
TOWARDS AUTOMATED FEATURE MODEL

CONFIGURATION WITH

OPTIMIZING THE NON-FUNCTIONAL

REQUIREMENTS

by

Samaneh Soltani

B.Sc., Azad University of Mashhad, 2005

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Interactive Arts and Technology

Faculty of Communication, Art and Technology

c© Samaneh Soltani 2012

SIMON FRASER UNIVERSITY

Summer 2012

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Samaneh Soltani

Degree: Master of Science

Title of Thesis: Towards Automated Feature Model Configuration with

Optimizing the Non-Functional Requirements

Examining Committee: Steve DiPaola

Associate Professor

Chair

Dr. Marek Hatala

Senior Supervisor

Associate Professor

Dr. Dragan Gasevic

Supervisor

Associate Professor, School of Computing and Infor-

mation Systems, Athabasca University

Dr. Uwe Glasser

External Examiner

Professor, School of Computing Science

Date Approved:

ii

Partial Copyright Licence

iii

Abstract

A Software Product Line is a family of software systems in a domain, which share some

common features but also have significant variabilities. A feature model is a variability

modeling artifact, which represents differences among software products with respect to

the variability relationships among their features. Having a feature model along with a

reference model developed in the domain engineering lifecycle, a concrete product of the

family is derived by binding the variation points in the feature model (called configuration

process) and by instantiating the reference model. However, feature model configuration is

a cumbersome task because of: 1) the large number of features in industrial feature models,

which increases the complexity of the configuration process; 2) the positive or negative

impact of the features on non-functional properties; and 3) the stakeholders’ preferences with

respect to the desirable non-functional properties of the final product. Several configuration

techniques have already been proposed to facilitate automated product derivation. However,

most of the current proposals are not designed to consider stakeholders’ preferences and

constraints especially with regard to non-functional properties. In this work we address the

feature model configuration problem and propose a framework, which employs an artificial

intelligence planning technique to automatically select suitable features that satisfy both

the functional and non-functional preferences and constraints of stakeholders. We also

provide tooling support to facilitate the use of our framework. Our experiments show that

despite the complexity involved in the simultaneous consideration of both functional and

non-functional properties, our configuration technique is scalable.

Keywords: Software product line, feature model, configuration process, planning tech-

niques.

iv

To my parents and husband for their continual encouragement and support.

v

Acknowledgments

First and foremost I would like to thank my advisers, Dr. Marek Hatala and Dr. Dragan Ga-

sevic for their enthusiastic guidance and support throughout this research and writing of this

thesis. Their constant motivation and creative ideas have highly inspired and encouraged

me in conducting this research.

I would also like to extend my appreciation to my examining committee member, Dr. Uwe

Glasser for his time and constructive and invaluable comments. I am grateful to Dr. Ebrahim

Bagheri for his invaluable feedback and comments on this research.

I would also like to thank students of the Ontological Research Lab for the support

and ideas they provided, especially I would like to mention Bardia Mohabbati and Melody

Siadaty.

My most deepest gratitude must go to my husband, Mohsen Asadi for all his patience,

love, support, and encouragement he gave me over the years. Finally, I wish to give my

special thanks to my parents for their endless support and encouragement.

vi

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Dedication v

Acknowledgments vi

Contents vii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Overview of the Research Context . 1

1.2 Motivation and Research Problem . 2

1.3 Overview of Proposed Approach . 3

1.4 Dissertation Organization . 5

2 Literature Review 6

2.1 Background . 6

2.1.1 Software Product Line . 6

2.1.2 Feature Model . 8

2.1.3 Non-functional Properties . 12

vii

2.1.4 Stakeholders’ Preferences and Constraints 13

2.1.5 Feature Model Configuration Process 14

2.1.6 Hierarchical Task Network (HTN) Planning 16

2.2 Related Work on Feature Model Configuration 18

3 Automated Feature Model Configuration 21

3.1 Integrating Feature Models with Non-Functional Properties 21

3.1.1 Modeling Non-Functional Properties 22

3.1.2 Extended Feature Model . 23

3.2 Optimizing Non-Functional Properties Based on Stakeholders’ Preferences . . 26

3.2.1 Stratified Analytic Hierarchy Process 26

3.2.2 Utility Function for Calculating Features’ Rank 28

3.3 Automated Feature Model Configuration Based on HTN planning 30

3.3.1 Transforming Feature Model into HTN 31

3.3.2 Planning Process . 37

4 Tooling Support 39

4.1 Integrating Feature Model with Non-Functional Properties 40

4.2 Managing Stakeholders’ Preferences . 41

4.3 Configuration Generator . 42

4.4 Visualizing the Result of the Planner . 42

5 Results and Evaluation 46

5.1 Performance Evaluation . 46

5.1.1 RQ1 (Scalability) . 46

5.1.2 RQ2 (Effectiveness) . 49

5.2 Comparing the Approaches . 51

6 Conclusion & FutureWork 55

Bibliography 57

viii

List of Tables

3.1 Quantitative properties and corresponding aggregation functions 23

3.2 Relative importance of non-functional properties. 27

3.3 Normalized values of relative importance of non-functional properties. 28

3.4 Mapping between constructs in extended feature models and HTN Domain

models – OR and Optional feature Groups are replaced in the preprocessing

step. 37

3.5 Mappings between the configuration problem and the HTN planning problem. 38

5.1 Comparative analysis of related works ((+) criterion met, (-) criterion not

met, (+/-) criterion partially met). 54

ix

List of Figures

1.1 Automatic feature model configuration process in application engineering phase 4

2.1 Different types of features in feature model 10

2.2 A subset of on-line shopping systems feature model 11

2.3 Manual feature model configuration process in application engineering phase 15

2.4 An example of HTN domain [34] . 16

3.1 Non Functional Property Model . 22

3.2 Integration of Feature Model with Non-Functional Property Model 24

3.3 Integrated Feature Model with Non-Functional Properties 25

3.4 Non-functional properties prioritization . 27

3.5 The preprocessing step for transforming feature models into HTN domains:

(a) optional features (b) OR feature groups 32

3.6 Generating Domain Predicates.(a) feature model, (b) a qualitative NFP and

its qualifier tags, (c) Domain Predicates in HTN 33

3.7 Translating Atomic features into Operators. (a)feature Model, annotated

with NFPs and feature ranks, (b) Operators generated for atomic features. . 34

3.8 Generating tasks and methods from non-atomic features. (a) And Decom-

position and corresponding task and method, (b) Alternative Decomposition

and corresponding tasks and methods, (c) Or Decomposition and correspond-

ing tasks and methods . 35

4.1 High level architecture of the Vis-fmp . 40

4.2 NFP model definition view . 41

4.3 A snapshot of the view for managing stakeholders and their preferences . . . 42

4.4 The result of planner in the visual view . 43

x

5.1 Running time of the configuration technique for feature models with different

numbers of features and integrity constraints. 49

5.2 Running time of configuration technique based on different number of con-

straints over NFPs. 50

xi

Chapter 1

Introduction

This chapter introduces the research context and research problem. We discuss gaps in

the existing research on the feature model configuration and the motivation behind our

work. We also explain how we address those gaps and provide an overview of the proposed

approach. We conclude this chapter by introducing the structure of the thesis.

1.1 Overview of the Research Context

Software Product Lines Engineering (SPLE) aims at developing a set of software systems

that share common features and satisfy the requirements of a specific domain [26]. SPLE

decreases development costs and time to market, and improves software quality through

strategic reuse of assets within a domain of interest. A technique adopted in SPLE for

managing reusability is commonality and variability modeling through which common assets

and their variabilities are formalized.

A software product line lifecycle encompasses a domain engineering process and an

application engineering process. In the domain engineering process, a comprehensive formal

representation of the products of the domain is developed. This includes a variability model

and the core assets of the product family. Feature models are among the prevalent variability

modeling techniques in SPLE and represent variability in terms of the differences between

the features of the products that belong to a software family. A feature is a logical unit of

behavior specified by a set of functional and non-functional requirements [9].

On the other hand, the application engineering process is responsible for capturing the

requirements of the target application, deriving a concrete product from the variability

1

CHAPTER 1. INTRODUCTION 2

model through a configuration process, and deploying the product into users’ environment

[30]. Using feature models as variability modeling tools, the configuration process selects a

suitable set of features to satisfy the stakeholders’ requirements.

1.2 Motivation and Research Problem

The focus of existing research in software product line has been mostly on modeling and

managing product lines, while there are only a few works which in particular concentrate on

effectively utilizing product lines. Although there are a number of algorithms for product

line configuration [16][8][61], there is very little coverage of non-functional requirements in

them. This lack of available approaches and tools for optimizing feature model configuration

with respect to non-functional requirements builds the motivation behind our research.

Selecting a proper set of features among a feature model is a complex and time consuming

task because:

• there are several types of relations and integrity constraints between the features.

• the number of possible configurations has exponential growth. Even in small feature

models the number of possible configurations can be very high. Industrial feature

models may consist of hundreds of features which increases the complexity of feature

model configuration.

• features may have either positive or negative impact on the different business concerns

of a product, and hence expose different quality attributes. We refer to business

concerns of a product (e.g., security and customer satisfaction) and quality attributes

of a product (e.g., performance and cost) as non-functional properties (NFP). For

example, a feature may have a negative impact on security, but a positive impact on

customer satisfaction or it could have high performance but low reliability.

• in addition to functional requirements, stakeholders may have several constraints and

preferences over non-functional properties in the product derivation. For example,

one stakeholder may ask for a product with high security, high customer satisfaction,

and specific amount of cost ; and can mention that the customer satisfaction is more

important than security ; which would make the configuration process more difficult

and complex.

CHAPTER 1. INTRODUCTION 3

The aforementioned difficulties in the configuration process strongly motivated us to

address the following research question:

How can a product be automatically derived from a feature model in such a way that it

satisfies stakeholders’ requested functionality and at the same time optimizes their prefer-

ences and requirements over the non-functional properties?

1.3 Overview of Proposed Approach

To overcome the complexity of feature model configuration we developed an automatic

method to select the proper set of features fulfilling stakeholders’ functional and non func-

tional requirements and preferences. To this end, we looked into preference-based planning

techniques. Various preference-based planning techniques exist that produce a plan by op-

timizing a set of given preferences [51]. Hierarchical Task Network (HTN) planning is a

popular planning technique, which is suited for domains with hierarchical task decompo-

sition [34]. The HTN Planning technique generates plans from a developed hierarchical

network of domain tasks and actions [51]. That is, having modeled tasks, actions, and

their constraints in the HTN formalism, HTN planners produce a sequence of actions that

perform some given tasks.

By way of analogy between the feature model configuration process and the HTN plan-

ning problem, we were motivated to investigate the applicability of HTN planning for the

product line configuration problem. Hence, we hypothesized that HTN planning can form

the basis for a configuration technique that can answer our research question. Consequently,

we proposed and developed a framework, similar to [50], which extends feature models with

annotations reflecting different non-functional properties. We then used HTN planning [35]

to select a set of features which: 1) satisfy the stakeholders’ functional requirements; and

2) optimize the non-functional requirements and preferences of the stakeholders.

The general overview of the proposed approach is illustrated in Figure 1.1. As shown in

the figure, our approach captures functional requirements and non-functional requirements

of stakeholders for final application. Non-functional requirements are captured in terms

of relative importance of non-functional properties along with constraints over the non-

functional properties (Chapter 2.1.4). Then, we employed an extension of Analytical Hier-

archy Process (AHP)[45] algorithm, called Stratified-Analytical Hierarchy Process (S-AHP)

to calculate the ranks of the features based on the relative importance of non-functional

CHAPTER 1. INTRODUCTION 4

properties assigned to the features (Chapter 3.2.1). Next, we generated the HTN planning

domain and problem from the feature model and stakeholders’ requirements (Chapter 3.3).

Figure 1.1: Automatic feature model configuration process in application engineering phase

We apply the SHOP2 planner [35], an HTN-based planning system widely used for

planning problems, to identify an optimal plan (i.e., a plan with the best overall cost) To

produce the final configuration, the features chosen by the SHOP2 planner are selected and

represented in the visual view.

In comparison to existing configuration approaches, our approach has the benefit of

not only satisfying the structural and syntactic constraints of feature models during the

configuration process, but also taking both qualitative and quantitative NFPs as well as the

relative importance of NFPs into account.

In general, the main contributions of this thesis are as follows:

• Modeling non-functional properties in the context of software product lines; and ex-

tending feature models to cover NFPs as well as functional properties.

CHAPTER 1. INTRODUCTION 5

• Introducing an easy-to-understand formalism for capturing the stakeholders’ pref-

erences over non-functional properties represented in terms of relative importance;

and utilizing Stratified Analytic Hierarchy Process (SAHP) to calculate the weight of

NFPs.

• Producing an optimal feature model configuration, by transforming a feature model

and stakeholders’ preferences and constraints into a planning domain and problem by

considering both functional and non-functional requirements.

• Developing a tool to support the proposed approach for the feature model configura-

tion.

• Conducting several experiments to evaluate the performance and usefulness of the

proposed approach and the developed tool.

1.4 Dissertation Organization

1. Introduction. This chapter introduces this thesis and presents an overview of the

research context, research problem and the motivations of our research as well as a

brief introduction to our proposed approach.

2. Literature Review. This chapter introduces the fundamentals and basic domain

concepts including software product line, feature models, non-functional properties,

feature model configuration process, and hierarchical task network. It also presents a

detailed overview of existing related research in this domain.

3. Automated Feature Model Configuration. The details of the proposed approach

along with underlying concepts are explained in this chapter.

4. Tooling Support. This chapter introduces the developed tool and explains its char-

acteristics.

5. Result and Evaluation. This chapter evaluates the proposed approach and devel-

oped tool in terms of scalability and effectiveness. It also compares our approach with

other existing approaches.

6. Conclusions and future work. This chapter concludes the thesis and mentions the

open issues and future works.

Chapter 2

Literature Review

In this chapter, we describe the fundamentals and basic domain concepts which are used in

the thesis. We first briefly introduce software product lines and feature models as well as the

feature model configuration process. Next, we explain the hierarchical task network planning

and its related concepts. Finally, we terminate the chapter by providing an overview of the

existing researches and works relevant to the feature model configuration.

2.1 Background

This section introduces the research context including: software product lines, feature mod-

els, non-functional requirements, feature model configuration process, and hierarchical task

network planning.

2.1.1 Software Product Line

Mass customization is defined as “a large-scale production of products tailored to individual

customers’ needs” [30]. The main precondition for the success in mass-customization is

flexibility - adapt products to fit into different requirements [30]. Moreover, large-scale reuse

is another success key in mass-customization. Software product line approaches facilitate

the mass-customization through providing variability mechanisms for flexibility and core

assets for reusability.

Software product line can be defined as “a set of software-intensive systems sharing

a common, managed set of features that satisfy the specific needs of a particular market

6

CHAPTER 2. LITERATURE REVIEW 7

segment or mission and that are developed from a common set of core assets in a prescribed

way” [14]. The fundamental difference between the software product line and traditional

software development is shift from individual software and system to product line [39]. In

software product line we have a view of domain of interest as a family of products; each

product has some feasible features and properties of a domain and fulfills a specific purpose

in that domain. Software product line by aid of reuse assets and components accelerates the

development of software systems. Therefore, software product line can be easily changed in

order to cope with growing technologies and new needs. For example, CelsiusTech applied

the software product line engineering paradigm to develop naval control systems named

ShipSystem 2000. CelsiusTech could quickly develop the new avionic systems because it

reused 40% of its code directly from Ship System 2000 [39].

Product line notion can be traced back to Parnas’ work [37] (called product families) in

1970 which aimed at managing non-functional variability in software systems. Kang et al.

[26] fully introduced the product line notion in 1990 by developing Feature Oriented Domain

Analysis method (FODA). Afterwards, many industries and academic researchers in both

USA and Europe have contributed in the maturity of software product line engineering.

Offering improvement in both process oriented aspects (such as cost and time-to-market)

and product quality leads companies to adapt software product line for developing software

[39]. For an example, by using software product line techniques, Nokia overcame its main

challenge (i.e., being the high pace of market demand and customer taste change) and

increased its production capacity for new cellular phone models from 5-10 to around 30

models per year [14]. Reducing development cost and time to market are achieved by large-

scale reuse during the development of software in the software product line.

There are basically two lifecycles in the software product line engineering, namely Do-

main engineering and Application engineering [30]. Domain engineering (development for

reuse) is concerned with the process of understanding the target domain and developing a

relevant, suitable, and comprehensive formal representation of the concepts in that domain.

Domain engineering process contains five key sub-processes including [39]:

• Product management: This phase determines the scopes of product lines and iden-

tifies benefits and costs of applying software product line. At the end, a product line

roadmap which contains variable and common features of the product line is generated.

• Domain requirements engineering: This phase analyzes, captures, models, and

CHAPTER 2. LITERATURE REVIEW 8

verifies the domain requirements. Additionally, commonality and variability between

products are identified and modeled using variability modeling languages.

• Domain design: According to the requirements of a domain, a reference architecture

of the product line along with reusable assets are developed during this phase. The

variability model is refined and enriched with design variability options.

• Domain realization: This phase implements the reusable assets in a domain and

enriches the variability model with the implementation variability.

• Domain testing: This phase, taking into account the domain requirements and the

reusable assets, validates and verifies the reusable assets.

On the other hand, application engineering receives the reusable artifacts developed in

the domain engineering process and creates an appropriate application instance for given

requirements. The application is produced by carefully choosing and instantiating the right

elements of the formal representation of the domain model [4]. The application engineering

process consists of four sub-processes [39]:

• Application requirements engineering: This phase encompasses actvities for cap-

turing, modeling, and validating the requirements of a specific application. To develop

the application requirements, the domain requirements model is utilized.

• Application design: This phase resolves the variability of the reference architec-

ture based on the specific application requirements and instantiates an application

architecture.

• Application Realization: This phase creates the final application through instan-

tiating and adapting reusable assets to fit them to application requirements.

• Application testing: This phase validates and verifies the final application against

its requirements.

2.1.2 Feature Model

In Software product line Engineering (SPLE), a feature model is used mainly for represent-

ing commonality and variability between products. A feature model is created during the

domain requirements engineering process by modeling common and variant features among

CHAPTER 2. LITERATURE REVIEW 9

products in a specific domain. Later on in application engineering process, the feature model

is configured according to the requirements of a target application. The notion of feature

model was introduced by Kang et al. in the Feature Oriented Domain Analysis (FODA)

report back in 1990 [26]. In this work, products in the product line are differentiated by

their features. The features are defined as important distinguishing aspects, qualities, or

characteristics of a family of systems [28]. Other researchers proposed different definitions

for features including:

• Kang et al. [27]: “a distinctively identifiable functional abstraction that must be

implemented, tested, delivered, and maintained”;

• Czarnecki et al. [17]: “a distinguishable characteristic of a concept (e.g., system,

component, and so on) that is relevant to some stakeholder of the concept”;

• Bosch et al. [9]: “a logical unit of behavior specified by a set of functional and non-

functional requirements”;

• Batory et al. [6]: “a product characteristic that is used in distinguishing programs

within a family of related programs”;

• Zave et al. [65]: “an optional or incremental unit of functionality”.

Among aforementioned definitions, Bosch’s definition covers both functional and non-functional

aspects. Hence, we consider this definition as we intend to configure the feature model based

on both functional and non-functional requirements.

A feature model provides a formal and graphical representation of features as well as the

variability relations, constraints, and dependencies defined over the product lines’ features.

It has a tree-like structure [17] in which features are typically classified as:

• Mandatory feature: if a parent feature is selected, its mandatory child feature must

be also selected in the configuration process (Figure 2.1(a)).

• Optional feature: if a parent feature is selected, its optional child feature may or

may not be selected in the configuration process (Figure 2.1(b)).

• OR feature group: one or more features in the OR feature group must be selected

in the final configuration of the feature model(Figure 2.1(c)).

CHAPTER 2. LITERATURE REVIEW 10

• XOR feature group: one and only one of the features in the XOR feature group

must be selected in the final configuration of the feature model(Figure 2.1(d)).

Figure 2.1: Different types of features in feature model

In addition to the relations between a parent feature and its child features, a number of

relations are defined to represent mutual inter-dependencies (also referred to as integrity

constraints) between features. The two most widely used integrity constraints are [17]:

requires-the presence of a given (set of) feature(s) requires the inclusion of another (set of)

feature(s); and excludes-the presence of a given (set of) feature(s) requires the exclusion of

another (set of) feature(s). For example, if “feature A requires feature B” and feature A is

selected then feature B has to be selected as well. Opposite to this, if “feature A excludes

feature B” and feature A is selected then feature B has to be unselected. In feature model

tree, features without any children called atomic (or leaf) features and features which are

decomposed into sub-feature(s) called non-atomic (or intermediate) features.

Feature models address commonality through core features - mandatory features whose

parents are all mandatory as well - and variability through variability relations described

above. It models all possible products of a software system in a specific domain. In contrast

with traditional information models which represent a single product in a model , feature

models represent a family of products in the same model. A feature model can be formally

represented as follows:

Definition 2.1.1 (Feature model). A feature model is a sextuplet FM = (F, FO, FM ,FIOR,

FXOR, Fic) where 1) F is a set of features; 2) FO ⊆ F × F is a set of parent and optional

child feature pairs; 3) FM ⊆ F × F is a set of parent and mandatory child feature pairs; 4)

FIOR ⊆ F×P (F) and FXOR ⊆ F×P (F) are sets of pairs of child features and their common

parent feature P (F) grouping the child features into or and alternative groups, respectively;

5) Fic ⊆ F × F is a set of integrity constraints (i.e., requires or excludes).

CHAPTER 2. LITERATURE REVIEW 11

Figure 2.2: A subset of on-line shopping systems feature model

CHAPTER 2. LITERATURE REVIEW 12

Figure 2.2 depicts a Check out feature model - a part of on-line shopping feature model.

This example is taken from SPLOT feature model repository1 which is used extensively for

research works. It consists of three main features: Payment Options; Order Confirmation; and

Shipping. Features Payment Option and Order Confirmation are mandatory features. The

Shipping feature is optional and may or may not be selected for the products containing the

Checkout feature. That is, all on-line shopping systems containing check out feature must

have payment and order confirmation features and may or may not have shipping feature.

The Payment Type feature is divided into five Or-features, namely Credit Card, Debit Card,

Cash, Purchase Order, and Electronic Cheque. Hence, for products having payment feature,

one or more payment type(s) (including credit card, debit card, cash, purchase order, and

electronic cheque) should be selected. Courier Gateway is divided into three alternative

features - Canada Post, UPS, and Fedex. That is, for products having shipping feature, one

and only one courier gateway (including Canada Post, UPS, and Fedex) must be selected.

Payment Options, Order Confirmation, Payment Gateway, and Payment Type are the core

features in the feature model. In other words, all on-line shopping systems containing check

out feature contain Payment options, Order confirmation, Payment gateway, and Payment type

features. Features Electronic Page, Email, Phone, and Mail are the examples of atomic fea-

tures; and features Payment Type, Payment Gateway, and Shipping Options are the examples

of non-atomic(or intermediate) features

2.1.3 Non-functional Properties

Handling non-functional requirements (NFRs) has been a major challenge in both require-

ments engineering and software engineering. Requirements engineering is concerned with

capturing and modeling non-functional requirements which refer to constraints over the

non-functional properties of a target system. NFRs are essential and critical for the success

of a project [22] and neglecting NFRs may lead to serious project failures [31].

Unlike existing consensus on the definition of functional requirements, several different

definitions have been given in the literature for non-functional requirements. Glinz [22]

analyzed these definitions and found out not only terminological, but also major conceptual

discrepancies. In [31], Mairiza and Zowghi performed a systematic analysis of the notion of

1SPLOT - Software Product Line On-line Tools, http://www.splot-research.org

CHAPTER 2. LITERATURE REVIEW 13

non-functional requirements and came up with two main classes of definitions: 1) require-

ments that describe the properties, characteristics or constraints that a software product

must exhibit; and 2) requirements which describe the quality attributes of the software prod-

uct. According to the first group, non-functional requirements describe any requirements

which are not functionality of the system. This includes several aspects such as business

rules, development constraints, external interfaces, and quality attributes [31]. On the other

hand, the second perspective covers a narrow range of non-functional requirements, (i.e.,

quality attributes) as a subset of the first group.

From the software engineering point of view, during design and implementation phases,

we are concerned with either adding functionalities to realize non-functional requirements

or defining constraints over the non-functional properties of a software based on the non-

functional requirements. For example, in order to realize high security non-functional re-

quirement, we may need to add a number of functionalities such as login management system

or verification components into design and implementation models. Additionally, we can

define non-functional properties (also known as quality attributes) for different elements

of design and implementation and limit their possible values based on requirements. For

example, the response time property may be defined for different functional elements of

the system and the property values are limited to a certain interval based on the expected

requirements.

2.1.4 Stakeholders’ Preferences and Constraints

Various stakeholders may have different priorities over non-functional properties. For some

stakeholders, a subset of non-functional properties may be more important and relevant

than the other non-functional properties. Moreover, in some situations, a conflict may arise

between requirements defined over non-functional properties that have an opposite behavior,

in case of which the stakeholder needs to choose between the competing options. One

approach for specifying the priority between non-functional properties is through formalizing

their relative importance relations. Relative importance is defined as follow [36].

Definition 2.1.2 (Relative Importance). Relative importance between non-functional

properties a and b is: a �α b if non-functional property a is more important than non-

functional property b with coefficient α.

CHAPTER 2. LITERATURE REVIEW 14

Usually, the degree of importance of options (non-functional properties) is represented

using values 1, 3, 5, 7, and 9 corresponding to equality, slight value, strong value, very

strong and extreme value, respectively [44]. For example, relation Security �3 Performance

represents that security is slightly more important than performance. We refer to the rela-

tive importance between non-functional properties as stakeholders’ preferences. Prioritizing

the stakeholders’ preferences, formalized in terms of relative importance of non-functional

properties, can have a dramatic impact on the design of the system.

In addition to preferences, stakeholders may define constraints over non-functional prop-

erties of a system. For example, a stakeholder may define a constraint that an on-line shop-

ping system has to be at least medium secure and cost less than $1000. Thus, the final

system should not have any functionality (i.e., feature) that provides positive impact on

security less than the medium level. We assume that a product has some level of qualitative

non-functional property (e.g., medium security), if all of its features have at least that level

of non-functionality (i.e., all the features must have at least medium security). Formally,

we define stakeholders’ preferences and constraints as:

Definition 2.1.3 (Stakeholders’ Preference and Constraint Model). A stakeholder

preference and constraint model is a quadruple SPCM = (NFP, V,RI,CO) where 1) NFP

is a set of non-functional properties; 2) V is a set of values of NFPs, which can be either

numeric values or qualifier tags based on the type of property 3) RI is a set of relative

importance relations between non-functional properties (Definition 2.1.2); and 4) CO ⊆
NFP × V is a set of constraints over the values of non-functional properties.

2.1.5 Feature Model Configuration Process

After developing a feature model and implementing features in the domain engineering

phase, software products are derived in the application engineering phase by configuring the

feature model and instantiating reusable assets according to the requirements of a target

application. A feature model represents the configuration space of a system family [16].

An application engineer may create a final software system by selecting a proper set of

features based on the stakeholders’ needs, and deselecting irrelevant features. In other

words, application engineers need to go over the entire feature model and make a decision

at each variation point to select the best variant(s).

In selecting a set of features for a product not only the functional requirements should

CHAPTER 2. LITERATURE REVIEW 15

be satisfied, but non-functional requirements should also be satisfied. Figure 2.3 illustrates

the feature model configuration process in the application engineering life-cycle. As shown

in the figure, stakeholders specify requirements over functional and non-functional aspects.

Application engineers formulate requirements in terms of constraints and preferences and

make configuration decisions to select proper features. This process is conducted in an iter-

ative manner including several specialization steps [16]. The configuration process is a vital

Figure 2.3: Manual feature model configuration process in application engineering phase

task in SPLE, because selecting the right and suitable features for a software product is im-

portant for the success of the project at the hand. Moreover, the configuration is a complex

process because: 1) industrial feature models are large and may contain hundreds of fea-

tures; 2) selecting a proper set of features requires close consideration of many factors such

as technical limitations, implementation costs, or stakeholders’ requests and expectations[2];

3) features may have partial or full (positive or negative) impacts on non-functional prop-

erties; 4) Non-functional requirements may conflict with each other and trade-off decision

are required based on the preferences of stakeholders.

CHAPTER 2. LITERATURE REVIEW 16

2.1.6 Hierarchical Task Network (HTN) Planning

Given an initial world description, goal conditions, and actions, planning problem is to find a

plan leading from start to the goal. Hierarichal Task Network(i.e., HTN) Planning is among

several planning techniques proposed in artificial intelligence, which fits well with domains

consisting of low level actions and high level tasks. High level tasks are hierarchically refined

into lower level tasks and finally into actions. HTN planning consists of a planning domain,

planning problem, and an output plan [52]. Figure 2.4 shows a simple example of HTN

domain [34] and initial states; in this example the goal is traveling between home and park.

As shown in the figure, the initial task (i.e., travel(me, home, park)) is decomposed into

two sub-tasks (i.e., travel-by-foot, and travel-by-taxi) and finally each sub-task is refined into

some actions. Definition 2.1.4 formalizes an HTN domain [52].

Figure 2.4: An example of HTN domain [34]

Definition 2.1.4 (HTN Planning Domain). An HTN planning domain is a quadruple

D = (O, T,M, V) where 1) O is a set of operators; 2) T is a set of tasks; 3) M is a set of

methods; and 4) V is a set of domain predicates.

An operator (denoted as o) represents a low level action (e.g., ride-taxi(me, home) in the

Figure 2.4), which can be executed in the domain and is formally defined as a quintuple o =

(name(o), pre(o), eff(o), del(o), value(o)). pre(o) defines a pre-condition (e.g., cash(a) >

1.50+0.50×distance(x, y) as a precondition for operator pay-taxi) for every operator, which

represents required conditions for performing the operator. The effect of performing the

operator (e.g., cash(a) ← cash(a)− 1.50 + 0.50× distance(x, y) as an effect of performing

CHAPTER 2. LITERATURE REVIEW 17

operator pay-taxi) can also be represented by using a post condition eff(o). del(o) or

operator’s delete list shows what becomes false after performing the operator. For every

operator, an optional value value(o) can be defined, which shows a required cost for the

execution of that operator. The total value of an output plan is the sum of the values of

the operators in the plan.

The task construct (denoted as t) represents higher level activities in HTN and can

recursively be decomposed into the lower level tasks, and finally operators. In HTN, only

operators can be executed and tasks can only be reduced into sub-tasks and operators

[34]. Refinement of a task into sub-tasks is done using one or more methods (denoted as

mt) corresponding to the task. So, every method defines how a task is decomposed into

lower level tasks or operators. A method is a quadruple M = (name(m), task(m), pre(m),

dec(m)) where task(m) is a parent task, pre(m) is a pre-condition, and dec(m) is a list of

sub tasks into which the parent is decomposed. A precondition pre(m) defines a required

condition for decomposing the parent task. A method is applied only when its precondition

is satisfied [52]. For example, method travel-by-taxi can be defined as following:

• task : travel(a, x, y)

• precond : cash(a) > 1.50 + 0.50× distance(x, y)

• subtasks: call-taxi(a, x) → ride(a, x, y)→ pay-driver(a, x, y)

The planning problem describes characteristics of a required plan - the objective, initial

state, and constraints. The HTN planning problem is formally defined as follows [52] :

Definition 2.1.5 (HTN planning problem). An HTN planning problem is a triple PP

= (S, T,D) where 1) S is a set of logical atoms (initial state); 2) T is a set of initial tasks;

and 3) D is a planning domain description defined in Definition 2.1.4.

As a result of applying a planning technique, a plan containing a sequence of actions that

satisfies the objective and the constraints defined in the planning problem is produced. The

HTN planning formulates the plan by recursively decomposing the tasks into sub tasks until

it reaches the primitive tasks, which can be performed [34]. Similar to [52], we define an

HTN plan as follows:

Definition 2.1.6 (HTN Plan). Let PP = (S, T,D) be a planning problem defined ac-

cording to 2.1.5. A plan for planning problem PP is a double π = (O
′
, c) where 1) O

′ ⊆ O

CHAPTER 2. LITERATURE REVIEW 18

is a set of operators that will achieve tasks T from initial state S in domain D; and 2) c is

the total value of the plan.

2.2 Related Work on Feature Model Configuration

The configuration process has been a center of interest in software product line research

community for a long time. Many research papers have been proposed to guide application

engineers for configuring feature models as well as automate parts of the configuration

process and optimize non-functional properties in the product derivation.

The first attempt, important for our research, has been done by Czarnecki et al. [16]

who introduced a stage configuration process. In that work, a number of specialization

steps are introduced to remove variability from feature models. In each specialization step,

some parts of the feature model variability are resolved. These steps include: refining

feature cardinality, refining group cardinality, removing a sub-feature from a feature group,

selecting a feature from a feature group, assigning an attribute value, and cloning a solitary

sub-feature. In order to help application engineers to derive a valid configuration using this

approach, tooling support and validation approaches are provided by Czanrecki et al. [16]

Second group of related works focuses on automating configuration process and considers

functional and non-functional requirements of the target application when configuring the

feature model. Benavides et al. [7] developed an automated reasoning technique over

extended feature models (i.e., feature models with extra-functional features). Using their

extension, they were able to assign extra-functionalities such as price range or time range

to features. The purpose of their technique is to find a product of a model based on given

constraints. Their technique is based on mapping feature models to Constraint Satisfaction

Problems (CSP)s and use of CSP solvers [7][8].

Batory et al. [5] integrated feature models with grammars and propositional formulas.

Moreover, they used Logic Truth Maintenance Systems (LTMS) and satisfiability solver

(SAT), in feature models. The SAT techniques are used for checking the violation of the

feature model constraints during the configuration process. Therefore, the SAT techniques

can be used as peripheral means during configuration process.

Siegmund et al. [50] have developed a technique called SPL conqueror which extends

feature models with non-functional properties and applies CSP to find an optimal configura-

tion based on user defined objective functions. In their technique, a number of preprocessing

CHAPTER 2. LITERATURE REVIEW 19

steps are taken to reduce the search space for optimal configuration. Their approach differs

from Benavidas’ approach on types of non-functional properties they manage. Siegmund et

al. considered both qualitative and quantitative non-functional properties while Benavidas

et al. concentrate on quantitative non-functional properties.

White et al. [61] used a Filtered Cartesian Flattening (FCF) method to select optimal

feature sets according to the resource constraints. In their method, they map the feature

selection problem to a multi-dimensional multi-choice knapsack problem (MMKP) [61]. By

applying the existing MMKP approximation algorithms, they provide partially optimal fea-

ture configurations in polynomial time. Filtered Cartesian Flattening consists of different

steps including: 1) producing a number of independent MMKP sets (i.e. cutting the FM

diagram); 2) converting feature model parts to XOR relations because MMKP just supports

XOR relation; 3) flattening with Filtered Cartesian Products; 4) handling Cross-tree Con-

straints; 5) MMKP Approximation. Although their approach is successful for large feature

models, they have a limitation on the number of resources and the amount of resources

consumed by features. Moreover, for performing their approach, multi-core processors and

parallel computing are required.

White et al. [62] also formalize the stage configuration and introduce a Multi-step

Software Configuration probLEm solver (MUSCLE) in which they provide a formal model

for multi-step configuration and map it to CSPs. Hence, CSP solvers were used to determine

the path from the start of the configuration to the desired final configuration. They consider

non-functional properties such as cost constraints between two configurations and formalize

them as CSP constraints. Their approach is only applicable for multi-stage configuration

and focuses on creating new configurations from an already derived product configuration.

Mendonca et al. [32] proposed a translation of basic feature models into propositional

logics and used Binary Decision Diagrams (BDD) as the reasoning system. Their approach

concentrates on validating feature models and does not offer a facility for automated con-

figuration. It can be used in a multi-stage configuration process to validate the results of

every specialization of a feature model (called interactive configuration). An interactive

configuration only checks the structural constraints of feature models and does not con-

sider preferences and non-functional requirements of stakeholders. A tool is implemented

to support software developers in validation.

Guo et al. also addressed the challenge of optimizing feature model configuration in

their work [23]. They proposed an approach in which Genetic Algorithms are employed to

CHAPTER 2. LITERATURE REVIEW 20

optimize Feature Selection (GAFES). In the GAFES algorithm the first population is created

by randomly generating a string with n binary digits (which represents a chromosome so

that a value of 1 and 0 for a digit indicates the selected and deselected feature, respectively).

Next, the arbitrary feature selection is transformed into a valid feature selection by applying

FesTransform (Feature selection Transform) algorithm which is a key component of their

approach. The results of their empirical study show that their proposed algorithm can

achieve an average of 86− 90% optimality for feature selection.

Chapter 3

Automated Feature Model

Configuration

In this chapter we introduce our configuration approach and explain its details. Our basic

idea is to employ planning techniques for solving the configuration problem. To this end,

we transform feature models into hierarchical task network formalisms and use a HTN

planner to automatically select proper features based on stakeholders’ requirements. We also

describe how non-functional properties can be optimized during the configuration process,

according to the needs of stakeholders .

3.1 Integrating Feature Models with Non-Functional Prop-

erties

Due to the fact that a product line is developed for an entire domain, different products

satisfy very diverse functional and non-functional requirements. So far, the main focus of

software product line development approaches is on functional variability of products. Diver-

sity of non-functional properties and their values in different products have been neglected

in many existing software product line approaches. However, in order to deliver a product

which fits to both functional and non-functional requirements of stakeholders, it is crucial

to model non-functional properties along with functional properties in the product line de-

velopment. This section introduces the proposed solution for incorporating non-functional

21

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 22

Figure 3.1: Non Functional Property Model

properties into software product line models. The solution consists of a non-functional prop-

erty model (as a separate model) and extended feature models (feature models with features

containing non-functional properties).

3.1.1 Modeling Non-Functional Properties

Based on the existing research on non-functional properties in software engineering and

software product line, we have proposed a non-functional property model (see Figure 3.1). In

the proposed model, based on the nature of non-functional properties, we categorized them

into two main categories: Quantitative and Qualitative. Most non-functional properties

are quantitative and there may be some qualitative properties of software systems [19]. In

order to make the model more flexible, we let users define several categories to classify the

non-functional properties based on their interests and domain.

A quantitative property is countable, measurable, or comparable and can be shown

as a numeric value. Cost, Performance, and Memory usage are examples of quantitative

properties. This category of properties itself has some types like ratio or interval. Metric

based values are defined for quantitative non-functional properties and can be measured

for a product. For example, performance can be measured for and assigned to the specific

feature.

After measuring a non-functional property value for features, the NFP value of a prod-

uct is computed by aggregating the NFP value of features involved in the product. Based

on the nature of non-functional properties, different aggregation functions can be applied

[43][63][33]. An aggregation function is a statistical function such as: mean, max, min,

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 23

summation, multiplication and so on. For example, to compute the non-functional val-

ues of a product, for some non-functional properties such as cost and response time, the

values are summed; while for others like availability and reliability values are multiplied.

Table 3.1 adapted from [43] shows a set of quantitative non-functional properties and their

corresponding aggregation functions.

Table 3.1: Quantitative properties and corresponding aggregation functions

NFP Unit Aggregation function

Response Time (qrt) msec
∑n

i=1 qrt(fi)

Cost (qc) $
∑n

i=1 qc(fi)

Availability (qav) percent
∏n
i=1 qav(fi)

Accuracy (qac) percent
∏n
i=1 qac(fi)

Throughput (qtp) invocation/sec min{f1, . . . , fn}

Qualitative properties are the second category of non-functional properties which cannot

be exactly measured. Qualitative properties are represented by a label which is called

qualifier tag [3] (for example High, Medium, and Low are the values of security property).

A qualifier tag represents a possible impact of functionality on a qualitative non-functional

property. For example, the Credit card feature (i.e., functionality) has high impact on

international sale; hence it can be annotated with the High qualifier tag for international

sale. Security, Reliability, and Usability are examples of qualitative properties.

3.1.2 Extended Feature Model

In feature oriented software product line, feature models are mainly used for represent-

ing functional variability between different products. In order to enable representing non-

functional properties and their different values in the feature model, we need to extend

the standard feature model. Some researchers have extended the feature model notation

with non-functional properties to represent the non-functionality aspect [7][50]. Similarly,

we extended the feature model with the notion of non-functional properties which can be

either qualitative or quantitative. In this model each feature can be annotated with several

non-functional properties and corresponding values of those properties. Figure 3.2 shows

the extended feature model representing non-functional properties as well as functional

properties (i.e. features) and their relationships.

As described in the previous section, the qualitative non-functional properties such as

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 24

Figure 3.2: Integration of Feature Model with Non-Functional Property Model

customer satisfaction or user friendliness can be described using an ordinal scale consisting

of a set of predefined qualitative values which we refer to as qualifier tags. For example,

High negative, Medium negative, Low negative, Low positive, Medium positive, and High

positive form the qualifier tags defined for customer satisfaction. A qualifier tag represents

a possible impact of functionality on a qualitative non-functional property. On the other

hand, metric based values are defined for the quantitative non-functional properties and can

be measured for a product.

Figure 3.3b shows non-functional properties employed in the on-line shopping prod-

uct line. Response time, cost, availability, and reliability are quantitative non-functional

properties and customer satisfaction, international sale, and security are the qualitative

non-functional properties. In our approach, we assume that atomic features (i.e., leaf fea-

tures) in a feature model have concrete implementations. Non-atomic (i.e., non-leaf) fea-

tures are used for variability and composition relationships of the atomic features. Hence,

non-functional properties are defined for the leaf features. If an intermediate feature con-

tains implementations and non-functional properties, we create a mandatory child feature

for the intermediate feature and assign the non-functional properties to the child feature.

After identifying domain features, developing a feature model and implementing its atomic

features, we can then analyze the impact of features on non-functional properties.

In the proposed extension (see Figure 3.2), for each atomic feature a user can define

several non-functional properties and specify the value for each one. For qualitative non-

functional properties, based on existing domain knowledge, the impact of each feature on

non-functional properties can be identified and proper qualifier tags can be assigned to each

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 25

Figure 3.3: Integrated Feature Model with Non-Functional Properties

feature’s non-functional properties. On the other hand, quantitative non-functional proper-

ties for the features can be measured using a suitable metric and assigned to the features. We

assume that some techniques, like those proposed in [49], can be employed to measure non-

functional properties for each feature. For example, as shown in Figure 3.3, feature Credit

Card is annotated with low negative security, high positive international sale, and medium

positive customer satisfaction and its estimated cost, response time, and availability are

$600, 50ms, and 90%, respectively.

Extended feature models are formally defined as follows:

Definition 3.1.1 (Extended Feature Model). An extended feature model is a decuple

EFM = (F, FO, FM ,FIOR, FXOR, Fic,FA, NFP, V,AQ) where 1) F, FO, FM ,FIOR, FXOR,

Fic stand for a feature model (FM) according to Definition 2.1.1 ; 2) FA ⊆ F is a set

of atomic features; 3) NFP is a set of non-functional properties; 4) V is a set of values

of NFPs, which can be either numeric values or qualifier tags based on the type of non-

functional property ; 5) AQ ⊆ FA × (NFP × V) is a set of pairs of atomic features and

their annotation pairs of non-functional properties and their value.

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 26

3.2 Optimizing Non-Functional Properties Based on Stake-

holders’ Preferences

In the application engineering process, a concrete product is generated by configuring a

feature model based on the target application requirements and by instantiating the refer-

ence architecture based on the configured feature model. Stakeholders of each application

may have different constraints and preferences over non-functional properties that must be

considered in the configuration process. Configuring a feature model based on the stake-

holders’ requirements and preferences usually means selecting features such that a feature

model configuration satisfies the stakeholders’ functional requirements and constraints and

optimizes their preferences. To optimize the configuration with respect to the preferences,

feature ranks must be computed based on their impact on the non-functional properties

which may be of different importance for the target stakeholders. Additionally, both qual-

itative and quantitative non-functional properties must be considered in the computation

of feature ranks. Following sections describe the way that non-functional properties are

optimized based on the preferences and constraints of stakeholders.

3.2.1 Stratified Analytic Hierarchy Process

To calculate the ranks of features based on relative importance of non-functional properties

assigned to the features, we applied the Stratified Analytical Hierarchy Process (S-AHP)

algorithm proposed in [3]. S-AHP is based on the Analytic Hierarchy Process (AHP) [44],

which is a well-known pairwise comparison method used to calculate the relative ranking of

different options based on stakeholders’ judgments. There are several multi-criteria decision

making algorithms including: 1) the weighted sum model (WSM) which is the earliest

method; 2) the weighted product model (WPM) which is a modification of the WSM;

3) and analytic hierarchy process (AHP) which is a later development and wildly used

in several applications [59]. We used S-AHP because it enables ranking non-functional

properties based on the defined relative importance between them; according to the study

in [3], S-AHP is easy to use and does not need too much effort from stakeholders; and

finally, it significantly reduces the number of needed pairwise comparisons. In the following,

the process of calculating the weight of non-functional properties based on stakeholders’

preferences using AHP algorithm is explained.

As mentioned in Section 2.1.4, the stakeholders’ preferences are in the form of relative

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 27

Figure 3.4: Non-functional properties prioritization

importance over non-functional properties. After the stakeholders specify their preferences,

a square matrix RI|N |×|N |= {RI[i, j] = α | 1 ≤ i, j ≤ |N |, α is relative importance of NFP i

to NFP j, and |N | shows the number of NFPs on which the stakeholder defines the relative

importance } is created. The value of α (i.e., degree of importance) in each cell of above

matrix may be 1, 3, 5, 7, or 9 corresponding to equality, slight value, strong value, very

strong or extreme value, respectively [44]. Figure 3.4 shows the non-functional properties

prioritization defined by a stakeholder.

According to the AHP algorithm, the elements of matrix RI are normalized by dividing

the elements of each column by the sum of the elements of that column; next, to estimate

the principal eigenvector, the averages of normalized column are calculated. The principal

eigenvector for each matrix, when normalized, becomes the vector of priorities for that ma-

trix [45]. Finally, the weight of non-functional properties is calculated based on eigenvalues.

As an example, suppose that a stakeholder defines the relative importance as shown in Fig-

ure 3.4; then, RI matrix and RI matrix with normalized values are created (see Table 3.2

and Table 3.3).

Table 3.2: Relative importance of non-functional properties.

Cost Security Performance Reliability Ease of use

Cost 1.00 0.33 0.20 0.33 3.00

Security 3.00 1.00 5.00 7.00 9.00

Performance 5.00 0.20 1.00 1.00 3.00

Reliability 3.00 0.14 1.00 1.00 5.00

Ease of use 0.33 0.11 0.33 0.20 1.00

The final weights of NFPs are as following:

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 28

Table 3.3: Normalized values of relative importance of non-functional properties.

Cost Security Performance Reliability Ease of use Sum

Cost 0.08 0.19 0.03 0.03 0.14 0.47

Security 0.24 0.56 0.66 0.73 0.43 2.63

Performance 0.41 0.11 0.11 0.10 0.14 0.90

Reliability 0.24 0.08 0.08 0.10 0.24 0.80

Ease of use 0.03 0.06 0.06 0.02 0.05 0.20



Security 0.66

Performance 0.22

Reliability 0.20

Cost 0.12

Ease of use 0.05


3.2.2 Utility Function for Calculating Features’ Rank

To calculate the rank of features, both qualitative and quantitative properties should be

taken into account. To consider qualitative non-functional properties in feature ranks, they

should be mapped to the real values. The first way is that, the stakeholders or application

engineers provide a mapping function from qualifier tags onto real values. For example, for

customer satisfaction, one can define the following mapping function.

McustomerSat.(QT) =



−1 High negative

−0.5 Medium negative

−0.25 Low negative

0.25 Low positive

0.50 Medium positive

1 High positive


The other way for calculating the corresponding real-numbers for the qualifier tags of a

qualitative non-functional property is to use the AHP algorithm. In this way, stakeholders

specify the relative importance between the qualifier tags of each non-functional property

and AHP calculates the rank of each qualifier tag. The detail of calculating weight of options

using AHP is explained in the Section 3.2.1. For example, the stakeholder specifies that for

the international sale property, High positive �3 Medium positive, which means a feature

with high positive impact on international sale is slightly more important than the feature

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 29

with medium positive on international sale. In both the methods (i.e., both the mapping

function and AHP), we assume the values are normalized into the [−1,+1] range.

After defining the ranks of non-functional properties and the mapping function for the

qualitative non-functional properties, we describe the following utility function to calculate

the ranks of each feature based on an extension to [64]. The proposed utility function

calculates the rank of features based on their impact on non-functional properties by con-

sidering the preferences of stakeholders formulated in terms of the weight of non-functional

properties.

Definition 3.2.1 (Utility function). Let us assume there are α quantitative NFPs to be

maximized, β quantitative non-functional properties to be minimized, and θ qualitative non-

functional properties whose impact needs to be maximized. The utility function for feature f

is defined as:

R(f) =
∑α

i=1wi ×
qi(f)−µi

σi
+

∑β
j=1wj × (1− qj(f)−µj

σj
)+∑θ

k=1wk ×Mk(QT (f))

where w is the weight of each non-functional property calculated by S-AHP such that 0 ≤
wi, wj , wk ≤ 1 and

∑α
i=1wi +

∑β
j=1wj +

∑θ
k=1wk = 1 and Mk(QT (f)) returns the real

number corresponding to quality tags of k-th non-functional property. µ and σ are the

average values and the standard deviation of the quantitative non-functional properties for

all atomic features in the feature model.

The overall rank of a product is calculated by aggregating the ranks of selected features

for the product. The aggregation function used for calculating the product rank depends

on the aggregation functions which exist over non-functional properties of a feature. As

discussed in Section 3.1.1, some quantitative non-functional properties such as response time

are additive and the quality of a composition of features is computed by adding up the quality

of features [43][63][33]. The second type of aggregation functions defined on quantitative

non-functional properties is multiplication when the quality of composition is calculated

by multiplying the quality of features involved in the composition. The multiplication

type can be converted into an additive type by computing the logarithm values of non-

functional values. For qualitative non-functional properties, a qualifier tag assigned to

a feature represents a qualitative impact of the feature on the non-functional property.

Considering the mapping function that maps the qualifier tags into real numbers, we can

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 30

calculate the overall impact of a composition of features by adding the impacts of the features

involved in the composition. Hence, the aggregation function over the utility functions of

features is an additive function and the overall rank of a product is computed as R =∑
fi∈P R(fi). In order to derive an optimal configuration (product) P , we need to select the

features, which maximize R(P).

3.3 Automated Feature Model Configuration Based on HTN

planning

Having annotated a feature model with NFPs, the process for deriving a new product

starts by selecting and deselecting features based on the stakeholders’ requirements re-

flected through desired features and preferences expressed in terms of relative importance

between NFPs. The configuration problem is concerned with selecting features that satisfy

the functional requirements (i.e., the requested functionality) and constraints and optimize

the preferences. Formally, the configuration problem and the configuration are defined as

follows.

Definition 3.3.1 (Configuration Problem). Let SPCM = (NFP, V,RI,CO) and EFM

= (F, FO, FM ,FIOR, FXOR, Fic,FA, NFP, V,AQ) be a: i) stakeholder’s preference and con-

straint model; and ii) extended feature model as per Definitions 2.1.3 and 3.1.1. A config-

uration problem is a triple CP = (EFM,SPCM,F
′
A), where EFM is an extended feature

model, SPCM is the set of preferences and constraints over NFPs defined by the stakehold-

ers, and F
′
A ⊆ FA is a set of required atomic features.

Definition 3.3.2 (Configuration). Let CP = (EFM,SPCM,F
′
A) and EFM = (F,

FO, FM ,FIOR, FXOR, Fic,FA, NFP, V,AQ) be a configuration problem and extended feature

model, respectively. A configuration is a double COF = (F ”,R(F ”)) where 1) F
′ ⊂ F ” ⊂

F is a set of selected features; and 2) R(F ”) is the total rank of the configuration.

Therefore, in the configuration process, an application engineer deals with the selection of

a set of features containing the stakeholders’ required functionality. The total rank of the

selected features is the maximum rank based on the stakeholders’ preferences.

To automate the configuration process, we define transformation rules to convert a con-

figuration problem to a planning problem. To do so, we develop transformation rules to

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 31

represent extended feature models in the HTN formalism. The transformation is done in

two steps: 1) generating an HTN domain model from a feature model, and 2) generating a

planning problem from a configuration problem.

When transforming a feature model and the corresponding configuration problem into

the HTN domain and HTN problem, we need to convert the maximization problem into a

minimization problem, because the SHOP2 planner, used in our implementation, works on

minimization only (Negating the ranks of features can do this).

3.3.1 Transforming Feature Model into HTN

Considering the analogy between tasks in HTN and features in a feature model, there is a

need to define task decompositions to reflect feature relations. The HTN method element is

used to define decomposition of tasks into sub-tasks or operators. As mentioned in Definition

2.1.4, a method contains the parent task, a list of children, and a precondition. Here, we

have two options for decomposing a task into sub-tasks:

1. we can define different methods with a common parent task. In this case, an HTN

planner (i.e., SHOP2) for decomposing a task into sub-tasks selects just one method

for each plan. Hence, this option is suitable for mapping the XOR relation to HTN;

2. we can also define one method for a decomposition in which all children can be con-

sidered a list of sub-tasks in the method. In this case, the HTN planner performs

the method if and only if the preconditions of all sub-tasks or operators are satisfied.

We can then use this option for defining AND-decomposition with mandatory child

features.

According to abovementioned, in HTN, a method does not support OR-decomposition (i.e.,

selecting one or more tasks from sub-task list). Moreover, in HTN the concept of optional

tasks or operators is not defined; that is, in the sub-task list of a method, we can have

just mandatory features. In other words, OR group and optional features cannot directly

be transformed into HTN formalism. Hence, before transforming a feature model into an

HTN domain, a preprocessing step should be done to replace optional and OR features. To

this end, similar to [29] for optional goals, every optional feature fo is replaced with a new

feature fp which is decomposed into two alternative features fo and fd where fd stands

for a “dummy” feature (i.e., an operator without any effect) (Figure 3.5a). Regarding OR-

decomposition, every OR group in the feature model is converted into a set of optional

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 32

features and a mandatory feature (for) with AND relations between them (Figure 3.5b).

Feature for is added to ensure that at least one of the features in the OR group is selected

(more details are explained in the “Generating Tasks and Methods” subsection). Conse-

quently, an OR group can be easily transformed into HTN using a method with sub-tasks

containing “dummy” features.

Figure 3.5: The preprocessing step for transforming feature models into HTN domains: (a)
optional features (b) OR feature groups

After performing the above changes in the feature model, we transform the feature model

into an HTN domain using the following three types of transformation rules:

• domain predicate transformation;

• operator transformation;

• method and task transformation.

Generating Domain Predicates. In the HTN planning domain, methods and tasks

involve logical expressions which are the combination of logical atoms and logical connectives.

Logical atoms involve a predicate symbol plus a list of terms. These logical expressions can

be used as either precondition formulae or effect formulae. Based on possible preconditions

for selecting and decomposing features, we can identify possible domain predicates.

In the feature model, we have two groups of preconditions including: 1) precondition for

checking integrity constraints (i.e., requires and excludes); and 2) preconditions for checking

the stakeholder’s constraints with respect to non-functional properties. To generate these

preconditions, we need domain predicates for each quantitative NFPs, qualifier tags of the

qualitative NFPs, and atomic features in the feature model.

For example, the vsecnh and vsecph predicates are created for high negative and high

positive qualifier tags of the security non-functional property, respectively; and vcost pred-

icates is created for cost NFP. These predicates can be involved in the logical expressions

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 33

to generate preconditions of methods and operator; using these preconditions we can check

whether a feature covers a required NFPs or not. Moreover, for features Credit Card and

Debit Card, we generate domain predicates vcc and vdc, respectively. For each non-atomic

feature, a propositional formula (called attainment formula [29]) is created according to the

features that exist in its sub-tree (Figure 3.6). For instance, in the on-line shopping feature

model, which is shown in Figure 2.2, the attainment formula for feature Payment Gateway

is ϕPG = vAN
⊕

vCS
⊕

vLP
⊕

vP , which shows alternative relation between Authorize.

NET, Cyber Source, Link Point, and Paradata Features. These formulae are later used as

preconditions of the other features in the feature model in order to investigate the integrity

constraints (requires and excludes relations among features).

Figure 3.6: Generating Domain Predicates.(a) feature model, (b) a qualitative NFP and its
qualifier tags, (c) Domain Predicates in HTN

Generating Operators. HTN operators represent the lowest level activities in the do-

main. Hence, in process of feature model transformation, HTN operators can be generated

from atomic (i.e., leaf) features in the feature model tree. Each atomic feature f is trans-

formed into an operator of and the rank of the feature calculated by the utility function

is transformed into value(of). A precondition is defined for each operator based on the

non-functional properties and integrity constraints defined over its corresponding feature.

The preconditions are defined as logical AND expressions of:

1. domain predicates corresponding to qualifier tags of qualitative non-functional prop-

erties with which the feature is annotated;

2. an evaluation expression to check whether the feature is allowable to be selected or

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 34

not based on quantitative non-functional properties constraints;

3. attainment formula of features having requires and excludes relations with the feature

(see Figure 3.7b).

Next, the domain predicate, which corresponds to feature f (i.e., vf) is added as an effect of

the operator of (i.e., eff(of) = vf). Whenever operator of is performed, its corresponding

domain predicate becomes true (i.e., vf = true).

For handling quantitative non-functional property constraints, a logical expression is cre-

ated showing the maximum available value of each corresponding non-functional property

during the planning process. At the first, this value is set by the requested value of stakehold-

ers and added to the initial state of the planning problem. For example, if a stakeholder has

a limitation on cost (e.g. maximum $1000), we add a logical expression “(MaxCost 1000)”

to the initial state of the planning problem. Then, in the effect of each operator, this value

is updated based on the assigned non-functional property value to the feature. For example,

in Figure 3.7 feature f2 has cost NFP with value $98; hence, after selecting this feature the

maximum available cost should be reduced by 98. Moreover, before selecting feature f2 we

should check whether we have enough available cost or not. To this end, we add logical

expression like “(MaxCost − 98 > 0)” to the precondition formula of feature f2. The value

of the maximum available cost is updated by adding “(MaxCost = MaxCost − 98)” to

the effect formula of feature f2.

Figure 3.7: Translating Atomic features into Operators. (a)feature Model, annotated with
NFPs and feature ranks, (b) Operators generated for atomic features.

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 35

Figure 3.8: Generating tasks and methods from non-atomic features. (a) And Decomposi-
tion and corresponding task and method, (b) Alternative Decomposition and corresponding
tasks and methods, (c) Or Decomposition and corresponding tasks and methods

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 36

Generating Tasks and Methods. Tasks in the HTN planning domain represent high

level activities which need to be decomposed into smaller tasks using a method. A feature

model also has a hierarchy structure in which features are decomposed into sub-features.

Therefore, every non-atomic feature f can be mapped into a task tf ; and method(s) (mtf)

can be defined for different types of decomposition in feature model (i.e., AND, OR, and

XOR).

To create tasks corresponding to features, we use the pre-processed feature model from

which OR feature groups and optional features have been removed (c.f. Figure 3.5). Based

on the type of a feature group(i.e., XOR group or AND-decomposition), we may define one

or more methods.

If a feature f is AND-decomposed into features f1 and f2, we define one method mf

which connects corresponding task tf to tasks or operators corresponding to f1 and f2,

(Figure 3.8a). As shown in Figure 3.8a, Dec − mf denotes the task list of method mf

which contains operator Of1 and task Tf2 which are corresponding HTN representations

for features f1 and f2, respectively. Moreover, the precondition of method mf contains the

attainment formulae of f6 and f7 to check corresponding integrity constraints (i.e., feature

f required feature f6 and exclude feature f7).

For alternative feature groups with n sub-features (i.e., f = XOR(f1, f2, .., fn)), n meth-

ods are defined with a common parent task tf corresponding to feature f . Each method

connects task tf to one operator ofi or task tfi corresponding to the sub-feature fi of the

parent feature f (see Figure 3.8b). The precondition for every method is specified based

on the attainment formulae of features required by that feature and features excluded by

that feature.

Regarding OR feature groups, in the feature model configuration at least one of features

in the group must be selected if a parent feature is selected. For example, in Figure 3.8c if

feature f is selected, at least one of its sub-features (i.e., f1 or f2 or both) must be selected.

To this end, we add a precondition for operator (ofor) which is a logical OR expression of

attainment formula of the features in the OR feature group (see Figure 3.8c).

Table 3.4 gives the overview of the mapping rules between extended feature models (after

eliminating OR and optional features) and the HTN domain.

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 37

Table 3.4: Mapping between constructs in extended feature models and HTN Domain mod-
els – OR and Optional feature Groups are replaced in the preprocessing step.

*For simplicity in the representation, we considered the includes and excludes relations with
atomic features, but features can also be non-atomic

3.3.2 Planning Process

After defining the planning domain, the feature model configuration problem is transformed

into the HTN planning problem (Table 3.5 summarizes the mappings). The transformation

is done by considering the constraints over the NFPs (CO) and setting their corresponding

domain predicates as true to form initial state (S). For example, if a stakeholder asks for at

least medium security, and a specific cost (e.g., $1000), the domain predicates vsecph = true

and vsecpm = true and the rest of qualifier tags are set to false; the logical atom “(cost1000)”

is also added as an initial state. Next, the set of required atomic features (F
′
A) and the root

of the feature model are translated into initial tasks of the planning problem (T).

The SHOP2 planner starts with the first task in the initial tasks, if the task is a non-

primitive task, the planner chooses an appropriate method and instantiates it to decompose

CHAPTER 3. AUTOMATED FEATURE MODEL CONFIGURATION 38

the task into sub-tasks; if the task is a primitive task, the planner chooses an applicable op-

erator and instantiates it to perform an action. A solution plan is found if all constraints are

satisfied, otherwise the planner backtracks and chooses the other methods. Consequently,

the planner tries all possible paths in the feature model tree and returns the best features

(defined as operators in the planning domain) in the feature model. Then, based on the

selected atomic features in the produced plan, intermediate features are selected using a

propagation algorithm in which all intermediate features are selected if they have a selected

sub-feature(s).

Table 3.5: Mappings between the configuration problem and the HTN planning problem.

Chapter 4

Tooling Support

Tools play an important role in both domain and application engineering phases. Having

an effective tooling support facilitates software developer tasks in those phases. Although,

researchers have already contributed in developing tooling support for defining, managing,

and configuring feature models [1][15], there is still the need for product configuration tooling

support [41]. Moreover, one common capability lacking in each of these tools is the use of

interaction and visualization techniques with respect to the feature model configuration

based on the non-functional properties. Hence, in our work we aimed at developing a tool

which:

1. provides a facility to integrate the feature model and non-functional properties;

2. facilitates and enhances the feature model configuration process by :

(a) automating the feature model configuration process based on non-functional re-

quirements;

(b) employing visualization and interaction techniques, which provides software de-

velopers with clear and understandable view of the generated configuration.

For providing tooling support, we extended a well-known feature model plug-in (fmp) [15].

The fmp tool is an eclipse plug-in which supports editing and configuring feature models.

It provides very basic visualization and (i.e. it used indented list to show feature model)

interaction techniques, however, it provides a good facilities to define a feature model and

manage the variabilities. Moreover, the tool is accessible for academic researchers. Hence,

39

CHAPTER 4. TOOLING SUPPORT 40

Figure 4.1: High level architecture of the Vis-fmp

we consider fmp as a basis and extend it to support more functionalities such as integrating

feature model with non-functional properties and automating the configuration process.

Figure 4.1 illustrates the architecture of the tool and its components. In the following

sections we discuss different components of the tool in more detail including: 1) integrating

the feature model with non-functional properties, 2) managing stakeholders’ preferences and

constraints, 3) configuration generator (i.e., planning), and 4) visual and interactive view

for representing the generated configuration.

4.1 Integrating Feature Model with Non-Functional Proper-

ties

In order to generate the feature model configuration based on non-functional requirements

and provide information about the non-functional properties of the final product, the effect

of each feature on the NFPs should be specified. Accordingly, the total value of NFPs for the

final product can be calculated based on the effect of selected features on the NFPs. For ex-

ample, if the cost of each feature in a feature model is specified, the total cost of the product

CHAPTER 4. TOOLING SUPPORT 41

Figure 4.2: NFP model definition view

is calculated by summation of the selected features’ cost. To this end, we extend the feature

model in such a way that software developers can define non-functional properties as well

as functionalities in the feature model. In the developed tool, as shown in Figure 4.2 a user

can define the non-functional property model(i.e., all possible non-functional properties in

the domain and their characteristics such as type, unit, aggregation function, default values,

and so on). After defining the NFP model, features can be annotated with corresponding

NFPs and the value of each properties is specified based on the features’ implementation.

4.2 Managing Stakeholders’ Preferences

In the configuration process, the application engineer captures the stakeholders’ functional

requirements including the required feature set (F
′
A), the preferences (i.e., the relative impor-

tance of non-functional properties RI), and the constraints over NFPs (CO). By applying

S-AHP and the utility function (3.2.1), which are implemented in the developed tool, the

ranks of NFPs (wi) and features R(fj) are computed, respectively. The developed tool has

CHAPTER 4. TOOLING SUPPORT 42

Figure 4.3: A snapshot of the view for managing stakeholders and their preferences

facilities to define stakeholders and managing their preferences (See Figure 4.3).

4.3 Configuration Generator

To generate an optimal configuration we employ an efficient planner (i.e. SHOP2), which

uses a search-control strategy called ordered task decomposition to perform reasoning on

the HTN planning domain [34].

The SHOP2 planner – a domain independent HTN planner – is automatically executed

with its required inputs (i.e., HTN planning domain and HTN planning problem). The

output of the planner is a set of plans (i.e., sequences of operators for the given tasks),

which satisfy the initial conditions and have optimal value. The optimal configuration is

achieved by selecting the features corresponding to the operators in the optimal plan.

4.4 Visualizing the Result of the Planner

After generating the configurations using the SHOP2 planner, in addition to having an abil-

ity to export the results, the results are shown to the stakeholders in a visual view that

highlights the selected features and shows the corresponding NFPs along with features. Us-

ing the visual view, the stakeholders can navigate the configuration and perform changes in

the configuration. Figure 4.4 shows a snapshot of a generated configuration in the visual

CHAPTER 4. TOOLING SUPPORT 43

Figure 4.4: The result of planner in the visual view

view. The view not only assists software developers to comprehend the generated configura-

tions better, but it lets users to manipulate the configuration and create necessary changes.

In the remainder of this section we discuss more about the visualization and interaction

techniques used in the tool.

With respect to the feature model representation, we can either use explicit represen-

tation or implicit representation for showing the feature model. In the former, hierarchy

relations between nodes are illustrated by explicit links between nodes (i.e., node-link repre-

sentation). In the latter, the hierarchy relations are shown by special arrangement of nodes

[10] (i.e., space-filling representation). Examples of implicit representation are Tree-maps

[25] and SunBurst [55]. The cone-trees [42] and space trees [38] are examples of explicit

representation.

According to the size of the feature model and weaknesses of implicit drawing for showing

large trees, we decided to employ explicit representation. In explicit representation, we have

an option of using either 2D space or 3D space. Although 3D visualization, due to the use

of three dimensions is more appropriate for showing large scale hierarchies, we preferred

using 2D visualization. The reasons for this choice are: 1) the purpose of visualization

CHAPTER 4. TOOLING SUPPORT 44

was not only showing the feature model, but also we aimed at showing non-functional

properties on top of the feature model as well as providing mechanism to configure feature

models visually; 2) some researchers addressed that it is not desirable to consider a third

dimension when 2D is enough for representing information (i.e., feature model, NFPs, and

configuration) [40]; 3) 3D visualization has problems including intensive computation, more

complex implementation, hard user adaptation, and orientation [57]; 4) 3D visualization

increases difficulty of performing actions and complexity of interactions [60][11]; and 5)

finally, occlusion as a common problem in 3D representation may distort software developers

during the configuration [13].

To implement the tool, we used prefuse [24], a Java graphic library with different tree

and graph views. One of the 2D tree-views in prefuse fulfills all of our requirements discussed

above. We used this tree as an initial representation and extended it for our purposes (i.e.,

visualizing feature model models, NFPs, and configurations). In the used tree, as a layout

of this visualization, nodes represent the features of the feature model and links show the

composition and variability relations between features.

In information visualization, color is used to group the items and show more information.

The literature reviews showed that proper use of color can enhance and clarify a presentation

[12][56]. We used color to show the NFPs related to each feature along with the feature.

To this end, we assigned predefined colors to each NFPs. However, software developers can

interact with the tool and determine desired colors for the NFPs. Having indicated colors

corresponding to the NFPs (by the tool or software developers), we apply the coloring on

the features of the feature model for showing the NFPs with which they were annotated.

Moreover, when software developers select a NFP, Vis-fmp unfolds the features and expands

the tree to show all features having the selected NFP. The visual view makes it easy for

software developers to see which NFPs are covered with the specific features; which features

contain specific NFPs; or how the coverage of NFPs is in the feature model.

In addition to the representation of feature models and their associated NFPs, other

visualization and interaction tasks are provided in the visual view including:

1. Overview : This technique includes zoomed out views of each data type to see the

entire collection along with an attached detail view [48]. In our case, user can see the

zoomed out view of a configured feature model with the detail of that configuration.

The detail view contains the total value of NFPs which are calculated based on the

CHAPTER 4. TOOLING SUPPORT 45

selected features in a configured product.

2. Zooming : User can zoom in or out on the feature model in order to focus on the

specific part of it or view the entire feature model. Moreover, auto-zooming is used to

fit the tree to the screen after expanding.

3. Filtering : Industrial feature models may contain many features organized in different

levels of granularity. Unfolding the whole feature model may cause a visual clutter.

Moreover, software developers may not need to view the entire feature model. There-

fore, Vis-fmp initially shows high-level features (top three levels). Next, we provide

an incremental browsing by two options for the users: 1) Filter-level – software devel-

opers can set the level of the feature model tree in which they are interested; then,

the tool unfolds all the features between the tree root and the indicated level; and 2)

Fisheye Tree Filter – using this option, software developers can explore the feature

model by unfolding sub-features of the features they are interested in. When software

developers select a feature for further exploration, Vis-fmp closes other nodes in the

same level in order to create more space to show the opened nodes. To assist soft-

ware developers for identifying features require further unfolding, the tool shows the

number of children of each feature along with their name.

4. Highlight : This technique is employed to highlight the features based on their states

(i.e., selected, deselected, or undecided features).

5. Detail on demand : In addition to configuration detail , detail of each feature is shown

including the general information about the feature and annotated NFPs and their

values.

6. Interactive Configuration: Software developer can interact with this view by clicking

on the features and changing their states (selected, deselected, or undecided). By each

change the system updates the detail view of a configuration.

Chapter 5

Results and Evaluation

In this chapter we evaluate the proposed approach in terms of scalability and effective-

ness. Afterwards, the benefits of the proposed method are discussed via a criteria-based

comparison with other existing approaches.

5.1 Performance Evaluation

To assess our technique and the corresponding tool Vis-fmp, we formulated the following

research questions:

• RQ1 (Scalability): Can the approach configure feature models, in a reasonable time,

based on functional and non-functional requirements and preferences?

• RQ2 (Effectiveness): How effective is the approach in producing a feature model

configuration? RQ2-1: Does the approach generate reliable results for application

engineers? RQ2-2: What is the automation level of the approach?

5.1.1 RQ1 (Scalability)

The purpose of this research question is to evaluate whether a feature model configuration

can be performed in a reasonable amount of time. Hence, we conducted several experiments

to investigate this research question.

46

CHAPTER 5. RESULTS AND EVALUATION 47

Objects of Study

To evaluate the configuration approach, we adapted Betty FM Generator1 which enables

the random generation of highly-customized feature models [47], to generate feature mod-

els with different characteristics (e.g., number of features, probability of mandatory and

optional features, probability of OR and XOR groups, and percentage of integrity con-

straints). We set the characteristics of generated feature models as: 50%, 25%, and 25% for

the probability of being features in AND, OR, and XOR groups, respectively. Moreover,

50% of features in AND groups are optional features. The branching factor is also set to 10.

These characteristics are backed up by most of surveyed feature models [23][58] to reflect

the characteristics of real feature models.

Generating optimal configurations based on stakeholders’ preferences and constraints is

NP-hard. Hence, HTN planners similar to CSP solvers have problems in finding an opti-

mal solution for large-scale problems. Although the SHOP2 planner applies some heuristics

for improving the search time for finding an optimal plan (See ref. [35]), due to explicit

representations of states in the memory, SHOP2 runs into memory problems for large do-

mains. However, our experiments showed that for feature models with less than 200 features,

SHOP2 returns an optimal plan in a feasible time. According to the results of an inves-

tigation on non-functional properties done by Mairiza et al. [31], the number of relevant

non-functional properties for different application domains is at most 11. Moreover, Som-

merville and Sawyer [54] highlighted that the effective number of non-functional properties

is around six. Considering these two studies, we defined 10 non-functional properties; six

quantitative; and four qualitative non-functional properties. Five qualifier tags were defined

for each non-functional property.

Experimental Setup

For each feature model, we applied our tool to configure the feature model based on randomly

generated preferences and constraints. The evaluation was performed on a computer with an

Intel Core DUO 2.2 GHZ CPU, 4GB of RAM, Windows Vista, Java Runtime Environment

v5.0, SHOP2 v2.8, and SBCL (Steel Bank Common Lisp) v1.0.55.

To configure the feature models, we considered three independent variables including

number of features, number of constraints, and integrity constraints; and time as a dependent

1Betty Feature Model Generator Version 1.1, http://www.isa.us.es/betty

CHAPTER 5. RESULTS AND EVALUATION 48

variable. For each feature model in the study, features were annotated with quantitative

non-functional properties and their values were produced by a random function with normal

distribution. From a practical point of view, only some of the features may have an impact

on a qualitative NFP like security. Hence, to reflect this point, features were randomly

annotated with 0 to 4 qualitative non-functional properties with normal distributions, that

is, most of the features had one or two non-functional properties. Based on our analysis on

SPLOT repository 2, which shows an average of 18% of integrity constraints for real feature

models [4], we considered two distributions of integrity constraints: 10% and 20%. Finally,

for the constraints over NFPs, four cases were considered: no constraint and constraints

over 2, 4, and 6 NFPs to reflect the effect of various constraints over NFPs at run time.

Experimental Results

Figure 5.1 illustrates the average time for configuring feature models with different numbers

of features and percentages of integrity constraints. Our experiments reveal that, for feature

models with less than 200 features, the planner returns results in a feasible time (around 16

second). The number of possible configurations exponentially grows by increasing the num-

ber of features. That is, the search space for finding an optimal plan by SHOP2 is boosted

by increasing the size of feature models. For example, the total number of expansions in

feature models with 150 and 200 features are around 50,000 and 130,000. Therefore, the

SHOP2 planner needs more time to return an optimal plan.

We also investigated the effect of constraints over NFPs on the running time of the

configuration technique proposed in Section 3. To this end, we run the tool with feature

models containing 100 features and 20% integrity constraints. The results are shown in

Figure 5.2. In all of these situations, the process of generating optimal configurations was

successful.

According to the experiment results, all three independent variables (i.e., number of

features, number of constraints, and integrity constraints) have an impact on running time.

As shown in Figure 5.1, for the fixed number of integrity constraints, increasing the number

of features raises the time for finding an optimal configuration, as increasing the number

of features expands the search space for finding an optimal plan. Also, with the same

number of features, increasing integrity constraints from 10% to 20% causes an increase in

2SPLOT - Software Product Line On-line Tools, http://www.splot-research.org

CHAPTER 5. RESULTS AND EVALUATION 49

the time for finding a plan, as the planner needs to check more pair combinations of tasks

and operators for optimizing a final plan.

Figure 5.1: Running time of the configuration technique for feature models with different
numbers of features and integrity constraints.

Finally, as illustrated in Figure 5.2, the number of constraints over NFPs has an impact

on increasing the time for configuration, even if the number of features and integrity con-

straints is fixed. According to the results of the experiment, the impact of constraints over

NFPs is higher than the impact of integrity constraints.

Since generating an optimal feature model configuration based on stakeholders’ prefer-

ences and constraints is NP-hard, it may need a long time to produce a configuration for

large feature models. Moreover, the manual configuration process is very hard and time-

consuming task for application engineers. Consequently, the reported time in the Figure 5.1

and 5.2 can be considered as an acceptable time from the perspective of user.

5.1.2 RQ2 (Effectiveness)

This research question aims to investigate if application engineers can trust the results re-

turned by the planner and if the approach is beneficial for stakeholders to facilitate their

tasks. Regarding the reliability of the results, our approach is based on transforming feature

models into the HTN formalisms and applying SHOP2 to find an optimal configuration. Ac-

cording to the framework proposed in [18], we can investigate if this representation can be

considered as a good surrogate for representing feature models and preferences. As shown,

CHAPTER 5. RESULTS AND EVALUATION 50

Figure 5.2: Running time of configuration technique based on different number of constraints
over NFPs.

we can represent feature model relations and constraints using existing constructs in HTN

such as method, tasks, and operator. Additionally, operators provide properties to define a

feature rank. The constraints over non-functional properties and integrity constraints can

be defined as preconditions of the operators and methods. Hence, we can consider HTN

to be a surrogate for feature models. With respect to the ontological commitment, HTN

views the world as a set of actions, tasks, constraints between them; this makes it suitable

for representing both feature models and constraints. With respect to the planner, SHOP2

has been extensively applied in many projects [34] in government laboratories (e.g., evacua-

tion planning), industry (e.g., evaluating of enemy threats), and academia (e.g., automated

composition of Web services), which shows the usefulness of the returned plans and their

corresponding configurations.

One way to facilitate the application engineers’ tasks during the configuration process is

through automating their task. With respect to the automation level, our approach requires

only very few manual interventions. The main tasks of the application engineers are: 1)

specifying the relative importance of non-functional properties; 2) creating the mapping

function for qualitative non-functional properties; and 3) specifying the atomic features

that must be included based on the functional requirements. Computing ranks of non-

functional properties based on preferences and finding optimal solution are fully automated

CHAPTER 5. RESULTS AND EVALUATION 51

in our approach.

In order to investigate the usability of the tool with respect to the employed visualiza-

tion and interaction techniques, we conducted a controlled experiment. In the experiment

we compare the effectiveness of the proposed visualization techniques (implemented in the

visual tool) with the basic feature modeling tool (fmp). The results reveal that the employed

visualization and interaction techniques significantly improve completion time of compre-

hension and changing the feature model configuration. More details about the experiment

are explained in the technical report [53].

5.2 Comparing the Approaches

To systematically compare the proposed approach with other existing approaches, we devise

a number of criteria that need to be supported by configuration techniques in order to be ef-

fective for application engineering. To define the criteria for systematic comparisons, similar

to [46], we applied bottom-up and top-down approaches. Following the bottom-up approach,

we identified various important aspects of feature model configuration in the description of

existing related works and added them to the criteria set. Following the top-down approach,

we used an existing survey on configuration of software product lines. We do not claim that

this criteria set is complete, but it provides appropriate aspects to compare our work with

related works. These criteria include: 1) Managing functional and non-functional require-

ments; 2) Modeling stakeholders’ preferences; 3) Optimization; 4) Considering stakeholder

constraints; 5) Providing tooling support; 6) Automating configuration process; 7) Ensur-

ing the feature model constraints; 8) Effective representation of results to stakeholders; 9)

Time efficiency. In the following subsections, we review existing configuration techniques

and compare them with respect to the above criteria. Table 5.1 summarizes the results of

the comparison of the approaches based on the criteria identified earlier.

Managing functional and non-functional properties. Stage configuration [16] and

the work in [32] provide no guideline for configuration based on non-functional properties.

FCF [61], MUSCLE [62], and the technique from [7] support selection of features only based

on quantitative non-functional requirements. Our approach and SPL conqueror [50] guaran-

tee the selection of features based on functional and non-functional properties. Furthermore,

only SPL conqueror [50] and our approach consider both qualitative and quantitative non-

functional properties.

CHAPTER 5. RESULTS AND EVALUATION 52

Modeling stakeholders’ preferences. CSP based approaches [50][62], FCF [61], and

GAFES [23] model stakeholders’ preferences in terms of user defined objective functions.

Considering the diversity of non-functional properties, it is not easy for stakeholders to define

an objective function, which reflects their preferences. However, our approach provides

a systematic and easy technique to capture stakeholders’ preference in terms of relative

importance and defines the objective function using these inputs. To capture stakeholders’

preferences we utilize the AHP algorithm which is used in many applications; and it is simple

enough, so that stakeholders can use it without any formal training [20]. Stage configuration

does not provide any support for stakeholders’ preferences.

Considering stakeholders’ constraints. Stakeholders may define constraints based

on the resources that are available to them and level of non-functionality. These con-

straints need to be considered and only a configuration which satisfies the stakeholders’

constraints and optimizes the preferences must be produced. FCF [61], GAFES [23], and

CSP based approaches [7][50][62] support constraints on the stakeholders’ resources. On

the other hand, our approach handles constraints over both qualitative and quantitative

non-functional properties.

Optimization and time efficiency. Generating optimal configurations based on the

stakeholders’ preferences and constraints is NP-hard. All CSP approaches [7][50][62] and

our approach ensure optimality of the solution, but they require high computation time.

To compare the running time of our approach with CSP approaches, we had limitations.

The tool developed by Benavides et al [7], called FAMA, does not support optimization

which makes it hard to compare with. The SPL conqueror tool is not publicly available and

MUSCLE does not have tool support. FCF [61] and GAFES [23] provides partially optimal

solutions in a polynomial time. Stage configuration and the work in [32] do not support

optimization of the stakeholders’ requirements.

Tooling support and automation. All the approaches, except FCF, provide tooling

support. Stage configuration provides tooling support, but little automation for feature

model configuration is provided. With respect to the usability, our approach and SPL

conqueror [50] apply visualization techniques to present the configuration results to the

stakeholders. Our tool shows the quality level of selected features along with them in the

same view (Figure 4.4). Other tools provide basics views for representing configurations to

the stakeholders.

CHAPTER 5. RESULTS AND EVALUATION 53

Feature model integrity constraints. All approaches, except [7] ensure the satisfac-

tion of integrity constraints (i.e., requires and excludes relations) during configuration.

In conclusion, our approach covers all criteria and the only limitation of the approach

in comparison with other approaches is the completion time. Due to the NP-hard nature

of the feature model configuration problem, among the existing feature model configuration

approaches, some have limited scale for generating optimal feature model configurations

(e.g., the approach in [7] and our approach) and some require special hardware (e.g., FCF by

White et al. [61]) or return partial optimal configurations (e.g., GAFES by Guo et al. [23]).

For very large feature models finding an optimal configuration is not feasible because the

number of possible configurations has exponential growth. For example, for feature models

with 1, 000 number of variation points, 21,000 configurations must be evaluated. Although

the AI approaches like planning techniques apply heuristics to improve completion time for

large problem sizes, we still have restrictions over the size of feature models.

CHAPTER 5. RESULTS AND EVALUATION 54

Table 5.1: Comparative analysis of related works ((+) criterion met, (-) criterion not met,
(+/-) criterion partially met).

XXXXXXXXXXX
Approach

Criteria

F
R

/N
F

R

P
re

fe
re

n
ce

O
p

ti
m

iz
at

io
n

C
on

st
ra

in
ts

A
u

to
m

at
io

n

In
te

gr
it

y
co

n
st

ra
in

ts

T
o
ol

in
g

su
p

p
o
rt

T
im

e
effi

ci
en

cy

Stage Configuration Czar-
necki et al. [16]

+/- - - - - + + - (no result was re-
ported)

CSP - Benavides et al.
[7][8]

+/- - + + + - + - (up to 52 features, op-
timal results)

FCF White et al. [61] +/- +/- +/- + + + - + (up to 10,000 fea-
tures, results with 90%
optimality)

SPL Conqueror Siegmund
et al. [50]

+ +/- + + + + + +/- (not exactly men-
tioned the number of
feature)

MUSCLE White et al. [62] +/- +/- + + + + - +/- (up to 500 features)

Mendonca et al. [32] +/- - - - + + + + (up to 2,000 features)

GAFES Guo et al. [23] +/- +/- +/- + + + + + (up to 10,000 fea-
tures, results with 86-
90% optimality)

Our approach + + + + + + + +/- (up to 200 features,
optimal results)

Chapter 6

Conclusion & FutureWork

We target an open research question in software product lines: how to select a suitable set of

features from a feature model based on both the stakeholders’ functional and non-functional

requirements and preferences? We investigated the notion of non-functional properties in

software product lines and developed a non-functional model in which two main categories

of non-functional properties are considered (i.e., quantitative and qualitative NFPs). Fea-

ture models were extended with the notion of NFPs. We formalized an extended feature

model as an Hierarchical Task Network so that features and relations among features in

the feature model were mapped into the components of the HTN planning domain (i.e.,

operator, task, and method). This transformation covers all relations in the feature model

including: AND, OR, and XOR decompositions as well as require and exclude relations

among features. We also formalized the configuration problem as an HTN planning prob-

lem and employed an existing HTN planner (SHOP2) to generate an optimal configuration

based on the stakeholder preferences and constraints over non-functional properties.

The proposed feature model configuration approach has the following improvements in

comparison with other existing approaches:

1) In addition to functional requirements, constraints over both qualitative and quan-

titative non-functional properties are taken into account; 2) we capture the preferences of

stakeholders in terms of relative importance between non-functional properties which is an

easy way for stakeholders to specify; 3) we calculate the weight of NFPs by utilizing SAHP

as a weighting algorithm, which significantly reduces the number of needed pairwise com-

parisons and does not need too much effort from stakeholders; 4) we introduce the concept

of artificial intelligence planning in the context of feature model configuration and provide

55

CHAPTER 6. CONCLUSION & FUTUREWORK 56

the transformation rules to convert feature models into Hierarchical Task Network; 5) we

developed a tool which automates feature model configuration process and provides sev-

eral visualization and interaction techniques to facilitate the configuration process; 6) the

experimental results revealed that our approach can be useful because: i) it provides an

optimal configuration based on stakeholders preferences and constraints over non-functional

properties; and ii) it has a good performance on feature models with less than 200 features.

This work can be extended in several directions:

• For larger feature models, the approach is computational demanding, similar to other

related approaches in the literature. Another HTN planner (called HTNPLAN-P [51])

applies new heuristics and can support larger planning space problems, so that the

practical performance time can be much improved as shown in [51]. Since HTNPLAN-

P is not yet publicly available, we could not test our work on larger feature models.

In the future work, HTNPLAN-P can be employed for finding optimal plans which

will improve scalability of our approach.

• Other planning techniques such as PDDL [21](i.e., Planning Domain Definition Lan-

guage) based approach can be employed. A wide range of planning engines support

PDDL; if the feature model can be successfully transformed into PDDL, we can utilize

more powerful planning engines. Moreover, PDDL supports optimization so that the

specific metrics (i.e., NFPs in our context) can be minimized or maximized during

plan generation.

• According to our initial study, effective visualization techniques improve the configu-

ration process and ease the task for application engineers. Therefore, more interaction

and visualization techniques can be applied on the tool and an experimental study can

be done in an industrial environment to examine the effects of the applied techniques.

Bibliography

[1] Variant management with pure:: variants. Technical report, Pure-systems GmbH, 2003.

[2] Mohsen Asadi, Ebrahim Bagheri, Dragan Gašević, Marek Hatala, and Bardia Mohab-
bati. Goal-driven software product line engineering. In Proceedings of the 2011 ACM
Symposium on Applied Computing, SAC ’11, pages 691–698. ACM, 2011.

[3] Ebrahim Bagheri, Mohsen Asadi, Dragan Gasevic, and Samaneh Soltani. Stratified
analytic hierarchy process: Prioritization and selection of software features. In Jan
Bosch and Jaejoon Lee, editors, SPLC, volume 6287 of Lecture Notes in Computer
Science, pages 300–315. Springer, 2010.

[4] Ebrahim Bagheri and Dragan Gasevic. Assessing the maintainability of software prod-
uct line feature models using structural metrics. Software Quality Journal, 19(3):579–
612, 2011.

[5] Don Batory. Feature models, grammars, and propositional formulas. In J. Henk Obbink
and Klaus Pohl, editors, SPLC, volume 3714 of Lecture Notes in Computer Science,
pages 7–20. Springer, 2005.

[6] Don S. Batory, Roberto E. Lopez-Herrejon, and Jean-Philippe Martin. Generating
product-lines of product-families. In ASE, pages 81–92. IEEE Computer Society, 2002.

[7] David Benavides, Pablo Trinidad Martn-Arroyo, and Antonio Ruiz Corts. Automated
reasoning on feature models. In Oscar Pastor and Joo Falco e Cunha, editors, CAiSE,
volume 3520 of Lecture Notes in Computer Science, pages 491–503. Springer, 2005.

[8] David Benavides, Sergio Segura, Pablo Trinidad Martn-Arroyo, and Antonio Ruiz
Corts. Using java csp solvers in the automated analyses of feature models. In Ralf
Lmmel, Joo Saraiva, and Joost Visser, editors, GTTSE, volume 4143 of Lecture Notes
in Computer Science, pages 399–408. Springer, 2006.

[9] Jan Bosch. Design and use of software architectures - adopting and evolving a product-
line approach. Addison-Wesley, 2000.

57

BIBLIOGRAPHY 58

[10] Goetz Botterweck, Steffen Thiel, Daren Nestor, Saad bin Abid, and Ciarán Cawley.
Visual tool support for configuring and understanding software product lines. In Pro-
ceedings of the 2008 12th International Software Product Line Conference, SPLC ’08,
pages 77–86. IEEE Computer Society, 2008.

[11] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev. An introduc-
tion to 3-d user interface design. Presence: Teleoper. Virtual Environ., 10(1):96–108,
February 2001.

[12] Brewer C. Color use guidelines for data representation. In Proceedings of the Section
on Statistical Graphics, American Statistical Association, pages 55–60, 1999.

[13] Mei C. Chuah, Steven F. Roth, Joe Mattis, and John Kolojejchick. Sdm: selective dy-
namic manipulation of visualizations. In Proceedings of the 8th annual ACM symposium
on User interface and software technology, UIST ’95, pages 61–70. ACM, 1995.

[14] Paul C. Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
SEI Series in Software Engineering. Addison-Wesley, August 2001.

[15] K. Czarnecki and P. Kim. Cardinality-Based Feature Modeling and Constraints: A
Progress Report. In Proceedings of the International Workshop on Software Factories
at OOPSLA 2005. ACM, 2005.

[16] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged configuration
through specialization and multilevel configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[17] Krzysztof Czarnecki and Eisenecker Ulrich. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[18] H. Schrobe R. Davis and P. Szolovits. What is knowledge representation? AI Magazine,
14(1):17–33, 1993.

[19] Huáscar Espinoza, Hubert Dubois, Sébastien Gérard, Julio Medina, Dorina C. Petriu,
and Murray Woodside. Annotating uml models with non-functional properties for
quantitative analysis. In Proceedings of the 2005 international conference on Satellite
Events at the MoDELS, MoDELS’05, pages 79–90. Springer-Verlag, 2006.

[20] Ernest H. Forman and Saul I. Gass. The Analytic Hierarchy Process: An Exposition.
Operations Research, 49(4):469–486, July 2001.

[21] Malik Ghallab, Craig K. Isi, Scott Penberthy, David E. Smith, Ying Sun, and Daniel
Weld. PDDL - The Planning Domain Definition Language. Technical report, CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

[22] M. Glinz. On non-functional requirements. In Requirements Engineering Conference,
2007. RE ’07. 15th IEEE International, pages 21 –26. IEEE, oct. 2007.

BIBLIOGRAPHY 59

[23] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. A genetic
algorithm for optimized feature selection with resource constraints in software product
lines. Journal of Systems and Software, 84(12):2208–2221, December 2011.

[24] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for interactive
information visualization. In Proceedings of the SIGCHI Conference on Human factors
in computing systems, CHI ’05, pages 421–430. ACM, 2005.

[25] Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling approach to the
visualization of hierarchical information structures. In Proceedings of the 2nd conference
on Visualization ’91, VIS ’91, pages 284–291. IEEE Computer Society Press, 1991.

[26] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[27] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Gerard Jounghyun Kim, and
Euiseob Shin. Form: A feature-oriented reuse method with domain-specific reference
architectures. Annals of Software Engineering, 5:143–168, 1998.

[28] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Feature-oriented product line engi-
neering. IEEE Software, 19:58–65, 2002.

[29] Sotirios Liaskos, Sheila A. McIlraith, Shirin Sohrabi, and John Mylopoulos. Integrating
preferences into goal models for requirements engineering. In Proceedings of the 2010
18th IEEE International Requirements Engineering Conference, RE ’10, pages 135–144.
IEEE Computer Society, 2010.

[30] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering. Springer-Verlag
New York, Inc., 2007.

[31] Dewi Mairiza, Didar Zowghi, and Nurie Nurmuliani. An investigation into the notion of
non-functional requirements. In Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, pages 311–317. ACM, 2010.

[32] Marcilio Mendonca, Andrzej Wasowski, Krzysztof Czarnecki, and Donald Cowan. Ef-
ficient compilation techniques for large scale feature models. In Proceedings of the
7th international conference on Generative programming and component engineering,
GPCE ’08, pages 13–22. ACM, 2008.

[33] Bardia Mohabbati, Dragan Gasevic, Marek Hatala, Mohsen Asadi, Ebrahim Bagheri,
and Marko Boskovic. A quality aggregation model for service-oriented software product
lines based on variability and composition patterns. In The 9th International Confer-
ence on Service Oriented Computing (ICSOC 2011), pages 436–451. Springer, 2011.

BIBLIOGRAPHY 60

[34] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, Hector Munoz-Avila, J. William
Murdock, Dan Wu, and Fusun Yaman. Applications of shop and shop2. IEEE Intelli-
gent Systems, 20(2):34–41, March 2005.

[35] Dana Nau, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and Fusun
Yaman. Shop2: An htn planning system. Journal of Artificial Intelligence Research,
20:379–404, 2003.

[36] Ivana Ognjanovic, Dragan Gašević, Ebrahim Bagheri, and Mohsen Asadi. Conditional
preferences in software stakeholders’ judgments. In Proceedings of the 2011 ACM Sym-
posium on Applied Computing, SAC ’11, pages 683–690. ACM, 2011.

[37] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
mun. ACM, 15:1053–1058, December 1972.

[38] Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. Spacetree: Support-
ing exploration in large node link tree, design evolution and empirical evaluation. In
Pak Chung Wong and Keith Andrews, editors, INFOVIS, pages 57–64. IEEE Computer
Society, 2002.

[39] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer, 2005.

[40] Helen C. Purchase. Which aesthetic has the greatest effect on human understanding?
In Proceedings of the 5th International Symposium on Graph Drawing, GD ’97, pages
248–261. Springer-Verlag, 1997.

[41] Rick Rabiser, Paul Grünbacher, and Deepak Dhungana. Requirements for product
derivation support: Results from a systematic literature review and an expert survey.
Information and Software Technology, 52(3):324–346, March 2010.

[42] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone trees: animated
3d visualizations of hierarchical information. In CHI ’91: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 189–194. ACM, 1991.

[43] Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, and
Schahram Dustdar. An end-to-end approach for qos-aware service composition. In
Proceedings of the 13th IEEE International Conference on Enterprise Distributed Ob-
ject Computing, EDOC’09, pages 128–137. IEEE Press, 2009.

[44] Thomas L. Saaty. How to make a decision: The analytic hierarchy process. European
Journal of Operational Research, 48(1):9–26, September 1990.

[45] T.L. Saaty. The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allo-
cation. McGraw-Hill, 1980.

BIBLIOGRAPHY 61

[46] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A comparison of decision modeling
approaches in product lines. In Proceedings of the 5th Workshop on Variability Modeling
of Software-Intensive Systems, VaMoS ’11, pages 119–126. ACM, 2011.

[47] Sergio Segura, José A. Galindo, David Benavides, José A. Parejo, and Antonio Ruiz-
Cortés. Betty: benchmarking and testing on the automated analysis of feature models.
In Proceedings of the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS ’12, pages 63–71. ACM, 2012.

[48] Ben Shneiderman. The eyes have it: a task by data type taxonomy for information
visualizations. Proceedings 1996 IEEE Symposium on Visual Languages, 0(UMCP-CSD
CS-TR-3665):336–343, 1996.

[49] Norbert Siegmund, Marko Rosenmuller, Christian Kastner, Paolo G. Giarrusso, Sven
Apel, and Sergiy S. Kolesnikov. Scalable prediction of non-functional properties in
software product lines. In Proceedings of the 2011 15th International Software Product
Line Conference, SPLC ’11, pages 160–169. IEEE Computer Society, 2011.

[50] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, Sven
Apel, and Gunter Saake. SPL Conqueror: Toward optimization of non-functional prop-
erties in software product lines. Software Quality Journal, pages 1–31, June 2011.

[51] Shirin Sohrabi, Jorge A. Baier, and Sheila A. McIlraith. Htn planning with prefer-
ences. In Proceedings of the 21st international jont conference on Artifical intelligence,
IJCAI’09, pages 1790–1797. Morgan Kaufmann Publishers Inc., 2009.

[52] Shirin Sohrabi, Jorge A. Baier, and Sheila A. McIlraith. Htn planning with prefer-
ences. In Proceedings of the 21st international jont conference on Artifical intelligence,
IJCAI’09, pages 1790–1797. Morgan Kaufmann Publishers Inc., 2009.

[53] Samanh Soltani, Mohsen Asadi, Dragan Gasevic, and Marek Hatala. The effects of
visualization and interaction techniques on feature model configuration. Technical re-
port, School of Intractive Art and Technology, SFU, 2011. https://files.semtech.

athabascau.ca/public/TRs.

[54] Ian Sommerville, Ian Sommerville, Pete Sawyer, and Pete Sawyer. Viewpoints: princi-
ples, problems and a practical approach to requirements engineering. Annals of Software
Engineering, 3:101–130, 1997.

[55] John Stasko and Eugene Zhang. Focus+context display and navigation techniques for
enhancing radial, space-filling hierarchy visualizations. In Proceedings of the IEEE Sym-
posium on Information Vizualization 2000, INFOVIS ’00, pages 57–. IEEE Computer
Society, 2000.

[56] Maureen Stone. Choosing colors for data visualization, 2006. http://www.

perceptualedge.com/articles/b-eye/choosing_colors.Pdf.

BIBLIOGRAPHY 62

[57] Alfredo R. Teyseyre and Marcelo R. Campo. An overview of 3d software visualization.
IEEE Transactions on Visualization and Computer Graphics, 15(1):87–105, January
2009.

[58] Thomas Thum, Don Batory, and Christian Kastner. Reasoning about edits to feature
models. In Proceedings of the 31st International Conference on Software Engineering,
ICSE ’09, pages 254–264. IEEE Computer Society, 2009.

[59] E. Triantaphyllou, B. Shu, S. Nieto Sanchez, and T. Ray. Multi-Criteria Decision
Making: An Operations Research Approach, volume 15, pages 175–186. 1999.

[60] Andries van Dam, Kenneth P. Herndon, and Michael Gleicher. The challenges of 3d
interaction. In Catherine Plaisant, editor, CHI Conference Companion, page 469. ACM,
1994.

[61] Jules White, Brian Dougherty, and Douglas C. Schmidt. Selecting highly optimal
architectural feature sets with filtered cartesian flattening. Journal of Systems and
Software, 82(8):1268–1284, August 2009.

[62] Jules White, Brian Dougherty, Doulas C. Schmidt, and David Benavides. Automated
reasoning for multi-step feature model configuration problems. In Proceedings of the
13th International Software Product Line Conference, SPLC ’09, pages 11–20. IEEE,
2009.

[63] Tao Yu and Kwei-Jay Lin. Service selection algorithms for web services with end-to-end
qos constraints. In Proceedings of the IEEE International Conference on E-Commerce
Technology, CEC ’04, pages 129–136. IEEE Computer Society, 2004.

[64] Tao Yu and Kwei-Jay Lin. Service selection algorithms for composing complex services
with multiple qos constraints. In Proceedings of the Third international conference on
Service-Oriented Computing, ICSOC’05, pages 130–143. Springer-Verlag, 2005.

[65] Pamela Zave. An experiment in feature engineering, pages 353–377. Springer-Verlag
New York, Inc., 2003.

