
DESIGN AND IMPLEMENTATION OF AN ELECTRONIC

SERVICE GUIDE FOR MOBILE VIDEO SYSTEMS

by

Kaushik Choudhary

B.Tech., West Bengal University of Technology (India), 2006

a Project submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Kaushik Choudhary 2012

SIMON FRASER UNIVERSITY

Summer 2012

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Kaushik Choudhary

Degree: Master of Science

Title of Project: Design and Implementation of an Electronic Service Guide

for Mobile Video Systems

Examining Committee: Dr. Arrvindh Shriraman,

Assistant Professor, Computing Science

Chair

Dr. Mohamed Hefeeda,

Associate Professor, Computing Science

Senior Supervisor

Dr. Jiangchuan Liu,

Associate Professor, Computing Science

Supervisor

Dr. Joseph Peters,

Professor, Computing Science

SFU Examiner

Date of Defence: 12 July 2012

Date Approved:

ii

Partial Copyright Licence

Abstract

We study the problem of designing a configurable testbed for mobile TV research. Using

simulations to conduct experiments on mobile TV may not reproduce real life field scenarios

and challenges. To address this problem, we design and implement a configurable Electronic

Service Guide (ESG) server capable of delivering TV programming information to mobile

TV subscribers and communicating tuning and multimedia encoding information to mobile

devices. We also implement link layer signaling mechanism for the testbed and integrate all

components for an end-to-end mobile TV system for research. We validate the implementa-

tion with a variety of tools such as offline and USB based online transport stream analyzers

capable of capturing and analyzing signals in real time. Furthermore, we complement our

stream analysis with a live demonstration of the ESG server.

Keywords: Mobile TV, ESG server, link layer signaling, DVB-H

iii

Acknowledgments

I am deeply indebted to my senior supervisor Dr. Mohamed Hefeeda, for his continuous

support, guidance and encouragement. He patiently answered my questions, providing

valuable insights and motivated me to work hard. I highly appreciated that Dr. Hefeeda

also listened empathetically and encouraged me to pursue my graduate career with vigour.

This project would not have been possible without his guidance.

I would like to thank my supervisor Dr. Jiangchuan Liu and my thesis examiner Dr.

Joseph Peters, for being on my committee and reviewing this report. I would like to thank

Dr. Arrvindh Shriraman, for taking the time to chair my defense. I would also like to

extend my gratitude to the faculty and staff in the school of computing science at SFU,

particularly Dr. Joseph Peters for being very kind and encouraging both during my course

with him as well as when I worked as a TA for him, Dr. Bob Headley for answering my

numerous questions in his course, and our IT administrator Jason Ashby for providing me

support with the work stations at my desk.

I would like to thank my colleagues at the Network Systems Lab, specially Ahmed

Hamza and Somsubhra Sharangi for all their help and encouragement. I would also like

to thank my friends Kenneth Wong and Vivek Anand for encouraging me to believe in my

capabilities.

Most significantly, I cannot express enough gratitude to my girlfriend and now fiancée,

Mimi He, for being there and providing encouragement, support, love and care when I

needed it the most and for being there in my life.

Last but not least, I would like to thank my parents for all the sacrifices they made for

me and for giving me their unconditional love and support. I would also like to thank my

brother for his unrelenting and unspoken expectations which provided me with the drive.

iv

Contents

Approval ii

Abstract iii

Acknowledgments iv

List of Figures vii

List of Tables viii

Listings ix

1 Introduction 1

1.1 Introduction . 1

1.2 Problem Statement and Project Contributions 3

1.2.1 Problem Statement . 3

1.2.2 Project Contributions . 4

1.3 Report Organization . 4

2 Background and Related Work 5

2.1 Background . 5

2.1.1 Mobile TV . 5

2.1.2 Overview of DVB-H Standard . 6

2.1.3 ESG Overview . 8

2.1.4 PSI/SI Tables overview . 10

2.2 Related Work . 11

v

3 Design and Implementation of the Proposed ESG Server 13

3.1 ESG Server Design . 14

3.1.1 PSI/SI Tables . 14

3.1.2 ESG Server . 17

3.2 ESG Server Implementation . 26

3.2.1 PSI/SI Tables Implementation . 26

3.2.2 ESG Server Implementation . 31

3.3 ESG Server Validation . 32

4 Conclusion 38

4.1 Conclusions . 38

4.2 Future Work . 39

Bibliography 40

vi

List of Figures

1.1 Global Mobile Data Traffic. Extracted from [7]. 2

1.2 Global Mobile Data Traffic categorized by type of traffic. Extracted from [7] . 3

2.1 Simplified DVB-IPDC Protocol Stack . 7

3.1 ESG Operations on a DVB-H based implementation [18] 13

3.2 Class diagram for transmitter. 15

3.3 Class diagram for ESGAccessDescriptor. 19

3.4 Class diagram for ESGRepresentation. 21

3.5 Class diagram for ESG Encapsulation. 23

3.6 DVB-H testbed apparatus. 33

3.7 PSI/SI tables validation . 35

3.8 DVB-H bursts on Divicatch RF-T/H analyzer 36

3.9 ESG information from transport stream on Divicatch RF-T/H analyzer . . . 37

vii

List of Tables

2.1 List of implemented PSI/SI tables and their corresponding PIDs 10

3.1 List of values for xmlFragType for different ESG XML Fragments. 22

3.2 Structure types ContType and their valid structure IDs ContId. 22

3.3 Table describing the seven major classes used to implement PSI/SI tables . . 27

viii

Listings

3.1 ESGProviderDiscovery Descriptor Syntax . 18

3.2 ESGProviderDiscovery Descriptor Example 19

3.3 FDT used to initiate the ESG bootstrap session. 24

3.4 Network Information Table attribute population. 27

3.5 IP/MAC Notification Table Pack function. 28

3.6 Psisi::init() function initiating the creation of PSI/SI tables. 30

3.7 ESGAccessDescPack() function defined in ESGAccessDescriptor class. . . . 31

3.8 Excerpt from ESGContFDTPack() function defined in ESGContainer class . . 32

ix

Chapter 1

Introduction

In this chapter we introduce features of mobile video broadcast. We describe the challenges

in presenting Electronic Service Guide (ESG) to mobile users under practical constraints.

We introduce the design proposed in this project and summarize our contributions. We

then present the organization of the rest of this report.

1.1 Introduction

In recent years, streaming technology has become an increasingly popular mechanism to de-

liver multimedia content to end-users. Recent studies [7] have shown that there exists a large

diversity in end-user devices. Among the multitude of devices, mobile phones have become

immensely popular in recent years since they have been significantly enhanced with sophis-

ticated operating systems and powerful hardware. Smartphones offer capabilities similar

to that of a modern computer and are capable of installing third-party applications. Since

the introduction of Apple’s iPhone and smartphones based on Google’s Android operating

system, the usage and demand of smartphones have increased significantly. Figure 1.1 il-

lustrates predictions for mobile data traffic for the next several years, suggesting that there

will be a considerable increase in mobile data traffic (with smartphones contributing to as

much as 48% of all data traffic by 2016).

Furthermore, video data has unequivocally taken over as the predominant type of data

consumed by mobile devices. Figure 1.2 shows that mobile video traffic is expected to grow

exponentially in the next several years dominating web data traffic and file sharing services

like peer-to-peer sharing. To meet this growing demand, mobile service providers need

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Global Mobile Data Traffic. Extracted from [7].

massive investments to increase mobile network capacity and video traffic will significantly

consume that increased capacity during peak hours of video consumption.

Mobile broadcast networks defined by standards such as DMB [6], DVB-H [14, 22],

CMMB [1], ISDB-T [3] and ATSC-M/H [4] could support unlimited numbers of users in

the coverage area without risking network saturation. Thus they are useful for delivering

high-demand video programs (relatively large number of viewers) and protecting the scarce

unicast spectrum of mobile networks. A Broadcast Mobile Convergence (BMCO) forum

report [46], shows that using broadcast networks reduces video traffic load on the network

by 60% in a given area during high-demand video programs like sporting events. Hence,

broadcast technologies allow efficient usage of delivery networks both in terms of delivery

cost and service provisioning.

ESG acts as a service discovery tool for both mobile TV users as well as mobile termi-

nals. ESG provides users of mobile TV continuously updated information about broadcast

programming and scheduling information for current and upcoming programs. Further,

ESG provides the mobile terminal middleware with signaling data for service lookup and

playback capability negotiation to decide connection and video decoding parameters. There

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Global Mobile Data Traffic categorized by type of traffic. Extracted from [7]

are two standards for ESG - one defined by the European Telecommunications Standards

Institute (ETSI) [18, 20] and another defined by the Open Mobile Alliance [2]. ETSI refers

to ESG as the Electronic Service Guide while OMA refers to it simply as Service Guide. In

this project we design and implement the service layer ESG server as defined by the ETSI

standard TS 102 471 [18, 24].

1.2 Problem Statement and Project Contributions

Our goal is to implement an open source ESG server that can be used in various broadcast

networks. This report describes the design, implmentation and validation of our ESG server.

1.2.1 Problem Statement

Mobile TV technologies are an important resource for reducing stress on unicast networks

delivering video content to subscribers. Mobile TV also brings traditional television pro-

grams to mobile devices where users can view programs on the go. Hefeeda and Hsu [30]

developed an open-source mobile TV testbed for use in mobile TV research. The DVB-H

CHAPTER 1. INTRODUCTION 4

standard, only specifies the transmission behavior below the IP layer. Other IP-based ser-

vice layer standards over the IP layer are required to implement an end-to-end DVB-H based

mobile TV system. In the aforementioned testbed, a basic service layer was implemented

without any configuration capabilities. Since the service layer is above the IP layer, appli-

cations developed at the service layer may use other IP-based mobile TV systems. Thus the

problem addressed in this project can be stated as follows:

Problem 1:Design and implement a service layer, configurable, electronic service guide

server. Validate the server in a real mobile TV testbed.

1.2.2 Project Contributions

We implement an ESG server in a real mobile TV testbed developed at the Network Systems

Lab at Simon Fraser University [30]. Our contributions are:

• We design and implement a modular, configurable ESG server based on the guidelines

specified in the DVB-IPDC standards [18, 24, 20]. We integrate the ESG server to

the mobile TV testbed mentioned earlier. The ESG server allows configuration of

channels and programming to be delivered to end users through XML configuration

files.

• We design and implement the link layer signaling mechanism for DVB-H to integrate

the ESG server with the mobile TV testbed. The signaling is realized through Program

Specific Information/System Information (PSI/SI) tables.

• By integrating the ESG server with the mobile TV testbed, we develop an end-to-end

open-source mobile TV testbed system useful for mobile TV research. The ESG server

is implemented at the application layer. It does not handle mobility which is a concept

handled in other layers of our mobile TV testbed.

1.3 Report Organization

The rest of this report is organized as follows. In Chapter 2, we briefly provide a background

of ESG and summarize related works in the literature. In Chapter 3, we describe the design,

implementation and validation of the ESG server and PSI/SI tables. And finally in Chapter 4

we conclude this report and outline potential extensions of this work.

Chapter 2

Background and Related Work

In this chapter we briefly review mobile TV technologies, describe ESG and summarize

related previous works.

2.1 Background

2.1.1 Mobile TV

In this section we present an overview of different mobile TV architectures. There are

several mobile TV standards that have been defined such as DMB [6], CMMB [1], ISDB-

T [3], ATSC [4], and DVB-H [14, 22]. Digital Multimedia Broadcasting (DMB) is the world’s

first official mobile TV service started in South Korea in 2005. The DAB [15] standard was

extended to develop DMB as part of a Korean national project. It can operate via satellite

(S-DMB) or terrestrial (T-DMB) transmission. China Mobile Multimedia Broadcasting

(CMMB) [1] is a mobile TV standard developed in China by State Administration of Radio,

Film and Television (SARFT). CMMB provides up to 25 video channels and up to 30

radio channels using both satellite and terrestrial transmission. Specified by Association of

Radio Industries and Businesses (ARIB) in Japan, Integrated Services Digital Broadcasting

(ISDB) [3] is the mobile TV standard in Japan. The ISDB-T design divides channels into 13

segments. 12 of these segments are used by an HDTV broadcast signal while the remaining

one channel is used for mobile TV service.

In 2009, the Advanced Television Systems Committee ratified the ATSC-M/H mobile TV

standard for mobile devices in North America. Substantially different from the terrestrial

5

CHAPTER 2. BACKGROUND AND RELATED WORK 6

ATSC standard due to limitations of mobility, the ATSC-M/H standard defines a fixed

transport stream (TS) structure for easier processing by mobile receivers. ATSC 2.0, a yet

to be ratified standard, allows for more advanced features like video on demand services,

targeted advertising and MPEG-4 compression.

We implement our ESG server in a mobile TV testbed based on DVB-H. DVB-H [14,

22] is an extension of the DVB-T [13] standard for terrestrial broadcast. Tailor made for

mobile devices DVB-H is an open international standard and one of the most widely used

mobile TV standards. An important feature of the DVB-H standard is that it provisions

for reducing energy consumption on mobile devices by broadcasting multimedia data in

bursts allowing mobile terminals to turn off their RF circuits periodically. Aside from this,

it is also possible to deliver TV programs to mobile devices over wireless cellular networks.

The 3G partnership project defined the Multimedia Broadcast and Multicast Service for

Universal Mobile Telecommunications Systems (UMTS) to support broadcast and multicast

multimedia delivery models [29, 37]. In this report however, we focus on dedicated broadcast

networks.

2.1.2 Overview of DVB-H Standard

The DVB-H mobile TV standard defines Physical and Link Layer protocols and uses IP

to interface with higher layer protocols such as Real-Time Transport Protocol (RTP) [48]

and UDP. In order to implement an end-to-end mobile TV system howDever, another set

of standards for service layer applications has been defined. The DVB-IPDC [16] standard

not only defines higher layer protocols but also enables cooperation with cellular networks

such as UMTS. It also enables bi-directional communication and thus supports interactive

services like ESG. The ESG standards [18, 24] are defined under the DVB-IPDC standard.

Further details about ESG are described in subsection 2.1.3. DVB-H uses MPEG-2[35]

transport streams for coding and transferring data. IP packets are encapsulated in the

transport streams.

IP Datacast (IPDC) uses UDP protocol at the transport layer. However, since it is

defined above IP, any other IP capable system may use IPDC at the higher layer. On

top of the UDP protocol IPDC uses RTP and File Delivery Over Unidirectional Transport

(FLUTE) [44] that was built over the definition of Asynchronous Layered Coding(ALC)

protocol [44] for delivering multimedia data and metadata. IP Datacast also defines XML-

based ESG that transmits channel and programming information to subscribers. ESG also

CHAPTER 2. BACKGROUND AND RELATED WORK 7

PSI/SI
DVB-H

DVB-SH

2G/3G/4G

Networks

Internet Protocol

ESG Files Audio/

Video

SPP

CDP (FLUTE/ALC)

UDP

RTP

}

}

}

}

Application

layer

Transport

layer

Network

layer

Link/Physical

layer

Figure 2.1: Simplified DVB-IPDC Protocol Stack

delivers initialization parameters to the mobile terminal. Figure 2.1 shows the complete

protocol stack for video broadcast over DVB-H networks. In the figure, SPP stands for Ser-

vice Purchase and Protection which is a service that allows the service provider to protect

content and enable a range of different subscription models. The DVB-SH(Digital Video

Broadcast - Satellite services to Handhelds) [12] standard defines delivery of IP based mul-

timedia content and data to handheld terminals such as mobile phones, based on a hybrid

satellite/terrestrial downlink.

DVB-H employs Orthogonal Frequency Division Multiplexing(OFDM) at the physical

layer. IP packets are encapsulated using Multi-Protocol Encapsulation (MPE) sections to

form MPEG-2 transport streams. Two of the most important features of DVB-H are time

slicing and error correction. We describe each of them below:

Forward Error Correction: Broadcast videos suffer from high error rates due to factors

like fading, shadowing and interference. DVB-H employs a Forward Error Correction (FEC)

mechanism to minimize the aforementioned error rates. FEC also corrects errors whenever

possible. Therefore, the sequence of MPEs carrying data from a specific channel are FEC-

protected before broadcast. DVB-H uses Reed-Solomon coding and time interleaving in

CHAPTER 2. BACKGROUND AND RELATED WORK 8

the link layer to protect IP packets transmitted. This mechanism allows us to improve the

signal-to-noise ratio for the transmitted data.

Time Slicing: To reduce energy consumption in mobile devices from video playback, DVB-

H channels are transmitted in bursts at a bit rate much higher than the encoding rate of

the channels being transmitted. This allows mobile devices receiving the bursts to turn off

their RF circuits until the next burst arrives. During this period when the radio circuit is

turned off, the mobile device can continue playing the video data received. The time slicing

mechanism also allows for seamless handovers - important for mobile devices.

2.1.3 ESG Overview

An ESG contains information about services offered including information such as titles and

genres of the different content items. Through the information in the ESG, the user can

select the services and items he/she is interested in. Aside from this, ESG also contains

information required by the terminal on how to access these services. ESG also provides

mechanisms for managing subsystems like billing and accounting. ESG operations take place

after the DVB-H receiver on the terminal has been started and has tuned to a particular

transport stream carrying IPDC services. On the server end, these operations translate to

encoding of XML files containing content and tuning information for transmission to the

terminal.

ESG contains information about available multimedia services on offer from the service

provider. ESG contains both human readable information visually presented to the user

in the form of program listings, descriptions and schedules as well as media initialization

information used by the terminal to tune into a service selected by the user. ESG data is

transmitted in the form of XML files transported over the FLUTE/IP protocol [17] .

Electronic Service Guide [18] (superseded by [24]) was described as part of the DVB

IPDC specification [16]. The DVB IPDC standard was created with the objective of provid-

ing the higher layer protocols for both DVB-H based on IP (or any other IP capable system)

as well as an optional access to a cellular communication system such as UMTS [38]. We

implemented ESG server on top of the open source DVB-H mobile TV testbed developed

in the Network Systems Lab [30]. Figure 2.1 shows the DVB-IPDC protocol stack.

ESG operations begin after the terminal is synchronized to a particular transport stream.

The ESG process flow consists of three operations - ESG bootstrap, ESG acquisition and

ESG update. These operations are discussed in more detail in Chapter 3. Once the terminal

CHAPTER 2. BACKGROUND AND RELATED WORK 9

has tuned into a transport stream, it receives the ESG bootstrap information from a well

known IP address advertised through PSI/SI tables encoded in the stream. With this

information the terminal can locate the IP stream carrying ESG information and start

receiving the information.

The ESG specification covers the ESG data model, ESG representation, ESG encapsula-

tion and ESG transport. We briefly describe the relevant sections of the ESG specification

below. The detailed description of the operations is available in the ESG standards [18, 24].

The ESG data model specifies a set of data structures that are instantiated to describe avail-

able service. It is specified based on the XML schema[49]. The XML schema specification

allows for consistency of the ESG data. ESG representation provisions the fragmentation of

ESG XML data into XML fragments which enables efficient representation and transport

of data, minimizing size of the metadata delivered to subscribers. The ESG encapsulation

process packs ESG XML fragments into containers of considerable size. The containers also

carry management information for processing the fragments.

The ESG data model provisions authentication mechanisms for levying service charges

to subscribers through the Purchase and the Purchase Channel Fragments. We note that

in our ESG server, we implement only four necessary types of ESG fragments - Service

Fragment, Content Fragment, Schedule Event Fragment and Acquisition Fragment. We

describe each of these fragments as follows:

• Service Fragment - The service fragment describes an IPDC service such as a tradi-

tional TV channel.

• Content Fragment - The content fragment contains metadata that describes the con-

tent independent of an instantiation of that content.

• Schedule Event Fragment - The schedule event fragment contains the broadcast time

of a scheduled item which is a content item of a service.

• Acquisition Fragment - The acquisition fragment contains information to access a

service. It specifies among others information displayed to the user such as component

characteristic, information relevant to the ESG application such as contentType and

Session Description used by the media player for initialization.

The DVB IPDC standard is undergoing revisions to include new features like on-demand

ESG through 3G networks (unicast as an option), a notification feature to deliver notification

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Table 2.1: List of implemented PSI/SI tables and their corresponding PIDs

Table PID

PAT (PatTable class) 0x0000

NIT (NitTable class) 0x0010

SDT (SdtTable class) 0x0011

PMT (PmtTable class) User Defined

INT (IntTable class) 0x0016

TDT (TdtTable class) 0x0014

information to terminals, and more advance interactivity features. The standard will be

ratified as DVB IPDC 2.0.

2.1.4 PSI/SI Tables overview

To support signaling of ESG information, we also developed the link layer signaling mecha-

nism of DVB-H as part of this project. The PSI tables enable a mobile device to demultiplex

the services available on a transport stream for viewing. The tables are structures segmented

into sections and inserted into TS packets, some with preassigned packet IDs (PID) and some

with user selectable PIDs. Of the tables implemented in our base station the values of Pids

are given in table 2.1. We implement two types of PSI tables mentioned below:

Program Association Table (PAT): PAT defines the correlation between the program

number and the PID of the TS packets carrying DVB service definitions. The program

number is a numeric label assigned to a DVB service.

Program Map Table (PMT): PMT associates program numbers and program elements

that comprise them.

Aside from this, we also implement four SI tables that we define below:

Network Information Table (NIT): NIT conveys information relating the physical or-

ganization of the transport stream and the DVB network itself.

IP/MAC Notification Table (INT): INT defines the location of IP streams on a given

network.

Service Description Table (SDT): SDT contains information that describes the services

available on the DVB network such as DVB service name, service provider information etc.

Time and Date Table (TDT): TDT transmitted in a single section informs the terminal

CHAPTER 2. BACKGROUND AND RELATED WORK 11

of the UTC-time and date at the server. The time is coded in the Modified Julian Date

format.

2.2 Related Work

This project is an extension to the mobile TV testbed developed by Hefeeda and Hsu [30].

The testbed is used for mobile TV research and implementing the ESG server and PSI/SI

link layer signaling allows for exploring further research problems. Some previous works

implement models or simulations of PSI/SI tables and ESG servers. Jokela et al [36] measure

metrics for efficient transmission of PSI/SI tables over the DVB-H network. The variations

in the PSI/SI tables including variations in network parameters and table section sizes are

achieved through simulations. They also present field measurements taken over a real DVB-

H network in the city of Turku in Finland. However, in this case, the PSI/SI tables were

not customized. Combining the observations from simulations and field measurements, the

authors conclude that when PSI/SI table transmission is optimized with respect to the

used network capacity and the impact of section sizes is considered, then using the smallest

section is not necessarily the best option. An optimal section size for efficient transmission

can be found.

Earlier, Oksanen et al [43] developed a mobile TV testbed in Tampere university in

Finland. This testbed was developed to establish the performance of DVB-H networks.

But, since it is not open source, the system does not provide avenues for customization at

the specification level for research work. Hsieh et al [32] developed a DVB-H middleware

which parses TS packets according to the DVB-IPDC specification to achieve interactive

multimedia services. The middleware, based on Java, interacts with the mobile terminal

and enables a voting server and interactive video-on-demand service. On the server end, the

middleware, parses the transport stream using information available in the PSI/SI packets

and also parses the ESG XMl data. Additionally, the middleware is able to detect the type

of data from the TS packets and calls corresponding modules to process video data or ESG

metadata.

Hammershøj et al. [27] developed components of a larger DVB-H mobile TV system. The

project is a collaborative work between Aalborg University and the Center for Communica-

tion, Media and Information Technologies. As part of this project, the authors developed

CHAPTER 2. BACKGROUND AND RELATED WORK 12

an IP encapsulator, encoder and an ESG server. The ESG server is based on the OMA

Broadcast standard [2] while the IP encapsulator is based on the Python-based open source

FATCAPS encapsulator. Our testbed replaces FATCAPS with a C++ based encapsula-

tor along with PSI/SI signaling developed in this project. This allows for configuration

consistencies while encoding transport streams.

Schatz et al [47] developed a hybrid mobile TV testbed for deploying a DVB-H based

mobile TV service with the backup of using 3G/UMTS cellular technologies. The authors

built an all-IP intermediary layer for bearer-agnostic multimedia transmission. This project

is validated on a WLAN network which may not create real life field scenarios for mobile

TV services.

Chapter 3

Design and Implementation of the

Proposed ESG Server

This chapter explains each of the elements of the overall system (depicted in figure 3.1).

The most important entities under the scope of this report are PSI/SI and ESG. We discuss

the details of the design of this system in Section 3.1 including the design for PSI/SI link

layer signaling and the ESG server design. In Section 3.2 we present our implementation

of the system based on the recommendations in [20]. Finally, in Section 3.3 we present the

validation of our system.

PSI/SI

DVB-H

ESG

ESG

Application

Service

Application

ESG

Bootstrap

ESG

Acquisition

ESG

Update

Figure 3.1: ESG Operations on a DVB-H based implementation [18]

DVB-IPDC does not specify the physical media since it was designed to be system

independent. In order to implement ESG on top of the DVB-H [14, 22] system, we had to

implement the PSI/SI tables [26, 25] in the DVB-H system for low level access to the IP

13

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER14

streams.

3.1 ESG Server Design

In the following subsections we describe the design of the PSI/SI tables in subsection 3.1.1

and the ESG server in subsection 3.1.2.

3.1.1 PSI/SI Tables

The PSI/SI tables were designed for the mobile TV testbed [30] project developed in the

Network Systems Lab in SFU. The classes for the PSI/SI tables were implemented as part

of the Transmitter module of the testbed. The Transmitter module in the testbed peri-

odically broadcasts the PSI/SI tables. The PSI/SI tables are managed by Psisi class as

a priority queue on next broadcast time, and Transmitter pops the next PSI/SI Table

whenever the air medium is idling, and that table is inserted back to the priority queue

with a new broadcast time after being broadcast. The class diagram for the Transmitter

module and the PSI/SI module designed as part of this project is shown in figure 3.2.

The broadcast times are obtained by the transmitter using the getNextPsisiTime method.

Psisi implements an initTables and an uninitTables methods to initialize and free the

priority queue tables.

To initialize the tables, Psisi reads a configuration file containing a mapping of the table

name with the corresponding transmission frequency and creates the table for mapping entry.

Once created these tables are then put into the priority queue tables in the order of next

nearest transmission time. Whenever Transmitter has no data to send, it calls getPsisiPkt

to find the PSI/SI packet that has the earliest transmission time. The Transmitter uses

the getNextPsisiTime method to find the transmission time of the PSI/SI packets. The

getPsisiPkt method also updates the next transmission time of the returned packets and

reinserts it back to the priority queue.

Several PSI/SI table variables are shared among all tables and thus are abstracted in

Table class, e.g., frequency indicates how often we need to broadcast this table, pid is a

unique identification number specified by standard documents, continuityCnt keeps track

of the continuity counter of this PSI/SI table, nextPktIdx points to the next TS packet to

be sent, and pkts are the packed TS packets. In addition to these common variables, Table

also implements CreatePktsmethod and updatemethod. The updatemethod synchronizes

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER15

Transmitter

m_DtDvc: DtDevice
m_DtOutp: DtOutpChannel
sentByte: long
startTime: long
elapsedTime: long
FifoSize: int
TxStarted: boolean
psisi: Psisi

initModulator(void): STATUS
initFile(String filename): STATUS
writebuf(char *data, int size): STATUS
writeBurst(Burst *burst): STATUS
writeNullPackets(long idleTime, long CurrentTime): STATUS
transmit(): STATUS

Psisi

tables: priority_queue<Table*, vector<Table*>, DereferenceMore>
startTdtTime: unsigned long long

initTables(Conf* conf): STATUS
uninitTables(): STATUS
getPsisiPkt(unsigned long long currentTime, time_t currentTdtTime): RawTsPacket*
getNextPsisiTime(): unsigned long long

RawTsPacket

data: char[188]

Table

name: String
frequency: int
pid: uint16_t
versionNumber: int
sectionNumber: int
lastSectionNumber: int
continuityCtr: unsigned char
pkts: vector<RawTsPacket*>
nextPktIdx: int
nextTime: unsigned long long
isTdt: bool
Header:char [TABLE_SECTION_SIZE]
crcTab:static unsigned long const [256]
TableSize:uint8_t

operator> (constant Table& rhs): boolean
compCrc32(): void
CreatePkts(int,Table*): STATUS = 0
update(Conf* conf): STATUS = 0

IntTable

platformId: uint32_t
associations: vector<IntAssociation*>

IntPack(): void

IntAssociation

videoIp: long
fec: boolean
frameSize: enum {ROWS256, ROWS12, ..., ROWS1024}
maxBurstDuration: uint16_t
maxAvgRate: enum {R16K, R32K, ... , R1024K}
networkId: uint8_t
transportStreamId: int
serviceId: uint16_t
componentTag: enum{NA=0x00}

NitTable

networkId: uint8_t
networkName: String
transportStreamId: int
intServiceId: uint16_t
platformId: uint32_t
languageCode: enum{ENG}
platformName: String
frequency: uint32_t
bandwidth: enum {MHZ5=3, MHZ6=2, MHZ7=1, MHZ8=0}
constellation: enum {QPSK=0, QAM16=1, QAM64=2}
hierarchy: enum {DISABLED=0}
codeRateHP: enum {CR2=0, CR3=1, CR4=2, CR6=3, CR4=4}
codeRateLP: enum {NA=0}
gurandInterval: enum {GI32=0, GI16=1, GI8=2, GI4=3}
transmitMode: enum {TK2K=0, TM8K=1, TM4K=2}

NitPack(): void

PatTable

transportStreamId: int
programs: vector<PatProgram*>

PatPack(): void

PatProgram

serviceId: uint16_t
programId: uint16_t

SdtTable

transportStreamId: int
networkId: uint8_t
services: vector<SdtService*>

SdtPack(): void

SdtService

serviceId: uint16_t
serviceType: enum{INT=0x80, DATA=0x0c}
serviceProviderName: String
serviceName: String

TdtTable

year: int
month: int
day: int
hour: int
minute: int
second: int

TdtPack(): void

PmtTable

programNumber: int
streamType: enum{TV=0x01, INT=0x80}
streamPid: uint16_t
broadcastId: enum{TV=0x0005, INT=0x000B}
idSelectorByte: char*

PmtPack(): void

contains

contains

contains

contains

contains

contains

Figure 3.2: Class diagram for transmitter.

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER16

PSI/SI table information with the settings in ConfMgr while the CreatePkts method creates

ts packets from the tables and stores them in the pkts vector in the Table class.

Although there are many more PSI/SI tables, we only implement six essential tables:

• Program Association Table (PAT).

• Program Map Table (PMT).

• Network Information Table (NIT).

• IP/MAC Notification Table (INT).

• Service Description Table (SDT).

• Time and Date Table (TDT).

Each PSI/SI table has a specified Pid and a tableId. The PSI/SI table packets are made

up of sections. A section is a syntactic structure used for mapping all the table information

into the ts packets. The tableId contained in each section defines the table to which the

section belongs. The Pid values mentioned in table 2.1 are used to create the TS packets

from the table sections. These sections are stored in the Header array of the Table class.

We further describe each table in sequence. PatTable realizes program association table,

which contains the transport stream id and a vector of PatProgram, where each PatProgram

contains the mapping between serviceId and programId. A Program is a concatenation

of one or more events controlled by the broadcaster e.g. news show, entertainment show.

PatTable lists all available programs and allows mobile devices to extract more detailed

program information from PmtTable. PmtTable implements program map table, which

gives the stream pid and stream type for each of the programs available in the network.

The stream pid is a unique identification number for each stream and stream type can be

either TV or control (INT) channel. With a pid value, mobile devices can identify and

reassemble all MPEG-2 TS packets of the same stream.

NitTable implements network information table. It contains all physical layer set-

tings of the broadcast network, such as network id, frequency, bandwidth, and modulation

scheme, among many others. This table is crucial for mobile devices to decode the received

radio signals. IntTable realizes IP/MAC notification table, which contains a vector of

IntAssociation instances. Among other flags, each IntAssociation instance associates

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER17

a link layer address with an IP address. More specifically, it maps service ids to destina-

tion IP addresses. The main purpose of IntTable is to inform mobile devices to wait at

particular IP addresses for broadcast streams. SdtTable implements service description

table, which contains a vector of SdtService instances. Each SdtService maps a service

id to a serviceProviderName and a serviceName, both are descriptive strings. TdtTable

realizes time and date table, which notifies mobile devices the current date and time at

the server side. Unlike all previous tables, TdtTable packets are frequently updated during

broadcasting.

Each PSI/SI table class also has its corresponding Pack function. The Pack function in

each table class determines the section 1 mapping of the table and segments the table data

into a contiguous stream of bits in network byte order which is required to put the data into

valid TS packets [35].

3.1.2 ESG Server

The ESG process flow may be broadly classified into three operations - Bootstrap, Acqui-

sition and Update as shown in figure 3.1. We briefly define each of these operations as

under:

• ESG Bootstrap - This operation informs the terminal about the available ESGs and

how to acquire them.

• ESG acquisition - This operation entails gathering and processing of ESG information

by the terminal.

• ESG update - The terminal updates the already acquired ESGs with the latest versions

received from the server in this operation.

We describe each of the above operations in the following subsections.

3.1.2.1 ESG Bootstrap

The ESG operations commence once the DVB-H receiver has been started and the terminal

has tuned in to a particular transport stream carrying IPDC services. The receiver terminal

1A section is a syntactic structure that is used for mapping each ITU-T Rec. H.222.0 — ISO/IEC 13818-1
defined PSI table into Transport Stream packets [35].

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER18

receives information about the ESG bootstrap stream from the PSI/SI tables (IP/MAC

Notification Table) which contain the well known IP address for the IP stream carrying the

bootstrap information. This stream contains two descriptors namely, ESGProviderDiscovery

Descriptor and ESGAccessDescriptor. The descriptors are delivered through a FLUTE ses-

sion with a well known IP address and port (220.0.23.14 for IPv4 and FF0X:0:0:0:0:0:0:12D

for IPv6 on port 9214) also indicated in the PSI/SI tables. The ESGProviderDiscovery

descriptor indicates the ESGs available from the providers on the given IP platform. The

user may use this descriptor to select the ESG to boot with. The ESGProviderDiscovery

descriptor is represented as a textual XML file. We provide the syntax of this descriptor in

listing. 3.1 and an example in listing 3.2. The ESGAccessDescriptor which is transported as

a binary file is a representation of ESG acquisition information related to ESGs indicated

in the ESGProviderDiscovery descriptor. The ESGAccessDescriptor is implemented by the

ESGAccessDescriptor class. We provide a class diagram for the class in Figure 3.3.

Listings 3.1: ESGProviderDiscovery Descriptor Syntax

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <schema targetNamespace ="urn:dvb:ipdc:esgbs :2005" xmlns:bs="

urn:dvb:ipdc:esgbs :2005" xmlns:mpeg7="urn:mpeg:mpeg7:

schema :2001" xmlns="http :// www.w3.org /2001/ XMLSchema"

elementFormDefault="qualified" attributeFormDefault ="

unqualified">

3 <import namespace="urn:mpeg:mpeg7:schema :2001" />

4 <complexType name="ESGProviderType ">

5 <sequence >

6 <element name="ProviderURI" type="anyURI"/>

7 <element name="ProviderName" type="mpeg7:TextualType"/

>

8 <element name="ProviderLogo" type="mpeg7:

TitleMediaType" minOccurs="0"/>

9 <element name="ProviderID" type="positiveInteger "/>

10 <element name="ProviderInformationURL" type="anyURI"

minOccurs="0"/>

11 <element name="PrivateAuxiliaryData " type="anyType"

minOccurs="0"/>

12 </sequence >

13 <attribute name="format" type="anyURI" use="optional"

default="urn:dvb:ipdc:esg :2005"/>

14 </complexType >

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER19

15 <element name="ESGProviderDiscovery ">

16 <complexType >

17 <sequence >

18 <element name="ServiceProvider " type="bs:

ESGProviderType " maxOccurs="unbounded"/>

19 </sequence >

20 </complexType >

21 </element >

22 </schema >

Listings 3.2: ESGProviderDiscovery Descriptor Example

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <ESGProviderDiscovery xmlns="urn:dvb:ipdc:esgbs :2005" xmlns:

mpeg7="urn:mpeg:mpeg7:schema :2001">

3 <ServiceProvider format="urn:oma:xml:bcast:sg:fragments

:1.0">

4 <ProviderURI >NSL Broadcast Service </ProviderURI >

5 <ProviderName >NSL Broadcast Service </ProviderName >

6 <ProviderID >1</ProviderID >

7 </ServiceProvider >

8 </ESGProviderDiscovery >

ESGAccessDescriptor

numESGEntry: uint16_t
entries: vector<ESGEntry *>

ESGAccessDescPack(): void

ESGEntry

version: uint8_t
multiSTransport: uint8_t
ip6: uint8_t
providerID: uint16_t
ESGSourceIP: uint32_t
ESGDestIP: uint32_t
port: uint16_t
tsi: uint16_t

Figure 3.3: Class diagram for ESGAccessDescriptor.

The ESG bootstrap information is transported over a fixed single stream using the

FLUTE protocol. Upon completion of the bootstrap process, the terminal acquires the

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER20

ESG as selected during the bootstrap operation. Once an ESG entry has been selected

by the terminal, the terminal examines the MultiStreamTransport field. We note that we

implement only a single transport flow for ESG and hence the value of this field should

be set to 0. This means that we do not define ESG session partitioning information which

is required for multistream transport. In the single stream mode, the ESG containers are

transported as Transport Objects (TO) in a single FLUTE session. These ESG containers

encapsulate ESG XML fragments as defined by the ESG data model described in chapter 2.

3.1.2.2 ESG Acquisition

ESG is transported in the form of XML fragments. Once the terminal has acquired the

bootstrap information, it is equipped with information required to acquire the ESG XML

fragments from the service provider. ESG fragments may be represented in three different

formats [18] namely, uncompressed, compressed with GZIP [8] or compressed with BiM [33].

In our implementation we support uncompressed fragments and fragments compressed with

GZIP. We now describe the processing operations required to transport ESG to the terminal

- ESG Representation and ESG Encapsulation. ESG Representation is the signaling process

of indicating which ESG fragments are transported in the current ESG session and in what

format. The ESG representation information is sent in the form of the ESG Init Message

which initializes the reception of ESG and is transported in the ESG Init Container in single

stream transport mode. We present the class diagram for the ESG Init Message in figure ??.

In the above figure, the indexingFlag indicates the availability of fragment indexes

which optimizes access to the set of fragments present in the current ESG. The DecoderInit

class in the ESG Init Message transmits information required for the initialization of decod-

ing or parsing of the ESG XML fragments. The structure of the DecoderInit class depends

on the encoding used for representation of the ESG XML fragments. We note that we use

the TextualDecoderInit implementation of the DecoderInit class in our ESG server as we

only support compressing the XML fragments in GZIP format. The TextualDecoderInit

class contains information about all ESGNamespacePrefix and ESGXMLFragmentType data

contained in the current ESG. The ESGXMLFragmentType announces the type of ESG XML

fragment as one of the types defined in table 3.1.

Since ESG data is transmitted in the form of independent XML fragments the frag-

ments are encapsulated into aggregated containers for efficient transport. Aggregating the

fragments into containers also enables efficient management including creation, update,

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER21

ESGInitMessage

encodingVer: enum {GZ = 0xF2, RX = 0xF3}
indexingFlag: uint8_t
decoderInitPtr: uint8_t
indexingVer: uint8_t
charEncoding: uint8_t
textualDecoderInit: DecoderInit

InitPack(): void

ESGEncapsulatedTextualXMLFragment

xmlFragType: uint16_t
dataLength: uint8_t
dataByte: uint8_t *

DecoderInit

version: uint8_t
length: uint32_t
numNamespacePrefixes: uint8_t
esgNamespacePrefix: vector <ESGNamespacePrefix *>
numFragTypes: uint16_t
esgXMLFragType: vector <ESGXMLFragmentType *>

DecodePack(): void

ESGNamespacePrefix

prefixStringPtr: uint16_t
namespaceURIPtr: uint16_t

ESGXMLFragmentType

xPathPtr: uint16_t
xmlFragType: uint16_t

contains

Figure 3.4: Class diagram for ESGRepresentation.

deletion and processing of the fragments. Each ESG fragment is encapsulated by the

ESGEncapsulatedTextualXMLFragment class. Once the fragments have been represented

in the form of the ESG textual XML fragment, they are put into containers before being

transported over the medium. Figure 3.5 represents the class diagram of ESG encapsulation.

We now describe the classes represented in the encapsulation process. The ESGContainer

class has a ESGContainerHeader that defines the number and type of structures carried in

the container and a data body that carries an ESG structure. The ESGContainerHeader

class stores the structures information in ascending order of StructType and StructId.

The valid values for StructType and StructId are shown in table 3.2.

One of the structures carried in the ESGContainer is the ESG fragment management in-

formation structure. The structure is represented in the ESGFragmentManagementInfo class

which encapsulates information about the identification of fragments carried in the current

container. The ESGEncapsulationHeader class contains information about the format and

interpretation of the fragRef field of the ESGEncapsulationEntry class. In our implementa-

tion, the only accepted value for the fragMgmtRefFmt field in the ESGEncapsulationHeader

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER22

Table 3.1: List of values for xmlFragType for different ESG XML Fragments.

Value ESG XML Fragment Type

0x0020 esg:ESGMain Fragment

0x0021 esg:Content Fragment

0x0022 esg:ScheduleEvent Fragment

0x0023 esg:Service Fragment

0x0024 esg:ServiceBundle Fragment

0x0025 esg:Acquisition fragment

0x0026 esg:PurchaseChannel Fragment

Table 3.2: Structure types ContType and their valid structure IDs ContId.

Structure Type Structure ID Description

0x01 0x00 Fragment Management Information

0x02 0x00 Data Repository of type String

0x03 0x0 to 0xFF Reserved

0x04 0x0 to 0xFE Used to identify a specific instance of an index
structure, within a container

0x05 0x0 to 0xFE Used to identify a specific instance of an multi-filed
sub-index structure, within a container.

0xE0 0x00 ESG Data Repository

0xE1 0xFF ESG Session Partition Declaration

0xE2 0x00 ESG Init Message

class is 0x21 indicating a generic ESG fragment reference. This fragment reference is rep-

resented by the ESGFragmentReference class. The ESGFragmentReference class contains

the fragType field indicating the type of the fragment and the offset of the referenced

fragment from the start of the ESGDataRepository. We only support encapsulated ESG

XML fragments and so the only valid value for fragType is 0x00 citeDVBIPDCESG. The

ESGFragmentManagementInfo class also defines a vector of ESGEncapsulationEntry ob-

jects. Each of these objects contain a pointer to an ESGFragmentReference object. The

ESGEncapsulationEntry class also contains fragVer and fragId fields. A increment in

the fragVer field within an ESG session indicates that the XML fragment being referred to

by the current entry is being updated. The fragId field uniquely identifies an ESG XML

fragment within an ESG fragment stream. The vector ESGEncapEntry are sorted in the

order of ascending fragId to enable efficient location of the fragment by the terminal. The

ESG encapsulation process also includes the ESGDataRepository class which carries the

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER23

actual ESG XML fragments. In our implementation, the ESGDataRepository contains an

object of the ESGEncapsulatedTextualXMLFragment class (defined in figure 3.4) since we

support only textual or GZipped XML fragments.

ESGContainer

ESGContHdr: ESGContainerHeader *
ESGContBodyPtr: uint32_t *
ESGContBodyLen: uint32_t

ESGContFDTPack(): void

ESGContainerHeader

numStruct: uint8_t
ESGContStructList: vector <ESGContainerStruct *>

ESGContainerStructure

StructType: uint8_t
StructId: uint8_t
StructPtr: uint32_t
StructLen: uint32_t
Data: void *

ESGDataRepository

Length: uint32_t
Data: uint8_t *

ESGFragmentManagementInformation

ESGEncapHdr: ESGEncapsulationHeader *
ESGEncapEntry: vector<ESGEncapsulationEntry *>

ESGFragmgmtPack(): void

ESGEncapsulationEntry

fragRef: ESGFragmentReference *
fragVer: uint8_t
fragId: uint32_t

ESGEncapsulationHeader

fragMgmtRefFmt: uint8_t

ESGFragmentReference

fragType: uint8_t
dataRepoffset: uint8_t

Figure 3.5: Class diagram for ESG Encapsulation.

Finally, the containers of encapsulated ESG data are transported as files in Transport

Objects (TO) over FLUTE sessions [17, 44]. ESG containers may be transported in multi-

ple FLUTE sessions distributed over several transport flows when using the multiple stream

mode transport mechanism. We implement single stream mode ESG transport. The signal-

ing of ESG containers in FLUTE sessions is dependent on the fields in the File Delivery Table

(FDT) specifications. FDTs carry information like the location, version and encoding of the

containers. For example, to indicate files as ESG containers the attribute Content-Type

is set to application/vnd.dvb.esgcontainer and to indicate that the container has been

compressed using GZIP the Content-Encoding attribute is set to gzip. An ESG container

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER24

is identified by the container ID which is a unique value in a given ESG fragment stream.

This container ID is used to form the unique URI of the form <context>:<Container

textunderscore ID> where the “<context>” tag is replaced by “urn:dvb:ipdc:esg:cid”.

An example, URI used in our implementation looks like the following:

urn:dvb:ipdc:esg:cid:23

An example of FDT used to initiate ESG bootstrap is shown in listing 3.3. FDTs for

other ESG containers carrying ESG XML fragments are defined similarly.

Listings 3.3: FDT used to initiate the ESG bootstrap session.

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <FDT -Instance xmlns="urn:dvb:ipdc:cdp:flute:fdt :2005"

Expires="4294967295" xmlns:ef="urn:dvb:ipdc:

esg_flute_extension :2005" ef:FullFDT="true">

3 <File Content -Length="19" Content -Location="

ESGAccessDescriptor.bin" Content -Type="application/vnd.

dvb.ipdcesgaccess" TOI="16777279" Transfer -Length="19"/

>

4 <File Content -Length="430" Content -Location="

ESGProviderDiscovery .xml" Content -Type="text/xml" TOI="

16777280" Transfer -Length="430"/>

5 </FDT -Instance >

3.1.2.3 ESG Update

The URI defined in the previous subsection is the unique identifier for a file carrying an

ESG container and is defined as the value of the Content-Location field in the FDT. The

versioning information of the file is inferred by mapping the unique Content-Location URI

to the Transport Object Identifier (TOI) using the FDT. A receiver terminal may receive

the same file with multiple TOI values and in such a case, the terminal uses the file with

the highest TOI value. The high TOI value signals that the file with that TOI value is the

latest version. For updating ESG fragments, the ESG fragment indexing structure may be

used to efficiently update individual ESG fragments when updates are available on them.

We summarize the ESG process flow and usage of PSI/SI tables to retrieve ESG infor-

mation at a receiver terminal below:

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER25

1. Receiver terminal retrieves NIT table from the TS. The terminal looks for descriptor tag

value of 0x4a when parsing the network descriptors to look for the A value of 0x0B

against the linkageType field in the linkage descriptor in NIT indicates that an

INT is present in the current stream. The service id (for example, say 0x2BBB)

in NIT identifies INT. This service id in SI corresponds to the program number

in PSI. The receiver then looks up this program number in PAT to determine the

corresponding PMT PID for INT.

2. From PMT, the receiver verifies whether the values of stream type and data broadcast id

are 0x05 and 0x000B respectively. The presence of these values indicate that the PMT

corresponds to INT. The elementary pid indicates the PID of the elementary stream

carrying INT. The receiver retrieves the INT by looking for table id 0x4C in the

elementary stream.

3. Once the INT is available, the receiver then looks for the IP address 224.0.23.14 in the

target descriptor to find the service id of the stream in the operational descriptor.

In our implementation this service id is 0x0555. This service id is used by the

receiver to look up the corresponding PMT PID in the PAT.

4. In the PMT, if the stream type is 0x90 and the data broadcast id is 0x0005, the

PMT indicates an MPE section. The IP address above signals the ESG Bootstrap

service. The elementary pid in this PMT indicates the ESG Bootstrap service. The

receiver then extracts the ESG Bootstrap service from the TS.

5. Once the ESG Bootstrap has been retrieved, the receiver uses the TOI to retrieve

the two bootstrap files, ESGAccessDescriptor.bin and ESGProviderDiscover.xml.

From these two files, the receiver obtains the Transport Session Identifier (TSI) and

uses the TOI value of 0 to get the FDTs for ESG containers transported over FLUTE.

6. The FDT may contain different types of files like GZip type ESG data files, SDP files,

JPEG images or video files. The image and video files are used for presenting event

information to the user in an attractive manner. We implemented four ESG data

models in our testbed - Content fragment, Schedule Event fragment, Service fragment

and Acquisition fragment.

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER26

7. Content, Schedule Event and Service fragments are used to present program and ser-

vice information like program names, program synopsis, program start time, program

end time, service language and so on in human readable format. The Acquisition

fragment provides content access information. It indicates among others the content

type and SDP information. We transport the SDP [28] inline, it can be carried in a

separate file and pointed to via SDP URI.

8. The value of the attribute c in the SDP file indicates a multicast IP address. This is

the destination address and is indicated in a target descriptor in the INT. This INT

entry is used to obtain the service id which is then used to look up the PMT PID from

the PAT. The IP stream can thus be retrieved using the elementary pid obtained

from PMT.

3.2 ESG Server Implementation

In this section, we list and describe important sections of the implementation of PSI/SI

tables and ESG server implementation. We list only a few code excerpts for reasons of

brevity.

3.2.1 PSI/SI Tables Implementation

The design for PSI/SI tables implementation is shown in figure 3.2. We implemented the

seven major classes for PSI/SI tables. These classes are summarized in table 3.3 along with

their purpose.

The Network Information Table is a System Information (SI) table that communicates

the IP stream parameters and the physical network parameters like code rate, frequency,

bandwidth etc. It has a PID value of 0x0010 as indicated in table 2.1 and a table ID value

of 0x40. As mentioned earlier, the terminal becomes aware of a presence of an IP/MAC

Notification Table (INT) and IP streams carrying different services using the linkage descrip-

tor defined in this table. In our implementation the network parameters are configurable

and the user may enter desired values into an XML configuration file. The parameters

are read from the XML file and populated into PSI/SI tables fields. NIT is the first table

to be accessed and processed by a terminal in the DVB-H process flow. A code fragment

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER27

Table 3.3: Table describing the seven major classes used to implement PSI/SI tables

Class Name Purpose

Psisi Initiate and un-initiate priority queues for storing PSI/SI tables. The
subclass Table also creates raw TS packets to be put in the transport
stream delivered to terminals.

PmtTable Implements the Program Map Table. Objects of this class are mapped
to programs using the programNumber field by the PatTable class.

PatTable Implements the Program Association Table. Associates a vector of
Patprogram to available PmtTable objects.

TdtTable Implements the Time and Date Table notifying terminals of current time
and date on the server.

SdtTable Implements the Service Description Table and maps service definitions
to program definitions on the platform.

IntTable Implements the IP/MAC Notification Table and maps serviceId to IP
addresses of video streams.

NitTable Implements the Network Information Table. The NIT carries informa-
tion about the physical attributes of the network carrying the transport
streams.

for populating the NIT with configuration parameters is shown in listing 3.4. The non-

configurable parameters are populated as per the recommendations of the document ETSI

TS 102 470 [25]. Once the parameters have been populated, the tables are prepared for net-

work transmission. As mentioned in subsection 3.1.1, each table class has a corresponding

Pack function. The Pack function converts the values populated in each table into network

byte order for transmission.

Listings 3.4: Network Information Table attribute population.

1 networkId = mtv.cfg_mgr ->getNetworkId ();// should show 0

x66 in the TS for current stream;

2 networkName = mtv.cfg_mgr ->getNetworkName ();

3 serviceId = mtv.cfg_mgr ->getServiceId (); // for INT.

4 platformId = mtv.cfg_mgr ->getPlatformId ();// should show 0

x66 for current stream

5 languageCode = ((lgI=lg.find(mtv.cfg_mgr ->getLanguage ()))->

second);//en

6 platformName = mtv.cfg_mgr ->getPlatformName (); // SYTE -MTV -5

7 frequency = mtv.cfg_mgr ->getCarrierFrequency ();//690 MHz;

8 bandwidth = (Bandwidth)mtv.cfg_mgr ->getBandwidth ();//MHZ8

;

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER28

9 constellation= ((constlI=constl.find(mtv.cfg_mgr ->

getConstellation ()))->second);

10 hierarchy = ((hierI=hier.find(mtv.cfg_mgr ->getHierarchy ()

))->second); // DISABLED;

11 codeRateHP = (CodeRateHP)mtv.cfg_mgr ->getCodeRateHP (); //

CR4;

12 codeRateLP = (CodeRateLP)mtv.cfg_mgr ->getCodeRateLP (); //

NAR;

13 guardInterval= (GuardInterval)mtv.cfg_mgr ->getGuardInterval

(); //GI8;

14 transmitMode = ((trnsMI=trnsM.find(mtv.cfg_mgr ->

getTransmitMode ()))->second); //TM8K;

15 transportStreamId = mtv.cfg_mgr ->getTransportStreamId ();//

should 1001 for current stream;

An excerpt from PMTPack() function is shown in listing 3.5. In the listing, the vector

IntAssociation contains entries of the platform descriptor loop which contains the target

descriptor loop and the operational descriptor loop. The target descriptor loop defines

IP/MAC addresses of devices while the operational loop defines the actions to be performed

on them. The mask values used to convert each field into the network byte order were

decided from the size definitions of each field as specified in [22, 26, 25].

Listings 3.5: IP/MAC Notification Table Pack function.

1 for (vector <IntAssociation *>:: iterator iter = associations.

begin ();iter!= associations .end();iter ++) {

2 Ip = ((* iter)->GetVideoIp ());

3 fec = ((* iter)->GetFec ());

4 fSz = (uint8_t)((* iter)->GetFramesize ());

5 // Target desc loop

6 Table :: Header[headidx] = (((0x00 <<4)&0xf0)| ((

targetDescLoopLen >>8)&0x0f));

7 Table :: Header [(headidx +1)] = (targetDescLoopLen & 0xff);

8 Table :: Header [(headidx +2)] = (targetIPSlashDescTag & 0xff)

; // Target IP Slash desc tag

9 Table :: Header [(headidx +3)] = (targetIPSlashDescLen & 0xff)

; // Target IP Slash desc length

10 memcpy(Table :: Header+headidx +4,&Ip ,4); //Ip address

11 Table :: Header [(headidx +8)] = (0x14&0xff); //Ip mask

12 // Operation desc loop

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER29

13 Table :: Header [(headidx +9)] = (((0x00 <<4)&0xf0) | ((

operationDescLoopLen >>8)&0x0f));

14 Table :: Header [(headidx +10)]= (operationDescLoopLen & 0xff)

;

15 Table :: Header [(headidx +11)]= (timeslicefecdescTag &0xff);

//Time slice fec desc tag

16 Table :: Header [(headidx +12)]= (timeslicefecdescLen &0xff);

//Time slice fec desc len

17 Table :: Header [(headidx +13)]= (((0x01 <<7)&0x80)| ((fec <<5)

&0x60) | ((0x03 <<3)&0x18) | (fSz&0x07)); //Time slicing

used | fec |reserved |

18 Table :: Header [(headidx +14)]= (((* iter)->GetMaxDuration ())

&0xff);

19 Table :: Header [(headidx +15)]= (((((* iter)->GetMaxAvgRate ())

<<4)&0xf0) | (0x00&0x0f)); //Avg Rate | time slice fec

id

20 //IP MAC stream loc desc

21 Table :: Header [(headidx +16)]= (IPMACstreamlocdescT &0xff);

//Desc tag

22 Table :: Header [(headidx +17)]= (IPMACstreamlocdescL &0xff);

//Desc len

23 Table :: Header [(headidx +18)]= ((((* iter)->GetNetworkId ())

>>8)&0xff);

24 Table :: Header [(headidx +19)]= (((* iter)->GetNetworkId ()) &

0xff);

25 Table :: Header [(headidx +20)]= ((0 x01 >>8)&0xff); // Original

network ID: Since the requests generated in the same

network in the lab.

26 Table :: Header [(headidx +21)]= (0x01 & 0xff);

27 Table :: Header [(headidx +22)]= (((mtv.cfg_mgr ->

getTransportStreamId ()) >>8) & 0xff);

28 Table :: Header [(headidx +23)]= ((mtv.cfg_mgr ->

getTransportStreamId ()) & 0xff);

29 Table :: Header [(headidx +24)]= ((((* iter)->GetSId ()) >>8)&0

xff);// service ID

30 Table :: Header [(headidx +25)]= (((* iter)->GetSId ())&0xff);

31 Table :: Header [(headidx +26)]= (((* iter)->GetComponentTag ())

& 0xff);

32 headidx += 27;

33 }

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER30

The creation of the PSI/SI tables is initiated in the init function of the Psisi class. The

init functions read the PSIMAP file which contains a mapping that associates a PSIS/SI

table name with its transmission frequency. The transmission frequency is used to decide

the priority order of each table in the priority queue. The structure Mtv::DereferenceMore

(not shown in this document) acts as the comparison class for the Table objects stored in

the tables priority queue. The Table objects are packed into 188 byte raw TS packets [35]

and then placed in the priority queue. The Psisi::init function is shown in listing 3.6.

Listings 3.6: Psisi::init() function initiating the creation of PSI/SI tables.

1 // PSI/SI tables initialization function

2 void Psisi :: initTables () {

3 std:: string line;

4 std:: ifstream in(PSIMAP); // PSIMAP contains table names

and table IDs and frequency of transmission of each

table.

5 while(std:: getline(in, line)) {

6 if (!line.empty ()) {

7 string :: size_type pos = line.find_first_of(":", 0); //

each line has two item separated by :

8 int freq = atoi(line.substr(0, pos).c_str ());

9 string tablename = line.substr(pos + 1);

10 LOG_DEBUG("*PSISI Map information: READ: %s |

Frequency :%d from tablename :%s",line.c_str (),freq ,

tablename.c_str ());

11 Table* table = new Table(freq , tablename);

12 if (table == NULL) {

13 LOG_WARN1("Unable to allocate table , exiting program

");

14 exit(-1);

15 }

16 tables.push(table);

17 LOG_DEBUG("Added table: %s, current tables size: %d",

tablename.c_str (), tables.size());

18 }

19 }

20 }

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER31

3.2.2 ESG Server Implementation

In this subsection we describe the implementation of ESG server. As discussed in subsec-

tion 3.1.2.1 the bootstrap process initiates the ESG session on a terminal. Two kinds of

bootstrap descriptors are signaled to the terminal. The ESGProviderDiscovery descriptor

is transmitted in an XML file as shown in listing 3.2. The ESGAccessDescriptor however, is

transmitted as a binary file encoded in the network byte order. The ESGAccessDescriptor

class defines ESGAccessDescPack() function to perform the encoding. Listing 3.7 shows

the descriptor loop of ESGAccessDescPack() function that encodes each ESGEntry into

entries vector containing entries for ESGs transmitted (class diagram shown in figure 3.3).

The AccessDescCont is a character array holding byte chunks of ESGs defined and trans-

mitted by the server.

Listings 3.7: ESGAccessDescPack() function defined in ESGAccessDescriptor class.

1 for (vector <ESGEntry *>:: iterator iter = entries.begin ();

iter!= entries.end();iter ++) {

2

3 AccessDescCont[headidx] = (version & 0xff);

4 AccessDescCont [(headidx +1)] = (entryLength & 0xff);

5 AccessDescCont [(headidx +2)] = (((multiSTransport << 7) & 0

x80) | ((ip6 << 6) & 0x40) | 0x00 & 0x3f); //Multi

Stream Transport | IPv6 | Reserved

6 AccessDescCont [(headidx +3)] = ((providerID >> 8) & 0xff);

// Provider ID

7 AccessDescCont [(headidx +4)] = (providerID & 0xff);

8 memcpy(AccessDescCont+headidx +4,& ESGSourceIP ,4); //

Currently we only support IPv4 addresses

9 memcpy(AccessDescCont+headidx +8,&ESGDestIP ,4); // Currently

we only support IPv4 addresses

10 AccessDescCont [(headidx +12)] = ((port >> 8) & 0xff);

11 AccessDescCont [(headidx +13)] = (port & 0xff);

12 AccessDescCont [(headidx +14)] = ((tsi >> 8) & 0xff);

13 AccessDescCont [(headidx +15)] = (tsi & 0xff);

14 headidx += 16;

15 }

Listing 3.8 shows an excerpt from ESGContFDTPack() function defined in ESGContainer

class. This function packs the ESG representation information from the ESGInitMessage

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER32

class and different data structures defined in the ESG encapsulation class diagram in fig-

ure 3.5. The data from this function is encapsulated in the ESGDataRepository class and

transferred to the FLUTE application. We use a customized version MAD-FLUTE [42]

application for transfer of ESG files over the FLUTE protocol. The customizations to

MAD-FLUTE like adapting MAD-FLUTE to support DVB-IPDC and disabling of conges-

tion control function was done as part of a previous work [40]. The listing below is an

implementation of the parameters described in table 3.2.

Listings 3.8: Excerpt from ESGContFDTPack() function defined in ESGContainer class

1 if (StructType == 0x01 && StructId == 0x00)

2 StructPtr = (void *) fragManInfo; // fragManInfo is a

pointer to an object of

ESGFragmentManagementInformation class.

3 else if (StructType == 0x02 && StructId == 0x00); // TV

anytime specification related

4 else if (StructType == 0x03); // Reserved

5 else if (StructType == 0x04); // Not required in this

implementation

6 else if (StructType == 0x05); // Not required in this

implementation

7 else if (StructType == 0xE0 && StructId == 0x00)

8 StructPtr = (void*) dataRepo; // dataRepo is a pointer to

an object of ESGDataRepository

9 else if (StructType == 0xE1 && StructId == 0xFF)

10 StructPtr = (void*) sessPart; // Since we implement a

single stream mode of transport , this variable is a

dummy.

11 else if (StructType == 0xE2 && StructId == 0x00)

12 StructPtr = (void *) initMessage; // initMessage is a

pointer to an object of the ESGInitMessage class that

carries the ESG representation information.

3.3 ESG Server Validation

We use several tools to validate the ESG server. The litmus test though, is the trial run

of the ESG server software on the mobile TV testbed. In our testbed, we broadcast the

transport streams using low cost DVB-H antennas and use real cell phones (Nokia N96)

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER33

with DVB-H receivers to validate the stream. Our apparatus for creating a real DVB-H

network is shown in Figure 3.6.

Transmitting Antenna

Receiver

Phone

Nokia N92
Low Power
Amplifier

Linux Base Station

USB Signal

Analyzer Interface

Receiver Workstation

Receiving Antenna

Data AnalyzerNokia N96 Phones

Web Interface for Base Station

Figure 3.6: DVB-H testbed apparatus.

Conventional software testing methods with testing metrics are difficult to implement on

our system. We devised two distinct methods of validating our implementation. An offline

method where we generate a TS file from DVB-H stream and analyze the file using DVB-H

analysis tools to verify the parameters of our ESG server. In this method, we also validate

our system through an online analysis tool using which we capture a live DVH-H stream

broadcasted from our local base station and analyze the stream in real time to verify our

ESG implementation.

In the offline method, we begin by testing the creation of the valid PSI/SI tables. To

validate the PSI/SI tables, we create a transport stream (TS) file from the DVB-H stream

carrying ESG and service information. We then analyze this file with a DVB-H analyzer

software. We verify the TS file with dvbSAM [11] analyzer software which verifies if the

given TS file is valid. If the TS file is not valid, dvbSAM does not process the TS file.

Implementation errors with PSI/SI tables or invalid values in any of the PSI/SI tables are

caught at this stage. Once it is established that the TS file has no errors, we validate the

service and program specific information encoded in the TS file against the configuration

parameters specified in the configuration file. This is done with an open source Java based

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER34

analyzer DVB Inspector [10].

In the online method or testing our software, we generate real DVB-H signals using the

apparatus shown in figure 3.6. We generate the DVB-H transport stream on the Linux base

station, use the transmitting antenna and the low power amplifier to tranmit the signals.

We then use a Nokia N96 phone that has a built-in DVB-H receiver to receive the transport

stream transmitted from our base station. Using this phone, we’re able to tune into services

and use the transmitted ESG generated by our ESG server implementation to select and

view channels. Using the phone replicates a real life field scenario where a user tunes into

a multiple channel mobile TV service. Using the phone however, limits the analysis of

the signals transmitted. In our testbed apparatus, we also have a receiving antenna which

captures the signals transmitted by the base station. These captured signals then pass

through an analyzer hardware and software, Divicatch RF-T/H[9]. The analyzer software

allows us to visualize the transport stream data in several different ways. The analyzer

shows the bursts as they are sent over the network. A screenshot of DVB-H bursts is

shown in figure 3.8. In the figure, the green bars represent bursts of transport stream being

broadcasted. We note that there are four available services seen in the four rows of bursts in

the figure. The bursts in the first row represent ESG information and are thus thinner than

the other three rows which represent mulimedia content bursts. Also, the services generated

by our base station in the transport stream multiplexes the mulimedia channels and hence

the bursts in the third and fourth rows are aligned. The color of the green bars indicates

that the bursts have no errors. Bursts with errors are seen with yellow and red bars varying

with the recoverability of the error.

We vary the configuration of the parameters in the PSI tables and use DVB Inspector to

verify the changes are reflected in the TS file. For example, we vary the PIDs of programs

and figure 3.7 shows this variation. In figure 3.7(b) we see that the included programs have

serviceId (also referred to as the program number) ranging from 133 through 136 for the four

available programs (the programs with serviceId 137 and 138 relate to ESG information)

and in figure 3.7(a) we note that there are three programs with serviceId ranging from

512 through 514 (the programs with serviceId 771 and 772 relate to ESG information). It

is possible to verify the values of parameters transmitted in PSI/SI tables with both the

Divicatch analyzer as well as DVB Inspector. While Divicatch captures data from a live

broadcast stream, DVB Inspector can only verify transport stream files. We verify the

transport stream in both applications. Figure 3.7 shows screenshots of PSI/SI tables as

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER35

(a) PMT on DVB Inspector (b) INT on Divicatch

Figure 3.7: PSI/SI tables validation

seen on Divicatch and DVB Inspector respectively. We note that there are seven programs

listed under PMT in the screenshot from DVB Inspector. The last program on the list with

program number 0xFDE8 indicates that there is an INT in the given stream. The fifth

stream with program number 0x89 is the ESG bootstrap stream while the sixth program

with program number 0x8A is the ESG stream. Figures 3.7(a) and 3.7(b) are screenshots

taken during distinct tests visualizing distinct TS files. Of the remaining four programs

three programs with PIDs 513, 514 and 512 are visible as services in figure 3.7. The burst

row with PID 256 in the figure represents the ESG bootstrap stream.

The Divicatch software can validate ESG information as well. Figure 3.9 shows the ESG

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER36

Figure 3.8: DVB-H bursts on Divicatch RF-T/H analyzer

channel received by the analyzer on the broadcast network. As it can be seen in the figure,

the ESG type is chosen as IPDC. Once the correct ESG standard is chosen, the analyzer

is able to identify the IP platform on the current stream that carries the ESG. Listening

at the well known port number and the IP from bootstrap, the analyzer starts receiving

the ESG information. On a successful bootstrap, the button against Bootstrap state field

in the figure turns green. In the message flow window, the bootstrap files are indicated

while the ESG service providers window reads information from the ESG XML files. At

the analysis level, receiving the ESG XML files concludes the verification of our ESG server

implementation. Beyond this point, to verify that the ESG XML files are transmitted in the

right format, we use the Nokia N96 phone to view the available channel information after

tuning into the available DVB-H signals in our lab (generated by our base station). After

tuning into the broadcast, we verify that the phone is able to select and view multimedia

content served through the available channels. The visibility of different channels on the

phone validates the implementation of the ESG server in the context of representation. The

CHAPTER 3. DESIGN AND IMPLEMENTATIONOF THE PROPOSED ESG SERVER37

ability to tune in to each channel validates the implementation of the ESG server at the

system level and verifies that the correct transmission of PSI/SI tables.

Figure 3.9: ESG information from transport stream on Divicatch RF-T/H analyzer

Chapter 4

Conclusion

In this chapter, we first summarize the contributions of this project. Then, we describe

some future extensions of this work.

4.1 Conclusions

We designed and implemented a C++ based Electronic Service Guide server for mobile

TV testbed based on DVB-H. We followed the DVB-IPDC standard for designing our ESG

server as it has provisions to operate over any IP based multimedia delivery mechanism.

IPDC also has provisions for collaborative delivery of multimedia with cellular technologies

like 3G/UMTS. In order to implement ESG server over DVB-H, it is also required to im-

plement the link layer signaling mechanism for DVB-H namely, PSI/SI tables. The testbed

originally integrates python based open source to implement PSI/SI tables. PSI/SI tables

implemented as part of this project are designed to interface with uniform and consistent

program configurations on the testbed and ESG server. The PSI/SI tables and ESG server

are used in combination by a mobile terminal receiving multimedia streams to present TV

programming information including descriptions and schedules to the user and to obtain

physical network parameters to tune into available services.

We validated our implementation using several verification tools to ensure error free

delivery of transport stream. We used our live mobile TV testbed apparatus to reproduce

real life field scenarios to verify our implementation. When running the system with our

low power antennas, we were able to get consistent programming information on the mobile

terminal (Nokia N96 phone) as configured in the ESG server. We used online USB based

38

CHAPTER 4. CONCLUSION 39

transport stream analyzers as well as offline analyzers to monitor errors in the implementa-

tion. This implementation provides an easy to configure, consistent end-to-end mobile TV

testbed.

4.2 Future Work

The work in this project can be extended in several directions. Some of them are summarized

below:

• Hybrid delivery mechanisms are an attractive avenue considering the exponentially

increasing video traffic on mobile devices. Because this project uses the DVB-IPDC

specification, extensions to this project can be used to experiment with collaborative

delivery of mobile video using DVB-H along with 3G/UMTS, LTE, WiMAX or other

network technologies.

• With the ratification of the DVB-IPDC 2.0 standard, this work can be extended to

implement additional features like interactive on demand services over unicast and

provisions for sending notifications to terminals.

• A similar implementation of an ATSC [4] based mobile TV testbed can be designed

and implemented based on the design of this project.

• A larger multiple technology testbed that can choose different network technologies

from a list and test compatibility of unicast and broadcast networks can also be de-

veloped as an extension to this work.

Bibliography

[1] CMMB technology overview, 2009.

[2] Open Mobile Alliance. Service Guide for Mobile Broadcast Services: v1.0, February
2009.

[3] Association of Radio Industries and Businesses (ARIB); Transmission System for Dig-
ital Satellite Broadcasting:ARIB STD–B20, May 2001.

[4] Advanced Television Systems Committee (ATSC); ATSC–Mobile DTV Standard, Part
1 ATSC Mobile Digital Television System, June 2011.

[5] Hsin-Ta Chiao, Chi-Te Tseng, Jhih-Wei Jiang, and Hsin-An Hou. Hybrid streaming
delivery over DVB-H broadcast and WiMAX mobile networks. In Wireless and Mobile
Computing, Networking and Communications (WiMob), 2010 IEEE 6th International
Conference on, pages 398 –405, oct. 2010.

[6] S. Cho, G. Lee, B. Bae, K. Yang, C. Ahn, S. Lee, and C. Ahn. System and services
of Terrestrial Digital Multimedia Broadcasting (T-DMB). In IEEE Transactions on
Broadcasting, 53(1):171178, March 2007.

[7] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2011 – 2016, February 2012.

[8] P. Deutsch. GZIP file format specification version 4.3. RFC 1952 (Informational), may
1996.

[9] Divi Catch RF-T/H transport stream analyzer, http://www.enensys.com/, 2009.

[10] DVB Inspector v0.0.3, http://www.digitalekabeltelevisie.nl/dvb inspector/, 2011.

[11] dvbSAM Standard Edition v5.0, www.decontis.com, 2011.

[12] Digital Video Broadcasting (DVB); Framing Structure, channel coding and modulation
for Satellite Services to Handheld devices (SH) below 3 GHz. European Telecommuni-
cations Standards Institute (ETSI) Standard EN 302 583 Ver. 1.1.2, February.

40

BIBLIOGRAPHY 41

[13] Digital Video Broadcasting (DVB); DVB framing structure, channel coding and modu-
lation for digital terrestrial television. European Telecommunications Standards Insti-
tute (ETSI) Standard EN 300 744 Ver. 1.5.1, June 2004.

[14] Digital Video Broadcasting (DVB); Transmission System for Handheld Terminals
(DVB-H). European Telecommunications Standards Institute (ETSI) Standard EN 302
304 Ver. 1.1.1, November 2004.

[15] Digital Audio Broadcasting (DAB); Radio Broadcasting Systems; Digital Audio Broad-
casting (DAB) to mobile, portable and fixed receivers, European Telecommunications
Standards Institute (ETSI) Standard EN 302 401 Ver. 1.4.1, January 2006.

[16] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Architecture. European
Telecommunications Standards Institute (ETSI) Standard EN 102 69 Ver. 1.1.1, May
2006.

[17] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content Delivery Proto-
col. European Telecommunications Standards Institute (ETSI) Standard EN 102 472
Ver. 1.1.1, November 2006.

[18] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Electronic Service Guide
(ESG). European Telecommunications Standards Institute (ETSI) Standard EN 102
471 Ver. 1.2.1, November 2006.

[19] Digital Video Broadcasting (DVB); DVB-H Implementation Guidelines. European
Telecommunications Standards Institute (ETSI) Standard EN 102 377 Ver. 1.3.1, May
2007.

[20] Digital Video Broadcasting (DVB); IPDC over DVB-H: Electronic Service Guide (ESG)
Implementation Guidelines. European Telecommunications Standards Institute (ETSI)
Standard EN 102 592 Ver. 1.1.1, October 2007.

[21] Broadcast and On-line Services: Search, select, and rightful use of content on personal
storage systems (”TV-Anytime”); Part 3: Metadata; Sub-part 2: System aspects in a
uni-directional environment. European Telecommunications Standards Institute (ETSI)
Standard TS 102 822-3-2 Ver. 1.5.1, May 2009.

[22] Digital Video Broadcasting (DVB); DVB Specification for Data Broadcasting. Euro-
pean Telecommunications Standards Institute (ETSI) Standard EN 301 192 Ver. 1.5.1,
November 2009.

[23] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content Delivery Proto-
col. European Telecommunications Standards Institute (ETSI) Standard EN 102 472
Ver. 1.3.1, June 2009.

BIBLIOGRAPHY 42

[24] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Electronic Service Guide
(ESG). European Telecommunications Standards Institute (ETSI) Standard EN 102
471 Ver. 1.3.1, April 2009.

[25] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Program Specific In-
formation (PSI)/Service Information (SI). European Telecommunications Standards
Institute (ETSI) Standard EN 102 470 Ver. 1.2.1, March 2009.

[26] Digital Video Broadcasting (DVB); Specification for Service Information (SI) in DVB
systems. European Telecommunications Standards Institute (ETSI) Standard EN 300
468 Ver. 1.11.1, April 2010.

[27] A. Hammershøj, G. Pedersen, and R. Tadayoni. Open source end-2-end DVB-H mobile
TV services and network infrastructure - The DVB-H pilot in Denmark. In Wireless
Communication, Vehicular Technology, Information Theory and Aerospace Electronic
Systems Technology, 2009. Wireless VITAE 2009. 1st International Conference on,
pages 644 –648, may 2009.

[28] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol. RFC
4566 (Proposed Standard), jul 2006.

[29] Lawrence Harte and Steve Clee. Introduction to Mobile Video: How to Send Live TV
and Streaming Video to 2G and 3G Multimedia Telephones. Althos Publishing, 2008.

[30] Mohamed Hefeeda and Cheng-Hsin Hsu. Design and evaluation of a testbed for mobile
tv networks. ACM Transactions on Multimedia Computation, Communications and
Applications, 8(1):3:1–3:23, feb 2012.

[31] C. Heuck. An Analytical Approach for Performance Evaluation of Hybrid (Broadcast/-
Mobile) Networks. Broadcasting, IEEE Transactions on, 56(1):9 –18, march 2010.

[32] Chen-Chiung Hsieh, Chao-Hsien Lin, and Wen-Tsung Chang. Design and implemen-
tation of the interactive multimedia broadcasting services in DVB-H. Consumer Elec-
tronics, IEEE Transactions on, 55(4):1779 –1787, november 2009.

[33] International Organization for Standardization (ISO); Information technology – Mul-
timedia content description interface – Part 1 : Systems. ISO/IEC 15938-1, 2002.

[34] International Organization for Standardization (ISO); Information technology – Coding
of audio-visual objects Part 10 : Advanced Video Coding. ISO/IEC 14496-10, May
2003.

[35] International Organization for Standardization (ISO); Information technology –
Generic coding of moving pictures and associated audio information : Systems.
ISO/IEC 13818-1:2007, October 2007.

BIBLIOGRAPHY 43

[36] Tero Jokela and Jani Väre. Simulations of PSI/SI Transmission in DVB-H Systems.
In IEEE International Symposium on Broadband Multimedia and Broadcasting 2007,
2007.

[37] Erkki Aaltonen Jyrki T.J. Penttinen, Petri Jolma and Jani Väre. The DVB-H Hand-
book: The Functioning and Planning of Mobile TV. John Wiley and Sons Ltd., 2009.

[38] Michael Kornfeld and Gunther May. DVB-H and IP Datacast–Broadcast to Handheld
Devices. Broadcasting, IEEE Transactions on, 53(1):161 –170, March 2007.

[39] Amitabh Kumar. Implementing Mobile TV (Second Edition): ATSC Mobile DTV,
MediaFLO, DVB-H/SH, DMB, WiMAX, 3G Systems, and Rich Media Applications.
Elsevier Inc., 2010.

[40] Yi Liu and Mohamed Hefeeda. Video streaming over cooperative wireless networks.
In Proceedings of the first annual ACM SIGMM conference on Multimedia systems,
MMSys ’10, pages 99–110, New York, NY, USA, 2010. ACM.

[41] T. Lohmar and U. Horn. Hybrid Broadcast-Unicast distribution of Mobile TV over 3G
Networks. In Local Computer Networks, Proceedings 2006 31st IEEE Conference on,
pages 850 –851, nov. 2006.

[42] MAD-FLUTE project, http://mad.cs.tut.fi/, 2009.

[43] M. Oksanen and I. Defee. Mobile broadcast testbed development and results. In
Proceedings of the IEEE International Symposium on Broadband Multimedia Systems
and Broadcasting 2006, Las Vegas, NV, USA, April 2006.

[44] T. Paila, M. Luby, R. Lehtonen, V. Roca, and R. Walsh. FLUTE - File Delivery over
Unidirectional Transport. RFC 3926 (Experimental), oct 2004.

[45] Thilo Pape and Veronika Karnowski. Which Place for Mobile Television in Everyday
Life? In Corinne Martin and Thilo Pape, editors, Images in Mobile Communication,
pages 101–120. VS Verlag fr Sozialwissenschaften, 2012. 10.1007/978-3-531-93190-6-6.

[46] C. Sattler. Seamless unicast and broadcast services to meet increasing mobile tv and
video consumption, 2009.

[47] R. Schatz, N. Jordan, and S. Wagner. Beyond Broadcast–A Hybrid Testbed for Mobile
TV 2.0 Services. In Networking, 2007. ICN ’07. Sixth International Conference on,
page 87, april 2007.

[48] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. RFC 3550 (Standard), jul 2003. Updated by RFCs 5506,
5761, 6051, 6222.

[49] W3C Recommendation: XML Schema, May 2001.

	Approval
	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Listings
	Introduction
	Introduction
	Problem Statement and Project Contributions
	Problem Statement
	Project Contributions

	Report Organization

	Background and Related Work
	Background
	Mobile TV
	Overview of DVB-H Standard
	ESG Overview
	PSI/SI Tables overview

	Related Work

	Design and Implementation of the Proposed ESG Server
	ESG Server Design
	PSI/SI Tables
	ESG Server

	ESG Server Implementation
	PSI/SI Tables Implementation
	ESG Server Implementation

	ESG Server Validation

	Conclusion
	Conclusions
	Future Work

	Bibliography

