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Abstract

We present a novel content based copy detection system for 3D videos. The system creates

compact and robust depth and visual signatures from 3D videos. The system returns a

score, using both spatial and temporal characteristics of videos, indicating whether a given

query video matches any video in a reference video database, and in case of matching,

which portion of the reference video matches the query video. Our analysis shows that the

system is efficient, both computationally and storage wise. The system can be used, for

example, by video content owners, video hosting sites, and third-party companies to find

illegally copied 3D videos. We implemented Spider, a complete realization of the proposed

system, and conducted rigorous experiments on it. Our experimental results show that the

proposed system can achieve high accuracy in terms of precision and recall even if copied 3D

videos are subjected to several modifications at the same time. For example, the proposed

system yields 100% precision and recall when copied videos are parts of original videos, and

more than 90% precision and recall when copied videos are subjected to different individual

modifications such as cropping, scaling, and blurring.
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Chapter 1

Introduction

1.1 Overview

The technological progress over the past years has enabled the general public, who were

at the consuming end in the past, to easily communicate via the Internet’s new intelligent

web services and spread their own generated content. Youtube, as the first mass-popular

platform for user created media content, reported1 that 60 hours of video were uploaded

every minute, and they had 1 trillion views in 2011. Although this gives the users the ability

to share their works and ideas, it also makes it relatively easy to copy commercial content

and distribute it over the Internet. Copyright infringement of commercial videos is a serious

issue that can result in loss of revenue for businesses.

Three dimensional (3D) video is becoming popular, as its technology is getting mature.

Now, content creators are producing more materials in 3D formats, cinemas are upgraded

to 3D, 3DTV broadcasting has become reality, and even video sharing websites, such as

YouTube, provide means to upload and watch 3D contents. Many experts are anticipating

that the future of video is 3D. With rapid advances in 3D cameras and displays, numerous

3D videos are expected to be created and consumed in the near future. Since the creation

of 3D contents is expensive, content owners would be interested in protecting their contents

from illegal copying and distribution, especially posting on online sites.

Watermarking and content based copy detection are two fundamental approaches to

video copy detection. Content based copy detection, which is the focus of this thesis, is

1www.youtube.com/t/press statistics

1



CHAPTER 1. INTRODUCTION 2

based on extracting distinctive features from the videos. These features are called signatures

or fingerprints. If the signature of two videos are detected to be similar, then one of the

videos may be a copy of the other.

1.2 Problem Statement

Detecting copies of a 2D video is a complex task. First, videos are composed of many frames

(usually 25 or 30 frames per second), and comparing numerous frames from potential video

copies against reference videos is computationally intensive. Detection of video copies is

also complicated by the fact that many edit effects occur on the copied videos. These

edits, usually called video transformations, can be done intentionally to avoid detection or

unintentionally because of the copying process. Scaling, blurring, cropping, slow motion,

and change of frame rate are examples of these transformations. In addition, there are some

transformations, like synthesizing new views, which are specific to 3D videos, and make the

copy detection even more challenging.

A good copy detection system will represent the video content by robust, discriminating,

and compact signatures. A robust signatures remain recognizable in the face of edit effects.

A discriminative signature is a good representer of a video content, but unlikely to be found

in videos which have different content. A compact signature requires less storage space

and less computation to evaluate the similarity between two signatures. The search process

should also be efficient and fast to effectively determine copies in large databases.

The problem addressed in this thesis can be stated as follows:

Problem (3D Video Copy Detection). Find copies of a given 3D video in a large collection

of videos, even if copies are modified and/or embedded in other videos.

1.3 Thesis Contributions

The contributions of this thesis can be summarized as follows [18] [19]:

• We propose compact signatures for both texture and depth signal of 3D videos. The

signatures are storage-efficient but still discriminating enough for good matching re-

sults.
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• We present a novel and complete content based copy detection system for 3D videos.

The system extracts compact and robust signatures from the 3D videos, both texture

and depth. Then, these signatures are used to compare videos. Signatures of query

videos are created online and compared against signatures of reference videos in the

indexed database.

• We implemented Spider, a complete realization of the proposed system. The system

provides users with a graphical user interface for easy setup and visualization [19].

• We performed rigorous evaluation of the Spider system considering various modifica-

tions to the test videos, in order to simulate realistic conditions for regular operation.

3D videos collected from different sources with diverse characteristics were used to

evaluate the proposed system. Our experimental results show that the proposed sys-

tem can achieve high accuracy in terms of precision and recall even if the 3D videos

are subjected to several transformations at the same time. For example, the proposed

system yields 100% precision and recall when copied videos are parts of original videos,

and more than 90% precision and recall when copied videos are subjected to different

individual transformations.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides background information

needed to understand the concepts discussed in this thesis. Chapter 3 explains the proposed

system to detect 3D videos copies. It describes all steps and components of the system, as

well as its running time and memory analysis. The implementation details of the proposed

system is explained in Chapter 4. Chapter 5 evaluates the proposed copy detection system

and Chapter 6 provides conclusions as well as ideas for future work.



Chapter 2

Background and Related Work

2.1 Background

This chapter provides the background information needed to understand the concepts dis-

cussed in this thesis. We present an overview of the 3D video technology, and video copy

detection concept. We also discuss current algorithms and techniques used in this research

area.

2.1.1 3D Videos

Human eyes are horizontally separated by about 50-75 mm depending on each individ-

ual [45]. Consequently, each eye has a slightly different view of the world. At any given

moment, the lines of sight of the two eyes meet at a point in space. This point in space,

called fixation point, projects to the same location (i.e. the center) on the retina of the two

eyes. However, many other points, as shown in Figure 2.1, do not fall on corresponding

retinal locations because of different viewpoints of the left and right eyes. This difference

between the points of projection in the two eyes is called binocular disparity. This disparity

has inverse relation with the depth of the point, so human brain uses it to extract depth

information.

Similarly, 3D video enables depth perception by providing two slightly different views

for each eye of the user. Then, the human brain fuses these two views to perceive the depth

of the video scene. Different methods exist for preparing 3D videos:

• Stereo Video: The video has two views. A view can be thought of as a separate 2D

4



CHAPTER 2. BACKGROUND AND RELATED WORK 5

Fixation Point

A

B

dB
dA

Figure 2.1: The fixation point projects to the same location in both eyes. However, other
points like A and B project to different locations in left and right eyes. This difference (dA
and dB) are called disparity.

video stream.

• Multi-view Video: The video has multiple views and a subset of them is displayed to

the user depending on the angle of viewing.

• Video plus Depth: In this case, the video is encoded in 2D and a separate depth map is

created for the 2D video. The depth information of each frame is usually represented

as a gray-level image showing the depth of each pixel in that video frame. An example

of a video frame and its depth map is shown in Figure 2.2. The depth map allows

the creation of many virtual (synthesized) views, which adds flexibility and support

wider viewing angles for users. Creating of virtual views, however, is computationally

expensive and could introduce some visual artifacts.

Combinations of the above methods are possible, as described in [17] and [26]. For

example, a 3D video can be encoded in multi-view plus depth, where a few views are used

with the depth map to create more virtual views.

When the 3D videos are created, they need to be compressed, transmitted, and dis-

played. Different coding standards have been developed for compression and transmission

of 3D videos, but it is still an ongoing process. In some coding standards, like H.264/AVC

simulcast, video sequences for each view are individually and independently encoded, trans-

mitted, and decoded. While this approach is simple, it is highly redundant, since the

inter-view dependencies are ignored. On the other hand, coding standards like H.264/AVC

SEI and H264/MVC exploit the inter-view dependencies for better compression [27] [26].
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Znear

Zfar

Figure 2.2: This image shows a frame of a 3D video and its corresponding depth map.
Depth map is a gray-level image which shows the depth of each pixel

Various kinds of display systems are developed for 3D videos. Some 3D displays need

special kind of glasses like polarized glasses. Polarized glasses use orthogonal or circular

polarizing filters for separating left and right views which are projected superimposed onto

the same screen. A more recent group of 3D displays do not need any glasses. These

displays, called auto-steroscopic, use a lenticular sheet or parallax barrier element in front

of the light emitters to ensure correct view separation for different viewing angles [7].

2.1.2 Interest Points of Video Frames

In our proposed signature for the texture signal of 3D videos, we make use of interest points

of video frames. Interest points or local features are computer vision terminology which are

defined as: “A local feature is an image pattern which differs from its immediate neigh-

borhood. It is usually associated with a change of an image property or several properties

simultaneously, although it is not necessarily localized exactly on this change. The image

properties commonly considered are intensity, color, and texture.” [42]. Interest points are

often described by the appearance of patches of pixels surrounding the point location. As

an example, in Figure 2.1.2, patches (a) and (b) with large contrast changes (gradients)

convey more information, and are more likely to be found and matched in a similar image
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(a) (b) (c)

Figure 2.3: Patches (a) and (b) can be localized or matched with higher accuracy than (c).

than textureless patch (c).

Interest point extraction has two phases. The first phase is to search an image for

locations that are likely to match well in other images. The second phase is to describe the

region around detected interest points in a compact and stable form that can be matched

against other descriptors [39]. Many interest point extractor algorithms have been proposed

in the literature. The important key of a good interest point extractor is repeatability:

Same features should be found in two images of the same scene taken under different viewing

conditions. Mikolajczyk et. al. [28] compare the performance of some descriptors on real

images with different geometric and photometric transformations including rotation, scale

change, viewpoint change, image blur, JPEG compression, and illumination. The results

show SIFT and SIFT-based methods obtain the best results.

Scale Invariant Feature Transform (SIFT) [24] detects potential interest points using

extrema of difference of Gaussian function, then each interest point is described around

its neighborhood by a gradient orientation histogram, and the bins are stored in a 128-

dimensional vector. SIFT method is proposed in 2004. Many methods have been developed
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since then that try to improve its performance. Speeded-up robust features (SURF) [25]

is one of them which is much faster. As we will explain in Section 3.2.4, we exploit SURF

interest points because of its high performance and fast computation.

2.1.3 Video Copy Detection

Video copy detection is important for copyright infringement issues. In order to study this

problem more fully, we must first decide what is meant by a copy. A copy defines as a set of

tolerated transformations from the original content. A tolerated transformation is one which

when applied to the original video, produces a transformed video which is still recognizable

as the original video. video transformations, can be done intentionally to avoid detection

or unintentionally because of the copying process. For example, a copied 2D video may be

scaled, rotated, cropped, transcoded to a lower bit rate, or embedded into another video.

The contrast, brightness, or colors of video can also be changed. In addition to mentioned

spatial transformations, temporal transformations may also be applied to copied videos.

Fast or slow motion, random replication or omission of frames, and changes in frame rate

due to different video standards are typical temporal transformations.

Detecting copies of 3D videos is even more challenging. This is because 3D videos have

many more transformations than 2D videos. First, each 3D video has at least two views,

where each view is a 2D video. 2D traditional transformations can be applied on one, all, or

subset of the views, resulting in many possibilities for transformations. Second, 3D videos

can be encoded using different formats, including stereo, multiview, video plus depth, and

multiview plus depth. Changing from one format to another complicates the detection

process. For 3D formats that have depth signal, several transformations can be applied on

the depth as well, such as depth blurring. Furthermore, a copied 3D video can contain a

subset of the views in the original video. Finally, new views can be created (synthesized)

using techniques such as the one in [35] and [30]. Synthesized views display the scene

from different angles, and thus reveal different information than in the original views. For

example, an object occluded in one view could appear in another.

There are different methods for video copy detection. One method called watermarking

[16] is to embed information which is both distinctive and invisible to the user into the

content. Then, copy detection becomes a matter of searching the video content for this

hidden information. Another method is to use content itself. This is known as Content-

Based Copy Detection (CBCD). The underlying premise of content-based copy detection is
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that the content itself is the watermark. In other words, there is enough information in the

content to create a unique fingerprint of the video. These kind of methods involve extracting

the fingerprint from the content and performing a distance measure to determining the

similarity between the fingerprints of the query video and the original videos.

2.2 Related Work

As mentioned in the previous section, watermarking and content based video copy detection

are the two approaches to find copies of videos. 3D watermarking approaches in the literature

can be classified into three groups [37]: (i) 3D/3D: Watermark is embedded in the 3D model,

and it is detected in the 3D model; (ii) 3D/2D: Watermark is embedded in the 3D model,

and it is detected in the 2D rendering; and (iii) 2D/2D: Watermark is embedded in the

2D rendering, and it is detected in the 2D rendering. The first two groups try to protect

the traditional representation of a 3D scene, which are geometry and texture. The third

group tries to watermark the sequences of images which are the 2D projections of the same

3D scene. Consequently, the third group can be used for copy detection of 3D videos [37].

While the first two groups have been studied quite widely, the third group emerged after

image based rendering techniques developed [20].

Alper et al. [20] propose a watermarking scheme for multiview 3D videos. They embed

the watermark into the main representation of a multiview 3D content and extract it after

the content is transformed or a virtual view is generated. Their research is limited to static

scenes consisting of one object or one depth layer. Also, this watermarking scheme only

considers multiview 3D format, not depth enhanced formats.

The content-based copy detection of 3D videos is fairly new problem. The only work

that we are aware of is by Ramachandra et al. [33] where they propose a method to protect

multiview 3D videos using a fingerprint based on scale invariant feature transform (SIFT)

[24], a local feature extractor and descriptor. They extract SIFT descriptors of each of the

views of a multiview query video, and compare it to those of an original video. A problem

with this work is that their evaluation is performed at the frame level, and the authors

do not explain how they decide whether a video is a copy or not, nor do they identify the

location of a copied clip in the reference video.

Although 3D copy detection methods are scarce in the literature, there are many methods

available for 2D video copy detection. Hampapur et al. [13] use the temporal features of
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the video as the fingerprint. They describe a signature based on motion of the video across

frames. In a similar way, Tasdemir et al. [40] use the motion vectors for the signature of

a frame. Some other methods [21] [46] use fingerprints which are obtained directly from

compressed videos. Another group of methods use color histograms as videos’ fingerprint.

For instance, [13] uses YUV color space. It quantizes Y into 32 bins and each of U and V

into 16 bins to produce a 64 bin histogram. The color histogram signature is the sequence

of histograms at each frame. Matching is done by maximizing the histogram intersections

between the test and the reference video. The color histogram signature is prone to global

variations in color which are common when recoding video. Other group of methods use

interest points of video frames as signature. Liu et al. [23] use local features that are

extracted by SIFT as the frame signature. Roth et al. [34] take every frame of the source

video and divide it into 16 regions. They then use Speeded-Up Robust Features (SURF)

[25] to find local points of interest in the frame.

Other than these methods which exist in this research area, there are some companies

which actually deployed content based video copy detection to find commercial videos copies.

Audible Magic1, Irdeto2, Civolution3, and Vobile4 are some of the well-known companies

offering video copy detection and other video services which use fingerprinting technology

such as broadcast monitoring and content aware advertisement. Of course, they do not

reveal their methods, but all of them mention the use of videos’ content signature. They

also exploit file’s name, file’s size, source IP address history, previous transactions, metadata,

watermark, and audio signature to make robust decisions.

Although all of these methods can be used for 3D video copy detection, they are designed

for 2D videos, and they ignore the information in different views and the depth of videos,

which are important especially in the presence of 3D video transformations such as view

synthesis. The importance of using depth and visual information together to increase the

performance is shown in Section 5.9.

1http://www.audiblemagic.com/
2http://irdeto.com/
3http://www.civolution.com/home/
4http://www.vobileinc.com



Chapter 3

Proposed 3D Video Copy

Detection System

In this chapter, we start by presenting an overview of the proposed system and how it can

be used. Then, we present the details of its different components. Then, we analyze its

space and time complexity.

3.1 Overview

We propose a novel system to detect 3D video copies. Figure 3.1 shows a high-level

illustration of the system. The system can be used in different scenarios, including the

following:

• Content Owners. A copyright owner can deploy the copy detection system, which

periodically crawls online sites and downloads recently posted videos. These videos

are then compared against the owners’ videos to find potential copies.

• Hosting Sites. A video hosting site can offer content owners a service of detecting

copies of their copyrighted materials for possible actions. Copies of certain videos

could even be prevented from being posted on the hosting web site.

• Third-party Offering Video Copy Detection Services. A third-party company can

deploy the video copy detection system on behalf of one or more content owners.

11
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Figure 3.1: High-level illustration of the video copy detection system.

The 3D video copy detection system has two main components: Processing Reference

Videos and Comparing Query Videos. We describe each of them in the following. Note

that, we refer to original videos as reference videos. Videos that we check against reference

videos are called query videos. If a query video matches one of the reference videos, that

query video is called a copied video.

3.2 Processing Reference Videos

The first component of the system is Processing Reference Videos, summarized in Figure

3.2. Each reference video is processed once to create its signature, which is later used to

detect potential copies. The signature is composed of depth information as well as visual

features extracted from frames of the video. Signatures of reference videos are stored in

a way that facilitates searching and comparison against query videos. Description of each

component is presented below.

3.2.1 Extract Depth

For 3D videos encoded in video plus depth format (or its variants), the depth information

of each frame is usually represented as a gray-level image showing the depth of each pixel

in that video frame.

For 3D videos encoded in stereo or multi-view formats, where no depth information is

explicitly given, a method for estimating the depth information is used, which is based on
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Figure 3.2: Steps for processing reference videos

the following. Human eyes are horizontally separated by about 50-75 mm depending on

each individual. Consequently, each eye has a slightly different view of the world. This

difference between the points of projection in the two eyes is called binocular disparity.

Disparity between a stereo pair of images can be used to extract the depth information,

since the amount of disparity is inversely proportional to the distance from the observer.

Generating disparity images is called stereo matching, which is the process of taking two

or more images and estimating a 3D model of the scene by finding corresponding pixels in

the images and converting their 2D positions into 3D depths. Szeliski et al. [38] provide

taxonomy of methods available in the literature for correspondence matching. It is worth

mentioning that there are both hardware-based and software-based approaches available to

generate depth information in real-time [44].

3.2.2 Create Depth Signature

After extracting the depth map which is a gray-level image, the depth signature is com-

puted in two steps. First, as shown in Figure 3.3, the depth map is divided into a grid. The

division can be uniform, i.e., into equal size blocks, or non-uniform to account for different

importance of the regions in the depth map. The number of blocks in the grid is a con-

figurable parameter which trades off the computational complexity with the copy detection

accuracy. We found out that a 20×20 uniform grid give us a good accuracy in an acceptable

time.

In the second step of creating the depth signature, the blocks of the depth map grid are
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Figure 3.3: In the first step of the depth signature extraction, the depth map is divided into
a grid.

summarized into a vector, where each element of the vector represents one block. Various

metrics can be used to summarize the depth information in each block. We use mean of the

depth values in each block to summarize the whole block. More complex metrics that are

composed of multiple components, e.g., the mean and standard deviation, can also be used.

The depth signature for a video frame takes the form < d1, d2, ..., dD >, where D is the total

number of blocks in the depth map grid, and di is the mean of depth values in block i.

The depth signature can be created for every frame in the video. It can also be created

for only a subset of the frames in order to reduce the computational complexity. This subset

of the frames can be chosen deterministically, e.g., each 10th frame is chosen, or randomly.

In addition, the subset of the frames can be the keyframes of the video, where a keyframe is

a representative frame for a sequence of video frames containing similar visual information,

which is referred to as a video shot. Shot boundary detection algorithms such as [22] can

be employed to identify when a shot starts and ends. Keyframe selection algorithms such

as [11] can be used to select key frames. The depth signature of a video is composed of the

depth signatures of its frames, or the chosen subset of frames for which the depth signatures

are created.
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3.2.3 Index Depth Signature

Depth signatures are vectors with multiple dimensions. These vectors will need to be com-

pared against depth vectors from other videos in order to find potential copies. We index

depth signatures in order to facilitate these comparisons. In particular, given a depth vector

from a query video, we are interested in finding the closest depth vectors from the reference

video database. Multiple methods such as randomized kd-tree, k-means, and locality sensi-

tive hashing (LSH) can be used to achieve this nearest neighbor search efficiently. Based on

the requirements of the system, like the performance or the need to be dynamic, a method

can be chosen. We propose to use kd-tree for nearest neighbor search for large-scale video

copy detection system, because it is dynamic and can be distributed for scaling purposes.

More explanation is provided in Section 4.3 for this choice.

Here we present a brief background on randomized kd-tree to find approximate nearest

neighbors, and then show how it can be used in our system. In the standard version of

kd-tree [10], starting with N points in Rd, the data space is split on dimension i in which

the data exhibits the greatest variance. An internal node is created to store dimension i

and its median value, so an equal number of points fall to left and right subtrees. Then,

the same process is repeated with both halves of the data, and finally the data are stored in

the leaves of the tree. Since median values are used, the created tree is balanced with depth

⌈log2N⌉. To find the nearest neighbor to a query point q, first the leaf that point falls in is

found. The point in this leaf is a good candidate for query point nearest neighbor. Then a

backtracking stage begins in which whole branches of the tree can be pruned if the region

of space they represent is further from the query point than the closest neighbor seen so

far. The search terminates when all unexplored branches have been pruned. However, this

approach is not efficient in high dimensional spaces, and also we are looking for approximate

nearest neighbors, not the exact one. So we can limit the number of leaf nodes we are willing

to examine, and return the best neighbors found up to that point.

Silpa-Ann and Hartley [36] proposed an improved version of kd-tree in which multiple

randomized kd-trees are created, and simultaneous searches are performed using several

trees. Randomized kd-trees are created by choosing the split dimension randomly from

the first D dimensions on which data has the greatest variance. They also use a priority

queue across all trees to explore nodes based on their distances to the query, instead of

backtracking based on the tree structure. Their experiments show that this technique leads
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Figure 3.4: Visual features of a video frame which will be used to compute the visual
signature.

to 3-times search speedup with the same performance. We used this improved version in

our system, and for each signature we store the following fields: < V ideoID, FrameID,

V iewID,DepthSignature >, so that whenever a signature is returned, we know its corre-

sponding video, frame, and view.

3.2.4 Extract Visual Features

We extract features from individual frames of videos. Visual features should be robust to,

i.e., do not change because of, various transformations such as scaling, rotation, change in

viewpoint, and change in illumination. Different types of visual features can be used in

our system, including but not limited to SURF [25] and SIFT [24]. In our implementation,

we use SURF features, which outperform previous methods with respect to repeatability,

distinctiveness, and robustness, and also can be computed much faster [25]. Figure 3.4

shows an example of the visual features of a video frame.

3.2.5 Create Visual Signature

In our previous work [18], we used actual feature descriptors, SIFT descriptors, as visual

signatures. This visual signature is large and hard to compare, since there are 200 signatures

and each has 128 elements per frame. Using the number of visual features instead of their

descriptors has been shown to provide good performance in [34] and [14]. Thus, in the
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Figure 3.5: Frames considered in visual signature computation of each frame.

proposed system, we use a modified version of the signature introduced in [14] where only the

count of visual features is used. This visual signature is spatio-temporal. Spatial information

is obtained by dividing each video frame into regions. In each region, local SURF features are

found and the number of features in each region is counted. To add the temporal information

to the signature, the counts in each region are sorted along a time line and an ordinal value

based on its temporal rank is assigned. We note that in [14], one signature is computed

for the whole query video, which makes detecting copied videos embedded in other videos

difficult. To overcome this, our proposed signature generates a spatial-temporal signature

for every frame, but we include a limited temporal information in each one. As shown in

Figure 3.5, we generate the signature of a specific frame by considering a time interval that

starts at that frame, and has a specific length which defines how much temporal information

we want to include in each signature. For example, in our implementation, we used a 10-

frame interval, and a 4×4 grid, which results in a 4×4×10 = 160 element vector signature

per frame. Compared to the old visual signature, it is much smaller, but as will be shown

in the experiments section, is still distinctive and gives good results.

An example of extracting this signature is shown in Figure 3.6. To make it simpler

to demonstrate, a 2 × 2 grid and a four frame wide interval are considered for signature

extraction. In Figure 3.6(a), each frame is divided to four regions, and the feature count in

each region is shown inside it. To extract each frame signature, the ordinal scores of each

region in the frame time interval is computed. The ordinal scores of the first region, which is

shown in gray background, are shown above the frames for frames 1 and 2. In Figure 3.6(b),

the same procedure is performed for other regions, and finally the frame signature is the

ordinal scores.

The visual signature for a video frame takes the form < v1, v2, ..., vV >, where V is
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Figure 3.6: An example of computing the visual signature.

Number of Blocks×Number of Frames in the time interval, and vis are ordinal scores.

Similar to the depth signature, the visual signature can be created for every frame in

the video, or a subset of the frames in order to reduce the computational complexity. The

visual signature of a video is composed of the visual signatures of its frames, or the chosen

subset of frames for which the visual signatures are computed.

3.2.6 Index Visual Signature

Visual signatures are vectors with multiple dimensions. These vectors will need to be com-

pared against visual vectors from other videos in order to find potential copies. Like depth

signatures, we index visual signatures in order to facilitate these comparisons. Again,

we use kd-tree to index visual signature, and the points added with the following fields:

< V ideoID, FrameID, V iewID, V isualSignature >, so that whenever a signature is re-

turned, we know its corresponding video, frame, and view.
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3.3 Processing Query Videos

The second component of the proposed system is Comparing Query Videos, summarized in

Figure 3.7. The depth signature is first computed from the query video. As mentioned

before, the signature can be computed for only a subset of video frames. Subsampling is

more important in case of query video, since we want to respond to a query as fast as

possible. The methods used to extract query signatures are the same as the ones used

to process reference videos. Then, the depth and visual signature of the query video is

compared against the depth and visual signatures in the reference video database. If there

is no match, the query video is not considered for any further processing. If there is a match,

a combined score is computed based on the depth signature and visual signature matching

scores. Finally, the combined score is used to decide whether the query video is a copy of

one of the videos in the reference video database. If a query video is found to be a potential

copy of a reference video or part of it, the location of the copied part in the reference video

is identified. More details are provided in the following.
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Figure 3.7: Comparing query video against reference videos.

3.3.1 Compare Depth Signatures

Finding the potential copied videos using depth signature takes place in two main steps:

frame level comparison and video level comparison. The goal of the first step is to find
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the best matching frames in the entire database for each query frame and compute a score

between each matched pair. The goal of the second step is to account for the temporal

aspects of the video frames, and to compute a matching score between the query video and

each reference video.

In the first step, for each depth signature of the query video, the depth signatures that

are closest to it based on their Euclidean distance are found using the nearest neighbor

search method. Using kd-tree, for each depth signature a fixed number of its approximate

nearest neighbors and their distances are found. Distances can be used as matching scores.

Alternatively, a threshold can be used such that scores for distances exceeding the threshold

can be set to zero and other scores are set to 1. This will reduce the computation needed to

compare scores. It should be noticed that the frames found in this may belong to different

videos.

In addition, 3D videos can have multiple views, and a signature from the query frame

should be checked against frames from different views. Two frames are considered a match

if at least one of their views matches. Finally, a score is computed for each matched pair

of frames using the distance of their views. At the end of this step, the number of matched

frames in each reference video is counted. Then, reference videos with the number of

matched frames exceeding a threshold are considered in the next step. Other videos are

no longer considered.

In the second step of the depth signature matching, the temporal characteristics of the

videos are considered. Temporal characteristics mean the timing and order of the frames in

the query and reference videos. For example, if frame x in the query video matches frame y

in the reference video, we expect frame x+1 in the query video matches frame y+1 in the

reference video. This is important to account for as copied videos are typically clips with

contiguous frames taken from reference videos. Also, a copied video can be embedded in

other videos.

In order to consider the temporal characteristics, a matching matrix is computed for

each candidate reference video and the query video. The columns of this matrix represent

reference video frames, and the rows represent the query video frames. Entries in the matrix

are the relevance scores. Figure 3.8 shows an example, where dark squares represent matched

frames. Using this matrix, the longest sequence with the largest number of matching frames

is considered as a potential copy. If the frame rate of the original video and its copy are the

same, this sequence’s gradient (slope) would be equal to 1. However, since change of frame
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rate transformation may be applied to the copied video, we also consider sequences with

gradients 0.5, and 2. These gradients correspond to two extreme cases when the frame rate

of the query video is changed to half and twice of its original, respectively. Other frame rate

changes are between these three cases, and are still detected, as it is examined in Section 5.7.
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Figure 3.8: Matching matrix for frames from query and reference videos considering their
timing.

It is worth mentioning that frame dropping and occasional frame mismatches caused by

possible transformations must be taken into account. Thus, the sequences mentioned before

are not strictly linear and gaps may exist. So, to find the longest sequence with the greatest

score, instead of considering a line of frames, a band with a specific width is considered, as

shown in Figure 3.8. This band, with one of the gradients mentioned above, starts sweeping

the matrix from top left most position and moves one block each time. At each position,

the temporal score of the longest sequence of matched frames inside the band is computed.

After performing this process for all positions, the position with the greatest temporal score

is considered the potential copied location, and its score is considered the depth matching

temporal score of the reference video.

3.3.2 Compare Visual Signatures

Like depth signature comparison, visual signatures comparison takes place in two steps,

frame level, and video level. First, for each query frame visual signature, the visual sig-

natures that are closest to it based on their Euclidean distance are detected using nearest

neighbor search method. Using kd-tree, for each visual signature a fixed number of its ap-

proximate nearest neighbors and their distances are found. These returned signatures may

belong to different videos. To find the matched videos, the number of matched frames in
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each reference video is counted, and videos with the number of matched frames exceeding

a threshold are considered a match. At the video level comparison, like the one explained

for depth video level matching, the temporal characteristics are taken into account, and a

temporal score is computed between the query video and each potential reference video.

Finally, the best matching videos based on their temporal scores are considered as potential

copies.

3.3.3 Identify Matching Clip

Copied videos can be small clips of the reference videos. It is useful to automatically

identify the location of a copied clip in the reference video. We use the matching matrix

shown in Figure 3.8 to identify the location of the copied clip. Notice that we have two

matching matrices: one from matching depth signatures and the other from matching visual

signatures. We can either use one of them or both. We find the longest diagonal sequence

with the greatest score in each case. The start and end of the longest sequence give the

start and end location of the copied clip in the reference video. Using both of depth and

visual matching matrices can yield more accurate locations of the copied clips. In this case,

the intersection of the two sequences returned from comparing depth and visual signatures

is used to mark the start and end location of the reference video.

3.4 Algorithm Analysis

We analyze the space and time complexity of the proposed system. Space complexity refers

to the storage needed to store the signatures of reference videos. Signatures of query videos

are created online and compared against the signatures of reference videos in the database.

We analyze the space complexity as a function of total number of frames in all reference

videos. We use kd-tree to index signatures in order to facilitate nearest neighbor search. To

calculate the space needed to store the index, we note that we have to store signatures, their

information, and the trees. To store the signatures themselves, in addition to signatures’

feature vectors, we have to store video ID and frame ID of each signature. We assume that

we use 4 bytes for video ID, and 4 bytes for frame ID of each signature, which is large enough

for long videos and large video databases. To store the trees, we have to store internal nodes

and leaves. In a kd-tree with n leaves, there are n − 1 internal nodes. The internal nodes

need to store their splitting dimension and the threshold values (assumed to store each of
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them in a single byte), and the leaves need to store the index of the signature, which can be

stored in log2n/8 bytes. Thus, the space required to store a kd-tree index can be computed

using Equations 3.1:

Storage = n(sd+ 4 + 4) Storing signatures and their information

+ n(2Tkd + Tkd
log2n
8

) Storing the trees
(3.1)

where d is the signature dimension, s is number of bytes per feature, and Tkd is the number

of kd-trees. Now we replace the general terms with the specific values of our system. Let the

total number of frames in all reference videos be Nr. Also, in our implementation we used

FLANN library, with 4 trees, so Tkd = 4. The dimensions of depth signature, and visual

signature are 400 and 160, respectively. Each depth signature feature is between 0 and 255,

and each visual signature feature is between 0 and 9, so for both features we have s = 1

byte. Using these parameters, the storage required to store our depth and visual indexes is

O(Nrlog2Nr).

Next, we analyze the time complexity, which is the time needed to process a given query

video of length Nq. In our analysis, we consider the worst case scenario, which happens

when the query video matches one of the reference videos. We assume that the time taken

to compute the depth and visual signatures for a frame is Td and Tv, respectively. Td and

Tv do not depend on Nq, but depend on the frame resolution, which is constant. Comparing

signatures and identifying location of copied clip do depend on Nq.

For comparison of signatures, we search through the kd-tree to find approximate m

nearest neighbors. This involves scaler comparison operations at each level of the tree,

limited number of backtracking (typically B ∼ 250) to examine more leaves, computing

the distance between query and each leaf signatures, and linear search in the final list of

signatures B to find the best m matches in the list. We know that the height of the tree is

log2Nr, and that computing the distance between query and leaf signatures can be performed

with d multiplications and d additions. So the running time of a single search in the tree

is B(2d + log2Nr) + B. Thus, for comparing the depth and visual signatures for a query

video that has Nq frames, we need 250Nq(801 + log2Nr) and 250Nq(321 + log2Nr) time,

respectively.
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In the Spider system, we found out that using m = 50 suffices for good performance.

So the m = 50 best matching frames for each frame are used to vote for corresponding

reference videos, and K best matching videos are found in mNq+R, where R is the number

of reference videos in the database. Then, we compare these K reference videos against

the query video, constructing the matching matrix, such as the one shown in Figure 3.8,

between the query video and the reference video, which takes LKNq steps, where L is a

constant referring to the number of frames in the longest video. Finally the temporal score

is computed using this matrix. To do so, as explained in Section 3.3.1, each matrix element

is traversed once, and this takes LNq addition, at most, to compute the temporal score and

matched location. Adding all up, the worst case running time to process a query video of

length Nq is:

Time = 250Nq(801 + logNr

2
) + 250Nq(321 + logNr

2
) + 2(50Nq +R+ LKNq + LNq)

= 2R+Nq(280600 + LK + L) + 500Nqlog2Nr

= O(Nqlog2Nr)

(3.2)

The above equation considers the fact that L, K, and R are constant and much smaller

than Nr.



Chapter 4

Implementation

1We implemented all steps of the proposed 3D video copy detection system, which we call

Spider. We modified and integrated several open-source libraries in our system. We provide

some highlights of our implementation in the following.

4.1 Overview

We implemented Spider, including its graphical user interface, in Java. Figure 4.1 shows a

snapshot of Spider system. The user provides the location of the reference videos that need

to be protected, and then the location of a query video that wants to match it against the

reference videos. The Spider system compares the selected query video with the database,

and returns the detected videos, if any, in a table sorted according to their scores.

The main components of the Spider system, Core and UI, are shown in Figure 4.2. The

Core package is the implementation of the main copy detection algorithm, and UI provides

a graphical user interface for users to work with the Core. We explain the most important

components in the following.

4.2 Detection Engine

DetectionEnging is the main class that controls everything from signature extraction to

matching. It has close interaction with the Video class. Each video in the system is an

1A. Abdelsadek contributed to the implementation of the system, especially FLANN library integration
and data collection and processing.
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Figure 4.1: A screen shot of the demo software. The query video, shown on left, which is
scaled version of a reference video is detected to be a copy of the reference videos shown in
the table.

Core

UI

-depthIndex : KdtreeStorageEngine
-visualIndex : KdtreeStorageEngine

+addMultipleReferenceVideos()
+addReferenceVideos()
+extractVideoSignatures()
+IndexReferenceVideo()

DetectionEngine

-videoID : int
-frameID : int
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+createSignature()
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Figure 4.2: Main components of the demo software.



CHAPTER 4. IMPLEMENTATION 27

object that has its own signatures, depthSignatures and visualSignatures, as fields. These

two fields are vectors of Signature instances, where each element of these vectors are the

signature of one video frame. In the first run of the Spider, the user provides the location of

the reference videos that needs to be protected. DetectionEnginge extracts their signature,

indexes them, and stores the indexes on the disk, so it can load them in the next runs,

instead of repeating this step in each run of the software. The user can also add other

reference videos to the index later.

In processing reference videos phase, DetectionEngine first extracts video frames, texture

and depth, from videos, which have different formats. It uses the FFmpeg [8] package to

extract the frames in grayscale format, since the depth is grayscale itself, and SURF works

with grayscale images, and it takes less space to save them as well. We use “ffmpeg -i video

frame %4d.pgm” command to extract the frames, distinguish them with 4 digit numbers,

and store them in pgm grayscale format.

Then, these frames are read to the memory for processing. The depth signature of each

frame is computed in two steps. First, the depth frame is divided into a 20x20 equal-size

grid. Then, the average of the depth values (pixels’ intensity) in each grid is computed

and stored in order in a 400 dimensional vector field called featuresVector in an instance of

DepthSignature class. In the second step, the depth signature is indexed to facilitate nearest

neighbor search needed in the query processing phase. More explanation on indexing and

storage is provided in Section 4.3. For the visual signature, the system extracts SURF

features using jopensurf [15] open-source library, which is implemented in Java. Then, each

texture frame is divided into a 4 × 4 grid, and the number of visual features in each block

of the grid is counted. Then, the counts of the frames in an interval of 10 frames are

sorted, and an ordinal score is assigned to each block of each frame. These ordinal scores

are stored in featuresVector field of a VisualSignature instance. The details of extracting

visual signatures is explained in section 3.2.5. After extracting the visual signatures, they

are indexed as well. As mentioned before, the indexes are stored on disk for later use.

In the query processing phase, a query video is selected by the user. Then, the software

extracts its frames and signatures, similar to steps taken for reference videos. To match the

query video signatures against reference videos signature, the indexes are used to find the

best matches or nearest neighbors. Section 4.3 provides more details on nearest neighbor

search in the indexes. Finally, these matched signatures are used to find the best matching

videos as described in section 3.3. The matching takes place both for depth and texture
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of the query. Each matching step returns the reference videos that are detected to be the

original version of the query video, and a score between [0, 1] is assigned to them. Then,

the scores of these two matching steps are combined. For each reference video returned, its

score will be the weighted sum of their scores. We used the same weight of 0.5 for both

depth and texture matching scores. The returned reference videos are shown as the result

to the user.

4.3 Index Storage

Multiple methods such as randomized kd-tree, k-means, and locality sensitive hashing (LSH)

can be used for indexing to achieve approximate nearest neighbor search efficiently. Based

on the requirements of the system, like the performance or the need to be dynamic, a method

can be chosen. Our first choice was LSH [6] for nearest neighbor search for large-scale video

copy detection system, because it can be easily parallelized. However, we should consider

the fact that our data is very dynamic. In other words, videos may be added to the index

at any time, and any newly added video will add many points to the index. We have two

choices to deal with this situation in LSH. First one is to keep the table sizes fixed, which

will put more and more points in the same bucket, and reduce the accuracy. Second one

is to resize the hash tables periodically, and rehash all the points again, which will reduce

the performance. Thus, number of hash functions or bin sizes parameters affect the trade

off between run time and accuracy, and they have to be tuned for every database size

under consideration, and we should not use the same settings when enlarging the database.

This made LSH less appealing for our software, since the reference videos will be available

gradually.

Our next choice was randomized kd-tree [Silpa-Anan and Hartley 2008], since it is dy-

namic and has good performance. According to [2] which did a thorough comparison be-

tween different indexing approaches for high dimensional data, kd-trees provide the best

overall trade off between performance and computational cost. In their experiments, they

observed that its run time grows very slowly with the number of points while giving ex-

cellent performance. Moreover, with smart parallelization schemes, like the one proposed

and implemented in [1], it can significantly speedup when running on multiple machines, so

it can be scaled to large video databases. The only drawback of kd-trees is larger storage

requirements, which can be addressed by using more compact signatures.
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In the Spider system, we use the randomized kd-tree implementation of FLANN library

version 1.6.11 [9] which uses five dimensions to build the tree, and we use 4 randomized

kd-trees. FLANN library implementation details and choices can be found in [32].

4.4 Input/Output Management

As mentioned earlier, the user provides the the location of the reference and query videos

via the ConfigPage of the graphical user interface. The system uses the videos’ location

to extract and store the frames in a specific location. Then, these frames are read to the

memory, one by one, by ImageClass as buffered images to speed the reading process.

The output of the system are instances of ResultVideo class. As shown in Figure 4.1,

the information provided to the user are the name, score, length, and a sample image of the

detected reference videos. It also shows the location, start and end frames, in the reference

video which is detected to be the copied portion of the query video. The user can also play

the query and reference videos to compare them visually. When the user wants to play the

videos, the system launches the Bino [3] 3D video player. The Spider system has a verbose

option, in which the user can see the detailed steps as the system is performing them.



Chapter 5

Experimental Evaluation

We conducted extensive analysis using real 3D videos to assess the Spider system perfor-

mance. We start by describing how we prepared our video dataset in the following section.

Then, we describe our experimental setup. Then, we present the results of our experiments

to show the performance of the proposed system.

5.1 Preparing 3D Video Dataset

We collected 37 3D videos with different characteristics from three resources: YouTube,

Microsoft, and Mobile3DTV project. Two of the videos, Ballet and Break Dancers, have

eight views each, which are placed along a 1D arc spanning about 30 degrees from one

end to the other. These two videos are in bitmap format and their camera calibration

parameters are generated and distributed by the Interactive Visual Group at Microsoft

Research [31]. Depth maps are computed using the method described in [47]. The other

15 videos are obtained from the MOBILE3DTV project [29]. These are stereo videos, with

only two views. These videos and their depth signals are provided in YUV format, which

we converted to bitmap format using the FFmpeg package [8]. The last 20 videos are stereo

videos downloaded from YouTube video sharing website. Then, their depth signals are

computed using Triaxes DepthGate [41] software.

To create our reference video database, we use one of the eight views (view0) and its

associated depth signal from each of the Ballet and Break Dancers videos. And we use the

left view and its associated depth from each of the remaining videos except video TU-Berlin.

That is, we create 36 reference videos, which are listed in the first 36 rows in Table 5.1.

30
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TU-Berlin video is used in creating queries.

We create many different query videos to capture most realistic scenarios. Specifically,

we first create three types of queries as described below and illustrated in Table 5.1:

• Type 1: Query videos are segments or clips of reference videos. These are the first 36

rows in Table 5.1.

• Type 2: Query videos are segments of reference videos embedded in other videos.

These are rows 37 to 42 in Table 5.1.

• Type 3: Query videos contain no parts of the reference videos. These are the last 6

rows in Table 5.1.

Then, we apply different video transformations on the 48 videos shown in Table 5.1. A

video transformation means that the video has been modified either intentionally (to avoid

detection) or unintentionally (as a result of the copying process). A transformed video is

supposed to provide acceptable perceptual quality to viewers, that is, the transformation can

be tolerated by viewers. Transformations of 3D videos can be applied on texture, depth, or

both. In addition, transformations can be applied individually, i.e., only one transformation

is applied on the video, or combined, i.e., multiple transformations are applied on the video

at the same time. Texture transformations are chosen from the TRECVID competition

transformations. Some of TRECVID1 transformations like picture in picture, and letterbox

are not considered. However, integrating them in the system, using approaches like [14] [23],

is straightforward.

We apply 4 transformations on each of the first 20 videos in Table 5.1, which are the

stereo videos downloaded from YouTube. These transformations are applied to both views

of the stereo videos, and then the depth is extracted from the transformed stereo videos.

This results in 80 query videos.

• Video Blurring: Both views are blurred using a radius of 3 for the blur disk.

• Video Scaling: Both views are scaled to 75% of their original size.

• Insertion of Logo: A logo is inserted into both views.

1urlhttp://www-nlpir.nist.gov/projects/tv2008/final.cbcd.video.transformations.pdf
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Table 5.1: List of videos used in creating query videos.

Query Resolution nFrames FrameRate InsertPoint

1 Boxing 640×720 466 30 1-466
2 Camera-on-Plane1 640×720 1000 24 1-1000
3 Camera-on-Plane2 640×720 1000 24 1-520
4 Camera-on-Plane3 640×720 1000 24 1-1000
5 Car2 670×720 1000 30 1-1000
6 Cat 640×312 1000 30 1-1000
7 Dimenco-Sample 960×540 572 24 1-572
8 Flowers 960×1080 1000 30 1-1000
9 Football1 640×720 1000 25 1-503
10 Football2 640×720 1000 25 1-1000
11 Football3 640×720 1000 25 1-1000
12 Football4 640×720 1000 25 1-1000
13 Football5 640×720 1000 25 1-1000
14 Football6 640×720 1000 25 1-1000
15 Road1 1280×720 1000 24 1-1000
16 Road2 640×720 1000 30 1-1000
17 Skiing 960×1080 1000 30 1-1000
18 Under-the-Sea1 640×720 1000 24 1-1000
19 Under-the-Sea2 640×720 1000 24 1-385
20 Under-the-Sea3 640×720 1000 24 1-1000

21 Alt-moabit 432×240 100 24 1-100
22 Ballet 1024×768 100 15 1-100
23 Book-arrival 512×384 100 24 1-100
24 BreakDancers 1024×768 100 15 1-100
25 Car 480×270 235 24 1-235
26 Caterpillar 480×270 101 24 1-101
27 Door-flowers 512×384 100 24 1-100
28 Flower1 480×270 152 24 1-152
29 Flower2 480×270 234 24 1-234
30 Flower3 480×270 112 24 1-112
31 Grasshopper 480×270 181 24 1-181
32 Hands 480×270 251 24 1-251
33 Horse 480×270 140 24 1-140
34 Leaving-Laptop 512×384 100 24 1-100
35 Rollerblade 320×240 905 24 1-905
36 Snail 480×270 189 24 1-189

37 Berlin-Ballet Mix 132 15 21-81
38 Berlin-Break Mix 142 15 31-111
39 Berlin-DoorFlowers Mix 92 25 26-86
40 Berlin-Flower2 Mix 122 25 11-111
41 Berlin-Grasshopper Mix 142 25 11-101
42 Berlin-Snail Mix 92 25 11-70

43 TU-Berlin1 360×288 150 25 -
44 TU-Berlin2 360×288 149 25 -
45 TU-Berlin3 360×288 149 25 -
46 TU-Berlin4 360×288 149 25 -
47 TU-Berlin5 360×288 149 25 -
48 TU-Berlin6 360×288 149 25 -
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• Insertion of Text: Some text is inserted into both views.

We apply the following 9 transformations on each of the last 28 videos in Table 5.1,

which results in 252 query videos.

• Video Blurring: This transformation is applied to texture only. The radius of blur

disk is chosen randomly from range [0.5 7].

• Video Gamma Correction: This transformation is applied to texture only. The gamma

value is chosen randomly from range [0.2 4]

• Video Noise: This transformation is applied to texture only. The noise is chosen

randomly from range [0 0.06]

• Crop: This transformation is applied to texture and depth in a way that the same

number of pixels are cropped from both texture and its depth. The number of pixels

cropped are chosen randomly from range [5 15].

• Logo Insertion: This transformation is applied to texture and depth in a way that the

pixels covered by the logo in the video are set to minimum depth.

• Text Insertion: This transformation is applied to texture and depth in a way that the

pixels covered by the text in the texture are set to minimum depth.

• Flip: The texture and its depth are flipped.

• Depth Blurring: This transformation is only applied to depth signal. Blurring the

depth image smooths sharp horizontal changes in depth images, so the fewer holes

would appear in the warped views; however, the warped image quality reduces espe-

cially around the not edge areas. The radius of blur disk is chosen randomly from

range [0.5 7].

• Depth Noise: This transformation is only applied to depth signal, which adds noise to

depth frames and cause quality reduction in the warped images. So the noise cannot

be very high, as the quality of the warped image may not be acceptable. The noise

deviation is chosen randomly from range [0 0.06]
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In addition, we apply two types of combined transformations on these 28 videos: 3 and

5 transformations. For the 3 transformations case, we choose 3 different transformations

and apply all of them on each of the 28 videos in Table 5.1. One transformation is applied

on the texture, another one the depth, and the third is applied on both. Similarly, for the

5 transformations case, 5 different transformations are applied on each video: two on the

texture, two on the depth, and one on both. These combined transformations added 2*28

= 56 videos to our query video database.

We also examine common temporal transformations. Fast or slow motion happen when

video’s frame rate is changed, while the number of frames is kept fixed. Our system has

immunity to this transformation, since it does not change the matching matrix. Random

replication or omission of frames is also handled in the matching matrix by considering a

band instead of a line of frames. Change of frame rate is the most challenging temporal

transformation which keeps the video’s total length by dropping, replicating, or merging

frames. To test our system against this transformation, FFmpeg [8] package is used to

change the frame rate of our 48 query videos. We examine both increase and decrease in

frame rate. Table 5.2 shows our approach to generate the transformed versions, which adds

48*2 = 96 videos to our query video dataset.

Table 5.2: Generating query videos with different frame rates.

Decreased Frame Rate Original Video Frame Rate Increased Frame Rate

10 15 24
15 24 30
15 25 30
24 30 50

Finally, we apply two new transformations which are specific to 3D videos: view synthesis

and copying a subset of views. In the view synthesis case, we create additional views from

given views using view synthesis tools. Synthesized views present the visual content from

different angles to viewers, which could reveal objects that were occluded or present objects

with different depths or shades. This means that synthesized views can contain different

visual and depth information than the original views. Synthesized views can be created and

distributed to enrich users’ experience or to evade the detection process. In our experiments,

we synthesized 18 views using the VSRS reference software for depth estimation and view

synthesis tool [43] for the BreakDancers video. This creates 18 additional query videos. For
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the copying subset of the views case, we assume that original 3D videos can have multiple

views, and only a subset of them are copied. This can be done to save storage or bandwidth

of the hosting site or the viewers. In our experiments, we have two videos that have eight

views each, which are Ballet and BreakDancers. For each one of them, we use view0 as

the reference view, and we create 7 different queries, one for each of the remaining 7 views.

Thus, we add 2*7 = 14 entries to our query videos database.

Including all transformations, the total number of query videos in our experi-

ments is 516.

5.2 Experimental Setup

We conduct the following sets of experiments.

• No Transformations. Query videos are parts of some reference videos and they are

not subjected to any transformations.

• Individual Transformations. Each query video is subjected to one transformation,

either on the texture or depth.

• Temporal Transformations. Each query video is subjected to change in frame rate

transformation, either decrease or increase.

• Combined Transformations. Each query video is subjected to multiple transforma-

tions, both on the texture and depth.

• View Synthesis and Subset of Views Transformation. A query video can contain

synthesized views or a subset of the original views.

• Importance of using Depth and Visual Signatures together. Study the possibility of

using depth signature only or visual signature only in the copy detection process.

• Sensitiveness of Depth signal to alternation. Showing how the depth signature and

quality of the synthesized views change as the depth signal undergoes some transfor-

mations.

• Depth Signature Grid Size. Comparing the results when different grid sizes are used

for the depth signature.
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Figure 5.1: Precision and recall of the proposed 3D video copy detection system (a) when
videos do not have any transformations and, (b) when videos are subjected to nine different
transformations..

• Subsampling. Using only a subset of frames in the copy detection to speed up the

process.

We consider two important performance metrics: precision and recall, which are defined in

the following two equations.

precision =
number of correctly identified copies

total number of reported copies
. (5.1)

recall =
number of correctly identified copies

actual number of copies
. (5.2)

5.3 No Transformations

In this experiment, we evaluate the performance of the proposed 3D video copy detection

system using query videos that do not have any transformations. This scenario happens,

for example, when a clip is directly taken from a digital video stored on a DVD or hard

disk. We compare all 48 query videos against the reference video database. We vary the

threshold, which determines whether a video is a copy or not based on its score, between

0.0 and 1.0 and compute the precision and recall for each case. We plot the results in

Figure 5.1(a). The figure shows that the proposed system can achieve 100% precision and
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100% recall when the threshold value is between 0.7 and 0.8. For a wide range of threshold

values between (between 0.5 and 0.9), the system yields 100% recall and precision.

5.4 Individual Transformations

In this experiment, we apply individual transformations on query videos. This shows the

robustness of the proposed copy detection system against video modifications that occur in

practice when videos are copied. We apply all transformations described in Section 5.2. This

means that we repeat the experiment for each transformation, and in each repetition, we

vary the threshold between 0.0 and 1.0 and compute the precision and recall for each case.

The results of these experiments for each transformation are shown in Figure 5.2. In all

cases, the achieved precision and recall values are more than 90%, and these are obtained

for a wide range of threshold values, which shows that our system does not require fine

tuning of the threshold parameter. We notice that some transformations, e.g., texture blur,

have more impact on the precision and recall than other transformations such as flip.

We plot the average results across all transformations in Figure 5.1(b), where we compute

the average precision and recall values across all experiments for the corresponding values

of the threshold. The figure shows that, on average, our system can result in 92% precision

and recall at the same time (the intersection point). By using the threshold parameter,

administrators can control the performance of 3D video copy detection systems based on

the requirements of the system. For example, in some systems, 100% precision is desired

even if some copies are not detected. For such systems, higher threshold values can be used.

In summary, the results in this section show that the proposed system yields high pre-

cision and recall values in presence of various video transformations.

5.5 Multiple Transformations

We assess the performance of our system in quite challenging scenarios, where each query

is subjected to multiple transformations at the same time. We experiment with two cases.

First, when each video is subjected to 3 different transformations, one applied on texture,

one on depth, and one on both. The 3 transformations are chosen randomly for each query

video. In the second case, we apply 5 transformations, 2 on texture, 2 on depth and one on

both. We plot the average precision and recall values for these cases in Figures 5.3(a) and
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(a) Texture Blur
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(b) Texure Gamma Correction
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(c) Texture Noise
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(d) Crop
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(e) Text Insertion
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(f) Logo Insertion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold

R
ec

a
ll

a
n
d

P
re

ci
si

o
n

 

 

Precision
Recall

(g) Flip
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(h) Depth Blur
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(i) Depth Noise

Figure 5.2: Precision and recall of the proposed 3D video copy detection system when videos
are subjected to nine transformations.
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(a) 3 Transformations
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(b) 5 Transformations

Figure 5.3: Precision and recall of the copy detection system when videos are subjected to
multiple transformations.

5.3(b). The results in Figure 5.3(a) show that the proposed system achieves high precision

and recall values around 90%, even when query videos are subjected to three different

transformations. For extreme situations where query videos are subjected to 5 different

transformations, the precision and recall values are still more than 80%. These experiments

demonstrate the robustness of the proposed system to multiple video transformations.

5.6 Subsampling

As mentioned in Section 3.2.2, subsampling in the copy detection context means that instead

of extracting the signature for every frame in the video, we can extract the signature for

only a subset of the frames in order to reduce the computational complexity. However, this

may affect the performance of the system. So there is a trade off between the processing

time and accuracy of the system.

Using the Spider system, and the reference and query videos explained in Section 5.1,

different sampling rates are examined to measure the performance. For each sampling rate,

all 48 queries, are processed and the total processing time, precision, and recall are used

to evaluate the performance. Here a sampling ratio of 1 : X means we consider every Xth

frame in the detection process. The total processing time and the precision and recall for a

fixed threshold (0.4) which the system has a good performance around it are measured. The

results are shown in Figure 5.4. As shown in these figures, the recall of the system decreases
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Figure 5.4: Precision and recall of the copy detection system using different sampling rate.
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Figure 5.5: Processing time of the copy detection system, using different sampling rate.
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Figure 5.6: Precision and recall of the copy detection system when videos are subjected to
change of frame rate transformation.

by a small amount as the sampling rate decreases, which cause the precision to increase,

since some of the documents which are not declared as being a copy are actually false

alarm. However, the change in precision and recall is not noticeable, while the processing

time reduces significantly. This means subsampling can be used to increase the scalability

of the system without reducing its performance significantly.

We note that the total query processing time of our system is spent in three main steps:

depth signature extraction, visual signature extraction, and matching. From our experiment,

the second step took 4.5 min, which is approximately 68% of the total processing time. The

other stages took 1.6, and 0.5 minutes for first, and third steps, respectively.

5.7 Temporal Transformations

In this experiment, we apply the change of frame rate transformation on query videos. To

detect query videos subjected to change of frame rate transformation, we added three ver-

sions of each reference video to the index: original version, half frame rate version (every

other frame were simply dropped), and twice frame rate version (every frame were dupli-

cated). Half and twice frame rates are extreme cases, and signature of any query video

subjected to frame rate change would be close enough to one of these versions.

We change the frame rate as described in Section 5.2, and plot the average precision and

recall values in Figure 5.6. The system achieves high precision and recall, more than 90%,

against this challenging temporal transformation.
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(a) View Synthesis
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(b) Subset of Views

Figure 5.7: Precision and recall of the copy detection system when there are view synthesis
and subset of views transformations.

5.8 View Synthesis and Subset of Views

In these experiments, we apply two new transformations that are expected to appear in 3D

video copy detection systems. The first one is called view synthesis, in which a virtual view

is created from other views using software tools such as [43]. This is a challenging case to

detect, as the synthesized views can have different viewing angles and showing objects with

different depths. We compare the 18 query videos that contain synthesized views against

the reference database. We vary the threshold values between 0.0 and 1.0 and compute the

average precision and recall values across all queries. The results, shown in Figure 5.7(a),

indicate that our system is quite robust to the view synthesis transformation as it can

produce close to 100% precision and recall values. The second transformation we consider is

the subset of the views transformation, in which a copied video can have a smaller number

of views than the original video. We compare the 14 query views that contain subset of

the views against the reference database. We plot the obtained average precision and recall

values in Figures 5.7(b). The results demonstrate the robustness of our system against the

subset of views transformation.
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5.9 Importance of using Depth and Visual Signatures to-

gether

In this section, we study whether we can use either the depth signature only or the visual

signature only in the 3D video copy detection system. We repeat the experiments in Sec-

tion 5.5 where videos are subjected to multiple transformations at the same time. However,

we use the depth signatures and visual signatures separately in the detection process. We

plot the results in Figure 5.8, using precision-recall (PR) curves which expose differences be-

tween algorithms. To get the PR curve, we changed the threshold from 0 to 1, and computed

the precision and recall for each threshold. Then, we plotted the recall and precision values

on x and y axes. In PR space, the goal is to be in the upper-right corner. As mentioned in

Section 5.1, the videos subjected to 3 and 5 transformations are in video plus depth format.

The fact that depth data cannot be manipulated significantly, and that the depth signature

is robust to depth manipulations, makes the depth only PR curve to be much higher than

visual only curve. Clearly in this case, using depth signature, aside from fast computation,

has a great benefit for the whole system. When the 3D video is not in video plus depth

format (stereo or multiview), the depth is extracted from the transformed version of the

views. In this case, the depth signature also degrades respectively. Figure 5.9 shows the

performance of each signature, when a single transformation is applied to stereo videos,

and depth is generated from the transformed version. In this case, even though combined

method has lower performance in terms of Area Under the Curve (AUC), combined version

has better precision for low recall range, which is desirable for retrieval systems.

5.10 Sensitivity of Depth Signal to Alternation

The next experiment is conducted to confirm the sensitiveness of depth videos, in the sense

that altering them make the quality of the synthesized views to drop below the desired

level. Two sequences, namely Ballet and Breakdancers, are used in this experiment. In

these sequences, the views v3 and v5 are considered the original views, and these two views

are used to synthesize view ṽ4. For synthesizing the views, VSRS2 software version 3.0 is

used. Then, the quality of the synthesized view ṽ4 is compared to the actual view v4 using

2ISO/IEC JTC1/SC29/WG11, Reference softwares for depth estimation and view synthesis, Doc.
M15377, April 2008.
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(b) 5 transformations

Figure 5.8: Precision-recall plots of the copy detection system when using depth and visual
signatures separately for video plus depth 3D format videos subjected to 3 and 5 transfor-
mations.
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Figure 5.9: Precision-recall plots of the copy detection system when using depth and visual
signatures separately for stereo 3D format videos subjected to single transformation.
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Figure 5.10: Results of applying Gaussian noise to the depth images

PSNR measure. To compute the PSNR, first, the intensity values are computed using the

following equation:

Y (i, j) = 0.299R(i, j) + 0.587G(i, j) + 0.114B(i, j). (5.3)

Then, the PSNR is computed using this equation:

10log10
2552

( 1

W×H
)
∑i=W,j=H

i,j=1
(Y (i, j)− Ỹ (i, j))2

. (5.4)

In Figure 5.10, Gaussian noise with increasing deviation is applied to the depth images,

while the texture is remained untouched. Then, the virtual view is synthesized using the

untouched texture and degraded depth. As it can be seen in Figure 5.10(a) even with small

amount of noise with deviation of 0.01, the quality of the synthesized view drop about 4db.

An example of the synthesized view using the noisy depth of deviation 0.01 is shown in

the left side of Figure 5.12. However, as it is shown in Figure 5.10(b), the depth signature

distance of the noisy depth videos from the original one has not change much. In other

words, the depth signature distance of the noisy depth with deviation of 0.05 from the

original view is around 6, while the depth signature distance of a random video would be

above 1200.

In Figure 5.11, the alternation is blurring. Blurring the depth images is a method that

is actually proposed in the literature to improve the quality of the synthesized views, sine
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Figure 5.11: Results of applying gaussian blurring to the depth images.

Figure 5.12: The left image is synthesized using the noised depth image. The center image
is the synthesized view from the original depth image, and the right image is the synthesized
view using the blured depth image.
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Figure 5.13: Precision-recall diagrams for four grid sizes.

blurring makes the depth images smoother, so there would be less disocclusion effects near

depth discontinuities or edges. However, blurring causes quality reduction in the areas that

have a constant depth, and make their texture to become inaccurate. That is why new

algorithms have been proposed to do blurring only along the depth discontinuities [5]. As it

can be seen in Figure 5.10(a) with a Gaussian blurring with deviation of 0.1, the quality of

the synthesized view drops about 1db. However, as it is shown in Figure 5.10(b), the depth

signature distance of the blurred depth videos from the original one has not change much.

In other words, the depth signature distance of the blurred depth with deviation of 50 from

the original view is around 8, while, as mentioned before, the depth signature distance of a

random video would be above 1200. An example of the synthesized view with depth blurred

by deviation of 0.05 is shown in the right side of the Figure 5.12.

5.11 Depth Signature Grid Size

In all experiments discussed earlier, the depth signature was obtained by dividing the depth

signal to a 20x20 grid. In this experiment, it is shown why this grid is chosen. To achieve

this, the gird size for depth signature must be altered to different values, and the depth

signature of the reference and query videos must be computed for each size. To compare

the performance, the results for grids 5x5, 10x10, 15x15, and 20x20 are shown in Figure

5.13. To plot the precision-recall diagrams shown in these figures, only depth signatures



CHAPTER 5. EXPERIMENTAL EVALUATION 48

are used, since the grid size is independent of visual part. Also, to compute the precision

and recall, the results for 3 cases are considered together. These cases are when there is no

transformation to the depth, when the depth images are blurred, and when some noise are

added to the depth images. It is clear that for a specific recall, the precision is higher when

the grid is 20x20. In general we can say that the number of blocks in the grid trades off the

computational complexity and the copy detection accuracy.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Three dimensional (3D) videos are getting quite popular, and creating 3D videos is expen-

sive. Thus, protecting 3D videos against illegal copying is an important problem.

We presented the detailed design of a 3D video copy detection system. The system

has two main components: Processing Reference Videos and Processing Query Videos. In

the first component, the system creates compact signatures of the depth and texture of

the reference videos and store them in a database. The second component creates similar

signatures for each query video and compares them against signatures in the database. If a

match is found, the location of the copied part in the reference video is also identified.

We implemented the proposed system and evaluated its performance in terms of precision

and recall using many 3D videos. Some of these videos have two views, where the others

have eight different views. We created a large set of query videos, which has a total of 516

3D videos. We carefully customized the query videos to represent most practical scenarios

for copying 3D videos. Specifically, our query videos represent the following scenarios:

(i) query videos are segments of some reference videos, (ii) each query video is subjected

to nine different transformations, either on the texture or depth, (iii) multiple combined

transformations are applied on the texture and depth of each video, (iv) new views are

synthesized from existing ones, and (v) query videos have only a subset of views of reference

videos.

Our experimental results show that the proposed system achieves high precision and

recall values in all scenarios. Specifically, the proposed system results in 100% precision

49
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and recall when copied videos are unmodified parts of original videos, and it produces

more than 90% precision and recall when copied videos are subjected to different individual

transformations. Even in the extreme cases where each video is subjected to five different

transformations at the same time, our system yields precision and recall values more than

75%. Furthermore, the above results are obatained for a wide range of the threshold pa-

rameter used in the system, which means that our system does not need fine tuning of that

parameter.

6.2 Future Works

Audio is as an inseparable component of videos. Similar to texture and depth signals,

audio signal can be subjected to transformations such as MP3 compression, and mixing

with speech. Sometimes the audio signal is completely replaced, for example when movies

are translated to other languages, so we cannot rely only on audio signals. Various audio

signatures have been proposed in the literature [4] [12]. In the future, audio signatures can

be used along side with visual and depth signatures to refine the results and achieve higher

precision and recall.

As mentioned before, the signatures can be created for every frame in the video, or for

only a subset of the frames in order to reduce the computational complexity. In Section 5.6,

where subsampling of frames were examined, this subset of the frames was chosen deter-

ministically, e.g., each 5th frame was chosen. In the future, the subset of the frames can

be the keyframes of the video, where a keyframe is a representative frame for a sequence

of video frames containing similar visual information, which is referred to as a video shot.

Shot boundary detection algorithms such as [22] can be employed to determine when a shot

starts and ends. Keyframe selection algorithms such as [11] can be used to select key frames.

The current implementation runs on a single machine. However, the system has a great

potential of being implemented in a distributed environment to speedup the process. For

example, signature extraction and nearest neighbor search of each frame is independent of

other frames, so it can be performed on separate machines. Especially, we suggest the use of

cloud computing, since the workload of the system is not steady, and goes up as the number

of videos and their frames that needs to be checked increases. So the system can benefit
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from the fine grain (one server at a time with Amazon EC21) scalability which can be ready

in terms of minutes rather than weeks, so we can fit the workload to resources efficiently

and in a pay-as-you-use manner.

There are several services with similar technology to video copy detection. Examples of

these services are:

• Broadcast monitoring: Using fingerprint technology to determine when, where, and

how a specific content has been used to measure the effectiveness of the content.

• Content aware advertisement: Using automated content recognition based on percep-

tual fingerprinting to find potential customers. It is very important for this service to

act on real time, since it will not be useful if it cannot react in real time to what a

person is watching.

• Metadata services: Music and movies metadata provide information on song titles,

artists, albums, record labels, and other related content. Using the content fingerprints

to provide the metadata to the user improves the user experience.

The proposed system can be expanded to cover these services as well.

1http://aws.amazon.com/ec2/
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