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Abstract

Despite the availability of transaction data, most movie theaters nowadays still rely on

managers’ gut feeling to decide how many times and when a certain movie will be screened.

Eliashberg et al. (2009) suggest that movie theaters could improve their profits by a more

data-driven approach such as a movie attendance forecasting model. However, there are two

limitations in the model. First, it does not capture both cannibalization and demand expan-

sion effects. Second, it does not accurately access the uncertainty when making predictions

for new movies. To address the limitations in Eliashberg et al. (2009), three hierarchical

Bayes models of movie attendance are investigated and compared: linear regression model,

standard logit model and nested logit model. Hierarchical linear regression model extends

Eliashberg et al’s model by accurately assessing the uncertainty in the predicted admissions.

The standard logit model captures both the cannibalization and demand expansion effects

in a relatively restrictive manner because of the property called independence from irrele-

vant alternatives, IIA. The nested logit model relaxes the restrictive IIA property and thus

better captures the cannibalization and demand expansion effects.

Keywords: Demand Expansion; Cannibalization; Linear Regression; Standard Logit

Model; Nested Logit Model; Hierarchical Bayesian Approach; MCMC
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“When one door closes another door opens, but we so often look so long and so regretfully

upon the closed door, that we do not see the ones which open for us.”

— Alexander Graham Bell
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Chapter 1

Introduction

1.1 Motivation

As technology advances, large amounts and varieties of data are being created at an

increasing rate every day. Such abundance of data is creating opportunities for businesses

and organizations to improve their decision making process [3]. Movie scheduling at

multiplex movie theaters is one of the contexts, where data could be used to improve the

effectiveness and efficiency of the decision. Despite the availability of transaction data,

most movie theaters nowadays still rely on managers’ gut feelings to decide how many times

and when a certain movie will be screened. For example, by every Monday, movie theater

managers use only their subjective judgements to finalize the movie showing schedules for

the coming week. However, as shown by Eliashberg et al. (2009), movie theaters could

improve their profits by a more data-driven approach.

The data-driven approach consists of two components namely a forecasting model

based on the transaction data, and an optimization algorithm to schedule individual movie

showings based on the forecasts. Focusing on the forecasting model, the goal of this project

is to estimate three alternative models using the hierarchical Bayes approach [5]. If a

movie theater can more accurately forecast movie attendances of individual showings, it

can formulate a movie screening schedules, which would maximize the admissions subject

to its current capacity. Given the size of the data involved and complexity of the models,

the model estimation is a non-trivial exercise. The three alternative models estimated in

this project extend the forecasting model in Eliashberg et al. (2009). Eliashberg et als

1



CHAPTER 1. INTRODUCTION 2

movie attendance forecasting model has two major limitations. First, their forecasting

model is essentially a linear regression model which assumes each movie showing (i.e. each

observation) to be independent of one another. Such an independence assumption implies

that a movie showing would be predicted to generate the same number of admissions, no

matter whether it is scheduled with two or twenty other showings of the same movie.

As explained in Ho (2005), a model of movie attendance needs to be able to capture two

effects of movie schedule change. To illustrate the two effects, let us consider a scenario,

where a new movie showing is added to an existing movie schedule. The new movie showing

would create two effects: (1) it would crowd out or cannibalize the existing showings in

the movie schedule by simply encouraging moviegoers, who would go to other showings, to

switch to this new movie showing, and (2) it would expand the total admission at the theater

by providing one more starting time, which adds to the important value of convenience to

the moviegoers, who originally would not visit the particular movie theater at all. However,

in a linear regression model like that in Eliashberg et al. (2009), adding extra movie showing

would not affect any of the existing movies in the movie schedule and the total demand will

always increase. To address this limitation, this project will estimate two choice models,

which explicitly characterize both the cannibalization effect and demand expansion effects.

The second limitation in Eliahberg et al. (2009) is its inefficient way to generate predictions

for new movies, which are yet to be screened in the theater and thus have no historical data.

A key specification in Eliashberg et als forecasting model is the two movie-specific pa-

rameters: θj and λj where θj captures the time-invariant base attractiveness of movie j,

while λj characterize the weekly attendance decay rate of movie j. While these two movie-

specific parameters provide a very flexible structure to fit the time trend of any one of the

currently running movies, they create a non-trivial problem when the model needs to be

used to make prediction for new movies, which we do not have any data to estimate the

corresponding movie-specific parameters. To address this problem, Eliashberg et al. (2009)

consider all existing movies’ parameters, θj and λj for all j to be ”data” and regress these

data on covariates like genres, which are then plugged into the original admission predic-

tion model. This approach is suboptimal by ignoring all the uncertainty surrounding the

movie-specific parameters. This project explicitly considers the uncertainty surrounding the



CHAPTER 1. INTRODUCTION 3

movie-specific parameters and relate them to the covariates in a hierarchical Bayes struc-

ture [5]. When making prediction for a new movie, the hierarchical Bayes model would still

start from covariates like genre and age restriction but would more accurately represent the

uncertainty on the predicted admissions.

1.2 Project Outline

To address the limitations in Eliashberg et al. (2009), a forecasting model is needed which

can capture both cannibalization and demand expansion effects as well as can accurately

assess the uncertainty when making predictions for new movies. In this project, three

hierarchical Bayes models are investigated and compared: linear regression model (Chapter

2), standard logit model (Chapter 3), and nested logit model (Chapter 4). First, the linear

regression model extends Eliashberg et al.’s model by accurately assessing the uncertainty in

the predicted admissions. The standard logit model then capture both the cannibalization

and demand expansion effects in a relatively restrictive manner, because of the property

called independence from irrelevant alternatives, IIA (Chapter 3). The nested logit model

relaxes the restrictive IIA property and thus better captures the cannibalization and demand

expansion effects. Chapter 5 describes the data, Chapter 6 compares the predictions of movie

ticket and Chapter 7 discusses the results.



Chapter 2

Linear Regression Model

This chapter describes the hierarchical Bayes linear regression model on the number of movie

ticket sales. The main purpose is to predict the number of movie ticket sales by estimating

parameters using a Bayesian approach. Note that, the linear regression model does not

capture any substitution effects because it assumes each movie showing is independent of

one another. That is, adding extra movie would not affect the admissions to existing movies

and as a result, the total demand will always increase. Since the linear regression function

forms the basis for the utility function, Vin, in the standard logit model in chapter 3 and

nested logit model in chapter 4, it should be a good benchmark for comparing models. As

the linear regression model is of a hierarchical Bayes structure, it would better capture the

uncertainty of predicted admissions than that in Eliashberg et al. (2009).

2.1 Model

Following Eliashberg et al. (2009), the regression model assumes a log relation between the

response variable, the number of ticket sales for a specific movie showing and the predictor

variables.

4



CHAPTER 2. LINEAR REGRESSION MODEL 5

ln(Sjkhd) = αjkXjkhd + ω Yd + εjkhd (2.1)

where,

αjk =
[
θjk, λjk, βjkhour , βjkhour2 , βjkhour3 , βjkhour4

]′
ω = [ωdw, ωhw]′

εjkhd
iid∼ N(0, σ2)

The response variable, the number of ticket sales for the version k of movie j in

hour h of date d is denoted as Sjkhd. The predictor variables can be decomposed into

two components Xjkhd and Yd. Xjkhd is a vector containing variables including (1) an

indicator variable of version k of movie j, (2) age of movie and (3) starting time of the

movie showings. αjk is a parameter corresponding the above data. θjk is a coefficient of

the indicator variable and the parameter capturing the weekly attractiveness of version

k of movie j. λjk is a coefficient of age of movie j of version k which is a parameter

capturing the weekly attractiveness decay of movie. Note that starting time is treated as

a continuous variable. For maximum flexibility, a polynomial of degree four is used and[
βjkhour , βjkhour2 , βjkhour3 , βjkhour4

]
are coefficients for the linear, quadratic, cubic and

quartic terms relatively for version k of movie j.

Yd is a vector containing the dummy variables of day of week and holidays. ω is a

vector containing all the parameters corresponding the above variables. ωDW are set of

parameters capturing the effects of different days of the week, namely Monday, Tuesday,

etc and ωHW are set of parameters capturing the effects of the holidays if date d falls on a

holiday.

As a hierarchical structure, αjk is assumed to vary with a set of predictor variables, Zjk.

which include genres and age restriction for the version k of movie j.

αjk = η Zjk + εαjk
(2.2)

where εαjk

iid∼ N(0,Σ)
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The η is a vector of parameters capturing the effects of genre and age restriction of

movies.

2.2 Bayesian Approach: Gibbs Sampling

In order to assess the posterior distribution of parameters (target distribution), Markov

Chain Monte Carlo method, MCMC, is used. MCMC is a general iterative algorithm that

in each iteration draws a sample of parameters from a proposal distribution based on a

previous value. Then it accepts or rejects the proposed value according to the acceptance

ratio. As the number of iterations increase, the samples would converge to target distribution

which is the posterior distribution [5]. Gibbs sampling is one of the techniques in MCMC

where all the samples of parameters are drawn from the proposal distribution which is the

full conditional and consequently, the proposed values are always accepted [5].

2.2.1 Likelihood Function, Prior and Hyper Prior Distributions

[
S |αjk, ω, σ2

]
=

n∏
jk=1

Normal(αjkXjkhd + ω Yd , σ
2) (2.3)

[αjk | η, Σ] ∼ Multivariate Normal(η Zjk , Σ) (2.4)

[ω] ∼ Multivariate Normal(0 , I) (2.5)[
σ2
]
∼ Inverse Gamma(1, 1) (2.6)

[η] ∼ Multivariate Normal(0 , I) (2.7)

[Σ] ∼ Inverse Wishart(7 , M) (2.8)

The likelihood function of S is defined in (2.3) where jk is the movie index and N is the

total number of movies. The distributions from (2.4) to (2.6) are prior distributions and

from (2.7) to (2.8) are hyper prior distributions. Note that the prior distributions are chosen

to be conjugate to the likelihood in order to take advantage of having full conditional and

using the Gibbs sampling method. For Σ, the inverse wishart distribution is chosen with

7 degree of freedom and with scale matrix to be 3 in diagonal and 1.5 off diagonal. The
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reason why the degree of freedom is set to be 7 is that it should be larger than the number

of parameters and Σ is 6 by 6 matrix.

2.2.2 Derivation of Full Conditional Distributions

As stated earlier, the likelihood is normal and the priors are conjugate distributions. As such

the full conditional distribution (derived next), which are of closed forms of known distri-

butions. The posterior distribution of αjk, the vector containing movie specific multivariate

parameters capturing the opening week attractiveness, age decay and time of movie show-

ing effects, is normally distributed. The posterior distribution of ω, the vector containing

parameters capturing the seasonality effects and day of week effects, is normally distributed.

The posterior distribution of σ2, the variance of linear regression model, is inverse gamma

distribution. The posterior distribution of hyper parameter vector η, capturing the effects

of genre and age restriction, is normally distributed and Σ, the variance covariance matrix

of αjk, is inverse wishart distribution. The detailed derivations of the posterior distributions

are in the following. Note that the results of the predictions are left for Chapter 6 so as to

make a comparison between models.
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2.2.2.1 Full Conditional Distribution of [αjk | · ]

[αjk | · ] = [S |αjk, xjkhd, y, ω ]× [αjk | η, zjk,Σ ]

= (σ2)−
n
2 exp

(
− 1

2σ2
[sjkhd − xjkhdαjk − yω]′ [sjkhd − xjkhdαjk − yω]

)
· (2π)−

n
2 |Σ|−

1
2 exp

(
−1

2
[αjk − ηzjk]′Σ−1 [αjk − ηzjk]

)
∝ exp

(
− 1

2σ2
[sjkhd − xjkhdαjk − yω]′ [sjkhd − xjkhdαjk − yω]

)
· exp

(
−1

2

[
αjk − z′jkη′Σ−1

]
[αjk − ηzjk]

)
∝ exp

(
− 1

2σ2
[
−2α′jkxjkhdsjkhd − α′jkx′jkhdxjkhdαjk + 2α′jkxjkhdyω

])
· exp

(
−1

2

[
α′jkΣ

−1αjk − α′jkΣ−1ηzjk − z′jkη′Σ−1αjk
])

= exp

(
−1

2

[
−2α′jkxjkhdsjkhd

σ2
+
α′jkx

′
jkhdxjkhdαjk

σ2
+

2α′jkxjkhdyω

σ2

])

· exp

(
−1

2

[
α′jkΣ

−1αjk − 2α′jkΣ
−1ηzjk

])
∝ exp

(
−1

2

(
α′jk

[
x′jkhdxjkhd

σ2
+ Σ−1

]
αjk − 2α′jk

[
x′jkhdsjkhd

σ2
−
xjkdyω

σ2
+ Σ−1ηzjk

]))

Let Q =

αjk −
(
x′jkxjk

σ2
+ Σ−1

)−1(
x′jkhdsjkhd

σ2
−
xjkdyω

σ2
+ Σ−1ηzjk

)
Let R =

[
x′jkxjk

σ2
+ Σ−1

]
∝ exp(−1

2
Q′RQ)

∼ MVN(R−1

[
x′jkhdsjkhd

σ2
−
xjkdyω

σ2
+ Σ−1ηzjk

]
,R−1) (2.9)
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2.2.2.2 Full Conditional Distribution of [ω | · ]

[ω | · ] ∝ [S |αjk, xjkhd, y, ω ]× [ω ]

∝ exp

(
− 1

2σ2
[sjkhd − xjkhdαjk − yω]′ [sjkhd − xjkhdαjk − yω]

)
· exp

(
−1

2
(ω − 0)′ I−1 (ω − 0)

)
∝ exp

(
−1

2

[
1

σ2
(
−2ω′y′sjkhd + 2ω′y′xjkhdαjk + ω′y′yω

)
+ ω′ω

])
= exp

(
− 1

σ2

[
ω′
(
y′y + σ2

)
ω − 2ω′

(
y′sjkhd − y′xjkhdαjk

1 + σ2

)])
∼ MVN

([
y′y + σ2I

]−1 [
y′sjkhd − y′xjkhdαjjk

]
,
[
y′y + σ2I

]−1)
(2.10)

2.2.2.3 Full Conditional Distribution of
[
σ2 | ·

]
[
σ2 | ·

]
= [S |αjk, xjkhd, y, ω ]×

[
σ2
]

=
n∏

jk=1

[ (
2πσ2

)− 1
2 exp

(
− 1

2σ2
(sjkhd − (xjkhdαjk + yω))2

)]

· b
a

γ(a)

(
σ2
)−(a+1)

exp

(
− b

σ2

)
∝

(
σ2
)−N

2 exp

(
− 1

2σ2
[sjkhd − (xjkhdαjk + yω)]′ [sjkhd − (xjkhdαjk + yω)]

)
· (σ2)−(a+1) exp

(
− b

σ2

)
= (σ2)−(N

2
+a+1) exp

[
− 1

2σ2

(
b+

1

2
[sjkhd − xjkhdαjk − yω]′ [sjkhd − xjkhdαjk − yω]

)]
∼ IG

(
N

2
+ a, b+

1

2
[sjkhd − xjkhdαjk − yω]′ [sjkhd − xjkhdαjk − yω]

)
(2.11)
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2.2.2.4 Full Conditional Distribution of [η | · ]

[η | · ] ∝ [αjk | η, zjk,Σ ]× [ η ] ∝
[
α∗jk | η∗, zjk,Σ

]
× [ η∗ ]

∝ |Σ|−
n
2 exp

(
−1

2

[
α∗jk − (zjk ⊗ I15)η∗

]′
(Im ⊗ Σ−1)

[
α∗jk − (zjk ⊗ I15)η∗

])
· exp

(
−1

2
η′∗I−115 η

′∗
)

∝ exp

(
−1

2

([
α∗jk − (zjk ⊗ I15)η∗

]′
(Im ⊗ Σ−1)

[
α∗jk − (zjk ⊗ I15)η∗

]
+ η′∗η∗

))
= exp

(
−1

2

([
α′∗jk(Im ⊗ Σ−1)− η′∗(zjk ⊗ I15)′(Im ⊗ Σ−1)

] [
α∗jk − (η ⊗ I15)η′∗

]
+ η′∗η∗

))
Note: (zjk ⊗ I15)′(Im ⊗ Σ−1) = zjk ⊗ Σ−1

Note: (z′ ⊗ I ′m)(Im ⊗ Σ−1)(zjk ⊗ I15) = zjk ⊗ Σ−1

∝ exp

(
−1

2

[
(Im ⊗ Σ−1)(zjk ⊗ Σ−1)α′jk + η∗z′jkzjk ⊗ Σ−1η∗ + η′∗η∗

])
= exp

(
−1

2

[
−2η′∗zjk ⊗ Σ−1α∗jk + η∗z′jkzjk ⊗ Σ−1η∗ + η′∗η∗

])
= exp

(
−1

2

[
η′∗(z′jkzjk ⊗ Σ−1 + I15)η

′∗ − 2η′∗(zjk ⊗ Σ−1α∗jk)
])

∼ MVN(η∗ |U, V)

where V = [z′jkzjk ⊗ Σ−1 + I15]
−1 and U = V[(z′jk ⊗ Σ−1)α∗jk] (2.12)
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2.2.2.5 Full Conditional Distribution of [Σ | · ]

[Σ | · ] ∝ [αjk | η, zjk,Σ ]× [ Σ ]

∝
n∏

jk=1

(2π)−
n
2 |Σ|−

1
2 exp

(
−1

2
[αjk − ηzjk]′Σ−1 [αjk − ηzjk]

)

·|Σ|
−a+k+1

2 exp

(
−1

2
tr
(
Σ−1b

))

∝ |Σ|−
n
2 exp

−1

2

n∑
jk=1

[αjk − ηzjk]′Σ−1 [αjk − ηzjk]


·|Σ|

−a+k+1
2 exp

(
−1

2
tr
(
Σ−1b

))
Note:

n∑
i=1

y′iΣyi = tr

[
Σ

n∑
i=1

y′iyi

]

= |Σ|
−n−a+k+1

2 exp

tr

−1

2

n∑
jk=1

[αjk − ηzjk]′Σ−1 [αjk − ηzjk]


· exp

(
−1

2
tr
(
Σ−1b

))

= |Σ|−
1
2
(n+a−k−1) exp

−1

2
tr

Σ−1

b+

n∑
jk=1

[αjk − ηzjk]′ [αjk − ηzjk]


∼ IW

n+ a, b+
n∑

jk=1

[αjk − ηzjk]′ [αjk − ηzjk]

 (2.13)



Chapter 3

Standard Logit Model

As mentioned earlier, the linear regression model does not capture properly both the

demand expansion and cannibalization effects. To address these shortcomings, the choice

models are good candidates [1]. In the choice model, potential customers are exposed to

multiple choice alternatives. In the movie attendance contexts, choice alternatives are

watching a specific movie showing starting at a specific time. But there is alternative called

outside option where customers choose to not watch a movie in the theater at all.

Each choice occasion in multinomial choice model involves choice alternatives and each

of the choice alternatives is represented by a utility function. The utility function for choice

j for individual n, Ujn, consists of two components: systematic component, Vjn, and random

component, εin

Ujn = Vjn + εjn (3.1)

Depending on the different assumptions on the disturbance, εin, different models are derived:

standard logit model or nested logit model [1]. In this chapter, standard logit model with

its restrictive IIA assumption is discussed.

12
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3.1 IIA Property

When all the disturbances, εjn, for all j ∈ Cn, where Cn is individual n’s all possible choice

alternatives, are independently and identically distributed (iid) and Gumbel distributed

with a location parameter a, and scale parameter b > 0, the standard logit model of choice

i of individual n is defined as

Pn(i) =
exp(Vin)∑

j∈Cn

exp(Vjn)
(3.2)

Because of the iid assumption imposed on the disturbance, the standard logit model has

a property called independence from irrelevant alternatives (IIA) [1]. The IIA property is the

”ratio of choice probabilities of any two alternatives is unaffected when another alternative

is added in the choice set” (Ben-Akiva and Lerman, 1985). The odds for two choices i and

j facing person n are as follow.

Pn(i)

Pn(j)
= f(Vin, Vjn) (3.3)

IIA property is such a strong restriction that it would yield unintuitive substitution

patterns. To understand the IIA property, let’s consider a choice occasion: a showing

of Harry Potter starting at 8pm (Harry Potter8pm) and Transformer starting at 9pm

(Transformer9pm). Without loss of generality, let’s assume that both movies have the

same systematic utility, V , and thus each choice has equal probability being chosen (ie.

P (Harry Potter8pm) = P (Transformer9pm) = 0.5). In other words, the odds of the choice

probability of the Transformer9pm and the Harry Potter8pm is 1. Now, assume that another

showing of Harry Potter starting at 10pm (Harry Potter10pm) is introduced to the choice

set. Note that Harry Potter10pm is exactly identical to the Harry Potter8pm with only the

time difference. Should the choices of Harry Potter8pm and Transformer9pm be equally

affected, meaning that the the probability of choice alternatives of both Harry Potter8pm

and Transformer9pm now be reduced to 0.33? Intuitively, the answer is no. In fact, it

would make more sense the probability of Transformer stays the same at 0.5 and the

probabilities of Harry Potter8pm and Harry Potter9pm are 0.25. However, because of the
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IIA property, the odds of Harry Potter8pm and Transformer9pm is supposed to remain

unaffected, implying that the probabilities of Harry Potter8pm and Transformer9pm are

affected equally by Harry Potter10pm.

In general, IIA property fails to provide an intuitive substitution pattern. The multino-

mial nested logit model, in chapter 4, is one of the models which relaxes the IIA property

by imposing some hierarchical nesting structure on the choice.

3.2 Movie Forecasting Model

In the current project, choice at the individual level is not observed. Instead, aggregated

choice outcomes at individual showing levels are observed. On the other hands, multiple

choice occasions are observed where each choice occassion is defined by a day, d. Therefore,

in estimation, a subscription d should be added. Figure 3.1 is an example of the structure of

standard logit model on a given date d. On a given date d, there are three movies showing:

A, B, C, and the outside option, O (i.e. not watching any of the movie showings). Subscript

of movies A, B and C represent the hour at each movie start. When one extra movie is

squeesed in on a given day d, say D2pm, it will equally attract people from the outside

option and the other alternatives, A6pm, A8pm, B6pm, B9pm, C4pm and O because of IIA

property. Note that the substitution from outside option is what is called demand expansion

and the other alternatives are the cannibalization. However, IIA makes these two effects

too restrictive.

Dated

A6pm A8pm B6pm B9pm C4pm O

Figure 3.1: Example of standard logit structure on a given day d. On a given day d, there
are choice sets of movie and hour combinations as well as not watching movie, which is the
outside option.
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The standard logit model, Pg, of the probability of choosing choice alternative g in the

set containing all movie showings plus the outside option on date d, Cd, is defined as

Pg =
exp (αgXg + ω Y )∑

g∈Cd

exp (αgXg + ω Y )
(3.4)

There are some constraints in this model.

1.
∑
g∈Cd

Pg = 1 : the sum of probability of choice alternatives including outside options

on a given day are 1.

2. P0 = 1 −
∑
g∈C∗d

Pg : the probability of choosing outside options is 1 minus the sum of

probability of choice alternatives excluding the outside options on a given day.

3.
∑
g∈Cd

Sg = M : The total number of movie ticket sales and the number of people

choosing outside option in a given date d is the population of the market which is

Amsterdam, M and it is the market capacity.

3.3 Posterior Distributions

Since there are a finite number of movie showings at each day, the multinomial distribution

is appropriate to represent the likelihood function.

Likelihood function

[Sg , g ∈ Cd |αg , ω] =
∏
d

M !∏
g∈Cd

Sg!

∏
g∈Cd

Pg
Sg (3.5)
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Prior and Hyper Prior Distributions

[αjk | η, Σ] ∼ Multivariate Normal(η Zjk , Σ) (3.6)

[ω] ∼ Multivariate Normal(0 , I) (3.7)

[η] ∼ Multivariate Normal(0 , I) (3.8)

[Σ] ∼ Inverse Wishart(16 , M) (3.9)

where M is defined as in linear regression model in Chapter 2

Because of the prior distribution (3.6) to (3.9) are not conjugate to multinomial

distribution, the full conditional posterior distribution cannot be derived and hence

Metropolis Hastings algorithm is used to estimate αjk and ω. However, Gibbs sampling can

be still applied for the hyper parameters η and Σ. The detailed derivations of the posterior

distributions follow. Note that the results of the predictions are left for Chapter 6 so as to

make a comparison between models.
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3.3.1 Posterior Distribution of [αg | · ]

[αg | · ] ∝ [Sg |αg, ω] · [αg | η,Σ]

∝
∏
d

 M !∏
g∈Cd

Sg!

∏
g∈Cd

 exp(αgXg + ωY

1 +
∑
g∈Cd

exp(αgXg + ωY )


Sg


· exp(−1

2
[αg − ηZg]′Σ−1[αg − ηZg])

∝
∏
d

 ∏
g∈Cd

 exp(αgXg + ωY

1 +
∑
g∈Cd

exp(αgXg + ωY )


Sg


· exp(−1

2
[αg − ηZg]′Σ−1[αg − ηZg])

∝
∏
d


∏
g∈Cd


exp(Sg(αgXg + ωY ))1 +
∑
g∈Cd

exp(αgXg + ωY )

Sg




· exp(−1

2
[αg − ηZg]′Σ−1[αg − ηZg])

=
∏
d


exp

∑
g∈Cd

Sg(αgXg + ωY )


1 +

∑
g∈Cd

exp(αgXg + ωY )


∑
g∈Cd

Sg


· exp(−1

2
[αg − ηZg]′Σ−1[αg − ηZg])

=

exp

(∑
d

∑
d

Sg(αgXg + ωY )− 1

2
αg − ηZg]′Σ−1[αg − ηZg]

)
1 +

∑
g∈Cd

exp (αgXg + ωY )


∑
g∈Cd

Sg
(3.10)
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3.3.2 Posterior Distribution of [ω | · ]

[ω | · ] ∝ [Sg |αg, ω] · [ω]

∝
∏
d

 M !∏
g∈Cd

Sg!

∏
g∈Cd

 exp(αgXg + ωY

1 +
∑
g∈Cd

exp(αgXg + ωY )


Sg
 exp(−1

2
ω′I−1ω)

∝
∏
d

 ∏
g∈Cd

 exp(αgXg + ωY

1 +
∑
g∈Cd

exp(αgXg + ωY )


Sg
 exp(−1

2
ω′I−1ω)

∝
∏
d


∏
g∈Cd


exp(Sg(αgXg + ωY ))1 +
∑
g∈Cd

exp(αgXg + ωY )

Sg




exp(−1

2
ω′I−1ω)

=
∏
d


exp

∑
g∈Cd

Sg(αgXg + ωY )


1 +

∑
g∈Cd

exp(αgXg + ωY )


∑
g∈Cd

Sg


exp(−1

2
ω′I−1ω)

=

exp

(∑
d

∑
d

Sg(αgXg + ωY )− 1

2
ω′I−1ω

)
1 +

∑
g∈Cd

exp (αgXg + ωY )


∑
g∈Cd

Sg
(3.11)
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3.3.3 Full Conditional Distribution of [η∗ | · ]

[η∗ | · ] ∝ [α∗g | η∗,Σ] · [η∗]

∼ MVN15·6([Z
′Z ⊗ Σ−1 + I]−1[(Z ′ ⊗ Σ−1) · α∗g], [Z ′Z ⊗ Σ−1 + I]−1) (3.12)

Note: the derivation for η∗ is in (2.12)

3.3.4 Full Conditional Distribution of [Σ | · ]

[Σ | · ] ∝ [α∗g | η∗,Σ] · [Σ]

∼ IW

N + a , [X ′gXg]
−1I +

∑
g∈Cd

[αg − ηZg][αg − ηZg]′
 (3.13)

Note: the derivation for η∗ is in (2.13)



Chapter 4

Nested Logit Model

Since the standard logit model has unintuitive substitution pattern due to IIA property, as

discussed earlier, a nested logit model is used. Nested logit model relaxes the IIA property

by grouping (or nesting) similar alternatives together so that within the nest, IIA property

holds but not across the nest [1].

4.1 Movie Forecasting Model

The nested logit model is applied when the choice set can be sub-divided into several subsets

where elements in each subset are relatively homogeneous [1]. Continuing the same example

from 3.2, the choice set, A6pm, A8pm, B6pm, B9pm, C4pm, and O, can be derived into four

subsets: CAn , CBn , CCn and COn . CAn is choice set of movie A for individual n. CBn is choice set

of movie B for individual n. CCn is choice set of movie C for individual n. COn is choice set

of outside option O for individual n. For each subset of movies, there are different showings

which have different starting time. Figure 4.1 is an example of the nested logit structure on

a given day d. Contrast to Figure 3.1 in the standard logit model, the nested logit model

has one more level and it is grouping by movies.

In the nested logit model, Pg as the probability of choosing choice alternative g which

is in a set, Cd, containing all movie showings plus the outside option on day d can be

decomposed into three components:

20
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Dated

Movie

A

6pm 8pm

B

6pm 9pm

C

2pm

Outside

Figure 4.1: Example of nested logit structure on a given day d. On a given day d, there
are two choice sets: (1) watching a movie at a theater or (2) doing other activity. For the
choice set of movie (1), it can be further broken down into first, different kinds of movies
and second, different showings of the particular movie that is chosen.

Pg = P (hour h |movie j, version k, date d) (4.1)

×P (movie j, version k | any movie, date d)

×P (any movie | date d)

P (hour h |movie j, version k, date d) =
exp(σjkVjkhd)

exp(IVjkd)
(4.2)

P (movie j, version k | any movie, date d) =
exp

(
σ
σjk
IVjkd

)
exp(IV mv

d )
(4.3)

P (any movie | date d) =
exp(1dIV

mv
d )

1 + 1
σ IV

mv
d

(4.4)
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where,

σjk = parameter capturing the substitution of alternatives of the same version k of movie j

σ = parameter capturing the substitution of all movie alternatives

Ch|jkd = set containing all hours available on version k of movie j on date d

Cjk|d = set containing all movie version k of movie j on date d

Vjkhd = αjkXjkhd + ωYjkd

IVjkhd = log

 ∑
g∈Ch|jkd

exp(σgjkVgjkhd)


IV mv

d = log

 ∑
g∈Cjk|d

exp

(
σ

σgjk
IVgjkhd

)

The major difference between the nested logit model and the standard logit model

is that imposing nesting structure would reduce the unintuitive substitution implied

by IIA. In other words, the utility of alternatives in a nested logit model is no longer

uncorrelated. While P (hour h |movie j, version k, date d) in (4.2) has the IIA property,

P (movie j, version k | any movie, date d) in (4.3), captures the correlation of the same

movie with different hours. Therefore, the nested logit model has IIA property within nests

but not across nests and thus has more intuitive substitution effects than the standard logit

model.

In the nested logit model, some new parameters are introduced: σjk and σ. Parameters

σjk capture the substitution of alternatives of the same version k of movie j, while σ captures

the substitution of all movie alternatives with reference to the outside option. However, their

interpretation is opposite to the traditional correlation coefficient. While the value of these

substitution parameters are between 0 and 1, when σjk is equal to 0, it means that each

nest has a perfect substitution. Let’s use the same example illustrated in Figure 4.1. When

extra movie A at 10pm, A10pm, is squeezed in on a given day d and if σjk is close to 0, it

would not affect movie B and movie C at all. However, when σjk close to 1, it gets back

to IIA property. That is, adding extra movie A10pm affects movie A, movie B and movie
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C equally. The same idea applies for σ as when σ equals to 1, the structure in Figure 4.1

reduces to a two-level structure which has the IIA property in Figure 3.1.

4.2 Posterior Distributions

Likelihood Function

[Sg, g ∈ Cd |αg, ω, σg, σ] =
∏
d

M !

Sg!

∏
g∈Cd

exp(σgVgjkhd)

exp(IVgjkd)
×

exp
(
σ
σg
IVgjkd

)
exp

(
IV mv

gd

) ×
exp

(
1
σ IV

mv
gd

)
1 + exp

(
1
σ IV

mv
gd

)
Sg


(4.5)

Prior Distributions

αg ∼ MVN6(ηZg,Σ)

ω ∼ MVN34(0, I)

σg ∼ Uniform(0, 1)

σ ∼ Uniform(0, 1)
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4.2.1 Posterior Distribution of [αg | · ]

[αg | · ] ∝ [Sg |αg, ω, σg, σ] · [αg | η,Σ]

=
∏
d

M !

Sg!

∏
g∈Cd

exp(σgVgjkhd)

exp(IVgjkd)
·

exp
(
σ
σg
IVgjkd

)
exp

(
IV mv

gd

) ·
exp

(
1
σ IV

mv
gd

)
1 + exp

(
1
σ IV

mv
gd

)
Sg


· exp(−1

2
[αg − ηZg]′Σ−1[αg − ηZg])

∝
∏
d

 ∏
g∈Cd

exp
(
σgVgjkhd + σ

σg
IVgjkd + 1

σ IV
mv
gd
− IVgjkd − IV mv

gd

)
1 + exp( 1

σ IV
mv
gd

)

Sg


· exp(−1

2
[αg − ηZg]′Σ−1[αg − ηZg])

=
∏
d

 ∏
g∈Cd

exp
(
Sg

(
σgVgjkhd + σ

σg
IVgjkd + 1

σ IV
mv
gd
− IVgjkd − IV mv

gd

))
1 + exp

(
1
σ IV

mv
gd

)Sg


· exp(−1

2
[αg − ηZg]′Σ−1[αg − ηZg])

=
∏
d


exp

∑
g∈Cd

Sg

(
σgVgjkhd +

σ

σg
IVgjkd +

1

σ
IV mv

gd
− IVgjkd − IV

mv
gd

)
[
1 + exp

(
1
σ IV

mv
gd

)]∑
g∈Cd

Sg


· exp(−1

2
[αg − ηZg]′Σ−1[αg − ηZg])

Note: let Sg

(
σgVgjkhd +

σ

σg
IVgjkd +

1

σ
IV mv

gd
− IVgjkd − IV

mv
gd

)
be A

∝

exp

∑
d

∑
g∈Cd

A

− 1
2 [α′gΣ

−1αg − 2α′gΣ
−1ηZg]


∏
d

[
1 + exp

(
1

σ
IV mv

gd

)]∑
g∈Cd

Sg
(4.6)
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4.2.2 Posterior Distribution of [ω | · ]

[ω | · ] ∝ [Sg |αg, ω, σg, σ] · [ω]

=
∏
d

M !

Sg!

∏
g∈Cd

exp(σgVgjkhd)

exp(IVgjkd)
·

exp
(
σ
σg
IVgjkd

)
exp

(
IV mv

gd

) ·
exp

(
1
σ IV

mv
gd

)
1 + exp

(
1
σ IV

mv
gd

)
Sg


· exp(−1

2
[ω]′I−1[ω])

Note: same derivation of likelihood fn is applied as in [αg | · ]

∝

exp

∑
d

∑
g∈Cd

A

− 1
2(ω′I−1ω)


∏
d

[
1 + exp

(
1

σ
IV mv

gd

)]∑
g∈Cd

Sg
(4.7)

4.2.3 Posterior Distribution of [σjk | · ]

[σjk | · ] ∝ [Sg |αg, ω, σjk, σ] · [σjk]

=
∏
d

M !

Sg!

∏
g∈Cd

exp(σgjkVgjkhd)

exp(IVgjkd)
·

exp
(

σ
σgjk

IVgjkd

)
exp

(
IV mv

gd

) ·
exp

(
1
σ IV

mv
gd

)
1 + exp

(
1
σ IV

mv
gd

)

Sg


·I(0 < σjk < 1)

Note: same derivation of likelihood fn is applied as in [αg | · ]

∝

exp

∑
d

∑
g∈Cd

A


∏
d

[
1 + exp

(
1

σ
IV mv

gd

)]∑
g∈Cd

Sg
(4.8)
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4.2.4 Posterior Distribution of [σ | · ]

[σ | · ] ∝ [Sg |αg, ω, σjk, σ] · [σ]

=
∏
d

M !

Sg!

∏
g∈Cd

exp(σgjkVgjkhd)

exp(IVgjkd)
·

exp
(

σ
σgjk

IVgjkd

)
exp

(
IV mv

gd

) ·
exp

(
1
σ IV

mv
gd

)
1 + exp

(
1
σ IV

mv
gd

)

Sg
(4.9)

·I(0 < σ < 1)

Note: same derivation of likelihood fn is applied as in [αg | · ]

∝

exp

∑
d

∑
g∈Cd

A


∏
d

[
1 + exp

(
1

σ
IV mv

gd

)]∑
g∈Cd

Sg
(4.10)

4.2.5 Full Conditional Distribution of [η∗ | · ]

[η∗ | · ] ∝ [α∗g | η∗,Σ] · [η∗]

∼ MVN15·6([Z
′Z ⊗ Σ−1 + I]−1[(Z ′ ⊗ Σ−1) · α∗g], [Z ′Z ⊗ Σ−1 + I]−1) (4.11)
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4.2.6 Full Conditional Distribution of [Σ | · ]

[Σ | · ] ∝ [α∗g | η∗,Σ] · [Σ]

∼ IW

N + a , [X ′gXg]
−1I +

∑
g∈Cd

[αg − ηZg][αg − ηZg]′
 (4.12)

Note that the results of the posterior distributions are left for Chapter 6 so as to make

a comparison between models.



Chapter 5

Data

5.1 Description of Data

The attendance data are obtained from PATHE, one of the largest multiplex movie theater

companies in Netherlands. The raw data set contains one-year of data from 2008 for a

multiplex theater located in Amsterdam, including movie showing information such as (1)

when the showing started, (2) how long ago the movies were first released, (3) whether it

is played during holidays, (4) what day of week is the showing on and (5) the number of

tickets sold. Furthermore, the characteristics of movies such as genre and age restriction

are contained in the data set. A sample of data is shown in Table 5.1. In the data set,

different language version of the same movies are treated as two different movies. Also,

data with the same movies with same hour showing are aggregated to one observation.

For example, when Harry Potter is playing at 9pm and 9:30pm, the ticket sales of the two

showings are combined into one movie ticket sales with the starting time of showing set at

9pm. The reason for such aggregation of the same movie in the same hour is to compare

the three models’ predictions, which include a linear regression model. This is in line with

how Elishberg et al. handle the data for the linear regression model.

Since Holiday, Day of Week, Age Restriction and Genre variables are dummy variables,

a base case for each corresponding variable needs to be set. Therefore, the base case for

Holidays is the normal days between the Easter holidays and the school May vacation, the

base case for Day of Week is Saturday, the base case for Age Restriction is all ages and the

base case for Genre is action movie.

28
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5.2 Implementation

At first, the hierarchical linear regression was implemented by the statistical programming

language R with 1 year of data. There were over 2000 parameters to be estimated, but

since Gibbs sampling was used in the linear model, R can handle it. However, due to the

complicated likelihood function in the standard logit and nested logit models, R cannot

handle such a massive implementation of MCMC as it would take a few years to run. R is

notoriously bad with multiple for-loops and unfortunately, in the likelihood of standard logit

and nested logit models, there are several for-loops. Therefore, for the standard logit and

nested logit, I learned and used the programming language C. Surprisingly C is about 180

times faster than R. However, there are more than 2000 parameters needed to be estimated,

and even C would take a few months of computation time for reasonable results. Therefore,

in this project, only 2 weeks of data from January 10, 2008 to January 23, 2008 are used

for the parameter estimations. Then for prediction purposes, one week of data January 24,

2008 to January 30, 2008 is used and predictions are compared to actual data. For the

linear regression model, 60000 MCMC iterations are used and for the standard logit and

nested logit model, 100000 iterations are used.
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Result

For the predictions of movie ticket sales, the posterior predictive distributions are used:

5000 iterations are drawn from posterior distributions after burn-in period and used toward

the calculations of ticket sales. For the linear regression model, log ticket sales are directly

calculated from parameter estimations. For the standard and nested logit model, since

the likelihood functions are multinomial distributions, the probability of watching a specific

movie is calculated and then multiplied by the population of Amsterdam to get the predicted

ticket sales. However, since there are 5 new movies in the week from January 24 to January

30, 2008 and there are no parameter estimations for movie specific parameters, αjk, the

hyper parameters, η and Σ are used to calculate movie specific parameters, αjk.

6.1 Actual Movie Ticket Sales vs. Predicted Median Movie

Ticket Sales

In order to compare the three models’ predictions, the actual movie ticket sales and predicted

median of movie ticket sales are compared. If the predictions are good, then the actual and

predicted median should align with a 45 degree line (Figure 6.1). Then the coefficients

of determination (R2) of three models are compared in Table 6.1 to find the best model

out of linear, standard logit and nested logit model since R2 measures the proportion of

the total variation [2]. Since predictions for new movies are based on less information, the

predictions in Figure 6.1 show new and previously viewed movies in different colours. A

detailed discussion of the results is in Chapter 7.

31
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Figure 6.1: Scatter plot of actual movie ticket sales vs predicted median of movie ticket
sales in the period of January 24, 2008 to Jan 30, 2008. Top graphs are actual scale of
movie ticket sales and the bottom graphs are log scales of movie ticket sales. Black dots are
predictions for existing movies and red plus signs are predictions for new movies. The blue
line is the reference line for the perfect match of the actual and the predicted ticket sales.
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Model Linear Standard Logit Nested Logit

Existing Movies 0.67 0.63 0.70
New Movies 0.66 0.66 0.29
All Movies 0.71 0.72 0.59

Table 6.1: R2 of three models on existing, new and all movies. By looking at R2 for all
movies, linear regression model and standard logit model are much better than nested logit
model. However, when the movies are broken down into new and existing movies, the nested
logit model is the clear winner. A more detailed discussion of the results is in Chapter 7.
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6.2 Posterior Predictive Distribution for Existing Movies

Since there are 409 combinations of movie showings in the one week period of January 24,

2008 to January 30, 2008, three existing movies (i.e, Bee Movie, The Nanny Diaries and

Moordwijven) are selected as an example. The posterior predictive distributions of those

three selected movies with different days of week and hours of showings are in Figure 6.2 to

Figure 6.4.

1. Bee Movie: kid’s movie with age restriction R6 and predictions for week 6 (Figure

6.2).

(a) Saturday at 10am

(b) Saturday at 2pm

(c) Wednesday at 1pm

2. The Nanny Diaries: commedy movie with no age restriction Rall and predictions for

week 5 (Figure 6.3).

(a) Friday at 5pm

(b) Sunday at 5pm

(c) Monday at 12pm

3. Moordwijven: miscellaneous movie with age restriction R12 and predictions for week

2 (Figure 6.4).

(a) Thursday at 10pm

(b) Saturday at 9pm

(c) Sunday at 10am
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Figure 6.2: Posterior predictive distributions of Bee Movie on selected day of week and hour
of showings from linear, standard logit and nested logit model. The blue line represents the
actual ticket sales.
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Figure 6.3: Posterior predictive distributions of The Nanny Diaries on selected day of week and
hour of showings from linear, standard logit and nested logit model. The blue line represents
the actual ticket sales.
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Figure 6.4: Posterior predictive distributions of Moordwijven on selected day of week and hour
of showings from linear, standard logit and nested logit model. The blue line represents the
actual ticket sales.
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6.3 Posterior Predictive Distributions for New Movies

Two new movies, Cloverfield and We Own the Night, with different day of the week and

hour of showings are selected as an example. Note that in the one week period of January

23, 2008 to January 30, 2008, 5 new movies are released.

1. Cloverfield: action movie with age restriction R16 and predictions for week 1 (Figure

6.5).

(a) Friday at 12pm

(b) Sunday at 9pm

(c) Monday at 7pm

2. We Own the Night: drama movie with age restriction R16 and predictions for week 1

(Figure 6.6).

(a) Thursday at 9pm

(b) Friday at 9pm

(c) Wednesday at 9pm
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Figure 6.5: Posterior predictive distributions of Cloverfield on selected day of week and hour
of showings from linear, standard logit and nested logit model. The blue line represents the
actual ticket sales.
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Figure 6.6: Posterior predictive distributions of We Own the Night on selected day of week and
hour of showings from linear, standard logit and nested logit model. The blue line represents
the actual ticket sales.
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Conclusion and Recommendation

As shown in the previous section, the predictions from three different models (linear

regression, standard logit and nested logit models) are not as good as expected. However,

the movie predictions for existing movies are good compared to the new movies. The

reason is that only two weeks of data are used to predict the next weeks ticket sales. Two

weeks are too short period of time to capture the trend of age decay and hour of movie

showing effects. Among the three models discussed in this project, there is no superior

model for predicting the movie ticket sales as seen in scatter plot of actual vs. predicted

ticket sales (Figure 6.1), all three models’ predictions are behaving very similarly and on

par predict decently. It is obvious that the predictions of existing movies are better than

the new movies’ predictions (Figure 6.1). The reason is that the new movies’ predictions

are based on the movies’ genre and age restrictions and two weeks of data is too short to

capture the effects of genre and age restrictions for all combinations.

By looking at the three models R2, linear regression model and standard logit model

predict better than nested logit model for all movies (Table 6.1). However, when looking

at only existing movies, the nested logit model has better predictions because the model

captures better market expansion as well as cannibalization effects. The reason why the

nested logit model’s R2 for all movies is smallest is because it predicts new movies poorly.

That is, the nested logit model captures both market expansion and cannibalization effects

well for existing movies but not new movies. The major reason why nested the logit model

fails to give a good prediction for the new movies is the uninformative prior imposed on

the parameter capturing the substitution of alternatives of the same movie, σjk. In the

41
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nested logit model, instead of using an uninformative prior on σjk, beta distributions with

hyperparameters related to genre and age restriction covariates can be used to improve

model predictions. Currently predicted values of σjk for new movies are based on the

prior of uniform distribution between 0 and 1 meaning that any substitution behaviour is

possible. The derivations of posterior distribution of σjk is in Appendix A.

Also, predictions for both existing and new movies can be improved if one year of data

is used. It will potentially improve the hierarchical effects of genre and age restrictions

since there are more movies in the data set with more variety of combinations for genre

and age restrictions. Also, the opening week attractiveness, age decay, hour of showing

effects, holidays and day of weeks will have better parameter estimations. The issues in

here though is the time efficiency due to complicated likelihood functions in MCMC and

the massive dataset.

This project can be further extended with another model: nested logit by hour. It

may be interesting to compare the nested logit by hour model with the nested logit by

movie model. Also, a Poisson model is be another candidate for predicting the counts of

ticket sales. The derivation of posterior parameter distributions for the Poisson model is in

Appendix B.



Appendix A

Posterior Distribution of σjk

A.1 σjk where genre and age restriction are used to construct

a hierarchical layer

Prior:

σg ∼ Beta(γg, δg)

Hyper Prior:

γg ∼ Log Normal(β′γgZg, 1)

δg ∼ Log Normal(β′δgZg, 1)

Hyper Hyper Prior:

βγg ∼ MVN(0, I)

βδg ∼ MVN(0, I)
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Distributions:

[σg | γg, δg] =
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A.3 Posterior for γg
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A.6 Posterior for βδg

[βδg | · ] ∝ [δg |βδg , Z] · [βδg ]

=
1

δg
exp

(
−1

2
[ln(δg)− βδgZ]2

)
· exp

(
β′δgI

−1βδg

)

=
1

δg
exp

(
−1

2
[ln(δg)− βδgZ]2 + β′δgI

−1βδg

)



Appendix B

Poisson Model For Counts of

Ticket Sales

Likelihood: p(S |µ) ∼ Poisson(µ)

Prior: p(µ) ∼ Gamma(a, b) where µ = exp(Xβ)

Note: Xβ = αjkxjkhd + ωy

B.1 Likelihood p(S |µ)

p(S |µ) =
n∏
i=1

µSi exp(−µ)

Si!
=
µ
∑n

i=1 Si exp(−nµ)∏n
i=1 Si!

Trasform µ = exp(Xβ)

p(S |β) = p(S |β)

∣∣∣∣∣∣∣∣dµdβ
∣∣∣∣∣∣∣∣

=
exp(Xβ)

∑n
i=1 Si exp(−n exp(Xβ))∏n

i=1 Si!
X exp(Xβ)

=
X exp (Xβ

∑n
i=1 Si − n exp(Xβ))∏n
i=1 Si!
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B.2 Prior p(µ)

p(µ) ∼ Gamma(a, b)

=
baµa−1 exp(−bµ)

Γ(a)

Trasform µ = exp(Xβ)

p(β) = p(µ)

∣∣∣∣∣∣∣∣dµdβ
∣∣∣∣∣∣∣∣

=
ba exp(Xβ(a− 1)) exp(−b exp(Xβ))
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=
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Γ(a)

B.3 Full Conditional Distribution
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∝
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∝ exp

(
Xβ

n∑
i=1
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