralogs and aim

directly at inferring the correct mapping of leaves; these approaches typically aim to ”align” the

distance matrices by shuffling and eliminating the rows (and corresponding columns) so as to max-

imize the similarity between the matrices. The similarity between two aligned matrices is defined

in the form of root mean square difference [121], correlation coefficient [41], information-theoretic

’total interdependency’ of multiple alignments [143], Student’s t [66] or the size of the largest com-

mon submatrix [144]. Because an exact solution to the matrix alignment problem, where the goal

is to maximize any of these notions of similarity (by determining the right mapping of rows and

columns), is hard to compute, many available approaches employ heuristics based on swapping

pairs of rows/columns in a greedy fashion. These methods also commonly perform column/row

elimination from the ”larger” matrix only, and not the other [41, 66, 68, 121, 143]. We are aware of

one exception by [144], which aims to determine the largest common (i.e. within a threshold) sub-

matrix and removes the remainder of the columns and rows from both matrices. Similarly the only

approach which directly compares the tree topologies themselves is by [68], which uses a Metropolis

algorithm to heuristically travel ’tree automorphism’ space. However, this approach cannot handle

trees of different sizes. See [94, 113, 144] for references on mirrortree approaches which do not

necessarily relate to the mapping problem in the presence of paralogs.

In this chapter we present polynomial-time algorithms that determine mappings of leaves which

respect the topologies of the two trees compared. As input, we are given two ”gene trees” T and T ′

of two protein/domain families known to interact with one another. T and T ′ have labeled leaves

where labels reflect species such that the presence of the same label at two different leaves reflects

the presence of paralogs. We introduce and formally define the gene tree alignment problem, which

aims to delete both leaves and inner vertices from both trees until the remaining trees are isomorphic,

that is, one can map the vertices of the two remaining trees in a one-to-one fashion onto another

such that ancestor relationships are preserved. This in particular implies a one-to-one mapping

of the remaining leaves, which we present as output. Clearly, there are many different possible

choices of such one-to-one mappings of leaves—our algorithms determine the score-optimal such

alignment where different deletion operations are penalized in different ways, depending on how

they transform the topologies of the trees. Note that our algorithm depends on some (user-defined)

cost parameters, that can be used to impose constraints on the alignment. We describe the nature

of our scoring scheme in detail in the following; please see the Methods section for full details and

precise notations.

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 96

Note that the algorithm only outputs one uniquely determined, score-optimal alignment of sub-

sets of leaves of T, T ′. Note further that we do not perform an exhaustive search since we never

consider mappings of leaves which imply mappings of internal vertices that do not preserve ances-

tor relationships of the gene trees T, T ′ and thereby contradicts their topologies.

Our method can be viewed as an extension of tree-edit distance approaches. Alternative con-

straints leading to polynomial time solvable variants on the tree edit distance is surveyed in [161].

For further, more recent work see also [116] that address the subtree homeomorphism problem,

which, given a ”text” tree T and a ”pattern tree” P as the input, asks to find a subtree t in T such

that P is homeomorphic to t. Now, two trees T1, T2 are said to be homemorphic if one can re-

move degree 2 vertices from T1, T2 such that T1 and T2 are isomorphic. Another recent work [123]

considers homeomorphic alignment of ”weighted” but unlabeled trees. Here the goal is to obtain a

homeomorphic mapping between vertices of two trees such that the differences between the weights

of ”aligned” edges is minimized. While being related to our approach, the method described in

[123] is not applicable to our problem as the trees they consider are not leaf labeled. We refer the

reader to [22] for a general and gentle overview of further related work on tree edit distance, tree

alignment and tree inclusion.

The main technical contribution of this part of the thesis is a novel deterministic mirrortree

algorithm that directly compares tree topologies. The algorithm is optimal within the constraints

we impose and is provably efficient. We compare our algorithm with the most recent, state-of-the-

art heuristic search approach [66] that aims to maximize the similarity between distance matrices,

where distances reflect lengths of shortest paths in neighbor-joining trees. In our comparisons we

use precisely the same trees to be able to juxtapose a distance matrix-based heuristic search method

to our topology-based, deterministic method without introducing further biases.

5.2 Preliminaries and notations

Let T = (V,E,w) be a tree with weighted edges as given by a non-negative weight function w :

E → R+. We denote the leaves of T by L = {`1, ..., `n}, the internal nodes of T (excluding the

root) by U = {u1, ..., um}, and the root of T by r. In particular let n be the number of leaves and

m be the number of internal vertices without the root. Note that a tree T is binary and rooted if and

only if deg(r) = 2 and deg(u) = 3 for all internal vertices u ∈ U ; this will imply that m = n − 2

and |E| = 2n − 2. In our setting, edge weights w(vi, vj) reflect the evolutionary distance between

adjacent vertices vi, vj . Note that leaves refer to gene products whereas internal vertices can be

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 97

interpreted as speciation and/or duplication events. For a given vertex v ∈ V , we define θ(v) as the

evolutionary distance between the root and v. In other words, θ(v) is the sum of the edge weights in

the unique path from the root to v. In rooted trees, there is a natural partial order

vi ≤ vj ⇔ vi is an ancestor of vj (5.1)

on the vertices of T . Hence, the edges have a natural orientation and each vertex vi induces a unique

subtree T (vi). This partial order is crucial for our algorithm—which cannot be applied to unrooted

trees in a straightforward manner. For processing unrooted (e.g. neighbor-joining) trees, consider

the pair of proteins/domains (one from each tree) which are known to interact. We root the two

trees at these vertices in order to apply our algorithm. Provided such a pair exists (which is typically

the case), our algorithm optimally aligns the trees as it does not assume any order among the many

sibling vertices. In a tree T which is rooted at r, we call vertex u the parent of a vertex v if u and

v are connected by an edge and u is closer to r than v. The height of a rooted tree is defined as

max{d(r, `i) | i = 1, ..., n} where d(v1, v2) is the length of the shortest path between vertices v1

and v2 without considering edge weights, that is the maximum (unweighted) distance of the root to

a leaf. We denote a bijection (i.e. a one-to-one and onto alignment) of subsets of vertices of T, T ′

byM[T, T ′] and write

M := {(v, w) ∈ T × T ′ | M(v) = w} (5.2)

for the pairs of mapped vertices. Note that in such a bijection, not all vertices of T are necessarily

mapped to a vertex in T ′ and vice versa. We refer to vertices which are not mapped as deleted by

M[T, T ′]. We only consider alignments which satisfy the following: (1) the alignment preserves the

ancestor relationship of T and T ′; (2) only leaves with identical labels are mapped onto one another;

(3) upon deletion of vertices, where deletion of an internal vertex v leads to new edges joining the

parent of v with the children of v, the two tree topologies are isomorphic. Among the alignments

satisfying the above conditions, we compute the alignment that has maximum score.

For a formal definition of our scoring scheme, consider the internal vertices of T and T ′ that

are deleted. Among them, we distinguish between vertices v that have descendants x which are not

deleted. We write NI for such vertices. We write NT for the remaining deleted vertices. Note that

each vertex v ∈ NT makes part of a subtree of T which has been deleted as a whole. The score of

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 98

the alignment is then defined as

S(M[T, T ′])

=
∑

(v,v′)∈M

SM (v, v′) +
∑
v∈NI

SNI
(v) +

∑
v∈NT

SNT
(v). (5.3)

The individual score functions SM , SNI
and SNT

will be formally defined in the Methods section.

Note that eventually we set SNI
(v) and SNT

(v) to zero for the purpose of our experiments, but here

we include them in the formulation above for completeness. As noted above, our algorithm, which

maximizes the overall score of the alignment, can be viewed as an extension of the standard tree edit

distance algorithm for unweighted trees (e.g. [141]), to those with edge weights. Determining the

tree edit distance is NP-complete [163] (in fact MAX-SNP-hard [162]). Since the instances treated

here are too large (trees have up to more than 200 leaves) we have to impose reasonable constraints

when aiming at fast, polynomial-runtime solutions. Motivated by test runs (see numbers referring

to C1,2 in the Results and Discussion section), we chose to impose the additional constraint that

a vertex u and its parent v cannot be deleted at the same time without deleting the entire subtree

rooted at v. That is we disallow to have both a parent v and a child u in NI . Note, however, that

deletion of two internal siblings is permissible—we found that such deletions can lead to favorable

alignments. As the operation of deleting entire subtrees does not lead to runtime issues, does not

perturb the topology of the remaining trees and also reflects the biologically reasonable assumption

that interaction can be lost for entire subtrees, we allow it without additional restrictions.

5.3 Methods

Given two rooted weighted-edge trees T and T ′, our algorithm aligns the trees by mapping a subset

of leaves of T to a subset of leaves of T ′. In order to obtain this mapping, a series of (1) individual

vertex deletions or (2) subtree deletions (with specific penalties) are performed on each tree with the

goal of obtaining two isomorphic trees T1 = (V1, E1, w1) (from T) and T ′1 = (V ′1 , E
′
1, w

′
1) (from

T ′1); Figure 5.1 shows two such rooted trees that are isomorphic; it also shows a mapping between

the leaves. The specifics of vertex and subtree deletions on a tree T = (V,E,w) are as follows.

1. Deleting an internal vertex v also deletes the edge (u, v), where u is the parent of v. Further-

more, it connects each child x of v to u by deleting the edge (v, x) and creating a new edge

(u, x). The weight of this new edge, w(u, x) is set to w(u, v)+w(v, x). As mentioned earlier,

it is not possible to delete both a node v and its parent u from T .

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 99

2. Deleting an entire subtree rooted at an internal vertex v deletes all descendants of v and their

associated edges.

In the remainder of this section, we will discuss the costs of the above deletion operations and

the scores of the mapped vertices. As mentioned earlier, the overall score of the mapping will be

the sum of the scores of the mapped vertices and the scores (negative costs) of the the deletion

operations.

Scoring Scheme

Let T1 and T ′1 be the isomorphic trees which result from performing a series of deletion operations on

T and T ′. The isomorphism Φ : T1 → T ′1 implies an alignmentM[T, T ′] between the original trees

T, T ′. Let L1, L
′
1 denote the sets of leaves that are mapped in T and T ′ respectively; because the

mapping is a bijection, we must have |L1| = |L′1|. We write SP := {(l, l′) | l ∈ L, l′ ∈ L′, (l, l′) ∈
M} ⊂ M[T, T ′] for the set of mapped pairs (we require that mapped leaves have identical labels

hence the naming SP for ’species’.

Recall that a mapping of two trees may involve deleting internal vertices or entire subtrees. We

now distinguish between two types of internal vertex deletions.

1. [Isolated Deletion:] deletion of only one child v of a vertex u. Let further x1, x2 be the two

children of v. Isolated deletion of v also implies to also delete edges (u, v), (v, x1), (v, x2)

and create new edges (u, x1), (u, x2). Note that after deletion v has 3 children.

2. [Parallel Deletion:] deletion of both children (say x and y) of a vertex v. This implies deletion

and creation of edges in a fashion analogous to that for isolated deletion. Note that after

deletion v has 4 children.

Accordingly, we further distinguish between isolated deleted vertices NI,iso and vertices which

became deleted in parallel NI,par such that NI = NI,iso ∪̇ NI,par. The idea behind distinguishing

between isolated and parallel deletion is that parallel deletion reflects greater perturbation of tree

topology at the same evolutionary point in time, and is less likely to occur. For a given mapping

M[T, T ′] let ES(M) := {(u, v) | v ∈ NI,iso} be the set of edges which join isolated deleted

vertices with their parents. Analogously, EP (M) is the set of edges that join deleted siblings with

their parent. See figure 5.2 for examples of isolated and parallel deletions.

Given a pair of mapped leaves ˜̀
1, ˜̀

2 ∈ SP their alignment score, κ(˜̀
1, ˜̀

2) is defined as

κ(˜̀
1, ˜̀

2) = C − |θ(˜̀
1)− θ(˜̀

2)|

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 100

where C is a positive constant, providing a positive contribution to the overall score because of the

mapping of two leaves with the same label while we subtract the difference between the distances

of ˜̀
1 and ˜̀

2 from the root for penalizing the mapping between two leaves which have topologic

differences.

The total score S of an alignmentM[T, T ′] as per the above definition is fully specified by

S(M[T, T ′]) =
∑

(˜̀
1,˜̀2)∈SP

κ(˜̀
1, ˜̀

2)

−
∑

es∈Eiso(M)

E · w(es)−
∑

ep∈Epar(M)

F · w(ep)
(5.4)

where, with respect to the formulation in (5.3), the term in the first row is for
∑

v,v′∈M SM (v, v′), the

second row is for
∑

v∈NI
SNI

(v) and
∑

v∈NT
SNT

(v) is zero. E and F are user-defined constants

that respectively penalize isolated deletion and parallel deletion of edges. Note that this penalty

is proportional to the length of the edges joining the deleted vertices with their parents—deletion

of longer edges leads to a more severe perturbation of topology hence is more severely penalized.

We set the cost of deleting a subtree (i.e. SNT
) to 0. Note, however, deleting subtrees is implicitly

penalized by disregarding any potential good mappings of leaves in them.

Given the above score function, the gene tree alignment problem can be formally stated as fol-

lows.

Gene Tree Alignment Problem

Given two rooted weighted-edge trees T, T ′, determine subsets of leaves L1 ⊂ L,L′1 ⊂ L′ of

equal size such that the corresponding subtrees can be transformed by isolated and parallel deletion

and subtree removal operations into trees T1, T
′
1, for which there is an isomorphism Φ : T1 → T ′1

that maximizes S(M[T, T ′]).

A Dynamic Programming Solution

The gene tree alignment problem can be efficiently solved by a dynamic programming algorithm.

Our algorithm runs inO((|V | · |V ′|) time for two binary, rooted trees T, T ′ with vertex sets V, V ′. In

general, our strategy can be applied to arbitrary rooted trees with bounded maximum degree, ∆max.

Note that by allowing to delete internal vertices (i.e. contract the edges), the number of children of

an internal vertex will be still bounded by a constant (≤ 4).

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 101

Initialization As a first step, we remove all leaves that refer to species that are unique to each

tree. Let n = |V | and n′ = |V ′|. For every pair of vertices vi ∈ V and v′j ∈ V ′ (i.e. for every

i = 1, · · · , n and j = 1, · · · , n′), we compute the maximum alignment score for the subtrees rooted

at vi from T (i.e. T (vi)) and v′j from T (i.e. T ′(v′j)). We denote the maximum alignment score

for T (vi) and T ′(v′j) by Sij . Note that the computation of the maximum alignment score between

rooted subtrees induce a mapping between their leaves.

In our dynamic programming algorithm, we handle the ”base” cases, where one (or both) of

T (vi) or T (v′j) have 3 or fewer leaves, as follows.

• If both vi ∈ V and v′j ∈ V ′ are leaves, then by definition, Sij = κ(vi, v′j).

• Without loss of generality, if vi is a leaf and v′j is an internal vertex, Sij = max(Sij1 , Sij2),

where j1 and j2 correspond to the children of v′j .

• The remainder of the base cases have both vi and vj as internal vertices and are solved through

exhaustive evaluation of all possible alignments.

Recursion internal vertices, each with at least 4 descendants, Sij will be computed through recur-

rence equations. These equations are based on the alignment scores between subtrees rooted at the

children (or grandchildren) of vi and v′j . Let i1(j1) and i2(j2) be the children of the vertex vi(v′j).

Also, let i11, i12 be the children of i1, and i21, i22 be the children of i2. Similarly, let j11, j12 be

the children of j1, and j21, j22 be the children of j2. We first give a high level description of the

recurrence equation. Suppose that the maximum alignment score between any subtree in T (vi) and

any subtree in T ′(v′j) has already been computed. In order to compute the alignment score Sij , we

consider several cases: we can either delete one or both subtrees rooted at the children of vi and v′j
(deleting an entire subtree) or align the subtrees rooted at the children of vi and v′j to each other.

We can also delete one of the children of vi (either i1 or i2) together with one of the children of

vj (either j1 or j2) and align the three resulting subtrees in T (vi) to a permutation 2 of the ones

in T ′(v′j). Finally, we have to consider the case where both children of the root (i.e. i1 and i2 in

T (vi), and j1 and j2 in T ′(v′j)) are deleted. In this case we align four subtrees in T (vi) (rooted at

i11, i12, i21, i22) to a permutation of the four resulting subtrees in T ′(v′j). The optimal alignment

score of Sij will thus be the maximum alignment score provided by all of the cases above.

2We have to consider all the permutations because the trees are unordered (i.e. the order of siblings of an internal
vertex is unimportant).

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 102

Let e(v) denote the penalty for isolated deletion of an internal vertex v, which is the product of
the constant E and the weight of the edge between v and its parent (see Scoring Scheme section).
Also, let f(v) denote the penalty for parallel deletion of both children of an internal vertex v. f(v)
was defined as a constant F times the total weight of the edges that connect v to its children. The
recurrence equation for Sij thus becomes the following

Sij = max

0 (deleting both subtrees from each tree)Si1j1 + Si2j2

Si1j2 + Si2j1

 regular cases

Sij1

Sij2

Si1j

Si2j

deleting one subtree from each tree

max

Si11j2 + Si12j11 + Si2j12

Si11j2 + Si12j12 + Si2j11

Si12j2 + Si11j11 + Si2j12

Si12j2 + Si11j12 + Si2j11

− e(i1)− e(j1)

max

Si21j2 + Si22j11 + Si1j12

Si21j2 + Si22j12 + Si1j11

Si22j2 + Si21j11 + Si1j12

Si22j2 + Si21j12 + Si1j11

− e(i2)− e(j1)

max

Si21j1 + Si22j21 + Si1j22

Si21j1 + Si22j22 + Si1j21

Si22j1 + Si21j21 + Si1j22

Si22j1 + Si21j22 + Si1j21

− e(i2)− e(j2)

max

Si11j1 + Si12j21 + Si2j22

Si11j1 + Si12j22 + Si2j21

Si12j1 + Si11j21 + Si2j22

Si12j1 + Si11j22 + Si2j21

− e(i1)− e(j2)

Si11π1 + Si12π2 + Si21π3 + Si22π4 − f(vi)− f(vj)

(5.5)

where the permutation π = π1π2π3π4 ranges over all permutations of {j11, j12, j21, j22}. Note that

some cases are redundant but are still represented here for the sake of clarity. In case that several

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 103

options yield the same, optimal score, the algorithm picks the first observed one.

Now, given r and r′, the roots of T and T ′, respectively, the alignment score Sr1r2 (i.e. the

maximum alignment score of the rooted trees) can be computed using the above recurrence equation,

providing a solution to the gene tree alignment problem. It is quite straightforward to prove that our

algorithm correctly computes the maximum alignment score through a (strong) induction on the

sum of the heights of the rooted trees. Note that the scores of internal vertex alignments can be

computed through the scores of the alignments between their (grand)children and the recurrence

precisely serves to satisfy the constraints. The base of the induction is trivial. If the minimum height

of the trees is zero (i.e. one of the trees is just a single leaf), the optimal value of the alignment

can be found using the definitions and simple case analysis. Given the subtrees T (vi) and T ′(v′j),

with heights h and h′, respectively, we assume the induction hypothesis, that for all pairs of subtrees

T (vp) and T ′(v′q) with heights hp and hq such that hp + hq < h + h′. It is easy to verify by case

analysis that all cases in the recurrence equation will be reduced to a case in which the sum of the

heights of the aligned (grand) children will be less.

Evaluation Criteria. We determine the maximum number of members of the two protein domain

families under consideration that can be paired by following [66]: for each species we determine

the paralogous members of the domain in the two trees that can be paired with one another (that

is both members reside in the same protein) and determine the maximum number of pairs that can

result from the respective potential pairings. Summing up these numbers yields the maximal size

of a correct mapping. By the usual conventions, we denote this value as P . In other words, P is

the size of the correct pairing. Among the P many potential correct pairs, we determine the ones

which were inferred by the algorithm in use and refer to them as ”true positives”, TP . Similarly, the

number of domain pairs computed, where the respective members are not from the same protein, is

referred to as ”false positives”, FP . Recall (Sensitivity) is defined as Rec = TP/P and Precision

(Positive Prediction Rate) is defined as Prec = TP/(TP + FP). Note that Recall is referred to

as Accuracy in [66]. We determine Precision and Recall for each pair of trees individually. Values

displayed in Figure 5.3, Table 5.1 and Figure 5.4 (see the Results section) are average values for all

488 co-evolving tree pairs resp. for all tree pairs satisfying the respective criteria.

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 104

Method RP Recall RelRec Precis
C0 0.546 0.330 0.557 0.447
C1 0.610 0.378 0.586 0.475

C{1,2} 0.612 0.377 0.581 0.471
Cser 0.638 0.373 0.556 0.444
COpt 0.612 0.380 0.588 0.479

Table 5.1: Evaluation of different scoring schemes. COpt is ’TreeTopology’ in the other figures.

5.4 Results

Data Source and Alternative Methods. We benchmarked our algorithm against the most recent

heuristic search method [66] for determining a mapping in the presence of paralogs on the large-scale

data corpus described in the same study. This data set contains multiple alignments for 604 yeast

protein domains among which 488 domain pairs are known to co-occur in the same protein. Those

488 domain family pairs are considered to be a particularly tough test [66] due to the presence of

approximately 6 paralogs per species on average. For all interacting domain family pairs, neighbor-

joining trees were computed, using ClustalW [142] and the trees were rooted at the domains which

are known to interact.

Tree Constraints. In order to appropriately assess the contribution of the different tree constraints

as outlined in the Methods section, we evaluated our algorithm by not allowing to delete internal

nodes (C0), allowing isolated node deletion (C1) as well as further allowing parallel deletion of

two sibling nodes (C1,2), see Fig. 5.2(c) for an example. We also include the test case Cser where

we allow for deletion of a parent and a child, simultaneously. In all the above cases, we allow

deletion of subtrees as a whole without penalty. The specific scores for these cases are as follows:

C0 : C = 1, E =∞, F =∞, C1 : C = 1, E = 0, F =∞ and C1,2 : C = 1, E = F = 0.

Among the cases above C1,2 gives the best results (see Table 5.1 and further comments below),

implying that paralell deletions are beneficial. We experimented with several values of E and F ,

and noticed that it may be beneficial to impose a large penalty for parallel deletions in contrast to a

relatively small penalty for isolated deletions. We concluded that an optimal choice of parameters

would be E = 2, F = 50 (referred to as COpt), when C = 1. Note that the exact value of C is the

function of neighbor-joining trees resulting from ClustalW multiple alignments alone—for different

settings absolute values need to be put into perspective with orders of magnitude of edge weights of

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 105

the trees under consideration.

As outlined in the Methods section, inducing tree constraints considerably reduces the search

space, thereby allowing for an efficient and deterministic method. Given a pair of trees, let CP

(“Constraint Positives”) denote the maximum number of correctly paired domains over all possible

alignments of the trees. Note that one can compute, CP for any given pair of trees, by running our

algorithm with a scoring scheme which assigns 1 to correctly paired domains and not penalizing

any operation which the constraints allow us to do. 3 We compute RP = CP
P (“Relative Positives”)

as the fraction of pairings that can still be inferred, and which measures the reduction of search

space size due to imposing constraints. We further compute RelRec = TP
CP (“Relative Recall”) as a

recall value which reflects how many of the correct pairings possible were inferred by the algorithm

in question. The good RelRec values the tree topology approach achieves (0.59 vs. 0.55 for the

matrix-based approach, note that for the matrix-based approach this coincides with Recall since it

does not impose any constraints), indicate that losses in Recall are due to imposing constraints, but

not necessarily due to the scoring scheme.

Figure 5.3 presents numbers of all 488 tree pairs for a canonical baseline procedure, which

randomly pairs as many domain family members per species as possible, the heuristic matrix-based

approach (MatrixHeuristic) and the deterministic tree-topology based approach (TreeTopology =

Copt). Table 5.1 furthermore presents numbers resulting from usage of different tree constraints.

Following [66], we also separate tree pairs according to the numbers of leaves of the larger tree and

the product of the numbers of leaves of the two paired trees which, according to [66], quantifies

search space size. See Figure 5.4 for the respective results.

5.5 Discussion

Runtime. The possibly most striking advantage of our topology-based approach is the drastic re-

duction of runtime—we can compute mappings for the 488 interacting domain families in roughly 1

minute on a single CPU - in comparison to 730 hours on MareNostrum 4 needed for the Metropolis

search performed by [66]. Note that there are rapidly growing large-scale phylogenetic databases

such as ENSEMBL (http://ensembl.org) or PhylomeDB (http://phylomedb.org),

3This scoring scheme assumes knowledge we are not allowed to use in the algorithm; we use this knowledge for the
purpose of evaluation here.

4MareNostrum is a supercomputer of the Barcelona Supercomputing Center, one of the largest machines in the world
dedicated to science [66, p. 10].

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 106

whose growth is further accelerated by next-generation sequencing projects (as of 12th August,

2011, PhylomeDB contains 482, 274 phylogenetic trees). The reduction in runtime delivered by our

approach certainly overcomes a major obstacle—we render large-scale mapping and, as a conse-

quence, comparison of paralog-rich gene trees feasible. Note that this reduction has become possi-

ble by imposing both computationally and biologically reasonable constraints on the search space

while at the same time allowing for an efficient scheme to find the global optimum within these

constraints.

Search Space Size / Recall. Comparing COpt with the method of [66] (Heuristic) overall, clearly,

[66] achieve best recall. As pointed out above, this comes as no surprise since we cannot explore

pairings that contradict the topologies of the paired trees. Quite surprisingly though, although usage

of tree topology and neighbor-joining trees in particular have been discussed rather controversially

[151], we find that still the majority of pairings (54.6% with the strictest constraints and 61.2% for

allowing isolated and parallel deletion) can be determined by a topology-based approach. These

numbers may put usage of neighbor-joining tree topology in mirrortree approaches into a general

perspective. Moreover, note that the fraction of correct domain pairs computed by our method over

that of the heuristic search method is about 0.7 (= TP (Copt)
TP (Heuristic) = Recall(Copt)

Recall(Heuristic) = 0.38
0.55) which is

more than what was to be expected by reduction of the search space (CP (Copt)
CP (Heuristic) = CP (Copt)

P (Heuristic) =

RP (Copt) = 0.61) which points out that we compensate search space reduction by a more effective

search strategy. This becomes reflected by the better RelRec values of Copt.

Precision Precision favors the topology-based approach, at least on larger (combinations of) trees

(see column Prec in all three tables). Better precision reflects a larger fraction of the correct domain

pairs among the pairs inferred overall. We achieve slightly better values in terms of Precision than

[66], see Prec in Figure 5.3. See also Figure 5.4 for a comparison with respect to search space size-

related differences. While [66] achieve excellent values on pairs of smaller trees, we outperform

their approach on larger trees, with the most obvious differences on pairs of trees where the product

of the numbers of leaves is large.

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 107

Figure 5.1: Two isomorphic trees are shown as an example in this figure. The leaves of the
left tree are labeled with a1, a2, a3, a4 while the leaves of the tree on the right are labeled
with b1, b2, b3, b4. A possible mapping between the leaves that respect the tree topology is
(a1, b3), (a2, b4), (a3, b2), (a4, b1).

A7

A5 A6

A1 A2 A3 A4

(a) No deletion

A7

A6

A1 A2 A3 A4

(b) An isolated deletion: A5

A7

A1 A2 A3 A4

(c) Parallel deletions of two
nodes: A5 and A6

Figure 5.2: A gene tree (a), with an isolated node deletion, A5 (b) and a parallel deletion of the
nodes A5 and A6) (c).

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 108

Recall Precision

0.
0

0.
2

0.
4

0.
6

Baseline
MatrixHeuristic
TreeTopology

Figure 5.3: Recall and Precision for the heuristic matrix-based approach (MatrixHeuristic, [66]) and
the deterministic, tree-topology based approach (TreeTopology = Copt). Baseline is determined as
randomly pairing as many protein domain family members as possible. Runtimes for MatrixHeuris-
tic and TreeTopology are 730 hours and 1 minute respectively.

CHAPTER 5. IDENTIFYING PAIRS OF INTERACTING PROTEIN PARTNERS 109

< 11680 >= 11680
0.2
0.3
0.4
0.5
0.6
0.7

Space: Recall
MatrixHeuristic
TreeTopology

< 11680 >= 11680
0.2

0.3

0.4

0.5

Space: Precision
MatrixHeuristic
TreeTopology

< 120 >= 120
0.2
0.3
0.4
0.5
0.6
0.7

Size: Recall
MatrixHeuristic
TreeTopology

< 120 >= 120

0.3

0.4

0.5

Size: Precision
MatrixHeuristic
TreeTopology

Figure 5.4: The comparison of our method with the heuristic search method reveals favorable results
for large trees (bottom row), x-axis indicates the size (number of leaves) of the larger tree of the two
trees paired and in particular for large search spaces, that is for Space ≥11680 where Space is the
product of the number of leaves of the two trees paired.

Chapter 6

Motif counting in protein-protein
interaction networks

In the previous chapter, we discussed our computational method for identifying pairs of interact-

ing proteins or domains. We shift our focus in this chapter to the study of networks of protein

interactions themselves and their topological features. Recent research has revealed that many

protein-protein interaction (PPI) networks share global topological features. Similarities between

PPI networks of several organisms have been observed with respect to their degree distribution,

k-hop reachability, betweenness and closeness [18, 24, 53, 118]. Because direct measures for com-

paring two networks, such as the minimum number of edges and vertices to be deleted to make two

networks isomorphic are NP-hard to compute, such topological features have been used to “mea-

sure” how similar any given pair of networks could be. Two networks which have similar global

features can have significant differences in terms of local structures they include: e.g., one of them

may include a specific subgraph many more times than the other. Thus it is important to be able to

count the “number of occurrences” of specific subgraphs in networks as means of detecting whether

two networks are similar or not.

A subgraph that occurs much more frequently in a biomolecular network G than one in a “ran-

dom” network or a “typical” network R whose global properties are similar to those of G is called

a network motif of G [108]. Similarly, a subgraph that occurs much less frequently in G in compar-

ison to R is called an anti-motif of G. The motifs were suggested to be recurring circuit elements

that carry out key information processing tasks [108] and thus are of considerable interest. Thus, the

number of occurences of a specific subgraph can be used as a mean to detect whether it is a motif.

110

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 111

The use of subgraph distribution with up to k vertices to compare PPI networks with artificial

networks has been the source of a recent debate. It was argued that the distribution of subgraphs

of up to k = 5 vertices in the Yeast PPI network is quite different from that of the preferential

attachment model [118]. Based on this observation, it was argued that the Yeast PPI network is not

a “scale-free” network and the presumed similarity of the Yeast PPI network and the “scale-free”

networks in terms of degree distribution is a consequence of sampling errors [50]. Finally, in [53] it

was demonstrated that the subgraph distribution of the preferential attachment model and that of the

duplication model for k ≤ 6 can be substantially different and the seed network of the duplication

method could be chosen in a way that its subgraph distribution can be made “very similar” to that of

the available PPI networks including that of the Yeast.

Although it is possible to make the general distribution of subgraphs in a artificial model (more

specifically the duplication model) very similar to that of a specific PPI network, there are a number

of subgraphs, for example in the Yeast PPI network, which occur much more frequently than that

in the associated random model. These motifs were suggested to be recurring circuit elements that

carry out key information processing tasks [108] and thus are of considerable interest.As a result

novel computational tools have been developed for counting subgraphs in a network [118, 53] and

discovering network motifs [44].

Counting the number of all possible “induced” subgraphs in a PPI network has been proved to

be a challenging task. [118] describes how to count all induced subgraphs with up to k = 5 vertices

in a PPI network. Faster techniques that count induced subgraphs of size up to k = 6 [53] and k = 7

[44] were developed very recently. The running time of these techniques all increase exponentially

with k thus novel algorithmic tools are now needed for counting subgraphs of size k ≥ 8.

[73] provides an efficient sampling algorithm for estimating subgraph concentrations and detect-

ing network motifs. The sampling algorithm is based on a random walk approach which in k (the

number of vertices of the subgraph) iterations picks k vertices of the original graph and includes

all the edges between the picked vertices. Surprisingly, the experiments show that a few samples is

sufficient to achieve an accurate result.

Note that an induced subgraph (more accurately a vertex induced subgraph) of a network G is

a subset of the vertices of G together with any edges whose endpoints are both in this subset; i.e.

G′ is an induced subgraph of G if and only if for each pair of vertices v′ and w′ in G′ and their

corresponding vertices v and w in G, either there are edges between both v′, w′ pair and v, w pair

or there are no edges between any of the pairs. For example let G be a fully connected graph of size

n. Then a cycle that goes through every vertex in G is not an induced subgraph of G; it is called a

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 112

“non-induced” subgraph of G.

All the above techniques consider only induced subgraphs of a given network; there are many

more non-induced subgraphs isomorphic to a given topology and thus it is more difficult to count

non-induced subgraphs of a network. As a result, there are only a limited number of earlier stud-

ies on biomolecular networks that consider non-induced subgraphs [35, 132]. The motivation for

considering non-induced subgraphs are clear: available PPI networks are far from complete and

error free; the interactions between proteins reported by these networks include both false positives

and false negatives. Thus an occurrence of a specific network motif in one network may include

additional edges in its occurrence in another network and vice versa.

The specific problem addressed by earlier studies on non-induced subgraphs [35, 132] is not the

subgraph counting problem. Rather these papers focus on the “subgraph detection” problem, which

aims to respond to queries of the form, does an input network G have a non-induced subgraph G′

- where G′ is a user specified query subgraph. Subgraph detection problem is somewhat easier

than the subgraph counting problem. [35], for example, show how to solve the subgraph detection

problem for subgraphs of size k = O(log n) - much larger than what can be tackled by [118, 53, 44]

for subgraph counting - provided that the query subgraph G′ is either a simple path, a tree, or a

bounded treewidth subgraph. The main tool employed here that makes subgraph detection problem

tractable for such subgraphs is the “color coding” technique [11].

Color coding is a combinatorial approach that was introduced to detect simple paths, trees and

bounded treewidth subgraphs in unlabeled graphs [11]. It was later applied to subgraph detection

in biomolecular networks by [133, 35]. Color coding is based on assigning random colors to the

vertices of an input graph. For subgraph detection purposes, it considers only those subgraphs where

each vertex has a unique color as a potential answer to a query subgraph. Such “colorful” subgraphs

which are isomorphic to the query subgraph can then be detected through efficient use of dynamic

programming, in time polynomial with n, the size of the input graph. If the above procedure is

repeated sufficiently many times (polynomial with n, provided that the subgraph we are looking for

is of size k = O(log n)), it is guaranteed that a specific occurrence of the query subgraph will be

detected with high probability.

[13] use the color coding approach to count the number of subgraphs in a given graph G which

are isomorphic to a bounded treewidth graph H . They give a randomized approximate counting

algorithm with running time kO(k) · nb+O(1) where n and k are the number of vertices in G and

H , respectively, and b is the treewidth of H . The framework which they use is based on [72] on

approximate counting via sampling. Provided that k = O(log n), the running time of this algorithm

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 113

is super-polynomial with n, and thus is not practical.

[9] combines the color coding technique with a construction of what is called Balanced Families

of Perfect Hash Functions to obtain a deterministic algorithm to count the number of simple paths

or cycles of size k in an input graph G with running time 2O(k log log k)nO(1), still super-polynomial

in n when k = O(log n).

Given a network with n vertices, we show how to apply the color coding technique to count

non-induced trees and bounded treewidth subgraphs with k vertices. We present a randomized

approximation algorithm with running time 2O(k) ·nO(1), which is polynomial in n for k = O(log n)

and thus is faster than available alternatives [13, 9]. Our algorithm is quite efficient in practice; we

were able to go beyond what the algorithms presented in [118, 53, 44] achieve, and count, for the

first time, all possible tree topologies of 8, 9 and 10 vertices in PPI networks of various organisms

such as S.Cerevisiae (Yeast), E.coli, H.pylori and C.elegans (Worm) PPI networks available via the

DIP database [156], which was released at the time we developed our algorithm.

The distribution of trees of up to 10 vertices provides us powerful means to compare biomolec-

ular networks. We define a novel “normalized treelet distribution”, the distribution of the number of

occurrences of non-induced trees in a PPI network, normalized by the total number of such treelets,

is that it is quite robust. On the well known Yeast PPI network [156], even after random sparsifica-

tion with bait coverage of 70% and edge coverage of 70% (as suggested by [50]), the normalized tree

distribution does not change much. However, differences become noticeable after sparsifying the

Yeast PPI network with 50% bait and 50% edge coverage. It is interesting to note that the normal-

ized treelet distributions of the three unicellular organisms we compared, Yeast, E.coli and H.pylori

were all fairly similar; however the distribution of the more complex C.elegans was quite different.

In the following section, we present our efficient algorithm that is able to count all trees of

size ≤ 10 in PPI networks of various organisms such as S.Cerevisiae (Yeast), E.coli, H.pylori and

C.elegans (Worm).

We show that the occurences of trees of up to 10 vertices provides us powerful means to compare

biomolecular networks. We define a novel “normalized treelet distribution”, the distribution of the

number of occurrences of non-induced trees in a PPI network, normalized by the total number of

such treelets, is that it is quite robust. On the well known Yeast PPI network [156], even after

random sparsification with bait coverage of 70% and edge coverage of 70% (as suggested by [50]),

the normalized tree distribution does not change much. However, differences become noticeable

after sparsifying the Yeast PPI network with 50% bait and 50% edge coverage. It is interesting to

note that the normalized treelet distributions of the three unicellular organisms we compared, Yeast,

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 114

E.coli and H.pylori were all fairly similar; however the distribution of the more complex C.elegans

was quite different.

6.1 The Subgraph Counting Algorithm

We apply the color coding technique to approximately count the number of non-induced occurrences

of each possible tree topology T with O(log n) vertices in a network G with n vertices. As per [13],

this method can be generalized (without much difficulty) to count all non-induced occurrences of

each bounded treewidth graph G′ in G as well, provided that the treewidth is constant.

Given a graph G with n vertices and a tree T with k vertices, we consider the problem of

counting the number of non-induced subtrees of G which are isomorphic to T . Note that we use the

standard definition of a tree, i.e. for us, a tree is an unlabeled, connected graph with no cycles. It

is unrooted and its vertices are unordered.1 A tree T is said to be isomorphic to a subtree T ′ in a

graph G if there is a bijection between the vertices of T and the vertices of T ′ such that for every

edge between two vertices a and b of T there is an edge between the vertices a′ and b′ in T ′ that

correspond to a and b respectively. Such a tree T ′ is considered to be a non-induced occurrence of

T in G.

Note that we allow overlaps between the trees we count, i.e. two occurrences of T , namely T ′

and T ′′ may share vertices; in fact the vertex sets of T ′ and T ′′ may be identical. We consider T ′

and T ′′ distinct occurrences of T provided that the edge sets of T ′ and T ′′ are not identical.

Our algorithm counts the number of non-induced occurrences of a tree T with k = O(log n)

vertices in a graph G with n vertices as follows.

1. Color coding. Color each vertex of input graph G independently and uniformly at random

with one of the k colors.

2. Counting. Apply a dynamic programming routine (explained later) to count the number of

non-induced occurrences of T in which each vertex has a unique color.

3. Repeat the above two steps O(ek) times and add up the number of occurrences of T to get an

estimate on the number of its occurrences in G.

In what follows, we give the details of the above steps and explain how and why they work.

1Thus, for example, consider a tree T with a root vertex a with two children b and c, with b having a single child d.
For our purposes T is isomorphic to another tree where b is the root with two children d and a, and a with a single child
c. In fact both of these trees are isomorphic to a simple path involving four vertices.

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 115

6.2 Color coding step

We note that the color coding step not only works for trees but also bounded treewidth graphs with

constant treewidth. Let r be the total number of copies of T in G. We assign a color to each vertex

of G from the color set [k] = {1, · · · , k}. The colors are assigned to each vertex independently and

uniformly at random. It is easy to see that for a particular non-induced occurrence of T in G the

probability that all its vertices are assigned unique colors is p = k!/kk, thus the expected number of

colorful copies in G is rp.

Let F denote the family of all copies of T in G. For each such copy F ∈ F , let xF denote

the indicator random variable whose value is 1 if and only if the copy is colorful in our random k-

coloring of V (G), the vertices of G. Let X =
∑

F∈F xF be the random variable counting the total

number of colorful copies of T . By linearity of expectation, the expected value of X is E(X) = rp.

It is possible to estimate the variance of X as follows. Note,first, that for every two distinct

copies F, F ′ ∈ F , the probability that both F and F ′ are colorful is at most p (and in fact strictly

smaller unless both copies have exactly the same set of vertices), implying that the covariance

Cov(xF , xF ′) satisfies

Cov(xF , xF ′) = E(xFxF ′)− E(xF)E(xF ′) ≤ p.

Therefore, the variance of X satisfies

V ar(X) =
∑
F∈F

V ar(xF) +
∑

F 6=F ′∈F
Cov(xF , xF ′)

≤ rp+ r(r − 1)p = r2p.

It follows that if Y is the average of s independent copies of X (obtained by s independent

random colorings), then

E(Y) = E(X) = rp

and

V ar(Y) = V ar(X)/s ≤ r2p/s.

Therefore, by Chebyshev’s Inequality, the probability that Y is smaller than (or bigger than) its

expectation by at least εrp is at most

r2p

ε2r2p2s
=

1
ε2ps

.

In particular, if s = 4
ε2p

this probability is at most 1/4.

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 116

In case we wish to decrease the error probability, we can compute Y t times independently and

let Z be the median. The probability that the median is less than (1− ε)rp is the probability that at

least half of the copies of Y computed will be less than this quantity, which is at most(
t

t/2

)
4−t ≤ 2−t.

A similar estimate holds for the probability thatZ is bigger than (1+ε)rp. Therefore, if t = log(1/δ)

then with probability 1 − 2δ the value of Z will lie in [(1 − ε)rp, (1 + ε)rp]. Note that the total

number of colorings in the process is

O(
log(1/δ)
ε2p

) = O(
ek log(1/δ)

ε2
).

Our estimate for r is, of course, Z/p = Zkk/k!.

6.3 Counting step

Given a random coloring of the input graph G with k colors, we present a dynamic programming

algorithm to compute the number of colorful subgraphs of G which are isomorphic to the query tree

T .

To give a flavor of our algorithm, we first present for the case in which the query graph is a single

path of length k. For each vertex v and each subset S of the color set {1, · · · , k}, we aim to record

the number of colorful paths for which one of their endpoints is v. Let C(v, S) be the number of

such paths, and col(v) be the color of vertex v. Given a color `, for all v ∈ V (G):

C(v, {`}) =

{
1 if col(v) = `

0 otherwise.

For each vertex v and color set S where |S| > 1, we have

C(v, S) =
∑

u;(u,v)∈E(G)

C
(
u, S − col(v)

)
.

Note that the number of single colorful paths of length k would be

1
2

∑
v

C
(
v, {1, · · · , k}

)
.

As mentioned earlier, we will only describe the counting step for the case T is a tree, however

the algorithm we present can be generalized to bounded treewidth graphs with constant treewidth

without much difficulty.

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 117

As a first step we pick an arbitrary vertex ρ of T and set it as the root. We will denote this rooted

tree by τ(ρ). Then we count the number of colorful occurrences of τ(ρ) in the given graph G as

follows.

For each vertex v of the graph G, we compute c(v, τ(ρ), [k]), the number of [k]-colorful rooted

subtrees with root v, which are isomorphic to τ(ρ).

The actual number of [k]-colorful occurrences of T in G is

1
q

∑
v

c(v, τ(ρ), [k])

where q is equal to the number of vertices u in T , for which the rooted tree τ(u) is isomorphic to

τ(ρ).

In order to compute c(v, τ(ρ), [k]) for every vertex v in the graph G, we use the following

dynamic programming routine.

Let τ ′(ρ′) be a subtree of the tree τ(ρ) with root ρ′, we denote the size of τ ′(ρ′) by ν(τ ′(ρ′)).

For any vertex x in G, and a subset S of the color set [k] with |S| = ν(τ ′(ρ′)), let c(x, τ ′(ρ′), S) be

the number of S-colorful subgraphs with root x and color set S, which are isomorphic to τ ′(ρ′). We

compute c(x, τ ′(ρ′), S) inductively as follows.

The base case where ν(τ ′(ρ′)) = 1 is obvious: For any single color set S = {a}, c(x, τ ′(ρ′), S)

is equal to 1 if x has color a, and otherwise is equal to 0.

For the case where ν(τ ′(ρ′)) ≥ 2, let ρ′′ be a vertex connected to ρ′ in τ ′(ρ′). Removing the

edge (ρ′, ρ′′) partitions τ ′(ρ′) into two smaller subtrees, say τ ′1(ρ′) with root ρ′, and τ ′2(ρ′′) with root

ρ′′.

Now for every vertex u connected to x in G, and all set of colors S1 and S2 ⊂ [k] with

|S1| = ν(τ ′1(ρ′)), |S2| = ν(τ ′2(ρ′′)), and S1 ∩ S2 = ∅ we recursively find c(x, τ1(ρ′), S1) and

c(u, τ2(ρ′′), S2). The next step is to compute c(x, τ ′(ρ′), S), by using the values of c(x, τ1(ρ′), S1)

and c(u, τ2(ρ′′), S2) for every u connected to x, and all feasible set of colors S1 and S2. This is

easily achieved by the fact that

c(x, τ ′(ρ′), S) =
1
d

∑
∀S1,S2:|S1∩S2|=∅

c(x, τ1(ρ′), S1) · c(u, τ2(ρ′′), S2).

Here, d is the over counting factor and is equal to one plus the number of siblings of ρ′′, i.e. vertices

connected to ρ′, in τ ′(ρ′).

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 118

of vertices (k) # of unlabeled trees Running time (mins)

7 11 2
8 23 14
9 47 100
10 106 700

Table 6.1: Number of unlabeled tree topologies, and the running time of our algorithm to count them
in the Yeast PPI network.

Network # Vertices # Edges Average degree

S.cerevisiae 2345 5609 4.78
E.coli 1441 5871 8.14
H.pylori 687 1351 3.93
C.elegans 2387 3825 3.20

Table 6.2: Number of vertices, edges, and average degree in the PPI networks studied.

Note that the total running time of our algorithm would be polynomial in n. We need to repeat

the experimentO(e
k log(1/δ)

ε2
) times, and each counting step takesO(2k ·|E|) where |E| is the number

of edges in the input network. Thus the asymptotic running time of our algorithm is

O(|E| · 2k · ek log(1/δ) · 1
ε2

)

.

6.4 Experimental Results

We tested our algorithm to count non-induced occurrences of subgraphs with k = 8, 9, 10 vertices.

The table 6.1 shows the number of unlabeled tree topologies for different values of k together with

the total running time of our algorithm for counting the non-induced occurrences of these trees in

the largest connected component of Yeast PPI network. Note that our algorithm is fast; for k = 10,

it takes 12 hours to count all tree topologies on a Sun Fire X4600 Server with 64GB RAM, when

executed in parallel on 8 dual AMD Opteron CPUs 2.6 Ghz.2

2We do not provide a direct comparison of this method with others w.r.t. running time as we focus on counting
non-induced occurences of motifs whereas all alternatives focus on induced occurences.

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 119

The list of different tree topologies of varying k can be obtained from the Combinatorial Object

Server Generation website (http://theory.cs.uvic.ca/cos.html).

We tested our algorithm on the protein-protein interaction networks of four species; S.cerevisiae

(Yeast), E.coli, H.pylori, and C.elegans (Worm). Since the PPI networks of these species are far from

complete, we focus on the largest connected component of each network. For each PPI network and

for all trees of k = 8, 9, 10 vertices, we counted the number of non-induced occurrences of each tree

topology. The distribution of the number of such subtree topologies (which will be called “treelets”)

for varying values of k provide means of comparing PPI networks.

Note that the number of vertices, their average degree, etc. vary significantly from one PPI

network to the other. Table 6.2 shows the number of vertices and edges of the PPI networks we

used in our study. Thus it should be expected that the number of non-induced occurrences of treelets

should differ considerably among the networks.

As a result, we normalize the treelet distributions of each individual network, for each value of

k as follows. For each treelet T of k vertices, consider the fraction of the number of occurrences

of T in a network G among total number of occurrences of all possible treelets of size k in G. The

normalized treelet distribution refers to this fractional count of treelets in a given PPI network. We

note that as specific fractions of treelets vary by several orders of magnitude, our normalized treelet

distributions are all given in logarithmic scale.

6.5 Comparing PPI networks w.r.t. normalized treelet distribution

We first discuss how the normalized treelet distributions vary among the most complete PPI net-

works available via the Database of Interacting Proteins [156]. Figure 6.1 compares the normalized

treelet distributions of the Yeast, H.pylori, and E.coli PPI networks (in fact their largest connected

components). Although all three PPI networks of unicellular organisms are quite similar with re-

spect to normalized treelet distributions, it is interesting to note that the PPI network of the Yeast

appears to be more similar to that of the H.pylori in comparison to the E.coli PPI network. We also

compare the normalized treelet distributions of these three unicellular organisms’ PPI network with

that of the most complete PPI network of a multicellular organism, C.elegans in Figure 6.2. As

can be seen, the normalized treelet distribution of C.elegans is very different from that of the Yeast,

E.coli or H.pylori.

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 120

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

Yeast
E. coli

H. pylori

(a) Treelet distribution of size 8

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30 35 40 45 50

Yeast
E. coli

H. pylori

(b) Treelet distribution of size 9

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0 20 40 60 80 100 120

Yeast
E. coli

H. pylori

(c) Treelet distribution of size 10

Figure 6.1: Normalized treelet distribution of the Yeast PPI network (Red), E.coli (Green) and
H.pylori (Blue)

CHAPTER 6. MOTIF COUNTING IN PROTEIN-PROTEIN INTERACTION NETWORKS 121

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

Yeast
E. coli

H. pylori
C. elegans

(a) Treelet distribution of size 8

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40 45 50

Yeast
E. coli

H. pylori
C. elegans

(b) Treelet distribution of size 9

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0 20 40 60 80 100 120

Yeast
E. coli

H. pylori
C. elegans

(c) Treelet distribution of size 10

Figure 6.2: Normalized treelet distribution of the Yeast PPI network (Red), E.coli (Green) , H.pylori
(Blue) and C.elegans (Pink)

Chapter 7

Conclusion

In this thesis, we presented our effort in developing new methods for structural variation discovery

in sequenced genomes. We designed a computational pipeline, NovelSeq, to assemble the novel

sequence insertions and build maps of insertion by anchoring the sequences back into the refer-

ence genome assembly. An important aspect of the NovelSeq framework is that it can be applied

as a post-processing step after the completion of read mapping to analyze other types of genetic

variation such as SNP and structural variation discovery. Furthermore, we described additional al-

gorithms to discover transposon insertions that are of known importance to genome evolution and

genomic variation. These enhancements provide a much needed step towards a highly reliable and

comprehensive structural variation discovery algorithm, which, in turn will enable genomics re-

searchers to better understand the variations in the genomes of newly sequenced human individuals,

as well as the genome structures of non-human species. We also demonstrated that analyzing a col-

lection of high-throughput sequenced genomes jointly and simultaneously improves structural vari-

ation discovery, especially among highly related genomes. We focused on discovering deletions and

Alu repeats among high throughput paired-end sequenced genomes of family members and showed

that the algorithms we have developed for simultaneous genome analysis provide much lower false

positive rates in comparison to existing algorithms that analyze each genome independently. Our

algorithms, which are collectively call CommonLAW (Common Loci structural Alteration Widgets)

aim to solve the maximum parsimony structural variation discovery for multiple genomes problem

optimally through a generalization of the maximum parsimony formulation and the associated al-

gorithms introduced in [55, 57, 48] for a single donor genome. We believe that the CommonLAW

framework will help studies on multiple, highly related, high coverage NGS genome sequences

from members of a family or an ethnic group, tissue samples from one individual (e.g. primary

122

CHAPTER 7. CONCLUSION 123

tumor vs metastatic tumor), individuals sharing a phenotype, etc., by identifying common and rare

structural alterations more accurately. The YRI family on which we demonstrate the effectiveness

of the CommonLAW framework in the context of de novo Alu repeat discovery, or the CEU family

whose genomes we analyzed for deletion discovery provide convincing evidence that CommonLAW

framework may make a significant difference in large scale projects involving high coverage NGS

data. In addition, we believe that our methods can also be adopted to analyzing low coverage NGS

data for improving the accuracy provided by available software tools. Note that CommonLAW is

already being used as a discovery methods for medical genomic projects such as the Autism project.

However there are still open problems. In the second part of the thesis, we have, for the first time,

devised a deterministic and efficient, polynomial-runtime mirrortree approach which directly com-

pares the gene trees, and not the distance matrices behind or giving rise to them. We have juxtaposed

our approach with the most recent, state-of-the-art matrix-based heuristic search procedure without

introducing further experimental biases. Most importantly, our tree topology-based algorithm lists

efficiency as its decisive benefit. While recall is better for the heuristic search obviously due to that

it does not impose any constraints on the search space, we only incur relatively mild losses. We

achieve better results in precision, in particular when both of the mirrored trees are large. This leads

us to the overall conclusion that the heuristic method remains the better choice for smaller trees and

when runtime is not an issue. In case of larger trees and in particular for large-scale studies, our ap-

proach has considerable benefits. Note finally that we have been comparing neighbor-joining trees

which have been repeatedly exposed as suboptimal choices of phylogenetic trees. We believe that

our approach can gain from improvements in tree quality significantly more than the matrix-based

approaches. Note finally that mapping domains can lead to ambiguous results due to that several

homologous copies can co-occur in one protein. To resolve such issues is interesting future work.

Finally, we presented our algorithm for counting non-induced occurrences of sizable subgraphs in

a protein-protein interaction network, provided that the subgraphs in question are in the form of

trees or bounded treewidth graphs. We showed how to apply color coding technique to count the

number of non-induced occurrences of such subgraphs in time polynomial with n if k = O(log n),

where n is the number of vertices in the network and k is the query size. We used our algorithm to

obtain all treelet distributions for k ≤ 10 of the PPI networks of unicellular organisms (S.cerevisiae,

E.coli and H.pylori), which are all quite similar, and a multicellular organism (C.elegans) which is

significantly different.

CHAPTER 7. CONCLUSION 124

Future directions As we discussed throughout the thesis the problem of structural variation (SV)

discovery is considered one of the most important problems in the field. Thus some of the future

directions would include improving the existing SV discovery methods, both in terms of sensitiv-

ity and specificity. In particular, integrating different signatures such as read depth, read pair and

split read, in the correct way, can improve the SV discover methods. Understanding the genotype-

phenotype relation is a major problem of the field, and a complete study of variants in genomic

regions is a crucial part this study. Natural future directions would be to study the contribution of

genetic structural variations to phenotypes.

Appendix A

Maximum Parsimony SV with Conflict
Resolution

The possibility of multiple mapping locations for each paired-end read raised the issue of which

structural variations suggested by the maximal valid clusters are correct (i.e. a paired-end read that

has multiple mappings can suggest at most one structural variation). We discussed this problem in

details for different types of structural variation events in this thesis.

Note that the original Maximum Parsimony Structural Variation (MPSV) problem [55] has no

limit on the number of SV predictions which occur in the same loci of the genome. A considerable

amount of the predicated calls overlap with each other and a final post-processing heuristic to filter

some of those overlapping predicted SVs was given (see the result Section of [55]).

As part of our contribution in a paper [57], we mathematically formulated these “conflicts” and

modeled the structural variation discovery problem as a novel combinatorial optimization problem.

In what follows, we present the Maximum Parsimony Structural Variation with Conflict Resolution

problem and our solution for it.

A.1 Conflicting SV clusters in haploid and diploid genome sequences

We motivate the “conflict resolution” for structural variation using a simple example. Given paired-

end reads from a haploid genome, a structural variation algorithm (such as VariationHunter, MoDil

or BreakDancer) can construct two sets of paired-end clusters which support two independent dele-

tions overlapping significantly as shown in Figure A.1. Since we assumed the genome was haploid,

125

APPENDIX A. MAXIMUM PARSIMONY SV WITH CONFLICT RESOLUTION 126

both of the variations as shown in Figure A.1 cannot be correct simultaneously.

We will first formalize MPSV-CR for both haploid and diploid genomes and then will analyze

the complexity of the MPSV-CR problem. Finally, we provide a heuristic to find a solution to

MPSV-CR. We denoted this solution as VariationHunter-CR.

Assuming only a single haploid of a genome is sequenced, two valid clusters V clu1 and V clu2 of

paired-end reads are conflicting if and only if there exists a potential scenario of structural variations

suggested by the two valid clusters, such that existence of one of the events makes the other cluster

not possible (similar to the case shown in Figure A.1). In [57], we presented the set of rules which

determine if two valid clusters are conflicting in a haploid genome or not. We refer the reader to

[57] for more details.

With the rules for two clusters being in conflict with each other or not in a haploid genome, we

can model the conflict representation of all the clusters using a graph, denoted as conflict graph.

Each cluster is a node, and there exists an edge between every two node, if and only if the two

clusters represented by the two nodes are in conflict with each other. It is not hard to see that a valid

set of SVs (that is a subset of node/clusters) is a set of nodes/clusters in which there are no two

nodes in the subset which are connected by an edge. In another words the valid solution (without

any conflicts) is an independent set of the conflict graph.

VClu

Potential Deletion 1

Potential Deletion 2

VClu
2

1

Figure A.1: In this figure, two valid clusters V clu1 and V clu2 are in conflict in a haploid genome.

One can easily generalize the definition of conflicting clusters to diploid genome sequences. Let

V clu1 and V clu2 be two conflicting clusters in a haploid genome. However, providing the genome

is diploid, both V clu1 and V clu2 can occur but in different haplotypes. Now consider a third SV

cluster, V clu3, which conflicts with both V clu1 and V clu2. It is clear based on the pigeon hole

principle that V clu1, V clu2, and V clu3 cannot occur in a diploid genome at the same time. In other

words, the presence of three different SV clusters which are pairwise conflicting in a haploid genome

APPENDIX A. MAXIMUM PARSIMONY SV WITH CONFLICT RESOLUTION 127

1 will be a conflict in a diploid genome. In addition the concept of the conflict graphs for haploid

genomes will be changed with haploid hypergraphs in diploid genomes. Where each hyperedge

connects three nodes, if these three nodes are in conflict with each other, we denote this as a conflict

hypergraph.

Now, we define the Maximum Parsimony Structural Variation with Conflict Resolution (MPSV-

CR) problem which does not only ask to minimize the total number of implied structural variants

but also guaranteesno pairwise conflicting triplet of the implied SVs exist.

Note that this new version of Maximum Parsimony Structural Variation problem does not select

any conflicting structural variations and thus may not always be able to assign every paired-end read

to a particular SV. Thus, the optimization function for MPSV-CR not only should try to minimize

the number of SVs predicted, but also maximize the number of paired-ends that can be assigned to

a location in genome.

In what follows we present the concept of conflicting SV clusters in more detail and give a

formal definition of the MPSV-CR problem.

A.2 Formal definition of the MPSV-CR problem

In this section, we formally define the MPSV-CR problem. LetMC = {V Clu1, V Clu2, · · · , V Clun}
be the set of SV clusters and R = {pe1, pe2, · · · , pen} be the collection of discordant paired-end

reads. These discordant end-pairs can have multiple locations in genome represented byAlign(pei) =

{a1pei, a2pei, · · · , ajpei}.
In order to formulate the constraints, we define the conflict hypergraph CG as a hypergraph with

vertex set V (CG) = MC and a hyperedge set E(CG) as following: Among every three distinct

SV clusters which are pair-wise conflicting, there exists a hyperedge in E(CG):

E(CG) = {(V Clui, V Cluj , V Cluk) | V Clui, V Cluj ,

V Cluk are pairwise conflicting}

(A.1)

We call a subset SC ⊂MC satisfiable under the constraint graphCG, if @e = (V Clup, V Cluq, V Clur) ∈
E(CG) : e ⊆ SC. For each satisfiable subset SC and each paired-end read pei, we define the indi-

cator variable δ(SC, pei) as follows:

1according to our definition of conflicts in a haploid genomes

APPENDIX A. MAXIMUM PARSIMONY SV WITH CONFLICT RESOLUTION 128

δ(SC, pei) =

{
0 if ∃SCk ∈ SC

∧
∃j : ajpei ∈ SCk

1 otherwise

Intuitively, δ(SC, pei) is the penalty for not assigning the pair-end read pei to a cluster in

the satisfiable subset SC. The MPSV-CR problem aims to find the satisfiable set SC ′ such that

f(SC ′) = |SC ′| +
∑

pe∈R δ(SC
′, pe) is minimized (i.e. to find a trade-off between the number of

SV clusters in a satisfiable set of SV clusters and the number of paired-end reads which do not assign

to any of these SV clusters.). We will prove that MPSV-CR is NP-hard even if we have any positive

weight on the cardinality of SC ′ and any positive penalty for unmapped reads (i.e. minimizing the

function g(SC ′) = k|SC ′| + l
∑

pe∈R δ(SC
′, pe) for some k > 0 and l > 0 is NP-hard.) When

l ≥ k > 0 (we denote this Case 1), minimizing g(SC ′) = k|SC ′| + l
∑

pe∈R δ(SC
′, pe) is the

same as minimizing g(SC ′) = |SC ′|+ l′
∑

pe∈R δ(SC
′, pe) where l′ = l/k. When k > l > 0 (we

denote this Case 2), minimizing g(SC ′) = k|SC ′|+ l
∑

pe∈R δ(SC
′, pe) is the same as minimizing

g(SC ′) = k′|SC ′|+
∑

pe∈R δ(SC
′, pe) where k′ = k/l.

A.2.1 The MPSV-CR problem is NP-hard

In what follows, we prove that the MPSV-CR problem is NP-hard. We use a reduction from the

minimum set cover problem for both cases. Given collection C of subsets of a finite set S (|S| = n),

we would like to find a subset C ′ ⊆ C with minimum cardinality such that every element in S

belongs to at least one member of C ′. We build an instance of MPSV-CR as followings:

Case 1 (k = 1 and k ≤ `): For each element Si ∈ S, there is a discordant paired-end read

pei, and corresponding to each set Cj ∈ C we have a cluster V Cluj = Cj . We define R = S,

V (CG) = V (G), and E(CG) = ∅. It is easy to see that if we have a set cover C ′ of size ≤ t,

we can pick a satisfiable set of clusters SC such that g(SC) ≤ t. On the other hand, if we can

pick a satisfiable set of clusters SC such that g(SC) ≤ t which includes x clusters and uncovers

y discordant paired-end reads, we can have a corresponding solution C ′′ ⊆ C for the set cover

instance with |C ′′| ≤ x+ y ≤ t by choosing at most y more sets to cover y uncovered elements.

Case 2 (` = 1 and ` < k): We denote p = dke. For each element Si ∈ S, there are p discordant

paired-end reads pei, pei+n, . . . , pei+np and corresponding to each setCj ∈ C is a cluster V Cluj =

{pek|Sk mod n ∈ Cj}. We define R = S, V (CG) = V (G), and E(CG) = ∅ like in Case 1. If

we have a set cover C ′ of size ≤ t, we can pick a set of clusters SC such that g(SC) = kt.

APPENDIX A. MAXIMUM PARSIMONY SV WITH CONFLICT RESOLUTION 129

When we can pick a satisfiable set of clusters SC such that g(SC) ≤ kt which includes x clusters

with y uncovered discordant paired-end reads. By the construction, we have g(SC) = kx + y

and y uncovered discordant reads correspond to y′ = y/p elements in S. And since k(x + y′) ≤
kx+py′ ≤ kx+y ≤ kt, we have x+y′ ≤ t. Thus, it is similar to Case 1 the collection C ′′ of x sets

and at most additional y′ sets to cover y′ uncovered elements is a solution to the set cover instance

with cardinality less than or equal to t.

A.3 An approximate solution to the MPSV-CR problem

In this part we present an approximation algorithm for MPSV-CR where k = l = 1 in the optimiza-

tion function f or g. This solution has two steps:

• Assign as many discordant reads as possible to a satisfiable set of SV clusters; we define MR

as the set of these pei’s.

• Minimize the number of SV clusters that can cover all the reads in MR.

Let maxMR be the maximum number of reads that can be assigned to a satisfiable set of SV

clusters. We define neighbors(V Clu) = {V Clu′|∃e ∈ E(CG), V Clu, V Clu′ ∈ e}, deg(V Clu) =

|neighbors(V Clu)| and ∆ = max{deg(V Clu)|V Clu ∈ MC} i.e the maximum degree of a ver-

tex in the conflict graph CG. Max Assigned Reads will be similar to the set cover algorithm in

which at each iteration we choose the cluster that does not conflict with any other clusters and has

maximum number of uncovered reads. We will prove that Max Assigned Reads guarantees to

return a set of assigned reads MR which has the cardinality at least maxMR/(∆ + 1) and also

results in a log(n) approximation of a minimum number of clusters that cover all the reads in MR.

Theorem 4. Max Assigned Reads returns set of covered readsMRwith |MR| ≥ maxMR/(∆+

1).

Proof. Letting m be the total number of reads, we show that |MR| ≥ m/∆. Suppose that the

algorithm terminates after k iterations. Denote MRi, URi as the sets of reads that are covered and

could not be covered for the first time at the i−th iteration and V Clui as the cluster that gets picked.

A read pe is called uncovered by a cluster V Clui if for each cluster V Clu′: ape ∈ V Clu′ and

V Clu′ could not be picked for the first time just after ith iteration, thus, pe ∈ URi . At ith iteration,

the maximum number of reads that could be covered for all neighbors of V Clui is at most ∆|MRi|.
Hence, the maximum number of reads that are uncovered for the first time is |URi| ≤ ∆|MRi|.

APPENDIX A. MAXIMUM PARSIMONY SV WITH CONFLICT RESOLUTION 130

Moreover, we have
∑k

i=1 (URi +MRi) = m and |MR| =
∑k

i=1MRi. Thus, it is followed that

m/(∆ + 1) ≤ |MR|.

A.4 Structural Variant Prediction with VariationHunter-CR

Here we show that the calls predicted by VariationHunter with conflict resolution (VariationHunter-

CR) has a lower false positive rate than the original VariationHunter [55], while retaining the same

true positive rate as before.

We compare the deletion calls found using different algorithms including VariationHunter-CR

on a Yoruba African donor (NA18507) recently sequenced with the Illumina Genome Analyzer [21]

against validated deletions of the same individual reported in Kidd et al. [75]. We downloaded

approximately 3.5 billion end sequences (∼ 1.7 billion pairs) of length 36 − 41bp and insert size

200bp from the NCBI Short Read Archive2. Similar to the pre-screening methodology which was

used in [55], we removed any pairs of reads from consideration if either (or both) end sequences has

average phred [38] quality value less than 20, or if either (or both) sequences contain more than 2

N characters. In total, ∼ 1.3 billion reads were removed from this data set. We then mapped all

the remaining ∼ 2.2 billion end sequences to the human reference genome using mrFAST [7]. The

average insert size was determined to be 209bp, where the standard deviation was 13.4bp.

We compare in Figure A.2 our new VariationHunter-CR algorithm against the original Varia-

tionHunter [55], the curated result published in [55] (some of VariationHunter calls were pruned

using a post processing heuristic which removes the calls with less support if they are conflicting

with each other), and BreakDancer [29].

We use a strict criteria to consider a validated call in Kidd et al [75] to be found by any method:

First, the length of the call predicted should be at least 100bp or more. Second, it should be com-

pletely inside the call predicted by fosmid sequence (because the fosmid insert size is quite large in

comparison to Illumina insert size, thus a call predicted by Illumina paired-end read is always inside

a call predicted by fosmid sequence).

2ftp://ftp.ncbi.nih.gov/pub/TraceDB/ShortRead/SRA000271

APPENDIX A. MAXIMUM PARSIMONY SV WITH CONFLICT RESOLUTION 131

 45

 50

 55

 60

 65

 70

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

N
um

be
r o

f V
al

id
at

ed
 c

al
ls

 (i
n

Ki
dd

 e
t a

l.)
 F

ou
nd

Number of calls predicted

VariationHunter(Hormozdiari et al)
VariationHunter and postprocessing (Hormozdiari et al)

BreakDancer (Chen et al)
VariationHunter-CR

Figure A.2: Comparison for VariationHunter (Orange), curated result presented in [55] (Green)
, BreakDancer (Blue) [29] and VariationHunter-CR (Red). The x-axis represents the number of
deletion calls predicted by each method, and y-axis is the number of validated deletions form [75]
which is found by each method. Thus, a result which is able to find more validated calls with
less number of total calls is desirable. For VariationHunter and VariationHunter-CR we give the
number of calls and number of validated deletions found for different support levels (number of
paired-end read supporting them). As it can be seen VariationHunter-CR is given better results than
VariationHunter for all the support levels (the red plot is always on top of the orange plot) and it
also outperforms the result of BreakDancer published in [29]. In addition, VariationHunter-CR also
outperformed MoDil’s result published in [87], however because focus of MoDil is mainly finding
medium and small size variations, we did not include it in this figure.

Bibliography

[1] 454 life sciences.

[2] Applied biosystems.

[3] Illumina, inc.

[4] Initial sequencing and analysis of the human genome. Nature, 409(6822):860–921, 02 2001.

[5] The 1000GP. A map of human genome variation from population-scale sequencing. Nature,
467:1061–1073, 2010.

[6] Can Alkan, Bradley Coe, and Evan Eichler. Genome structural variation discovery and geno-
typing. Nature Reviews Genetics, 12(5):363–376, 03 2011.

[7] Can Alkan, Jeffrey M. Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca Antonacci,
Fereydoun Hormozdiari, Jacob O. Kitzman, Carl Baker, Maika Malig, Onur Mutlu, S. Cenk
Sahinalp, Richard A. Gibbs, and Evan E. Eichler. Personalized copy number and segmental
duplication maps using next-generation sequencing. Nature Genetics, 41(10):1061–1067,
2009.

[8] Can Alkan, Saba Sajjadian, and Evan E Eichler. Limitations of next-generation genome
sequence assembly. Nat Meth, 8(1):61–65, 01 2011.

[9] N. Alon and S. Gutner. Balanced families of perfect hash functions and their applications.
Proc. ICALP, pages 435–446, 2007.

[10] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S. Cenk Sahi-
nalp. Biomolecular network motif counting and discovery by color coding. Bioinformatics,
24(13):i241–i249, 2008.

[11] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[12] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng
Zhang, Webb Miller, and David J. Lipman. Gapped blast and psi-blast: a new generation
of protein database search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

132

BIBLIOGRAPHY 133

[13] V. Arvind and V. Raman. Approximation algorithms for some parameterized counting prob-
lems. In ISAAC ’02: Proceedings of the 13th International Symposium on Algorithms and
Computation, pages 453–464, 2002.

[14] J. A. Bailey, L. Giu, and E. E. Eichler. An Alu transposition model for the origin and expan-
sion of human segmental duplications. Am J Hum Genet, 73:823–34, 2003.

[15] Michael J. Bamshad, Stephen Wooding, W. Scott Watkins, Christopher T. Ostler, Mark A.
Batzer, and Lynn B. Jorde. Human population genetic structure and inference of group mem-
bership. The American Journal of Human Genetics, 72(3):578–589, 3 2003.

[16] Ali Bashir, Stanislav Volik, Colin Collins, Vineet Bafna, and Benjamin J Raphael. Evaluation
of paired-end sequencing strategies for detection of genome rearrangements in cancer. PLoS
Comput Biol, 4(4):e1000051, Apr 2008.

[17] M. A. Batzer and P. L. Deininger. Alu repeats and human genomic diversity. Nat Rev Genet,
3(5):370–9, 2002.

[18] G. Bebek, P. Berenbrink, C. Cooper, T. Friedetzky, J. Nadeau, and S. C. Sahinalp. The
degree distribution of the generalized duplication model. Theor. Comput. Sci., 369(1):239–
249, 2006.

[19] Christine R. Beck, Pamela Collier, Catriona Macfarlane, Maika Malig, Jeffrey M. Kidd,
Evan E. Eichler, Richard M. Badge, and John V. Moran. Line-1 retrotransposition activity in
human genomes. Cell, 141(7):1159–1170, 6 2010.

[20] C. Bekpen, T. Marques-Bonet, C. Alkan, F. Antonacci, M. B. Leogrande, M. Ventura, J. M.
Kidd, P. Siswara, J. C. Howard, and E. E. Eichler. Death and resurrection of the human IRGM
gene. PLoS Genet., 5:e1000403, Mar 2009.

[21] David R Bentley, Shankar Balasubramanian, Harold P Swerdlow, Geoffrey P Smith, John
Milton, Clive G Brown, Kevin P Hall, Dirk J Evers, Colin L Barnes, Helen R Bignell,
Jonathan M Boutell, Jason Bryant, Richard J Carter, R. Keira Cheetham, Anthony J Cox,
Darren J Ellis, Michael R Flatbush, Niall A Gormley, Sean J Humphray, Leslie J Irving,
Mirian S Karbelashvili, Scott M Kirk, Heng Li, Xiaohai Liu, Klaus S Maisinger, Lisa J
Murray, Bojan Obradovic, Tobias Ost, Michael L Parkinson, Mark R Pratt, Isabelle M J
Rasolonjatovo, Mark T Reed, Roberto Rigatti, Chiara Rodighiero, Mark T Ross, Andrea
Sabot, Subramanian V Sankar, Aylwyn Scally, Gary P Schroth, Mark E Smith, Vincent P
Smith, Anastassia Spiridou, Peta E Torrance, Svilen S Tzonev, Eric H Vermaas, Klaudia
Walter, Xiaolin Wu, Lu Zhang, Mohammed D Alam, Carole Anastasi, Ify C Aniebo, David
M D Bailey, Iain R Bancarz, Saibal Banerjee, Selena G Barbour, Primo A Baybayan, Vin-
cent A Benoit, Kevin F Benson, Claire Bevis, Phillip J Black, Asha Boodhun, Joe S Brennan,
John A Bridgham, Rob C Brown, Andrew A Brown, Dale H Buermann, Abass A Bundu,
James C Burrows, Nigel P Carter, Nestor Castillo, Maria Chiara E Catenazzi, Simon Chang,
R. Neil Cooley, Natasha R Crake, Olubunmi O Dada, Konstantinos D Diakoumakos, Belen
Dominguez-Fernandez, David J Earnshaw, Ugonna C Egbujor, David W Elmore, Sergey S

BIBLIOGRAPHY 134

Etchin, Mark R Ewan, Milan Fedurco, Louise J Fraser, Karin V Fuentes Fajardo, W. Scott
Furey, David George, Kimberley J Gietzen, Colin P Goddard, George S Golda, Philip A
Granieri, David E Green, David L Gustafson, Nancy F Hansen, Kevin Harnish, Christian D
Haudenschild, Narinder I Heyer, Matthew M Hims, Johnny T Ho, Adrian M Horgan, Katya
Hoschler, Steve Hurwitz, Denis V Ivanov, Maria Q Johnson, Terena James, T. A. Huw Jones,
Gyoung-Dong Kang, Tzvetana H Kerelska, Alan D Kersey, Irina Khrebtukova, Alex P Kind-
wall, Zoya Kingsbury, Paula I Kokko-Gonzales, Anil Kumar, Marc A Laurent, Cynthia T
Lawley, Sarah E Lee, Xavier Lee, Arnold K Liao, Jennifer A Loch, Mitch Lok, Shujun
Luo, Radhika M Mammen, John W Martin, Patrick G McCauley, Paul McNitt, Parul Mehta,
Keith W Moon, Joe W Mullens, Taksina Newington, Zemin Ning, Bee Ling Ng, Sonia M
Novo, Michael J O’Neill, Mark A Osborne, Andrew Osnowski, Omead Ostadan, Lambros L
Paraschos, Lea Pickering, Andrew C Pike, Alger C Pike, D. Chris Pinkard, Daniel P Pliskin,
Joe Podhasky, Victor J Quijano, Come Raczy, Vicki H Rae, Stephen R Rawlings, Ana Chiva
Rodriguez, Phyllida M Roe, John Rogers, Maria C Rogert Bacigalupo, Nikolai Romanov,
Anthony Romieu, Rithy K Roth, Natalie J Rourke, Silke T Ruediger, Eli Rusman, Raquel M
Sanches-Kuiper, Martin R Schenker, Josefina M Seoane, Richard J Shaw, Mitch K Shiver,
Steven W Short, Ning L Sizto, Johannes P Sluis, Melanie A Smith, Jean Ernest Sohna Sohna,
Eric J Spence, Kim Stevens, Neil Sutton, Lukasz Szajkowski, Carolyn L Tregidgo, Ger-
ardo Turcatti, Stephanie Vandevondele, Yuli Verhovsky, Selene M Virk, Suzanne Wakelin,
Gregory C Walcott, Jingwen Wang, Graham J Worsley, Juying Yan, Ling Yau, Mike Zuer-
lein, Jane Rogers, James C Mullikin, Matthew E Hurles, Nick J McCooke, John S West,
Frank L Oaks, Peter L Lundberg, David Klenerman, Richard Durbin, and Anthony J Smith.
Accurate whole human genome sequencing using reversible terminator chemistry. Nature,
456(7218):53–59, Nov 2008.

[22] P. Bille. Tree edit distance, alignment and inclusion. Technical Report TR-2003-23, IT
University of Copenhagen, 2003.

[23] Inanç Birol, Shaun D. Jackman, Cydney B. Nielsen, Jenny Q. Qian, Richard Varhol, Greg
Stazyk, Ryan D. Morin, Yongjun Zhao, Martin Hirst, Jacqueline E. Schein, Doug E. Horsman,
Joseph M. Connors, Randy D. Gascoyne, Marco A. Marra, and Steven J. M. Jones. De novo
transcriptome assembly with abyss. Bioinformatics, 25(21):2872–2877, 2009.

[24] Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusnády. The degree sequence of a
scale-free random graph process. Random Struct. Algorithms, 18(3):279–290, 2001.

[25] Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A. Shlyakhter, Matthew K. Belmonte,
Eric S. Lander, Chad Nusbaum, and David B. Jaffe. Allpaths: De novo assembly of whole-
genome shotgun microreads. Genome Research, 18(5):810–820, 2008.

[26] Marion L Carroll, Astrid M Roy-Engel, Son V Nguyen, Abdel-Halim Salem, Erika Vogel,
Bethaney Vincent, Jeremy Myers, Zahid Ahmad, Lan Nguyen, Mimi Sammarco, W. Scott
Watkins, Jurgen Henke, Wojciech Makalowski, Lynn B Jorde, Prescott L Deininger, and
Mark A Batzer. Large-scale analysis of the alu ya5 and yb8 subfamilies and their contribution
to human genomic diversity. Journal of Molecular Biology, 311(1):17–40, 8 2001.

BIBLIOGRAPHY 135

[27] Mark Chaisson, Pavel Pevzner, and Haixu Tang. Fragment assembly with short reads. Bioin-
formatics, 20(13):2067–2074, Sep 2004.

[28] Mark J Chaisson and Pavel A Pevzner. Short read fragment assembly of bacterial genomes.
Genome Res, 18(2):324–330, Feb 2008.

[29] Ken Chen, John Wallis, Michael McLellan, David Larson, Joelle Kalicki, Craig Pohl, Sean
McGrath, Michael Wendl, Qunyuan Zhang, Devin Locke, Xiaoqi Shi, Robert Fulton, Timothy
Ley, Richard Wilson, Li Ding, and Elaine Mardis. Breakdancer: an algorithm for high-
resolution mapping of genomic structural variation. Nature Methods., 6:677 – 681, 2009.

[30] Michael James Clark, Nils Homer, Brian D. O’Connor, Zugen Chen, Ascia Eskin, Hane
Lee, Barry Merriman, and Stanley F. Nelson. U87mg decoded: The genomic sequence of a
cytogenetically aberrant human cancer cell line. PLoS Genet, 6(1):e1000832, 01 2010.

[31] International Cancer Genomes Consortium. International network of cancer genome projects.
Nature, 464:993–998, 2010.

[32] Richard Cordaux, Deepa Srikanta, Jungnam Lee, Mark Stoneking, and Mark A. Batzer. In
search of polymorphic alu insertions with restricted geographic distributions. Genomics,
90(1):154–158, 7 2007.

[33] Richard Cordauxa, Dale J. Hedgesa, Scott W. Herkea, and Mark A. Batzer. Estimating the
retrotransposition rate of human alu elements. Gene, 373:134–137, 2006.

[34] Prescott L. Deininger, Douglas J. Jolly, Carol M. Rubin, Theodore Friedmann, and Carl W.
Schmid. Base sequence studies of 300 nucleotide renatured repeated human dna clones.
Journal of Molecular Biology, 151(1):17–33, 9 1981.

[35] Banu Dost, Tomer Shlomi, Nitin Gupta 0002, Eytan Ruppin, Vineet Bafna, and Roded Sha-
ran. Qnet: A tool for querying protein interaction networks. In RECOMB, pages 1–15, 2007.

[36] Dent A. Earl, Keith Bradnam, John St. John, Aaron Darling, Dawei Lin, Joseph Faas, Hung
On Ken Yu, Buffalo Vince, Daniel R. Zerbino, Mark Diekhans, Ngan Nguyen, Pramila
Nuwantha, Ariyaratne Wing-Kin Sung, Zemin Ning, Matthias Haimel, Jared T. Simpson,
Nuno A. Fronseca, İnanç Birol, T. Roderick Docking, Isaac Y. Ho, Daniel S Rokhsar,
Rayan Chikhi, Dominique Lavenier, Guillaume Chapuis, Delphine Naquin, Nicolas Mail-
let, Michael C. Schatz, David R. Kelly, Adam M. Phillippy, Sergey Koren, Shiaw-Pyng Yang,
Wei Wu, Wen-Chi Chou, Anuj Srivastava, Timothy I. Shaw, J. Graham Ruby, Peter Skewes-
Cox, Miguel Betegon, Michelle T. Dimon, Victor Solovyev, Petr Kosarev, Denis Vorobyev,
Ricardo Ramirez-Gonzalez, Richard Leggett, Dan MacLean, Fangfang Xia, Ruibang Luo,
Zhenyu L, Yinlong Xie, Binghang Liu, Sante Gnerre, Iain MacCallum, Dariusz Przybylski,
Filipe J. Ribeiro, Shuangye Yin, Ted Sharpe, Giles Hall, Paul J. Kersey, Richard Durbin,
Shaun D. Jackman, Jarrod A. Chapman, Xiaoqiu Huang, Joseph L. DeRisi, Mario Caccamo,
Yingrui Li, David B. Jaffe, Richard Green, David Haussler, Ian Korf, and Benedict Paten. As-
semblathon 1: A competitive assessment of de novo short read assembly methods. Genome
Research, 2011.

BIBLIOGRAPHY 136

[37] Adam D. Ewing and Haig H. Kazazian. High-throughput sequencing reveals extensive
variation in human-specific l1 content in individual human genomes. Genome Research,
20(9):1262–1270, 2010.

[38] B. Ewing and P. Green. Base-calling of automated sequencer traces using phred. II. error
probabilities. Genome Res, 8(3):186–94, 1998.

[39] L. Feuk, A. R. Carson, and S. W. Scherer. Structural variation in the human genome. Nat Rev
Genet, 7(2):85–97, 2006.

[40] Daya Ram Gaur, Ramesh Krishnamurti, and Rajeev Kohli. The capacitated max ¡i¿k¡/i¿-cut
problem. Math. Program., 115(1):65–72, May 2008.

[41] J. Gertz, G. Elfond, A. Shustrova, M. Weisinger, M. Pellegrini, S. Cokus, and B. Roth-
schild. Inferring protein interactions from phylogenetic distance matrices. Bioinformatics,
19(16):2039–2045, 2003.

[42] P. Green. cross-match. at http://www.phrap.org.

[43] Richard E. Green, Johannes Krause, Adrian W. Briggs, Tomislav Maricic, Udo Stenzel, Mar-
tin Kircher, Nick Patterson, Heng Li, Weiwei Zhai, Markus Hsi-Yang Fritz, Nancy F. Hansen,
Eric Y. Durand, Anna-Sapfo Malaspinas, Jeffrey D. Jensen, Tomas Marques-Bonet, Can
Alkan, Kay Prüfer, Matthias Meyer, Hernán A. Burbano, Jeffrey M. Good, Rigo Schultz,
Ayinuer Aximu-Petri, Anne Butthof, Barbara Höber, Barbara Höffner, Madlen Siegemund,
Antje Weihmann, Chad Nusbaum, Eric S. Lander, Carsten Russ, Nathaniel Novod, Jason
Affourtit, Michael Egholm, Christine Verna, Pavao Rudan, Dejana Brajkovic, Željko Kucan,
Ivan Gušic, Vladimir B. Doronichev, Liubov V. Golovanova, Carles Lalueza-Fox, Marco de la
Rasilla, Javier Fortea, Antonio Rosas, Ralf W. Schmitz, Philip L. F. Johnson, Evan E. Eich-
ler, Daniel Falush, Ewan Birney, James C. Mullikin, Montgomery Slatkin, Rasmus Nielsen,
Janet Kelso, Michael Lachmann, David Reich, and Svante Pääbo. A draft sequence of the
neandertal genome. Science, 328(5979):710–722, 2010.

[44] Joshua A. Grochow and Manolis Kellis. Network motif discovery using subgraph enumera-
tion and symmetry-breaking. In RECOMB, pages 92–106, 2007.

[45] U. I. Gupta, T. D. Lee, and J. Y. Leung. Efficient algorithms for interval graphs and circular-
arc graphs. Networks, 12:459–467, 1982.

[46] F. Hach, F. Hormozdiari, C. Alkan, I. Birol, E. E. Eichler, and S.C. Sahinalp. Cache oblivious
algorithms for high throughput read mapping. Nature Meth, 2010.

[47] I. Hajirasouliha, F. Hormozdiari, S. C. Sahinalp, and I. Birol. Optimal pooling for genome
re-sequencing with ultra-high-throughput short-read technologies. Bioinformatics (Oxford,
England), 24(13), July 2008.

BIBLIOGRAPHY 137

[48] Iman Hajirasouliha, Fereydoun Hormozdiari, Can Alkan, Jeffrey M. Kidd, Inanc Birol,
Evan E. Eichler, and S. Cenk Sahinalp. Detection and characterization of novel sequence
insertions using paired-end next-generation sequencing. Bioinformatics, 26(10):1277–1283,
2010.

[49] Iman Hajirasouliha, Alexander Schönhuth, David de Juan, Alfonso Valencia, and S. Cenk
Sahinalp. Mirroring co-evolving trees in the light of their topologies. Bioinformatics,
28(9):1202–1208, 2012.

[50] J. Han, D. Dupuy, N. Bertin, M. Cusick, and M. Vidal. Effect of sampling on topology
predictions of protein-protein interaction networks. Nature Biotech, 23:839–844, 2005.

[51] Robert E Handsaker, Joshua M Korn, James Nemesh, and Steven A McCarroll. Discovery
and genotyping of genome structural polymorphism by sequencing on a population scale. Nat
Genet, 43(3):269–276, 03 2011.

[52] Edward Hollox, Ulrike Huffmeier, Patrick Zeeuwen, Raquel Palla, Jesús Lascorz, Diana
Rodijk-Olthuis, Peter Kerkhof, Heiko Traupe, Gys Jongh, Martin Heijer, André Reis, John
Armour, and Joost Schalkwijk. Psoriasis is associated with increased bold beta-defensin ge-
nomic copy number. Nature Genetics, 40:23–25, 2008.

[53] F. Hormozdiari, P. Berenbrink, N. Przulj, , and S.C. Sahinalp. Not all scale-free networks are
born equal: The role of the seed graph in ppi network evolution. PLoS Comput Biol, 3(7),
2007.

[54] Farhad Hormozdiari, Faraz Hach, S. Cenk Sahinalp, Evan E. Eichler, and Can Alkan. Sensi-
tive and fast mapping of di-base encoded reads. Bioinformatics, 27(14):1915–1921, 2011.

[55] Fereydoun Hormozdiari, Can Alkan, Evan E. Eichler, and S. Cenk Sahinalp. Combinatorial
algorithms for structural variation detection in high-throughput sequenced genomes. Recomb
2009/Genome Research, 19(7):1270–1278, Jul 2009.

[56] Fereydoun Hormozdiari, Can Alkan, Mario Ventura, Iman Hajirasouliha, Maika Malig, Faraz
Hach, Deniz Yorukoglu, Phuong Dao, Marzieh Bakhshi, S. Cenk Sahinalp, and Evan E. Eich-
ler. Alu repeat discovery and characterization within human genomes. Genome Research, Dec
2010.

[57] Fereydoun Hormozdiari, Iman Hajirasouliha, Phuong Dao, Faraz Hach, Deniz Yorukoglu,
Can Alkan, Evan E. Eichler, and S. Cenk Sahinalp. Next-generation variationhunter: com-
binatorial algorithms for transposon insertion discovery. Bioinformatics, 26(12):i350–i357,
2010.

[58] Fereydoun Hormozdiari, Iman Hajirasouliha, Andrew McPherson, Evan E. Eichler, and
S. Cenk Sahinalp. Simultaneous structural variation discovery among multiple paired-end
sequenced genomes. Genome Research, 21(12):2203–2212, December 2011.

BIBLIOGRAPHY 138

[59] Catherine M. Houck, Frank P. Rinehart, and Carl W. Schmid. A ubiquitous family of repeated
dna sequences in the human genome. Journal of Molecular Biology, 132(3):289–306, 8 1979.

[60] Cheng Ran Lisa Huang, Anna M. Schneider, Yunqi Lu, Tejasvi Niranjan, Peilin Shen, Ma-
toya A. Robinson, Jared P. Steranka, David Valle, Curt I. Civin, Tao Wang, Sarah J. Wheelan,
Hongkai Ji, Jef D. Boeke, and Kathleen H. Burns. Mobile interspersed repeats are major
structural variants in the human genome. Cell, 141(7):1171–1182, 6 2010.

[61] IHGSC. Finishing the euchromatic sequence of the human genome. Nature, 431(7011):931–
45, 2004.

[62] IHMC. The international HapMap project. Nature, 426(6968):789–796, Dec 2003.

[63] IHMC. A haplotype map of the human genome. Nature, 437(7063):1299–320, 2005.

[64] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De novo assembly
and genotyping of variants using colored de bruijn graphs. Nature genetics, 44(2):226–232,
February 2012.

[65] Rebecca C. Iskow, Michael T. McCabe, Ryan E. Mills, Spencer Torene, W. Stephen Pittard,
Andrew F. Neuwald, Erwin G. Van Meir, Paula M. Vertino, and Scott E. Devine. Natural
mutagenesis of human genomes by endogenous retrotransposons. Cell, 141(7):1253–1261, 6
2010.

[66] J.M.G. Izarzugaza, D. Juan, C. Pons, F. Pazos, and A. Valencia. Enhancing the prediction
of protein pairings between interacting families using orthology information. BMC Bioinfor-
matics, 9:35, 2008.

[67] Wang J, Song L, Grover D, Azrak S, Batzer MA, and Liang P. dbrip: a highly integrated
database of retrotransposon insertion polymorphisms in humans. Hum. Mutt., 27:323–329,
2006.

[68] R. Jothi, M.G. Kann, and T.M. Przytycka. Predicting protein-protein interaction by searching
evolutionary tree automorphism space. Bioinformatics, 21(Suppl.1):i241–i250, 2005.

[69] J. Jurka, O. Kohany, A. Pavlicek, V. V. Kapitonov, and M. V. Jurka. Duplication, coclustering,
and selection of human Alu retrotransposons. Proc Natl Acad Sci U S A, 101(5):1268–72,
2004.

[70] Emre Karakoc, Can Alkan, Brian J O’Roak, Megan Y Dennis, Laura Vives, Kenneth Mark,
Mark J Rieder, Debbie A Nickerson, and Evan E Eichler. Detection of structural variants and
indels within exome data. Nat Meth, advance online publication:–, 12 2011.

[71] Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pages 85—103, 1972.

[72] Richard M. Karp and Michael Luby. Monte-carlo algorithms for enumeration and reliability
problems. In FOCS, pages 56–64, 1983.

BIBLIOGRAPHY 139

[73] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for estimating
subgraph concentrations and detecting network motifs. Bioinformatics., Jul 22; 20(11):1746–
58, 2004.

[74] W. James Kent. BLAT–the BLAST-like alignment tool. Genome Res, 12(4):656–664, Apr
2002.

[75] Jeffrey M. Kidd, Gregory M. Cooper, William F. Donahue, Hillary S. Hayden, Nick Sam-
pas, Tina Graves, Nancy Hansen, Brian Teague, Can Alkan, Francesca Antonacci, Eric Hau-
gen, Troy Zerr, N. Alice Yamada, Peter Tsang, Tera L. Newman, Eray Tüzün, Ze Cheng,
Heather M. Ebling, Nadeem Tusneem, Robert David, Will Gillett, Karen A. Phelps, Molly
Weaver, David Saranga, Adrianne Brand, Wei Tao, Erik Gustafson, Kevin McKernan, Lin
Chen, Maika Malig, Joshua D. Smith, Joshua M. Korn, Steven A. McCarroll, David A. Alt-
shuler, Daniel A. Peiffer, Michael Dorschner, John Stamatoyannopoulos, David Schwartz,
Deborah A. Nickerson, James C. Mullikin, Richard K. Wilson, Laurakay Bruhn, Maynard V.
Olson, Rajinder Kaul, Douglas R. Smith, and Evan E. Eichler. Mapping and sequencing of
structural variation from eight human genomes. Nature, 453(7191):56–64, May 2008.

[76] Jeffrey M. Kidd, Tina Graves, Tera L. Newman, Robert Fulton, Hillary S. Hayden, Maika
Malig, Joelle Kallicki, Rajinder Kaul, Richard K. Wilson, and Evan E. Eichler. A human
genome structural variation sequencing resource reveals insights into mutational mechanisms.
Cell, 143(5):837–847, 11 2010.

[77] Jeffrey M Kidd, Nick Sampas, Francesca Antonacci, Tina Graves, Robert Fulton, Hillary S
Hayden, Can Alkan, Maika Malig, Mario Ventura, Giuliana Giannuzzi, Joelle Kallicki, Paige
Anderson, Anya Tsalenko, N Alice Yamada, Peter Tsang, Rajinder Kaul, Richard K Wilson,
Laurakay Bruhn, and Evan E Eichler. Characterization of missing human genome sequences
and copy-number polymorphic insertions. Nat Meth, 7(5):365–371, 05 2010.

[78] Jong-Il Kim, Young Seok Ju, Hansoo Park, Sheehyun Kim, Seonwook Lee, Jae-Hyuk Yi,
Joann Mudge, Neil A. Miller, Dongwan Hong, Callum J. Bell, Hye-Sun Kim, In-Soon Chung,
Woo-Chung Lee, Ji-Sun Lee, Seung-Hyun Seo, Ji-Young Yun, Hyun Nyun Woo, Heewook
Lee, Dongwhan Suh, Seungbok Lee, Hyun-Jin Kim, Maryam Yavartanoo, Minhye Kwak,
Ying Zheng, Mi Kyeong Lee, Hyunjun Park, Jeong Yeon Kim, Omer Gokcumen, Ryan E.
Mills, Alexander Wait Zaranek, Joseph Thakuria, Xiaodi Wu, Ryan W. Kim, Jim J. Hunt-
ley, Shujun Luo, Gary P. Schroth, Thomas D. Wu, HyeRan Kim, Kap-Seok Yang, Woong-
Yang Park, Hyungtae Kim, George M. Church, Charles Lee, Stephen F. Kingsmore, and
Jeong-Sun Seo. A highly annotated whole-genome sequence of a korean individual. Nature,
460(7258):1011–1015, 08 2009.

[79] Jacob O Kitzman, Alexandra P MacKenzie, Andrew Adey, Joseph B Hiatt, Rupali P Patward-
han, Peter H Sudmant, Sarah B Ng, Can Alkan, Ruolan Qiu, Evan E Eichler, and Jay Shen-
dure. Haplotype-resolved genome sequencing of a gujarati indian individual. Nat Biotech,
29(5):459–459, 05 2011.

BIBLIOGRAPHY 140

[80] J. O. Korbel, A. Abyzov, X. J. Mu, N. Carriero, P. Cayting, Z. Zhang, M. Snyder, and M. B.
Gerstein. PEMer: a computational framework with simulation-based error models for infer-
ring genomic structural variants from massive paired-end sequencing data. Genome Biol.,
10:R23, Feb 2009.

[81] Jan O Korbel, Alexander Eckehart Urban, Jason P Affourtit, Brian Godwin, Fabian Grubert,
Jan Fredrik Simons, Philip M Kim, Dean Palejev, Nicholas J Carriero, Lei Du, Bruce E Tail-
lon, Zhoutao Chen, Andrea Tanzer, A. C Eugenia Saunders, Jianxiang Chi, Fengtang Yang,
Nigel P Carter, Matthew E Hurles, Sherman M Weissman, Timothy T Harkins, Mark B Ger-
stein, Michael Egholm, and Michael Snyder. Paired-end mapping reveals extensive structural
variation in the human genome. Science, 318(5849):420–426, Oct 2007.

[82] Martin Krzywinski, Ian Bosdet, Carrie Mathewson, Natasja Wye, Jay Brebner, Readman
Chiu, Richard Corbett, Matthew Field, Darlene Lee, Trevor Pugh, Stas Volik, Asim Siddiqui,
Steven Jones, Jacquie Schein, Collin Collins, and Marco Marra. A bac clone fingerprinting
approach to the detection of human genome rearrangements. Genome Biology, 8, 10 2007.

[83] Ben Langmead and Steven L. Salzberg. Fast gapped-read alignment with bowtie 2. Nature
Methods, 9(4):357–359, March 2012.

[84] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. Ultrafast and memory-
efficient alignment of short dna sequences to the human genome. Genome biology,
10(3):R25+, 2009.

[85] RJ. Leary, I. Kinde, F. Diehl, K. Schmidt, C. Clouser, C. Duncan, A. Antipova, C. Lee,
K. McKernan, FM. De La Vega, KW. Kinzler, B. Vogelstein, LA Jr. Diaz, and VE. Velculescu.
Development of personalized tumor biomarkers using massively parallel sequencing. Sci.
Transl. Med., 2:p20ra14, 2010.

[86] Seunghak Lee, Elango Cheran, and Michael Brudno. A robust framework for detecting struc-
tural variations in a genome. Bioinformatics, 24(13):i59–i67, Jul 2008.

[87] Seunghak Lee, Fereydoun Hormozdiari, Can Alkan, and Michael Brudno. Modil: detecting
small indels from clone-end sequencing with mixtures of distributions. Nature Methods,
6:473 – 474, 2009.

[88] Seunghak Lee, Eric Xing, and Michael Brudno. Mogul: Detecting common insertions and
deletions in a population. Recomb/LNCS, 6044:357–368, 2010.

[89] Samuel Levy, Granger Sutton, Pauline C Ng, Lars Feuk, Aaron L Halpern, Brian P Walenz,
Nelson Axelrod, Jiaqi Huang, Ewen F Kirkness, Gennady Denisov, Yuan Lin, Jeffrey R Mac-
Donald, Andy Wing Chun Pang, Mary Shago, Timothy B Stockwell, Alexia Tsiamouri, Vi-
neet Bafna, Vikas Bansal, Saul A Kravitz, Dana A Busam, Karen Y Beeson, Tina C McIntosh,
Karin A Remington, Josep F Abril, John Gill, Jon Borman, Yu-Hui Rogers, Marvin E Frazier,
Stephen W Scherer, Robert L Strausberg, and J. Craig Venter. The diploid genome sequence
of an individual human. PLoS Biol, 5(10):e254, Sep 2007.

BIBLIOGRAPHY 141

[90] Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics (Oxford, England), 26(5):589–595, March 2010.

[91] Heng Li, Jue Ruan, and Richard Durbin. Mapping short dna sequencing reads and calling
variants using mapping quality scores. Genome Res, 18(11):1851–1858, Nov 2008.

[92] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhongbin Shi, Yingrui
Li, Shengting Li, Gao Shan, Karsten Kristiansen, Songgang Li, Huanming Yang, Jian Wang,
and Jun Wang. De novo assembly of human genomes with massively parallel short read
sequencing. Genome Research, 20(2):265–272, February 2010.

[93] George E. Liu, Can Alkan, Lu Jiang, Shaying Zhao, and Evan E. Eichler. Comparative
analysis of alu repeats in primate genomes. Genome Research, 19(5):876–885, 2009.

[94] S.C. Lovell and D.L. Robertson. An integrated view of molecular co-evolution in protein-
protein interactions. Mol. Biol. Evol., 27(11):2567–2575, 2010.

[95] Elaine R Mardis. Cancer genomics identifies determinants of tumor biology. Genome Biol.,
11(5):211, May 2010.

[96] M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, M.S.
Braverman, Y.J. Chen, Z. Chen, S.B. Dewell, L. Du, J.M. Fierro, X.V. Gomes, B.C. God-
win, W. He, S. Helgesen, C.H. Ho, G.P. Irzyk, S.C. Jando, M.L. Alenquer, T.P. Jarvie, K.B.
Jirage, J.B. Kim, J.R. Knight, J.R. Lanza, J.H. Leamon, S.M. Lefkowitz, M. Lei, J. Li, K.L.
Lohman, H. Lu, V.B. Makhijani, K.E. McDade, M.P. McKenna, E.W. Myers, E. Nickerson,
J.R. Nobile, R. Plant, B.P. Puc, M.T. Ronan, G.T. Roth, G.J. Sarkis, J.F. Simons, J.W. Simp-
son, M. Srinivasan, K.R. Tartaro, A. Tomasz, K.A. Vogt, G.A. Volkmer, S.H. Wang, Y. Wang,
M.P. Weiner, P. Yu, R.F. Begley, and J.M. Rothberg. Genome sequencing in microfabricated
high-density picolitre reactors. Nature, 437(7057):376–380, Sep 15 2005.

[97] Carrie A. Mathewson, Jacqueline E. Schein, and Marco A. Marra. Large-Scale BAC Clone
Restriction Digest Fingerprinting. John Wiley & Sons, Inc., 2007.

[98] S. A. McCarroll, A. Huett, P. Kuballa, S. D. Chilewski, A. Landry, P. Goyette, M. C. Zody,
J. L. Hall, S. R. Brant, J. H. Cho, R. H. Duerr, M. S. Silverberg, K. D. Taylor, J. D. Ri-
oux, D. Altshuler, M. J. Daly, and R. J. Xavier. Deletion polymorphism upstream of IRGM
associated with altered IRGM expression and Crohn’s disease. Nat. Genet., Aug 2008.

[99] Steven A. McCarroll. Copy number variation and human genome maps. Nature Genetics,
42(5):365–366, May 2010.

[100] Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, April 1976.

[101] Kevin Judd McKernan, Heather E. Peckham, Gina L. Costa, Stephen F. McLaughlin, Yutao
Fu, Eric F. Tsung, Christopher R. Clouser, Cisyla Duncan, Jeffrey K. Ichikawa, Clarence C.

BIBLIOGRAPHY 142

Lee, Zheng Zhang, Swati S. Ranade, Eileen T. Dimalanta, Fiona C. Hyland, Tanya D. Sokol-
sky, Lei Zhang, Andrew Sheridan, Haoning Fu, Cynthia L. Hendrickson, Bin Li, Lev Kotler,
Jeremy R. Stuart, Joel A. Malek, Jonathan M. Manning, Alena A. Antipova, Damon S. Perez,
Michael P. Moore, Kathleen C. Hayashibara, Michael R. Lyons, Robert E. Beaudoin, Brit-
tany E. Coleman, Michael W. Laptewicz, Adam E. Sannicandro, Michael D. Rhodes, Ra-
jesh K. Gottimukkala, Shan Yang, Vineet Bafna, Ali Bashir, Andrew MacBride, Can Alkan,
Jeffrey M. Kidd, Evan E. Eichler, Martin G. Reese, Francisco M. De La Vega, and Alan P.
Blanchard. Sequence and structural variation in a human genome uncovered by short-
read, massively parallel ligation sequencing using two-base encoding. Genome Research,
19(9):1527–1541, 2009.

[102] Andrew McPherson, Fereydoun Hormozdiari, Abdalnasser Zayed, Ryan Giuliany, Gavin Ha,
Mark G. Sun, Malachi Griffith, Alireza Heravi Moussavi, Janine Senz, Nataliya Melnyk,
Marina Pacheco, Marco A. Marra, Martin Hirst, Torsten O. Nielsen, S. Cenk Sahinalp, David
Huntsman, and Sohrab P. Shah. deFuse: an algorithm for gene fusion discovery in tumor
RNA-seq data. PLoS computational biology, 7(5):e1001138+, May 2011.

[103] Andrew McPherson, Chunxiao Wu, Iman Hajirasouliha, Fereydoun Hormozdiari, Faraz
Hach, Anna Lapuk, Stanislav Volik, Sohrab Shah, Colin Collins, and S. Cenk Sahinalp.
Comrad: detection of expressed rearrangements by integrated analysis of rna-seq and low
coverage genome sequence data. Bioinformatics, 27(11):1481–1488, 2011.

[104] Andrew W. McPherson, Chunxiao Wu, Alexander Wyatt, Sohrab P. Shah, Colin Collins, and
S. Cenk Sahinalp. nFuse: Discovery of complex genomic rearrangements in cancer using
high-throughput sequencing. Genome Research, June 2012.

[105] P. Medvedev, M. Stanciu, and M. Brudno. Computational methods for discovering structural
variation with next-generation sequencing. Nat. Methods, 6:13–20, Nov 2009.

[106] Paul Medvedev, Marc Fiume, Misko Dzamba, Tim Smith, and Michael Brudno. Detecting
copy number variation with mated short reads. Genome Research, 20(11):1613–1622, 2010.

[107] R. E. Mills, E. A. Bennett, R. C. Iskow, and S. E. Devine. Which transposable elements are
active in the human genome? Trends Genet., 23:183–191, Apr 2007.

[108] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs:
simple building blocks of complex networks. Science, 298(5594):824–827, 2002.

[109] James Munkres. Algorithms for the assignment and transportation problems. 5(1):32–38,
March 1957.

[110] Alon N., Moshkovitz D., and Safra S. Algorithmic construction of sets for k-restrictions.
ACM Trans. Algorithms (ACM), 2:153–177, 2006.

[111] Hansoo Park, Jong-Il Kim, Young Seok Ju, Omer Gokcumen, Ryan E Mills, Sheehyun Kim,
Seungbok Lee, Dongwhan Suh, Dongwan Hong, Hyunseok Peter Kang, Yun Joo Yoo, Jong-
Yeon Shin, Hyun-Jin Kim, Maryam Yavartanoo, Young Wha Chang, Jung-Sook Ha, Wilson

BIBLIOGRAPHY 143

Chong, Ga-Ram Hwang, Katayoon Darvishi, HyeRan Kim, Song Ju Yang, Kap-Seok Yang,
Hyungtae Kim, Matthew E Hurles, Stephen W Scherer, Nigel P Carter, Chris Tyler-Smith,
Charles Lee, and Jeong-Sun Seo. Discovery of common asian copy number variants us-
ing integrated high-resolution array cgh and massively parallel dna sequencing. Nat Genet,
42(5):400–405, 05 2010.

[112] F. Pazos and A. Valencia. Similarity of phylogenetic trees as indicator of protein-protein
interaction. Protein Engineering, 14(9):609–614, 2001.

[113] F. Pazos and A. Valencia. Protein co-evolution, co-adaptation and interactions. The EMBO
Journal, 27(20):2648–2655, 2008.

[114] M. Pellegrini, E.M. Marcotte, M.J. Thompson, D. Eisenberg, and T.O. Yates. Assigning
protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl.
Acad. Sci. USA, 96(8):4285–8, 1999.

[115] P. A. Pevzner, H. Tang, and M. S. Waterman. An eulerian path approach to DNA fragment
assembly. Proc Natl Acad Sci U S A, 98(17):9748–53, 2001.

[116] R.Y. Pinter, O. Rokhlenko, D. Tsur, and M. Ziv-Ukelson. Approximate labelled subtree
homeomorphism. Journal of Discrete Algorithms, 6:480–496, 2008.

[117] Alkes L. Price, Eleazar Eskin, and Pavel A. Pevzner. Whole-genome analysis of alu repeat
elements reveals complex evolutionary history. Genome Research, 14(11):2245–2252, 2004.

[118] Natasa Przulj, Derek G. Corneil, and Igor Jurisica. Modeling interactome: scale-free or
geometric? Bioinformatics, 20(18):3508–3515, 2004.

[119] Aaron R Quinlan, Royden A Clark, Svetlana Sokolova, Mitchell L Leibowitz, Yujun Zhang,
Matthew E Hurles, Joshua C Mell, and Ira M Hall. Genome-wide mapping and assembly of
structural variant breakpoints in the mouse genome. Genome Res, Mar 2010.

[120] Raz R. and Safra S. A sub-constant error-probability low-degree test, and a sub-constant
error-probability pcp characterization of np. STOC, pages 475–484, 1997.

[121] A.K. Ramani and E.M. Marcotte. Exploiting the co-evolution of interacting proteins to dis-
cover interaction specificity. J. Mol. Biol., 327:273–284, 2003.

[122] Benjamin J Raphael, Stanislav Volik, Colin Collins, and Pavel A Pevzner. Reconstructing
tumor genome architectures. Bioinformatics, 19 Suppl 2:ii162–ii171, Oct 2003.

[123] B. Raynal, M. Couprie, and V. Biri. Homeomorphic alignment of weighted trees. Pattern
Recognition, 43:2937–2949, 2010.

[124] Mills RE, Walter K, Stewart C, Handsaker R, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K,
Cheetham RK, and et al. Mapping copy number variation by population-scale genome se-
quencing. Nature, 470:59–65, 2010.

BIBLIOGRAPHY 144

[125] Adam Roberts, Harold Pimentel, Cole Trapnell, and Lior Pachter. Identification of novel
transcripts in annotated genomes using rna-seq. Bioinformatics, 2011.

[126] Suleyman Cenk Sahinalp and Uzi Vishkin. Symmetry breaking for suffix tree construction.
In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, STOC
’94, pages 300–309, New York, NY, USA, 1994. ACM.

[127] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–
565, July 1976.

[128] Abdel-Halim Salem, Gail E. Kilroy, W. Scott Watkins, Lynn B. Jorde, and Mark A. Batzer.
Recently integrated alu elements and human genomic diversity. Molecular Biology and Evo-
lution, 20(8):1349–1361, 2003.

[129] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating inhibitors.
Proc Natl Acad Sci U S A, 74(12):5463–5467, Dec 1977.

[130] Carl W. Schmid and Prescott L. Deininger. Sequence organization of the human genome.
Cell, 6(3):345–358, 11 1975.

[131] Stephan C. Schuster, Webb Miller, Aakrosh Ratan, Lynn P. Tomsho, Belinda Giardine, Lind-
say R. Kasson, Robert S. Harris, Desiree C. Petersen, Fangqing Zhao, Ji Qi, Can Alkan,
Jeffrey M. Kidd, Yazhou Sun, Daniela I. Drautz, Pascal Bouffard, Donna M. Muzny, Jef-
frey G. Reid, Lynne V. Nazareth, Qingyu Wang, Richard Burhans, Cathy Riemer, Nicola E.
Wittekindt, Priya Moorjani, Elizabeth A. Tindall, Charles G. Danko, Wee Siang Teo, Anne M.
Buboltz, Zhenhai Zhang, Qianyi Ma, Arno Oosthuysen, Abraham W. Steenkamp, Hermann
Oostuisen, Philippus Venter, John Gajewski, Yu Zhang, B. Franklin Pugh, Kateryna D.
Makova, Anton Nekrutenko, Elaine R. Mardis, Nick Patterson, Tom H. Pringle, Francesca
Chiaromonte, James C. Mullikin, Evan E. Eichler, Ross C. Hardison, Richard A. Gibbs, Tim-
othy T. Harkins, and Vanessa M. Hayes. Complete khoisan and bantu genomes from southern
africa. Nature, 463(7283):943–947, 02 2010.

[132] J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Efficient algorithms for detecting signaling
pathways in protein interaction networks. J Comput Biol, 13(2):133–144, 2006.

[133] Tomer Shlomi, Daniel Segal, Eytan Ruppin, and Roded Sharan. Qpath: a method for querying
pathways in a protein-protein interaction network. BMC Bioinformatics, 7:200, 2006.

[134] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven J.M. Jones,
and İnanç Birol. Abyss: A parallel assembler for short read sequence data. Genome Research,
19(6):1117–1123, 2009.

[135] Suzanne Sindi, Selim Onal, Luke Peng, Hsin T. Wu, and Benjamin Raphael. An integra-
tive probabilistic model for identification of structural variation in sequencing data. Genome
Biology, 13(3):R22+, 2012.

BIBLIOGRAPHY 145

[136] Suzanne S. Sindi, Elena Helman, Ali Bashir, and Benjamin J. Raphael. A geometric approach
for classification and comparison of structural variants. Bioinformatics, 25(12), 2009.

[137] A. F. A. Smit, R. Hubley, and P. Green. Repeatmasker. at http://www.repeatmasker.org, 2010.

[138] P. Stankiewicz and J. R. Lupski. Structural variation in the human genome and its role in
disease. Annual Review of Medicine, 61:437–455, 2010.

[139] Peter H. Sudmant, Jacob O. Kitzman, Francesca Antonacci, Can Alkan, Maika Malig, Anya
Tsalenko, Nick Sampas, Laurakay Bruhn, Jay Shendure, 1000 Genomes Project, and Evan E.
Eichler. Diversity of human copy number variation and multicopy genes. Science (New York,
N.Y.), 330(6004):641–646, October 2010.

[140] Andreas Sundquist, Mostafa Ronaghi, Haixu Tang, Pavel Pevzner, and Serafim Batzoglou.
Whole-genome sequencing and assembly with high-throughput, short-read technologies.
PLoS ONE, 2(5), 05 2007.

[141] K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM, 26:422–433, 1979.

[142] J.D. Thompson, D.G. Higgins, and T.J. Gibson. Clustal w: improving the sensitivity of
progressive multiple sequence alignments through sequence weighting, position specific gap
penalties and weight matrix choice. Nucl. Acids Res, 18(22):4673–4680, 1994.

[143] E.R.M. Tillier, L. Biro, L. Ginny, and D. Tillo. Codep: Maximizing co-evolutionary interde-
pendencies to discover interacting proteins. Proteins: Structure, Function and Bioinformat-
ics, 63:822–831, 2006.

[144] E.R.M. Tillier and R.L. Charlebois. The human protein coevolution network. Genome Re-
search, 19:1861–1871, 2009.

[145] Cole Trapnell, Lior Pachter, and Steven L. Salzberg. TopHat: discovering splice junctions
with RNA-seq. Bioinformatics, 25(9):1105–1111, May 2009.

[146] Todd J. Treangen and Steven L. Salzberg. Repetitive dna and next-generation sequencing:
computational challenges and solutions. Nat Rev Genet, 13(1):36–46, 01 2012.

[147] E. Tuzun, A. J. Sharp, J. A. Bailey, R. Kaul, V. A. Morrison, L. M. Pertz, E. Haugen, H. Hay-
den, D. Albertson, D. Pinkel, M. V. Olson, and E. E. Eichler. Fine-scale structural variation
of the human genome. Nat Genet, 37(7):727–32, 2005.

[148] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[149] S. Volik, S. Zhao, K. Chin, J. H. Brebner, D. R. Herndon, Q. Tao, D. Kowbel, G. Huang,
A. Lapuk, W. L. Kuo, G. Magrane, P. De Jong, J. W. Gray, and C. Collins. End-sequence
profiling: sequence-based analysis of aberrant genomes. Proc Natl Acad Sci U S A,
100(13):7696–701, 2003.

BIBLIOGRAPHY 146

[150] V.V. Vyugin, M.S. Gelfand, and V.A. Lyubetsky. Tree conciliation: reconstruction of species
phylogeny by phylogenetic gene trees. Molecular Biology, 36(5):650–658, 2002.

[151] P.J. Waddell, H. Kishino, and R. Ota. Phylogenetic methodology for detecting protein inter-
actions. Mol. Biol. Evol., 24:650–659, 2007.

[152] Jun Wang, Wei Wang, Ruiqiang Li, Yingrui Li, Geng Tian, Laurie Goodman, Wei Fan,
Junqing Zhang, Jun Li, Juanbin Zhang, Yiran Guo, Binxiao Feng, Heng Li, Yao Lu, Xi-
aodong Fang, Huiqing Liang, Zhenglin Du, Dong Li, Yiqing Zhao, Yujie Hu, Zhenzhen Yang,
Hancheng Zheng, Ines Hellmann, Michael Inouye, John Pool, Xin Yi, Jing Zhao, Jinjie Duan,
Yan Zhou, Junjie Qin, Lijia Ma, Guoqing Li, Zhentao Yang, Guojie Zhang, Bin Yang, Chang
Yu, Fang Liang, Wenjie Li, Shaochuan Li, Dawei Li, Peixiang Ni, Jue Ruan, Qibin Li, Hong-
mei Zhu, Dongyuan Liu, Zhike Lu, Ning Li, Guangwu Guo, Jianguo Zhang, Jia Ye, Lin Fang,
Qin Hao, Quan Chen, Yu Liang, Yeyang Su, A. San, Cuo Ping, Shuang Yang, Fang Chen,
Li Li, Ke Zhou, Hongkun Zheng, Yuanyuan Ren, Ling Yang, Yang Gao, Guohua Yang, Zhuo
Li, Xiaoli Feng, Karsten Kristiansen, Gane Ka-Shu Wong, Rasmus Nielsen, Richard Durbin,
Lars Bolund, Xiuqing Zhang, Songgang Li, Huanming Yang, and Jian Wang. The diploid
genome sequence of an Asian individual. Nature, 456(7218):60–65, Nov 2008.

[153] René L Warren, Granger G Sutton, Steven J M Jones, and Robert A Holt. Assembling millions
of short DNA sequences using SSAKE. Bioinformatics, 23(4):500–501, Feb 2007.

[154] David A Wheeler, Maithreyan Srinivasan, Michael Egholm, Yufeng Shen, Lei Chen, Amy
McGuire, Wen He, Yi-Ju Chen, Vinod Makhijani, G. Thomas Roth, Xavier Gomes, Karrie
Tartaro, Faheem Niazi, Cynthia L Turcotte, Gerard P Irzyk, James R Lupski, Craig Chinault,
Xing zhi Song, Yue Liu, Ye Yuan, Lynne Nazareth, Xiang Qin, Donna M Muzny, Marcel
Margulies, George M Weinstock, Richard A Gibbs, and Jonathan M Rothberg. The complete
genome of an individual by massively parallel DNA sequencing. Nature, 452(7189):872–876,
Apr 2008.

[155] David Witherspoon, Jinchuan Xing, Yuhua Zhang, W Scott Watkins, Mark Batzer, and Lynn
Jorde. Mobile element scanning (me-scan) by targeted high-throughput sequencing. BMC
Genomics, 11(1):410, 2010.

[156] I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. Kim, and D. Eisenberg. Dip, the database
of interacting proteins: A research tool for studying cellular networks of protein interactions.
Nucleic Acids Res., 30(1):303–305, 2002.

[157] J. Xing, Y. Zhang, K. Han, A. H. Salem, S. K. Sen, C. D. Huff, Q. Zhou, E. F. Kirkness,
S. Levy, M. A. Batzer, and L. B. Jorde. Mobile elements create structural variation: analysis
of a complete human genome. Genome Res., 19:1516–1526, Sep 2009.

[158] Kai Ye, Marcel H. Schulz, Quan Long, Rolf Apweiler, and Zemin Ning. Pindel: a pattern
growth approach to detect break points of large deletions and medium sized insertions from
paired-end short reads. Bioinformatics, 25(21):2865–2871, 1999.

BIBLIOGRAPHY 147

[159] Deniz Yorukoglu, Faraz Hach, Lucas Swanson, Colin C. Collins, Inanc Birol, and S. Cenk
Sahinalp. Dissect: detection and characterization of novel structural alterations in transcribed
sequences. Bioinformatics, 28(12):i179–i187, June 2012.

[160] Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read assembly
using de bruijn graphs. Genome Research, 18(5):821–829, May 2008.

[161] K. Zhang. A constrained edit distance between unordered labeled trees. Algorithmica,
15(3):205–222, 1996.

[162] K. Zhang and T. Jiang. Some MAX-SNP-hard results concerning unordered labeled trees.
Information Processing Letters, 49:249–254, 1994.

[163] K. Zhang, R. Statman, and D. Shasha. On the editing distance between unordered labeled
trees. Information Processing Letters, 42:133–139, 1992.

[164] Zhengdong Zhang, Jiang Du, Hugo Lam, Alex Abyzov, Alexander Urban, Michael Snyder,
and Mark Gerstein. Identification of genomic indels and structural variations using split reads.
BMC Genomics, 12(1):375+, 2011.

