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Abstract

YouTube-like video sharing sites (VSSes) have gained increasing popularity in recent years.

Meanwhile, Facebook-like online social networks (OSNs), have seen their tremendous suc-

cess in connecting people with common interest. These two new generation of networked

services are now bridged in that many users of OSNs share video contents originating from

VSSes with their friends. Through a long-term measurement, we show that friends have

higher common interest and their sharing behaviors provide guidance for video recommen-

dation. In this thesis, we take a first step toward learning OSN video sharing patterns for

video recommendation. An auto-encoder model is developed to learn the social similarity of

different videos. We therefore propose a similarity-based strategy to enhance video recom-

mendation. Evaluation results demonstrate that this strategy can remarkably improve the

precision and recall of recommendations, as compared to other widely adopted strategies

without social information.
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Chapter 1

Introduction

In the past several years, the landscape of the Internet has been largely changed. Various

kinds of new applications have emerged and attracted a lot of people. Compared with

the Internet ten years ago, the networked services in this Web 2.0 era [40] focus more on

user experience, user participation and interaction, and rich media such as videos, music,

and photos. People are now an active part of the new ecosystem, rather than passively

receiving information, as in the past. Optimized search engines can provide more accurate

search results, significantly facilitating the acquisition of relevant information. Peer-to-peer

systems relieve the burden of servers and utilize the network resources more efficiently. The

scope of this thesis is narrowed down to two popular social media services, video sharing

and online social networks.

In this chapter, we first introduce the background of social media including video sharing

sites (VSSes) and online social networks (OSNs), and recommendation systems. The related

works in the fields of social media and recommendation systems are also discussed. Then

we present our motivation of this thesis. At last we give the organization of this thesis.

1.1 Background

1.1.1 Social Media

YouTube [12]-like video sharing sites (VSSes) are becoming increasingly popular among In-

ternet users in this Web 2.0 era, thanks to the reduced cost of high speed Internet access and

the prevalence of powerful smartphones. In traditional live streaming and VoD (Video on

1
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Demand) services, the videos are provided by the content providers and users can only watch

this limited range of videos. The emerging video sharing sites, represented by YouTube,

however, enable people themselves to be directors and creators. These sites provide people

a free stage to show their own products and a platform for advertising through embedding

and sharing in other places. As such, there are countless videos uploaded to VSSes every

day. People with any kind of personal interest can always find the videos they like.

This new mode of video services has achieved unprecedented success. The latest statis-

tics [14, 13] show that YouTube has reached 4 billion video views per day and 1 hour of video

is uploaded per second; the traffic from mobile devices tripled in 2011 and mobile devices

contribute more than 10% of global views. The great success of YouTube has attracted a

lot of content generators to upload their videos, partners to collaborate, and companies to

advertise commercial products.

Meanwhile, we have witnessed the emergence and success of online social networks

(OSNs), as represented by Facebook [4] and Twitter [10]. There are over 900 million active

users for Facebook as of May 2012 [5]. Facebook provide users a totally new platform to

connect with old friends as well as to make new friends. An important feature of OSNs is

that people can share all types of contents, including articles, pictures, music and videos, to

their friends. As such, these two new generation of services have been bridged. OSNs can

provide users with popular multimedia contents, and thus users are inclined to stay longer

on social networks. This benefits OSNs almost as a free lunch that music and videos are

stored and maintained by VSSes. On the other hand, VSSes enjoy the boost in video views,

which increases the revenue from advertisement. The latest statistics reveal that 40% of all

YouTube views come from Facebook [26] and Twitter is also a major sharing platform of

YouTube videos [14].

1.1.2 Recommendation Systems

Given the numerous different genres of videos in social media, how to discover the videos of

personal interest and recommend them to users is an important task. The first solution is the

video search for which users need to input the keywords they are interested in. This is one of

the main sources of the video views [54]. Besides the video search, recommendation systems

can proactively suggest videos that meet users’ potential interest. A good recommendation

system can accurately capture personal interest, attracting users to view more videos and

thus increasing the chance to make profit through embedded commercial advertisements.
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Recommendation systems have been widely used in E-commerce [46] such as eBay [3]

and Amazon.com [1]. They provide recommendations based on personalized information

so that the recommended items are likely to be of use to a user. A classic way of cate-

gorizing recommendation systems is described in [21] and [43]. The six different classes of

recommendation approaches are as follows:

• Collaborative: The system recommends items based on other similar users’ past

records [45]. The similarity of two users is calculated based on the similarity of the

users’ past taste. Collaborative approach is considered to be the most popular and

widely adopted technique in recommendation systems.

• Content-based: The system makes recommendations based on the user’s records in

the past [34]. The similarity is calculated on the features of items. For example, if

two items are always bought together, or two videos are always watched one by one,

by the same user, they would be quite similar to each other. The classification based

on keywords and category can further assist to find items with similar content.

• Demographic: A demographic recommender provides recommendations according

to a demographic profile of the user. For example, search engines may provide search

results according to users’ location and language. Or suggestions could be customized

according to users’ gender, age, and other factors.

• Knowledge-based: A knowledge-based recommender system suggests items based

on users’ needs and preferences. For example, people can include such information as

vocation, favorite sports, skills, in their detailed account profiles. As such, the related

items will be retrieved and recommended.

• Community-based: This kind of systems make recommendations by considering

the preferences of users’ friends. It is shown that people are more likely to adopt the

recommendations from their friends than anonymous individuals [42]. In social media,

users may have social relations with each other, e.g., first-order friends and second-

order friends [52], and customized recommendations can be acquired by analyzing the

preferences of these social friends.

• Hybrid: The above five approaches can be combined to achieve a hybrid system so

that the advantages of some approaches can fix the disadvantages of others.
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To evaluate a recommendation system is the next step after its design. There are three

types of experiments that are widely used for evaluation [49].

• Offline experiments: An offline experiment is conducted on a pre-collected data

set of users’ activity records. Offline experiments are often adopted since they do

not require interactions with real users and thus make our evaluation affordable in

terms of cost. The downside of offline experiments is that only a limited range of

evaluation metrics can be tested. Another requirement is that user behavior should be

relatively stable with the introducing of recommendation systems. Offline experiments

are usually conducted at the initial phase to justify the effectiveness of recommendation

systems and tune the system parameters.

• User studies: User studies are a kind of subjective test, while offline experiments

are objective. In a user study, a number of people are recruited to interact with the

recommendation system. It can answer a wide range of questions from the system

designers. The interaction between the user and the recommendation system, as well

as the influence of the recommendations on the user can be tested. The downsides

of user studies are also very obvious. First, it is expensive to recruit people to take

this kind of studies, especially when the study takes a long time and needs a lot of

people. So the experiment should be designed carefully to minimize the cost while the

questions should be enough for a comprehensive analysis. Second, the test subjects

selected should be representative to prevent the bias towards any specific group of

people.

• Online evaluation: Online evaluation is performed to explore the interaction be-

tween real users and the recommendation system. More importantly, the influence

of the system on users can be measured. Online evaluation is usually tested after

extensive offline experiments and perhaps a user study so that the new features will

not bring much negative user experience.

In our social media context, the goal of recommendation systems is to suggest the videos

that are more likely to be viewed. Both OSNs and VSSes utilize recommendation systems,

explicitly or implicitly. For non-registered users, VSSes present the most popular, recently

added videos and also hot videos in each category on home pages. These are the top

ranked items according to all users’ activities. Moreover, if the user clicks to watch one
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video, VSSes will recommend the most related videos, in terms of content classification and

viewing pattern. For registered users, personalized recommendations have been developed.

For example, YouTube delivers a set of personalized videos to registered users based on their

previous activities (watched, favorited, liked) on the YouTube site [27]. The videos related

to the personal activities are selected and then ranked according to a linear combination of

several metrics (video quality, user specificity and diversification). Finally, the top ranked

video candidates are listed as Recommended to users.

For OSNs, Facebook has no specific recommendation system yet and it only displays

friends’ shared videos according to the timeline, shown as ”News Feed”. If two persons are

good friends, and one of them happens to notice the shared video of the other one, s/he

is likely to click the sharing link. Unfortunately many a time, the sharing information on

OSNs is pushed down to the bottom of home page by other news feed, and thus would be

never noticed. As such, an explicit recommendation system is needed to retrieve interesting

sharing information which should consider both personal activities and friends’ recommen-

dations. For now, there is a first step attempt by YouTube that users can connect their

social network accounts (Google Plus[6], Facebook and Twitter) to the YouTube accounts.

However, it just retrieves aggregated video sharing information from social networks and

simply arranges it according to the timeline, which is far from satisfying individual users.

1.2 Related Work

1.2.1 Social Media

The rapid development of Video Sharing Sites has attracted significant attention from re-

search community. A lot of works [30, 24, 23] have been conducted towards understanding

the properties of this new generation of application. Gill et al. [30] analyzed the YouTube

traffic and presented such characteristics as usage patterns, file properties, popularity, and

transfer behavior of YouTube. Cheng et al. [24] studied the statistics of YouTube videos

and found that these videos are significantly different from conventional streaming videos, in

terms of video length, access pattern, growth trend and active life span. It further showed

that the links to related videos generated by uploaders’ choices render clear small-world

characteristics, which indicates that the videos have strong correlations with each other.

Cha et al. [23] studied the video popularity characteristics of the YouTube videos, espe-

cially the popularity lifetime and the relationship between requests and video age. These
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representative works mainly explored the unique characteristics of the videos in VSSes that

are different from those of traditional VoD/streaming videos.

Some other works take efforts to study the human factors in social media propagation.

The human factors come from several sources. For example, the viewing activities lead

to different popularity and life time of different videos; the sharing behavior that users

can share the videos from VSSes on personal websites, blogs, and OSNs such as Facebook

and Twitter; the response, such as featuring, like/dislike and comments, conducted by

viewers. The characterization of video interactions through video responses is discussed

in [18]. The effect of user sharing behavior is explored in [25]. External links that reference

the video object outside the YouTube websites provide an important way of advertising the

videos especially at their early stage. Rad et al. [16] studied the video propagation and

popularity in YouTube based on two types of connections, i.e., friends and followers. Given

that now a substantial portion of video views come from online social networks, the authors

in [37] presented a detailed measurement study and analysis on video sharing in online social

network. They also developed an effective model to simulate the video propagation process

in online social networks. The authors in [52] used YouTube as a case study to explore to

impact of social network structure on content propagation. Different from previous works

that focused on the video properties in the stand-alone VSS environment, these works

explore how the social relations influence the video propagation and popularity. They found

that users’ interest in the video and the duration of the interest are crucial factors to video’s

popularity. As a result, human factors play a more important role than the video content

in the video propagation in OSNs. Besides videos, Guo et al. [31] also analyzed such kinds

of user generated content in OSNs as blog, bookmark sharing, and question-answering, and

they found that users’ posting behavior has strong daily and weekly patterns and follows

stretched exponential distributions, which is similar to the video sharing behavior.

1.2.2 Recommendation Systems

There are many existing studies on the design of online video recommendation system.

Baluja et al. [17] presented a novel method based on the random walks of the entire user-

video graph to provide personalized video suggestions for users. Zhou et al. [54] studied

the effect of YouTube related video recommendation system on video views. They found

that this recommendation is the main source of views for many YouTube videos and it

helps to improve the diversity of video views. Hence, further enhancement to the current
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recommendation system is highly desirable. Davidson et al. [27] introduced the customized

recommendation system of YouTube that takes personal activity into consideration. Park et

al. [41] proposed a framework for recommending online videos by constructing user profiles

as an aggregate of tag clouds and generating recommendations according to similar viewing

patterns. Different from most random-walk models such as [17] and [51], the study from

Zhu et al. [55] is one of the first papers in the machine learning literature to consider the

problem of semi-supervised classifier design for recommendation. The difference between

these works and ours is that they mainly focus on the recommendations in a stand-alone

environment. The social relations of users are not considered. On the contrary, we have

obtained measurement data from both video sharing site (Youku) and online social network

(RenRen). In this thesis, videos’ popularity and users’ social relationship are considered

jointly for designing a better recommendation system.

Many studies have also focused on the content recommendation in social network sites.

For example, Bogers et al. [20] considered recommendation for social bookmarking websites.

They just tested different fusion of classic recommendation approached introduced in Chap-

ter 1 without considering social relations. Said et al. [44] discussed how social relations can

affect user behaviors and similarities. They evaluated the impact of social graphs on user

similarities in movie tastes and advocated to use social relations for recommendation. But

they did not propose a detailed recommendation system. Pessemier et al. [28] developed

a tag cloud based recommendation system for user-generated content which exploits social

relations. This work actually considers the impact of other users in the YouTube-like social

media, while our work considered the users in OSNs and distinguishes friends and non-

friends. The most relevant works to ours are [35, 32, 39, 38]. All these works considered to

utilize the social relations to calculate the rating and regarded friendship as a kind of trust.

Yet our work emphasizes the impact of social relations on the propagations and popularity

of videos. Our system recommends the similar videos in terms of the popularity distribution

across social circles. Not only to increase the possibility that the recommended videos to

be viewed, we also want to assist the propagation of videos.

1.3 Motivation

In this thesis, we for the first time combine the measurements from OSNs and VSSes together

and explore the possible gain of a video recommendation system based on social relations.
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To better understand the interaction between OSNs and VSSes, we closely cooperated with

RenRen [9], the largest OSN in China, to analyze its server access logs. We also accordingly

crawled the related data from Youku [11], the largest VSS in China. Starting from March

24th, 2011, both the video viewing and sharing behaviors are recorded over three months.

Based on this measurement, we observe that social friends are more likely to have common

interests and their sharing behaviors provide guidance to enhance video recommendation. A

social circle [53] consisting of an OSN user and his/her social friends will manifest a collective

preference over a set of videos and thus videos’ popularity will be discrepant in different

social circles. We examine the video similarity in terms of popularity distribution across

social circles and develop an auto-encoder model to learn this similarity. A customized video

recommendation system is further proposed to recommend the most similar videos based on

viewers history video lists. Based on the collected data set, we conduct offline experiments

to evaluate our system.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2 we describe our measurement

methodology and present our measurement results, which reveal the opportunity to design

a social network based video recommendation system. In Chapter 3, we discuss how to train

an autoencoder using our data set and select an appropriate model. We compute the video

similarity based on the obtained autoencoder and propose an enhanced recommendation

system in Chapter 4. The system is evaluated in Chapter 5. Finally, we give further

discussion and conclude this paper in Chapter 6.



Chapter 2

Measurement Study

In this chapter, we first describe our measurement methodology. We then clarify why

viewers’ social relationship can provide reasonable and meaningful results for video recom-

mendation.

2.1 Measurement Methodology

Our data set is crawled from the websites of RenRen and Youku and also contains some

proprietary information provided by RenRen. We use six different computers to conduct

crawling and then combine the data together. Video sharing in RenRen is based on the

friend relationships. Initially, some users (as initiators) share a video link from a VSS to

RenRen. This link immediately appears in their friends’ main page as a ”News Feed” in

chronological order. Then the friends of these initiators will probably click the shared video

link that appeared in their ”News Feed”. A video can be further propagated only if some

viewers re-share the link. Such spreading method is also adopted in other systems, such

as Facebook and Twitter. For each video in our data set, we get such information as the

sharing time, original URL in VSS, total shares and total views in RenRen. We also obtain

the statistics of these videos in Youku. Youku is selected since it contributes almost 80% of

the total shared videos in RenRen. When a user in RenRen starts to view a video shared

by her/his friend, a viewing record will be sent to the log server. The format of one item of

log is as follows:

starting time, viewer ID, video URL, direct sharer ID, original sharer ID

where starting time is the time when the viewer (userA) watched the video (as specified by

9
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the video URL) shared by the direct sharer (userB). This video was first shared in RenRen

by the original sharer or initiator (userC).

In a typical day, there are over 10 million items of logs. The data set includes over 3

million viewers from RenRen and about 200, 000 videos from Youku. It captures the video

sharing and watching behaviors among socially related viewers. Specifically, we choose the

data of one day (March 24th, 2011) for analysis. There are 14, 753, 242 items of logs in

total. There are 201, 553 different URLs, namely the video sources and 3,514,460 viewers.

For the ease of data processing, we use a unique number as the video ID instead of directly

using the URL. The average video popularity (the times that a video has been viewed) is

73.2 and the average viewer activity (the number of videos that a viewer has viewed) is 4.2.

To show their distribution, we plot the number of views per video and number of views per

viewer as a function of the rank of the video and the viewer in Figure 2.1 and Figure 2.2,

respectively.
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Figure 2.1: Videos rank ordered by popularity

We can see that both plots have a long tail on the log-log scale, however, they do not

follow a Zipf distribution, which should be a straight line on a log-log scale [15]. The

Pareto principle [8] that roughly 80% of the effects come from 20% of the causes, which

is also known as the 80–20 rule, is widely used to describe the distribution with skewness.

Previous works have shown that 10% of the most popular videos account for nearly 80%
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Figure 2.2: Viewers rank ordered by activity

of total views in YouTube [22, 23] and 30% of the most popular videos contribute 80% of

total views in Youku [36]. We observe the similar scenario in our data set yet with some

difference. The top-0.5% popular videos account more than 80% of total views and the top-

1.65% popular videos account for 90% of total views. We can see that the skewness of video

popularity is much higher in OSNs than in VSSes. For attractive videos, when someone

shares them to her/his friends, more of the friends are likely to view them. These viewers

will further share these videos again to their own friends with a very high probability. For

unattractive videos, there are fewer direct share users and also fewer indirect share users.

This difference in propagation for attractive and unattractive videos would be accumulated

through cascading along the friend links. Hence, attractive videos receive more requests and

the unattractive videos fade out quickly after very few cascade steps.

The skewness, however, is much lower for viewer activity. 1.65% of the most active

viewers only account for 36.99% of total views. This is reasonable since for URLs, they

could be viewed by many viewers simultaneously all day. While most viewers watch one

video at the same time and they only spend limited time on watching videos. Further, there

is no cascading effect on viewer activity. We can observe the huge difference in terms of

average views (73.2 per video vs. 4.2 per viewer). We can also observe an obvious turning

point that distinguishes the popular and unpopular videos around the video rank of 100 in



CHAPTER 2. MEASUREMENT STUDY 12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Common Interest of Viewers

C
D

F

 

 

Friend pairs
Non−friend pairs

Figure 2.3: CDF of common interest of 10, 000 random viewers.

Figure 2.1, while we cannot find such turning point in Figure 2.2.

2.2 Common Interest

We start from examining the videos of common interest of different viewers. We use C =

{c1, c2, ..., cm} to denote the set of m viewers. For each viewer ci ∈ C, we use Hci
to denote

the set of the videos in her/his history video list. The common interest of two viewers, for

example c1 and c2, is thus defined as

CI(c1, c2) =
|(Hc1 ∩ Hc2)|

|(Hc1 ∪ Hc2)|
(2.1)

Figure 2.3 presents the cumulative distribution function (CDF) of common interest of

10, 000 randomly selected friend/non-friend viewers for one day duration. We can see that

28% non-friend viewers have no common interest, and 80% of them have watched less than

5% videos in common. On the other hand, less than 0.8% friend viewers have no common

interest and only 30% of them have watched less than 5% videos in common. It is easy to

see that friend viewers have higher common interest compared with non-friend viewers.

To better understand such a feature in long-term measurements, we also conduct a

90−day statistic for a number of pairs of friend viewers and compare the results to randomly
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Figure 2.4: CDF of common interest for 90-day measurement

selected pairs of non-friend viewers. As shown in Figure 2.4, we can see that 71% non-friend

viewers have no common interested videos. The friend viewers, on the other hand, are more

likely to have common interest where only 18% of them never watched a common video in 90

days. Moreover, the average common interest of friend pairs and non-friend pairs is 7.57%

and 3.02% respectively in this figure. It is also worth noting that the common interest in

Figure 2.4 is lower than that in Figure 2.3. The reason is that for long-term measurements,

even a slight difference of interest can leads to an accumulative impact on the common

interest.

2.3 Social Similarity of Videos

Besides videos’ popularity distribution across individual viewers, we further consider it

across different social circles. A social circle will generally manifest a collective preference

over a set of videos since the friends have common interests in videos. The relationship

of videos and their sharing information can be represented by a matrix R. Each element

R(i, j) = k, k ∈ Z indicates that the video j is viewed by k friends of user i. This value

reflects the popularity distribution in the social circle of user i. This matrix can be inferred

from our viewing/sharing logs.
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For illustration, we use the data set of one day duration on March 24, 2011 that consists

of over 12 million items of logs after deleting duplicate ones (viewers may click and watch

the same video multiple times, and this behavior is considered as one log entry). We call

this data set as raw data set. We extract the videos’ ID and the corresponding sharing

information from the data set. We filter out the users who shared very few videos, say

less than 5); we also filter out the users who share too many, for example more than 1000,

videos in one day1. This results in 263, 115 log entries including 1, 596 share users and

11, 980 videos (We call this data set DatasetA). A visual illustration of partial R is shown

in Figure 2.5.

Figure 2.5: Visual illustration of R.

We can see clear video preferences across different social circles in this figure. For

example, the friends of user 1 to 500 are not interested in video 1 to 10. The friends of user

1The RenRen engineers are also working on the behaviors of these highly active share users to see if they

are some ”OSN bots” on the user clients. However, the detailed discussion of this problem is beyond the

scope of this thesis.
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25 to 30, on the other hand, are quite interested in these videos. These different preferences

lead to diverse popularity distributions of different videos. As we can see from Figure 2.5,

some videos have very similar sharing popularity distribution across all the social circles

(for example, video 18 and 21). We define social similarity of two videos based on their

popularity distribution across social circles. A general definition is

m(i, j) =
1

‖di(s1, ..., sn) − dj(s1, ..., sn)‖1 + D
(2.2)

where di(j)(s1, ..., sn) denotes video i(j)’s popularity distribution across social circles s1 to

sn, and ‖ · ‖1 denotes the L1-norm, or the sum of the absolute values of vector entries; D is

a smoothness parameter that controls the range of similarity values. When two videos are

exactly the same in terms of their social similarity, the similarity value is 1
D

(it will be infinity

without D). Hence, we have m(i, j) ∈ [0, 1
D

],∀i, j. We can see that this social similarity

can be hardly obtained in practice for real systems due to extremely high dimension of the

raw data. The dynamic viewers’ preference further increases the difficulty in accurately

computing the value. Fortunately, the auto-encoder model, which performs dimensionality

reduction, offers a powerful tool to address these problems [33]; it learns a compressed

representation for the raw data (matrix R) and extracts a low dimension set of useful

features, as will be detailed in the next chapter.



Chapter 3

Learning Model

In this chapter, we first give a brief introduction to autoencoder and discuss how to train

the autoencoder using our data set. We then evaluate autoencoder models with different

parameter settings and select an appropiate model for learning.

3.1 Autoencoder

To obtain the input of the autoencoder, we first normalize the relation matrix R into a set

of binary video profiles. This includes performing standardization over the columns and

then the rows of R, and thresholding the resulting matrix at 0. We use R′ to denote the

normalized matrix. We adopt the neural network notation and refer to every video profile

(every column of R′) as an input data point v of Nv dimensions, and every share user

corresponds to the ith element in the profile as a binary visible unit vi.

Then we adopt a one-layer autoencoder to learn the manifold that will be used to

calculate the similarity. Autoencoders are a kind of neural network. They are used to learn

a low dimensional hidden manifold from the data, or to extract the features of the original

input. A typical autoencoder consists of three or more layers [2] as follows:

1. An input layer. In our problem, the columns of the normalized matrix R′ are mapped

to the neurons in the input layer.

2. One or many hidden layers whose dimensions are significantly lower than that of the

input layer. The hidden layers are often referred to as manifold. In our problem, we

16
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use the manifold of only one hidden layer which is enough. The details of this layer

will be discussed later.

3. An output layer. The neurons in this layer have the same meaning as in the input

layer.

v1

v2

v3

v4

vNv

...

+1

Input Layer 

(Layer L1)

φ1 
...

φ2 

φNh 

+1

Hidden Layer 

(Layer L2)

v̂1

v̂2

v̂3

v̂4

v̂Nv

...

Output Layer 

(Layer L3)

Figure 3.1: Structure of one-layer autoencoder

For better illustration, we present the structure of an autoencoder with one hidden layer
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in Figure 3.1. The circles labeled ”+1” are called bias units. We can see that the graph of

autoencoder does not have any directed loops or cycles and thus autoencoder is a kind of

feedforward neural network. The manifold considered is in (0, 1)Nh , where Nh denotes the

dimension or the number of hidden units, and each coordinate is denoted by φj ∈ (0, 1). The

projection from the input layer to the hidden layer and the projection from the hidden layer

to the output layer are both given by sigmoidal transform, defined as follows, respectively:

φj = σ

(

bj +

Nv
∑

i=1

wijvj

)

,∀j = 1, 2, . . . Nh (3.1)

v̂i = σ



ci +

Nh
∑

j=1

wijφi



 ,∀i = 1, 2, . . . Nv (3.2)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, and v̂ is the reconstruction obtained

by projecting the input data v from the input layer to the output layer. This projection

is parametrized by W ∈ R
Nv×Nh , B ∈ R

Nv and C ∈ R
Nh , where W denotes the weight

parameters, and B and C denote the bias terms. We use w, b, c to represent the element.

φj and v̂i are also called the activation of unit j in the hidden layer and the activation of unit

i in the output layer, respectively. Sigmoid function is selected as the activation function in

our model (there are other types of activation function such as Gaussian function and step

function). We calculate the value of each neuron from lower layer to higher layer and this

step is called forward propagation. It is worth noting that typically the weight parameter

associated with the connection between the units in the input layer and the units in the

hidden layer (wij in Equation 3.1), is different from that associated with the connection

between the units in the hidden layer and the units in the output layer (wij in Equation 3.2).

Here in our model, we benefit from the parameter tying technique so that these two sets

of parameters are equal. This reduces half number of parameters and works better. The

autoencoder seeks to minimize the square reconstruction error E(W, B, C) between v and v̂

over the entire training set of T data points. Specifically,

E(W, B, C) =
1

2T

T
∑

t=1

Nv
∑

i=1

(v̂
(t)
i − v

(t)
i )2 (3.3)

where the superscript (t) gives the index of the training instance.

The hidden units provide an information bottleneck that prevents the neural network
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from learning trivial mappings such as the identity. If the number of hidden units, Nh, is

too small, the information content through the bottleneck is severely limited and the recon-

struction will be poor. On the other hand, as Nh gets larger, the model incurs overfitting

and introduces some trivial features. To ensure generalizability, we apply L2 regularization

to encode our preference for the simplest competent model, as follows:

Es(W, B, C) = E(W, B, C) +
α

2

Nv
∑

i=1

Nh
∑

j=1

w2
ij (3.4)

where α is a small constant that trades off model simplicity with accuracy. We perform

cross validation to select the best setting for both α and Nh from a discrete set of options.

In particular, we train the model by minimizing Es(W, B, C) of the train set and select the

best model based on the reconstruction error E(W, B, C) of the test set. We optimize the

reconstruction error on the training set by running 200 iterations of l-BFGS using Mark

Schmidt’s minFunc [48]. minFunc is widely used for unconstrained nonlinear optimization

(we use sigmoid function as the activation function which is nonlinear). The input of the

minFunc function is our autoencoder module. In the autoencoder module, we first use the

forward propagation method to calculate the values of neurons in the output layer and

obtain the reconstruction error by using Equation 3.4. We then use the backpropagation

algorithm [19] to calculate the gradients of the weight parameter and update the weight

parameter and the bias terms by taking steps proportional to the negative of the gradients.

For example, to update W , we have:

Wnew = W old − γ∆W (3.5)

W old and Wnew are the original W and the updated W , respectively; ∆W is the gradient of

W at the value of W old; γ is the learning rate, which is 0.5 in our program. The updating

of B and C follows the same method with the same γ.

This gradient descent method [7] is a very popular first-order optimization algorithm to

find a local minimum of a function. After running minFunc, we obtain the parameters W ,

B, and C that give minimum reconstruction error. Then we fix the parameters and evaluate

the reconstruction error on the test set for the chosen values of α and Nv.

The pseudo code of the antoencoder module is shown in Algorithm 1. The superscript

(t) represents the t-th input data point.

We summarize the notations used for the autoencoder in Table 3.1.
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Algorithm 1 Autoencoder module autoencoder(R′, W, B, C)

Input: The normalized matrix R′; Initialized W , B, C;
Output: Es(W, B, C), ∆W , ∆B, ∆C
1: ∆W = ∆B = ∆C = 0;
2: for t = 1 to T do

3: v(t) = R′(:, t);
4: Compute φ according to Equation 3.1;
5: Compute v̂(t) according to Equation 3.2;
6: Compute ∆W (t), ∆B(t), ∆C(t) using backpropagation algorithm;
7: end for

8: Compute Es(W, B, C) according to Equation 3.4;
9: ∆W = 1

T

∑T
t=1 ∆W (t) + αW ;

10: ∆B = 1
T

∑T
t=1 ∆B(t) + αB;

11: ∆C = 1
T

∑T
t=1 ∆C(t) + αC;

12: W = W − γ∆W ;
13: B = B − γ∆B;
14: C = C − γ∆C;

3.2 Model Selection

We choose several typical values for α (0.0001, 0.01 and 1), and Nh from (10, 20, 50, 100, 200).

For each pair of parameter setting, we perform 5 trials and in each trial, we randomly split

the data into a training set of size 10, 000 and a test set of size 1, 980. We then use the

minFunc to train the autoencoder using the training data set and evaluate the selected

parameter setting through the reconstruction accuracy of the test data set.

The model’s sensitivity to the parameters α and Nv is shown in Figure 3.2 and Figure 3.3,

respectively. In both figures, we report the average value and the standard deviation as error

bars. We can see that the autoencoder yields very high accuracies. The accuracy decreases

with α while increases with Nv. We therefore fix the value of α to 0.0001 and the number

of hidden units Nh to 50. We do not choose Nh = 100 or Nh = 200 that has higher test set

reconstruction accuracy since it is highly computation intensive yet with trivial performance

gain.
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Table 3.1: Summary of notations in autoencoder
v Input data point, v ∈ [0, 1]Nv

T Number of input data points
v̂ Output values. v ∈ [0, 1]Nv

φ Manifold (hidden units), phi ∈ [0, 1]Nh

Nv Dimension of input/output data points
Nh Dimension of manifold (number of hidden units)
W Weight parameter

B, C Bias term
∆W, ∆B,∆C Gradient of weight parameter and bias terms

E Reconstruction error
Es Regularized reconstruction error
α Weight decay parameter
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Figure 3.2: The growth of test set accuracy as a function of the weight decay α.
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Figure 3.3: The growth of test set accuracy as a function of the number of hidden units Nh.



Chapter 4

Video Recommendation

Enhancement

In this chapter, we describe how to utilize the social relations to enhance video recommenda-

tions. We first introduce how to compute social similarity of videos based the autoencoder

model we have already trained. Then we propose a Social similarity Based Recommendation

(SBR) system to recommend similar videos.

4.1 Computing Social Similarity of Videos

After selecting the model of the autoencoder, we compute the social similarity of videos as

follows. We run the minFunc function again with more iterations to further minimize the

reconstruction error. For two different videos i and j, we then use the obtained parame-

ters (W , B, and C) to re-calculate their hidden manifolds respectively and compute their

similarity based on the L2 distance of the hidden manifolds, or formally

m(i, j) =
1

√

∑Nh

k=1(φ
i
k − φj

k)
2 + D

(4.1)

where φ
i(j)
k is the kth dimension of video i(j)’s hidden manifold. The value of the smoothness

parameter D is set to be 0.1 and thus m(i, j) ∈ [0, 10],∀i, j.

The pseudo code to compute the video similarity is shown in Algorithm 2. MaxIter

refers to the maximum number of iterations and its value is set to be 500 in our program.

23
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Algorithm 2 Computing social similarity of videos

Input: Selected α, Nv; The normalized matrix R′; Initialized W , B, C;
Output: The similarity matrix M ;
1: (W, B, C) = minFunc(autoencoder(R′, W, B, C), MaxIter);
2: for t = 1 to T do

3: for k = 1 to NV do

4: Compute φt
k according to Equation 5.1;

5: end for

6: end for

7: for i = 1 to T do

8: for j = 1 to T do

9: Compute m(i, j) according to Equation 6.1;
10: end for

11: end for

We obtain a similarity matrix M ∈ [0, 10]11980×11980 after computing the similarity of

all the video pairs. We choose the videos with indexes from 1, 000 to 1, 050 and illustrate

a snapshot of the similarity matrix in Figure 4.1, where the intensity of the squares indi-

cates the similarity value of the corresponding two videos. Darker square means that the

corresponding two videos have higher similarity. We can see that there are some noticeable

small clusters, which generally include less than 10 videos in this matrix. This observation

confirms that some videos are indeed similar in terms of the sharing among social friends.

There is also a considerable portion of videos that are nearly different from any other video

and thus can be easily excluded from being recommendation candidates.
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Figure 4.1: Snapshot of similarity matrix.

4.2 Enhanced Video Recommendation System

To compute personalized recommendations we find similar videos association with a viewer’s

history video list. For an arbitrary viewer, our system selects a number of videos from her/his

history video list (denoted as set H) as recommendation seeds (S = {s1, s2, ..., sN}, where

N is the number of seeds). We use remaining video list to represent the videos that are

not selected as recommendation seeds. For each seed si, an equal number (denoted as L) of

highest-ranked videos in terms of similarity value are chosen and we use set Vi to represent

them. The chosen videos for all seeds are merged together and for each video we compute its

average similarity over all the recommendation seeds. We denote the union of these similar
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videos as set V :

V =
N
⋃

i=1

Vi (4.2)

At last a number (denoted as K) of highest-ranked videos in terms of average similarity

value are recommended (denoted as set Z) to this viewer. In general, a viewer may have

interest in several different topics. We can further impose constraints on the number of

videos selected for a single seed, or choose seeds with diverse categories. We will consider

this issue in future work. Then we compare Z with the viewer’s remaining video list to

check which recommended videos are good recommendations, which will be explained in

the next chapter. The notations are summarized in Table 4.1. The pseudo code is shown in

Algorithm 3.

Table 4.1: Summary of notations in SBR system
H Set of videos in viewer’s history video list
N Number of recommendation seeds

S = {s1, s2, ..., sN} Recommendation seeds
L Number of videos selected for each seed
Vi Set of videos selected for si

V =
⋃N

i=1 Vi Set of videos selected for all seeds
vi Videos in V
K Number of recommended videos
Z Set of videos recommended for the viewer

Algorithm 3 SBR algorithm for one viewer

Input: Viewer’s history video list H; The similarity matrix M ;
Output: Recommended videos Z;
1: Select N recommendation seeds from H;
2: for i = 1 to N do

3: Select the top-L similar videos that have not been selected for s1...si−1 based on M ;
4: end for

5: V =
⋃N

i=1 Vi;
6: for i = 1 to |V | do

7: Calculate the average similarity of vi;
8: end for

9: Select K videos with highest average similarity as Z;



Chapter 5

Evaluation

In this chapter, we first describe how to obtain the evaluation data set. Then we explain

the evaluation metrics and present the evaluation results.

5.1 Evaluation Data set

To obtain the evaluation data set, We first find all the viewers who viewed the videos in

DatasetA (11, 980 videos in total) on March 24th, 2011. Then for each viewer, the videos

in DatasetA s/he watched on this day compose her/his history video list. We also filter out

the inactive viewers who viewed less than 10 videos on this day. As a result, our data set

consists of 808 viewers and their corresponding video lists and we use DatasetB to denote

it. The activity distribution of these viewers is shown is shown in Figure 5.1. We can see

that the viewer activities have obvious discrepancy. There are a few viewers that watched

more than 50 videos and most viewers watched less than 30 videos. We will examine the

influence of viewer activity on the performance of recommendation systems.

5.2 Evaluation Metrics

We evaluate the performance of our video recommendation system based on two widely used

metrics, precision and recall [50]. In our video recommendation context, for an arbitrary

viewer, a good recommendation means that the recommended video is in her/his history video

list. Precision is the fraction of recommended videos that are good recommendations; recall

is the fraction of the videos in video list that are recommended. In some occasions, recall is

27
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Figure 5.1: Activity distribution of viewers in the evaluation data set

also referred to as the true-positive rate. The formal definitions of good recommendation,

precision and recall are as follows:

{good recommendations} = {recommended videos} ∩ {viewer’s history video list} (5.1)

precision =
|{good recommendations}|

|{recommended videos}|
× 100% (5.2)

recall =
|{good recommendations}|

|{viewer’s history video list}|
× 100% (5.3)

A perfect precision score of 100% means that all the recommended videos are good

recommendations. Yet it is possible that some videos in the viewer’s video list are not

recommended (false-negative). A perfect recall score of 100% means that all the videos in

the viewer’s video list are recommended. Yet it is possible that some recommended videos

are not in the viewer’s video list (false-positive).

Our strategies to evaluate the system performance are slightly different for these two

metrics. For precision, we recommend a fixed number of videos for each viewer. Considering
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that YouTube typically recommends 15 videos for registered users, we use this as a default

setting in our system as well as in the systems for comparison. For recall, the number of

recommended videos for each viewer is equal to the length of her/his remaining video list.

We also check the prediction coverage [29] of our SBR system. It is the percentage of

all items that are recommended to users during the evaluation. Larger coverage means that

more videos can be recommended to users so that the propagation of these videos could be

assisted.

5.3 Evaluation Results

We have compared the performance of our social similarity based recommendation sys-

tem with two other systems in terms of precision and recall. One is to recommend the most

viewed videos (mostview) and another is to recommend the most shared videos (mostshare).

These two methods have been widely used in the existing VSSes, including YouTube and

Youku. They are also the basic building blocks of more advanced recommendation sys-

tems [27]. The most viewed videos and the most shared videos are both selected from the

videos in DatasetA.

5.3.1 Precision

We examine how the number of recommendation seeds and the number of videos chosen

for each seed impact the recommendation precision. We first fix the value of N at 1, and

choose the value of L from 15, 20, and 25. Then we fix the value of L at 20, and change the

value of N to 2 and 3. We use SBR N L to represent our recommendation system with

the specific setting of parameters.

We run 10 times for each setting of SBR and each time we randomly choose the rec-

ommendation seeds. Since mostview recommends the same videos for all the viewers, we

only run it once and the same with mostshare. We report the average precision and the

standard deviation as error bars in Figure 5.2.

The results show that our SBR system significantly outperforms the two widely used

baseline solutions in terms of the average precision. This verifies that social relations are

useful for video recommendation. It is worth noting an appropriate setting of N and L is

important to the system performance. Intuitively, larger N and L could provide more videos

to choose for recommendation and it would be more likely for the to-be-watched videos to
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Figure 5.2: Comparison of precision

be included in the recommendation list. However, our results show that a moderate number

of video seeds, say 2, and a moderate list size, say 20, can provide higher success. The

reason is that we only use a one day data set, and viewers’ history lists are not very large.

So larger values of N and L would incur overfitting. We also notice that the mostview

method has a much higher precision than the mostshare because there are a lot of videos

that are shared by many people but are not as widely watched as the most viewed videos.

We then choose the best pair of parameter settings, N = 2 and L = 20, and plot the

CDF of individual precision of all the viewers for the three methods in Figure 5.3. Again

the mostshare method is the worst and the precision of more than 90% of the viewers is

zero. The remaining two methods both successfully recommend at least one video for about

half of the viewers. Compared with the mostview method where almost no viewer has a

precision higher than 40%, SBR can offer a very high precision (40%–100%) to about 10%

of the viewers.

We also conduct a one-to-one comparison of mostview and SBR for each viewer. The

statistics are shown in Table 5.1. We use high to represent the viewers to whom SBR

provides higher precision and low to represent the viewers to whom SBR provides lower

precision, both compared with mostview. The numbers of these two sets of viewers are
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Figure 5.3: Comparison of precision CDF

at the same level. We can see that for the high viewers, SBR significantly outperforms

mostview in average precision and is comparable to mostview for the low viewers. The

activity distributions of these two sets of viewers are shown in Figure 5.4 and Figure 5.5,

respectively. We can see that most of the active viewers benefit from SBR, while mostview

favors the inactive viewers.

Table 5.1: One to one comparison of precision
Number of viewers Average precision of mostview Average precision of SBR

high 252 4.07% 25.55%

low 288 14.19% 13.17%

5.3.2 Recall

The experiment setting to evaluate the recall is a bit different. We vary the number of

recommendation seeds N from 1 to 5 and use SBR N to represent it. The number of

videos chosen for each seed could be different for individual viewers. For an arbitrary

viewer, it is equal to the length of her/his remaining video list divided by the number of

recommendation seeds.
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Figure 5.4: Viewer activity of viewers with higher precision

As with evaluating precision, we run 10 times for each setting of SBR and each time

we randomly choose the recommendation seeds. We report the average precision and the

standard deviation as error bars in Figure 5.6. SBR again significantly outperforms the

other two systems. A moderate number of recommendation seeds, say 3, provides the best

performance. For this setting, we plot the CDF of individual recall of all the viewers and

compare it with mostview and mostshare. SBR can offer quite a few viewers very high

recall (above 40%), while most viewers experience recall lower than 20% when mostview is

used.

As for the one-to-one comparison, the statistics are shown in Table 5.2. Here high and

low have the analogous meaning as in Table 5.1 while based on the comparison of recall. We

can draw a similar conclusion that SBR significantly outperforms mostview in average recall

for the high viewers and is close to mostview for the low viewers. The activity distributions

of these two sets of viewers are shown in Figure 5.8 and Figure 5.9, respectively. We can

see that most of the active viewers benefit from SBR, while mostview favors the inactive

viewers.
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Figure 5.5: Viewer activity of viewers with lower precision

Table 5.2: One to one comparison of recall
Number of viewers Average recall of mostview Average recall of SBR

high 296 4.89% 24.70%

low 261 16.56% 13.36%

5.3.3 Prediction Coverage

In DatasetB, there are 6, 233 different videos in the selected 808 viewers’ video lists. Both

the mostview and mostshare systems recommend a very limited range of videos, say 15 in

the precision experiments and no more than 2401 in the recall experiments. As a result,

a major portion of videos have no chance to be recommended, which is not desirable in

recommendation systems. As such, we check the prediction coverage of our SBR system.

We also conduct each experiment 10 times and report the average value in Table 5.3. We

can see that our SBR system has a good coverage of the videos in both cases.

1In fact, the exact number equals the length of the longest video list, which is 240, minus the number of

recommendation seeds.
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Figure 5.6: Comparison of recall

Table 5.3: Prediction coverage
Precision Recall

Average number of recommended videos 3958.7 5332.7

Average prediction coverage 63.51% 85.56%

5.4 Summary

We conducted offline experiments using the existing data set. We compared the three

recommendation systems, SBR, mostview, and mostshare, in terms of precision and recall on

DatasetB that consists of 808 viewers’ history video lists. SBR provides the highest average

precision and average recall, while mostshare provides the lowest. An appropriate setting of

system parameters, such as the number of recommendation seeds and the number of videos

selected for each seed, plays an important role in the SBR system. The best setting could

be different for heterogeneous data sets. Through one-to-one individual comparison, we

concluded that SBR performs much better than mostview in best cases, and is comparable

to mostview even in worst cases. We also showed that SBR has a reasonably good prediction

coverage. These results are encouraging and verify that social relations can benefit video

recommendations.
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Figure 5.7: Comparison of recall CDF

0 50 100 150 200 250 300
0

50

100

150

200

250

Rank

V
ie

w
er

 A
ct

iv
ity

Figure 5.8: Viewer activity of viewers with higher recall
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Figure 5.9: Viewer activity of viewers with lower recall



Chapter 6

Discussion and Conclusion

6.1 Discussion

In this section, we give our further discussion on the data set, leaning of similarity, system

design, and evaluation. We try to shed light on some possible concerns as well as to point

out potential improvements for future work.

6.1.1 Data Set

We extracted three data sets from the one-day raw data. In the first data set, we randomly

selected 10, 000 friend/non-friend viewers to clarify that friends have more common interests.

We are more interested in the other two data sets: DatasetA that captures the sharing

patterns of 11, 980 videos across 1, 596 share users and DatasetB that contains the history

video lists for 808 viewers who have viewed the selected videos in DatasetA.

For DatasetA, a critical problem is whether the selected share users can represent the

social circles in the OSN. It is possible that many of the share users are friends to each

other and their social circles overlap a lot. As a result, the relation matrix R unavoidably

has information redundancy, which is verified by our autoencoder model that shows that a

low dimension encoding incurs very small distortion for the data set with extremely high

dimension (50 vs. 1, 596). It is possible to reduce the number of share users if we can divide

the social circle accurately. This is very useful since it can speed up the learning of similarity

matrix and may further reduce the dimension of the manifold in the autoencoder. To divide

37
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the social circles we need to dive into the relationship graph of OSN users, which is a non-

trivial task. So we use an approximation which is easy to conduct. Another problem is

that by sampling the share users, we also lose the information for a large number of videos

(DatasetA only contains the information of 11, 980 video while there are over 200, 000 videos

in total). Through further examination, we find that most of the videos that are missing

in DatasetA have very low popularity. In future work, we will select more share users and

thus more videos, especially the popular videos missing in DatasetA.

For DatasetB, a major concern would be about its scale. It only contains 808 viewers,

which seems to be not enough to evaluate the recommendation system. Yet it is still

representative since we filter out a lot of inactive viewers. It is reasonable to focus on those

active viewers who are more likely to be the targets of OSN/VSS monetization. And for

the inactive users, there will be very limited selection for the recommendation seeds. It is

a tradeoff between user coverage and recommendation accuracy. Further, If we have more

videos in DatasetA, we would find more active viewers who have viewed these videos.

To increase the scale of DatasetA and DatasetB, we can use the raw data of several

days, and this can be part of our future work.

6.1.2 Learning of Similarity

For the ease of computation, we normalized the relation matrix to a binary matrix, which

would incur some distortion. We could make the value continuous between [0,1] through

shifting and scaling, but it will significantly increase the memory overhead and also slow

down the training of the autoencoder. We will try different normalization methods (e.g.,

using continuous value, taking log to deal with the heavy tail problem) and other activation

functions in future work.

The dynamics of similarity is another important issue. There are two kinds of dynamics

to be considered. One is how to compute the similarity for a new video. This problem

has been largely solved by our autoencoder model. Recall that in the training of the au-

toencoder, we use a part of videos as the training set to compute the weight parameters

in the autoencoder, and use the remaining videos as the test set which can be regarded as

new videos. When a new video comes, we only need to obtain their sharing distribution,

add it as a new column of the relation matrix R and recalculate the similarity matrix using

the existing autoencoder. Yet we will encounter the second problem of how the similarity

evolves over time. Even for the existing videos, their popularity will change day by day and
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the similarity of videos could also change. In this situation, we may need to reconstruct the

autoencoder from scratch, which is very time consuming. We will examine this issue in our

future work.

6.1.3 System Design

First, the selection of recommendation seeds is of paramount importance. Viewers’ interest

may change, and everyday we have different hot topics. The most recently viewed videos

are usually selected as seeds. Further, for a new viewer, there is no recommendation seed,

which is the well-known cold-start problem [47]; for the viewer who has not viewed videos or

even has not logged in the OSN for a long time, the videos in her/his video list are too old

to be recommendation seeds. In both situations, we can choose videos from her/his friends’

video lists as seeds.

Second, we selected an equal number of videos for each recommendation seed and used

the average similarity value over all the recommendation seeds in our enhanced recommen-

dation system. The recommendations could be more successful if we introduce a weight for

each seed. This weight can be used to determine the number of videos selected for each

seed or to calculate the weighted average similarity. We can obtain such weight based on

the popularity of the seed, especially the popularity in the viewer’s social circle.

6.1.4 Comparison Baseline

The baseline methods for comparison mostview and mostshare seem to be naive though they

are widely used. However, we are not expecting to replace the more advanced systems, say

the one used by YouTube which suggests the most related videos. Instead, SBR can work

as a complementary component utilizing the social relations to enhance the existing system.

Furthermore, the high prediction coverage of SBR would assist the propagation of videos

and improve the recommendation diversity. We will work on how to combine SBR and

other recommendation systems in our future work.

6.2 Conclusion

In this thesis, we investigated the possible gain of using social relations to enhance video rec-

ommendation. We developed an autoencoder learning model to quantify the social similarity
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of different videos. The trace-based evaluation results demonstrated that our similarity-

based recommendation system can remarkably improve the precision and recall. Our work

represents an initial attempt towards this issue. We will conduct more experiments on a

larger data set to investigate its adaptation to dynamics. More in-depth studies are expected

to further examine the interactions between OSNs and VSSes. We believe that a better un-

derstanding of their relationship will facilitate the design of existing video recommendation

systems.



Bibliography

[1] Amazon.com. http://www.amazon.com.

[2] Autoencoder. http://en.wikipedia.org/wiki/Autoencoder.

[3] ebay. http://www.ebay.com.

[4] Facebook. http://www.facebook.com.

[5] Facebooks prospects may rest on trove of data. http://www.nytimes.com/2012/

05/15/technology/facebook-needs-to-turn-data-trove-into-investor-gold.

html.

[6] Google plus. http://plus.google.com.

[7] Gredient descent. http://en.wikipedia.org/wiki/Gradient_descent.

[8] Pareto principle.

[9] Renren. http://www.renren.com.

[10] Twitter. http://www.twitter.com.

[11] Youku. http://www.youku.com.

[12] Youtube. http://www.youtube.com.

[13] Youtube reaches 4 billion video views per day. http://www.forbes.com/sites/

annakupka/2012/01/24/youtube-reaches-4-billion-video-views-per-day/.

[14] Youtube statistics. http://www.youtube.com/t/press_statistics/.

[15] Zipf’s law. http://en.wikipedia.org/wiki/Zipf’s_law.

[16] Amir Afrasiabi Rad and Morad Benyoucef. Measuring propagation in online social
networks: the case of youtube. Journal of Information Systems Applied Research,
5(1):26–35, Jan. 2012.

41



BIBLIOGRAPHY 42

[17] Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay Yagnik, Shankar Kumar,
Deepak Ravichandran, and Mohamed Aly. Video suggestion and discovery for youtube:
taking random walks through the view graph. In Proceedings of the 17th International
Conference on World Wide Web, WWW ’08, pages 895–904, 2008.
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