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Abstract

Maritime security and disaster response are critical for many nations to address the vul-

nerability of their sea lanes, ports, and harbours to a variety of illegal activities as well as

to prevent, minimize, and respond to environmental and human disasters. With increasing

volume of spatio-temporal data available from systems like the Automatic Identification

System, satellite, marine radar, and other sources it is increasingly problematic to analyze

this enormous volume of data. This work builds on the state-of-the art in spatio-temporal

anomaly detection by proposing a representation framework for spatio-temporal data, pro-

viding a software implementation as an API, and evaluating it. The aim of the framework

is to represent spatio-temporal data using abstract concepts to describe motion over time

in order to concisely represent high level abstract motion behaviours. The framework is

generic and can be applied to any type of spatio-temporal data, but the focus is on the

maritime domain.
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Chapter 1

Introduction

1.1 Overview

Maritime security and disaster response are critical for Canada and the United States, among

many other nations, to address the vulnerability of their sea lanes, ports and harbours to

a variety of threats and illegal activities as well as to prevent, minimize, and respond to

environmental and human disasters. Examples of many such threats and disasters can be

seen throughout the world. Activities such as piracy which is especially problematic in the

Gulf of Aden, where in 2009 alone, 163 attacks on ships were carried out and 47 ships and

their crews were taken hostage [4]. Illegal activities like human [20] and drug trafficking.

Environmental disasters such as oil spills, of which there have been 410 large ones (greater

than 700 tonnes) since 1960, adding up to a total of over 5.5 million tonnes of oil spilt into

the oceans [28].

Surveillance can be challenging in areas with high density and volume of marine traffic.

The massive size of the areas that must be monitored only serves to compound the problem;

Canada’s coastlines alone are over 243,000 Km in length [5]. With increasing volume of

spatio-temporal data available from systems like the Automatic Identification System (AIS),

satellite, marine radar, and other sources it is ever more problematic to analyze such data

in real time so as to enable a swift response to threats, illegal activities, and disasters by

border control agencies, coast guard services, and military forces. Eventually the volume of

data will exceed the capacity of the human resources available to analyze it. This situation

calls for the use of intelligent systems to assist the necessary personnel in this analysis and

the decision making that naturally accompanies it.

1
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Systems specifically designed to deal with the complex task of assisting human operators

with analyzing large amounts of data and performing timely and informed decisions fall into

the category of Decision Support Systems (DSS); for a great overview of DSS technology

see [26]. More specifically, the type of system that would be ideal for dealing with this

problem is a type of DSS for the purpose of Situation Analysis (SA), a Situation Analysis

Decision Support (SADS) system. Decision support systems for situation analysis can be

very complex, monitoring numerous resources, distributed computing agents, and events

distributed in space and time. Situation analysis is viewed as a process to provide and

maintain a state of situation awareness for the decision maker. Situation awareness is

essential for decision-making activities; it is about our perception of the elements in the

environment, the comprehension of their meaning, and the projection of their status in the

near future [8]. Another way to view situation awareness is as a state of mind maintained

by the process of situation analysis; it is a product that is maintained and generated by

situation analysis. Experienced decision makers rely on situation awareness in order to make

informed decisions.

In order to successfully deal with the problem of supporting the analysis of the vast

historical and real-time data generated in the maritime domain an SADS system’s main

role is to provide and maintain a state of situation awareness by automating as much of the

task of situation analysis as possible. Realistic situation analysis scenarios routinely deal

with convoluted and intricate event patterns and interdependencies to interpret and reason

about complex situations, assess risks, and predict how a situation may evolve over time.

These features are definitely present when dealing with the maritime domain. There are

many aspects of the maritime domain that could benefit from the combination of experienced

decision makers and SADS systems. However, the focus of this work will be on the particular

area of Anomaly Detection (AD). Anomaly detection can broadly be described as a method

for detecting any abnormal behaviour of interest that points to a safety or security threat.

AD touches on all of the interesting topics of safety and security discussed at the beginning

of this introduction.

Designing and building an SADS system for anomaly detection would be an enormous

task in the maritime domain; such systems are usually composed of the following compo-

nents: 1) situation information collection (e.g., sensors and sensors networks), 2) knowledge

base on the situation, 3) reasoning scheme (engine) about the situation, 4) human-computer

interface, and 5) controls; see figure 1.1. Because each of these systems in their own right
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Control 
Parameters
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Figure 1.1: Situation Analysis and Decision Support

warrant time and research efforts which are beyond the scope of this work our area of focus

will be on component number 3, the reasoning engine, specifically as it applies to analyzing

the motion behaviour of vessels as it relates to the problem of AD.

This direction of research was brought about by initial work we undertook on design

and analysis of SADS systems.

1.2 Anomaly Detection: Problem Overview

Intuitively, anomalies are outliers in data that do not conform to expected or normal be-

haviour. A more statistically oriented definition of an anomaly is given by D. Hawkins

[12]: “ an observation that deviates so much from other observations as to arouse suspicion

that it was generated by a different mechanism.” Anomaly detection must be viewed in the

context of large spatio-temporal datasets generated from monitoring marine traffic as this

is the source of the majority of the data used for analysis.

Given some dataset, the problem of anomaly detection is that of separating a small

minority of anomalous data, in our case anomalous behaviour, from the large majority of

data, again in our case normal behaviour. Furthermore, there is also the need to separate

suspicious anomalous behaviour (any behaviour that points to a potential safety or security

threat) as anomalies of interest from the set of anomalies considered irrelevant to maritime

safety and security. The main idea in approaching this problem is to separate and char-

acterize the majority of data as normal behaviour and to utilize this as a way to identify

anomalies as abnormal behaviour.
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The design of reliable algorithms to detect anomalous behaviour indicating a potential

threat or illegal activity is a challenging engineering task due to a number of adverse factors:

the complex and variable nature of observed behaviours, the enormous volume of marine

traffic, and dynamically changing and often unpredictable factors in the physical environ-

ment. Additional challenges that any approach commonly faces when attempting to tackle

the problem of anomalous behaviour detection include:

• Complex and variable nature of observed behaviours, the enormous volume of ma-

rine traffic, and dynamically changing and often unpredictable factors in the physical

environment.

• One of the greatest challenges that any anomaly detection system must face is reducing

false alarms while maintaining maximum sensitivity to suspicious behaviour.

• Considerable variety in observed behaviours: Clearly no two observed motion patterns

will be exactly identical in time and space; so the system will necessarily have to be

able to deal with fuzzy concepts of similarity.

• Uninteresting anomalous behaviour : Often a behavioural pattern will be identified as

anomalous, although it may be of no interest to those performing the surveillance and

may easily just be a trivial anomaly.

In principle there are two basically different methods to anomaly detection: data-driven

and model-driven; which we will refer to interchangeably as top-down, and bottom-up. Each

one comes with its own pros and cons, thus giving rise to hybrid approaches that combine

both data-driven and model-driven methods. Data driven-methods can potentially identify

anything anomalous, although most of it may be irrelevant, whereas, model-driven methods

focus on specific patterns only but miss everything else.

We have explored existing approaches to anomaly detection in the maritime domain and

have identified the following key areas of improvement:

• The feature set used when analyzing the data.

• The representation of the data.

• The combination of model-driven and data-driven approaches.
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This work will touch on all of the key areas of improvement. Feature sets for analysis

and spatio-temporal data representation are the main areas where a contribution will be

made in order to address some of the challenges posed by the AD problem. We propose

a novel method for representing spatio-temporal data which leads to an expansion in the

feature set available to analyze the data; a necessity, at least in the maritime domain, for

improving current AD methodology. This proposed representation applies to any type of

spatio-temporal data, however it will be primarily evaluated in the context of ship voyages.

1.3 Contributions

The AD problem is large and multi-faceted and there are no easy solutions to it so we do

not claim any such thing. Our goals are more humble and we instead attempt to make some

headway in a new direction to dealing with some portions of the AD problem. As briefly

mentioned in the introduction the main goals of this thesis are to address some of the main

challenges posed by the AD problem. The major way in which we try to address these

problems is to propose a representation framework for representing quantitative time series

data. In addition to conceptually and formally defining the representation framework we

also design and implement it as a software application programming interface (API) in order

to facilitate experimentation and exploration. Once the software API is built we attempt to

show the robustness of the representation in dealing with the variety of observed patterns

in trajectories. Finally, we attempt to demonstrate how the representation framework could

be used to detect interesting and complex behaviour in a ship voyage.

As a result of this work and other work on SADS which lead up to this thesis the following

research papers have been produced and successfully accepted in a variety of venues:

• Anomaly Detection in Spatiotemporal Data in the Maritime Domain.

Vladimir Avram, Uwe Glässer, and Hamed Yaghoubi Shahir [3]

• A Formal Engineering Approach to High-Level Design of Situation Analysis Decision

Support Systems. Roozbeh Farahbod, Vladimir Avram, Uwe Glässer, Adel Guitouni

[10]

• Engineering Situation Analysis Decision Support Systems. Roozbeh Farahbod,

Vladimir Avram, Uwe Glässer, Adel Guitouni [9]
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In summary the main contributions of this work are:

• A representation framework for representing quantitative time series data, applied

more specifically to spatio-temporal data.

• A software implementation of the proposed framework as an API.

• Experimental demonstration of the robustness of the proposed framework.

1.4 Summary of Results and Conclusions

1.5 Overview of Remaining Chapters

First we will discuss related work in chapter 2. We will give an overview of the existing AD

methods in the field as well as the main categories they fall under. Moving on to chapter

3 we will spend some time discussing the necessary background information and definitions

related to the problem as well as introduce the problem of AD, and discuss some of the

details. Chapter 4 will be dedicated to conceptually and formally defining the proposed

framework as well as detailing the main algorithms which are then implemented in the

AnoDeC API. The chapter is ended with an extensive example of the application of all

the presented ideas and algorithms to the detection and characterization of an interesting

and complex “shuttling” behaviour in a ship voyage. Chapter 6 presents experiments to

show the robustness of the proposed representation, the effectiveness of ε-generalization in

preserving features and compressing data, and the effectiveness of smoothing coupled with

generalization in extracting features from noisy data. Finally the last chapter 7 will conclude

the thesis with a short overview of the work and results as well as future directions for this

line of research.



Chapter 2

Related Work

This chapter will provide an overview of the different major types of anomaly detection

techniques used in the maritime domain. Additionally it will also cover the current state-of-

the-art in maritime anomaly detection by summarizing some selected papers for each major

category.

2.1 Anomaly Detection in the Maritime Domain

2.1.1 High Level Overview

In this section we will look at a high level overview of the current approaches used for the

anomaly detection problem in the maritime domain. An excellent paper [18] that gives

a thorough description of this has been published very recently by Defense Research &

Development Canada (DRDC)

Existing work on anomaly detection in the maritime security domain currently falls into

two main categories, data-driven (bottom-up) and model-driven (top-down) approaches.

Additionally, hybrid (mixed) approaches may be considered a third category (see Figure 2.1).

You will also notice that after reading the reviews and spending some time going through

the extra referenced material in the bibliography that the majority of research focuses

exclusively on the detection part and not the characterization or identification part of the

problem. Furthermore, you will also see that most of the work also focuses on bottom-

up approaches with the ubiquitous four dimensional feature space of position(x, y) and

velocity(x, y).

7
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Normal Behaviour Model

Match New Data 
(Detect Anomalies of Interest) 

Predefined Interesting Patterns

Data Driven Approaches 

Model Driven Approaches 

Hybrid

Figure 2.1: Major types of approaches for anomaly detection.

2.1.2 Data-Driven Approaches

The idea behind most data-driven approaches is comprised of two steps: 1) build a model of

the normal behaviour as expressed by the data, 2) match new data to the existing model of

normal behaviour treating any deviations (over some threshold) as anomalies. Three types

of methods are included in this category as follows:

• Gaussian Mixture Models (GMM)

• Kernel Density Estimation (KDE)

• Bayesian Networks (BN)

We will give an overview of each method and discuss it in some detail by exploring some

of the latest work published in that area.

Gaussian Mixture Models and Kernel Density Estimation

• Gaussian Mixture Model (GMM)

GMMs can be thought of as methods for clustering or unsupervised learning [27]. They

are a mixture or a linear combination of multiple multivariate Gaussian Probability

Density Functions (PDFs). Stated another way, we can look at a GMM as a proba-

bilistic model with a density function that is just a combination of a number of other

PDFs, in this case Gaussian ones. It provides a probabilistic model of the data which

is multi-modal and which allows for soft clustering boundaries, meaning that an obser-

vation can belong to any class with some probability. In order to build such a model,
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an appropriate set of training data and an algorithm (e.g., Expectation-Maximization

(EM) algorithm) for fitting the model to the data are required.

• Kernel Density Estimation

A KDE is a non-parametric density estimator, and its aim is to estimate a PDF. Since

a KDE does not depend on parameters to describe a PDF, it has no fixed structure

and depends on all data observations in order to achieve an estimate [11].

One of the papers taking a statistical approach [15] proposes and implements unsuper-

vised clustering of normal vessel traffic patterns. The cluster model is a Gaussian Mixture

Model and the clustering algorithm is a greedy version of Expectation-Maximization. The

study makes use of real data to train and evaluate the models. The author points out that

if a large amount of data corresponding a model of routine behaviour is available, the model

is easier to build than characterizing a priori all anomalies of interest. Once the model of

normal behaviour is built the task of finding anomalies is just the act of calculating the

likelihood of a new observation belonging to the distribution describing normal behaviour.

With regards to experimental validation, the author points out that there is no well

established approach to evaluate a system for anomaly detection in the maritime domain.

Also there is no common benchmark, no set of well defined anomalous maritime scenarios.

Furthermore, through qualitative analysis, it was found that the anomalies detected in

the sea traffic data are vessels crossing sea lanes and vessels traveling close to and in the

opposite direction of sea lanes. The author points out that these are not very interesting

anomalies and goes on to state that in order to detect more complex anomalies involving

multiple vessels, or behaviour that develops over time a more sophisticated feature model

is necessary. In conclusion the paper arrives at the point that this work tries to emphasize

as well, and that is: “the type of feature model essentially determines the character of the

detectable anomalies” [15]

Another paper [16] dealing with statistical approaches to anomaly detection which is

co-authored by Rikard Laxhammar who also wrote the first paper discussed in this section

[15] compares Gaussian Mixture Models and Kernel Density Estimators. The paper eval-

uates the GMM and KDE methods for statistical anomaly detection in sea traffic which

is characterized using a four dimensional feature space: location(latitude, longitude) and

velocity(latitude, longitude). The general approach is similar to that proposed in [15] and is

based on modelling normal behaviour as a probability density function and then computing
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the likelihood that a particular observation was generated by the normal PDF. The authors

also propose a novel performance measure for evaluating anomaly detection performance

as well as a method for measuring normalcy modelling performance. These measures were

then utilized in comparing the two methods of interest.

In conclusion the paper finds that even though the KDE method was initially superior

with respect to normalcy modelling, the anomaly detection experiments showed no signif-

icant difference between the KDE and the GMM method. The authors even go as far as

stating that the anomaly detection results were “disappointing”. Both methods are found

to be suboptimal; according to the authors this is partially because the data is artificially

divided into cells for the purpose of reducing computational burden.

Another paper written by two of the same authors, Laxhammar R. and Falkman G.,

who co-authored [16] continues that work on anomaly detection. The paper [17] presents a

novel application of conformal prediction for distribution-independent on-line learning and

anomaly detection. The authors point out some issues that motivate and steer our work

as well. They make the critique that parametric statistical methods assume the existence

of a parameterized model which can actually be estimated accurately. Furthermore, they

also point out that even though this issue can be avoided by using non-parametric methods

like KDE such methods require a larger amount of data in order to produce reliable and

accurate estimates of the underlying PDF, and it has already been shown by the authors

in the their previous work that both the parametric GMM method and the non-parametric

KDE method produce “disappointing” results [16]. They go on to point out that most

previously proposed algorithms for anomaly detection operate in a two step off-line mode,

where first a model is learned from data and then used for anomaly detection in new data,

this property is also true for most of the research reviewed in this chapter.

The proposed approach performs learning on-line and makes no assumptions about un-

derlying distributions other than the assumption that normal behaviour of vessels follows a

fixed but unknown probability distribution. It also requires few parameters to be set as well

as no requirement for application specific thresholds. The way in which they aim to detect

anomalies is by predicting a set of plausible classes (container ship, fishing boat, etc.) for a

vessel based on its current velocity and position. If this is not consistent with the reported

vessel class (as reported by the vessel itself) the vessel will be flagged as anomalous. In the

case that no classes seem plausible this is an indication of unrecognized behaviour, or in the

case that only classes other than the observed classes seem plausible this is taken to be an
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indication of recognized but unexpected behaviour.

The main idea behind conformal prediction is described in the paper with a small ex-

ample: Given some specified confidence level, 95%, a conformal predictor would produce

a prediction set that contains the true label with a probability of at least 95%. The most

important feature of these predictors is that successive predictions made will be correct

with a probability equal to or larger than the corresponding confidence level even though

the subsequent predictions are based on an accumulating dataset (due to on-line learning).

I will not go into the details of how the conformal predictors are built and used; all the

necessary details can be found in the paper [17].

Looking at the results they seem quite good and are described as superior to the GMM

approach and slightly better than the KDE approach. They even go on to say that most

anomalous trajectories are very easy to detect. However, they limit the trajectories in

their experimental data set to three vessel classes: cargo ship, tanker and passenger ship.

These classes of vessels exhibit rather limited behaviour and strictly follow sea lanes. This

is probably why detecting anomalies seemed so easy. Finally, as future work the authors

identify the need for motion representations that capture behaviour over time and suggest

using “sequences of speed and turn rate values represented as high-dimensional data vectors

or motion abstractions that compress behaviour over time” which is very much what the

work presented in this document tries to focus on.

Another paper [24] applying a statistical approach to the analysis of AIS data for anoma-

lous vessel detection actually presents a solution to motion prediction as opposed to detection

of currently observed behaviour. This is all done in the framework of KDE with particle

filtering for the motion prediction. There are some interesting ideas in this paper specifically

with regard to motion prediction, however the example presented is rather simple and only

covers one motion pattern even though it seems that the authors had quite a lot of real data

available. Furthermore, the data they pick to experiment on seems much too clean to even

begin to test the robustness of the approach. However it is still worth looking at because of

the interesting ideas with respect to motion prediction.

Both GMM and KDE are found to be suboptimal in the existing literature. One reason is

because the existing methods artificially divide the data into cells by imposing a grid on the

geographical area in question. This is done because of computational resource constraints.

Furthermore, the two methods are based on a four dimensional feature model composed of

momentary location(x and y) as well as velocity(vx and vy).
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As indicated by [15] the type of feature model essentially determines the character of the

detectable anomalies. A four feature model as employed by the approaches using GMM and

KDE is able to detect simple anomalies such as vessels crossing sea lanes or vessels travelling

in the opposite direction of sea lane traffic flow, but it can not identify any specific patterns.

Consequently because of the four feature model chosen for the two techniques, they are only

able to detect anomalies that can be represented by the features, such as simple spatial

anomalies and velocity anomalies. For example they can identify if a vessel is travelling too

fast or too slow or if it is in a zone that is not normally travelled. These methods can not

detect anything more sophisticated than this, definitely no abstract behaviour.

Another issue with using purely statistical approaches for anomaly detection in the

maritime domain is that the identified anomalies are never characterized. The result will

be a collection of data that represents behaviour different enough from the norm to be

deemed anomalous, however, what that behaviour is, is never established. It is possible

that behaviour that is not anomalous from a human operators point of view is detected as

anomalous simply because the data set used to build a model of normal behaviour did not

have this particular behaviour in it. Furthermore it is also possible that behaviour that is

not interesting at all is flagged as anomalous. This is a result of the way the techniques

work: they can detect anomalies, but not what behaviour those anomalies may represent so

they can not differentiate between interesting and trivial anomalies.

2.1.3 Bayesian Network Approaches

There seems to be less research on anomaly detection in the maritime domain focusing on

BNs; save for one recent paper [19]. The research deals with anomaly detection using BNs at

two different time scales: 1) moment to moment, and 2) the entire trajectory. The networks

also incorporate additional data like information related to the ship (e.g., type, dimensions,

and weight), weather (e.g., temperature, cloud cover, and wind speed), and temporal factors

(e.g., hour of day and time since dawn or dusk). The general approach is the common one

found in most research concerning anomaly detection in the maritime domain; the two-step

approach of a training step to generate a model of normalcy and then the use of that model

to estimate the probability that new data belongs to it. There are some deviations from

this approach based on the analysis of data at the two mentioned time scales. The first

time scale is concerned with moment to moment observations (referred to as “time series”).

Each time step in a trajectory has each of its variables (e.g., latitude, longitude, speed,
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etc.) associated with a node in the BN. The second time scale is concerned with the whole

trajectory assessment (referred to as “track summary”) and takes into account number of

stops, stopping locations, etc. Finally the BNs for both levels of abstraction are trained and

evaluated. Findings show that neither model performs better in all cases but there is an

improvement to be gained in a variety of cases by combining the models.

2.1.4 Model-Driven Approaches

Model-driven approaches, like data-driven approaches, are also made up of two main steps:

1) create and specify predefined patterns that you want to detect using rules (predicates

or any type of logic), 2) try to match new data to the predefined rules in order to detect

predefined anomalies of interest.

Not a lot of work is focusing on model-driven approaches. Some work from DRDC

[25] focuses on knowledge-based approaches. It describes how to categorize anomalies and

identifies a taxonomy of kinematic and geospatial concepts, though interesting and useful,

as of yet there are no experiments or results described. The authors indicate that the work

is still in progress, but the preliminary work does look promising [25].

Even though compared to the diversity of existing data-driven anomaly detection meth-

ods the number of methods using model-driven approaches is limited, this direction appears

to be particularly promising for:

• Characterizing anomalies, possibly those already identified by the data-driven ap-

proaches.

• Detecting pre-defined anomalies of interest.

2.1.5 Hybrid Approaches

There has been some very interesting work done [14] that combines Bayesian network tech-

niques with specific maritime domain modelling. The authors present some initial work on

algorithms for calculating the probability that any one of five specific anomalies is present

in ship AIS data. The prediction models of the five anomalous behaviours were tested on

real data and the results are quite encouraging. The second main focus of this work was

on a general Bayesian network-based method for taking the individual anomalies and de-

termining the probability of a higher-level threat which was demonstrated using simulated

data.
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The five anomalous behaviours in question are: deviation from standard routes, unex-

pected AIS activity, unexpected port arrival, close approach, and zone entry.

The analysis of the first anomaly, which is deviation from standard routes, begins by

modelling ship tracks. The authors mention GMM and KDE as previously used for this

modelling. However they focus on a different method using a network of discrete nodes

placed at decision points that are related to constraints and branches to connect the nodes,

landmasses are also represented as closed polygons. This generates a sparse network model

which is branch rich and node light. This is very important because the speed of optimal

route algorithms is dominated by the number of nodes not branches. Once the network is

built Dijkstra’s algorithm is used to compute optimal routes and costs between ports. The

actual detection approach deals with ships journeys which begin and end in ports as well

as partial journeys which are broken down into macro (all branches traversed before the

previous network node) and micro (route since the previous network node). The algorithm

calculates for every possible destination the conditional (on the macro and micro parts)

probability that it is in fact the true destination. “These probabilities can be used to assess

the following two hypotheses: H0, the ship is travelling to its stated destination; and H1,

the ship is travelling somewhere else. Implicit in the null hypothesis H0 is the assumption

that if a ship is travelling to its stated destination, then it will do so by a route that does

not incur unreasonable cost.” [14]. Finally the authors successfully demonstrate the main

goal of the algorithm which is to detect ships that do not follow defined routes.

The second anomaly of interest is unexpected AIS activity. The main idea behind this

is that if there is a long period of AIS silence in an area that has good AIS coverage there is

the possibility that it was turned off deliberately to hide questionable activities. The other

scenario is that perhaps a ship is reporting its location via AIS to be in an area with poor

AIS coverage thus raising suspicion that the broadcaster might be deliberately reporting

the wrong location. The way in which detection of this type of anomaly is approached is by

building a coverage map AIS of receivers. The area of interest is divided into a grid and the

probability of receiving a signal from each grid square is calculated using ratios of detections

and non-detections from historical data. In order to compute if an unexpected AIS reception

is anomalous the detection probability in the grid square of interest is subtracted from one.

Furthermore to compute the probability of multiple unexpected receptions the product of

each of their probabilities of being anomalous is subtracted from one. Finally in order

to compute the probability that a period of AIS silence is suspicious the ships position is
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projected into the future and the probabilities of receiving a signal from each grid square that

the ship is projected to be in are combined to yield an overall probability of not receiving

a signal.

The third anomaly is unexpected port visitation. The presented model detects unex-

pected port arrival by mapping vessel types to port facility types and uses a Markov model

approach to analyze patterns of port visitation. To detect if a port arrival was anomalous

the probability of a certain ship arriving at that port was compared to a threshold.

The work goes on to dealing with close approach (rendezvous) behaviour. For each

measurement received from a ship, its location, speed, and heading are used to project a

straight line trajectory into the past and future over a defined time period. These trajectories

are calculated for every ship and distance is computed as a function of time. The distances

are then compared to find the closest point of approach. The behaviour is then flagged

as anomalous if any two ships are unusually close together and travelling below certain

speeds. However, because there are so many ships active at one time, all pairs can not be

considered and areas must be broken down into smaller regions of consideration to reduce

computational complexity.

Finally, the paper addresses the zone entry anomaly. Both the issues of whether or

not a vessel has entered a zone of interest and the probability that a vessel will do so

are considered. Wether or not a vessel has entered a zone can be computed by existing

algorithms that determine if a point is within a polygon. Secondly, in order to come up with

a probability of whether or not a vessel will enter a zone of interest in the future, the method

assumes some distribution for tracks projected from the current position and determines the

proportion that intersect the zone in question in order to compute a probability.

In the second part, the paper moves on to dealing with fusion of these five anomalies in

order to produce an overall threat probability. This is achieved by constructing a Bayesian

network and fusing all the inputs of the different anomaly models into a single probability.

Overall this is a great paper because it takes a fresh and more domain-focused approach

to the problem of maritime anomaly detection which departs from the more wholesale generic

statistical methods proposed in other works.



Chapter 3

Problem Definition

In this chapter we will give a detailed technical description of the problem that the rest

of this work addresses. Before we can get to outlining the details of the actual problem

we must first introduce and define a variety of concepts that will be used throughout the

remaining chapters and should always be understood as defined in this chapter.

3.1 Motion

Because we are trying to analyze different types of motion or motion behaviours we will

need to come up with a way to define motion. We describe motion using the following six

variables:

1. Displacement

2. Velocity

3. Acceleration

4. Heading

5. Speed

6. Distance Traveled

For a particular entity, all of these values can be derived given a sequence of positions.

We will be dealing with all of these variables as time series; the definition for time series is

given in the next section 3.2.

16
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3.2 Spatio-temporal Data

We start by defining the main type of data used in this work because it sets the context

for all subsequent ideas. This is the key type of data that we will be dealing with because

from this we can derive any of the other variables required to describe motion which were

mentioned in section 3.1.

The type of data in question is spatio-temporal, or a time series of location data which

in our case describes locations of mobile objects over water. Time series data refers to a

set of n-dimensional data points which are measured at successive time intervals, where the

time intervals are equal in length [21, p. 21]. In this case spatio-temporal data is a type of

time series data with two additional properties:

1. The spatio-temporal data we will consider in the maritime domain has n = 3 dimen-

sions: x coordinates, y coordinates, and time.

2. The time interval elapsed between successive data points is not constant.

Even though the time intervals between data points are not constant where necessary

this can be handled via interpolation and re-sampling.

Because we are dealing with the maritime domain the mobile objects considered here

are sea vessels, including all types of surface vessels that can be tracked with marine radar,

satellite or AIS. Each data point is composed of a location, the space component, and a time

stamp associated with this location, the time component (hence the name spatio-temporal).

Together the space and time component represent a data point which is a tuple of three

elements: t, x, y and is denoted as {t, x, y}. Here x and y describe the location of the entity

on a Cartesian coordinate plane. The variable t describes the time at which each location

observation is made, and can be thought of as a third or z dimension in a three-dimensional

Cartesian coordinate plane.

As we have already mentioned in 3.1 there are many other types of data that will be

used throughout the system but the idea is that the major type of input data from which

all other data is derived is spatio-temporal data.
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3.3 Derived Data

Other than the given spatio-temporal location data there is of course the possibility of

making other observations such as velocity or heading, however we can calculate both of

these as well as any other type of observations concerned with motion as long as we have

x, y, t. This additional derived information can also be provided as input if it is available.

All of the derived data are time series data. We will later discuss in more depth all of the

additional derived types of information and how each is derived.

3.4 Displacement

Displacement is a vector, ~d and is computed as the change in position and it is the shortest

distance between an initial and final position of some moving entity. If we have an initial

position pi and a final position pf we can define displacement to be:

~d = ~pf − ~pi (3.1)

And the magnitude of the vector is of course the distance between the two points given

by

||d|| =
√
d21, d

2
2, · · · , d2n (3.2)

Displacement is utilized to derive three other types of derived data which are covered in

the following section.

3.4.1 Velocity, Speed, and Acceleration

For the variable of velocity we use the formal definition from physics which is speed with

direction. We will define average velocity to be the vector representing the ratio of displace-

ment to change in time:

~v =
d

4t
(3.3)

We can also define instantaneous velocity as the first order derivative of displacement:

~v = lim
4t→0

d

4t
=
dd

dt
(3.4)
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When we do deal with derivatives and instantaneous velocity, and acceleration we will

be using numerical derivatives because we do not have functions defining ship motion; we

only have data points describing discrete positions.

Finally when referring to speed we will be referring to the magnitude of velocity which

is a scalar value,

||~v|| =
√
v21, v

2
2, · · · , v2n (3.5)

Acceleration is defined similarly to velocity. It is the change in velocity and is defined

as the first order derivative of ~v or the second order derivative of ~d with respect to time.

3.4.2 Heading

For our purposes we will define heading to be grid bearing as it is also referred to in naviga-

tion. This type of heading can of course be expressed in radians, degrees or polar coordinates,

however for explanatory purposes we will use degrees in the definition. Headings are scalar

quantities denoted by h.

First of all the line between North and South runs along the y-axis of a Cartesian

coordinate system that we will be using. North is set to 0◦. So if an entity is moving in the

North direction it is moving up the y-axis towards increasing y values, and it has a heading

of 0◦. Once we start moving clockwise from north the headings increase from 0◦ all the way

up to 359◦ and back to 0◦; we use 0◦ again instead of 360◦ because the headings represented

by these values are in fact the same direction.

3.5 Observations

Observations are denoted as tuples of elements, o = {e1, e2, · · · , en} where each element

e is one of the variables describing motion. One of the elements must always be time.

There is a subtle but very important distinction between an observation of some value and

the true value itself. For example, an observation of a location at some time point is just

a view of the true location at that time. The same can be said about any of the other

variables we use to describe motion. What we mean by this is that the observation may not

necessarily report the exact same data as the real location of a vessel at sea because the

observation is provided by sensors which are subject to error. The way in which we allow
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for errors is to distinguish between a real value of some variable and a view of that value

such as an observation. Some situations where this distinction is important is when dealing

with simulations that include sensors which in turn observe simulated “true” locations of

entities. Another situation where this distinction is necessary is when there are multiple

sources reporting on the same entities. However, for our purposes observations and input

data will almost exclusively, be the same because we only have one source reporting data

for any given data point.

3.6 Paths and Trajectories

First of all observations can be grouped into any time series representing heading, speed, dis-

tance traveled etc. A time series S is then defined as a series of observations {o1, o2, . . . , oj ,
. . . , on−1, on}. The observations o1 . . . on are also ordered by time t which is strictly increas-

ing, i.e. o1(t) < o2(t) < o3(t) < . . . < on(t). The following restriction also always holds

for any two distinct observations: oi(t) 6= oj(t). Additionally time t can also represent time

intervals in which case for every observation there will be a start time ts and an end time

tf . The two restrictions above also hold when intervals are concerned. So in the interval

the time restriction is no longer strict;if an observation i comes before an observation j

then oi(tf ) ≤ oj(ts). With regards to the second restriction, the intervals can not overlap

however an interval can begin at the same time the previous one finished.

A path P is just a time series S of observations made up of (x, y) location data and is

subject to the same restrictions as any other time series described above.

Time series are grouped into trajectories where at least one of the time series is a path.

A trajectory, Ti ∈ T u where T u is the set of all trajectories under consideration describes

the motion of an entity in time and space. The remaining time series are of data derived

from the path of the particular trajectory in question. So a trajectory Ti is then a set of

time series Si1, Si2, · · · , Sin.

So the main distinction between paths and trajectories is that a path describes location

over time whereas a trajectory aims to describe motion over time.

Now with these definitions in place there is the question of how many or how few obser-

vations are grouped into a trajectory? In theory one could group all observations belonging

to a particular entity into a single trajectory, but this is not very useful so we employ some

guidelines for deciding the beginning and end of a trajectory. We are usually not considering
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the entire world in a scenario but rather an area of interest. For example, some areas of

interest in the maritime domain are the Strait of Georgia off of the west coast of British

Columbia, the Gulf of Aden in the Middle East, or a group of islands and surrounding

waters, etc. So our first two cues for defining the beginning and end of a trajectory are:

the observation at which the entity enters the area of interest, and the observation at which

it leaves the area. To clarify, an entry or exit from an area can also refer to the first ob-

servation in the area of interest and the last observation in that area. These can of course

happen at any point in the area. The other two cues are more natural and refer to the

origin and destination of the particular entity. In this case a trajectory describes a journey

from origin to destination, which in the maritime domain are usually ports. There is also

the possibility that maybe only the destination or the origin location of an entity are in the

area of interest, in which case we mix the four cues in order to identify the beginning and

end observations of a trajectory giving the four possible combinations:

1. entry into area of interest (or first observation in area) & exit from area of interest (or

last observation in area)

2. origin & destination

3. entry into area of interest (or first observation in area) & destination

4. origin & exit from area of interest (or last observation in area)

As for the issue of smaller trajectories, these can be composed of any slice of all of

the time series belonging to some trajectory Tk whose beginning and end observations are

identified as described above. Such trajectories will be referred to as sub-trajectories.

3.7 Behaviour

We can loosely define behaviour as: an action or set of actions described by the variables of

motion. Whenever behaviour is mentioned it is important to keep in mind that it is in the

context of observations that we are defining and analyzing it. That is, we are not referring

to the actual behaviour of the entity being observed but just to the behaviour indicated

by the observations. A real behaviour is not dependent on it being observed and the only

thing we can say is that whatever behaviour we may think we are observing can only be an
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indication of the real behaviour. So we are really talking about observed behaviour unless

we specifically refer to real behaviour.

We can describe behaviour as a collection of subsets of time series belonging to some

trajectories. We can denote this as a set B where B = Si1, Si2, · · · , Sin. Note that a

behaviour must not necessarily contain time series describing all of the variables of motion,

it could be defined by a single type of variable, for example speed, or just heading. A speed

behaviour could be something a simple as “fast” or “slow” where a behaviour described by

heading could be a “left turn” or moving “straight”. Conversely a behaviour can also be

described by many variables such as both speed and heading; a “fast left turn”.

This is quite a general and sweeping definition which really implies that anything can

be labeled as a behaviour. However, this is not a problem because we are interested in a

finite though probably large and possibly growing number of behaviours (for the maritime

domain anyway), so really what we focus on is behaviours of interest built from more basic

behaviours. So we then define types of behaviour, ranging from simple to high level abstract

behaviours. For example some simple behaviour types are:

1. turns: left turns, right turns

2. starting

3. stopping

4. maintaining direction

5. not moving

Building on these simple types we can then come up with new and more complex types

of behaviour which can be composed of multiple simpler behaviours, for example:

1. u-turn: will be made up of multiple simple turns

2. circling: can be made up of multiple u-turns and simpler turns

3. shuttling: can be composed of multiple maintaining direction behaviours and u-turns

4. patrolling: can be composed of many simpler behaviours
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So even though the definition allows for any set of ordered observations to be a behaviour

we are really interested in a finite number of behaviour types. The intention is that we are

not restricted as to what we can define as a behaviour of interest and that we also allow

for new behaviours to be identified at any time. Notice also that the few behaviour types

given as examples already start to form a hierarchy where more abstract behaviours are

composed of simpler behaviours. These compositions lead to a deepening of the hierarchy

by creating more levels. Furthermore if we look at say the behaviour type of “left turns”

notice that there is no distinction between slow turns or fast turns, long or short turns, sharp

or wide turns, etc. This is definitely part of the hierarchy and you can imagine making such

distinctions as widening the hierarchy. These are just some basic examples to help introduce

the notion of behaviour and will be explored in much more detail in chapter 4.

3.8 Anomaly

Next we need to tackle the definition of anomaly (sometimes referred to as an outlier) which

has already been partially addressed in chapter 1. Following are some definitions that give

a more general and intuitive feel for what we consider to be an anomaly.

Starting with the simpler and more intuitive definition as related to the problem of

detecting anomalous behaviour we have that anomalies are: Patterns in data that do not

conform to expected behaviour.

A more statistically oriented definition of an anomaly is given by D. Hawkins [12]: “An

observation that deviates so much from other observations as to arouse suspicion that it

was generated by a different mechanism.”

The major idea which is hopefully communicated by the two definitions above is that

an anomaly is some deviation from the norm. We can restate what an anomaly is using the

definitions presented in this chapter as:

An anomaly is some trajectory or sub-trajectory which deviates from established

normal trajectories or sub-trajectories

Because trajectories describe motion, what we are really talking about is anomalous

motion. Of course this raises some major issues:

1. How are normal trajectories defined?

2. How can we measure the distance or similarity between any given trajectories in order
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to establish if a trajectory is different enough from normal trajectories to be considered

an anomaly?

From a statistical perspective we can define normal trajectories as those with the great-

est probability of being observed given some data set. Once you can define what normal

trajectories are then it is necessary to have a way to measure the similarity or distance

between any two trajectories. This is done via distance or similarity measures.

There is also another kind of anomaly that will come up throughout this work that is

less statistically motivated, and more domain related. This kind of anomaly is some type

of predefined activity that there is interest in detecting and identifying. These predefined

anomalies are domain dependent and are defined by domain experts. This also identifies

some more obstacles:

1. How do we identify anomalies of interest in a particular domain ?

2. What kind of representation scheme do we use to express these anomalies ?

3. How do we decide if new trajectories match existing defined anomalies ?

The first problem is a matter of having access to domain expertise. The second problem

is very important and is a big part of this research. It will be discussed in greater depth

and shown that the representation scheme is absolutely crucial when designing a system

with the aim of allowing robust and high level expression of interesting behaviours as well

as identification of and comparison between such behaviours. Finally, the third problem is

similar to the second problem identified in the previous section and is all about defining

appropriate similarity and distance measures for whatever representation scheme is selected.

3.9 Anomaly Detection, Characterization, and Problem Dis-

cussion

Given some dataset, the problem of anomaly detection is that of separating a small mi-

nority of anomalous data, in our case anomalous behaviour, from the large majority of

data, again in our case normal behaviour. The main idea in approaching this problem is to

separate and characterize the majority of data as normal behaviour and to utilize this as a

way to identify anomalies as abnormal behaviour. This key idea is described in figure 3.1
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Figure 3.1: Example ruled figure

Of course this happens to be a very challenging problem because the small minority of

anomalous behaviour by its very nature is often made up of data which is inhomogeneous

and hard to characterize. Secondly, it is very difficult to define a region that encompasses

all possible normal behaviour. Then there is the problem of malicious adversaries adapting

to cause their behaviour to appear normal. Furthermore the data itself is very noisy and

there is a lack of labeled data for training and validation.

Another problem that naturally arises from anomaly detection is that of anomaly char-

acterization. Anomaly detection refers to detecting SOMETHING but not WHAT. Often

it is not sufficient to simply identify a set of anomalies. It is also necessary to characterize

these anomalies in order to answer questions such as:

• Is this an interesting and relevant anomaly?

• What type of anomaly is it, to what kind of interesting behaviour does it correspond?

• Is this a new type of anomaly or has it already been identified?
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So there are really two main problems that stand out when looking further into AD:

1. Anomaly Detection (AD)

2. Anomaly Characterization (AC)

First of all if we look at the AD problem as mentioned in the related work in section

2, there are three main ways to approach it: model-driven (top-down), and data-driven

(bottom-up) approaches, with a third being a hybrid of the two. Each of these three

methods lends itself differently to the two problems of AD and AC.

Data-driven methods seem to lend themselves better to the problem of AD, using them

for characterization could be possible however it would be problematic and require a more

significant amount of effort than using model-driven methods for the same purpose. For the

task of AD as we have mentioned numerous times the general two step process is to build

a model of normal behaviour and then to try to classify new data based on that model. As

discussed in the related work section there are many sophisticated statistical methods to

achieve this. If we did wish to try to deal with the AC problem one could imagine gathering

a large data set containing multiple examples of a specific behaviour of interest and then

doing this for all behaviours of interest and then performing multiple classifications of the

detected data in order to try to characterize each distinct behaviour. This can pose a variety

of problems such as gathering the data in the first place since these anomalous events are rare

by their very definition, of course then there is need for adequate coverage of all variations of

a particular behaviour to provide some robustness to the characterization algorithms. Even

though the data-driven methods lend themselves best to AD the results as pointed out by

the authors of some of the papers evaluating these methods are not very promising. One

of the reasons given for this in the literature is that the feature set that the data-driven

analysis is performed on is not rich enough. Because it is an instantaneous point based four

dimensional feature set made up of location and velocity (x, y, vx, vy) the complexity of

the behaviour it can describe is limited. So at the basic level what such an analysis would

be looking at are differences in location and differences in velocity, nothing much more

complex. This is compounded by the fact that these features are taken instantaneously and

not considered as evolving or changing over time.

Now if we shift our attention to model-driven approaches they appear to be best suited

for AC. This is because their aim is to facilitate the description of patterns; to build a model
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of some interesting behaviour which can be used to search for a match in new observed data.

So the idea is to start with a definition of what it is we are actually looking for and then to

perform pattern matching on the data in hopes of finding our anomalies of interest. This

may not be as well suited for general AD because you can only find specific behaviours that

you are searching for so everything else would be missed. Some of the challenges of this

approach stem from the great variety in observed behaviours and the difficulty in actually

describing/representing a behaviour of interest. If we are looking for a particular behaviour

of interest that we have predefined we want our analysis to match all variations of that

behaviour, in other words because not every single time a behaviour is observed will it be

exactly the same we want robustness built into the analysis. This is a requirement even

for basic behaviours. For example there are many different kinds of left turns that can

be observed, obviously they will not look the same for every ship and in every instance

so we want a way to capture all of the variations of such a behaviour. Another issue is

how to compactly describe these patterns or behaviours that we are looking for, and how

to do it in a semantically meaningful way. We would not wish to enumerate a set of all

locations that could potentially describe our behaviour of interest and then repeat this task

to account for variety of observed behaviours and then perform it for all patterns we wish

to detect. This is definitely not compact and the resulting pattern representation would not

be very meaningful from a human perspective. It would be most desirable to be able to

represent such behavioural models or patterns in a compact and semantically meaningful

representation that can also take into account the great variation inherent in any particular

behaviour.

In this work we attempt to address some of the challenges posed by the AD problem,

and in doing so we inevitably run into the AC problem as well so it becomes apparent that

it is often necessary to deal with both. In order to try to do so in the most cohesive way

possible we looked at the major themes running through both problems and have identified

that the most promising avenue for us is to try to deal with the issue of representation.

This is a common theme for both problems and we believe, as has also been pointed out

in some of the literature, that this is an area that can provide a stepping stone for further

investigation and hopefully improvements in dealing with both problems.



Chapter 4

Approach

This chapter will go into all of the details of our proposed spatio-temporal data representa-

tion and all of the pertinent algorithms. We will first start by giving a higher level picture

by discussing the conceptual model behind the approach.

4.1 Conceptual Model

At the end of chapter 3 in our discussion we identified that the major theme we wish to

focus on that touches both the problem of anomaly detection and anomaly characterization

is representation. We propose a representation for spatio-temporal data in order to address

the problems posed by the current instantaneous point and velocity feature sets used in a

large portion of the existing literature on maritime AD. Additionally we also have the aim

of providing a compact, semantically meaningful, and robust way to represent this data as

well as methods to automatically generate such a representation.

The data we constantly refer to are vessel paths in the maritime domain but it is note-

worthy that the representation proposed here is designed to work with any quantitative

variable of interest. However, because we are focusing on analyzing motion, our variables

of interest will be those used in describing motion defined in section 3.1.

The key idea of this representation is to allow the description of a sequence of changes

over time, in a quantitative variable, or a collection of quantitative variables, by abstract

concepts.

An illustrative example of this idea is how a human would go about describing an

increase in speed over successive observations. We could describe such a change in speed

28
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over time with an abstract concept such as “speeding up”. We could go on to define the

behaviour of “stopping” as a succession of decreasing speeds that eventually reach 0. In a

similar way we can define what “starting is”. Now that we have these concepts we can piece

them together and think of something a little more complex such as alternating intervals

where the observed speed of some object switches between the two behaviours of “stopping”

and “starting”. As a human observer we could describe this abstractly as “stop and go”

behaviour.

The approach taken to generating this representation is a hierarchical one that revolves

around the concept of abstraction. The goal is to build up increasingly abstract concepts

describing qualitative features of the variable of interest on top of lower level concepts which

in turn depend at the lowest level on the concrete observations provided by the raw data. In

other words, higher level concepts are abstractions of compositions of lower level concepts.

This collection of composable concepts is referred to as an Abstract Concept Hierarchy. The

process of combining concepts from a particular level in the hierarchy to create the concepts

in the next higher level of the hierarchy is that of Concept Abstraction. Some similar ideas

have been presented in [23] which aim to understand the way that human spatial cognition

works with emphasis on the importance of abstraction and qualitative descriptions of spatio-

temporal data in human visual perception. Our work takes a different turn and a broader

approach to qualitative representation of spatio-temporal data; however, thinking of the

way humans perceive such data is a great analogy for how our approach operates. In fact

one of our aims is that the automated analysis of spatio-temporal data using our proposed

representation framework exhibits a high fidelity with the analysis a human would visually

perform on the same data.

The key to generating a representation that can support this kind of abstract description

of a time series is to focus on change in order to transform the raw data corresponding to

that time series into a qualitative representation of that same data.

We will now shift our attention back to the more specific task of describing motion.

The primary aim of the proposed representation is to facilitate the capture of features that

occur over time. We can see there is a crucial distinction over current approaches which

employ four dimensional feature sets focusing on instantaneous measurements of location

and velocity because we describe features of motion occurring over time. A four dimensional

feature set limits you to describing only simple motion anomalies such as anomalous velocity

or entry into a restricted zone. There are already statistical solutions to detect simple
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anomalies like these. More interesting and complex behaviours can only be observed over

time. The main thing to note is that because the features of motion we wish to represent

develop over time, they require multiple observations to describe; they can not be described

by a single four dimensional observation of velocity and position.

We believe that a representation with the ability to capture motion behaviour that

happens over time is a good foundation to detect and characterize complex and interesting

motion.

It is desirable for such a representation scheme to be robust and extensible enough to

describe any type of motion features, from simple ones (e.g., right and left turns) to more

complex ones (e.g., loops and u-turns). Additionally, it should also be simple to combine

such features in order to define behaviours of interest. We will show how this is achieved in

the remainder of this chapter.

4.2 Abstract Concepts

Abstract concepts are the backbone of the entire representation described in this chapter.

At a high level we can view the proposed representation as just a sequence of abstract

concepts.

Definition 1 Abstract concepts are usually linguistically meaningful terms used to describe

the change in a quantitative variable of interest over a time interval.

We say “usually” linguistically meaningful because this is not a hard constraint. It is

entirely possible to have an arbitrary name for an abstract concept. However, this will only

detract from the value of the approach as it would become more difficult to use and less

informative for a human user.

An abstract concept a at its most basic level is just a pair of strings. This is what all

concepts share in common.

Definition 2 a = (tag, shortTag) where both the tag and the shortTag are unique identi-

fiers.

In addition to this we also define the following properties that apply to an abstract

concept a:
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1. A string describing the type of quantitative variable this concept applies to at

2. An ordered set of components ac

3. A set of quantitative constraints aqc

We will now describe each of the properties introduced above.

Quantitative Variable Type: This is rather straightforward and is used to identify the

type of quantity this concept applies to. Remember that we wish to use semantically

meaningful concepts so we need to have specific concepts for different variable types. For

example a concept such as a “left turn” would be nonsensical when applied to speed. So if

we have a concept pertaining to speed then we note that in the quantitative variable type

and we would use something meaningful for a tag such as “fast” or “slow”.

Components: Really, the purpose of this ordered set of components is to describe the

pattern of lower level concepts that make up the particular concept in question. This is an or-

dered set of concepts paired with modifiers. So each component is a pair (concept,modifier).

A modifier can be a positive integer, a positive integer preceded by the “!” modifier or the

“*” modifier alone. The purpose of the modifiers is to express the number of times a partic-

ular concept occurs in the pattern described by the ordered set of concepts. The modifiers

function as follows:

• “n”: where n is an integer and indicates the number of times this concept repeats in

the pattern.

• “*”: this modifier occurs alone and means that the pattern will match any number of

the concept in question as long as it is ≥ 1.

• “!”: is the negation modifier and must be followed by an integer n. It represents that

we want to match n concepts that are any concept BUT the concept the modifier is

applied to. So “!3” applied to a “right turn” concept means we are looking for any

three concepts that are NOT a “right turn” concept.

Quantitative Constraints: The set of quantitative constraints is a set of boolean functions

that take as input a real number value and output either true or false. The real number

value describes a quantity of type at so it must be the same type of quantity as what the

concept applies to. The input value is the value of the quantitative variable of interest over
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some time interval that this concept is to be assigned to. If the function returns true then

the constraint is satisfied, otherwise it is not. There can be any number of constraints and

they can be defined in any way as long as they adhere to the function prototype:

f : R→ {True, False} (4.1)

All of the properties described above are optional. The first property identifying the

quantitative variable type described by this concept may be set to “All” which is just the

generic default, and the remaining sets may all be empty for the most basic of abstract

concepts.

Using these properties we distinguish between two main types of abstract concepts:

1. Atomic Concept: is just a single abstract concept with no components, ac = ∅

2. Composite Concept: is an abstract concept that is composed of multiple atomic con-

cepts, ac 6= ∅

One of the reasons that this representation is robust is that abstract concepts do not

depend on the magnitude of the change they are describing for their definition. This allows

us to describe the quality, or the type of change. An increase in a variable will always be

an increase no matter what magnitude. Using a concept like faster to describe an increase

in speed always applies no matter what that increase is. Abstract concepts describe the

key underlying nature of different types of changes in quantitative variables. This gives us

the ability to describe features of time series with a minimal amount of abstract concepts

while being unaffected by the huge variation in different time series describing the same

phenomena. For example, we can imagine that there is huge variation between the time

series describing the velocity of different moving objects, and it would be a huge task to

account for and differentiate between all of these variations. In fact it is often not necessary

because regardless of quantitative variations observed while comparing changes in speed of

different moving objects, these time series often describe the same kind of features. So with

a small set of abstract concepts we can describe the changes in velocity for any type of

moving object without concerning ourselves with the multitude of quantitative variations.

If however we do wish to distinguish between time series describing the same type of

behaviour but exhibiting different quantitative properties then we have the option of doing

so by considering quantitative variations in between time series. We can be generic or robust
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in order to identify all data describing the same behaviour regardless of variation, however

we can then distinguish as finely as we wish between the identified data to come up with

more specific types of behaviour that are dependent on actual quantitative variation.

4.3 Concept Intervals and Concept Interval Sequences

Close to the idea of abstract concepts is that of a concept interval.

Definition 3 A concept interval is an abstract concept over a time interval starting at time

ti and ending at time tf which is associated with a time series defined over time t1 to tn

inclusive. Where t1 ≤ ti < tf ≤ tn.

Stated another way, a concept interval is just an abstract concept defined over a time

interval that falls within a time series. A concept interval also contains information about

the quantitative value and the magnitude of the change it is describing. This value is what

the functions in the set of quantitative constraints for the abstract concept defined over the

interval (if not empty) would apply to.

4.4 Abstract Concept Hierarchy

The Abstract Concept Hierarchy (ACH) contains all of the relevant abstract concepts that

are used to describe change over time in a particular variable of interest. For a quantitative

variable of interest to be represented using our representation it must have a concept hier-

archy associated with it. Every variable has a different hierarchy associated with it because

terms that are meaningful for describing time-dependent features of a certain variable may

be irrelevant for another. For example, the concepts used to describe changes in velocity

are not relevant for describing changes in position. It would make no sense to say that

two positions are “faster”, but we can say that positions are becoming “farther” or “closer”

together over some time interval.

Concept hierarchies for variables are not fully defined; how many and which concepts are

used for the ACH of a particular variable is highly dependent on the domain of application

and what the users wish to capture. Concept hierarchies are very flexible and fuzzy by their

very nature because they are composed of abstract concepts. There is in fact an infinite



CHAPTER 4. APPROACH 34

number of concepts that can be defined though only a few are interesting for any particular

variable.

In this work the abstract concept hierarchies defined contain concepts that can be used

in the representation of a trajectory. The idea is that once you can define enough levels

of the different ACHs you can very easily describe any type of motion as a combination of

lower level concepts. Any ACH starts at level 0, moves upwards, and has no ceiling. All

ACHs have at least one level in common, level 0.

4.4.1 Level 0

This is the most important level of the hierarchy which sets the foundation for all other

concepts in higher levels. It is also the only level that is shared amongst all of the ACHs

for other variables.

Level 0 contains only four basic concepts which are quite easy to understand if we recall

that the main idea behind concepts is to describe change. Each level 0 concept describes the

change in whatever variable of interest that we are currently analyzing between two time

points or between two time intervals. Additionally each level 0 concept is also an atomic

concept.

In the diagram below a concept would be assigned to the change between the values of

the variable of interest at times ti and tj , where i < j.

•ti
change

** •tj

If we are dealing with intervals, the situation is somewhat different. We have to deal with

intervals if our variable of interest is defined over intervals as opposed to instantaneously.

This happens for values that we derive by using two consecutive values so in the case of

heading in order to derive it we need the location at two different time points. Because of

this our final result will be the heading over the interval defined by our two initial values.

So at any point along that interval the heading will be the value we come up with.

The way we handle intervals is to look at the change in the two values assigned to them

and to assign a new interval for the result which begins in the middle of the first interval

and ends in the middle of the second interval. We do this to avoid overlapping concept

intervals when the analysis is performed for an entire time series. The diagram below shows

what the situation looks like with intervals.
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•ti
interval•tj

change
** •tk

interval•tl

The following diagram just depicts the resulting interval that the computed change from

the previous diagram holds over.

• change interval •

ti+(j−i)/2

OO

tk+(l−k)/2

OO

The basic level 0 concepts are listed below.

1. increase - an increase in the value of the variable of interest is observed between

two time points or intervals. The definition of the “increase” concept as an abstract

concept described in 4.2:

(tag{”increase”}, shortTag{”i”}, at{”All”}, ac{∅}, aqc{(f(x) = x > 0)})

2. decrease - a decrease in the value of the variable of interest is observed between two

time points or intervals. Abstract concept definition:

(tag{”decrease”}, shortTag{”d”}, at{”All”}, ac{∅}, aqc{(f(x) = x < 0)})

3. constant - no change is observed in the value of the variable of interest between two

time points or intervals. Abstract concept definition:

(tag{”constant”}, shortTag{”c”}, at{”All”}, ac{∅}, aqc{(f(x) = x = 0)})

4. undefined - in certain contexts the variable of interest may have undefined values

(heading when there is no movement and the orientation of the entity is not apparent

is undefined). Abstract concept definition:

(tag{”undefined”}, shortTag{”u”}, at{”All”}, ac{∅}, aqc{(f(x) = x = Infinity)})

This level is complete in the sense that it covers all possible changes that a variable

describing quantitative information may exhibit between any two time points ta, tb, or in-

tervals. Because level 0 of the hierarchy is complete it can be shown that any type of
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of change in a variable can be represented. Furthermore if the representation is complete

for any type of quantitative variable then it should also be complete for describing motion

because we define motion to be defined by a collection of quantitative variables.

4.4.2 Lower Levels

Moving one level higher in addition to atomic concepts we can now start to have composite

concepts. A composite concept is made up of one or more basic concepts found in the lower

levels, in this case level 0.

For example, we can define a level 1 composite concept for a left-turn made up of a

single component. The component is the basic concept decreasing applied to heading, with

an unlimited number of occurrences (*). This is the general idea behind composite concepts.

In this section we will outline some of the level 1 and 2 concepts for the various quantitative

variables that are used to describe motion.

Heading: Level 1 Concepts

This level currently has six concepts which are quite generic and would apply to any domain.

1. right turn - Any increase in heading greater than h degrees. Abstract concept defini-

tion:

(tag{”rightTurn”}, shortTag{”r”}, at{”heading”}, ac{(increasing, ∗)},
aqc{(f(x) = x > h)})

2. left turn - Any decrease in heading less than h degrees. Abstract concept definition:

(tag{”leftTurn”}, shortTag{”l”}, at{”heading”}, ac{(decreasing, ∗)}, aqc{(f(x) =

x < −h)})

3. straight - No change in heading is observed. Abstract concept definition:

(tag{”straight”}, shortTag{”s”}, at{”heading”}, ac{(constant, ∗)}, aqc{∅})

4. straightI - This is another definition for the straight concept however it considers an

increase in heading ≤ h as a straight movement. Abstract concept Definition:
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(tag{”straightI”}, shortTag{”s”}, at{”heading”}, ac{(increasing, ∗)}, aqc{(f(x) =

x ≤ h})

5. straightD - This is the same as the “straightI” concept but with a decrease of less than

h degrees. Abstract concept Definition:

(tag{”straightD”}, shortTag{”s”}, at{”heading”}, ac{(decreasing, ∗)},
aqc{(f(x) = x ≥ −h})

6. notMoving - An undefined heading is observed. Abstract concept definition:

(tag{”notMoving”}, shortTag{”n”}, at{”heading”}, ac{(undefined, ∗)}, aqc{∅})

Heading: Level 2 Concepts

1. stopping - Any a transition from any type of movement to the “notMoving”concept.

Abstract composite concept definition:

(tag{”stopping”}, shortTag{”sp”}, at{”heading”}, ac{(notMoving, !1),

(notMoving, ∗)}, aqc{∅})

2. starting - Any a transition from no motion to any type of movement. Abstract com-

posite concept definition:

(tag{”starting”}, shortTag{”sr”}, at{”heading”}, ac{(notMoving, ∗),
(notMoving, !1)}, aqc{∅})

Displacement: Level 1 Concepts

We use displacement concepts in order to look at the change in position. So for example we

would like to know if a moving entity is moving farther from a location or returning to a

particular location, perhaps moving back and forth between two locations. Other than the

basic level 0 concepts we only use an additional concept for displacement and that is the

concept of returning to the same location.

1. returnedToLocation - An increase in displacement followed by an almost equal decrease

in displacement within some threshold h . Abstract composite concept definition:
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(tag{”returnedToLocation”}, shortTag{”rtl”}, at{”displacement”},
ac{(increasing, ∗), (decreasing, ∗)}, aqc{(f(x) = −h ≤ x ≤ h)})

Speed: Level 1 Concepts

For speed we only define three different concepts for this level. One of which is “steady”

and has three definitions just to allow us to ignore minor variations in speed, similar to the

“straight” concept in the heading concept hierarchy.

1. steady - Constant speed. Abstract concept definition:

(tag{”steady”}, shortTag{”sy”}, at{”speed”}, ac{(constant, ∗)}, aqc{∅})

2. steadyI - Constant speed within a threshold. Abstract concept definition:

(tag{”steadyI”}, shortTag{”sy”}, at{”speed”}, ac{(increase, ∗)}, aqc{(f(x) = x <

h})

3. steadyD - Constant speed within a threshold. Abstract concept definition:

(tag{”steadyD”}, shortTag{”sy”}, at{”speed”}, ac{(decrease, ∗)}, aqc{(f(x) = x >

−h})

4. faster - An increase in speed. Abstract concept definition:

(tag{”faster”}, shortTag{”f”}, at{”speed”}, ac{(increasing, ∗)}, aqc{∅})

5. slower - An decrease in speed. Abstract concept definition:

(tag{”slower”}, shortTag{”sl”}, at{”speed”}, ac{(decreasing, ∗)}, aqc{∅})

Speed: Level 2 Concepts

We defined three concepts here that describe the speed of a moving entity over some constant

velocity interval. Note that the thresholds are dependent on the domain so they would have

to be compiled by a domain expert. Also the value constraint functions apply to the actual

speed value not the change in speed (this would be 0 for a steady speed interval). Depending

on the situation we can of course define any other number of concepts describing really fast

speeds or really slow etc.
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1. slow - Any speed below some threshold h. Abstract concept definition:

(tag{”slow”}, shortTag{”sw”}, at{”speed”}, ac{(steady, ∗)}, aqc{(f(x) = x < h)})

2. medium - Any speed between two thresholds h1 and h2. Abstract concept definition:

(tag{”medium”}, shortTag{”m”}, at{”speed”}, ac{(steady, ∗)}, aqc{(f(x) = h1 <

x < h2)})

3. fast - Any speed over some threshold h. Abstract concept definition:

(tag{”fast”}, shortTag{”fs”}, at{”speed”}, ac{(steady, ∗)}, aqc{(f(x) = x > h)})

4.4.3 Higher Levels and Inter-Hierarchy Concepts

As we move up to higher levels we have access to concepts defined in lower levels to use

for new concept definitions. For example we could define a left loop to be a composition

of multiple left turns. We can also define u-turns as compositions of turns and so on. As

we continue to move up the hierarchy we are able to define more complex and interesting

behaviours.

In this section we also wish to introduce the idea of inter-hierarchy concepts. An inter-

hierarchy concept is similar to a regular abstract concept except it is a composite concept

made up of two or more concepts where at least one concept is from a different abstract

concept hierarchy than the others. For example we can come up with an inter-hierarchy

concept describing movement in a circular pattern. In order to do this we need a concept

from the displacement hierarchy and one from the heading hierarchy. First of all we need to

detect that an object has moved away from a point and then back to that same point, so we

can use the “returnedToLocation” concept for this, furthermore we need to know through

how many degrees the object has turned so we would want either a left or right turn of

360 degrees. Additionally we could also restrict the diameter of the movement by putting a

constraint on the distance travelled.

The concepts we have outlined so far are some common ones that are likely to show

up for many domains. Beyond these the number of concepts we can define is actually

unlimited and what one wishes to define depends on the particular application. We will not

be presenting any exhaustive list of concepts. The idea is that the framework presented can

facilitate the creation and use of any new concepts one wishes to use.
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4.5 Bootstrapping, Merging, and Filtering

In this section we will cover the three basic algorithms used to generate, consolidate, and

clean concept interval sequences. These are the boostrapping, merging, and filtering algo-

rithms.

4.5.1 Bootstrapping

In order to be able to generate a hierarchical abstract concept representation, first, the

bootstrapping process must be applied, which means making the jump from raw data into

a basic qualitative representation. In order to achieve this transition we first start with

the raw data which in the generic case is a time series of some quantitative variable of

interest and we compute the change between every pair or consecutive data points. So we

would compute the change between t1 and t2, t2 and t3 . . . tn−1 and tn. From this basic

computation we would end up with n − 1 values representing the different changes in the

variable we are analyzing. The next step would then be to take the n − 1 change values

and assign them each a level 0 concept from the appropriate ACH for whatever value we

are analyzing. The basic pseudocode for this algorithm can be seen in 4.5.1.

To achieve this, for the heading variable, headings for a path need to be generated for

every pair of consecutive observations. For example, if we have a path composed of observa-

tions {o1, o2, . . . , on}, we can generate n− 1 headings for the intervals {o1, o2}, {o2, o3}, . . . ,
{on−1, on}. This can be done by taking the derivatives of x and the derivatives of y over

the same observation intervals resulting in n − 1 derivatives for both x and y. These can

then be combined using equation 4.2 applied to each observation interval, and will result in

headings expressed in radians over the interval [−180◦, 180◦]. To dispose of negative values

we can add 360◦ to them and all headings will be on the interval [0◦, 360◦].

heading = arctan(dx, dy) (4.2)

The next step is to analyze changes in heading between consecutive pairs of headings.

To each of those changes we can assign the appropriate level 0 concepts from the concept

hierarchy. We can have an increase, decrease, constant, or undefined change in heading,

where an undefined change means that the entity in question was not moving at that time so

it has no heading. So the result is that we can turn a sequence of headings {h1, h2, . . . , hn−1}
into a concept interval sequence {[1 : c1 : 2], [2 : c2 : 3], . . . , [n − 2 : cn : n − 1]} where each
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:n-1]

Figure 4.1: Bootstrapping: converting raw data into a concept interval sequence

ci is a level 0 concept and each [a : ci : b] is a concept interval (see Figure 4.1). This

completes the process of bootstrapping and the shift from a quantitative representation to a

qualitative one. It is important to note however that for each concept interval quantitative

data is kept track of in order to allow for constraints to be used when defining concepts.

Algorithm 4.1 Bootstrapping algorithm pseudocode.

1: procedure Bootstrap(headings)
2: conceptSeq ← List()
3: repeat
4: first← headings[0]
5: second← headings[1]
6: if first == Infinity then
7: conceptSeq ← (first.time, undefined) + conceptSeq
8: else if first == second then
9: conceptSeq ← (timeInterval(first, second), constant) + conceptSeq

10: else if first < second then
11: conceptSeq ← (timeInterval(first, second), increase) + conceptSeq
12: else if first > second then
13: conceptSeq ← (timeInterval(first, second), decrease) + conceptSeq
14: end if
15: headings← headings.tail
16: until h.isEmpty
17: end procedure
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4.5.2 Merging

The bootstrapping algorithm operates on a point to point basis, that is we only look at the

current heading and the next at every step so intervals are never longer than the minimal

time between observations. There is of course the possibility that the bootsrapping algo-

rithm will generate sequences that contain runs of the same concept back to back as in {(1,

increasing, 2), (2, increasing, 3), (3, increasing, 4), (4, decreasing, 5)} in this case what we

want to do is merge the run of intervals which are all labeled with the increasing concept

to get the following result: {(1, increasing, 4), (4, decreasing, 5)}. The numbers represent

arbitrary unit beginning and end times of the different concept intervals where in the actual

software implementation we use the real dates and times of the actual observations.

This can be achieved using the algorithm described by the pseudocode listed in 4.5.2. The

function “mergeConceptIntervals” requires a bit of explanation. It is a concept hierarchy

specific function, that is different for different quantitative variables that merges the concepts

for that particular variable and the values. Sometimes simple addition is fine other times it

may be necessary to express units over time etc. The details are all present in the software

implementation.

Algorithm 4.2 Merging algorithm pseudocode.

1: procedure Merge(conceptSeq)
2: mergedSeq ← List()
3: repeat
4: toMerge← conceptSeq.takeElementWhile(conceptSeq.head = element)
5: mergedSeq ← toMerge.fold(c1.mergeConceptIntervals(c2)) +mergedSeq
6: conceptSeq ← conceptSeq.drop(toMerge.size)
7: until conceptSeq.isEmpty
8: end procedure

4.5.3 Filtering

As previously mentioned alongside the concept interval sequences we also keep track of

quantitative information depending on the quantitative variable being analyzed. This infor-

mation is tracked for every concept interval. What the filtering algorithm allows us to do is

to remove concept intervals that meet or do not meet some criteria for a given quantitative

measure. For example if we aren’t interested in concepts that occur over an interval that is

less than a second we can filter these out. Perhaps we don’t want to take into consideration
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very small heading changes, we can filter these out as well.

The point of filtering is to try to clean up noise and make the representation more concise.

For example if we had a situation with the following concept sequence: {(1, increasing,

20), (20, decreasing, 21),(21 increasing, 45)} we might want to get rid of the intermittent

decreasing concept if the change in heading was insignificant or if the time was too short

etc. in order to consolidate the representation to {(1, increasing, 45)} thereby ignoring the

noise.

The algorithm takes as input a sequence of concept intervals, a domain which to con-

strain (time, or quantitative value), and a constraint function with a threshold. Where the

constraint function is one of (<,>,==, ! =) and it returns the original sequence with only

the concept intervals that satisfy the constraint function. So if the constraint function was

specified as < and the threshold was 10.0 with a domain of time then the result would be

the input sequence with all concept intervals that did not have duration of less than 10

seconds, removed.

This is a straightforward algorithm and all that it does is find all instances of concept

intervals in the input sequence not satisfying the given constraint and removes them.

4.6 Concept Abstraction

Once the initial concept interval sequence expressed in level 0 concepts is obtained, the

next process, called concept abstraction, is utilized to move up the hierarchy and reduce the

representation further to more interesting and higher level concepts. The concept abstraction

process must be performed on a level by level basis starting from level 0 and moving up in

order to generate the final representation. This involves two major steps:

1. Identification: Finding the subsequences of concepts from a lower level that corre-

spond to the components making up higher level concepts as well as adherence to any

constraints imposed on those components.

2. Substitution: Substituting the higher level concepts for the identified subsequences of

lower level concepts.

If we refer to section 4.2 in the identification step we are searching for the sequence de-

scribed by the concepts and modifiers in the component set, ac, of an abstract concept. The
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pseudocode in 4.6 describes at a high level the procedure for searching for the components of

an abstract concept. This is basically the identification step described above and it returns

true for a match as well as the beginning and ending indices for the matched subsequence.

This procedure is performed multiple times in order to identify each occurrence of a concept

and it is repeated for all concepts in a level. The substitution function and other details are

not listed as they are rather straightforward. Again these can be found fully implemented

in the software API.

Algorithm 4.3 Basic Concept Abstraction algorithm pseudocode.

1: procedure AbstractConcept(conceptSeq, concept)
2: components← concept.components
3: toSearch← conceptSeq.dropWhileElement(element 6= components[0].concept)
4: dropped← conceptSeq.size− toSearch.size
5: beginIdx← dropped− 1
6: endIdx← beginIdx
7: repeat
8: concept← components[0].concept
9: modifier ← components[0].modifier

10: if toSearch.size > 0 then
11: conceptsMatched← toSearch.applyModifier(concept,modifier)
12: if conceptsMatched > 0 then
13: components← components.tail
14: toSearch← toSearch.drop(conceptsMatched+ dropped)
15: endIdx← endIdx+ conceptsMatched
16: else
17: returnfalse . no match
18: end if
19: else
20: returnfalse . no match
21: end if
22: until components.isEmpty return(true, beginIdx, endIdx)
23: end procedure

4.7 Smoothing

We utilize two main algorithms for smoothing; though they are refered to as linear slid-

ing window generalization and nested sliding window generalization we will refer to them

simply as linear and nested smoothing to reduce conflicts with the polygonal generalization
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algorithm presented later in this chapter. Both of these algorithms were introduced in [22]

and more details can be found there.

wt =
1

k

s+k−1∑
i=s

vi, wt+1 =
1

k

s+k∑
i=s+1

vi, . . . (4.3)

The linear smoothing algorithm can be seen summarized in equation 4.3. This just takes

the average of k vectors in a sliding window. Here, t in the resulting vector wt is t = s+ k−1
2 .

Where s is the beginning index of the sliding window and vi is vector i in the path. The

vectors are the locations that make up the path to be smoothed.

The nested smoothing algorithm is described by equations 4.4 and 4.5. In these equations

l is the length of some slice of vectors and this is the parameter that must be set for this

algorithm; we will refer to it as NS for short.

What the nested smoothing algorithm does given a window size l, is to first compute

the sum of all l sized vector windows that cover the vector, vt, at the time point that we are

currently computing a smoothed vector for. There are l such windows so the total number

of vectors that get summed is then l2. The resulting smoothed vector at time t is wt which

is the average of all of the vectors that were summed up.

un,n+l−1 =
n+l−1∑
i=n

vi, un+1,n+l =
n+l−1∑
i=n

vi (4.4)

wt =
1

l2

t+l−1∑
i=t

ui−l+1,i (4.5)

4.8 Incremental ε-Generalization

The main reason for making use of a generalization algorithm is to be able to have control

over the types of features that we ultimately want to represent. Depending on the situation

we often wish to suppress small features in a path and just represent the major ones. For

this purpose we employ the previously introduced Incremental ε-Generalization algorithm.

The algorithm described in this section was introduced in [23]. However because it

was only briefly described at a high level in that particular paper we had to spend some

significant time and effort in figuring out exactly how it should be precisely defined and

implemented. So in addition to the information available in the original paper we will also
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outline some of the more detailed aspects of the algorithm that were not covered but are

necessary for actually implementing and making use of it.

The main idea of generalization is to simplify a given path such that the resulting

simplified path only contains the general shape of the original path and suppresses deviations

and unwanted smaller features. This is achieved by building a simplified polygonal path

which is different from the original path by less than some distance ε.

We begin with the path shown in figure 4.2(a) and take the first point L1 and try to

build a line segment from here. We include L2 in our segment because the generalization

of a line is always a line so we have to have at least two points. If we move on to the next

figure, 4.2(b) we can see a dashed boundary and a center line inside this boundary. We will

refer to everything inside the dashed boundary as the ε-area. Anything inside the ε-area is

less than ε away from the center dashed line segment; the line L1-L3 in this case. In this

step we add L3 to the polygonal generalization because does not exclude any other points

out of the ε-area; L2 is still < ε distance away from the generalized polygon the line L1-L3.

Moving on to the next step, figure 4.2(c), we try to add point L4 but this causes L3 to fall

out of the ε-area so we can not add it at this moment. At this time we check to see if the

addition of another point allows us to restore the ε requirement. And it so happens that

adding point L5, figure 4.2(d) allows us to have a line segment L1-L5 that causes all of the

points we have considered so far to fall into the ε-area. At this point in the procedure we

see that we can no longer add any points to the segment so we use the line L1-L5 (dropping

all points in between) as the first line segment of our generalized polygon. We now start

the procedure from the beginning but with the end of our last segment, L5, used as the

beginning of the next one that we will build. This procedure is then repeated until the

entire path is incrementally generalized to a polygon.

Given the procedure we just outlined, the paper [23] goes on to describe an efficient

algorithm for obtaining the polygonal approximation of a path. We will go over some of

that same information here and then describe some of the additional necessary details that

were not elaborated on in the original paper, but that are necessary for implementation.

Before presenting the details of the algorithm we need to define some terms. These are

visually depicted in figures 4.3(a) and 4.3(b). Every time we build a new line segment Si to

extend the polygonal generalization we start with a single point which we will refer to as C.

The point C is the center of a circle with ε radius. Given the point C and the ε-circle we

can proceed to build the ε-area. We do this by extending a line out from C and anything
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(a) Original path.
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(c) Second fit.
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(d) Final fit.

Figure 4.2: Incremental ε-Generalization, basic idea.
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Figure 4.3: Incremental ε-Generalization.

within ε distance away from this line is in the ε-area. We can see this boundary depicted

by the dashed lines in figures 4.3(a) and 4.3(b). When referring to the left and the right

borders of the ε-area we are doing so as if we were on the point C and facing down the

extended line that runs through the middle of the ε-area. We can see in figure 4.3(a) that a

line from the border point Q tangent to the ε-circle forms the left border of the ε-area. In

this particular situation when we are using a point Q as the border point the area outside

of the border immediately to the left of it is labeled Qa and the area outside of the ε-area

to the right side is labeled Qb. If we look at figure 4.3(b) we can see the same ideas except

we use a point P as the right border point and the names of the areas are prefixed with P

instead of Q.

The way in which a segment is built is by finding all of the points in the ε-area defined

by extending a line from C and rotating it around to try to include new points into the area.

As points are added the amount of rotation of the line is restricted until no more points can

be added and the segment construction is complete. Given an empty set of points Si we fill

it by collecting all of the points that will be generalized by segment i. The algorithm goes

through the following steps:

1. Pick the beginning of a new segment, point C
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2. Take all points that are within the ε-circle centered at C and add them to Si. We do

this because these points do not restrict the rotation of the segment so we need not

perform any further checks on them.

3. Set both the P and Q border points to the first point in the path that falls outside of

the ε-circle. This is the first point that will restrict the rotation of the segment.

4. Select the next point, xn and test whether it falls into the Pb or the Qb areas. If either

is the case, the point can not be added to the segment and we have reached the end

of the current segment. Note that when we check both the Pb and the Qb areas we

are effectively rotating the whole ε-area trying to capture the additional point. See

figures 4.3(a) and 4.3(b). Start at step one using the last point added to Si as the new

C of the next segment.

5. If xn is neither in Qb or Pb we move on to check whether it is in Qa or Pa.

6. If it is in Pa we set it to be the new border point P and check if the current border

point Q is still in the ε-area. If this is the case then xn is added to Si and P is updated

to xn. Go back to step 4 and consider the next point xn+1.

7. If it is in Qa we set it to be the new border point Q and check if the current border

point P is still in the ε-area. If this is the case then xn is added to Si and Q is updated

to xn. Go back to step 4 and consider the next point xn+1.

8. If xn is neither in Qb, Pb, Qa or Pa then it must be in the ε-area so we add it to Si

and go back to step 4 and consider the next point xn+1.

Now we will go over some of the calculations necessary to detect if a point is in the

different areas Pa, Pb, Qa, Qb, and the ε-area. In order to to do this the first step is to build

the ε-area. We do this by taking the point C and building the epsilon circle as in figure 4.3(a).

Once we have the circle we can first calculate Qa and Qb by first constructing a tangent to

the ε-circle through the border point Q. The tangent computations are described in figure 4.8

and equations 4.6 to 4.11. The value r which is the radius is given (ε), pc can be computed

by a simple distance calculation, and t can be obtained using the pythagorean theorem. The

angles θ1 and θ2 are the angles between the two tangent lines adn the horizontal at point p.

And finally to calculate the actual cartesian coordinates of the two tangent points we use the
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Figure 4.4: Incremental ε-Generalization.

length of the tangent line t as a radial coordinate and the angle θ as an angular coordinate

and convert these polar coordinates to cartesian ones using equations 4.10 and 4.11. In these

equations the “Qoffset” refers to a quadrant offset that is necessary to calculate the proper

cartesian coordinates and it is based on the quadrant that the point p is in. The offsets for

the different quadrants are: I-π, II-π, III-0, and IV-2π. Finally one must select the right

tangent point because there are always two tangent lines from a circle to an external point.

The selction depends on if we are using the point P or Q to construct the tangent. If it is

Q we want to select the point on the left of the ε-area center line, and if it is P we want the

tangent on the right of this line.

α = arcsin

(
r

pc

)
(4.6)

β = arctan

(
yc − yp
xc − xp

)
(4.7)

θ1 = β + α (4.8)
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θ2 = β − α (4.9)

tpointx = rcos(θ +Qoffset) + xp (4.10)

tpointy = rsin(θ +Qoffset) + yp (4.11)

Once we have the tangent point on the circle we can compute the slope of the line and

using this we can build the center line in the ε-area which extends from the point C. We

can do this easily because the lines that delineate the ε-area are all parallel. Now to test if

a point is in Qa we just test whether it is to the left of the tangent line we built through Q;

we can use equation 4.12 which will return a negative number if the point lies on the right,

a positive number if it is on the left, 0 if it is on the line, and if the line is horizontal points

above are considered to be on the left. Note that in equation 4.12 points 1 and 2 define the

line and point 3 is the one we wish to test (det means determinant).

det

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
= (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1) (4.12)

In order to determine if a point is in the ε-area, we use the center line extending from

C (which is just the slope of the tangent to the ε-circle through Q) and test that the point

is less than ε away from the line. To compute the distance from a line to a point we use

equation 4.13, details can be found at [30].

|(x2 − x1)(y1 − y3)− (x1 − x3)(y2 − y1)|√
(x2 − x1)2 + (y2 − y1)2

(4.13)

To test if a point is in Qb we test that it is not in Qa and not in the ε-area. We are of

course still using Q to define our ε-area.

The operation for checking if a point is in Pa or Pb is identical except we use the point

P to construct our ε-area by computing the tangent and the parallel boundary lines. Also

to test if a point is in Pa we check that it lies to the right of the tangent through P , figure

4.3(b).
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Figure 4.5: Pre-processing steps.

4.9 Example

We currently have AIS vessel location data for the entire year of 2009. It has been collected

by the United States Coast Guard and primarily covers coastal U.S. waters. The data covers

five areas: the Alaskan, Hawaiian, Pacific, and Atlantic coasts, as well as the Gulf of Mexico.

The database is made up of 204 File Geodatabases each representing one month of data for

a single UTM zone. The represented UTM zones 1–11 and 14–19 cover the entire United

States. In addition to location information, the data also contains extensive information

about the vessels themselves, like vessel ID, type, name, physical dimensions, voyage infor-

mation etc. The data has been obtained from the Multipurpose Marine Cadastre (MMC), an

integrated marine information system operated by the National Oceanic and Atmospheric

(NOAA) Coastal Services Center and the Bureau of Ocean Energy Management.

In this chapter we will walk through an example using a real ship path from the dataset

decribed above. We will apply the different algorithms proposed, present, and discuss the

results. The trajectory we are going to use for our example is depicted in figure 4.7(a) in the

xy − plane and in three dimensions in figure 4.7(b). We will use the processes described in

figures 4.5 and 4.6 to pre-process the data and generate the abstract concept representation.

Here is some summary information about the ship voyage:

• The voyage starts on 2009-06-01@00:00:00.000 and ends on 2009-06-04@23:03:00.000.

• There are 1461 data points reporting observed locations (via AIS).

• The total distance travelled for the journey is 155.76 Km.

As we can see this voyage happens over a period of 4 days and a distance of approximately

160 Km. This does not seem like a long way to travel in four days but notice after some initial

movement the ship does not move for almost three days. There is also another interesting



CHAPTER 4. APPROACH 53

Figure 4.6: Representation generating steps.

feature in the ships’ voyage, there is a section in the voyage where it shuttles back and forth

between two points a few times before going on its way. Before moving on to performing

the analysis and generating the representation let us say we want to detect that shuttling

behaviour. To do this we can add some new behaviours. First of all we want to detect the

u-turns involved in the shuttling behaviour; right now they would be represented as plain

right or left turns. To the level 2 abstract concept hierarchy for the heading variable we add

some u-turn abstract concepts that represent turns between 160 and 200 degrees as u-turns:

(tag{”rightUTurn”}, shortTag{”ru”}, at{”heading”}, ac{(rightTurn, ∗)},
aqc{(f(x) = 160 < x < 200)})

(tag{”leftUTurn”}, shortTag{”lu”}, at{”heading”}, ac{(leftTurn, ∗)},
aqc{(f(x) = −160 > x > −200)})

Without use of smoothing or generalization by just applying the automated analysis

to the path we get 91 features in the resulting representation. The analysis detects every
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(a) 2D view of the example path.

(b) 3D view of the example path.

Figure 4.7: The example ship path.
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fluctuation in movement from the smallest occurring in just under a minute to the longest

which takes place over two and a half days. The resulting representation can be seen in

table A.1 in the appendix.

Moving on, we want to clean up the path and reduce the amount of small feature noise.

Next we apply the nested smoothing algorithm with a NS parameter of 20, and we also

apply the ε-generalization algorithm with an ε of 2000. The distances for the ship path are

measured in meters so by using 2 Km for the generalization algorithm we get rid of smaller

features under 2 Km. We can see the results of the pre-processing steps in figures 4.8(a) and

4.8(b). Smoothing and generalization also reduced the number of features in the resulting

representation from the 91 found in table A.1 to the 20 shown in table A.2.

Now we want a way to combine the multiple u-turns and represent them as a single

feature, a shuttling behaviour. There are a few ways to do this but we will do it in two

steps. First we will add a level 3 “back&Forth” concept that will represent two consecutive

u-turns. We will use two definitions for it because we can have a left u-turn followed by a

right u-turn or vice versa so we wish to capture both possibilities in one concept.

(tag{”back&Forth”}, shortTag{”bf”}, at{”heading”}, ac{(rightUTurn, 1),

(leftUTurn, 1)}, aqc{∅})

(tag{”back&Forth”}, shortTag{”bf”}, at{”heading”}, ac{(leftUTurn, 1),

(rightUturn, 1)}, aqc{∅})

Finally we can add our “shuttling” concept which we define to be any number of con-

secutive “back&Forth” behaviours.

(tag{”shuttling”}, shortTag{”sh”}, at{”heading”}, ac{(back&Forth, ∗)}, aqc{∅})

If we generate the representation again with these new concepts we can see that the

shuttling behaviour is properly represented. This can be seen visually in figure 4.9 where

the section of the original path exhibiting the behaviour in question is bounded by the black

box. And in the feature representation instead of the alternating right and left u-turns in

table A.2 we have a single feature:

shuttling: 0.455 degrees, time: 4575.49 min to 4893.49 min.
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(a) 2D view pre-processed path.

(b) 3D view of pre-processed path.

Figure 4.8: The pre-processed ship path.
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Figure 4.9: Shuttling behaviour.



Chapter 5

AnoDeC API Design

The original research prototypes were written in multiple languages: R, GNU Octave, C, and

a little bit of Perl and Bash. However because this would probably be very hard for anyone

to use as well as hard to maintain and expand, everything was re-written in a single language

and combined into a coherent and hopefully useful API. The language chosen was Scala [2].

The reason for this is that it supports functional and object-oriented programming and it is

a modern and advanced programming language providing many useful constructs, it is also

very concise and statically typed. Another important feature is that it is a JVM language,

the Scala compiler compiles Scala source code into Java bytecode so it is interoperable with

Java.

In addition to the main API there are also suites of unit tests for the different parts of

the API.

The rest of this chapter will go over some of the main modules and the structure of the

Anomaly Detection and Characterization (AnoDeC) API.

5.1 Major Modules

The AnoDeC API is made up of the following major modules:

• Data I/O

• Raw Data Processing: formatting and extraction of spatio-temporal data.

• Numerical Analysis: approximation, smoothing, and interpolation.

58
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Figure 5.1: Overview of the major classes in the AnoDeC API.

• Paths and Trajectories: paths, trajectories, observations, quantitative variables,

and time series.

• Concepts: abstract concepts, concept interval sequences, and concept hierarchies.

• Representation Algorithms: algorithms for detecting, and abstracting concepts

from chapter 4.

• Visuals: utilities for generating 2 and 3 dimensional plots of paths and time series.

• Helpers: supporting auxiliary functions.
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• Convenience

5.2 Data I/O

This module supports extracting data from various sources as well as writing formatted data

to disk. When discussing I/O in the AnoDeC system we need to keep two properties of the

data in mind: source and format. The source refers to what generated the data, i.e. the

API or some other application, and the format refers to how the data is represented, for

example, binary files, CSV in text files, XML, etc. We will distinguish the two major sources

of data by referring to them as internal and external. Even though the data generated by

the system is referred to as internal it is written out to text files in simple formats so it is

available for other uses. Currently there is only one type of data used from external sources,

and this is spatio-temporal data describing paths. It may come in many formats depending

on the source (XML, CSV, formats specific to certain applications like R or Octave, etc.).

All other types of data are generated by the system and so are written to and read from

the same formats.

Here is a list of the different formats as well as their respective sources:

• Internal Sources

– Path Data: formatted as simple columns one each for time x and y space sepa-

rated and stored as plain text.

– Time Series Data: Same as paths but with a single data and a single time column.

– Concept Sequences: For external use these can be represented as string sequences.

• External Sources

– BST: formatted as XML.

– Arc-GIS: formatted as plain text space separated columns.

– Other plain text data sources: formatted as simple columns separated by some

delimiter (space, “,”, “:”, etc.).

Other formats can be handled easily by translating them into the basic delimiter sepa-

rated column format.
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5.2.1 Raw Data Processing

This is just a collection of scripts and functions that extract raw data from the various

external formats and convert it to the basic space separated column format.

5.3 Numerical Analysis

This module supports approximation, smoothing, and interpolation. There are 4 types of

interpolation algorithms available:

1. linear

2. spline

3. loess [6], [7]

4. Neville [29]

There is also a suite of algorithms related to Chebyshev polynomial approximation that

facilitate

• Computing any Chebyshev polynomial.

• Computing roots of any Chebyshev Polynomial.

• Generating an approximation by computing the Chebyshev coefficients.

• Generating the n-degree derivative of the approximated function.

5.4 Paths and Trajectories

This module contains all the necessary classes to represent and compute with paths, trajec-

tories, observations, quantitative variables and time series.

5.5 Concepts

This module provides all the necessary code to create abstract, atomic, and composite

concepts. It also contains a number of helpful functions for handling concepts such as
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functions to merge concepts. Also contains the functionality to work with concept interval

sequences and to build abstract concept hierarchies. This module also contains all of the

definitions of the actual concepts themselves.

5.6 Representation Algorithms

All the algorithms described in chapter 4 are implemented. The bootstrapping algorithm,

merging, concept abstraction, the necessary functions to create and manage concept se-

quences and all their accompanying quantitative data. There are also very many auxiliary

functions that go along with these algorithms that make all of this possible.

5.7 Visuals

Everything to do with plotting, visualization, and animation. The main library used to

facilitate visualization is the Jzy3D library [1].

5.8 Convenience

There is a Convenience class provided which wraps up a lot of the functionality of the API

into a few easy to use functions. It combines a lot of the steps for handling concept sequences

and raw data. It also takes care of initialization and so on. Additionally because the API

itself is written in Scala the convenience class also ensures that all the necessary function

calls work from Java as well. There are also some example classes that demonstrate the

general use of the convenience module.



Chapter 6

Experimental

6.1 Data

We will employ families of functions to generate simulated trajectories. The aim is to

generate sets of trajectories that describe the exact same kind of motion but with different

variations in order to be able to test the robustness or ability of the proposed approach to

identify the same features in data with variations. The specific function families will be

described in detail in the appropriate experiment section.

6.2 Robustness of Representation

This set of experiments is designed to show that the automatically generated representation

proposed in this work is robust in the sense that it can identify a general feature that is

defined over time in a time series regardless of variations. The variations themselves would

be other similar time series that describe the exact same features but exhibit quantitative

variations. To do this we restrict our attention to a single variable of interest, heading. The

results are relevant for any variable of interest.

For the data we make use of simulated trajectories that are generated by different func-

tion families. We will make use of 9 types of functions:

1. Sine

2. Cosine
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3. Square Root

4. Quadratic

5. Cubic

6. Linear

7. Static

8. Absolute Value

9. Logistic Function

The idea for this set of experiments is to use common functions to generate paths. Using

functions for this purpose is quite useful because we know exactly what will be generated and

what features it will contain so we can easily test against the simulated paths. Additionally

with the use of functions it becomes very simple to generate variations of the same paths,

allowing us to test the robustness of our representation generator. It is important to keep

in mind that even though these generated paths will appear to be identical to the two

dimensional functions used to generate them they do in fact contain a third time dimension

because they are paths. We will clarify this shortly with some visual examples. Once we have

the paths generated for every function we also have a concept interval sequence describing

the features in the paths that we will test the automatically generated concept interval

sequences against. These expected concept interval sequences were defined by human visual

analysis.

We ran the experiment for the 9 different functions listed above and for each function we

generated 30 different variations for a total of 270 runs. The automatically generated con-

cept interval sequences matched the expected ones with 100% accuracy. The automatically

generated representations contained the correct sequence of concepts at the correct intervals

of the function. What this means is that when there was an expected concept change in the

path indicated by inflection points in the functions, these were correctly identified.

We will talk about the first experiment and give some details, and for the rest we will

briefly outline the functions and the results. All of the functions fi are of the form

a ∗ f(x) where a ∈ [1, 30] (6.1)
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Sine

Function: f(x) = sin(x)

Domain: {0, 0.1, 0.2, . . . , 4π}
Expected Concept Interval Sequence: [rightTurn-leftTurn-rightTurn-leftTurn]

If we look at figure 6.1(a) we can see the four different features in the path as well as

the inflection points. We also see the variety of the individual features across the family of

paths. What we are really trying to emphasize here is that a feature, the first right turn

in the figure, should always be identified as such regardless of how sharp or shallow or long

it is, regardless of variation. We have also included a view of the generated paths in three

dimensions (6.1(b)) to show how the paths actually appear over time.

The rest of the information for this set of experiments can be seen in table 6.1 and the

corresponding figures are listed in the appendix.

Function f(x) = Domain Expected CIS

sin(x)

{0, 0.1, 0.2, . . . , 4π}

[rightTurn-leftTurn-
rightTurn-leftTurn]

cos(x) [rightTurn-leftTurn-
rightTurn-leftTurn-rightTurn]

√
x {0, 0.1, 0.2, . . . , 20} [rightTurn]

x2

{−20,−19.9,−19.8, . . . , 20}

[leftTurn]

x3 [rightTurn-straight-leftTurn]

x [straight]

constant [notMoving]

|x| [straight-leftTurn-straight]

1
1+e−x [straight-leftTurn-straight-

rightTurn-straight]

Results

Automatically generated representations matched the expected ones with 0 errors.

Table 6.1: Results of robustness experiments
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(a) On the xy plane

(b) In three dimensions

Figure 6.1: View of the sine family of paths.
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Table 6.1 describes all of the functions that were used to generate paths as well as the

expected concept interval sequences and the results. The automatically generated concept

interval sequences are not listed because they matched the expected ones with no errors and

so they are the same.

6.3 ε-Generalization

In this set of experiments we take the same simulated paths as in section 6.2 and generate

generalized paths by using the polygonal generalization algorithm.

We again performed 270 runs as in the last experiment. For all but 2 of the 9 functions

the generalized paths led to the same expected results as before. The two types of simulated

paths whose automatically generated representations were not the same as the expected

representations were those generated by the cubic, and logistic functions. In the case of the

cubic function the expected concept interval sequence was:

[rightTurn-straight-leftTurn]

the automatically generated representation was:

[rightTurn-leftTurn]

In this case we can see that the middle feature was missed when generating the repre-

sentation on the polygonal generalization of the original simulated path. It appears that

the reason for this is that the feature occurs over the smallest interval of time possible and

thus it gets generalized away by the generalization process. The smallest time interval in

this case is between two consecutive time points because the data is discrete. The smallest

interval size is 0.01 (unit-less) and there are 4001 points in this particular simulated path.

For the logistic function the expected concept interval sequence was:

[straight-leftTurn-straight-rightTurn-straight]

the automatically generated representation was:

[straight-leftTurn-rightTurn-straight]

Again as in the previous case there is a gap, and the middle “straight” feature is not

present. The reason for this is exactly the same as that just provided for the case of the

cubic function.
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The missed features is not a failure of the polygonal generalization algorithm. In fact

as mentioned before the point of the generalization algorithm is to generalize away small

uninteresting features while preserving the major features of the path. Of course small and

major are relative terms and the size of the features preserved as well as the ones removed

depends on the ε parameter of the generalization algorithm. In this case it just so happens

that two out of the 9 function families generate a small feature in the middle of the paths

that gets generalized away.

Another benefit of the polygonal generalization algorithm is that it often greatly com-

presses the paths it generalizes. This makes sense because the resulting generalized paths

use fewer points to describe the same data. Table 6.2 lists all of the compression ratios com-

puted as: (generalized number of points / original number of points) × 100. Additionally

the ε parameter used for the polygonal generalization algorithm is listed.

Function f(x) = Compression Ratio (%) ε

sin(x) 3.25 2

cos(x) 16.22 0.5
√
x 1.01

2

x2 1.19

x3 11.26

x 0.49

constant 0.07

|x| 0.46

1
1+e−x 1.24 1

Table 6.2: Polygonal generalization experiments. Compression levels and parameters.

Because all of the major features were preserved while providing significant compression,

the polygonal generalization algorithm is very well suited for pre-processing spatio-temporal

data before the main representation analysis is performed.
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6.4 Noise, Trajectory Generalization, and Smoothing

In this set of experiments we repeat the experiments performed in section 6.2 but with

randomly introduced noise. We then apply the same automated analysis as in the previous

experiments except with the addition of smoothing and generalization algorithms. We will

use both linear and nested smoothing algorithms and the ε-generalization algorithm; all

of which were introduced in chapter 4. We also apply a filtering function to remove any

changes in heading of less than some threshold degrees. The threshold selection is highly

dependent on what size features one is interested in detecting.

So the objective was to try to detect the same features we did in the first experiment

except to see if that can be done when there are significant amounts of noise introduced

into the paths. We will first go over the experiments for the sine curves.

Sine

Function: f(x) = sin(x)

Domain: {0, 0.1, 0.2, . . . , 4π}
Expected Concept Interval Sequence: [rightTurn-leftTurn-rightTurn-leftTurn]

We start with the clean simulated trajectories as shown in figure 6.2(a) and to this we

introduce randomly generated noise which then gives us the noisy path shown in figure

6.2(b). The next step is to smooth the data using linear or nested generalization, figure

6.2(c). And finally our last pre-processing step is to perform a polygonal generalization on

the result from our smoothing step, figure 6.2(d). We need to set two different parameters,

NS which is the nested generalization parameter, and ε which is the parameter for the

polygonal generalization algorithm. This information is presented in table 6.3 along with

compression ratios and errors. The errors are the number of paths out of 30 that were

analyzed for each function family, whose automatically generated representation did not

match the expected one presented in the first experiment 6.2. We also tried making use of

the linear generalization algorithm for smoothing but the results were completely negative so

we only list information pertaining to the nested version of the algorithm. This is because of

the large noise levels introduced into the paths. We have also omitted the constant function

family because the results would never be those expected which is a single “notMoving”

feature. This is because no matter how much the noise is smoothed or generalized away we

do not end up with all positions of the path being exactly the same so we would never get
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(a) Clean simulated paths. (b) Noisy paths.

(c) Nested generalization smoothing. (d) Polygonal approximation.

Figure 6.2: Clean vs noisy generated sine paths.

the representation we expect from a constant function.

For this experiment as explained in section 6.3 we had the same missing middle “straight”

features in the cubic and logistic function families. However, we did not count these as errors,

for the reasons given in that experiment, so they are not included in the counts presented

in table 6.3.

The nature of most of the errors is not that the resulting representations derived from
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Function f(x) = Compression Ratio (%) ε NS errors out of 30

sin(x) 49.47 1.0 5 0

cos(x) 54.31 0.8 6 0
√
x 2.85

4
40

2

x2 2.99 0

x3 12.89 0

x 1.01 0

|x| 8.23
0.7

0

1
1+e−x 15.04 45 1

Table 6.3: Polygonal generalization experiments. Compression levels and parameters.

the noisy paths miss important features detected in the clean paths, it is that new features,

often small in magnitude and time are inserted. Of course most of these are removed by

the smoothing and generalization steps however some remain. Additionally the use of the

polygonal generalization algorithm also has a tendency to introduce “straight” segments in

paths breaking up larger features. This is an artifact of the way polygonal generalization

works. Despite this the major features are still detected and properly represented. We can

usually handle these insertions by filtering out features that have a magnitude falling below

a certain threshold.

One of the challenges of dealing with noisy inputs is deciding what parameters to utilize

for smoothing (NS) and generalization (ε). For this particular experiment we ended up

choosing those parameters that recaptured the main features of the clean simulated paths.

In this case we had an expected set of features for each simulated path and we wanted to

show that it is possible even with significant amounts of noise to still identify those features

and suppress all of that noise. Parameter selection is highly dependent on the size of the

features we want to detect and how many of the smaller features we wish to generalize away.

This often depends on the domain. There is a spectrum of options ranging from detecting

and representing every single feature of a path to generalizing the path to the point where

it is just defined by a line between two points. Often the desired level of smoothing and

generalization lies somewhere in between those two ends of the spectrum.
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Conclusion

This work has attempted to explore the area of anomaly detection in spatio-temporal data,

particularly in the maritime domain. We have seen that upon further investigation there is

more than the problem of anomaly detection to tackle. Whenever we think about anomaly

detection in the maritime domain we must now also consider anomaly characterization.

Of all of the available techniques applied so far in this field the statistical ones with their

two step approach of building a model of normal behaviour and checking new observations

against it, are the most widespread. As mentioned in chapter 2 there are other approaches

as well, but they all fall into the two major categories of data-driven and model-driven

approaches.

The main point we identified as potentially yielding some of the greatest benefits in both

the areas of detection, and characterization, was that essentially the complexity and variety

of anomalies that one can detect is limited by the representation/feature set, the popular

one, being a four dimensional feature set made up of position and velocity. In the case of

detection a richer feature set would enable the detection of more complex and interesting

behaviour. As for the case of characterization, an improved representation would allow an

intuitive and simple way to describe any manner of motion behaviour patterns to search for;

whether it be very simple things such as a right turn or a much more complex behaviour like

shuttling. We attempted to address this point by proposing a framework for representing

quantitative time series data, and specifically targeting it to spatio-temporal data. The

focus of the framework was to describe behaviour over time in terms of abstract concepts

and compositions of concepts drawn from concept hierarchies. In addition to conceptually

and formally defining the representation framework we also designed and implemented a
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substantial software API that covers all of the presented algorithms and a lot of additional

functionality in order to facilitate exploration and experimentation. Using the API we have

shown that the proposed representation is in fact very robust, and intuitive for facilitating

the concise description of a huge variety of behaviours. Furthermore, we have also taken

an existing and vaguely defined path generalization algorithm and described in detail the

steps and techniques necessary to actually implement it. We have also shown that when

the representation framework is paired with a smoothing algorithm, and the generalization

algorithm, it is quite resistant to noise; and furthermore this combined process actually

gives the user more control over the detail of the behaviour detected. With this combined

approach one can represent every single detail of a ship voyage, or generalize it to a few

major features even when the voyage lasts several days, is hundreds of kilometers long and

contains thousands of data points.

There is still a lot of work to be done. The necessity to control feature granularity led to

the introduction of smoothing and generalization algorithms. However, this brought to light

the challenges of parameter selection for these algorithms. It would be interesting to explore

the possibility of an automated method for sensible parameter selection. There is also work

to be done on the ε-generalization algorithm. It would be interesting to develop and test

a three(or more) dimensional version of the algorithm. Another considerable improvement

would be the use fuzzy logic to turn the abstract concepts that have crisp quantitative

constraints into fuzzy sets. This would open the door to a host of possibilities. It would

also be very beneficial to collaborate with a domain expert to really work on defining broad

and deep concept hierarchies for the maritime domain. Finally, the entire community would

benefit from a gold standard data set containing curated real data divided into test and

training sets ready for experimentation. We believe this is sorely needed and would really

move the field ahead not by just providing real data, but by also acting as a benchmark

against which new ideas can be tested. Finally it would be very interesting to use the

presented representation approach as the feature set for some of the existing, bottom-up,

anomaly detection techniques. Even though this work seemingly opens up a multitude of

new questions we see this as a positive side effect that opens up new directions for this line

of research.

Ultimately the best approach seems to be a hybrid of the bottom-up and top-down

approaches. In an ideal situation one would like to be able to detect predefined anomalies,

and detect new anomalies and characterize them. However, there may also be great value in
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identifying what is ordinary and using that in order to lower the burden on a human analyst.

This is definitely not an easy or a small problem to “solve”. There are many interacting

factors and ultimately there is a significant human element involved as well; we are not just

trying to determine what kind of behaviour ships are taking part in, we are also trying to

understand what that behaviour ultimately says about the goals and intent of the humans

that are actually in control. There is no neatly package solution to be had, even if there

was our efforts would be at best asymptotic. However, there definitely are steps in the right

direction and we think we have made some with this work. We’ve opened up the feature

set available to bottom-up approaches, and introduced a new model-driven approach for

the maritime anomaly detection field. We feel confident that this work as well as the tools

created as a consequence of it will enable further exploration and experimentation necessary

for taking some of the next steps in the right direction.



Appendix A

Additional Figures and Tables

A.1 Robustness of Representation: Figures

A.2 Example Tables

(a) On the xy plane (b) In three dimensions

Figure A.1: Cosine family of paths.
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(a) On the xy plane (b) In three dimensions

Figure A.2: Square root family of paths.

(a) On the xy plane (b) In three dimensions

Figure A.3: Quadratic family of paths.
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(a) On the xy plane (b) In three dimensions

Figure A.4: Cubic family of paths.

(a) On the xy plane (b) In three dimensions

Figure A.5: Linear family of paths.
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Figure A.6: Constant family of paths in three dimensions. These paths all fall within a
plane because they describe a static position over time.

(a) On the xy plane (b) In three dimensions

Figure A.7: Absolute value family of paths.
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(a) On the xy plane (b) In three dimensions

Figure A.8: Logistic family of paths.

Table A.1: Table containing features in example ship voyage

representation.

Concept Heading Change (degrees) Time Interval (minutes)

notMoving -Infinity 0.00:522.49

rightTurn 13.63 522.49:524.50

leftTurn -6.29 524.50:526.48

straightI 0.57 526.48:616.48

notMoving -Infinity 616.48:4501.49

straightD 0.18 4501.49:4579.48

leftTurn -8.51 4579.48:4581.49

rightTurn 18.53 4581.49:4582.48

leftTurn -124.93 4582.48:4586.00

rightTurn 7.38 4586.00:4587.50

leftTurn -122.18 4587.50:4588.49

rightTurn 28.89 4588.49:4590.50

Continued on next page
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Table A.1 – continued from previous page

Concept Heading Change (degrees) Time Interval (minutes)

notMoving -Infinity 4590.50:4646.49

rightTurn 19.93 4646.49:4654.49

straightD -1.65 4654.49:4660.49

rightTurn 3.42 4660.49:4663.49

straightD -2.62 4663.49:4672.48

rightUTurn 175.91 4672.48:4677.50

straightD 0.37 4677.50:4701.48

rightTurn 4.41 4701.48:4703.50

straightD -1.92 4703.50:4750.49

leftUTurn -183.18 4750.49:4755.49

rightTurn 6.68 4755.49:4757.98

straightD -0.10 4757.98:4763.49

leftTurn -6.53 4763.49:4769.49

straightI 1.28 4769.49:4811.49

rightUTurn 178.71 4811.49:4815.50

straightD -0.66 4815.50:4817.99

rightTurn 3.69 4817.99:4820.48

straightD -1.26 4820.48:4821.49

rightTurn 3.62 4821.49:4825.50

straightD -1.43 4825.50:4884.49

leftUTurn -181.47 4884.49:4892.49

straightI 0.47 4892.49:4935.49

rightUTurn 179.93 4935.49:4942.48

straightD 1.19 4942.48:4959.00

rightTurn 15.80 4959.00:4961.49

straightD -0.02 4961.49:4963.50

leftTurn -15.44 4963.50:4966.49

notMoving -Infinity 4966.49:4969.49

leftTurn -6.54 4969.49:4970.49

notMoving -Infinity 4970.49:4974.49

Continued on next page
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Table A.1 – continued from previous page

Concept Heading Change (degrees) Time Interval (minutes)

rightTurn 395.51 4974.49:4982.49

notMoving -Infinity 4982.49:5086.49

leftTurn -5.47 5086.49:5088.98

straightI -0.89 5088.98:5110.49

leftTurn -4.36 5110.49:5118.49

straightI -0.57 5118.49:5127.50

rightTurn 6.90 5127.50:5129.49

straightD -1.56 5129.49:5132.48

rightTurn 56.81 5132.48:5139.49

leftTurn -35.57 5139.49:5144.49

rightTurn 303.47 5144.49:5154.49

leftTurn -15.72 5154.49:5155.49

rightTurn 130.81 5155.49:5160.49

leftTurn -39.47 5160.49:5161.48

notMoving -Infinity 5161.48:5173.49

rightTurn 52.76 5173.49:5175.50

notMoving -Infinity 5175.50:5225.48

rightTurn 206.42 5225.48:5231.49

leftTurn -15.32 5231.49:5232.99

notMoving -Infinity 5232.99:5235.48

leftTurn -27.71 5235.48:5236.49

notMoving -Infinity 5236.49:5244.49

rightTurn 64.68 5244.49:5245.49

notMoving -Infinity 5245.49:5472.49

leftTurn -22.76 5472.49:5473.49

rightTurn 21.61 5473.49:5476.48

leftTurn -3.83 5476.48:5478.49

straightI -0.30 5478.49:5482.48

rightTurn 26.92 5482.48:5486.49

leftTurn -4.67 5486.49:5487.50

Continued on next page
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Table A.1 – continued from previous page

Concept Heading Change (degrees) Time Interval (minutes)

rightTurn 34.87 5487.50:5489.99

leftTurn -5.72 5489.99:5491.49

notMoving -Infinity 5491.49:5493.49

rightTurn 6.61 5493.49:5494.49

notMoving -Infinity 5494.49:5543.49

leftUTurn -180.02 5543.49:5551.98

straightI 0.22 5551.98:5563.99

leftTurn -3.41 5563.99:5569.48

straightI -0.66 5569.48:5580.50

leftTurn -5.17 5580.50:5583.98

straightI 0.11 5583.98:5587.50

leftTurn -26.13 5587.50:5594.49

rightTurn 5.16 5594.49:5595.48

leftTurn -99.44 5595.48:5596.49

notMoving -Infinity 5596.49:5613.49

rightTurn 9.87 5613.49:5614.48

leftUTurn -188.98 5614.48:5618.49

rightTurn 7.85 5618.49:5622.99

straightD 2.37 5622.99:5703.00
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Concept Heading Change (degrees) Time Interval (minutes)

notMoving -Infinity 0.00:507.49
straightD 0.31 507.49:546.50
rightTurn 3.00 546.50:586.49
notMoving -Infinity 586.49:4492.48
straightI 1.71 4492.48:4524.99
leftTurn -14.08 4524.99:4575.49
rightUTurn 186.28 4575.49:4695.49
leftUTurn -182.99 4695.49:4766.49
rightUTurn 183.15 4766.49:4835.49
leftUTurn -180.48 4835.49:4893.49
straightI 1.15 4893.49:4907.49
leftUTurn -173.26 4907.49:4929.50
rightTurn 2.26 4929.50:4951.49
leftTurn -34.77 4951.49:5097.49
rightTurn 13.24 5097.49:5128.99
notMoving -Infinity 5128.99:5457.49
rightTurn 13.58 5457.49:5475.49
leftTurn -340.17 5475.49:5606.49
rightTurn 2.01 5606.49:5632.00
straightD -0.74 5632.00:5660.00

Table A.2: Table containing features in example ship voyage representation after smoothing
and generalization.
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[3] Vladimir Avram, Uwe Glässer, and Hamed Yaghoubi Shahir. Anomaly detection in
spatiotemporal data in the maritime domain. In ISI, pages 147–149, 2012.

[4] Santiago Iglesias Baniela. Piracy at sea: Somalia an area of great concern. The Journal
of Navigation, 63(02):191–206, 2010.

[5] Natural Resources Canada. The atlas of canada – coastline and shoreline [online].,
2011. Last visited, May 2011.

[6] William S. Cleveland. Robust locally weighted regression and smoothing scatterplots.
Journal of the American Statistical Association, 74(368):829–836, 1979.

[7] William S. Cleveland and Susan J. Devlin. Locally weighted regression: An approach
to regression analysis by local fitting. Journal of the American Statistical Association,
83(403):596–610, September 1988.

[8] M. R. Endsley. Theoretical underpinnings of situation awareness: A critical review. In
M. R. Endsley and D. J. Garland, editors, Situation Awareness Analysis and Measure-
ment. LEA, 2000.

[9] Roozbeh Farahbod, Vladimir Avram, Uwe Glässer, and Adel Guitouni. Engineering
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