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Abstract

Answer Set Programming (ASP) is a non-monotonic declarative language that is widely

applied to different areas in science and technology. Early implementations of ASP could

only accept static input data which limited the usefulness of such programs. However,

recent advancements enabled dynamic input data to be used and generate answer sets

incrementally.

In this work we assess the suitability of a reactive ASP system to underpin a situational

awareness program. We used the Maritime traffic domain for our evaluation, as it is highly

dynamic with new information continuously pouring in.

We have developed a situation assessment system to automate a component of the ma-

rine traffic control system in order to assist human operators by automatically deriving new

situational facts and suggest possible courses of action. The State Transition Data Fusion

model has been adopted for the situation assessment task; while the CoreASM and ASP

components perform the underlying analysis.

Keywords: Reactive Answer Set Programming, Situation Awareness, State Transition

Data Fusion Model.
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Chapter 1

Introduction

1.1 Motivation

Technological advancements have made it possible to generate vast improvements in effi-

ciency and automation. Recently, these advancements have been applied to information

gathering and retrieval and are now causing an information overload. Many occupations

require making real time decisions based on a flood of incoming information. Some examples

would be airline controllers, emergency dispatch, and maritime operations. These domains

1 have a combination of a huge set of rules combined with constantly changing information.

The human operators are placed under a big burden. The combinatorial explosion of how

different rules, regulations, and constraints interact with each other makes it difficult for

the human operator to generate a clear awareness of the current situation. Automation of

human operator tasks is a key component in generating better situational awareness. As

situational awareness increases, better decisions can be made.

A good model is essential for any context. A situation awareness system can be utilized

to augment the human operator’s expertise and use the available information to detect

anomalous actions and events. These situation awareness systems should be able to provide

information at a variety of abstraction levels. Take for example a maritime controller trying

to determine if ships are following shipping regulations. Low level situational facts are easy

to determine such as which boats are exceeding the speed limit. However, many situational

1Informally, “domain” refers to the rules used to analyze the environment as well as the information
received regarding the state of the environment.

1



CHAPTER 1. INTRODUCTION 2

facts are not directly observable and require domain expertise and inference. For example,

in order to detect suspicious vessels we may need to access low level situational facts as well

as the more abstract situational facts inferred based on the information in the past.

Logic programming languages are well suited for the higher level situational analysis

as they provide an intuitive way of expressing rules and information. In the past, logic

programming was not well equipped to handle problem domains that had a time (dynamic)

component, which is a necessity in a situational awareness system. However, recent advance-

ments in some logic implementations have allowed for the ability to handle dynamicity in a

seamless way. This led us on the path to investigate the benefits and potential issues using

a reasoning system within a situational assessment system.

1.2 Objectives

As stated in the previous section, we wish to investigate using a logical reasoning system

within situational awareness application. However, there are many kinds of logical reasoning

systems to choose from. For this paper, we chose to use Answer Set Programming (ASP),

the specifics of which will be discussed in Section 2.1.

ASP has a number of interesting features which makes it desirable to use for situational

awareness. It has a rich potential in representing rule-based domains because it is declarative

and provides a compact and intuitive encoding of the domain expert’s knowledge within a

non-monotonic framework. The non-monotonic nature of answer set programming makes it

rather suitable for dynamic domains as it provides a concise way of representing default rules,

and preferences over choices. Moreover, real world rule-based domains are usually prone to

policy (rule) changes which ASP is flexible enough to extend and can adapt the system as

the policies change. Recent advancements to implementations of ASP enable incremental

evaluation of logic programs; this allows for the program to have a notion of history which

is essential for a situational awareness system. The history of the system includes the

raw information received from the environment as well as the knowledge inferred in the

system. The history in the system grows throughout the time and new situational facts

are inferred. In order to handle the increasing information accumulating over time, efficient

means to store the history will be beneficial. Furthermore, current ASP implementations2

2The ASP-solver used in this work takes Normal Logic Programs as its input language which is expressive
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are powerful enough to express problems from NP-complete complexity class with a concise

and intuitive encoding. Refer to [19] for an example.

The primary objective of this work is to assess the suitability of ASP as a declarative

logic programming language for high-level situational analysis. This evaluation consists of

an analytical analysis which involves an extensive review of ASP itself and the trade-offs of

using it within a situational awareness system.

To provide further analysis of the practical considerations involved with building a real

time situational analysis system, we constructed an implementation of a situational aware-

ness system targeted for the Marine Traffic Control domain. This implementation was

created by combining an existing logical system, oclingo, into a multi-layered CoreASM

model. The design rationale will be discussed in Chapter 3.

Ultimately, our goal is to advance the capabilities of real time situational awareness

systems by integrating a reactive ASP solver.

1.3 Related Work

In this section we will discuss several recent papers relating to situational awareness. Each of

the works uses a multi-layered approach in addressing the problem of situational awareness.

The selection of components used for each layer has various strengths and weaknesses which

we will discuss in detail.

The architecture for situation awareness systems (SA) proposed by Baader et al. [1]

satisfies the requirements to be situationally aware as defined by Endsley[5]. Baader’s

architecture contains three levels of analysis: data aggregation, semantic analysis and alert

generation corresponding to the three main components of Endsley’s definition, namely:

perception, comprehension and projection.

The data aggregation layer in this architecture is responsible for perception of elements

by monitoring data sources. It identifies entities along with their low-level properties. The

semantic analysis layer comprehends and evaluates entities in conjunction with background

knowledge producing an understanding of the overall meaning of the identified entities. In

this layered architecture, the system tries to realize the relations between the entities iden-

tified in the perception layer and draws out the situational facts that need more abstract

enough for encoding problems in the NP-complete complexity class. While some of the other available ASP-
solvers accept Disjunctive Logic Programs that are more expressive compared to Normal Logic Programs.
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analysis in the semantic analysis layer. Finally, the alert generation layer generates an ap-

propriate alert where the situational facts have the potential to correspond to an anomalous

event and require a human analyst’s attention.

Baader et al.[1] use an ASP formalism underlying a first order logic reasoner in addition

to data fusion techniques for the data aggregation layer, and a description logics (DL)

inference engine for the semantic analysis. The DL vocabulary include three basic building

blocks: individuals (constants), roles (denoting binary relationships between individuals),

and concepts (denoting groups of individuals). A knowledge base in description logics is

composed of two components:

• a TBox or terminological box containing relations among concepts and rules;

• an ABox or assertion box containing assertions on individuals.

The ABox component of the description logic knowledge base in Baader et al.[1] is mainly

formed in the data aggregation layer; while the TBox component contains conceptual back-

ground information in terms of rules shaping the semantic layer of the model. The ABox

and the TBox are linked through their common terminology and higher-level situational

facts are inferred using a DL reasoner.

One of the main strengths of this approach comes from DL languages being highly

expressive and powerful to encode the rules. It also facilitates representing object categories

in the system. However, it may not be as powerful as reactive ASP in tracking the history of

objects and events. In this thesis, we use the State Transition Data Fusion (STDF)[17] model

for situation awareness which shares the high-level components of the model by Baader et

al. STDF provides a hierarchal framework which provides modularization and delegation of

tasks to programs that are best suited to handle each component. In the semantic analysis

module, we replaced the DL inference engine and divided the module into two components.

These two components are the CoreASM modelling framework and a reactive ASP-solver.

The CoreASM performs part of this task in an imperative fashion, while the reactive ASP-

solver performs the higher-level task declaratively. The reactive ASP-solver also provides

the ability to handle the history of the domain inside the module.

Mileo et al.[22] use a logic-based approach in an application to support elderly patients’

well-being at home. Their system provides a context-aware setting to interpret sensory

signals from a house monitoring system in order to explain and predict the patient’s health

status. They develop a logic-based situation assessment model to map the input sensory
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data into meaningful ASP predicates. The domain rules including the rules to analyze the

environment as well as the rules to interpret a patient’s situation are encoded using ASP.

An ASP-solver then uses the interpreted sensory signals and the inference rules to reason

on patient-specific needs as well as the evolving state of the patient in the environment.

This work is similar to ours in that the application of choice is taken from a dynamic

domain and a declarative approach is applied. However, there are two major differences,

the first being that we use STDF for our situational awareness system. The STDF model,

as a generic and domain-independent model, allows us to clearly delegate each of the tasks

to an appropriate module to handle. The second difference is how the dynamic aspect of

the domain is handled. They just associate a time component to the dynamic predicates;

however, their model requires passing the history to future time steps as their ASP solver

does not provide a means to handle the history of the domain.

Roy [25] develops a rule-based expert system composed of an inference engine which

takes low-level situational facts and generates additional facts based on them. It represents

an expert’s knowledge in terms of IF-THEN rules. At each step the IF part of a rule gets

matched against asserted facts, and the THEN part of the rule will be added to the facts

whenever a positive match occurs. The syntax of the rules are as follows:

IF [fact1 and fact2 and . . . factn] THEN factx

The ASP-based approach taken in the present paper provides a richer syntax to represent

rules in the system. As an example, ASP default rules defined using the notion of negation-

as-failure enable a concise encoding of the non-changing properties of the domain, which is

not representable given the above syntax. Furthermore, incremental answer set generation

makes it easier to keep track of the history of objects and events in the environment.

Nogueira et al.[23] use ASP for an application in public health data analysis. They

first present a semantic model for the food safety domain in which they include events

that can be considered as warnings for a potential foodborne illness outbreak together

with relationships between the components that describe each event. Their system, called

NCFEDA1, follows a similar architecture to that of Baader et al.[1], and is composed of three

components: an event manager, gathering information from various sources; a semantics

module, containing background conceptual information and rules describing the domain; a

rule-based inference engine which is an ASP-solver. All the rules, facts, and ontologies –

1North Carolina Foodborne Events Data Integration and Analysis Tool
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describing foodborne diseases and their related syndromes – in the system are encoded as

ASP rules which facilitates inference of new factual information and deducing relationships

among events.

Farahbod et al.[7] proposes a situation analysis approach based on abstract state ma-

chines implemented using the CoreASM modelling framework. Their model takes a number

of autonomous dynamic agents interacting with each other and the environment by manipu-

lating the machine state using the transition rules defined in their programs. A distinguished

observer agent is defined to perform the situation analysis task based on the STDF model

where a rendezvous detection task in marine domain is to be performed.

So far we have reviewed several situational awareness systems and identified some of

their undesirable aspects. One of the common deficits shared by some these systems is the

poor handling of notion of time. History of the domain plays a key role in obtaining the state

of situation awareness and having a clear way of handling the history is very important. In

our work, we attempt to address some of these short comings by using a reactive ASP solver

to handle the history of the domain in a seamless way. One of the remarkable features of

this work is the use of a reactive answer set solver which gives us more flexibility in dealing

with knowledge from the previous time steps.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 provides a review of the underlying concepts including Answer Set Program-

ming (ASP), Situation Awareness, State Transition Data Fusion (STDF) model, and the

CoreASM modelling framework.

In Chapter 3, we first present a description of the Marine Traffic domain which is

adopted as an application to illustrate the situation analysis task. An account of the cus-

tomized version of the STDF model is presented followed by an explanation of the imple-

mented model components, using CoreASM modelling framework.

Chapter 4 explains how high-level situation analysis can benefit from ASP and the

facilities made available by one of its recent reactive implementations.

Lastly, Chapter 5 discusses the strengths and shortcomings of the approach. This

chapter concludes with a summary of this thesis along with some tracks for future work.



Chapter 2

Background

2.1 Answer Set Programming

Answer Set Programming (ASP) is a declarative language introduced by Gelfond and

Liftchitz[15] in the late 90’s. Like other declarative languages, ASP requires the program-

mer to describe the problem by stating what the problem domain is like and what is to

be computed, but not how to compute it. The declarative paradigm takes the burden of

how to compute the solution. In contrast to this is the imperative paradigm in which the

programmer must provide an algorithm to compute the solution to a problem. There can

be multiple solutions to a problem; these solutions are known as the answer sets. Logic

programming with stable model semantics or so called Answer Set Programming (ASP),

ASP enables the programmer to view a problem in a higher level of abstraction with a clear

non-monotonic semantic model.

In ASP a given problem is represented as a logic program and the solution(s) correspond

to the resulting answer sets. An ASP system usually consists of a grounder and a solver

[14], where the grounder takes an ASP program, that can contain variables, as its input and

translates it into a propositional variable-free program. The resulting grounded program

then gets passed to the solver to generate answer sets of the program1. An ASP program is

a logic program which is a collection of statements analogous to if-then rules. These rules

have the form:

< head > :− < body >

1Please see [14] for a detailed explanation

7
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Figure 2.1: ASP Systems Architecture [14]

Where the body represents the if part, the head represents the then part. The body of

the rule can contain a conjunction of literals, i.e. negated and non-negated atoms, as well

as literals with negation as failure. The body or the head of a rule can be empty; when

the body is empty the head represents a fact. While the rules with empty heads represent

constraints.

After the grounder translates the program into a variable-free, grounded propositional

program, the solver interprets the program under stable models semantics, which is a non-

monotonic semantic, and generates the answer sets. A program may have zero or more

answer sets where each answer set contains a subset of heads of the rules that can be

inferred given the answer set.

A more detailed explanation of ASP systems components based on a recent implemen-

tation of ASP, clingo2, and one of its extensions oclingo, will be discussed in this section.

The remainder of this section is organized as follows: Section 2.1.1 describes ASP lan-

guage syntax and process of grounding the input program, Section 2.1.2 explains answer

set semantics and the process of generating answer sets, Section 2.1.3 will then describe

oclingo, the reactive answer set solver, and its input language. Oclingo is an incremental

logic program for dealing with dynamic information. Finally Section 2.1.4 describes the

general methodology in writing ASP programs.

2We have based our work on the ASP implementation by University of Potsdam, clingo, since the main
focus of this thesis is on applying ASP to dynamic domains. To the best of our knowledge, the recent
extensions to clingo, namely iclingo and oclingo are the only available implementations that enable dealing
with dynamic domains. However, the ASP semantics is in common between all the implementations and
there are minor syntactical differences between different implementations.
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2.1.1 ASP Language Syntax

In this section we will briefly describe the basic elements of normal logic programs and

explain the clingo language syntax.

Building blocks of ASP programs are as listed below:

• a set C of constants.

• a set V of variables.

• a set F of functions of the form f(t1, . . . , tn) where f is the function name with n

parameters and where each of the parameters, ti, is called a term.

• a set P of predicates of the form p(t1, . . . , tn) where p is the predicate name taking

n terms ti, for i ∈ {1, . . . , n}, as parameters. A predicate that does not contain any

variable parameters is called an atom.

Each function, variable, and constant is considered to be a term. A function takes terms

as its parameters; therefore terms are defined recursively and can be nested. Predicates in

the language can appear in negated3 or non-negated form and they are called literals. There

are generally two types of negations defined in ASP; strong negation, denoted by ‘¬’, and

default negation, denoted by ‘not’. Default negation is also referred to as negation-as-failure-

to-prove (naf), as ‘not atom’ holds only if there is no evidence to prove the truth of the

atom. The concept of default negation brings in non-monotonicity into ASP and allows

retraction of previous conclusions as new information comes in. This notion remarkably

enhances its knowledge representational aspect and enables a compact representation of

defaults, representing qualitative preferences, and transitive closure. Later in chapter 4, we

will further explain the representational aspect of ASP.

The ASP systems take logic programs (a.k.a ASP programs) as their input. These logic

programs are a set of rules of the form:

A0 :− A1, . . . , Am, not Am+1, . . . , not An. (2.1)

where A0 is the head of the rule and A1, . . . , Am, not Am+1, . . . , not An is the body of the

rule. Logic programming rules function as inference rules where intuitively A0 is inferred if

3using strong negation, ‘¬’
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A1, . . . , Am hold and there is no evidence supporting any of Am+1, ..., An. The inferred atom,

A0, will no longer hold once we acquire evidence supporting at least one of the naf-literals

in the body of the rule. In the rest of this thesis, A1, . . . , Am are called positive literals4, and

not Am+1, . . . , not An are called naf-literals.

There are three basic type of rules defined in ASP, namely regular rules, facts, and

integrity constraints.

threat(X,Y,t) :-

danger_combined_cargos(X,Y,t),

close_distance(X,Y,t),

vessel(X,t), vessel(Y,t).

The rule above is an example of a regular rule used to describe the situational fact threat

caused by vessels X and Y at time point t. This rule draws a situation threat if two vessels

are in close proximity carrying cargos that combined together would be dangerous.

Facts are rules with an empty body of the form (2.2). They can be used to represent the

information in the domain, where truth of the atom is not conditional on any other atoms.

A0. (2.2)

As an illustration, vessel(ID, LOCATION, T). is an example of a fact where we know at time

point T there exists a vessel with specified ID at location LOCATION.

Lastly, integrity constraints are rules with empty heads. They prohibit co-occurrence

of literals in the body of the rule in one answer set. Adding integrity constraints to the

program may omit some of the answer sets. Integrity constraints, in general, are in the

following form:

:− A1, . . . , Am, not Am+1, . . . , not An. (2.3)

Below is an example of an integrity constraint where we would want to restrict the presence

of two ships in the same shipping lane at the same time point.

:−lane occupied(LANE1, VID1, T), lane occupied(LANE1, VID2, T), VID1! = VID2.

4Positive literals can be negated atoms using classical negation. (¬atom)
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All ASP implementations have share common basic language constructs. However, each

implementation can have additional language features that may be specific to that imple-

mentation or shared with some but not all implementations. Some of oclingo language

features used in subsequent chapters are listed below.

• Range Operator, time(1..100). is an example of using range operator in the head

of a rule. The grounding process will then generate all the following rules to be used

by the solver: time(1). time(2). . . . , time(99), time(100)

• Arithmetic Expressions, ‘+’, ‘−’, ‘/’, ‘∗’, ‘mod’, etc.

• Relational Operators, ‘<’, ‘>’, ‘<=’, ‘>=’, ‘==’, ‘!=’.

• Classical Negation, ‘-’.

• Pooling, ‘;’, allows rules to be encoded more compactly. The atom p(..., X;Y, ...) is

the shorthand for two options: p(..., X, ...) and p(..., Y, ...). When appeared in the

body of a rule, the pooled atom is expanded to a conjunction of the options within

the same body.

• Domain Expander, ‘:’, takes an atom with variable(s) as its left hand side operand

and a domain(s) for the variables as its right hand side operand. It expands the left

hand side operand variable(s) over its domain(s).

• Aggregates, clingo supports a handful number of aggregates, including count, sum,

avg, even, min, and etc. count and sum aggregates are explained below as they have

been widely used in our work. The count aggregate can be used with the syntax

lower #count{atom1, . . . , atomn} upper5 (2.4)

where lower and upper are integers, and a set of atoms are braced inside a pair of

curly brackets. The expression evaluates to true if the number of true atoms in the

curly brackets is between the lower and upper bound. This is also called a cardinal-

ity constraint. The following displays a choice rules which is modelled using count

aggregate:

lower {a0, . . . , ak} upper :− A1, . . . , Am, not Am+1, . . . , not An. (2.5)

5#count keyword is optional.



CHAPTER 2. BACKGROUND 12

A choice rule expects lower ≤ i ≤ upper number of braced atoms in the head get

a truth value if the body of the rule holds. The sum aggregate is defined similarly

except that it uses a multi-set6 of atoms with an optional weight7 parameter for each

member.

lower #sum[atom1 = w1, . . . , atomn = wn] upper
8 (2.6)

Alternatively the lower and upper bounds can be omitted and the result of the sum-

mation assigned to a variable, i.e.

S = #sum[atom1 = w1, . . . , atomn = wn] (2.7)

• Optimization Statements enable generation of optimized answer sets based on

some criteria. An optimization statement can either be a minimization or a maxi-

mization statement. As shown below, an optimization statement takes the criteria for

optimization braced inside a pair of square brackets and also a number indicating the

priority of criteria in case of more than one criterion:

#minimize[atom1 = w1 @ p1, . . . , atomn = wn @ pn] (2.8)

where pi for i ∈ 1, . . . , n is an integer number indicating the priority of the criteria.

Roughly speaking, an answer set is optimal if the sum of weights of literals that hold

is maximal or minimal, as indicated by the statement, among all answer sets of the

given program [14].

2.1.2 Answer Sets and Stable Model Semantics

The stable model semantics, or the answer set semantics, is one of the approaches to the

meaning of negation as failure which forms the basis for answer set programming. Intuitively,

an answer set is a set of atoms S, which is a subset of head atoms in the rules, where the

head of a rule belongs to S only if all the positive literals of the body of the rule belong

to S and none of its naf-literals appear in S. One of the important remarks in generating

answer sets is that answer sets are defined in terms of atoms that are actually variable-free

6Repeating atoms with the same or different weights are permitted.
7If not indicated, the default value for the weight(s) would be 1.
8#sum keyword is optional.
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predicates. Therefore, the logic program must be grounded into its equivalent variable-free

version through the grounding process. The grounding process replaces every occurrence of

the variables in the program with all the possible substitutions from the constants and the

functions in the program. The solver then operates on the ground program to generate the

answer set(s).

In order to explain the answer set generation process, we start with the naf-literal free

programs where there is no occurrence of negation-as-failure. The rules in a naf-literal free

program have the following form:

A0 :− A1, . . . , Am. (2.9)

Such programs are called naf-free logic programs and only have one unique answer set. For

example, assume the following naf-free logic program from [15]:

p(1, 2).

q(x) :− p(x, y),¬q(y).

The grounding process turns the program into the following variable-free program:

p(1, 2).

q(1) :− p(1, 1),¬q(1).

q(2) :− p(2, 1),¬q(1).

q(1) :− p(1, 2),¬q(2).

q(2) :− p(2, 2),¬q(2).

In order to find the answer set in a naf-free program we need to start with a subset of

atoms in the program called S and plug them into the bodies of the rules to infer new

atoms, if possible9. An iterative process of inferring new atoms is then performed; at each

iteration we form a set of atoms St corresponding to the set of inferrable atoms at the

current iteration. After a finite number of iterations 10 the set St stops evolving; in other

words, the set St = St−1. The set S is called a stable model or an answer set, if the final

set St is equal to the initial set S. In the above example the only answer set is {p(1, 2)} as

we can not infer any other head atoms except for the given fact p(1, 2).

Extending the above algorithm to the generic logic programs containing naf-literals

requires a strategy to deal with the naf-literals. The main issue with naf-literals is that at

9The initial set S can be an empty set.
10The answer set generation process is guaranteed to terminate as ASP limits the language to the predicates

and functions with a finite domain
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the start of the inference phase we do not know if they are derivable or not, and therefore we

need to make assumptions about their status. As explained earlier, regular logic programs

are composed of the rules of the form:

A0 :− A1, . . . , Am, not Am+1, . . . , not An. (2.10)

In this general case we need to make an assumption regarding the status of each of the naf-

literals, ‘not Ak’, guessing which of them are derivable in the program. If Ak is guessed to be

derivable in the program, ‘not Ak’ is assumed false; otherwise, ‘not Ak’ is assumed true. We

will then need to verify each of the guesses by replacing the assumptions into the original

program. Replacing corresponding true and false values in the program turns the program

into a naf-free logic program. In the verification phase if our guess was compatible we would

get an answer set that includes the naf-literals that were assumed to be false, as they were

assumed to be derivable, and does not include the ones assumed to be true. The fact that

for a given arbitrary program we may have more than one set of guesses on derivability of

the naf-literals leads to possibility of having multiple answer sets corresponding to multiple

solutions for a problem. Apparently this non-determinism is also a consequence of having

negation-as-failure11. As an example, assume the following logic program with two ground

rules:

p :− not q.

q :− not p.

w :− q.

Let’s start with the set S = {p, w}; assuming that p is true leads to falsifying not p, and

therefore the rule “q :− not p” would not be of any use as its body does not hold given

the set S. The set S does not give us any information about the atom q so we can assume

truth value for the naf-literal “not q”; as a consequence the rule “p :− not q” will turn into

a fact as its body gets truth value. As shown below, after applying the assumptions in the

original program we get a naf-free program:

p.

w :− q.

Given the naf-free program, the only atom that can be inferred is the atom p. Therefore the

11The non-determinism in answer set programming that usually results in multiple distinct answer sets
originates in several properties of the language. As we described above, the notion of negation-as-failure
is one of its sources. Choice rules, described in Section 2.1.1, and disjunction operator that are defined in
Disjunctive Logic Programs are some of the other sources of such non-determinism in ASP.
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inferred atoms set S1 after one iteration would only include atom p. Since the only other

rule in the naf-free does not infer any new atoms the inference process terminates. Since

S 6= S1, S is not a stable model.

Let’s run through the previous example using a different initial set S = {q, w}. This

set does not contain atom p; therefore we must assume truth value for not p. However, the

atom q is included in the initial set so the not q is falsified. The resulting naf-free program

is presented below:

q.

w :− q.

The only atom that can be inferred in the first run through the naf-free program is q,

and thus we get S1 = {q}. Running through the program for a second iteration, we can

infer atom w using the inference rule “w : − q”. Therefore we get S2 = {q, w}. The

third iteration through the program does not infer any new atoms; therefore the answer set

generation process terminates. The resulting set S2 contains the same set of atoms as the

initial set S; therefore it is a stable model for the original program.

Gelfond and Liftchitz [15] were the first to formally define stable model semantics for

basic logic programs; Simons [27] then extended the semantics for more expressive logic

program rules including constraints, choice, and weight rules. In this section we provide the

formal definition for programs with regular rules, facts, and constraint rules.

The reduct of the program P given an initial set S, which is denoted by PS produces a

naf-free program where we can verify if the initial set S is a valid answer set for program

P . The following steps summarize the process of generating the PS :

1. deleting all regular rules in P where there is a negated literal, not s, in its body such

that s ∈ S

2. deleting all negated literals, not a, from the remaining rules.

Step (1) in the above procedure ensures that PS would not be able to infer atoms through

rules where there exists a naf-literal belonging to S that appears in the body. Step (2)

removes all the negated literals from the body of the rest of the rules as there is no infor-

mation to either prove of disprove them. Stated more concisely, reduct of program P with

respect to the set S prepares the program to only infer valid atoms.

Definition 1. A set of atoms S is a stable model of program P if and only if S is the
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deductive closure of PS when the rules in PS are seen as inference rules.

This definition ensures that all the atoms in the set S are deducible, and that they are

the smallest set of atoms deductible. Being smallest is implied by the fact that if the initial

set S shrinks through the process, it would not be called an answer set as it is giving truth

values to some atoms without having the program support them.

In order to extend the above definition to the programs with constraint rules, we need

to ignore set S if its atoms violate any of the constraint rules. Therefore an answer set is

the smallest set of atoms that can be inferred by the program, and does not violate any of

the constraint rules.

In summary, the overall task of the solver would be to pick a potential answer set, S,

and follow the above procedure to confirm that S is a valid answer set.

2.1.3 Reactive Answer Set Programming

Reactive answer set programming bridges the gap between the declarative paradigm used

by answer set programming and a wide variety of applications dealing with dynamic do-

mains. Gebser et al. [12] introduce this approach by incorporating online data streams

into the logic program. They take advantage of incremental logic programs[13] to bring in

dynamicity through a time component. The reactive ASP-solver augments the incremental

logic program by enabling the solver to use additional external atoms coming from outside

of the logic program. Time steps from the dynamic domain are aligned to the steps of

the incremental logic program to admit additional grounded atoms into the solver. This

useful extension to incremental answer set programming makes a connection from the dy-

namic domain to the solver. The rest of this section presents a description of incremental

logic programs which is the input language for oclingo, currently the only available reactive

answer set solver. In the subsequent section, we will look at how oclingo works.

Incremental Logic Programs

Incremental logic programs are a type of normal logic program augmented by an additional

dynamic parameter. This dynamic parameter can be aligned to the time steps and assumed

to be a time parameter. This changing parameter enables augmenting the ground logic

program rules with permanently added as well as transient new rules that emerge as time
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Program 2.1: Incremental Logic Program

1 #e x t e r n a l p r e d i c a t e 1 / a r i t y 1 .
2 #base .
3 . . .
4 #cumulat ive t .
5 . . .
6 #v o l a t i l e t : durat i on 1 .
7 . . .
8 #v o l a t i l e t : durat i on 2 .
9 . . .

goes on. This concept is introduced by Gebser et al [13] and has been used as a basis to

implement the concept of reactive answer set programming[12].

The incremental logic program has been used as the input language for the reactive

answer set solver, oclingo. This input language shares all the fundamental concepts and

the basic language constructs with the introduced ASP syntax for clingo. The only major

difference is that incremental logic programs are composed of three logic programs, namely

base, cumulative, and volatile programs. The base program is time independent, while the

other two parts are defined to capture the notion of time.

1. base program — includes static knowledge, independent of parameter t;

2. cumulative program — includes knowledge accumulating with increasing t;

3. volatile program — includes time-decaying knowledge.

The base program includes static knowledge, while the cumulative program is meant to

track the knowledge that should be accumulated over the time. Lastly, the volatile pro-

gram contains the rules that are time dependent but transient after a specific number of

steps. It keeps the history accumulated through a specific range of time. Program 2.1.3

demonstrates the structure of an incremental program. The program may have more than

one volatile parts with different volatile window durations. The external predicates that are

being fed to the system through the controller program, are indicated with “#external”

label. The incremental grounder grounds the time dependent parts of the program as the

time parameter increases. Assuming that these three parts are indicated respectively by

B, P , and Q, and the window for the volatile part is of the size j, the task of the re-

active answer set solver at time point k would be to find answer sets for the program
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B ∪1≤i≤k P [t/j] ∪k−j≤l≤k Q[t/l] given the online input data from time steps up to the

time point k. Their approach in dealing with a dynamic parameter inside the ASP solver

provides the means for handling the history of the domain inside the ASP solver itself.

The Reactive Answer Set Solver, oclingo

In this section we further describe how oclingo implements the idea of reactive answer set

programming. In summary, oclingo takes an incremental logic program, listens on a port

to get online data from an external source, augments the arrived data into the incremental

logic program, and solves the program for each time step. It synchronizes the external online

input time steps with the underlying incremental programs steps so that the resulting answer

set(s) from each time step only take into account the online external input up to that point

in the time. The input language for oclingo is the same as clingo except for some changes

in the format of the program. Oclingo takes an incremental logic program as input and

acts on it given the user external online input that is fed to the system through an external

controller. The online input gets introduced into the logic program as external predicates.

A separate controller program is responsible to pass the synchronized online input to the

solver for each time step. The online input for each step must be presented in the following

format:

#step k. external_predicate. #endstep.

The overall process of the solver is as follows. The solver should be launched with an

incremental program and an online input data file. The first step for the solver is to ground

the base part of the program and calculate the answer set(s) without taking into account

the external input data. The solver then goes through an iterative process of taking the

external online input from each step and calculating the answer set(s) given the input. At

each iteration the solver performs the following tasks:

• ground the external input from step i and add it to the solver12;

• ground the cumulative part P [t/k] and add it to the solver;

• ground the volatile part Q[t/k] and add it to the solver; remove the expired ground

rules Q[t/j] where j < k is the biggest index which is outside of the range of the valid

12The current implementation limits the external input to ground atoms, so the input is already grounded
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window13.

• solve the program given the added ground rules.

Figure 2.2: oclingo, Reactive Answer Set Solver

Gebser et al. [11] further develops oclingo by introducing the idea of a sliding window

and improves the flexibility of defining problems by enabling arbitrary use of time-decaying

rules and data, in both the encoding and the external input data. To this end, they extend

the input language of oclingo to better deal with expiring data.

2.1.4 Problem Solving using ASP

This section describes the general methodology for encoding problems using ASP programs.

As we have mentioned before, in declarative programming languages the programmer is

mostly concerned with what is to be computed, rather than how to compute it. Therefore

an ASP program describes the problem as opposed to presenting an algorithm to solve the

problem. An ASP programmer needs to encode the problem in a way that the program

itself is a precise description of the problem, and the resulting answer set(s) correspond to

valid solution(s) for the problem. The general approach in coding a problem in ASP is the

13The process of removing expired rules is performed by turning the invalid rules into integrity constraints
and adding them into the solver
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“generate and test” [19] method. The generate phase uses choice rules to generate a set of

potential solutions which is actually a superset of valid solutions. The test phase will then

eliminate the solutions that are not in accordance with domain constraints. For example,

when encoding an ASP program to schedule marine traffic through canals, we can start by

generating all the potential solutions where every vessel can go through all the lanes.

{start request(I, L, T) : time(T) : lane(L) : vessel(I)}. (2.11)

where I stands for vessel id, L indicates the lane id, and T is time step. In the next step, we

need to eliminate invalid answer sets by imposing the constraints. In the above example,

one of the constraints is not to schedule a vessel on two different lanes at the same time.

:− start request(I, L1, T), start request(I, L2, T), lane(L1; L2), L1! = L2. (2.12)

In summary, to represent a problem using ASP we first need to have a precise description

of the domain and then go the through “generate - test” steps. The if–then form of ASP

encoding makes it very similar to natural language and allows for predicates to represent

real world concepts. This makes the code easy to read and intuitive.

2.2 Situation Awareness

Endsley [5] elaborates on the definition of situation awareness of “knowing what is going

on around you” and advances it to more a practical definition as “the perception of the

elements in the environment within a volume of time and space, the comprehension of their

meaning and the projection of their status in the near future.” According to this definition,

in a situation awareness system

“...at the lowest level the operator needs to perceive relevant information (in the

environment, system, self, etc.), next integrate the data in conjunction with task

goals, and, at its highest level, predict future events and system states based on

this understanding.”

There are three phases in this situation awareness model:

• Perception: The perception phase deals with low level information from a variety of

sources.
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• Comprehension: The comprehension phase comprehends the information in con-

junction with background knowledge to understand the world.

• Projection: The projection phase predicts possible evolutions of the state. A pre-

diction is considered to be one or more guesses on how an ongoing scenario may turn

out.

In this thesis we have adopted the State Transition Data Fusion (STDF) model [17]

for situation awareness (SA) which elaborates the above definition in a data fusion con-

text. STDF has a systematic approach to manage the complexity of SA systems through

modularization.

The situation awareness models [1, 17] based on this definition perform analysis in

three levels of abstraction. The first layer is called object assessment and it is responsible

for structuring the input data and extract object representations from the raw input. The

second layer, situation assessment, discovers the relationships between objects and generates

situations. Finally the impact assessment layer tries to find out the effects of situations and

the relationship between situations distributed both in time and space. Each of these layers

contain three components corresponding to comprehension, projection, and prediction phases

in the definition by Endsley.

In order to make the system design more systematic, an abstract state machine (ASM)

approach is combined with the STDF model. ASM’s enable a stepwise refinement of the

model from a highly abstract model to a coherent detailed implementation throughout the

design process. We have used the CoreASM modelling framework[6] to apply the ASM

approach. CoreASM has been used to implement the high-level SA model as well as the

first two layers of analysis; while the tasks from the third layer are delegated to an ASP

system. In the rest of this section we will be looking at the STDF model and CoreASM in

more detail.

2.2.1 The STDF Model

The State Transition Data Fusion (STDF) model expands upon Endley’s definition of situa-

tion awareness model [17] by using a state-based data fusion model. Data fusion is generally

defined as:

“...the process of utilizing one or more data sources over time to assemble a

representation of aspects of interest in an environment” [16].
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Figure 2.3: The STDF Model [17]

The STDF model represents a system in terms of states and transitions between the states,

where the world is denoted as a set of states at each time step. STDF achieves situational

awareness by assessing the input in three levels of abstraction:

• object assessment:

raw input is transformed into objects in the world model.

• situation assessment:

relations between objets are represented.

• impact assessment:

effects of relations between objects are identified.

The internal structure of each of these layers (object, situation, impact) follows the SA

definition by Endsley. They each contain an observation, an explanation, and a prediction

component respectively corresponding to perception, comprehension, and projection phases

from the SA definition.

As an illustration, when applying the STDF model to our Maritime Traffic Control

problem; the object assessment layer structures the raw input by detecting objects and

assigning them their properties such as speed, country of origin, location, etc. The situation

assessment layer recognizes the relations between objects as the ongoing situations in the

environment; we can then pick the situations that are of interest to our application. For
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example, determining that two tanker vessels with one carrying ammonia and the other

one carrying bleach are in a close proximity is called a bad cargo coincidence and is a

situation of interest in our application. Lastly, the impact assessment layer identifies effects

of interacting situations from different time points. As an example, looking at two situations

from different time points where in each of them there have been two tankers from a specific

country involved in a bad cargo coincidence; one may consider it as an anomalous action.

Each of the layers pass their output as input to the next layer in order to perform more

abstract analysis.

As we move from object assessment to situation assessment to impact assessment, the

level of abstraction goes higher and with it the observational, explanatory and predictive

components become more powerful. At each time step, the observation component in the

object assessment layer deals with signal level sensory input in order to structure the input

into objects; while the input of the situation assessment layer are the resulting objects from

abject assessment layer and therefore it is more abstract compared to the initial sensory

input. Similarly, the situational facts drawn in the situation assessment layer get passed as

the input for the impact assessment layer analysis.

Figure 2.3 shows the overall STDF model, where each of the main components (Obser-

vation, Explanation, and Projection) are composed of more specific purpose modules that

are also replicated through the three layers of analysis.

In this model, the world is understood in terms of a set of states and the transitions

between them. At any time step k, the world is composed of a number of states. Depending

on the level of analysis the state representation is of a different abstraction level; i.e. objects,

situations, impacts.

There is a common pattern in the inner arrangement of the components of the object,

situation, and impact assessment layers; however, the abstraction level of the layer changes

the functionality of these components as the state representations vary at each layer. The

overall task in the object assessment layer is to turn low level signal inputs into objects.

For object assessment, states include objects with measurable properties represented. An

object at time point k is represented as a vector vi(k) containing properties of the object

i at the current time. However, the state of each object at time point k is represented as

sobji(k) = {vi(t) | t ≤ k} and therefore includes the history of the object in the state. One

can assume the overall world representation in object assessment process at time point k as

a set of states of objects present in the domain Sobj(k) = {sobji(t) | i ∈ objects & t ≤ k}.
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Figure 2.4: The STDF Model for Object Assessment [17]

Throughout this process, environmental sensors gather information and pass it to a

detection module in order to identify the signals and distinguish false signals from the valid

ones. A registration module then normalizes detections relative to a frame of reference.

The Association process then invokes the prediction module to perform analysis given the

history from the previous states. It matches the observation from the current state against

the predictions from the previous steps to see if there is a match between current observations

with predictions from previous observations; it then returns the analysis results back to the

association process. The association process then moves to the explanation process to either

update an existing state or to initiate a new state if there is no match between the current

observation and some prediction from the previous state.

The other two layers, situation assessment, and impact assessment layers follow a simi-

lar process with a more abstract representation of the states. As shown in figure 2.5, the

situation assessment layer locates the object assessment layer instead of the detection com-

ponent and proceeds to the rest of the process using the resulting objects from the object

assessment layer.

The impact assessment layer replaces the detection component with the object assessment

layer and registration module with the situation assessment layer.

The representation used in each of these two layers are described in the rest of this section.

In situation assessment, the world is viewed in a more abstract fashion, in terms of

situations. States consist of situations that are expressed as set of set of statements about
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Figure 2.5: The STDF Model for Situation Assessment [17]

the world. A situation sitj(t) at time point t is a statement about the world explaining the

relation between two or more objects at a time point. A situation can be represented as a

statement in some formal language. For example, one may represent a situation involving

two vessels, V 1 and V 2, in a bad cargo coincidence situation in a statement in the following

form:

bad_cargo_coincidence(V1,V2,Area,t)

A situation may evolve over time and therefore its state is expressed as a set of statements.

A state at time point k is represented as ssitj (k) = {sitj(t) | t ≤ k}; the state representation

at time point k includes the history of how that situation has evolved over time. The set

of states forming the entire world at time point k can then be represented as Ssit(k) =

{ssitj (t) | j ∈ situations & t ≤ k}
For impact assessment, states are defined in an even higher abstraction level compared to

situation assessment layer; states are defined in terms of scenarios. A scenario is expressed

as a set of interacting situations which result in some effects that are of interest in the

domain. A set of interacting situations, interacting situations(l), is subset of situations

in the domain that are somehow related to each other. A state in the impact assessment

layer is a scenario which is defined as a set of interacting scenarios, senariol = {ssitm | m ∈
interacting situations(l)}. The overall world in impact assessment layer is represented as

a set of scenarios, Simp(k) = {senariol | l ∈ set of interacting situations}
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Figure 2.6: The STDF Model for Impact Assessment [17]

We have adopted the STDF model and customized it to perform the situation assessment

task in our Marine Traffic Control problem. As explained before, STDF model takes the

world in terms of states and transitions between those states; therefore we have used a

state-based modelling framework, called CoreASM, to implement the situation awareness

model. Section 2.2.2 discusses CoreASM and its underlying theory in some detail. Later

on in Chapter 3 we explain the customized version of the STDF model and explain the

implementation in further depth.

2.2.2 CoreASM : An ASM based Modelling Framework

Abstract State Machine (ASM) modelling is a method for design and analysis of complex

systems. ASM provides a framework to model discrete dynamic systems by combining the

concept of abstract states with transition systems. The main idea in the ASM modelling

method is to enable a pseudocode like encoding to operate on abstract data structures where

every aspect of the system can be modelled at any desired level of abstraction [8]. CoreASM

is one of the implementations for ASM that provides a framework for rapid prototyping of

abstract executable models[6]. It adopts its modelling method from ASM and provides a

pseudocode like language with high-level abstract data structures. A basic ASM model[3]

is defined as follows:

Definition 1. A basic ASM M is defined as a tuple of the form (V, I,R, PM ) where the

vocabulary V consists of a finite set of function, I is a set of initial states for V , R is a set
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Program 2.2: CoreASM Specification – Sorting

whi l e ( | s e t | > 0)
choose x in s e t with ( f o r a l l y in s e t ho lds x <= y ) do

remove x from s e t
add x to so r t ed

of transition rule declarations, and PM ∈ R is a distinguished rule, called the main rule or

the Program of machine M.

Each function name f has an arity which is a non-negative integer. Function names

with arity zero correspond to the concept variables in most of the imperative programming

languages. An interpretation f : Xn → X for each function is provided at a given state

S; i.e. a value v is assigned to each location, f(v1, ..., vn). The set of all (f, (v1, ..., vn), v)

that hold in a given step form a state. The evaluation of a transition rule in a given state

produces a finite set of updates of the form (f, (v1, ..., vn), v). An update (f, (v1, ..., vn), v)

prescribes a change to the content of location f(v1, ..., vn) taking effect in the next state.

ASM models are pseudocode programs allowing arbitrarily abstract operations on arbi-

trarily abstract data structures. The CoreASM specification language and its underlying

semantics are claimed to be identical to those of ASM. A CoreASM specification is a pseu-

docode program that starts the execution from a main program called init and enables

highly abstract operations using transition rules on abstract data structures. Program 2.2

displays a sorting algorithm implemented using CoreASM. As shown in Program 2.2, the

programmer does not need to be involved in the fine details of each step of the algorithm.

Gabriele [10] provides an elaborated example simulating a Train Control System using the

ASM and CoreASM. See [10] for a detailed description and the CoreASM specification.

Stepwise refinement is the key modelling clue in ASM framework[3] that helps manage

the complexity of the system by implementing the system at suitable levels of abstraction and

linking them down to a concrete model. Using an ASM framework one can (i) form a base

model given the high-level requirements in a precise yet abstract fashion, (ii) incrementally

refine the base model down to a concrete implementation, (iii) validate the model through

simulation or testing at each level of abstraction.

As described in the above steps, the main design clue is to start with a highly abstract,

yet executable, model and go through a refinement cycle to improve and sketch the model
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down to the desired concrete model.



Chapter 3

Situation Awareness in the

Marine Traffic Domain

Maritime traffic control is an example of a task that looks for methods to enhance the

capabilities of human operators as much as possible. Maritime operators, who watch over

the oceans 24/7, are responsible for ensuring vessels comply with maritime regulations. In

order to do this, the operator must first analyze large amounts of data from various sources

ranging from satellite images to guard reports. The operators must use their expertise

to combine the relevant data and infer additional situational facts in order to determine

if further action is required. However, with the vast amount of information along with

the numerous rules for safety compliance, we can see how the problem quickly becomes

intractable for a human operator without some automated assistance to evaluate the large

number of situational facts that can be derived.

A situation awareness system can be utilized to augment the human operators’ expertise

and analyze the available information to detect anomalous1 actions and events. As an

illustration, if a ship is moving faster than its allowed speed, the system can consider it as

being anomalous. Unfortunately, unlike the speed limit checking, not all of the anomalous

activities are easily observable by processing the low-level information; some situational facts

are not directly observable and need expertise and more abstract information to be inferred.

Therefore, the situation assessment model needs to perform the analysis in different levels

of abstraction from low-level input data analysis to higher level information analysis.

1The term “anomaly” in this domain can be defined as deviation from the expected [26], such as those
that would be related to smuggling, piracy, or potential hazardous conditions
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One of the other challenges in the maritime domain is its highly dynamic nature. A

constantly changing environment requires us to maintain a history of objects so we can

detect anomalies where information from previous time points are required.

A situation aware system would be able to draw appropriate conclusions based on the

existing information and to act according to its understanding of the environment. In order

to implement a system able to act upon its knowledge and information from the domain,

we have adopted the State Transition Data Fusion (STDF) model for situation awareness.

The customized STDF model enables performing each of the anomaly detection tasks in an

appropriate level of abstraction. The modular nature of the STDF model allow us to utilize

appropriate tools to address each task.

As mentioned in the previous chapter, ASM facilitates the creation process by letting

the system design start from a highly abstract model and be structured to the desirable

detailed model through stepwise refinement of the model. It allows the designer to focus on

the essential aspects of the system rather than encoding insignificant details. The CoreASM

modelling framework follows the design approach proposed in ASM and therefore allows the

designer to implement abstract executable specifications of the system at an arbitrary level

of abstraction. It enables the designer to incrementally go from a highly abstract model

to a concrete and fully detailed specification. We use the CoreASM modelling framework

to implement the customized STDF model. CoreASM provides a multi-agent framework

allowing parallel and sequential execution of the instructions.

The CoreASM implementation is responsible to delegate each of the specific anomaly

detection tasks to the appropriate module to be addressed. Depending on the nature of the

tasks, they are performed either in an imperative program using a CoreASM specification,

or through an ASP program in a declarative fashion. The object assessment analysis dealing

with low level input data as well as situational assessment tasks that follow simple algorithms

are performed through a CoreASM specification in an imperative fashion. ASP is used for

the tasks that involve higher level rules dealing with more abstract information in the impact

assessment layer. As described in section 2.1.3, an incremental and reactive implementation

of ASP, oclingo, is used to manage dynamicity of the domain inside the system. This

implementation allows us to keep track of the domain history in the ASP program itself, as

opposed to previous implementations where the history would need to be handled through

an external component.

This chapter continues with a description of the part of the maritime domain which is
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addressed in this work. Section 3.2 will then present the customized version the STDF model

used for modelling situation awareness, as well as an explanation on how the CoreASM

modelling framework is applied. The ASP component of the model is discussed in the

following chapter.

3.1 Marine Traffic Domain Description

The maritime domain as a whole is a huge domain as it involves so many entities with a

vast number of situations to be aware of and tasks to be performed. There are many types

of anomalies that the marine traffic operators need to detect. Smuggling, piracy, dangerous

cargo coincidences, and vessels in restricted areas are just a few examples of the anomalous

situations that marine operators need to be vigilant for. On the other hand, there are also

tasks that are not necessarily anomalous but still need operator consideration. For example,

in harbour where the cargo vessels and tankers need to unload, there should be an agent

scheduling the resource. In this work we design a situation awareness model to help in

detecting the following anomalous situations in their appropriate level of analysis, as well

as a harbour scheduling task:

1. vessels in prohibited areas - addressed in Object assessment layer

2. dangerous cargo coincidence - addressed in Situation assessment layer

3. suspicious vessel coincidence - addressed in Impact assessment layer

4. marine resource scheduling - triggered by the Object assessment layer

The first three situations listed above are chosen so we can describe all the abstraction

levels of analysis in our situation awareness model; i.e. object assessment, situation assess-

ment, and impact assessment respectively. The last scenario was chosen in order to show

how a declarative paradigm can be useful for a general search problem in a dynamic and

rule-based domain. One of the challenging tasks for marine traffic officers is directing vessels

in areas of high density and a narrow lane to prevent dangerous maritime situations [21]

[9]. Harbour unloading platforms is another example of a marine resource that needs to be

organized using a scheduler. We address the marine resource scheduling problem using an

ASP module.
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The rest of this section is devoted to a more detailed explanation of the marine traffic

control domain. Since the entire maritime domain is rather expansive, we took a small

portion as a sample so that we can illustrate the suitability of our model together with ASP

and CoreASM.

The following gives a rough idea of what the maritime traffic domain entails:

Vessels travel along shipping lanes going from one terminal to another. These

vessels comprise of passenger ships, cargo ships, and oil tankers. Each of these

vessels have various priorities for passing through channels or for docking at har-

bours to unload cargo. In order to gather information about the various vessels

in the area, an Automatic Identification System2 (AIS) is used. This system

tracks vessel positions, speed, etc. The main role of the marine traffic officers

is to use the information gathered by the AIS to make a determination of the

current state of affairs. Having an accurate sense of the current situation is re-

quired in order to make informed decisions and to properly react to suspicious or

unusual activity. The marine traffic operators are also responsible for scheduling

the vessels by taking their priority into consideration while at the same time en-

suring that the proper safety regulations are being adhered to. Detecting vessels

in prohibited areas, recognizing dangerous cargo coincidences, and discovering

vessels with suspicious behaviour are some of the tasks that we will be looking

at. A dangerous cargo coincidence happens when two ships carrying dangerous

chemicals are not at a safe distance apart from each other.

We perceive the domain as being composed of two main agents: the environment, and the

base station. The environment is where all the objects operate and actions are performed.

The AIS system passes information obtained from the environment to the base station. The

AIS again is an automatic tracking system that provides unique identification, position,

course, speed, etc. of the objects in areas of interest. The base station is the agent that

receives all the data and information from the environment. It analyzes the information and

tries to maintain a situation-aware state given the observations. In order to enable the base

station to achieve situation awareness, the SA model is located inside the base station. We

simplify the domain by assuming that the vessels are the only dynamic objects present in

the environment. Vessels are moving objects that are observed in the environment through

2We have used an AIS available online at http://www.marinetraffic.com/ais/
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the AIS. As discussed earlier in section 2.2.1, the STDF model represents domain objects

as vectors containing properties.

vi < position, speed, course, area, type, time >

where position of the vessel is composed of a latitude and a longitude. The type of the vessels

determine their priority in using resources; for example, cargo vessels carrying dangerous

goods may need safety considerations and have a priority over other vessels.

Low level analysis on the input observation needs to be performed in order to identify

each vessel and its status in the domain. An estimation of the vessels’ future location given

the current latitude, longitude, course, and speed is one of the properties of interest in

this domain. Compliance of the vessel with basic rules in the domain is another factor

that identifies the status of the vessel in the domain. For example, one needs to ensure

that vessels do not exceed the speed limit. Another example would be checking the vessel

location and ensuring that it is not in a prohibited area. After clarifying the status of each

vessel, the interaction of the vessels with each other needs to be analyzed. Determining if

there are any vessels carrying conflicting cargos in a close proximity is called a dangerous

cargo coincidence and is a situation of interest in our application. This pattern of interaction

of the vessels can also help us detect suspicious vessel coincidences. Vessels involved in a

set of situations are called suspicious if the situations are considered to be related to each

other according to the expert knowledge.

The rest of this chapter fits the marine domain described above into a situation awareness

model.

3.2 Situation Awareness in Marine Traffic Domain

In this thesis we have adopted the State Transition Data Fusion (STDF) model [17] for situ-

ation awareness (SA). The STDF model offers a systematic approach to manage complexity

of SA systems through modularization. Pairing the STDF model with the Abstract State

Machines (ASM) approach enables stepwise refinement of the model from a highly abstract

model down to a detailed implementation throughout out the design procedure.

We have used the CoreASM modelling framework[6] to apply the ASM approach. Com-

bining the STDF with the ASM method provides a systematic modelling approach to manage

complexity of the system through modularization and refinement. CoreASM has been used
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Program 3.1: CoreASM Specification – STDF Program

r u l e STDFProgram( time ) =
seqb lock

ObjectAssessment ( time )
S i tuat ionAssessment ( time )
ImpactAssessment ( time )

endseqblock

to implement the high-level SA model as well as the first two layers of analysis; while the

tasks from the third layer are delegated to an ASP system. In the rest of this section we

will be looking at the STDF model and CoreASM in further detail.

As mentioned earlier, we divide the world into two agents, environment and the base

station. The environment agent simulates the environment based on data provided by an

AIS. The second agent is the base station which performs the SA analysis. These two agents

are represented as agents in the CoreASM specification.

The base station is where the situation awareness model is located. The CoreASM spec-

ification, presented in program 3.1, displays the overall STDF model for situation awareness.

The STDF model performs the situation analysis by understanding the world in terms of ob-

jects, interaction between them, and scenarios composed of events occurring in the domain.

It predicts the possible events and evolutions of the world at each level of abstraction. Each

of the object, situation, and impact assessment layers observe the world, and explain it in

terms of objects, situations, and scenarios respectively. Each layer then makes predictions

on how it would evolve in the near future. The analysis from the first two layers, object and

situation assessment, deals with numeric features of the domain and therefore opts for an

imperative language to perform computations. However, the impact assessment layer deals

with higher level statement and contains no numeric information; therefore we have used a

declarative language for the analysis in the latter layer.

Figure 3.1 depicts the main components of the SA system and their interaction. As shown

in the diagram, the CoreASM component performs the analysis from the object assessment

and the situation assessment layers; while it delegates the impact assessment analysis to

the ASP component where the basic situational facts are supplied from the previous two

layers. The ASP component is composed of an incremental logic program, where the expert

knowledge is encoded, a controller program, that passes the external situational facts to the

engine, and an ASP-solver engine performing the inference task.
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Figure 3.1: Situation Awareness Model Using CoreASM and ASP

In the first layer of analysis, object assessment, we are concerned with gathering all the

basic and measurable properties, as well as the basic situational facts regarding the status

of each vessel as an object in the domain. The object assessment process produces an object

representation report and draws all the inferable object level facts. It performs the analysis

through three components: object observation, object prediction, and object explanation.

Program 3.2 displays the CoreASM specification implementing the object assessment layer

by delegating the task to the observation, prediction, and explanation modules respectively.

As described in section 2.2.1, the object observation module divides the task into three sub-

components: detection, registration, and association. The detection module is responsible

for identifying the signals and distinguishing false signals from the valid ones. In this
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Program 3.2: CoreASM Specification – Object Assessment

r u l e ObjectAssessment ( time ) =
seqb lock

mode := OObservation
ObjectObservat ion ( time )

mode := OPredict ion
Objec tPred i c t i on ( time )

mode := OExplanation
ObjectExplanat ion ( time )

endseqblock

application, the input information is not presented as low level signals as the AIS performs

the low level signal processing and provides our system with data such as latitude, longitude,

speed, etc. The registration module structures the detections and compiles object vectors

with their basic properties provided by the AIS.

vi < latitude, longitude, speed, course, type >

The association module interacts with object prediction and object explanation components

in order to complete the object representations. It first takes the basic object represen-

tation from the object observation component to the object prediction component in order

to augment the state representation with predictions about the observations. It accesses

the history of object representations in order to decide if the object is newly added to the

domain or has already existed in the previous steps. In order to simplify the process and

avoid redundancy, we ignore the association module and distribute its tasks into other com-

ponents. We allow the registration component to access the history and be able to take

care of adding new states for the newly added objects and updating states for the existing

objects. The object prediction component clarifies object states by augmenting the state

vector with additional information. An example of such additional information is predicting

object positions in the next two time steps. The object explanation component performs on

the object vectors and draws basic facts regarding the status of each object in the domain.

Given the object vector, we can use all the basic properties of the object, e.g. its current

location and its predicted future locations, to draw some basic facts such as:

• if the vessel is in a prohibited area.



CHAPTER 3. SITUATION AWARENESS IN THE MARINE TRAFFIC DOMAIN 37

Program 3.3: CoreASM Specification – Detecting Vessels in Prohibited Areas

r u l e Detec tVes se l s InProh ib i t edAreas ( time)=
f o r a l l v in Ves s e l s do

i f <c o n d i t i o n s hold> then i n p r o h i b i t e d a r e a (v , area , time ):= true

• if the vessel is heading towards a prohibited area.

These situational facts are represented as first order propositions in the following form:

situation(< parameter list >)

Each situation in the domain corresponds to an event in the environment. For example, the

situation where there is a vessel in a prohibited area we get:

in prohibited area(vessel, area, time)

Such situations are inferred through the analysis performed at each module. For example,

the rule displayed in Program 3.3 determines if there are any vessels in any of the designated

areas. As mentioned earlier, the situational facts inferred in the object layer only identify

the status of each object in the environment independent of its interactions with the rest of

the objects in domain. Another example of a proposition explaining the status of a vessel

in the domain is the state of arriving at a harbour to unload the cargo. A request to unload

cargo in a harbour can be represented in the following format:

resource request(vessel, harbour, duration, submission time, priority)

This request is then passed to the resource scheduler to organize the unloading queue.

The scheduler module in this application is implemented using ASP. The next chapter

will provide an explanation of how we can benefits from addressing this problem with a

declarative language.

The situation assessment layer takes the resulting object representations as well as the

basic situational statements and discovers the relations between the objects in the domain.

This layer accesses the numerically based features of objects as well as propositions explain-

ing status of objects in the domain and draws higher level situational facts identifying the

relations between the objects. The resulting outcomes from this layer are not numeric, they

are rather expressing the interactions in terms of statements. The situation observation
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component accesses the object states and the basic situational and passes them to the situ-

ation prediction to perform analysis on how the interaction of objects may evolve over time

and set expectations of what are the possible future events. The situation explanation would

then perform the analysis to explain the environment in terms of situational facts. These

situational facts represent the interactions of objects in the domain. Resulting statements

are first order propositions corresponding to events involving two or more objects in the

domain. An example of such situations is a situation in which two vessels are involved in a

dangerous cargo coincidence:

dangerous cargo coincidence(vessel1, vessel2, location, time)

The impact assessment layer is built on the previous two layers to perform higher level

analysis based on the inferred situational facts about the objects and their relations. The

impact assessment analysis represents the world in terms of scenarios that may involve mul-

tiple situations distributed in time and space. An impact assessment component should be

capable of interpreting the situations, discovering the interacting situations, and predicting

how a situation may evolve over the time. In practice, domain experts use their expertise to

discover impacts in the domain. Due to rule-based nature of this process, we have opted for

a declarative language to represent the rules used by the domain experts. Further details on

how this component performs the impact assessment analysis is provided in the following

chapter.



Chapter 4

Using ASP in a Rule-based

Dynamic Domain

As described in the previous chapter and presented in figure 3.1, the situation awareness

system takes the available information and passes that on to an object assessment layer

where the input data is turned into objects with their properties, and the basic situations

depicting interactions of objects with the domain are inferred. The object representations

are then fed into a situation assessment layer in which the relationship between objects in

terms of events involving more than one objects are drawn. The inferred situations from

the previous two layers form the input for the impact assessment layer analysis. The impact

assessment layer is where the ASP system analyzes the history of situations, discovers the

relationships between them, and possible undesired interactions of events. In this application

we will be looking for suspicious vessel coincidences where a vessel is identified as being

suspicious given the history of the situations in which it has been involved. In this section

we will be using ASP as a component in our three-layered CoreASM model; furthermore,

we explore the use of ASP for a general scheduling problem in the domain.

The ASP module in this work has the responsibility of reasoning about the collected

high-level situational facts and inferring additional situational facts. It does so by using

reasoning rules which are expressed as logic program rules. Independent of the context of

the domain, rules can be classified into two categories, (i) rules explaining domain expert

knowledge and (ii) rules explaining the environment itself. In addition to the high-level

situation awareness analysis, the ASP module has also been used to address the problem of

39
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scheduling marine resources.

As a declarative language, ASP supplies rich means for representing rule-based domains.

The non-monotonic nature of ASP rules makes it suitable for such domains as it provides

a compact and intuitive encoding of the domain expert’s knowledge. Moreover, real world

rule-based domains are usually prone to policy (rule) changes which ASP seems to be quite

flexible for such changes. Recent advancements to implementations of ASP enable incre-

mental evaluation of logic programs; this allows for the program to have a notion of history

which is essential for a situational awareness system.

The overall goal of this section is to demonstrate the suitability of ASP as a non-

monotonic declarative language with an efficient reactive inference engine for the emerging

tasks in a typical rule-based domain. The rest of this section will highlight use of ASP

in discovering relations between situations and perform impact assessment analysis. The

ASP system is also responsible for scheduling the resources given the awareness in terms of

situational facts from the object assessment layer.

The remainder of this section is organized as follows: in section 4.1, we will see how

ASP’s expressive power becomes useful in encoding different aspects of the domain. Section

4.2 will then show how reactive ASP is used to analyze high-level information and detect

undesirable situations. Lastly, in section 4.3, we present a compact module to address a

general scheduling problem occurring in the domain in order to help marine traffic officers

organize vessel traffic.

4.1 ASP Representational Potentials

In this section, we will be looking into representational aspects of ASP. As discussed in

Chapter 2, as a non-monotonic logic, ASP has a rich representational potential which builds

upon its expressive first-order like language. Also stated in Chapter 2, naf-literals provide

ASP with a concise way of representing default rules as well as qualitative preferences. In

addition to the language-independent representational potentials brought through negation-

as-failure, oclingo has defined language constructs that enhance ASP’s capability in dealing

with history of the domain. In the rest of this section we will demonstrate how ASP provides

a powerful means to express the marine traffic control domain.
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Defaults

One of the important requirements when dealing with dynamic domains is existence of a

mechanism to represent non-changing properties. This problem of non-changing properties

is known as the frame problem. Negation-as-failure provides ASP with a concise solution to

the frame problem[20] as it enables encoding of the rules in a way that allows a conclusion

to hold in absence of additional information to the contrary. The following is an example of

a rule assuming that the location of a vessel does not change from the previous time step to

the current time step by default unless otherwise stated through new incoming information.

vessel_location(X,L1,t) :-

vessel_location(X,L1,t-1),

not ext_vessel_location(X,L2,t) : L1!=L2.

This concise encoding allows us to handle non-changing properties without having to list

all the conditions to let a property hold.

Qualitative Preferences

Preferences can be assessed quantitatively by assigning numerical values to determine their

preference, or they can be represented qualitatively as an implicit or explicit ordering be-

tween choices. ASP provides an elegant way of representing preferences implicitly through

Negation-as-failure. It allow us to distinguish the default solution from a solution which is

preferable in a specific situation. For instance, let’s suppose that maritime protocols require

the base station to send a notification to the vessel if they observe that vessel in a prohibited

area. However, there is an overriding rule in more specific cases in which it is desirable to

send the guard to the area if the vessel is behaving suspiciously. This scenario is an example

of a situation in which we prefer an action in most cases but there is a more preferred action

for a specific case. The following encoding demonstrates the above scenario in terms of ASP

rules:

send_notification(A) :-

vessel_in_restricted_area(V,A,t), not suspicious(V).

send_guard_boat(V,t):-

vessel_in_restricted_area(V,A,t), suspicious(V).
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Cardinality Rules

Cardinality rules let us define rules that require a specific number of literals to hold in order

to allow the head atom be inferred. This type of rules appear in the following form:

head : − l{a1, ..., am}u.

The body of a cardinality rule is a count aggregate and head atom holds if at least l and

at most u number of literals in the set a1, ..., am are satisfied. This enables us to define

rules where a specific number of conditions need to hold in order to draw some conclusion

as opposed to requiring an exact set of literals to hold. For example, in the following

scenario, we let the threat situation be resolved if at least one of the involved vessels is from

a legitimate address.

threat_resolved(X,Y,t):-

threat(X,Y,t),

1{legitimate_addressee(X,C,t),

legitimate_addressee(Y,C,t)}.

Weight Rules

Weight rules are a specific form of cardinality rules where a sum aggregate is used instead of

a count aggregate. In the body of the rule, there is a weight assigned to each of the literals

in the set and the sum of the weights of those literals in the set that hold are assessed.

Weight rules are in the form of:

head : − l[a1 = w1, ..., am = wm]u.

The head atom holds if the sum of the weight of the satisfied literals in the set add up to

least l and at most u. This allow us to define a simple utility function and enables us define

rules where a specific number of conditions need to hold in order to draw some conclusion

as opposed to requiring an exact set of literals to hold.

Let’s assume an example in which a threat will be considered resolved if at least one of the

vessels had a legitimate addressee or they had both been inspected recently. In this case

we can give a weight of two to having a legitimate addressee and a weight of one to vessels

being recently inspected. We can then require it to hold a number of conditions that add

up to at least 2 in order to resolve the threat.
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threat_resolved(X,Y,t):-

threat(X,Y,t),

2[legitimate_vessel_addressee(V1;V2) = 2,

vessel_inspected(V1;V2,T):time(T):T<=t = 1].

Transitive Closure

A transitive relation R is a binary relation where one can conclude for every a, b, c if aRb and

bRc then aRc. Even though first order logic is one of the most expressive logical languages,

it is unable to represent transitive closure. However, ASP offers a succinct encoding to

address transitive closure. As an example, let’s consider the notion of later point in the

time. Assuming that time point t1 and t2 are successive time points where t1 < t2, we can

conclude that t2 occurs later than t1. Let’s consider time point t3 which follows time point

t2. We can, thus, conclude that t3 is later than t1. This can be concisely represented by the

following rules:

later(T2,T1) :- successor(T1,T2).

later(T3,T1) :- later(T2,T1), successor(T2,T3).

4.2 Impact Assessment

As discussed in the previous section, ASP provides a rich potential for representing rule-

based domains. In this section we will see how ASP’s expressive power combined with the

facilities to handle history, offered by oclingo, provides a useful setup to perform impact

assessment analysis in a rule-based dynamic domain. The suspicious coincidences of vessels

is an example of a situation where the marine officer would consider a set of situations as

being anomalous, if they observe some specific patterns relating those situations to each

other.

As described earlier in section 2.2.1, we define a scenario as a set of interacting situations

which results in some effects of interest (impact) in the domain. Let’s consider a scenario in

which a vessel would be considered as being suspicious if the following pattern is observed:

... two vessels have been involved in more than one dangerous cargo coincidence

situations together in the past two months and at least one of them has not been

moving outside of the area for more than a week.
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In this scenario the case would be considered as being safe if:

... at least one of the vessels is from a legitimate addressee or the vessels both

have been inspected in the last two days.

The impact assessment component is implemented using the reactive answer set solver,

oclingo. This component is responsible for analyzing the history of situations, figuring out

the relations between them, and the possible suspicious interactions of events.

Propositional statements, representing situations involving one or multiple vessels, form

the input for the ASP program. As described in section 3.2, the input for the impact assess-

ment component is supplied through the output from the object and situation assessment

layers. The object assessment layer infers the situational facts involving a single vessel;

while, the situation assessment analyzes interactions involving multiple vessels. The result-

ing propositional statements from these two layers are then encoded in terms of oclingo’s

external input language and is passed to the controller program. As described in Sec-

tion 2.1.3, oclingo augments the incremental logic program with the online data at each

incremental step and solves the resulting program. The incremental logic program repre-

sents the impact assessment scenario rules where the incoming situations, representing the

current state of the world, need to be matched against the scenario rules in order to discover

impacts of the courses of actions.

Depending on how complex the scenario is, it can be encoded using one or multiple ASP

rules. The facilities provided in the oclingo input language, built upon the original ASP

language, makes the encoding rather succinct.

In order to encode a scenario, the impacts of the scenario are mapped to head predicates

of the rules; while the basic situations are mapped to body predicates representing the

conditions where an impact can be inferred. The next step is to determine which part of

the incremental logic program is the right place for the rule; base, cumulative, or volatile.

The rules encoding the scenarios need to be assessed at each step in order to infer possible

impact; therefore, there is a notion of time in the rules encoding the scenarios. Thus they

should be placed in one of the time-dependent program parts; i.e. cumulative, or volatile.

The cumulative part allows persistent accumulation of the history; while the volatile part

can be used to keep track of the history for a specific duration. The persistent rules need to

be located under the tag “#cumulative t.” indicating the cumulative program part; while

the volatile rules are placed under “#volatile t : duration.” with an arbitrary duration.
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The choice between these two program parts depends on how far we need to maintain the

history of the inferred facts in the system. For example, one may assume that the history

of the vessels that have been recognized as being suspicious should never be removed from

the system and therefore be placed in the cumulative part. However, this may not be a

good decision since the persistent atoms can occupy a large amount of memory in the long

run, and result in regressive performance of the system. For the atoms that we only need

to be present in the system for a specific period of time we can define a volatile part and

place the rule in it. The incremental program may have several volatile parts with different

durations; therefore making it flexible to deal with history at the rule level.

The history for the basic situations which are being fed to the system through the

controller program can be handled likewise. For the input predicates we have the choice of

handling the history in rule level and the input level.

For example, in the above scenario, the history of the basic situational fact indicating

dangerous cargo coincidences needs to stay in the system for two months; however, the

history of vessels being inspected would only be need to be kept valid for two days. Therefore,

they can be defined to be volatile for a specific duration1 of time.

#volatile : duration. ext_vessel_inspected(vessel1,t).

The resulting situational facts represent the impacts and possible events in the near

future.

ASP’s expressive power besides language-specific structures defined for oclingo provides

a good setup for encoding complex conditions in a concise way. As we mentioned earlier, the

rules can be considered as if-then statements where a predicate holds if its conditions are met;

while the condition part in turn can involve complex criterions. Program 4.1 illustrates the

encoding of the suspicious coincidence scenario, described earlier. In this scenario a predicate

“suspicious coincidence” is mapped to an impact in which two vessels are considered as

being suspicious if the available basic situations match to the scenario pattern. In this

case we would like the history of the suspicious vessels be persistent; therefore we defined

them under the cumulative label in the program. Line 6-10 in program 4.1 encodes the

condition: “at least one of the vessels is from a legitimate addressee or the vessels both have

been inspected recently” by using a sum aggregate and assigning a weight of 2 to each vessel

being from a legitimate addressee and assigning a weight of 1 to their being inspected in the

1a logical time step in this application is 90 seconds and thus two days would be 1920 logical time steps
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Program 4.1: Suspicious Coincidence Scenario encoding

1 #cumulative t.

2 suspicious_coincidence(V1,V2,t) :-

3 dangerous_coincidence(V1,V2,T1),

4 dangerous_coincidence(V1,V2,t),

5 T1!=t,

6 not vessel_area_changed(V1;V2,T):time(T):T<=t,

7 [ legitimate_vessel_addressee(V1)=2,

8 legitimate_vessel_addressee(V2)=2,

9 inspected_vessel(V1,T):time(T):T<=t = 1,

10 inspected_vessel(V2,T):time(T):T<=t = 1]1.

last two days. As we explained in section 2.1.1, the sum aggregate returns the sum of the

weights for the literals that hold. Setting the upper bound to one ensures that the aggregate

statement would evaluate to false if the criteria for the scenario’s being safe is met. In the

other words, if the aggregate statement in the body evaluates to false, the case would not

be considered as being a suspicious coincidence, as it means that either at least one of the

vessels is from a legitimate addressee or they have both been inspected in the last two days.

As we can see in the above encoding, the criteria for the vessels being inspected in

the “last two days” is not mentioned anywhere in the above rule. The reason is that the

history of the external situational facts, “inspected vessel(V1; V2, T)”, has been handled

in the input level by setting a volatile duration of two days. This means that the atoms

“inspected vessel(V1; V2, T)” would not be valid unless they occurred in the past two days.

In this example negation-as-failure is used to check the absence of information regarding

the vessels’ being outside of the area in the past week. Similar to the previous case, the

history for atoms “vessel area changed(V1; V2, T)” have also been handled in the input

level.

It is often the case that the policies in a rule-based domain can change or new scenarios

are added to the system. The declarative form of the language has the benefit that adding a

new rule corresponds to adding the description of the scenario to the program. In order to

guarantee the proper functioning of the system when adding new rules we need to restrict use

of constraint rules in the program. In a constraint-free2 program, the resulting answer sets

2where there is no integrity constraint rules used in the program
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would be identical to the combined answer sets when having a separate program for each set

of rules. However, the current implementation of oclingo only supports incremental addition

of ground (variable-free) rules and predicates; the general case of adding non-ground new

rules to the program is under investigation by the oclingo development team.

4.3 Marine Resource Scheduling

In section 4.1, we illustrated ASP’s rich potential in providing succinct representations for

encoding different aspects of dynamic and rule-based domains. This section focuses on

addressing the problem of scheduling marine resources which can be considered as a general

search problem coming from a rule-based dynamic domain.

In order to address the problem we first need to provide a detailed description of the

problem:

There are a number of unloading platforms where vessels can submit requests to

occupy them for a given duration of time. An unloading request contains: vessel

id, the id of the requested platform, duration that it takes the vessel to complete

the task, submission time, and the priority of the vessel based on its type.

A schedule for a set of tasks on a resource is an ordering in which we wish to let the

tasks occupy the resource. The characteristics of an acceptable solution (schedule) to this

problem is summarized below:

• do not allow conflicting tasks to be scheduled simultaneously; i.e. two tasks using the

same resource at the same time.

• each task should only be scheduled once.

• an unloading vessel should not be interrupted by the scheduler before the completion

of the task.

The vessel requests are gathered in the object assessment layer where the state of each

vessel is identified. The situational fact representing the submitted request is represented

in the following format and is passed to the scheduler program as an external predicate:

ext request(vessel id, resource id, duration, submission time, priority)
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The policy of the domain can specify the duration after which unscheduled tasks are expired;

therefore, determining if the external predicate should be persistent or volatile. In order to

keep track of waiting requests, a queue predicate is used; at each time step the incoming

tasks as well as the ones from previous time step that could not perform their request are

copied into the queue. Therefore, it helps with ensuring that each task is scheduled only

once. Moreover, a predicate called request in progress is defined to indicate if a task is

running.

As an illustration, lets consider the rule where we need to choose among waiting requests.

This rule check two criterions for its choice; (i) the task is among the waiting requests, (ii)

the resource is not being hold by another vessel. Following rule represents one of the possible

encodings for this:

1 request_in_progress(I1,R,D1,T1,t) :-

2 request_in_Q(I1,R,D1,T1,t),

3 not request_in_progress(I2,R,D2,T2,t) : vessel_id(I2) :

4 duration(D2) : time(T2) : I2!=I1.

where I indicates the vessel id, R is the resource id, D is the duration, T is the submission

time, and t is the current time step. Line 2, ensures that only waiting tasks are considered

to be valid. Lines 3-4, checks if the resource is not already occupied by another task.

The domain expanders in the second part of the rule expand the variables in predicate

request in progress over their domain.

Furthermore, we can easily specify additional properties on the solution. As an illustra-

tion, given that the policy in the environment changes and they decide to let vessels with

higher priority be scheduled first, program can be modified so it adapts to the new policy

and compute the desired schedule. In this example, we can simply specify modify the pre-

vious rule by augmenting the predicates with variable P indicating preference of requests

and adding a criteria to make sure that the chosen request is not less preferred than any of

the waiting request:

1 request_in_progress(I1,R,D1,T1,t,P1) :-

2 request_in_Q(I1,R,D1,T1,t,P1),

3 not request_in_progress(I2,R,D2,T2,t,P2) : vessel_id(I2) :

4 duration(D2) : preference(P2) : time(T2) : I2!=I1,

5 not request_in_Q(I3,R,D3,T3,t,P3): vessel_id(I3) :
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6 duration(D3) : time(T3): preference(P3): P1<P3.

Line 5-6 in the above rule ensure that the task is not less preferred than any of the remaining

requests. We can also specify properties that take into account the situation awareness ob-

tained in the system. For example, one may want to avoid scheduling vessels with conflicting

cargos in subsequent time steps.

More interestingly, the language is flexible enough to allow switching between preference

criterions to be applied on the solution. This is performed using a qualitative preference

rule opting for either the tasks that have a higher preference number, or the ones taking a

shorter duration to complete, depending on which is indicated as being more preferred.

The ASP encoding for the latter version of the scheduler that allows switching between

preferred criterions is provided in Appendix A.1.

Languages allowing ordered disjunction enable better means for specifying qualitative

preferences letting the answer sets be ordered based on the preference criteria. The opti-

mization statements suggest yet another concise way of ordering answer sets when having

multiple preference criterions; however, the optimization statements are not supported by

the current implementation of oclingo.



Chapter 5

Discussion

In this section we will discuss the strengths and weaknesses of our approach. What we

attempted to accomplish in this work was to analyze the capabilities of ASP to help solve

the problem of situation awareness. The situational awareness task was abstracted into 3

levels; each of these levels were then further sub-divided into additional layers to deal with

more specific tasks. ASP was chosen as the module to assist with the high-level analysis

due to its powerful capabilities in representing abstract rules in a concise and meaningful

representation. Furthermore, the recent reactive implementation of ASP offers a good set

of means to handle the history of the rule-based dynamic domains in a seamless way.

Early implementations of ASP could only accept static input data; however, a recent

reactive implementation of ASP enabled dynamic input data to be used and to generate an-

swer sets incrementally. This reactive answer set solver provides a seamless way of handling

the history of the domain inside the ASP system; it enables simple means to discard the

information which is no longer useful. Previous implementations of ASP required iterative

calls to the solver where no history from the previous runs were available in the subsequent

iterations; however, oclingo, allows the system to run in an incremental fashion where a

history of the information from the previous iterations is available. The flexible means to

manage the history from the previous time-steps makes it rather useful for dynamic domains.

As we illustrated in section 4.2, the history of the domain can be handled in both the input

level and the program level where the former is more useful for the external situational facts,

whereas the latter can be used to keep track of internally inferred situational facts.

ASP’s intuitive encoding along with its rich representational potentials are the assets

that make it popular for a wide range of applications in rule-based domains[2, 23]. We
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have also demonstrated how representation of different aspects of the domain can benefit

from the concise solutions provided by ASP; such as default rules, and qualitative prefer-

ences. Furthermore, we illustrated ASP’s capability in expressing complex problems such

as scheduling (refer to appendix A.1 for the encoding) in a fairly succinct encoding. This is

due to the language being declarative and so the only parts that needs to be coded are the

description of the problem and what the solution would look like. The steps to compute

the solution are handled by the ASP solver even though the programmer may not know the

algorithm to solve the problem.

ASP’s declarative nature and the fact that the programmer does not need to encode

an algorithm for every piece of information taken from the domain expert, makes it easier

to migrate the expertise of the domain expert into the system. Furthermore, the resulting

code is human readable, and therefore easier to confirm the correctness.

As we described in 4.2, we built an extensible setup for the impact assessment module

implemented with ASP by restricting use of constraint rules in the program. This can

guarantee removal of the interactions between the answer sets of newly added rules with

the existing state of the program. Therefore, the resulting answer sets would be identical

to the combined answer sets when having a separate program for each set of rules.

On the shortcomings side, there are two sets of practical issues with using ASP for

situation awareness when applied in the real world. The first is the issue with accumulating

history in a potentially long running time where the amount of history builds up in the

system. When an incremental encoding involves many external atoms accumulating over

time and consumes a considerable memory, the system may perform regressively.

The response time of our system, when provided with hand-input, is reasonably short;

however, due to technical issues with the available implementation for the CoreASM frame-

work we were unable to expose the system to real world input in order to see how the

accumulating history effects the performance of the system. If the running time of the

system were to become unacceptable with the accumulated history, a potential solution

would be to use a sufficiently large volatile window so that we can keep track of long lived

information, but still have it expire after some time. This would curtail the accumulation

of persistent information at the expense of potentially losing relevant information if the

volatile time window is not big enough. Although, this would help with avoiding the regres-

sive performance of the system, it may not be a feasible solution for the applications where

we need to maintain the history of events for an excessively long period of time.
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Another performance related issue with using ASP when running on real world applica-

tions happens if there are a large number of atoms being generated in the initial grounding

phase. If the predicates are defined on large domains it may result in an exponential blow up

at the grounding process. However, abstract situational statements do not seem to involve

a large domain. Therefore it would be unlikely for the high-level situational analysis with

ASP to suffer from this issue.

The last practical hurdle for using ASP in a real world situation awareness system is the

lack of a stable implementation which allows for dynamic input; oclingo at the time of this

writing is still being developed. It currently does not allow the incremental introduction

of variables to the program. This restricts supplying the program with non-ground rules

through the incremental steps. Moreover, oclingo requires all the symbols used in the exter-

nal input file be already introduced to the program in the initial grounding before the solver

performs the first iteration of solving the program. One of the other features, that would

have been useful in ranking the solutions presented by the system, is the optimization state-

ments. This feature is available in the non-incremental version of the ASP-solver developed

by University of Potsdam; however, it is still not implemented for the incremental versions.

5.1 Conclusion

In this work we highlighted use of ASP for high-level analysis in the rule-based dynamic

domains. We investigated use of ASP as a component in a situation awareness (SA) system

where we need to perform a large number of inference tasks in order to achieve a state

of situation awareness. We have located our ASP component in a multi-layered situation

awareness model called State Transition Data Fusion (STDF) model. The STDF model

offers a modular model where the situational analysis tasks can be delegated into appropriate

components. Pairing the STDF model with the CoreASM modelling framework provides a

systematic approach to manage the complexity of the system through stepwise refinement

of the system.

The CoreASM implementation manages the interactions between components perform-

ing situational analysis tasks. As shown in Figure 3.1, the lower-level computations in the

first two layers are performed through CoreASM specifications in an imperative fashion.

Higher level abstract analysis was accomplished using ASP in the impact assessment layer.

We demonstrated how ASP offers a powerful and intuitive way of encoding the expert
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knowledge in terms of rules. Having a system that is flexible and extensible is essential for

domains that can have policy changes, which in turn will create rule changes in the system.

ASP has a high flexibility to handle such changes.

The reactive answer set solver provides a seamless way of handling the history inside the

ASP system. It enables simple means to discard the information which is no longer useful.

The flexible means to manage the history from the previous time-steps makes it useful for

dynamic domains.

5.2 Future Work

The response time of our system for the hand-input is reasonably short. However, we need

to expose the system to the real world input in order to investigate how the accumulating

history affects the response time of the system. One of the tracks for the future work is

an extensive analysis of how the system compares to an alternative implementation where

the history is handled using a database management system. This comparison can be

made along quantitative and qualitative aspects. Quantitatively, the response time can be

measured to examine how does the system scale as the input data grows. While in the

qualitative aspect we can investigate the flexibility of the two systems with regard to policy

changes, and the extensibility of the systems.

Additionally, further investigations to compare the approach using ASP with other log-

ical languages such as description logics would be useful. This analysis would compare the

languages based on expressiveness and the facilities provided by current implementations of

their reasoner engines.

Another component that would be useful for future work is a component to automatically

extend the rules given the domain expert knowledge. For arbitrary rules, this may be too

difficult; however, it may be feasible for a restricted grammar of if-then rules.



Appendix A

ASP Program for Scheduling

Marine Resources

A.1 Marine Resource Scheduler
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Program A.1: Marine Resource Scheduler

#const max duration=10.
#const max ve s s e l i d =10.
#const num resources=3.

#base .

v e s s e l i d ( 1 . . max ve s s e l i d ) .
r e s ou r c e ( 1 . . num resources ) .
durat ion ( 1 . . max duration ) .
p r e f e r en c e ( 1 . . 5 ) .
time ( 0 . . 1 0 ) .

% p r e f e r r e d ( p r i o r i t y ) .
% p r e f e r r e d ( durat ion ) .

#cumulat ive t .

#ex t e rna l e x t r e qu e s t ( I ,R,D, t ,P ) :
v e s s e l i d ( I ) : r e s ou r c e (R) :
durat ion (D) : p r e f e r en c e (P) .

#ex t e rna l ext now /1 .
now( t ) :− ext now ( t ) .

r eque s t in Q ( I ,R,D, t , t ,P) :− ex t r e qu e s t ( I ,R,D, t ,P ) .

r e q u e s t i n p r o g r e s s ( I1 ,R,D1 ,T1 , t , P1) :−
r eque s t in Q ( I1 ,R,D1 ,T1 , t , P1 ) ,
not r e q u e s t i n p r o g r e s s ( I2 ,R,D2 ,T2 , t , P2) :
v e s s e l i d ( I2 ) : durat ion (D2) :
p r e f e r en c e (P2) : time (T2) : I2 !=I1 ,
not r eque s t in Q ( I3 ,R,D3 ,T3 , t , P3 ) :
v e s s e l i d ( I3 ) : durat ion (D3) : time (T3 ) :
p r e f e r en c e (P3 ) : P1<P3 , not p r e f e r r e d ( durat ion ) .

r e q u e s t i n p r o g r e s s ( I1 ,R,D1 ,T1 , t , P1) :−
r eque s t in Q ( I1 ,R,D1 ,T1 , t , P1 ) ,
not r e q u e s t i n p r o g r e s s ( I2 ,R,D2 ,T2 , t , P2) :
v e s s e l i d ( I2 ) : durat ion (D2) :
p r e f e r en c e (P2) : time (T2) : I2 !=I1 ,
not r eque s t in Q ( I3 ,R,D3 ,T3 , t , P3 ) : v e s s e l i d ( I3 ) :
durat ion (D3) : time (T3 ) : p r e f e r en c e (P3 ) : D1>D3,
not p r e f e r r e d ( p r i o r i t y ) .

r e q u e s t i n p r o g r e s s ( I ,R,D−1,T, t ,P) :−
r e q u e s t i n p r o g r e s s ( I ,R,D,T, t−1,P) , D>1.

r eque s t in Q ( I ,R,D,T, t ,P) :−
r eque s t in Q ( I ,R,D,T, t−1,P) ,
not r e q u e s t i n p r o g r e s s ( I ,R,D,T, t−1,P) .

scheduled ( I , t ) :− r e q u e s t i n p r o g r e s s ( I , , , , t , ) .

#hide .
#show now/1 .
#show scheduled /2 .
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