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Abstract

Syntactic parsing and dependency parsing in particular are a core component of many Nat-

ural Language Processing (NLP) tasks and applications. Improvements in dependency pars-

ing can help improve machine translation and information extraction applications among

many others. In this thesis, we extend the framework of (Koo, Carreras, and Collins, 2008)

for dependency parsing which uses a single clustering method for semi-supervised learn-

ing. We make use of multiple diverse clustering methods to build multiple discriminative

dependency parsing models in the Maximum Spanning Tree (MST) parsing framework (Mc-

Donald, Crammer, and Pereira, 2005). All of these diverse clustering-based parsers are then

combined together using a novel ensemble model, which performs exact inference on the

shared hypothesis space of all the parser models. We show that diverse clustering-based

parser models and the ensemble method together significantly improves unlabeled depen-

dency accuracy from 90.82% to 92.46% on Section 23 of the Penn Treebank. We also show

significant improvements in domain adaptation to the Switchboard and Brown corpora.

Keywords: Natural Language Processing, Discriminative Dependency Parsing, Clus-

tering Algorithms, Ensemble Learning
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Language is a process of free creation; its laws and principles are fixed, but the manner in

which the principles of generation are used is free and infinitely varied. Even the

interpretation and use of words involves a process of free creation.

Noam Chomsky
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Chapter 1

Introduction

1.1 Motivation

Syntactic parsing is a core component of many Natural Language Processing (NLP) tasks

and applications. Obtaining accurate parsers can be essential in applications such as ma-

chine translation (Huang, 2006), summarization (Soricut and Marcu, 2003), information ex-

traction (Finkel and Manning, 2009) and question answering (Hermjakob, 2001). Recently,

dependency parsing, which provides the abstraction of syntactic information in the form of

head and modifier dependencies, has attracted a number of researchers in the field. Some

of the reasons behind the increasing popularity of dependency structure representations can

be listed as follows:

• Head-modifier dependencies provide convenient, adjustable and intuitive representa-

tions and the simplicity of dependency representations makes the learning and parsing

strategies more efficient (Eisner, 2000; McDonald et al., 2005).

• The clear encoding of predicate-argument structure in dependency parsing makes it

useful in many NLP applications such as machine translation (Ding and Palmer, 2005)

and information extraction (Culotta, 2004).

• Considering that dependency grammar is more appropriate for languages with free or

flexible word orders compared to phrase structure grammar, it is possible to provide a

common framework for a diverse set of languages (Nivre and Hall, 2005; Ryan, 2006).

• The existence of dependency Treebanks for different languages such as Czech, Swedish,

1



CHAPTER 1. INTRODUCTION 2

Turkish and Arabic gives the opportunity to take advantage of machine learning tech-

niques to develop accurate parsers for a number of languages (Nivre et al., 2007).

In discriminative models for dependency parsing, we can take advantage of flexible fea-

ture vector representations. Typically the feature representations capture lexical informa-

tion and part of speech (POS) tagging of the words in the sentence (McDonald, Crammer,

and Pereira, 2005). But we face the sparsity problem when dealing with lexical statistics. A

simple solution is to provide a semi-supervised method to incorporate word clusters obtained

from unlabeled data in discriminative dependency parsing. This idea was provided in (Koo,

Carreras, and Collins, 2008) which involved clustering the unlabeled data and then assigning

a cluster identifier to each word in the dependency Treebank. These identifiers were used to

augment the feature representation of the edge-factored or second-order features, and this

feature set was used to discriminatively train a dependency parser.

The use of clusters leads to the question of how to integrate different types of clusters

(possibly from different clustering algorithms) and take advantage of multiple word represen-

tations in discriminative dependency parsing. This has been the motivation of the works in

this thesis. We provide multiple word representations based on different types of clustering

methods and use each of them to build discriminative dependency parsers. Each parser uses

cluster-based features in order to improve accuracy. These diverse clustering-based parsers

are then combined together using an ensemble model which is shown to result in a more

powerful model that obtains consistent significant improvements in unlabeled dependency

parsing.

1.2 Our Approach

In order to help alleviate the sparse data in dependency parsing, we use three different

clustering methods. In the first method, the clusters obtained from the (Brown et al., 1992)

clustering algorithm are used that can help deal with unknown words since a large amount

of unlabeled data is used to extract clusters, e.g. one cluster might contain plan, letter,

request, memo, . . . while another could contain people, customers, employees, students, . . .

These clusters might inform the parser about unknown words in test data that are clustered

with known words and how to correctly attach them in the dependency tree. In the second

method, a split-merge method is used to train an Hidden Markov Model (HMM) in order

to further refine the coarse clusters obtained from the (Brown et al., 1992) algorithm and
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obtain context-specific clusters. The third clustering approach that is more “syntactic”

comes from the use of state-splitting in Probabilistic Context Free Grammars (PCFGs).

For instance, we could extract a syntactic cluster loss, time, profit, earnings, performance,

rating, etc: all head words of noun phrases corresponding to cluster of direct objects of verbs

like improve. We create syntactic clusters using the Berkeley parser (Petrov et al., 2006).

Chapter 3 describes these clustering methods in more detail.

In order to integrate different models based on different clustering annotations, we pro-

vide an ensemble model that is a linear combination of the cluster-based models. Our

ensemble model performs exact inference on the shared hypothesis space of all the parser

models. This is in contrast to Bagging (Breiman, 1996) and Boosting (Schapire, 1999) typ-

ically used in ensemble learning, merging the outputs from multiple models, or stacking.

The ensemble model has the privilege to combine the expertise of the cluster-based parsing

models and provide a more powerful model. In addition, the scalability of the ensemble

model enables incrementally adding a large number of models using different clustering al-

gorithms to further improve the accuracy. We implement the ensemble model by extending

the MSTParser framework (McDonald, Crammer, and Pereira, 2005). Chapter 4 describes

the ensemble model in more detail.

1.3 Comparison to Related Work

Several ensemble models have been proposed for dependency parsing (Sagae and Lavie, 2006;

Hall et al., 2007; Nivre and McDonald, 2008; Attardi and Dell’Orletta, 2009; Surdeanu and

Manning, 2010). Essentially, most of these approaches combine different dependency parsing

systems, i.e. transition-based and graph-based. Although graph-based models are globally

trained and can use exact inference algorithms, their features are defined over a limited

history of parsing decisions. Since transition-based parsing models have the opposite char-

acteristics, the idea is to combine these two types of models to exploit their complementary

strengths (Section 2.5 provides more details about the differences between transition-based

and graph-based models.). Moreover, in these approaches, the base parsing models are ei-

ther independently trained and combined at parsing time using voting (Sagae and Lavie,

2006; Hall et al., 2007; Attardi and Dell’Orletta, 2009; Surdeanu and Manning, 2010), or

their training is integrated, e.g. using stacking (Nivre and McDonald, 2008; Attardi and

Dell’Orletta, 2009; Surdeanu and Manning, 2010). Section 4.1 provides more precise details
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about voting and stacking techniques used in dependency parsing.

Our work is distinguished from the aforementioned works in two dimensions. Firstly,

we combine various graph-based models, constructed using different clustering annotations.

Our model is a discriminative analog to the product of randomized models for generative

phrase-structure parsing in (Petrov, 2010). Secondly, we do exact inference on the shared

hypothesis space of the base models. This is in contrast to previous works which combine

the best parse trees suggested by the individual base-models to generate a final parse tree,

i.e. a two-phase inference scheme.

1.4 Contributions of the Thesis

The main contributions of this thesis can be summarized thus:

• We combine together multiple word representations based on the different clustering

methods in order to improve discriminative dependency parsing in the MSTParser

framework (McDonald, Crammer, and Pereira, 2005).

• We provide an ensemble method for combining diverse clustering algorithms that is the

discriminative parsing analog to the generative product of experts model for parsing

described in (Petrov, 2010).

The two contributions together improve unlabeled dependency accuracy from 90.82% to

92.46% on Section 23 of the Penn Treebank, and we see consistent improvements across all

our test sets. In addition to testing on the Wall Street Journal Treebank data, we evaluated

our ensemble model in the domain adaptation setting. We show that combining diverse

clustering methods can help with the appearance of unknown words in the new domain: on

Switchboard data we improve accuracy from 75.23% to 77.23%, and on the Brown corpus

we improve accuracy from 84.69% to 86.43%.

1.5 Outline of the Thesis

The remainder of this thesis is structured as follows.

Chapter 2 provides necessary background on dependency structure, inference algorithms

and parameter estimation methods.

Chapter 3 presents three different clustering methods to find word clusters and describes
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the extended feature set that is used to discriminatively train a dependency parser.

Chapter 4 describes our ensemble model for combining diverse clustering-based models.

Chapter 5 concludes by summarizing the thesis and providing ideas for future work.



Chapter 2

Background

Before we move to the main body of the thesis, we first provide some basic information

about dependency trees and the related inference and learning algorithms which are going

to be used throughout this thesis. The book by Kübler, McDonald, and Nivre (2009) is a

good introduction to this topic.

2.1 Dependency Trees

Dependency grammar formalizes syntactic structure by introducing a directed tree in which

nodes correspond to the words, and arcs indicate head-modifier dependency relations (Mel’čuk,

1987). Figure 2.1a shows an example sentence and its corresponding dependency tree. The

dependencies are shown by arcs pointing from head to modifier and each label on the de-

pendency arc represents the dependency type. For example noun trend is a modifier of the

verb improves with the dependency type subject (sub). The dependency tree shown in

figure 2.1a is an example of a labeled dependency tree. However the dependency tree can

only represent head-modifier dependencies and omit the labels. We refer to this type of

dependency trees as unlabeled dependency trees. Parsing using unlabeled dependency trees

(unlabeled dependency parsing) is more convenient to describe. In addition, we can recover

the dependency labels as a post-processing step when doing unlabeled parsing (Mcdonald,

Lerman, and Pereira, 2006). Therefore, we focus on unlabeled dependency parsing for the

rest of the thesis. Another property of the dependency tree in figure 2.1a is that for any

dependency edge (h, m) in the tree, h is an ancestor of all the words between h and m. In

other words, there is no crossing dependency arc in the tree. This type of tree is known

6
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* For Japan , the trend improves access to American markets

root

pmod nmod sub

vmod

p

obj
nmod

nmod

nmod

(a) Dependency tree.

S(improves)

VP(improves)

NP(access)

PP(to)

NP(markets)

NNS

markets

JJ

American

TO

to

NP(access)

NN

access

VBZ

improves

NP-SBJ(trend)

NN

trend

DT

the

,

,

PP(For)

NP(Japan)

NNP

Japan

IN

For

(b) Lexicalized phrase structure tree

Figure 2.1: Dependency and phrase structure tree for the example sentence For Japan, the
trend improves access to American markets

as a projective dependency tree, in contrast with non-projective trees in which we can have

crossing edges in the dependency tree. For the English language, we can analyze most of

the sentences through projective dependency parsing efficiently1. However, for languages

with freer word order such as Czech, German and Dutch non-projective dependency arcs

are more common.

2.1.1 Relation Between Phrase Structure and Dependency Structure Rep-

resentations

Dependency structure is different from phrase structure in the type of relations it represents.

Dependency structure shows the relation between the words while phrase structure captures

the relation between the phrases. Moreover, the labels in dependency structure group the

1Although for certain sentences, non-projective trees are preferable. For example for sentence I saw my
friend yesterday who was my roommate for years, we have (saw, yesterday) and (friend, was) as crossing
dependency arcs.
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words by functional categories such as subject (sub) or object (obj) whereas phrase struc-

tures group the phrases by structural categories like noun phrase (NP) or verb phrase (VP).

In order to convert the phrase structure into the dependency structure, we first apply a set

of deterministic head rules to determine the head of each constituent (Collins, 1999; Yamada

and Matsumoto, 2003). Figure 2.1b shows the head component of each phrase. Once we

know the head for each constituent, we can define other words as the modifiers of that head.

For example, we can infer from figure 2.1b that “For”, “, ”, “trend” are the modifiers of

the verb “improves”.

2.2 Discriminative Dependency Parsing

In discriminative dependency parsing, we can formalize the dependency problem in the form

of structured linear models (McDonald, Crammer, and Pereira, 2005) as follows:

PARSE(s) = arg max
t∈T (s)

w · f(s, t) (2.1)

where we are searching for the highest scoring parse tree t for the sentence s from the space

of dependency trees T (s). We use a linear scoring function in which we score a parse tree

t as the weighted sum of parse features. f : (s, t) → Rd shows the d-dimensional feature

vector representation of the event that t is the syntactic analysis for the sentence s and w

is the related weight vector.

Arc-factored Models

Since the space of possible dependency trees T (s) grows exponentially with the size of the

sentence, in order to be able to perform the maximization in equation 2.1 efficiently, we

assume that we can decompose f into smaller representations which only depend on the

bounded subset of t. In other words, we assume that we can factor the dependency tree

into smaller parts r and therefore restrict the features representation as follows:

PARSE(s) = arg max
t∈T (s)

∑
r∈t

w · f(s, r) (2.2)

In this notation, we provide local feature representations that only depend on the factored

part of t, r. In the simplest case of factorization, we consider the parts to be the individual
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head-modifier dependency arcs (h, m). In this setting, we can restate the equation 2.2 as

follows:

PARSE(s) = arg max
t∈T (s)

∑
(h,m)∈t

w · f(s, h,m) (2.3)

This type of factorization leads to first-order parsing model (McDonald, Crammer, and

Pereira, 2005).

In the higher-order models, the parts consist of arcs together with some context, e.g. the

parent or the sister arcs (McDonald and Pereira, 2006; Carreras, 2007; Koo and Collins,

2010). For example, in case of having sister arcs (h,si) and (h,m), we can rewrite the

equation 2.2 as:

PARSE(s) = arg max
t∈T (s)

∑
(h,si,m)∈t

w · f(s, h, si,m) (2.4)

2.3 Arc-factored Parsing Algorithms

Arc-factored parsing algorithms are based on the correspondence between the dependency

trees and spanning trees (West, 2001). For a given sentence s = s0s1...sn where s0 is the

root symbol, consider a graph G = (V,E) in which s0, s1, ..., sn are the vertices in V and

there is an edge (si, sj) between all pair of words and from the root s0 to every word with

weight score(i, j). Finding the maximum spanning tree (MST) in graph G rooted at s0 is

equivalent to finding the highest scoring dependency tree for sentence s.

2.3.1 Chu-Liu-Edmonds Algorithm

In case of non-projective dependency parsing, we can take advantage of existing MST al-

gorithms for directed graphs. One such algorithm is the Chu-Liu-Edmonds algorithm (Chu

and Liu, 1965; Edmonds, 1967). We are going to explain this algorithm through an ex-

ample sentence John loves traveling. In order to find the MST for the graph shown in

figure 2.2a, first we determine the highest scoring incoming edge for each word as illustrated

in figure 2.2b. if the corresponding graph does not contain any cycles, we have found the

MST. But in case that it introduces cycles, we contract the cycle into a pseudo-node and

recalculate the weights. This is shown in figure 2.2c. We have shown the contraction of

nodes John and loves as John—loves. We call this pseudo-node as vc. The edge from vc to

traveling is 20 since it has the highest score among the edges from the cycle to traveling.
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loves

John

traveling

root

5

510

12
4

20

20

5

7

loves

John

traveling

root

12

20

20

John—loves
traveling

root

30
5

20

25

(a) (b) (c)

John—loves

traveling

root

30

20

loves

John

traveling

root

10

20

20

(d) (e)

Figure 2.2: Different steps of Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds,
1967)

The edge from traveling to vc is 25 because it has the highest scoring tree originating from

traveling and including the nodes in vc. the edge from root to vc is going to be 30 similarly.

We can call this algorithm recursively to get the MST of the graph but we also need to

keep track of the endpoints of the edges coming in/out of the vc. By applying the first step

to the obtained graph, we will get the graph shown in figure 2.2d. Since this graph does

not include any cycles, we have reached the MST of the graph. The original MST, has all

the edges in the tree from root to vc which are from root to loves and loves to John. This

results in the MST shown in figure 2.2e.

2.3.2 Eisner Algorithm

Projective (nested) dependency parsers are related to context free parsers in the sense that

the ideas in algorithms for parsing context free grammars can be used to parse projective

dependency trees. One such algorithm is Cocke-Kasami-Younger (CKY) (Younger, 1967)
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which is a bottom-up dynamic programming algorithm. Eisner (1996) provided an efficient

algorithm for parsing projective dependency trees, by taking advantage of the observation

that a word can collect its left and right modifiers independent of each other. This is

illustrated in figure 2.3. We can break the construction of dependency arc from a given

word wi to wj by considering the left and right subgraphs of the trees headed by wi and

wj as shown in figure 2.3a. Let E[s][e][d][c] be the dynamic programming table which keeps

i j

s r r + 1 e s e s e s e

i

(a) (b) (c) (d)

Figure 2.3: The dynamic-programming structures and derivations of the Eisner algorithm
(Eisner, 1996). Complete spans are shown as triangles and incomplete spans as trapezoids

the score of the best sub-tree spanning from ws to we with the dependency arc direction

d (1=→, 0=← ) and type of dynamic programming structure c (1=complete; no further

modifiers, 0= not complete). The algorithm fills the table in a bottom-up fashion similar

to CKY algorithm by initializing all length-one sub-graphs (E[s][s][d][c]) to zero and then

considering spans of increasing length. The pseudo-code for the Eisner algorithm is shown in

algorithm 1. In order to find the highest scoring incomplete right sub-tree, we find the index

r in which joining the two complete subtrees with addition of constructing dependency arc

leads to the highest score as shown in figure 2.3a, 2.3b. In order to find the best score for a

complete right sub-tree, we need to find the index that leads to highest score by combining

the incomplete and complete sub-tree as shown in figure 2.3b, 2.3c. Since the root is located

at left side of the sentence, the highest scoring tree for the entire sentence is stored at

E[0][n][1][1]. The complexity of the algorithm is O(n3) as the size of the table is O(n2) and

for each entry in the table we need to go through different positions for index r which is

O(n).

McDonald and Pereira (2006) show that the dynamic programming structure can be

changed to adjust to sibling factorization that decomposes each tree into sibling parts. In

order to do so, a new type of dynamic programming structure is added: sibling item. The

main idea is to first collect the pairs of adjacent modifiers consecutively before attaching
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Algorithm 1 Pseudo-code for Eisner parsing algorithm (Eisner, 1996)

1: Initialization:T= E[s][s][d][c] = 0 ∀s, d, c
2: for ` : 1 ... n do
3: for s : 1 ... n do
4: e = s+ `
5: if e > n then break
6: E[s][e][0][0] = maxs≤r<e(E[s][r][1][1] + E[r + 1][e][0][1] + s(e, s))
7: E[s][e][1][0] = maxs≤r<e(E[s][r][1][1] + E[r + 1][e][0][1] + s(s, e))
8: E[s][e][0][1] = maxs≤r<e(E[s][r][0][1] + E[r][e][0][0])
9: E[s][e][1][1] = maxs<r≤e(E[s][r][1][0] + E[r][e][1][1])

10: end for
11: end for

them to their parent. This is shown in figure 2.4. The complexity of the algorithm is still

O(n3).

h s s r m h s s m h m

(a) (b) (c)

Figure 2.4: Extension of Eisner algorithm for second order sibling factorization (McDonald
and Pereira, 2006). h constructs a dependency arc to m by having the information that the
last modifier of h was s. This is done by creating a sibling item in (b)

2.4 Parameter Estimation

In order to train the dependency parser in the factored structured linear model provided

in section 2.2, we need to estimate the parameter values w related to each feature. In this

section, we explain two online methods for learning the parameter values w in a structured

linear model.
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2.4.1 Perceptron for Structured Output

Structured perceptron is a variant of the classic perceptron algorithm (Rosenblatt, 1958)

that was first introduced by Collins for sequential classification problems (Collins, 2002).

Algorithm 2 shows the pseudo-code for the algorithm. Initially the parameter vector is set

to
−→
0 . Then in the series of N iterations, the algorithm parses an example from the training

data and compares the predicted parse tree with the gold-parse tree. In case that there was

a mistake, the algorithm updates the w by the difference between the gold feature vector

and the predicted feature vector. The output of the algorithm is the average of the weight

vectors after each iteration.

The factored representation of the features and the fact the algorithm only updates

the weights when there is a mistake, makes the weight vector to be sparse since in many

cases most of the parse tree can be correct. Therefore, using a sparse data structure gives

the opportunity to take advantage of large number of features (Koo, 2010). Moreover,

averaging the parameters has shown to be effective in terms of improving the performance

since it reduces the overfitting (Collins, 2002).

Algorithm 2 Perceptron Algorithm for Structured Output (Collins, 2002)

1: Input: Training examples {(xt, yt)}Tt=1 , N: Number of iterations

2: Initialization: w =
−→
0 , v =

−→
0

3: for n : 1 ... N do
4: for t : 1 ... T do
5: y′ = arg maxy′ w · f(xt, y′)
6: if y′ 6= yt then
7: w = w + f(xt, yt)− f(xt, y

′)
8: end if
9: v = v + w

10: end for
11: end for
12: v = v/NT

2.4.2 Margin Infused Relaxed Algorithm

One disadvantage of the perceptron algorithm is that it does not optimize any notion of

classification margin which has shown to be effective in reducing generalization error (Boser,

Guyon, and Vapnik, 1992). The margin infused relaxed algorithm (MIRA) provides an
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online algorithm to minimize the weight vector based on a set of margin constraints that

make sure the advantage in favor of the correct parse against any of other parses to be at

least the amount of mismatch between the two of them. Algorithm 3 provides pseudo-code

for MIRA. Each update in MIRA is conservative in the sense that there is no change in

weight vector when the set of constraints are satisfied. If some constraints do not hold, the

algorithm makes the smallest weight change such that it satisfies the margin constraints.

The set of margin constraints keep the score of the correct parse above the score of incorrect

ones by at least the amount of loss function. In the case of dependency parsing, McDonald,

Crammer, and Pereira (2005) define the loss function to be the number of words with

incorrect predicted heads for them (Hamming loss). Using Hamming loss as the loss function

has this advantage that it is directly related to the evaluation metric for dependency parsing

which is the percentage of correct predicted heads for the words in the sentence.

Since the objective function is quadratic in w and the margin constraints are linear,

this quadratic programming problem can be solved using Hildreth’s algorithm (Censor and

Zenios, 1997). Properties of MIRA in terms of convergence is investigated in (Crammer and

Singer, 2003; Crammer et al., 2006).

Algorithm 3 MIRA Algorithm for Dependency Parsing (McDonald, Crammer, and Pereira,
2005)

1: Input : Training examples {(xt, yt)}Tt=1, N: Number of iterations
2: w0 = 0, v = 0, i = 0
3: for n : 1 ... N do
4: for t : 1 ... T do
5: w(i+1) = arg minw′ ||w′ − w(i)||
6: s.t.
7: s(xt, yt)− s(xt, y′) ≥ L(yt, y

′) w.r.t w′

8: ∀y′ ∈ parses (xt)
9: v = v + w(i+1)

10: i = i+ 1
11: end for
12: end for
13: w = v/NT

One problem with algorithm 3 is that for a given input there are exponentially (to the

length of the input) many parse trees and therefore exponentially many margin constraints.

In order to make the algorithm tractable, McDonald, Crammer, and Pereira (2005) relax
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the optimization by providing the margin constraints only for the k − best parse trees as

shown in algorithm 4. For dependency parsing, it is shown that even with small values of k

the algorithm works comparably well (Ryan, 2006).

Algorithm 4 k-best MIRA Algorithm for Dependency Parsing (McDonald, Crammer, and
Pereira, 2005)

1: Input: Training examples {(xt, yt)}Tt=1, N: Number of iterations
2: w0 = 0, v = 0, i = 0
3: for n : 1 ... N do
4: for t : 1 ... T do
5: w(i+1) = arg minw′ ||w′ − w(i)||
6: s.t.
7: s(xt, yt)− s(xt, y′) ≥ L(yt, y

′) w.r.t w′

8: ∀y′ ∈ bestk
(
xt;w

(i)
)

9: v = v + w(i+1)

10: i = i+ 1
11: end for
12: end for
13: w = v/NT

MIRA has shown to be a good framework for dependency parsing due to its accuracy,

efficiency and simplicity (Ryan, 2006).

2.5 Graph-based vs Transition-based Dependency Parsing

The model that we described so far is a form of graph-based model. Another type of

model can be described as transition-based model. Transition-based models are different

in terms of learning, inference and feature representation from the graph-based models. In

transition-based parsing we learn a model that scores transitions from one parser state to

the next one based on the parse history, as opposed to a graph-based model in which we

learn a model for scoring possible dependency graphs. In transition-based models, parsing

is done by greedily selecting the highest scoring transition among the parser states whereas

in graph-based models we use exact inference algorithms to search for the highest scoring

graph. The main advantage of transition-based models is their rich feature representations

based on the history of parser decisions in contrast with the features in graph-based model

that were restricted to a limited number of dependency arcs.
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Throughout this thesis we focus on graph-based models in MSTParser framework (McDon-

ald, Crammer, and Pereira, 2005). We work with both first-order and second-order models,

we train the models using MIRA, and we use the (Eisner, 1996) algorithm for inference.



Chapter 3

Multiple Word Representations

3.1 Introduction

Lexicalized features have shown to be beneficial in resolving ambiguous relations in both

generative and discriminative parsing (Collins, 1999; Charniak, 2000; Ryan, 2006) but care

must be taken when using these features due to the sparsity problems. Koo (2010) illustrates

the sparsity problem by plotting the distribution of frequencies of the head-modifier bigrams

from held-out data in training data set. As it is shown in figure 3.1, most of the bigrams in

held-out data occur quite infrequently in training data and using bigram features based on

these low-frequency bigrams may not be fruitful. One approach to combat sparsity problem

is by incorporating word clusters as features. Word clusters capture lexical information

needed for resolving ambiguous relations and at the same time exist at a coarser level than

words to help alleviate the sparse data problem. Using word clusters has been shown to be

successful in NLP tasks such as named-entity recognition (Miller, Guinness, and Zamanian,

2004) and dependency parsing (Koo, Carreras, and Collins, 2008). We extend the framework

of (Koo, Carreras, and Collins, 2008) for dependency parsing which uses a single clustering

method for semi-supervised learning and make use of multiple diverse clustering methods.

In this chapter we explain three different types of clustering methods used for extracting

cluster identifiers: 1) Brown et al. (1992) clustering algorithm (Section 3.2), 2) HMM

state splitting (Section 3.3), and 3) Syntactic clustering using split non-terminals from the

PCFG-based Berkeley parser (Section 3.4). We also explain the cluster-based feature design

in Section 3.5.

17
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Figure 3.1: The frequency, in the English training corpus, of head-modifier bigrams encoun-
tered in the English held-out development corpus (Koo, 2010)

3.2 Brown Clustering Algorithm

Brown et al. (1992) provides a greedy bottom-up word clustering algorithm to obtain a

hierarchical clustering of words. The algorithm takes a sequence of words ω = wn
1 as input

and generates a binary tree in which the leaves are the words and the internal nodes are

considered as clusters containing the words in that subtree. Initially each word is considered

to have its own cluster. The algorithm then repeatedly merges the two clusters that cause

the least decrease in likelihood of the input text according to the class based bigram language

model defined on the clusters as shown in figure 3.2. The maximum likelihood of the model

parameters are estimated with empirical counts. In this manner words are clustered such

that the cluster of previous word C(wi−1) = ci−1 is the most predictive of the cluster of the

current word C(wi) = ci:

L (ω,C) =
n∏

i=1

p (ci|ci−1) p (wi|ci) (3.1)

Equation 3.1 can be rewritten in terms of mutual information between adjacent clus-

ters (Liang, 2005).

If we keep track of the pair-wise merges, we can obtain a binary tree whose leaves are

words and each word can have a unique identification based on its path from the root. By

assigning 0/1 bit values to left/right branches respectively, we can specify the paths as bit-

strings as depicted in Figure 3.3. We can obtain the word clusters by selecting the nodes at
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c1 c2 ci . . . cn

w1 w2 wi wn

P (ci|ci−1)
P (wi|ci)

Figure 3.2: Class-based bigram language model

certain depths from the root. For example, if we choose the nodes at depth two of the tree

in figure 3.3, we would get {boss, leader, chief}, {September, October}, {walk} and {escape,

run} as word clusters.

In order to implement the algorithm such that it can be practical considering the size of

vocabulary, the algorithm considers a maximum number of possible clusters K as follows:

at first it sorts the words in the order of decreasing frequency and put each of the K most

frequent words in its own cluster. Then for each subsequent word, the algorithm creates a

new cluster and when the total number of clusters becomes greater than K, the algorithm

merges the two clusters, in the same way as described before, to reduce the total number of

clusters to K. This algorithm runs in O(V K2 + T ) where V is the vocabulary size and T is

the length of the text (Liang, 2005).

By choosing different depths in the binary tree we can obtain clusterings of different

granularities. This is illustrated in figure 3.4 where the words are clustered using Brown

algorithm with K = 512. Clusterings in the first row of figure 3.4 are obtained from

full bit-strings while the clusterings in the second row are derived from considering 4-bit

prefix of cluster identifiers. We can observe that the full bit-strings provide finer-grained

clusterings in comparison with short bit-string prefixes. As an example, the clustering

identifier 001100111 consists of past-participate verbs whereas the identifier 0011 contains

different types of verbs.

3.3 HMM State Splitting

A closer look into equation 3.1 reveals that the underlying generative model can be viewed

as a Hidden Markov Model (HMM), where the clusters are the HMM’s hidden states. The

greedy algorithm provided in (Brown et al., 1992) gives a hard partitioning of the words into

K clusters by constraining the emission probabilities, i.e. each word belong to just one state
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Root

1

11

111

escape

110

run

10

walk

0

01

011

October

010

September

00

001

chief

000

0001

leader

0000

boss

Figure 3.3: An example of a Brown word-cluster hierarchy

0011001111
emphasized
discovered
thought
felt
suggested
...

1001111111
chairman
treasurer
founder
...

10110111
September
October
November
January
August
...

0011
think
were
said
is
found
...

1001
chairman
CEO
result
company
transaction
...

1011
March
yesterday
later
earlier
September
...

Figure 3.4: Clusterings of different granularities. The clusterings in the first row are full
bit-strings whereas the clusterings in second row are obtained from some of the nodes at
depth 4 from the root.

with non-zero emission probability. We can relax the hard clustering constraint to produce

a soft clustering by maximizing the likelihood function using the EM algorithm. Given a

sentence ω = wn
1 and its initial coarse annotation cn1 , let ax ∈ a = ci be the latent cluster

for ci and by ∈ b = ci+1 be the latent cluster for ci+1. The forward, αi+1 (by) = p
(
wi+1
1 , by

)
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and backward, βi (ax) = p
(
wn
i+1|ax

)
probabilities can be computed recursively as follows:

αi+1 (by) =
∑
x

αi (ax) p (by|ax) p (wi+1|by)

βi (ax) =
∑
y

βi+1 (by) p (by|ax) p (wi+1|by)
(3.2)

In the Expectation step, the posterior probabilities can be computed as:

p (ax, by|ω) ∝ αi (ax)βi+1 (by) p (by|ax)

p (ax, wi|ω) ∝ αi (ax)βi (ax)
(3.3)

In the Maximization step, the above posterior probabilities are used as weighted observations

for updating the transition and emission probabilities:

p (by|ax) =
# (ax, by)∑
by

# (ax, by)

p (w|ax) =
# (ax, w)∑
w # (ax, w)

(3.4)

We employ a hierarchical split-and-merge method to gradually and adaptively add latent

annotations in places where they would produce the greatest increase in training likelihood.

In each split-merge round, we first split each HMM state into two sub-states, and initialize

the parameters of the sub-states by adding a small random noise to the emission and tran-

sition probabilities of the parent state to break the symmetry. We then use EM to compute

the maximum likelihood estimates for this doubled HMM. Afterwards, we trim the large

HMM by merging back half of those state splits which make the least loss to the data likeli-

hood. Petrov et al. (2006) employed split-merge PCFGs for parsing and Huang, Eidelman,

and Harper (2009) have used split-merge HMMs for POS-tagging. In both of these works,

the split-merge mechanism is used to relax the strong independence assumptions imposed

by the original model.

The choice of the initial annotation is important, since it injects the bias into the model

towards learning the aspects of the data we want to capture. We make use of coarse clusters

obtained from the Brown algorithm for the initial annotation. This informs the model

to capture sentence-specific semantic information about words. POS tags could have been

used as the initial coarse annotations; however, they are used as a feature in our dependency

model. Based on some initial experiments, we believe refined-POS tags do not inject much
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1010
milk
pick up
juice
drink
...

(a)

10101111111
milk (v)
service
transport
fuel
...

1010011111
milk (n)
cheese
fruit
water
...

(b)

Figure 3.5: An example of hard clustering of Brown as opposed to soft clustering of HMM.
(a) Hard clustering of milk in Brown clustering. (b) different clusterings for the word milk
in HMM clustering.

information into the parsing model above the original POS tags.

HMM clustering provides a context-specific cluster for each word in which the same word

can receive different clusters based on the context as opposed to Brown clustering where

every word is exactly assigned one cluster regardless of the context. This is illustrated in

figure 3.5. The word milk can refer to a noun (from cow) or verb (e.g., get advantage).

Figure 3.5a shows that in hard clustering of Brown with maximum number of clusters

K = 64, milk is assigned to cluster 1010, whereas in HMM clustering, with this Brown

clustering as initial annotation, milk is assigned to different clusters based on its usage as

verb or noun in the context.

3.4 Syntactic clustering

Our two other clusterings are extracted from the split non-terminals obtained from the

PCFG-based Berkeley parser (Petrov et al., 2006). Split non-terminals from the Berkeley

parser output are converted into cluster identifiers in two different ways.
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Syn-High. Head percolation rules are used to label each non-terminal in the parse such

that each non-terminal has a unique daughter labeled as head. Each word is assigned a

cluster identifier which is defined as the parent split non-terminal of that word if it is not

marked as head, else if the parent is marked as head we recursively check its parent until we

reach the unique split non-terminal that is not marked as head. This recursion terminates

at the start symbol TOP.

Syn-Low. The split POS tags for each word are used as an alternate word representa-

tion.

(TOP

(S-14

(PP-2 (IN-1 For)

(NP-10 (NNP-19 Japan)))

(,-0 ,)

(NP-18 (DT-15 the) (NN-23 trend))

(VP-6 (VBZ-1 improves)

(NP-24 (NN-13 access))

(PP-14 (TO-0 to)

(NP-9 (JJ-31 American)

(NNS-25 markets))))))

*
Syn-Low
Syn-High

For
IN-1
PP-2

Japan
NNP-19
NP-10

,
,-0
,-0

the
DT-15
DT-15

trend
NN-23
NP-18

improves
VBZ-1
S-14

access
NN-13
NP-24

to
TO-0
TO-0

American
JJ-31
JJ-31

markets
NNS-25
NP-9

Figure 3.6: Dependency tree with cluster identifiers obtained from the split non-terminals
from the Berkeley parser output. The first row under the words are the split POS tags
(Syn-Low), the second row are the split bracketing tags (Syn-High).

For the example Berkeley parser output shown above, the resulting word representations

and dependency tree is shown in Figure 3.6. If we group all the head-words in the training

data that project up to split non-terminal NP-24 then we get a cluster: loss, time, profit,
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earnings, performance, rating, . . . which are head words of the noun phrases that appear as

direct object of verbs like improve.

3.5 Feature Design

A key factor in the success of discriminative dependency parsing is the ease and flexibility

which this framework offers to incorporate informative features. We make use of two sets of

features in the feature mapping. Our baseline features capture information about the lexical

items and their part of speech tags, as defined in (McDonald, Crammer, and Pereira, 2005).

The baseline features include Uni-gram and Bi-gram features as well as in Between POS

Features and Surrounding Word POS Features. The Uni-gram features contain features

capturing information about either head or modifier(e.g. (mw, mpos)), while the Bi-gram

features incorporate features for combination of head and modifier (e.g. (hw, mw)). In

between POS Features not only include the POS of head and modifier, but also hold the

POS of the word in between them in the form of a POS Tri-gram. Surrounding word POS

Features provide information about the POS of the neighboring words of the edge in the

form of a POS 4-gram. Following (Koo, Carreras, and Collins, 2008) we augment those

features with binned distance features which determines if the distance between head and

modifier is more than 2, 5, 10, 20, 30 or 40 words. We also added the back-off version of

Surrounding Word POS Features in which one of the POS tags was removed.

Figure 3.7 provides a schematic view of the baseline feature templates as well as some

examples of features for a sample sentence.

Following (Koo, Carreras, and Collins, 2008), we use word cluster identifiers as a source

of an additional set of features. The clusters inject long distance syntactic or semantic

information into the model (in contrast with the use of POS tags in the baseline) and help

alleviate the sparse data problem for complex features that include n-grams. The cluster-

based features we use are similar to (Koo, Carreras, and Collins, 2008). We define short

bit-length (4 and 6 bit) clusters to capture information similar to POS tag and full bit-length

clusters to retrieve information regarding word form. Figure 3.8 illustrates examples of

cluster-based features. The cluster-based features mimic the template structure of baseline

features illustrated in figure 3.7 but they take advantage of word clusters instead of POS

tags. The features that use POS information exclusively are replaced by features that use

word clusters. So we will have a set of features that use only cluster information and some
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Example Sentence:

While worry grows about big Japanese investments in the U.S., Japan’s big trading

companies are rapidly increasing their stake in America’s smaller business.

Example Edge:

(are,increasing)

(mw,mpos) (hpos,mpos)
(hposA,mposA) (hpos,mw)
(hposA,mw) (hw,mpos)
(hw,mposA) (hw,hpos)
(hw,hposA) (hw,mw)

(hposA,mw,mposA)
(hpos,mw,mpos)
(hw,hpos,mpos)
(hw,hposA,mposA)
...
(hpos-1,hpos,mpos-1,mpos)
(hpos-1,hpos,mpos)
(hpos-1,hpos,mpos,mpos+1)
(hpos-1,hpos,mpos+1)
(hpos,mpos,mpos+1)
...
(mpos,spos) (mw,sw)
(mw,spos) (mpos,sw)
(hpos,spos,mpos)
...

(increasing VBG*&RA&1) (VBP VBG*&RA&1)

(V V*&RA&1)(VBP increasing*&RA&1)

(V increasing*&RA&1)(are VBG*&RA&1)

(are V*&RA&1)(are VBP*&RA&1)

(are V*&RA&1)(are increasing*&RA&1)

(V increasing V*&RA&1)

(VBP increasing VBG*&RA&1)

(are VBP VBG*&RA&1)

(are V V*&RA&1)

...
(NNS VBP RB VBG*&RA&1)

(NNS VBP VBG*&RA&1)

(NNS VBP VBG PRP$*&RA&1)

(NNS VBP PRP$*&RA&1)

(VBP VBG PRP$*&RA&1)

...
((VBG RB 0 RA)(increasing rapidly RA)

(increasing RB RA)(VBG rapidly RA)

(VBP RB VBG LA)

...

(a) (b)

Figure 3.7: (a) Example of baseline feature templates. each of the tuples provides a class
of indicator features. Abbreviations: mw: modifier word; mpos: modifier POS tag; mposA:
modifier coarse POS tags; hw: head word; hpos: head POS tag; hposA: head coarse POS
tags; hpos-1, hpos+1: neighboring POS tags around the head word; sw: sibling word; spos:
sibling POS tag. (b) Examples of baseline features for the given edge. The numbers that
appear in some of the feature examples represent the binned distance. LA and RA indicate
left and right arc respectively.

hybrid features that involve word clusters as well as POS tags similar to (Koo, Carreras,

and Collins, 2008).

We note a few differences between our feature set and the feature design in (Koo, Car-

reras, and Collins, 2008). First, we do not use the hybrid features involving word clusters
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Example Sentence:

While worry grows about big Japanese investments in the U.S., Japan’s big trading

companies are rapidly increasing their stake in America’s smaller business.

Example Edge:

(are,increasing)

(hc) (mc)
(hc4) (mc4)
...
(hc,mc)
(hc4,mc4)(hc6,mc6)
(hpos,mc4)(hpos,mc6)
(hposA,mc4)(hposA,mc6)
(hc4,mpos)(hc6,mpos)
...
(hpos,mc,mpos)
(hpos,mc4,mpos)
(hc,hpos,mpos)
(hc4,hpos,mpos)
...
(hc4,sc4,mc4)
(hpos,sc4,mc4)
(hpos,spos,mc4)
(hc4,spos,mpos)
(hc4,spos,mc4)
(hc6,sc6,mc6)
...

(0101111110)(010101111100110)

(0101)(0101)

...
(01011111101 010101111100110*&RA&1)

(0101 0101&RA&1)(010111 010101&RA&1)

(VBP 0101*&RA&1) (VBP 010101*&RA&1)

(V 0101*&RA&1)(V 010101*&RA&1)

(0101 VBG*&RA&1)(010111 VBG*&RA&1)

...
(VBP 010101111100110 VBG*&RA&1)

VBP 0101 VBG*&RA&1)

(01011111101 VBP VBG*&RA&1)

(0101 VBP VBG*&RA&1)

...
(0101 0010 0101 0 LA)

(VBP 0010 0101 0 LA)

(VBP RB 0101 0 LA)

(0101 RB VBG 0 LA)

(0101 RB 0101 0 LA)

(010111 001011 010101 0 LA)

...

(a) (b)

Figure 3.8: (a) Example of cluster feature templates. Abbreviations: hc4: 4-bit head cluster
; h6: 6-bit head cluster; hc: full-length head cluster; mc4,mc6,mc : similar for modifier; sc4,
sc6, sc: similar for sibling. (b) Examples of cluster-based features for the given edge.

and word forms (e.g., (hw, hc)). Second, since our model is based on (McDonald, Cram-

mer, and Pereira, 2005), it uses sibling interactions whereas in (Koo, Carreras, and Collins,

2008)’s feature design, the second order features are the same as (Carreras, 2007) which also

take advantage of grandparent interactions.1

1Terry Koo was kind enough to share the source code for the (Koo, Carreras, and Collins, 2008) paper
with us which allowed us to make a detailed comparison of our features with theirs. Since the features do
not exactly match, the accuracy numbers we get are also slightly divergent from those in their paper.
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Number of features

4BitBrown 9670600
6BitBrown 11090398
FullBrown 23189514
JointBrown 28266519
HMM1 37441988
HMM2 37612766
HMM3 37632042
HMM4 37415959
HMM5 37608222
JointHMM 160888450

Table 3.1: Total number of features for each model

The joint models take the union of the cluster-based feature sets along with the baseline

features in order to train the model. For the JointBrown, we use the union of 4-bit, 6-bit

and full length Brown clusters and similarly for the JointHMM, we concatenate the 5 HMM

clusters. Table 3.1 provides the total number of features in each of the individual models.

3.6 Experiments

In our experiments, we use the MSTParser framework (McDonald, Crammer, and Pereira,

2005) and add cluster-based features to the feature design. We work with both first-order

and second-order models, train the models using MIRA, and we use the (Eisner, 1996)

algorithm for inference.

Data The experiments are done on the English Penn Treebank (PTB), using standard

head-percolation rules (Yamada and Matsumoto, 2003) to convert the phrase structure into

dependency trees. We split the PTB into a training set (Sections 2-21), a development

set (Section 22), and test sets (Sections 0, 1, 23, and 24). All of our experiments in this

setting match previous work (Yamada and Matsumoto, 2003; McDonald, Crammer, and

Pereira, 2005; Koo, Carreras, and Collins, 2008). POS tags for the development and test

data were assigned by MXPOST (Ratnaparkhi, 1996), where the tagger was trained on the

entire training corpus. To generate part of speech tags for the training data, we used 20-way

jackknifing, i.e. we tagged each fold with the tagger trained on the other 19 folds.



CHAPTER 3. MULTIPLE WORD REPRESENTATIONS 28

Clusters The Brown algorithm word clusters are derived using Percy Liang’s implemen-

tation2 which we ran on the BLLIP corpus (Charniak et al., 2000) which contains ∼43M

words of Wall Street Journal text.3 This produces a hierarchical clustering over the words

which is then sliced at a certain height to obtain the clusters.

The Split HMM clusters are also derived on the BLLIP corpus. We annotate sentences

initially with the word clusters coming from the Brown clustering algorithm, and then do 6

rounds of split-and-merge cycles to refine these coarse annotations. Since the algorithm uses

randomization, we get different clusterings if we use various randomization seeds. Petrov

(2010) uses an analogous randomization initialization in order to obtain an ensemble of

PCFGs.

The sentence-specific syntactic word clusters are derived from the parse trees using the

Berkeley parser4, which generates phrase-structure parse trees with split syntactic cate-

gories. To generate parse trees for development and test data, the parser is trained on the

Section 2-21 of the Penn Treebank training data to learn a PCFG with latent annotations

using split-merge operations for 5 iterations. To generate parse trees for the training data,

we used 20-way jackknifing i.e. we parsed each fold with the parser trained on the other 19

folds.

3.6.1 Empirical Results

Table 3.2 presents our results. The baseline (first column of the table) does not use any

cluster-based features, and the next models use cluster-based features using different clus-

tering algorithms. The 4bitBrown, 6bitBrown and FullBrown models use Brown clustering

algorithm with specified bit-string lengths (Section 3.2). The JointBrown model takes the

union of feature sets with 4-bit, 6-bit and full length prefix. Since different runs of the

split-merge HMM with various seeds can result in different clusterings, in AvgHMM we

have averaged its dependency parsing results over 5 random runs. We use the Brown algo-

rithm with K = 512 for the size of the initial coarse clustering from which the split-merge

HMM starts refining (Section 3.3). The JointHMM specifies the joint model of the 5 HMMs.

Syn-Low and Syn-High use syntactic clusters described in Section 3.4.

2http://cs.stanford.edu/∼pliang/software/brown-cluster-1.2.zip
3Sentences of the Penn Treebank were excluded from the text used for the clustering.
4code.google.com/p/berkeleyparser
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First order features
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00 89.61 90.03 90.19 90.20 90.43 90.54±.08 90.52 90.01 89.97
34.68 35.67 35.88 36.35 36.71 37.50±.51 37.44 34.42 34.94

01 90.44 91.05 91.27 91.22 91.46 91.59±.07 91.55 90.89 90.76
36.36 38.22 39.57 39.52 39.12 39.73±.27 39.62 35.66 36.56

23 90.02 90.66 90.84 90.70 91.27 91.35±.02 91.30 90.46 90.35
34.13 36.78 37.15 37.15 38.77 39.51±.27 39.43 36.95 35.00

24 88.84 89.49 89.47 89.79 90.10 90.03±.06 90.16 89.44 89.40
30.85 31.44 31.97 33.08 34.72 33.57±.46 35.16 32.49 31.22

Second order features

Sec Individual Models
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00 90.34 90.98 91.10 91.02 91.16 91.26±.09 91.27 90.89 90.59
38.02 40.83 40.36 41.30 40.68 41.31±.13 41.35 38.80 39.16

01 91.48 91.86 92.05 92.06 92.02 92.23±.07 92.22 91.95 91.72
41.48 43.64 43.19 43.49 43.99 43.54±.34 43.69 42.24 41.28

23 90.82 91.62 91.66 91.59 91.81 91.92±.08 91.90 91.31 91.21
39.18 42.58 42.66 41.83 42.46 43.22±.53 43.16 40.84 39.97

24 89.87 90.36 90.50 90.53 90.68 90.85±.14 90.78 90.28 90.31
35.53 36.65 37.62 38.36 37.77 38.15±.33 38.28 37.32 35.61

Table 3.2: For each test section and model, the number in the first/second row is the
unlabeled-accuracy/unlabeled-complete-correct. See the text for more explanation about
the description of individual models.
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We can observe from all of the individual cluster-based models that cluster-based features

help improve the accuracy over the baseline in both first order and second order models.

Among different clustering methods, HMM clustering provides the best results. We can also

notice that HMM clustering outperforms Brown clustering which indicates the advantage

of soft clustering of words over hard clustering. The syntactic clustering of the words (Syn-

High, Syn-Low) does not seem to be as informative as Brown and HMM clustering. This

may be due to the fact that POS categories already capture a good deal of information

about the syntactic role of each word, which may overlap with information that are provide

by syntactic clusters.

3.7 Summary of the Chapter

In this chapter we provided multiple word representations based on different clustering

algorithms to build multiple discriminative dependency parsing models in the MSTParser

framework (McDonald, Crammer, and Pereira, 2005). The Brown algorithm provides a

hierarchical clustering of the words based on contextual similarity. The HMM state split

approach combines the hierarchical characteristics of the Brown clustering with the context-

sensitive nature of clusterings based on HMMs. Split non-terminals from PCFG-based

Berkeley parser provide syntactic cluster identifiers. All of these diverse clustering-based

parsers outperform the baseline parser which does not make use of cluster-based features.



Chapter 4

Ensemble Model

4.1 Introduction

The idea of ensemble learning (Dietterich, 2002) is to employ multiple, mutually informative

statistical learners and combine their predictions. For the task of parsing, various ensemble

techniques have been used. One technique is using co-training algorithms, which has shown

to be a promising technique for statistical parsing (Sarkar, 2001; Steedman et al., 2003; Hwa

et al., 2003). In the statistical approaches to parsing based on the co-training framework, we

choose two (or more) different parsers as our views of the classification problem. We build

separate models for each of the parsers and train the models using the labeled examples. At

each iteration of the co-training algorithm, we select a set of sentences from the unlabeled

examples and employ the models to parse each of the sentences. We then choose a subset

of sentences that are parsed with high confidence and add them to the training examples of

the other parser. We iterate this procedure until the unlabeled data is treated completely.

Other techniques for system combination include voting and stacking that have shown

to lead to significant improvements in statistical parsing. In voting approach, independently

trained models are combined at parsing time, generating a parse tree which is supported by

majority of the base systems. Henderson and Brill (1999) take advantage of voting when

combining parsers in their parse hybridization approach in which they include a constituent

appearing in the output of the majority of the parsers in their hypothesized parse. In case

of dependency parsing, when selecting the head attachment for each word based on the

majority of votes, the output may not result in a well-defined dependency parse tree (it

may introduce cycles). In order to ensure the correctness of parse tree, two approaches have

31
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been provided. Zeman and Žabokrtský (2005) provide a greedy algorithm in which at each

step during voting, the dependencies that introduce cycles are avoided and if this leads to

a situation where there are no allowed dependencies for a word, the existing dependency

structure is withdrawn and the parse tree provided by the best parser is selected instead.

They observe small degradation in terms of accuracy when this constraint is enforced. Sagae

and Lavie (2006) provide another approach in which they reparse the dependency graph

which is weighted by the number of votes by using maximum spanning tree algorithm to

obtain the optimal dependency parse tree. More concretely, they built a graph in which

each word corresponds to a node and weighted directed edges are created corresponding

to the dependency arcs in each of the base parse trees. After the graph is built, they

reparse the sentence using the existing parsing algorithms (Eisner, 1996; Edmonds, 1967;

Chu and Liu, 1965). In their experiments, they observe promising results by combining

variations of transition-based dependency parsers with a graph-based dependency parser.

Hall et al. (2007) use the proposed methodology by (Sagae and Lavie, 2006) to combine

multiple transition-based dependency parsers (using MaltParser (Nivre, 2007)) and they

observe improvements over the single Malt.

In the stacking approach, the output of one or more parsers is incorporated as features

at training time in order to learn from the prediction of base models. McDonald and Nivre

(2007) integrate the transition-based and graph-based models using stacking techniques in

which they extend the feature vector for the base model by a number of features from the

guide model. In other words, during training, the guided model has access to both the

gold dependency tree and the dependency tree predicted by guide model. They perform

experiments with both MSTParser and MaltParser as guide model for the other one. Their

experimental results show improvements over the base model. Attardi and Dell’Orletta

(2009) also use the stacking technique to combine transition-based parsers at training time.

They do right-to-left parsing by exploiting features extracted from the output of a left-to-

right parser. They also provide a linear time approximate algorithm to combine parsers at

parsing time.

In this chapter, we provide an ensemble model, with a different approach than the

aforementioned techniques, to combine a collection of diverse and accurate models into a

more powerful model.
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4.2 Ensemble Model

In Chapter 3 we presented different syntactic or semantic cluster representations. We built

the base models based on provided clustering algorithms (Section 3.2, Section 3.4 and Sec-

tion 3.3) which are incorporated into the model via cluster-based features. The ensemble

parsing model that we are providing here is a linear combination of the base models (Haffari,

Razavi, and Sarkar, 2011):

PARSE(s) = arg max
t∈T (s)

∑
k

αk

∑
r∈t

wk · fk(s, r) (4.1)

where αk is the weight of the kth base model, and each base model has its own feature

mapping fk(.) based on its clustering annotation of the sentences. The probabilistic moti-

vation for this framework is the product of experts model for parsing (Petrov, 2010). More

concretely, we are searching for the tree t that maximizes:

P (t|s,w1,w2, ...,wk) =
∏
k

P (t|s,wk) (4.2)

making the assumption that the individual models are conditionally independent. Then

P (t|s,wk) can be defined as follows:

P (t|s,wk) =
exp(wk · fk(s, t))∑
t′ exp(wk · fk(s, t′)

(4.3)

Now, the inference for the best tree amounts to the arg max in equation (4.1) in which each

model k is weighted by αk.

Feature sets of the base parsing models could be concatenated together to train one

joint model in a discriminative parsing approach, but we argue that this is not the ideal

way to combine word representations based on diverse set of clusterings. We compare the

ensemble model with the joint model in which we take the union of all of the feature sets

and train a joint discriminative parsing model. The ensemble model outperformed the joint

model in almost all of our experiments (Section 4.4.2). Compared to a joint model over all

the diverse clustering features, our ensemble method avoids the large memory requirements

(during training) of concatenated feature vectors for multiple word representations. It is

also more scalable since we can incrementally add a large number of clustering algorithms

into the ensemble without an expensive re-training step over the entire training data (e.g.,

The training step for a joint model consisting of 5 HMM clustering annotations took about
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47 hours whereas the training step for each of the models based on 5 HMM clustering

annotations was done in parallel which took about 14 hours).

In the next section we inspect different strategies for setting the ensemble weights αk.

4.3 Setting Ensemble Model Weights for Discriminative De-

pendency Parsing

4.3.1 Uniform Setting

One approach for choosing the model weights is the uniform setting in which all the model

weights are uniformly set to 1. This approach is in compliance with the reasons provided in

(Petrov, 2010) which states that when combining the classifiers with comparable accuracy

in the product of experts model, the weighting does not have significant contribution to

the overall performance. This is also consistent with the results provided in previous works

on the product model (Smith, 2005) in which in case of having classifiers with similar

quality, Logarithm of Opinion Pools for CRF (LOP-CRF) with uniform weights performs

comparable to the one with trained weights. We can see similar results in the study about

ensemble models for dependency parsing (Surdeanu and Manning, 2010) which indicates that

weighting strategies for voting when reparsing the candidate dependencies is not important.

4.3.2 Learning the Model Weights

Another approach for setting the model weights is through learning the model weights.

For this matter, we take a closer look at the parse errors for each of the base models and

the ensemble to understand better the contribution of each model to the ensemble. For

each dependent to a head dependency, Figure 4.1 shows the error rate for each dependent

grouped by a coarse POS tag for different models based on Brown and HMM state splitting

clustering algorithms. Each model behaves differently on a different modifier POS category

and this property gives us the intuition that it may be fruitful to learn the model weights

over the dependency arcs to benefit from each model’s strength on a specific modifier POS

category. In order to do so, we first rewrite the equation 4.1 as follows:

PARSE(s) = arg max
t∈T (s)

∑
r∈t

∑
k

αk(wk · fk(s, r)) (4.4)
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(a) (b)

Figure 4.1: Error rate of the head attachment for different types of modifier categories on
Section 22 of PTB. (a) Brown clustering algorithm. (b) HMM state splitting.

Now we can define the features corresponding to model weights over the dependency

arcs (head, modifier) in different ways:

1. based on the granularity of head and modifier POS tags:

a. fine grained POS tags : The Penn Treebank POS tagset

b. coarse grained POS tags :

• first letter of POS tags in Penn Treebank POS tagset

• few cross-linguistically identifiable categories, including Noun, Pronoun, Verb,

Adjective, Adverb, Adposition, Conjunction (c.f. (McDonald and Nivre, 2007))

2. based on elements in dependency arc (head, modifier)

• both head and modifier

• modifier only

Table 4.1 shows the PTB tagset as well as the coarse grained POS tags.

In the following sub-sections, we study different strategies for learning the model weights

based on different feature definitions and training techniques for them.
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1. CC 17. POS 33. WDT
2. CD 18. PRP 34. WP
3. DT 19. PP 35. WP
4. EX 20. RB 36. WRB
5. FW 21. RBR 37. #
6. IN 22. RBS 38. $
7. JJ 23. RP 39. .
8. JJR 24. SYM 40. ,
9. JJS 25. TO 41. :
10. LS 26. UH 42. (
11. MD 27. VB 43. )
12. NN 28. VBD 44. ”
13. NNS 29. VBG 45. ‘
14. NNP 30. VBN 46. ”
15. NNPS 31. VBP 47. ’
16. PDT 32. VBZ 48. ”

1. C 17. W
2. D 18. #
3. E 19. $
4. F 20. .
5. I 21. ,
6. J 22. :
7. L 23. (
8. M 24. )
9. N 25. ”
10.P 26. ‘
11.R 27. ”
12.S 28. ’
13.T 29. ”
14.U
15.V
16.P

1. Noun: NN*

2. Verb: VB*, MD

3. Adverb: RB*, WRB

4. Adjective: JJ*

5. Pronoun: PP, WDT, WP

6. Adposition: TO, IN

7. Conjunction: CC

(a) (b) (c)

Table 4.1: Different POS tag categorizations. (a) PTB POS tag set (b), (c) coarse POS tag
sets

Learning the Model Weights Using Partial Scores on Dependency Arcs

if we take a closer look at the equation 4.4, we can interpret the model weights α as the

parameters and the partial scores wk · fk(s, r) as feature values. More precisely, we can

define the feature vectors based on different POS categories mentioned in table 4.1 for

either (head, modifier) or modifier for the base models. Figure 4.2 shows four different

templates for the features sets. The feature values are the partial scores on the dev set for

the given dependency arc. We can use the MIRA algorithm in the MSTParser framework

in order to learn the model weights on the dev set.

Learning the Model Weights Using Binary Indicator Features

One of the drawbacks of setting the feature values to the partial scores for the dependency arc

is the following scenario: In cases where there is a high value associated with a dependency

arc by mistake, using the partial score as the feature value can exacerbate the situation.

In order to avoid this scenario, another approach can be used in which we define binary

indicator features as follows:

• Use each of the base models to find the dependency parse trees on the dev set

• Define the indicator features that fire when a base model has predicted the dependency

arc correctly
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Example Sentence:

While worry grows about big Japanese investments in the U.S., Japan’s big trading

companies are rapidly increasing their stake in America’s smaller business.

Example Edge:

(are,increasing)

1. (hpos,mpos,model)
2. (hposA,mposA,model)
3. (mpos,model)
4. (mposA, model)

1. (VBP VBG 0) (VBP VBG 1) ... (VBP VBG k-1)

2. (V V 0) (V V 1) ... (V V k-1)

3. (VBG 0 ) (VBG 1 ) ... (VBG k-1 )

4. (V 0 ) (V 1) ... (V k-1)

(a) (b)

Figure 4.2: (a) Four different feature templates when learning model weighs based on partial
scores. Each of the tuples provides a class of features. Abbreviations: mw: modifier word;
mpos: modifier POS tag; mposA: modifier coarse POS tags; hw: head word; hpos: head
POS tag; hposA: head coarse POS tag; k : number of base models. (b) Examples of features
for the given dependency arc.

Figure 4.3 shows different templates for the feature sets. MIRA algorithm is used in order

to learn model weights on the dev set.

When using the POS categories defined in table 4.1 in the feature set, we can modify

MIRA such that it updates the weights only based on one POS category to see the effect of

each modifier category in improving the accuracy. Algorithm 5 shows the modified version

of MIRA algorithm.

Algorithm 5 MIRA Algorithm for Learning Model Weights

1: Input : Training examples {(xt, yt)}Tt=1, N: Number of iterations
2: w0 = 1, v = 0, i = 0
3: for n : 1 ... N do
4: for t : 1 ... T do
5: min||w(i+1) − w(i)||
6: s.t.
7: 1.s(xt, yt)− s(xt, y

′) ≥ L(yt, y
′)

8: y′ = 1best
(
xt;w

(i)
)

9: 2. only update the weights for the specified modifier category
10: v = v + w(i+1)

11: i = i + 1
12: end for
13: end for
14: w = v/NT
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Example Sentence:

While worry grows about big Japanese investments in the U.S., Japan’s big trading

companies are rapidly increasing their stake in America’s smaller business.

Example Edge:

(are, increasing)

1. (hpos,mpos,model)
2. (hposA,mposA,model)
3. (cahpos,campos,model)
4. (mpos,model)
5. (mposA, model)
6. (campos, model)

1. (VBP VBG 0) (VBP VBG 1) ... (VBP VBG k-1)

2. (V V 0) (V V 1) ... (V V k-1)

3. (Verb Verb 0) (Verb Verb 1) ... (Verb Verb k-1)

4. (VBG 0 ) (VBG 1 ) ... (VBG k-1 )

5. (V 0) (V 1) ... (V k-1)

6. (Verb 0) (Verb 1) ... (Verb k-1)

(a) (b)

Figure 4.3: (a) Example of different possible feature templates when learning model weights
based on binary indicator features. each of the tuples provides a class of indicator features.
Abbreviations: campos: categorized modifier POS tag; cahpos: categorized head POS tag;
k : number of base models. (b) Examples of features for the given dependency arc.

4.4 Experiments

4.4.1 Experimental Setup

We conduct experiments to evaluate the performance of the provided ensemble method on

two scenarios: in-domain and out-of-domain settings. In the following, we first describe our

data conditions.

Data For Experiments with Uniform Model Weights: The settings for in-domain

experiments are the same as experimental settings provided in Section 3.6.

The out-of-domain experiments are done on the Brown (Kučera and Francis, 1967)

and SwitchBoard (Godfrey, Holliman, and McDaniel, 1992) corpora. We filtered these two

corpora to those sentences which have at least one unknown word with respect to the Penn

Treebank training data for our in-domain experiments and whose length is at least 5 words.

Using standard head-percolation rules, we convert the gold phrase-structure parse trees

of the selected sentences into dependency trees. We use MXPOST trained on the PTB

training data to annotate these sentences with POS tags. The size/average sentence length

of the resulting test sets for the SwitchBoard and Brown corpora are 2720/13 and 4489/20,

respectively.
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Data For Experiments with Trained Model Weights: For the in-domain experi-

ments, we use Section 22 as dev set for training the model weights based on partial scores

(Section 4.3.2) and test on Section 23 of PTB. We use section 0 to train the model weights

using binary indicator features (Section 4.3.2) and test on Section 22 and 23 of PTB. For

out-of-domain experiments, we split the Brown and SwitchBoard corpus into 2 segments

as dev set and test set. For Brown corpus the dev/test sets contain 2000/2489 sentences

respectively. The SwitchBoard corpus contains 1720/1000 sentences in its dev/test set. The

rest of data conditions are consistent with the experiments with uniform model weights.

4.4.2 Empirical Results in In-domain Experiments

For the in-domain experiments, we train our dependency parsing models on the PTB training

data.

In-domain Results with Uniform Model Weights

Table 4.2 presents our results with all the model weights uniformly set to 1. First part of this

table contains the baseline and the base models as mentioned in Chapter 3. The second part

of Table 4.2 shows the results for our ensemble models; the columns present the results for

the ensemble of three/three/five/eight/ten base models, respectively. As Table 4.2 shows,

the ensemble models outperform the individual models in all cases.

We can also observe that the ensemble is outperforming the joint model in almost all

cases. The ensemble models outperform all of the individual models and do so very con-

sistently across both first-order and second-order dependency models. This improvement

in accuracy is well illustrated in Figure 4.5. It is also interesting to see that the ensemble

of 5 HMM-based parsing models, which does not use any syntactic clustering, is highly

competitive. It outperforms the ensemble of JointBrown+Syn-Low+Syn-High in almost all

of the cases.

Table 4.4 lists the accuracy of the ensemble model on Section 23 of the PTB together with

the state-of-the-art graph-based second-order dependency parser and some of the relevant

results from related works. The ensemble model behaves comparably to most of other

dependency parsing models. Since our features do not exactly match the (Koo, Carreras,

and Collins, 2008), the accuracy numbers we get are also slightly divergent from those in

their paper.
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First order features
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00 89.61 90.03 90.19 90.20 90.43 90.54±.08 90.52 90.01 89.97 90.56 90.83 90.91 90.97 91.15

34.68 35.67 35.88 36.35 36.71 37.50±.51 37.44 34.42 34.94 37.5 37.96 39.06 38.54 39.53

01 90.44 91.05 91.27 91.22 91.46 91.59±.07 91.55 90.89 90.76 91.53 91.75 92.00 91.94 92.08

36.36 38.22 39.57 39.52 39.12 39.73±.27 39.62 35.66 36.56 40.58 40.23 40.78 41.53 41.53

23 90.02 90.66 90.84 90.70 91.27 91.35±.02 91.30 90.46 90.35 91.12 91.20 91.62 91.55 91.64

34.13 36.78 37.15 37.15 38.77 39.51±.27 39.43 36.95 35.00 38.73 38.98 40.51 40.47 40.72

24 88.84 89.49 89.47 89.79 90.10 90.03±.06 90.16 89.44 89.40 90.17 90.46 90.42 90.45 90.61

30.85 31.44 31.97 33.08 34.72 33.57±.46 35.16 32.49 31.22 34.49 35.61 34.86 35.83 36.05

Second order features
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00 90.34 90.98 91.10 91.02 91.16 91.26±.09 91.27 90.89 90.59 91.37 91.53 91.53 91.59 91.74

38.02 40.83 40.36 41.30 40.68 41.31±.13 41.35 38.80 39.16 41.82 41.87 41.82 42.65 42.55

01 91.48 91.86 92.05 92.06 92.02 92.23±.07 92.22 91.95 91.72 92.27 92.50 92.51 92.60 92.68

41.48 43.64 43.19 43.49 43.99 43.54±.34 43.69 42.24 41.28 45.15 45.05 44.75 45.75 45.70

23 90.82 91.62 91.66 91.59 91.81 91.92±.08 91.90 91.31 91.21 91.99 92.02 92.26 92.37 92.46

39.18 42.58 42.66 41.83 42.46 43.22±.53 43.16 40.84 39.97 44.11 43.78 44.15 44.98 45.48

24 89.87 90.36 90.50 90.53 90.68 90.85±.14 90.78 90.28 90.31 90.96 91.19 91.31 91.32 91.55

35.53 36.65 37.62 38.36 37.77 38.15±.33 38.28 37.32 35.61 39.03 39.85 39.85 40.74 41.11

Table 4.2: For each test section and model, the number in the first/second row is the
unlabeled-accuracy/unlabeled-complete-correct. See the text for more explanation about
the description of individual and ensemble models. (3Brown is the ensemble of 4BitBrown,
6BitBrown and FullLengthBrown)
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00 90.59 91.02±.15 91.42 90.94 91.28±.03 91.62 91.16 91.26±.09 91.53
39.84 40.44±.83 41.77 40.78 41.89±.43 42.55 40.68 41.31±.13 41.82

01 91.74 91.96±.08 92.33 91.97 92.15±.07 92.43 92.02 92.23±.07 92.51
41.94 42.28±.62 44.45 43.59 43.44±.35 44.90 43.99 43.54±.34 44.75

23 91.33 91.49±.16 92.05 91.49 91.93±.07 92.33 91.81 91.92±.08 92.26
41.92 41.48±.46 43.37 41.13 43.50±.52 45.19 42.46 43.22±.53 44.15

24 90.54 90.39±.11 90.89 90.60 90.76±.11 91.17 90.68 90.85±.14 91.31
37.62 37.20±.95 38.21 38.21 38.13±.72 39.40 37.77 38.15±.33 39.85

Table 4.3: For different size K of initial coarse annotations, comparing the ensemble of five
split-merge HMM models vs the individual models and the Baseline.

Parser Accuracies

Model UAS

Baselines
McDonald and Pereira (2006) 91.5
Koo, Carreras, and Collins (2008)-Standard 92.00
Koo, Carreras, and Collins (2008)-Semi Supervised 93.16

Combined Parser Sagae and Lavie (2006) 92.7

Ensemble 3Brown+5HMM+Syn-(Low, High) 92.46

Figure 4.4: Comparing Unlabeled Attachment Score (UAS) of the ensemble model with the
state-of-the-art graph-based second-order dependency parser and some of the relevant works
on Section 23 of PTB.

We also investigated the effect of the size for the initial coarse clustering, from which

the split-merge HMM starts the annotation refinement. The rationale for this comparison

is to show that the selective splits obtained by running the split-merge HMM provide better

clusters than simply taking a more fine-grained clustering directly from the (Brown et al.,

1992) algorithm. We annotate the sentences with K ∈ {16, 64, 512} coarse clusters obtained

from the (Brown et al., 1992) algorithm, and then run five random split-merge HMMs.

Table 4.3 presents the parsing results. The performance of the Brown algorithm improves

as K is increased. However, the ensemble of HMMs using the selective split-merge training
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Figure 4.5: The unlabeled accuracy for individual and ensemble models. The x and y axis
show the accuracy on Section 00 and 23 of PTB respectively. (a) First order features. (b)
Second order features.
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always does better. Although the ensemble of 5 HMMs outperforms the individual models

for each K, the performance of the ensemble model seems to degrade as we increase K in

some test sets, e.g. for Section 23 the performance drops from 92.33% to 92.26% as K is

increased from 64 to 512. One explanation is that the diversity among the individual HMM

clusterings becomes negligible as we increase K. Therefore, the performance of the resulting

ensemble model may degrade since the success of an ensemble model highly correlates with

the diversity among the individual models.

In-domain Results with Trained Model Weights

In order to observe the effect of learning model weights, we perform experiments on the 3

Brown ensemble model using first order feature vectors. Table 4.4 shows our results with the

model weights learned based on the partial scores (Section 4.3.2). We study different POS

categorization scenarios as our features set based on either both the head and modifier for

each dependency arc or just the modifier. The model weights are trained on Section 22 of

PTB. It seems that using POS of both head and modifier leads to better results compared

to other scenarios (improvement from 91.12% to 91.13%). However, learning the model

weights based on partial scores does not seem to be effective to the overall accuracy.1

Table 4.5 presents our results based on different scenarios explained in Section 4.3.2 us-

ing binary indicator features. The results for training the model weights with the modified

version of MIRA (Algorithm 5) are shown as MIRA-Modified in the table. For each POS

category specified in the table, each number represents the unlabeled accuracy when apply-

ing only the updated weight based on that POS category. We can observe from the table

that Verb, Adjective and Conjunction POS categories seem to be effective in improving the

accuracy on Section 22. More specifically, the improvement in unlabeled complete-correct

accuracy is significant in some cases (e.g., from 40.55% to 40.96% in Verb column). On

the other hand, for Section 23 of PTB, exploiting updated model weights based on Pronoun

category seem to be helpful in terms of accuracy. Table 4.6 shows the results when using the

updated weights based on different combinations of POS categories. Similar to the results

provided in table 4.5 we can see some notable improvements on Section 22. Using com-

binations of POS categories seems to be helpful especially in improving complete-correct

1We observed degradation in accuracy when increasing the number of iterations in MIRA algorithm in
some cases which can be due to overfitting.
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accuracy (e.g., the complete-correct accuracy for Verb/Pr is 40.78%/40.49% respectively

while for Verb+Pr is 40.90%).

Section Ensemble-Uniform POS Coarse POS Modifier-POS Modifier-Coarse POS

23
91.12 91.13 91.12 91.11 91.10
38.73 38.73 38.73 38.52 38.60

Table 4.4: The effect of learning the model weights based on partial scores from dev set on
Section 23 of PTB.

T
ra

in
in

g
A

lg
o
ri

th
m

S
ec

ti
o
n

E
n
se

m
b
le

-U
n
if

o
rm

V
er

b

N
o
u
n

A
d
je

ct
iv

e

A
d
v
er

b

A
d
p

o
si

ti
o
n

C
o
n
ju

n
ct

io
n

P
ro

n
o
u
n

MIRA

22 91.31 91.38 91.27 91.31 91.30 91.31 91.31 91.32
40.55 40.78 40.72 40.55 40.43 40.37 40.61 40.49

23 91.12 91.13 91.00 91.13 91.12 91.10 91.11 91.14
38.73 38.69 38.69 38.77 38.73 38.44 38.73 38.77

MIRA-Modified

22 91.31 91.33 91.27 91.33 91.31 91.12 91.32 91.32
40.55 40.96 40.72 40.61 40.20 39.78 40.61 40.49

23 91.12 91.04 91.08 91.10 91.12 90.97 91.09 91.14
38.73 38.77 38.52 38.48 38.81 37.11 38.73 38.77

Table 4.5: The effect of using different modifier POS categories on the accuracy of the
ensemble Brown on Section 22 and 23 of PTB using two different learning strategies.

4.4.3 Empirical Results in Out-of-domain Experiments

For the out-of-domain experiments, we train our dependency parsing models on the PTB

training data, and test on the Brown and SwitchBoard test sets. The SwitchBoard cor-

pus contains phone conversations which are radically different from the news articles that

comprise the Penn Treebank corpus, while the sections of the Brown corpus we used in our

experiments are taken from the press reviews genre/domain which is closer to the Tree-

bank text in terms of vocabulary and syntax. Hence, compared to the Brown corpus, the

SwitchBoard corpus has a larger domain divergence to the WSJ.
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3Brown 22 91.31 91.32 91.31 91.23
40.55 40.90 40.96 40.78

Table 4.6: The effect of using different combinations of modifier POS categories on Section
22 of PTB.

The intuition behind the benefit of an ensemble of 5 HMMS for dependency in out-of-

domain experiments is well illustrated in figures 4.6 and 4.7. We selected two words stuff

and got which are frequent words in the SwitchBoard corpus that are uncommon in the

WSJ corpus. Figure 4.6 shows the set of words that are clustered with stuff in each of the

5 HMM models. Diversity of the words that are clustered with stuff in each model shows

that using the ensemble of HMMs can lead to a better model.

mess
impression
problem
stuff

stuff
mess
list
pay off
pool

problem
theory
stuff
norm
chore
triangle
breadwinner

idea
purpose
mound
stuff
band
limitation
argument

story
stuff
limitation
mentality

(a) (b) (c) (d) (e)

Figure 4.6: The word stuff is clustered with diverse set of words in each of the HMM models.
figures a-e correspond to clusterings in HMM1-HMM5 respectively.

Out-of-domain Results with Uniform Model Weights

Table 4.7 presents our results with the model weights uniformly set to 1. In all cases, we

see a consistent improvement in the performance of the ensemble model compared to the

individual models and the baseline. As expected, because of the higher domain divergence

of the SwitchBoard compared to the Brown corpus, the ensemble performance improvement

for the SwitchBoard is more than that for the Brown in Table 4.7.
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gets
gave
got

brings
escapes

walked
got

drove
translates

saw
got

threw
ate

turned
dug
hung
got

got

sent
took

(a) (b) (c) (d) (e)

Figure 4.7: The word got is clustered with diverse set of words in each of the HMM models
. figures a-e correspond to clusterings in HMM1-HMM5 respectively.
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SwBd

1st 74.96 76.56 76.02 75.86 76.18 76.71 ±.10 76.42 77.06
30.58 31.98 30.62 31.39 31.58 32.07 ±.35 31.72 32.83

2nd 75.23 77.08 75.97 76.47 76.58 76.88 ±.18 76.88 77.23
31.8 33.12 32.05 33.05 33.30 33.10 ± .33 33.75 33.45

Brown

1st 84.01 85.16 84.74 85.13 85.06 85.23 ±.13 85.45 85.59
26.68 28.60 28.55 29.16 28.84 29.10 ±.31 29.76 29.62

2nd 84.69 85.88 85.43 85.82 85.92 86.00 ± .08 86.20 86.43
29.27 31.90 30.69 31.47 31.78 32.02 ± .44 32.41 32.65

Table 4.7: The Baseline (no cluster) vs individual cluster-based models as well as an En-
semble of 3 Browns and 5 HMMs for the SwitchBoard and Brown corpora.

We repeated the out-of-domain experiments with gold POS tags to investigate how

much of the divergence between domains is due to errors made in the POS tagger. We saw

a significant improvement in the parsing performance of the ensembles2 from 77.06/77.23 to

81.55/81.80 for the first/second order models; this is almost 20% error reduction. Further

error reduction ∼ 37% is needed to reach the performance level of the in-domain parsers (i.e.

around 90), which we believe can be achieved by capturing mainly the syntactic divergence

between the SwitchBoard and WSJ domains.

2We observed similar improvements for other base models.
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Out-of-domain Results with trained Model Weights

To observe the impact of learning model weights on out-of-domain data, we perform exper-

iments on the ensemble model of 3 Browns and 5 HMMs using first order feature vectors.

Table 4.8 shows the results on Brown corpus. For both of the ensemble models, it seems

that employing the updated weights based on Adjective and Adposition is more helpful than

others. But the improvements in accuracy are not considerable.

Table 4.9 demonstrates the results on the SwitchBoard corpus. We can see that in both

of the ensemble models, using the updated weights based on Adposition is more fruitful than

the others. The improvements in terms of accuracy are slightly more noticeable than the

results provided in table 4.8 (from 76.48% to 76.62% in Adposition column). The results

provided in both of the tables reveals that using the modified version of MIRA can lead to

better results for out-of-domain experiments in most of the cases.

Our experimental results on learning the model weights in both in-domain and out-of-

domain scenarios reveal that even though learning the model weights can lead to improve-

ments in some cases, it does not have an important contribution to the overall accuracy.

This is similar to the observation by (Zeman and Žabokrtský, 2005) who tried context sen-

sitive voting in which the contexts (such as morphological tags) were trained on the dev

set. They found that there is not enough predictive power in the context information to

outperform simple voting.3

4.4.4 Error Analysis

To better understand the contribution of each model to the ensemble, we take a closer

look at the parsing errors for each model and the ensemble. For each dependent to a head

dependency, we compute the error rate of each modifier grouped by a categorized POS tag

(as illustrated in table 4.1). We also calculate the F-score (harmonic mean of precision and

recall) of each of the different models for various dependency lengths, where the length of

a dependency from word wi to word wj is equal to |i − j|. Precision is the percentage of

dependency arcs in the predicted graph that are at a distance of |i− j| and are in the gold

graph. Recall is the percentage of dependency arcs in the gold standard graph that are at

a distance of |i− j| and were predicted. Figure 4.8 shows the error rate and F-score of the

3We also tried using the accuracy of each parser model on dev set as the model weight similar to (Sagae
and Lavie, 2006). We observed negligible improvements in terms of accuracy (from 91.12% to 91.13%)
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MIRA

3Brown 85.04 84.55 84.89 85.03 84.98 85.01 85.01
28.28 27.19 27.80 28.20 28.16 28.16 28.22

5HMM 85.12 84.36 84.98 85.14 85.07 85.14 85.12
28.36 26.11 27.76 28.32 28.28 28.28 28.32

MIRA-Modified

3Brown 85.04 84.93 84.92 85.05 84.99 85.01 85.03
28.28 28.20 27.88 28.28 28.24 28.16 28.29

5HMM 85.12 85.03 85.01 85.15 85.08 85.17 85.12
28.36 27.76 28.12 28.32 28.32 28.32 28.28

Table 4.8: The effect of using different modifier POS categories on the accuracy of the
ensemble Brown and ensemble HMM on Brown corpus using two different learning strategies.

T
ra

in
in

g
A

lg
o
ri

th
m

E
n
se

m
b
le

M
o
d
el

E
n
se

m
b
le

-U
n
if

o
rm

V
er

b

N
o
u
n

A
d
je

ct
iv

e

A
d
v
er

b

A
d
p

o
si

ti
o
n

P
ro

n
o
u
n

C
o
n
ju

n
ct

io
n

MIRA

3Brown 75.79 74.52 75.66 75.69 75.76 75.92 75.71 75.66
27.00 26.0 26.7 26.7 26.9 27.0 26.8 26.8

5HMM 76.48 74.99 76.30 76.36 76.32 76.58 76.44 76.30
28.4 26 27.8 28.2 27.9 28.2 28.2 28.2

MIRA-Modified

3Brown 75.79 74.94 75.76 75.73 75.76 75.95 74.82 75.70
27 26.5 26.8 26.9 26.9 26.7 26.3 26.8

5HMM 76.48 75.37 76.33 76.38 76.33 76.62 76.48 76.36
28.4 27.2 28.2 28.2 28.0 28.4 28.3 28.3

Table 4.9: The effect of using different modifier POS categories on the accuracy of the
ensemble Brown and ensemble HMM on SwitchBoard corpus using two different learning
strategies.

different base and ensemble models respectively.

We see that different models are experts on different dependency lengths; For instance,

for the ensemble of 3 Browns, 6bitBrown and FullBrown are experts at dependency of length

9 and 11 respectively, while the ensemble model can always combine their expertise and do
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better at each length. This observation holds for other ensemble models in Figure 4.8.

Now let us investigate the type of errors made for the out-of-domain experiments. Fig-

ure 4.9 plots the head attachment error rate for each grammatical category and the F-score

for different dependency lengths for the 3Brown on SwitchBoard corpus and for the 5HMM

on Brown and SwitchBoard corpus. The ensemble models 3Brown and 5HMM behave simi-

lar to the in-domain scenario on SwitchBoard and Brown corpus respectively. The ensemble

model of 5 HMMs on the SwitchBoard corpus however behaves somehow differently. In-

terestingly, the average of five HMMs and their ensemble perform worse than the Brown

clustering for Pronoun, Verb, and Adverb. This means that the initial coarse annotation

turns out to be just right for these categories, and as a result over-splitting them using the

HMM hurts the parsing performance.

4.5 Summary of the Chapter

In this chapter we provided an ensemble of different dependency parsing models, each model

corresponding to a different word clustering annotation. We have shown that either using

slightly different clustering annotations from the same clustering method (e.g., 3Brown,

5HMM) or using different clustering annotations from different clustering methods (e.g.,

JointBrown+Syn-Low+Syn-High) results in a more powerful model. The ensemble model

obtains consistent improvements in unlabeled dependency parsing, e.g. from 90.82% to

92.46% for Sec. 23 of the Penn Treebank (Significant 17% error reduction, reducing the

number of errors from 5200 to 4272). We also investigated the effect of learning the model

weights on the performance of the dependency parser. Our results show that simple uniform

ensemble model performs essentially as well as other more complex models. Our error

analysis has revealed that each parsing model is an expert in capturing different dependency

lengths, and the ensemble model can always combine their expertise and do better at each

dependency length.
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Figure 4.8: Error Analysis of different Ensemble models on in-domain experiments. First
column shows the error rates of the head attachment for different types of modifier categories.
the second column represents F-scores for each dependency length.
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Figure 4.9: Error Analysis of different Ensemble models on out-of-domain experiments.
First column shows the error rates of the head attachment for different types of modifier
categories. the second column represents F-scores for each dependency length.



Chapter 5

Conclusion and Future Work

This chapter provides some brief concluding points and discusses topics for future research

directions.

5.1 Thesis Summary

In this thesis, we provided multiple word representations based on three different clustering

methods: The Brown clustering algorithm (Section 3.2), the split-merge HMM (Section 3.3)

and the split non-terminals from Berkeley parser (Section 3.4). We then provided an en-

semble model for combining the word representations together in the MSTParser framework

(Chapter 4). We have shown that an ensemble of different dependency parsing models results

in a more powerful model which obtains consistent significant improvements in unlabeled

dependency parsing, e.g. from 90.82% to 92.46% for Section 23 of the Penn Treebank.

Furthermore, we have shown the strength of our ensemble model in the domain adaptation

scenario: on Switchboard data we improve accuracy from 75.23% to 77.23%, and on the

Brown corpus we improve accuracy from 84.69% to 86.43%. We also investigated the effect

of learning the model weights for the ensemble model and our experimental results show that

the simple unweighted ensemble model performs essentially as well as other more complex

models. Our error analysis has revealed that each parsing model is an expert in capturing

different dependency lengths, and the ensemble model can always combine their expertise

and do better at each dependency length. We can incrementally add a large number mod-

els using different clustering algorithms, and our results show increased improvement in

accuracy when more models are added into the ensemble.
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5.2 Future Work

The works in this thesis can be extended in different aspects:

• Enhancing the existing clustering methods: In Brown clustering algorithm we used bit-

strings of fixed lengths. Instead of cutting the hierarchy at a fixed depth (4 and 6),

we can exploit techniques that can choose to use shorter or longer prefixes at different

points in the hierarchy, in order to provide a more balanced hierarchy.

• Trying other approaches for clustering or combining the parsers: It would be interest-

ing to use other word representations such as distributed word representations (vector

of reals) as opposed to clustering identifiers and combine both kinds of representa-

tions for dependency parsing. Using multiple word representations has shown to be

successful for other NLP tasks such as chunking and named entity recognition (Turian,

Ratinov, and Bengio, 2010).

Also, it seems intriguing to try other approaches for combining the parse models and

compare it with our ensemble model. One such approach can be using the Matrix

Tree Theorem for computing the dependency arc marginals (Koo et al., 2007) under

each of the models and taking their product.

• Experimenting on other languages: Our experiments were done on English Treebank.

It would be interesting to see how the ensemble model performs on other languages.

• Domain adaptation scenario: Further improvement in the domain adaptation scenario

should be achievable by designing models which aim to better capture the syntactic

divergence between the source and target domains.
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Kübler, S., R. McDonald, and J. Nivre. 2009. Dependency parsing. Morgan and Claypool
Publishers.
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parsing using spanning tree algorithms. In Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Processing, HLT ’05,
pages 523–530, Stroudsburg, PA, USA. Association for Computational Linguistics.



References 57

Mel’čuk, I. 1987. Dependency syntax: theory and practice. State University of New York
Press.

Miller, S., J. Guinness, and A. Zamanian. 2004. Name tagging with word clusters and
discriminative training. In Daniel Marcu Susan Dumais and Salim Roukos, editors,
HLT-NAACL 2004: Main Proceedings, pages 337–342, Boston, Massachusetts, USA,
May 2 - May 7. Association for Computational Linguistics.

Nivre, J. 2007. Incremental Non-Projective Dependency Parsing. In Human Language
Technologies 2007: The Conference of the North American Chapter of the Associa-
tion for Computational Linguistics; Proceedings of the Main Conference, pages 396–403,
Rochester, New York, April. Association for Computational Linguistics.

Nivre, J. 2008. Algorithms for deterministic incremental dependency parsing. Computa-
tional Linguistics, 34.

Nivre, J. and J. Hall. 2005. Maltparser: A language-independent system for data-driven
dependency parsing. In Proceedings of the Fourth Workshop on Treebanks and Linguistic
Theories, pages 13–95.
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