
SOLVING MODEL EXPANSION TASKS: SYSTEM

DESIGN AND MODULARITY

by

Xiongnan (Newman) WU

B.Sc., Simon Fraser University & Zhejiang University, 2010

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c� Xiongnan (Newman) WU 2012

SIMON FRASER UNIVERSITY

Summer 2012

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Xiongnan (Newman) WU

Degree: Master of Science

Title of Thesis: Solving Model Expansion Tasks: System Design and Modu-

larity

Examining Committee: Dr. Greg Mori, Associate Professor, Computing Science

Simon Fraser University

Chair

Dr. Evgenia Ternovska, Associate Professor, Com-

puting Science

Simon Fraser University

Senior Supervisor

Dr. David G. Mitchell, Associate Professor, Comput-

ing Science

Simon Fraser University

Supervisor

Dr. James P. Delgrande, Professor, Computing Sci-

ence

Simon Fraser University

Examiner

Date Approved:

ii

Newman Wu
August 7, 2012

Partial Copyright Licence

Abstract

In this thesis, we present the Enfragmo system for representing and solving combinatorial

search problems. The system supports natural specification of problems by providing users

with a rich language, based on an extension of first order logic. Since the specification

language is high level, Enfragmo provides combinatorial problem-solving capability to users

without expertise in advanced solver technology. On the other hand, some search problems,

e.g., the task of constructing a logistics service provider relying on local service providers, are

inherently modular. The framework is extended to represent a modular system. It allows

one to combine modules on an abstract model-theoretic level, independently from what

languages are used for describing them. In this thesis, an algorithm for finding solutions to

such modular systems is proposed. We show that our algorithm closely corresponds to what

is done in practice in di↵erent areas such as Satisfiability Modulo Theories, Integer Linear

Programming, and Answer Set Programming.

Keywords: declarative programming; search problems; model expansion; modularity

iii

To my wife Yidan.

iv

“There are two great days in a person’s life -

the day we are born

and the day we discover why.”

- William Barclay

v

Acknowledgments

I would like to thank everyone who has helped me during my research at Simon Fraser

University. First, I would like to thank Dr. Eugenia Ternovska, my senior supervisor, for

her support and guidance on my research. Next, I would also like to thank my colleagues,

Amir Aavani and Shahab Tasharrofi for the collaborative work on the research project.

Finally, I would like to express my gratitude to Dr. David G. Mitchell and Dr. James P.

Delgrande for the valuable discussions and feedbacks.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

2 Background 3

2.1 Model Expansion . 3

3 The Enfragmo System 5

3.1 Introduction . 5

3.1.1 My Contributions . 6

3.2 Preliminaries . 7

3.2.1 Ordered Structures and Multi-Sorted First-Order Logic with Equality 7

3.2.2 Fixpoints . 8

3.2.3 Partial Structures . 8

vii

3.2.4 Notation . 9

3.3 Specification Language . 10

3.3.1 Arithmetic and Aggregates . 12

3.3.2 Inductive Definitions . 13

3.4 Implementation . 18

3.4.1 Computing Well-Founded Models of Inductive Definitions 19

3.4.2 Grounding . 22

3.4.3 CNF Transformation . 30

3.5 Experimental Evaluation . 30

3.6 Related Work . 31

3.7 Conclusion . 34

4 Solving Modular Model Expansion 35

4.1 Introduction . 35

4.1.1 My Contributions . 39

4.2 Background . 40

4.2.1 Modular Systems . 40

4.3 Computing Models of Modular Systems . 40

4.3.1 Requirements on the Modules . 41

4.3.2 Requirements on the Solver . 46

4.3.3 Lazy Model Expansion Algorithm . 47

4.4 Case Studies: Existing Frameworks . 49

4.4.1 Modelling DPLL(T) . 49

4.4.2 Modelling ILP Solvers . 58

4.4.3 Modelling Constraint Answer Set Solvers 64

4.5 Related Work . 72

4.6 Conclusion . 73

5 Conclusion 75

Appendix A Syntax of the Enfragmo System 76

A.1 Problem Specification Grammar . 76

A.2 Instance Description Grammar . 80

viii

Bibliography 82

ix

List of Tables

3.1 Step by step computation of A� = A1
P,B(;) 21

3.2 Answers to �1, �2, �3, t1 and t2 . 23

3.3 Complement of a False table. 24

3.4 A False table t from joining two False tables t1 and t2. 25

3.5 A False table t from joining a False table t1 with a True table t2. 25

3.6 A True table t from joining two True tables t1 and t2. 27

3.7 A True table t0 from dividing a True table t using variables {x}. 29

3.8 Performance comparison of Enfragmo and other systems. 31

x

List of Figures

3.1 Enfragmo specification of K-colouring. 12

3.2 Enfragmo instance description for K-colouring. 12

3.3 Enfragmo specification for Knapsack variant. 14

3.4 Enfragmo specification for transitive closure of an edge relation. 16

3.5 Enfragmo specification of blocked N-queens. 17

3.6 Enfragmo specification and instance description for the recursive definitions

of even numbers between 0 and 6. 19

4.1 Business Process Planner . 36

4.2 Modular System DPLL(T)�^ Representing the DPLL(T) System on Input

Formula � ^ . 53

4.3 Facility Opening Problem Instance . 60

4.4 Modular System Representing an ILP Solver 62

4.5 Planning with Cumulative Scheduling Problem Instance 67

xi

Chapter 1

Introduction

Computationally hard search and optimization problems are ubiquitous in science, engineer-

ing and business. Examples include drug design, protein folding, phylogeny re-construction,

hardware and software design, test case generation and verification, planning, timetabling,

scheduling and so on. Often in practice, specialized domain expertise is required to design

algorithms to solve these problems e�ciently. Another way to solve search problems is to

use the model-based problem solving approach. In this approach, the user only describes the

properties of a solution, instead of designing an actual algorithm to construct the solutions.

As no knowledge of programming is required, this approach considerably reduces specialized

expertise required on the part of the user, making advanced solver technology accessible to

a wider variety of users. The main goal of our research is to develop theoretical foundations

for languages and systems for modelling and solving combinatorial search problems, and to

build and demonstrate practical systems based on these foundations. We consider the model

expansion (MX) task as the task representing the essence of search problems, where we are

given an instance of a problem and search for a solution satisfying certain properties.

In this thesis, the Enfragmo system for representing and solving combinatorial search

problems is presented. The system supports natural specification of problems by providing

users with a rich language, based on an extension of first order logic. Enfragmo takes as input

a problem specification and a problem instance and produces a solution to the problem if one

exists. Our system is based on grounding, which is the task of producing a variable-free first-

order formula representing the solution for the problem if one exists, with the aim of using

a propositional satisfiability (SAT) solvers as the problem solving engine. The Enfragmo

system uses classical logic to the greatest degree possible, while taking advantage of advances

1

CHAPTER 1. INTRODUCTION 2

in solver technology. However, because the specification language is high level, Enfragmo

provides combinatorial problem solving capability to users who do not have expertise in use

of SAT solvers or algorithms for solving combinatorial problems. Despite its rich syntax,

experiments suggest that the performance of the Enfragmo system is comparable to that of

state-of-the-art systems, e.g., IDP [15], Clingo [27], and DLV [15],.

Some of the search problems in practice, e.g., the task of constructing a logistics service

provider relying on local service providers, are inherently modular. The MX-based frame-

work is further extended to be able to represent a modular system. The framework treats

specification languages equally and independently of their internal semantics and allows one

to combine modules on an abstract model-theoretic level, independently from what lan-

guages are used for describing them. In this thesis, an algorithm for “solving” such modular

MX systems is proposed, which takes a modular system of our definition, and generates

its solutions. We show that our algorithm closely corresponds to what is done in practice

in di↵erent areas such as Satisfiability Modulo Theories (SMT), Integer Linear Program-

ming (ILP), and Answer Set Programming (ASP). However, we take combining modules

to a new level by making our framework language-independent through a model-theoretic

development.

The main contributions of the thesis are as follows. More specific contributions are

stated in individual chapters.

1. We develop a model-based solver which provides users a rich language with clear

semantics.

2. We design an abstract algorithm to solve the modular MX problem and formulated

conditions on languages of individual modules to participate in the modular MX solv-

ing.

3. We show a similarity between our modular MX algorithm and the work of di↵erent

solvers from di↵erent communities.

The work described in this thesis is based on joint work with Amir Aavani and Shahab

Tasharrofi [58, 56, 5, 3, 4]. The contributions specific to the author are stated in the

introduction Chapter 3 and Chapter 4.

The rest of the thesis is organized as follows. Chapter 2 presents some necessary back-

ground knowledge needed to read the thesis. The Enfragmo system is introduced in Chapter

3. The modular extension of the MX framework, the algorithm for solving a modular system,

and the modular representations of existing systems are given in Chapter 4.

Chapter 2

Background

In this chapter, we formally introduce the concept of the model expansion. Before intro-

ducing the formal definition, we first review some necessary definitions. A vocabulary is

a set ⌧ of relation and function symbols, each with an associated arity. Constant symbols

are zero-ary function symbols. A structure A for vocabulary ⌧ (or, ⌧ -structure) is a tuple

containing a nonempty universe or domain A, and a relation (function) for each relation

(function) symbol of ⌧ . If R is a relation symbol of vocabulary ⌧ , the relation corresponding

to R in a ⌧ -structure A is denoted RA. For example, we write

A = (A;R1
A, ...Rn

A, c1
A, ...ck

A, f1
A, ..., fm

A),

where the Ri are relation symbols, fi function symbols, and ci are constant symbols. For

a formula �, we write vocab(�) for the collection of exactly those function and relation

symbols which occur in �.

Let � and ⌧ be vocabularies, with � ✓ ⌧ , and let A be a �-structure. A ⌧ -structure B is

an expansion 1 of A to ⌧ if A = B (i.e., their domains are the same), and for every relation

symbol R and in �, RA = RB and for every function symbol f in �, fA = fB.

2.1 Model Expansion

In [42], combinatorial search problems are formalized as the task of model expansion (MX),

the logical task of expanding a given (mathematical) structure with new relations. Formally,

1Expansion is a standard term in model theory. See, for example, [34].

3

CHAPTER 2. BACKGROUND 4

the user axiomatizes the problem in some logic L. We require the logic to have a standard

model theory, i.e., its formulas must be interpretable over logical structures. This axioma-

tization relates an instance of the problem (a finite structure, i.e., a universe together with

some relations and functions), and its solutions (certain expansions of that structure with

new relations or functions). Logic L corresponds to a specification or modelling language,

e.g., an extension of first-order logic such as FO(ID) [16], or an Answer Set Programming

language, or a modelling language from the Constraint Programming community such as

ESSENCE [26].

The task of model expansion for an arbitrary logic L (abbreviated L-MX), is:

Model Expansion for logic L
Given: 1. An L-formula � with vocabulary � ["

2. A structure A for �

Find: an expansion of A, to � [", that satisfies �.

Thus, we expand the structure A with relations and functions to interpret ", obtaining a

model B of �. We call �, the vocabulary of A, the instance vocabulary, and " the expansion

vocabulary.

Example 1 The following formula � of first order logic constitutes an MX specification for

Graph 3-coloring:

8x [(R(x) _B(x) _G(x))

^¬((R(x) ^B(x)) _ (R(x) ^G(x)) _ (B(x) ^G(x)))]

^ 8x8y [E(x, y) � (¬(R(x) ^R(y))

^¬(B(x) ^B(y)) ^ ¬(G(x) ^G(y)))].

A problem instance is a structure for vocabulary � = {E}, i.e., a graph A = G =

(V ;E). The task is to find an interpretation for the symbols of the expansion vocabulary

" = {R,B,G} such that the expansion of A with these is a model of �:

Az }| {
(V ;EA, RB, BB, GB)| {z }

B

|= �.

The structures B which satisfy � are exactly the proper 3-colourings of G.

Chapter 3

The Enfragmo System

3.1 Introduction

In practice, there are many computationally challenging search problems. In rare cases,

practical application-specific software exists, but most often development of successful solu-

tion methods requires specialists to apply technology such as mathematical programming of

constraint logic programming systems, or develop custom-refined implementations of general

algorithms, such as branch and bound, simulated annealing, or reduction to SAT.

One goal of development of the Enfragmo system [1] is to provide a practical technology

for solving combinatorial search problems, but one which would require considerably less

specialized expertise on the part of the user, thus making technology for solving these

problems accessible to a wider variety of users. In this approach, the user gives a precise

specification of their search (or optimization) problem in a high-level declarative modelling

language. A solver then takes this specification, together with an instance of the problem,

and produces a solution to the problem (if there is one). We aim for using classical logic to

the greatest degree possible, while taking advantage of advances in solver technology.

The model expansion (MX) [42], is in the foundation of our approach to solver construc-

tion. Users axiomatize their problems, formalized as model expansion, in some extension of

classical logic. A problem instance, in this formalization, is a finite structure, and solutions

to the instance are expansions of this structure that satisfy the specification formula. At

present, our focus is on problems in the complexity class NP. For this case, the specification

language is based on classical first-order logic (FO). Fagin’s theorem [24] states that the

problems which can be axiomatized in the existential fragment of second order logic (9SO)

5

CHAPTER 3. THE ENFRAGMO SYSTEM 6

are exactly those in NP, and thus the problems which can be axiomatized as FO MX are

exactly the NP search problems.

Enfragmo’s operation is based on grounding, which is the task of producing a variable-

free first-order formula representing the expansions of the instance structure which satisfy

the specification formula – in other words, the solutions for the instance. The ground for-

mula is mapped to a propositional formula in conjunctive normal form (CNF), which is

sent to a SAT solver. For any fixed FO formula, grounding can be carried out in polyno-

mial time, so grounding provides a universal polytime reduction to SAT for problems in

NP. The grounding algorithm for the Enfragmo system is based on the relational algebra

based bottom-up grounding technique proposed in [43]. An important advantage in solving

through grounding and transformation to SAT, or some other standard ground language,

is that the performance of ground solvers is constantly being improved, and we can always

select from the best solvers available.

Many interesting real-world problems cannot be conveniently expressed in pure FO MX,

in particular if their natural descriptions involve arithmetic or properties defined inductively.

Examples of the former include Knapsack and other problems involving weights or costs,

while examples of the latter include the Traveling Salesman problem and other problems

involving reachability. To address these issues, Enfragmo’s specification language extends

classical first order logic with arithmetic and aggregate operators, and includes a limited

use of inductive definitions.

3.1.1 My Contributions

The work stated in this chapter is based on joint work with Amir Aavani [5, 3, 4]. The

formal definition of grounding is contributed by Amir Aavani. The design and implemen-

tation of various grounding algorithms and CNF transformation algorithms are joint work

between Amir Aavani and the author. The author individually designed and implemented

the computation of well-founded model semantics of the inductive definitions for the En-

fragmo system. The experiments shown in the chapter are also designed and run by the

author.

CHAPTER 3. THE ENFRAGMO SYSTEM 7

3.2 Preliminaries

In this section, we formally define multi-sorted FO and present the concept of ordered

structures. We assume the reader is familiar with the standard FO.

3.2.1 Ordered Structures and Multi-Sorted First-Order Logic with Equal-

ity

An ordered structure is one that contains a total order relation  on its domain. While

in many examples order is not needed, we find that having this relation as built-in saves

a lot of e↵ort in axiomatizing problems. In addition, it helps significantly in symmetry

breaking, a technique to eliminate symmetrically equivalent solutions during search, thus

indirectly reducing solving time. The order relation is also necessary for certain theoretical

properties, such as defining a logic that captures the complexity class P. Since assuming

ordered structures seems to cause no complications, we may always do so when convenient.

Next, we define multi-sorted FO. We assume that the vocabulary always contains desig-

nate predicate . A vocabulary ⌧ is a set of predicate and function symbols together with

a set S of sorts (types). Each variable x, and constant symbol c is associated with a sort

S(x) and S(c), respectively, where S is a function which maps a variable or a constant to

one of the sorts in S, and each function symbol f and predicate symbol p, with arity n, is

associated with a tuple of sorts Tf 2 Sn+1 and Tp 2 Sn, respectively.

Let S be a function which maps a term to one of the sorts in S. Then the set of terms

over vocabulary ⌧ is inductively defined by following rules:

• Every variable x is a term of sort S(x).

• Every constant c is a term of sort S(c).

• If t1, · · · , tn are terms of sort S(t1), · · · , S(tn), respectively, and f is a function symbol

of arity n, associated with the tuple of sorts (S(t1), · · · , S(tn), sf), then f(t1, · · · , tn)
is a term of sort sf .

The set of formulas over vocabulary ⌧ is inductively defined by following rules:

• If t1, · · · , tn are terms of sort S(t1), · · · , S(tn), respectively, and p is a predicate symbol

of arity n, associated with the tuple of sorts (S(t1), · · · , S(tn)), then p(t1, · · · , tn) is a
formula.

CHAPTER 3. THE ENFRAGMO SYSTEM 8

• If t1 and t2 are two terms of the same sort, then t1 = t2 and t1  t2 are formulas.

• If � and are formulas, x is a variable, then ¬�, (� ^), (� _), 8x : Sx �, and

9x : Sx � are all formulas.

We use the abbreviations (�!) for (¬� _), and (�$) for ((�!) ^ (! �)).

We sometimes also use 8x : Sx  y � as the shorthand for 8x : Sx (x  y ! �), and

similarly for 9. We may drop the parentheses as long as the unique readability of formulas

is still assured.

The formulas obtained by the first two rules are called atomic formulas. A literal is

either an atomic formula or its negation. An occurrence of a subformula in a formula is

positive (resp. negative) if it occurs in the scope of an even (resp. odd) number of negations.

An interpretation for a vocabulary ⌧ is provided by a structure A, which consists of a

domain As for each sort s in S, a domain element cA for each constant c, a relation pA in

S(t1)
A⇥· · ·⇥S(tn)A for each predicate symbol p of arity n, associated with the tuple of sorts

(S(t1), · · · , S(tn)), and a function fA of type S(t1)
A⇥ · · ·⇥S(tn)

A ! sfA for each function

symbol f of arity n, associated with the tuple of sorts (S(t1), · · · , S(tn), sf). The satisfaction
relation |= is defined as usual except that, informally speaking, the quantifications are over

the domains of corresponding variable sorts.

3.2.2 Fixpoints

Let C be a set and Pow(C) be the power set of C. Then, a function F : Pow(C)! Pow(C)

gives rise to a sequence of sets:

;, F (;), F (F (;)), · · · ,

where F 0 = ; and F i+1 = F (F i). We call F i the i-th stage of F . If there is an i0 2 N such

that F i0+1 = F i0 , then F i = F i0 for all i � i0. We call F i0 the fixpoint of F , denoted by

F1. The function F is monotone (resp. antimonotone) if for all X,Y 2 C, X ✓ Y implies

F (X) ✓ F (Y) (resp. F (Y) ✓ F (X)). If F is monotone, F i(;) ✓ F i+1(;) for all i 2 N, and

we call F1(;) the least (w.r.t. the set inclusion) fixpoint of F .

3.2.3 Partial Structures

To demonstrate the model computation procedure of the inductive definition program in

Enfragmo (see Section 3.4.1), we need the concept of partial structures. A partial structure

CHAPTER 3. THE ENFRAGMO SYSTEM 9

is a structure that may contain unknown values. Here we talk about regular (not multi-

sorted) structures. The generalization to multi-sorted structures is straightforward.

Definition 1 (Partial Structure) We say B is a ⌧p-partial structure over vocabulary ⌧

if:

1. ⌧p ✓ ⌧ ,

2. B gives a total interpretation to symbols in ⌧\⌧p and,

3. for each n-ary symbol R in ⌧p, B interprets R using two sets R+ and R� such that

R+ \R� = ;, and R+ [R� 6= (dom(B))n.

We say that ⌧p is the partial vocabulary of B. If ⌧p = ;, then B is total. For two partial

structures B and B0 over the same vocabulary and domain, B0 extends B if all unknowns in

B0 are also unknowns in B, i.e., B0 has at least as much information as B.

Example 2 Consider a structure B with domain {0, 1, 2} for vocabulary {I, R}, where I

and R are unary relations, and IB = {h0i, h1i}, h0i 2 RB, and h1i 62 RB, but it is unknown

whether h2i 2 RB or h2i 62 RB. Then B is a {R}-partial structure over vocabulary {I, R}
where R+B = {h0i} and R�B = {h1i}.

For an atomic formula �, we say B |= � (resp. B |= ¬�) if � is true (resp. false) in the

interpretation of the total part of vocabulary (⌧ \⌧p) or in R+. The satisfiability relation for

compound formulas could be defined recursively in the standard way. Note that for partial

structures, B |= ¬� and B 6|= � may be di↵erent. We call a "-partial structure B over � ["
the empty expansion of �-structure A, if B agrees with A over � but R+ = R� = ; for all
R 2 ". When we talk about a ⌧p-partial structure, in the MX context, ⌧p is always a subset

of ".

3.2.4 Notation

Let B be a �-structure, ⌧ ✓ � and S be a set of literals with the set of non-logical symbols

⌧ , then

1. A complement of a literal l is the literal corresponding to the negation of l. More

precisely, if l is an atomic formula a, then the complement of l is ¬a, and if l is the

negation of an atomic formula, i.e., ¬a, then the complement of l is a.

CHAPTER 3. THE ENFRAGMO SYSTEM 10

2. ¬S denotes the set {¬l | l 2 S}.

3. ⌧B denotes
S

p2⌧ p
B.

4. UB(S) denotes the set containing all possible instantiations of predicate symbols in ⌧

in terms of B, i.e., UB(S) =
S

predicate p2⌧ dom(B)arity(p).

5. If S is a set of atoms, the conjugate over B is the negative set S = ¬UB(S) \ ¬S.

6. If S is a set of negative literals, the conjugate over B is the positive set S = UB(S)\¬S.

7. We sometimes use a (partial) structure B, which gives an interpretation to vocabulary

⌧ , as the set of literals which are true according to B. For example, for a ⌧p partial

structure B such that ⌧ = {P,R}, ⌧p = {P}, dom(B) = {1, 2}, RB = {1}, P+B = ;
and P�B = {1}, we may represent B using following set of literals:

S = {R(1),¬R(2),¬P (1)}.

The operator structureB(.) may be used to recover the structure B from S.

3.3 Specification Language

In this thesis, our focus is on problems in the complexity class NP. For this case, the

modelling language is based on classical first-order logic (FO). Fagin’s theorem [24] states

that the problems which can be axiomatized in the existential fragment of second order logic

(9SO) 1 are exactly those in NP, i.e., FO-MX captures NP. This result makes FO a good

specification language for modelling and solving NP search problems.

In [42], the authors argue that an important property for a specification language is

capturing a complexity class. As FO-MX captures NP, we know that:

1. FO-MX can express every problem in NP - which gives the user an assurance of

universality of the language for the complexity class NP,

1Informally, 9SO is an extension of FO which have the variables in FO ranging over the individuals, as
well as additional variables that range over a set of individuals with the restriction that these variables can
only be quantified over the existential quantifier.

CHAPTER 3. THE ENFRAGMO SYSTEM 11

2. no more than NP can be expressed - thus solving can be achieved by a universal

polytime reduction, called grounding, to some well-studied NP-complete problems like

SAT and CSP.

The specification language of the Enfragmo system is based on multi-sorted classical

first-order logic (see section 3.2.1), extended with inductive definitions, arithmetic functions,

and aggregate operators. We will illustrate the language with examples, and give brief

discussions of some major features. For the full description of the input language, please

refer to the Enfragmo manual, which is available from [1]. The exact syntax of specification

and instance description is also available in the Appendix.

Example 3 shows a sample specification and instance description for the Enfragmo sys-

tem. As shown in Figure 3.1, an Enfragmo specification consists of four main sections,

delineated by keywords. The GIVEN: section defines the types and vocabulary used in the

specification. The FIND: section identifies the vocabulary symbols for which the solver must

find interpretations, that is, the functions and relations which will constitute a solution. In-

terpretations of the remaining vocabulary symbols are given by the problem instance. The

third part consists of one or more PHASE: sections, each of which contains an optional

FIXPOINT: part, which provides an inductive definition, followed by a SATISFYING: part,

which consists of a set of sentences in the extended first order logic. If there are multiple

PHASE: sections, they define a sequence of expansions. One way such a sequence can be

used is to carry out a kind of pre-processing or post-processing, which may support more

convenient axiomatizations or more e�cient solving. An example is provided in the section

on inductive definitions below. Finally, the PRINT: section identifies relations that are to

be displayed, if a solution is found.

Figure 3.2 shows a sample instance description for the graph k-colouring problem. An

instance description contains the domains of types and the interpretations of instance rela-

tions and (total) functions. Domains may be given as a range of integers (e.g., Vtx [1..5])

or as an enumerated list of constant symbols (e.g., Clr [’red’, ’green’, ’blue’]). For

a range of integers the order is numerical; for an enumerated list it is as given. Thus, it

imposes a total order in the set of domain elements. Interpretations of relations are given

as a set of space-separated tuples, with elements of tuples being comma-separated.

Example 3 (Graph K-Colouring) To axiomatize Graph K-Colouring, we introduce two

sorts, vertices and colours. The axiomatization says that there is a binary relation Colour

CHAPTER 3. THE ENFRAGMO SYSTEM 12

which must be a proper colouring of the vertices. The corresponding Enfragmo specification

is given in Figure 3.1, and an instance description is given in Figure 3.2. 2

GIVEN:
TYPES: Vtx Clr;
PREDICATES: Edge(Vtx,Vtx), Colour(Vtx,Clr);

FIND: Colour;
// expansion predicate(s) are listed under FIND
//(instance predicates are those that are not expansion)

PHASE:
SATISFYING:

// every vertex has at least one colour
8 v : V tx 9c : Clr Colour(v, c);
// no vertex has more than one colour
8v : V tx 8c : Clr (Colour(v, c) ! ¬9c2 : Clr (c2 < c ^ Colour(v, c2)));
// no two vertices of the same colour are adjacent
8u : V tx 8v : V tx 8c : Clr ((Colour(u, c) ^ Colour(v, c)) ! ¬Edge(u, v));

PRINT: Colour; // solution can be printed

Figure 3.1: Enfragmo specification of K-colouring.

TYPE Vtx [1..5]
TYPE Clr [’red’, ’green’, ’blue’]

PREDICATE Edge
(1, 2) (1, 4) (1, 5) (2, 3) (2, 5) (3, 4) (3, 5)

Figure 3.2: Enfragmo instance description for K-colouring.

Next, we discuss some major features of the Enfragmo specification language.

3.3.1 Arithmetic and Aggregates

The theoretical foundations of MX with arithmetic have been studied in [59, 54, 55]. Here,

we focus on a fragment that is implemented. Enfragmo specifications have two kinds of

types: integer types and enumerated types. Terms of integer types may use the arithmetic

2
In Figure 3.1, the symbol < is used instead of 6= in the second formula to reduce the search space.

CHAPTER 3. THE ENFRAGMO SYSTEM 13

functions +, �, ⇤, and ABS(·), which have their standard meaning. Arithmetic terms also

include the aggregate operators maximum, minimum, sum, and cardinality. In the following,

if �(x̄) is a formula with free variables x̄, then �B[ā] denotes the truth value of � in structure

B when the variables x̄ denote the domain elements ā, and similarly for terms t(x̄). The

aggregate terms are defined, as follows, with respect to a structure B in which the formula

containing the term is true.

• Maxx̄{t(x̄, ȳ) : �(x̄, ȳ); dM} denotes, for any instantiation b̄ for ȳ, the maximum value

obtained by tB[ā, b̄] over instantiations ā for x̄ for which �B[ā, b̄] is true, or dM (the

default value) if there are none.

• Minx̄{t(x̄, ȳ) : �(x̄, ȳ); dm} is defined dually to Max.

• Sumx̄{t(x̄, ȳ) : �(x̄, ȳ)}, denotes, for any instantiation b̄ for ȳ, the sum of all values

tB[ā, b̄] over instantiations ā for x̄ for which �B[ā, b̄] is true.

• Countx̄{�(x̄, ȳ)} denotes, for any instantiation b̄ for ȳ, the number of tuples ā for

which �B[ā, b̄] is true.

Example 4 illustrates use of arithmetic terms, including sum and count aggregates.

Example 4 (A Knapsack Problem Variant) Consider the following variation of the

knapsack problem: We are given a set of items (loads) L = {l1, · · · , ln}, each with an

integer weight W (li), and m knapsacks K = {k1, · · · , km}. The task is to put the n items

into the m knapsacks, while satisfying the following constraints. 1) Certain items must go

into preassigned knapsacks, as specified by the binary instance predicate P ; 2) H of the m

knapsacks are high capacity, and can hold items with total weight CapH , while the remain-

der have capacity CapL; 3) No knapsack may contain two items with weights that di↵er by

more than D. Each of CapH , CapL and D is an instance function with arity zero, i.e. a

given constant. An Enfragmo specification for this problem is given in Figure 3.3. Q is the

mapping of items to knapsacks that must be constructed.

3.3.2 Inductive Definitions

Inductive properties are not easily expressed as FO-MX, and the methods for expressing

them tend to produce specifications which, in our experience, are not well handled by current

CHAPTER 3. THE ENFRAGMO SYSTEM 14

GIVEN:
TYPES: Item Knaps;
INTTYPES: Weight ItemCount;
PREDICATES: P(Item, Knaps) Q(Item, Knaps);
FUNCTIONS:
W(Item): Weight
Cap H(): Weight
Cap L(): Weight
D(): Weight
H(): ItemCount;

FIND: Q;
PHASE:

SATISFYING:
// Q is a function mapping items to knapsacks
8l : Item 9k : Knaps Q(l, k);
8l : Item 8k1 : Knaps 8k2 : Knaps ((Q(l, k1) ^Q(l, k2))! k1 = k2);
// Q agrees with the pre-assignment P
8l : Item 8k : Knaps (P (l, k)! Q(l, k));
// The total weight in each knapsack is at most Cap H
8k : Knaps SUM{l : Item; W (l); Q(l, k)}  Cap H();
// At most H knapsacks have total weight greater than Cap L
COUNT{k : Knaps; SUM{l : Item; W (l); Q(l, k)} > Cap L()}  H();
// Items in a knapsack di↵er in weight by at most D
8k : Knaps 8l1 : Item 8l2 : Item ((Q(l1, k) ^Q(l2, k))! ABS(W (l1)�W (l2))  D());

PRINT: Q;

Figure 3.3: Enfragmo specification for Knapsack variant.

solvers. Therefore, for practical purposes, it is necessary to extend FO with inductive

definitions.

In our view, it is more appropriate to extend classical logic with a mechanism for (non-

monotone) induction than to base an entire language or system on a non-monotonic logic.

The reason is that the classical semantics is much simpler to work with, both for language

users and system designers. In particular, classical logic is modular, that is, combining FO

specifications is easy, because no special conditions are required to ensure the semantic con-

tent of a formula remains unchanged in combination with others. Since the large majority

of constraints in most applications are classical - that is, do not involve minimization or

closure - we may use the more complex semantics of induction when and to the extent we

CHAPTER 3. THE ENFRAGMO SYSTEM 15

need it. In contrast, with a purely non-monotonic logic, sometimes we must simulate the

classical semantics using the more complex non-classical semantics.

The logic FO(ID) is a logic which augments FO with a non-classical construction to rep-

resent induction, developed in [17]. The construct allows for natural modelling of monotone

and non-monotone inductive definitions, including iterated induction and induction over a

well-founded order. It is proposed as the logic of choice for modelling NP-search problems as

model expansion in [42]. It is also shown in [42] that FO(ID)-MX still captures NP. A very

e�cient system capable of dealing with general inductive definitions has been developed at

KU Leuven [68]. Their solver, The IDP System, is able to support the full language of

FO(ID).

The formulas of FO(ID) are constructed from atomic formulas P (t̄), and definitions �,

closed under the standard use of ^,_,¬, 8, 9. A definition � is a set of rules as illustrated

in example 5. The syntax is quite general: the body of the rules may be unrestricted FO

formulas. Disjunctions of definitions, multiple definitions for the same predicate, etc., are

all allowed. Predicates appearing in the heads of the rules are called defined, and those

which are not defined are called open.

The “ ” operator in rules of inductive definitions is the definitional implication, with se-

mantics provided by the well-founded semantics from logic programming. The well-founded

model of an FO formula partitions the model into three parts: true, false and unknown. If

an atom is true (resp. false) in the well-founded model of an FO formula �, then it is true

(resp. false) in every model of �. More details can be found in [66]. A structure B satisfies

a set of rules � i↵ B is the 2-valued well-founded model of �.

Enfragmo implements a fragment of the logic FO(ID), where definitions can only appear

in conjunctions with the rest of the axiomatization. Inductive definitions are specified under

the FIXPOINT keyword followed by a comma separated list of predicates to be defined in

the paranthesis. Each definition is wrapped using curly braces under the DEFINE keyword.

A definition is composed of one or more rules with variable quantifications. The head of

each rule is a predicate to be defined, and the body is a formula of FO extended with

functions, arithmetic operations and aggregates. Recall that the Enfragmo system grounds

the input program into a standard SAT instance, but grounding inductive definitions into a

SAT instance could be very hard and may produce very ine↵ective instances. In contrast to

the full version of inductive definitions implemented in [69, 67, 38], no expansion predicates

in the body are allowed in our system, i.e., the open predicates in a definition must be

CHAPTER 3. THE ENFRAGMO SYSTEM 16

instance predicates, or have been constructed explicitly in a previous Phase: section. Even

this limited form has proved to be very useful in practice. These definitions can be used

to e�ciently compute useful information, such as a bound or partial solution, which can be

used later to help solve a problem more e�ciently. Examples of such usage are shown in

example 6 and 7.

Example 5 (Transitive Closure of an Edge Relation) Figure 3.4 shows the Enfragmo

specification for computing the transitive closure of edge relation in the given graph.

GIVEN:
TYPES: SVtx ;
PREDICATES: Edge (SVtx, SVtx) TC (SVtx, SVtx) ;

FIND: ;
PHASE:

FIXPOINT (TC) :
DEFINE
{
x : SVtx y : SVtx TC(x, y) Edge(x, y)
x : SVtx y : SVtx TC(x, y) 9z : SVtx (TC(x, z) ^ Edge(z, y))

}
;

PRINT : TC ;

Figure 3.4: Enfragmo specification for transitive closure of an edge relation.

Example 6 (Blocked N-Queens) The blocked N-queens problem is a variant of the N-

queens problem. In this problem, we are given a N ⇥N board and N queens. Some of the

cells on the board are blocked. The task is to place N queens on some non-blocked cells

such that no two queens are able to attack each other, i.e., no two queens are placed in

the same row, column, or diagonal. Figure 3.5 shows an Enfragmo specification for blocked

N-queens problem. In the specification, an inductive definition is used to first compute pairs

of non-blocked cells that are in the same diagonal.

Example 7 (Graph K-Colouring:Continued) Graph Colouring can be solved more ef-

ficiently by having inductive definitions in an initial group of phases compute a maximal

clique in the graph, and pre-assign distinct colours to the vertices in that clique. (A fur-

ther improvement might be to construct a maximal clique containing a vertex of maximum

CHAPTER 3. THE ENFRAGMO SYSTEM 17

GIVEN:
INTTYPES: Num;
PREDICATES:

Block (Num, Num)
Queen (Num, Num)
Diag (Num, Num, Num, Num)

;
FIND: Queen ;
PHASE:

FIXPOINT (Diag) :
DEFINE
{8x1 : Num 8y1 : Num 8x2 : Num 8y2 : Num Diag(x1, y1, x2, y2)

x1 < x2 ^ ¬Block(x1, y1) ^ ¬Block(x2, y2) ^ABS(x1� x2) = ABS(y1� y2)}
;
SATISFYING:

//queens can only be placed in non-blocked cells.
8r : Num 8c : Num (Queen(r, c)! ¬Block(r, c));
//each column should contain exactly one queen.
8r : Num COUNT{c : Num; Queen(r, c) ^ ¬Block(r, c)} = 1;
//each row should contain exactly one queen.
8c : Num COUNT{r : Num; Queen(r, c) ^ ¬Block(r, c)} = 1;
//two non-blocked cells in the same diagonal cannot both contain queens.
8x1 : Num 8y1 : Num 8x2 : Num 8y2 : Num

(Diag(x1, y1, x2, y2)! ¬(Queen(x1, y1) ^Queen(x2, y2)));
PRINT: Queen ;

Figure 3.5: Enfragmo specification of blocked N-queens.

degree.) Then a final phase can construct a colouring of the graph restricted by the pre-

computed colouring of the large clique. We use this technique in the experiments shown in

section 3.5.

In addition to the semantics from the language of FO(ID), the inflationary fixpoint se-

mantics [37] is also implemented in Enfragmo. Given an inductive definition, we construct

the inflationary fixpoint by following iterative procedure: starting from the empty inter-

pretation, we iteratively derive new information using the facts derived from the previous

iterations. The exact definition can be found from [37]. To use this implementation, one

only needs to replace the DEFINE keyword in the inductive definition with INFLATE. Note

CHAPTER 3. THE ENFRAGMO SYSTEM 18

that for the definitions involving negation in the body, we cannot expect the inflationary

fixpoint operator to give a desired result. For example, it does not give a desired output

on the recursive definition of even numbers shown in the Example 8, i.e., the interpretation

of the predicate Even will contain all the numbers between 0 and n in the first iteration,

because Even is initially empty. On the other hand, under the well-founded model seman-

tics described above, we can see that the interpretation of Even containing the set of even

numbers between 0 and n is indeed the 2-valued well-founded model of the program. We

describe the algorithm used to compute this well-founded model in Section 3.4.1.

Note that when none of the atomic formulas P (t̄) appear negatively in the definitions �,

the inflationary fixpoint semantics and the well-founded model semantics coincide. In this

case, Enfragmo uses the inflationary fixpoint implementation because it is more e�cient.

Example 8 (Recursive definition of the even numbers)

Figure 3.6 shows the Enfragmo specification and instance description for the recursive defi-

nitions of even numbers below:

• 0 is even.

• (n+1) is even if and only if n is not even.

3.4 Implementation

Enfragmo’s input is a problem specification together with a description of an instance, stated

in the language described in Section 3.3. (Eventually, Enfragmo may be extended so that

instances may be retrieved by queries to a database or other source.) The phases in the

specification are solved one-by-one, in the order written. For each phase, any predicates

defined by an inductive definition are computed, and then the satisfying phase is solved

by grounding. This in turn involves three stages: 1) grounding each formula with respect

to the instance and information computed from previous phases to produce a ground FO

formula representing the solutions; 2) the ground formula is transformed to a propositional

CNF formula; 3) a SAT solver is called on the CNF formula; 4) if the SAT solver reports a

satisfying assignment, it is mapped back to a description of a solution in the vocabulary of

the specification.

CHAPTER 3. THE ENFRAGMO SYSTEM 19

GIVEN:
INTTYPES: int;
PREDICATES: Even(int);

FIND: ;
PHASE:

FIXPOINT(Even):
DEFINE
{
x : int : Even(x) x = MIN [int]
x : int : Even(x) 9y : int : (¬Even(y) ^ x = y + 1)

}
;

PRINT: Even;

TYPE int[0..6]

Figure 3.6: Enfragmo specification and instance description for the recursive definitions of
even numbers between 0 and 6.

3.4.1 Computing Well-Founded Models of Inductive Definitions

Recall that a structure B is a model of the inductive definition program P if and only if B is

the 2-valued well-founded model of the program P , or equivalently, the unique well-founded

model is a total model of the program P . The well-founded partial model is defined non-

constructively in [66]. We implement the concept using the idea of alternating fixpoint of

logic programs [65], but in the MX setting. The idea is to define an antimonotone operator

on a set of negative facts, which go back and forth between underestimates and overestimates

of the negative portion of the well-founded model and eventually converges to the exact set

of negative facts in the well-founded model. In this section, we give the formal definition of

alternating fixpoint partial model and its construction in the MX setting.

The immediate consequence operator is an operator whose fixpoint has been used as a

semantics of logic programs [64]. In [65], the author extends the definition of immediate

consequence operator to rules with negative literals. Here, we further extend it to allow an

arbitrary FO formula as the body of a rule. Recall from the Section 3.2.4 that we sometimes

use a (partial) structure B as the set of literals which are true according to B. And we use

the operator structureB(S) to recover the structure B from S.

CHAPTER 3. THE ENFRAGMO SYSTEM 20

Definition 2 (Immediate Consequence Operator) The immediate consequence oper-

ator for an inductive definition P over a (partial) structure B is the function CP,B(S+, S�),

which takes two sets with each set containing positive and negative literals, respectively, and

outputs a set of positive literals. A literal l is in the output if and only if P contains a

(ground) rule whose head is l and structureB(S+ [S�) satisfies the body of the rule.

Now, we define the alternating fixpoint operator used to compute the well-founded par-

tial model of the inductive definition.

Definition 3 (Alternating Fixpoint Operator in MX Setting) Let �-structure A be

the instance structure, B be a (partial) structure, and P be an inductive definition. Let

I+ = �A, and I� = I+ = ¬UA(I+) \ ¬I+ 3. Define an operator SP,B on a set of negative

literals such that

SP,B(S
�) = T1

P,B(S
�),

where TP,B(S�) = CP,B(I+, S� [I�). Note that the operator TP,B is monotone, thus the

fixpoint always exists. Based on the definition of the operator CP,B, the output of SP,B is a

set of positive literals. We convert it into a set of negative literals by taking the conjugate,

i.e., define another operator eSP,B(S�) = SP,B(S�) = UA(SP,B(S�)) \ ¬SP,B(S�).

Finally, we define the alternating fixpoint operator AP,B on a set of negative literals

such that

AP,B(S
�) = eSP,B(eSP,B(S

�)).

Note that the operator eSP,B is antimonotone. So by applying it twice, we get a monotone

operator AP,B. We call its least fixpoint A� = A1
P,B(;) the alternating fixpoint of the program

P over the (partial) structure B.

Definition 4 (Alternating Fixpoint Partial Model) Let A� be the least fixpoint as de-

fined above and A+ = SP,B(A�). We call a partial structure B the alternating fixpoint partial

model of program P if and only if B = structureB(A+ [A�).

The alternating fixpoint partial model is equivalent to the well founded partial model

[65]. In Enfragmo, the alternating fixpoint partial model is constructed using the above

fixpoint computation procedure, and the inductive definition is considered satisfiable if and

3
The literals in both I+ and I� are always true according to the instance structure.

CHAPTER 3. THE ENFRAGMO SYSTEM 21

i S�
i SP,B(S

�
i)

eSP,B(S
�
i) SP,B(eSP,B(S

�
i))

0 ; 0 ¬1,¬2,¬3,¬4,¬5,¬6 0, 2, 3, 4, 5, 6
1 ¬1 0, 2 ¬1,¬3,¬4,¬5,¬6 0, 2, 4, 5, 6
2 ¬1,¬3 0, 2, 4 ¬1,¬3,¬5,¬6 0, 2, 4, 6
3 ¬1,¬3,¬5 0, 2, 4, 6 ¬1,¬3,¬5 0, 2, 4, 6
4 ¬1,¬3,¬5 0, 2, 4, 6 ¬1,¬3,¬5 0, 2, 4, 6

Table 3.1: Step by step computation of A� = A1
P,B(;)

only if the computed model is a total model. Note that all the operations above are straight-

forward to implement except for the immediate consequence operator. In logic programming,

this is trivial since the body of each rule only consists of conjunction of literals. But in En-

fragmo, any FO formula can appear as the body of a rule. In Enfragmo, it is implemented

by the grounding technique described in section 3.4.2, i.e., the output of the immediate

consequence operator is the union of the grounding results of the body in each rule, using

the structure structureB(S+ [S�) (See definition 3.2.4).

The following example illustrates the procedure to compute the alternating fixpoint

partial model of inductive definition program shown in Example 8.

Example 9 (Recursive Definition of Even Numbers Continued) This example illus-

trates how the alternating fixpoint partial model of the inductive definition program in Ex-

ample 8 is actually constructed. The step by step computation of the alternating fixpoint

is shown in Table 3.1. In Table 3.1, we omit the predicate symbol Even, e.g., instead of

¬Even(1), we write ¬1. Since the alternating fixpoint partial model is a total model, the in-

ductive definition in example 8 has a model B which is an expansion of the instance structure

A by the relation Even such that:

EvenB = {0, 2, 4, 6}.

A preliminary version of the inductive definition is implemented in Enfragmo using the

alternating fixpoint computation procedure just described. There are some improvements

that could be achieved. In the current implementation, we do grounding each time we

apply the immediate consequence operator. Some smart data structure is needed to apply

the grounding only once in the beginning, and update the data structure based on di↵erent

assignments.

CHAPTER 3. THE ENFRAGMO SYSTEM 22

3.4.2 Grounding

Enfragmo computes a grounding of a formula bottom up, in a process analogous to bottom-

up evaluation of a database query using the relational algebra. It is important to notice

that the model expansion problem is very di↵erent from a query evaluation problem. In

model expansion context, there are formulas and sub-formulas involving expansion pred-

icates/functions, which cannot be evaluated, while in a query processing context, every

formula can be evaluated as either true or false.

In Enfragmo, an extension of the relational algebra is used, in which a formula is asso-

ciated with each tuple. This technique is first proposed in [43]. A tuple contains domain

elements, and the associated formula is (equivalent to) a ground instance of a sub-formula

of the specification formula, with variables instantiated by constants denoting the domain

elements in the tuple. An “answer” to a sub-formula of the specification formula is an ex-

tended table representing all instantiations of the sub-formula. The answer for a sentence

consists of an empty tuple associated with a formula since a sentence does not have any free

variables. The formula is a grounding of the sentence with respect to the instance. Similarly,

an answer to a term is a set of triples, each consisting of an instantiation of the arguments,

a value the term may denote, and a formula. To compute answers for compound formulas

and terms, we use the relational algebra operations corresponding to each connective and

quantifier in FO, as follows: complement (negation); join (conjunction); union (disjunction),

projection (existential quantification); division or quotient (universal quantification). For

example, to compute the answer to the compound formula � ^ , we first compute the

answers to its subformulas � and , and join the two extended tables (answers) together.

The join of answers to formulas is the same as the join of tables in relational algebra, except

that we also join (conjunct) the formulas associated to the tuples. For another example,

to compute the answer to the compound term t1 + t2, we first compute the answers to the

subterms t1 and t2, and then join the two answer tables. The join of answers to terms is

the same as the join of answers to formulas, except that the corresponding output value of

a compound term is determined based on the semantic of the operator used to form the

compound term (plus in the example), and the output values of its subterms. The exact

construction of the answers to the formulas and terms can be found in [5] and [2]. Example

10 shows the answers to some sample formulas and terms.

Example 10 Let � = {P, f} and " = {E}, and let A be a �-structure with dom(A) = {1, 2}

CHAPTER 3. THE ENFRAGMO SYSTEM 23

and PA = {(1, 1, 1), (2, 2, 2)}, and fA = {(1 : 2), (2 : 1)}. Answers to �1 ⌘ (P (x, y, z) ^
E(x, y)^E(y, z)), �2 ⌘ 9z�1, �3 ⌘ 9x9y�2, t1 ⌘ f(x), and t2 ⌘ t1 + y are demonstrated in

Table 3.2. In Table 3.2, the tuples associated with the formula False are omitted.

Note that some of the output values in the answer to the arithmetic term t2 in example

3.2 is outside of the domain. This can be problematic since the arithmetic operations may

potentially involve infinite domains, and if we don’t deal with the problem carefully, the

expressive power of the language will be easily become out of control. The problem is

addressed by a technique described in [59], in which the MX framework is embedded with

an infinite background structure. The authors show that their notion of embedded MX

still captures NP. We use this technique in the Enfragmo system to deal with arithmetical

constructs with possibly infinite domains.

E�ciency of this grounding method requires using suitable data structures. For e�-

ciency, all formulas in computed answers are represented in a directed acyclic graph (DAG)

which is constructed as the operations of the algebra are applied. We memorize the previ-

ously generated formulas and their structures to prevent generating the same subformulas

more than once. Next we briefly describe some aspects of the implementation of tables

representing answers.

It is often the case that, in an answer for a sub-formula, the instantiated formulas

are independent of the instantiations of some of the free variables. In this case, the table

explicitly records only the partial instantiations that are needed. This method is described in

[43] and [2] as tables with “hidden variables”. In the tables representing answers to formulas,

it is natural to have non-existence of a tuple correspond to associating the formula False

x y z �
1 1 1 E(1, 1) ^ E(1, 1)
2 2 2 E(2, 2) ^ E(2, 2)

x y �
1 1 E(1, 1) ^ E(1, 1)
2 2 E(2, 2) ^ E(2, 2)

�
[E(1, 1) ^ E(1, 1)] _ [E(2, 2) ^ E(2, 2)]

x val �
1 2 >
2 1 >

x y val �
1 1 3 >
1 2 4 >
2 1 2 >
2 2 3 >

Table 3.2: Answers to �1, �2, �3, t1 and t2

CHAPTER 3. THE ENFRAGMO SYSTEM 24

F
x y �
1 1 �1
2 3 >
3 2 �2

T
x y �
1 1 ¬�1
2 3 ?
3 2 ¬�2

(a) False table t1 (b) True table t2, which is the complement of the False table t1

Table 3.3: Complement of a False table.

with the tuple. However, negating a sparse table with this convention produces a very dense

table in which many tuples are associated with the formula True. To help keep tables sparse,

we employ two kinds of tables, one in which absence of a tuple corresponds to False, and one

where it corresponds to True. The formal semantics of the relational algebra operation on

True/False tables are given in [2]. Next, we present how each relational algebra operation

on True/False tables is implemented in Enfragmo.

Complement

The complement of a False (resp. True) table is the True (resp. False) table, with the same

set of tuples as the original table, but with the formulas associated with the tuples negated.

For example, the True table 3.3(b) is the complement of the False table 3.3(a). Note that

each formula � in False table 3.3(a) is not equal to ?. Then the negation of the formula

� is not equal to >, and thus should appear in the True table 3.3(b). Furthermore, all

the tuples not in the False table 3.3(a) are associated with formula ?, and thus the tuples

will be associated with the formula ¬? = >, and should not be included in the True table

3.3(b).

Join

1. Join of two False tables.

Join of two False tables T1 with variables v1, and T2 with variables v2, is the False

table T with the set of variables v1[v2. Recall that a True/False table is an extended

table with each tuple t in the table also associated with a formula �. The tuples of

the joined table T are determined as follows. For each < t1,�1 > in T1 and < t2,�2 >

in T2 such that t1 and t2 have the same values for the set of common variables v1\ v2,

CHAPTER 3. THE ENFRAGMO SYSTEM 25

F
x y �
1 1 �1
2 2 �2
2 3 >

F
x z �
1 2 1

2 1 >
3 3 2

F
x y z �
1 1 2 �1 ^ 1

2 2 1 �2
2 3 1 >

(a) False table t1 (b) False table t2 (c) False table t = t1 on t2

Table 3.4: A False table t from joining two False tables t1 and t2.

F
x y �
1 1 �1
2 3 >
3 2 �2

T
x z �
1 2 1

2 1 ?
3 3 2

F
x y z �
1 1 1 �1
1 1 2 �1 ^ 1

1 1 3 �1
2 3 2 >
2 3 3 >
3 2 1 �2
3 2 2 �2
3 2 3 �2 ^ 2

(a) False table t1 (b) True table t2 (c) False table t = t1 on t2

Table 3.5: A False table t from joining a False table t1 with a True table t2.

we insert < t,�1 ^�2 > to T , where the values in the tuple t coincides with the values

in t1 and t2. This can be implemented in linear time if the two tables are sorted based

on the values of common variables. Table 3.4 shows an example of joining two False

tables to obtain a False table. Note that if the result False table is very dense and have

lots of True formulas, we can get a sparse True table by computing its complement.

2. Join of a False table and a True table.

The join of a False table and a True table is similar to the join of two False tables,

except that we also need to consider the tuples not in the True table, which are

associated with the formula True. The algorithm for joining a False table with a True

table is given in Algorithm 1. Table 3.5 shows an example of joining two di↵erent

tables to obtain a False table. The domain of all variables is {1, 2, 3}.

CHAPTER 3. THE ENFRAGMO SYSTEM 26

Algorithm 1: Algorithm for joining a False table with a True table
input : False tables T1 and True table T2

output: False table T = T1 on T2

begin
Let v1 and v2 be the variables of T1 and T2, respectively ;
v = v1 [v2, vc = v1 \ v2, T = empty True table with variables v ;
Sort T1 and T2 based on the values of the common variables in vc ;
LRowInd = RRowInd = 0 ;
while LRowInd < T1.RowCount and RRowInd < T2.RowCount do

< t1,�1 >= T1.GetRow(LRowInd), < t2,�2 >= T2.GetRow(RRowInd) ;
Let the tuples tc1 and tc2 be the values of the common variables in vc in t1
and t2, respectively, in some fixed order ;
if tc1 < tc2 then

for each tuple t0 sharing the same values for variable vc as tc1 not in T2 do
Let the tuple t be the values of variables v from t1 and t0 ;
Insert < t,�1 > to T ;

LRowInd = LRowInd + 1 ;

else if tc1 > tc2 then
RRowEndInd = the index of the last tuple in T2 holding the sames values
for the common variables vc as tc2;
RRowInd = RRowEndInd + 1 ;

else
LRowEndInd = the index of the last tuple in T1 holding the sames values
for the common variables vc as tc1;
tend1 = T1.GetRow(LRowEndInd).GetTuple() ;
RRowEndInd = the index of the last tuple in T2 holding the sames values
for the common variables vc as tc2;
for each < tl,�l > in T1 between t1 and tend1 do

for each tr sharing the same values for variable vc as tl not in T2 do
Let the tuple t be the values of variables v from tl and tr ;
Insert < t,�l > to T ;

for each < tl,�l > in T1 between t1 and tend1 do
for each < tr,�r > in T2 between t2 and tend2 do

Let the tuple t be the values of variables v from tl and tr ;
Insert < t,�l ^ �r > to T ;

LRowInd = LRowEndInd + 1, RRowInd = RRowEndInd + 1 ;

while LRowInd < T1.RowCount do
< t1,�1 >= T1.GetRow(LRowInd) ;
for each tuple t0 sharing the same values for variable vc as t1 that is not in T2

do
Let the tuple t be the values of variables v from t1 and t0 ;
Insert < t,�1 > to T ;

LRowInd = LRowInd + 1 ;

return T ;

CHAPTER 3. THE ENFRAGMO SYSTEM 27

T
x y �
1 1 �
2 2 ?

T
x z �
1 2

T
x y z �
1 1 1 �
1 2 2
1 1 2 � ^
2 2 1 ?
2 2 2 ?

(a) True table t1 (b) True table t2 (c) True table t = t1 on t2

Table 3.6: A True table t from joining two True tables t1 and t2.

3. Join of two True tables. The join of two True tables is similar to the join of two

False tables, except that we also need to consider the tuples not in the True tables,

which are associated with the formula True. The algorithm for joining two True tables

is given in Algorithm 2. Table 3.6 shows an example of joining two True tables to

obtain a True table. The domain of all variables is {1, 2}.

Union

The Union operation is implemented dually to the Join operation.

Division

The algorithm for performing the division operation on True/False tables is given in Algo-

rithm 3. Table 3.7 shows an example of dividing a True table with variables {x, y} using

the set of variables {x}, to obtain a True table. The domain of all variables is {1, 2, 3}.

Projection

The Projection operation is implemented dually to the Division operation.

An alternative algorithm for those operations is also implemented. In the algorithm,

instead of sorting the tables based on the values of the common variables, we construct

a hash table from the left table with the keys being the tuple of values for the common

variables. Then we loop through the second table, and make queries to the hash table to

get the subtable of the left table with the values of common variables in its tuples coincide

with the ones in the current tuple in the right table.

CHAPTER 3. THE ENFRAGMO SYSTEM 28

Algorithm 2: Algorithm for joining two True tables
input : True tables T1 and T2

output: True table T = T1 on T2

begin
Let v1 and v2 be the variables of T1 and T2, respectively ;
v = v1 [v2, vc = v1 \ v2, T = empty True table with variables v ;
Sort T1 and T2 based on the values of the common variables in vc ;
LRowInd = RRowInd = 0 ;
while LRowInd < T1.RowCount and RRowInd < T2.RowCount do

< t1,�1 >= T1.GetRow(LRowInd), < t2,�2 >= T2.GetRow(RRowInd) ;
Let the tuples tc1 and tc2 be the values of the common variables in vc in t1
and t2, respectively, in some fixed order ;
if tc1 < tc2 then

for each tuple t0 sharing the same values for variable vc as tc1 not in T2 do
Let the tuple t be the values of variables v from t1 and t0 ;
Insert < t,�1 > to T ;

LRowInd = LRowInd + 1 ;

else if tc1 > tc2 then
for each tuple t0 sharing the same values for variable vc as tc2 not in T1 do

Let the tuple t be the values of variables v from t2 and t0 ;
Insert < t,�2 > to T ;

RRowInd = RRowInd + 1 ;

else
LRowEndInd = the index of the last tuple in T1 holding the sames values
for the common variables vc as tc1 ;
tend1 = T1.GetRow(LRowEndInd).GetTuple() ;
RRowEndInd = the index of the last tuple in T2 holding the sames values
for the common variables vc as tc2 ;
tend2 = T2.GetRow(RRowEndInd).GetTuple() ;
for each < tl,�l > in T1 between t1 and tend1 do

for each tr sharing the same values for variable vc as tl not in T2 do
Let the tuple t be the values of variables v from tl and tr ;
Insert < t,�l > to T ;

for each < tr,�r > in T2 between t2 and tend2 do
for each tl sharing the same values for variable vc as tr not in T1 do

Let the tuple t be the values of variables v from tl and tr ;
Insert < t,�r > to T ;

for each < tl,�l > in T1 between t1 and tend1 do
for each < tr,�r > in T2 between t2 and tend2 do

Let the t be the values of variables v from tl and tr ;
Insert < t,�l ^ �r > to T ;

LRowInd = LRowEndInd + 1, RRowInd = RRowEndInd + 1 ;

process remaining rows in a similar way to the first two cases in above while loop ;
return T ;

CHAPTER 3. THE ENFRAGMO SYSTEM 29

T
x y �
1 1 �1
1 3 �2
2 1 �3
3 1 �4
3 3 �5

T
y �
1 �1 ^ �3 ^ �4
3 �2 ^ �5

(a) True table t (b) True table t0 = d{x}(t)

Table 3.7: A True table t0 from dividing a True table t using variables {x}.

Algorithm 3: Algorithm for dividing a True/False table

input : True/False table T with variables V , and a set of variables D ✓ V
output: True/False table T 0 = dD(T)
begin

create an empty table T 0 of the same kind as T with the variables V \D ;
for each possible instantiation t of the set of variables V \D do

Let R be the set of tuples in T sharing the same values for the variables V \D
as t ;
Let be the set of formulas associated to the tuples in R, with the variables
in V \D instantiated by the assignments in t ;
if T is a True table or T is a False table and contains all possible
instantiations of variables in D then

� =
V
 2 ;

Insert < t,� > to T 0 ;

return T 0 ;

CHAPTER 3. THE ENFRAGMO SYSTEM 30

A simple term is a term whose denotation can be computed (with respect to an instance),

just using the assignments to its free variables. For example, W (l) in Example 4 is a simple

term. The formula for each tuple in an answer to a simple term is either True or False. A

term which is not simple is called complex. The Count aggregate used in Example 4 is a

complex term, because its value depends on the expansion predicate Q (the solution). To

represent the answer to a complex term occurring as an argument to sub-formula �, we have

two data structures: 1) A hash-map which maps each value o which term t may denote to

a table which is an answer to the formula t(x̄) = o, and 2) A table which can be viewed as

being the answer to the formula �(x̄, y) : t(x̄) = y. Methods for e�ciently constructing the

answers to complex terms, such as terms containing nested count and sum aggregates, are

examined in [5] and [3].

3.4.3 CNF Transformation

The set of answers for the sentences of a specification are then transformed to a propositional

CNF formula. As usual, this is done using a refinement of Tseitin’s polytime transformation

to CNF [62]. The major refinement is to rewrite the formula into negation normal form so

that negations occur only on atoms. We also flatten nested conjunctions and disjunctions,

and merge identical sub-formulas.

3.5 Experimental Evaluation

In this section, we compare the performance of Enfragmo to other grounding-based systems.

A set of NP-hard of problems were chosen from [18]. We excluded problems for which all

instances in the collection are easy. We also excluded problems where the sum aggregate

is central, as the current implementation of sum in Enfragmo is preliminary and does not

perform well. The other solvers are Clingo (v 3.0.3) [27], DLV (v 2010-10-14) [15], and IDP

(v 2.20) [68]. Note that the input languages of the above systems are able to describe all

the problems in NP. One of the dificulties in comparing performance of these systems is

that the perfomance may be very sensitive to the problem specifications used, i.e., di↵erent

specifications for the same problem may result in di↵erent performance in a single solver.

In this experiment, for each system, we used specifications provided by the system authors,

obtained from [18]. The experiments were run on an Intel Xeon L5420 quad-core 2.5 GHz

processor, with a timeout of 600 seconds. All specifications, instances, solution verifiers,

CHAPTER 3. THE ENFRAGMO SYSTEM 31

and scripts used for the experiments can be downloaded from [1]. The results are given in

Table 3.8. The entry n/t indicates that n instances were solved, each within the 600 second

timeout, in a total time of t seconds. The time t includes the time for all the runs that

timed out.

Table 3.8: Performance comparison of Enfragmo and other systems.

Problem # Inst Clingo DLV IDP Enfragmo

GraphColoring 29 9/12400 8/13398 9/12199 27/6965

HamiltonianPath 29 29/1.6 20/6856 29/2.1 29/308

SchurNumbers 29 29/889 18/8273 28/1452 29/643

BlockedNQueens 29 29/165 28/9870 29/896 29/1278

ConnectedDominatingSet 20 20/969 13/6190 17/3258 19/2038

DisjunctiveScheduling 10 10/1174 5/3581 10/1008 10/421

Total 146 126/15601 92/48170 122/18818 143/11656

Table 3.8 shows that Enfragmo was able to solve almost all the instances in the collection,

and performed the best on three of the six problems. Enfragmo also performed the best by

the aggregate measures of total number of instances solved and total time spent.

3.6 Related Work

One framework for solving search problems is the model expansion framework, where we are

given an instance of a problem and search for a solution satisfying certain properties. The

framework is considered suitable representing search problems because it is computationally

simpler task compared to satisfiability, e.g., satisfiability problem for FO is undecidable

while model expansion, on finite domains, is in NP. One well-studied approach to solve

model expansion tasks is to transform the high level problem specification and instance

description into equivalent description in low level language, such as SAT, ILP, and CSP,

for which we have e�cient solvers available. In this section, we discuss what other people

have done to solve model expansion tasks using this approach.

MXG [43, 48] is a framework based on classical first-order logic extended with inductive

CHAPTER 3. THE ENFRAGMO SYSTEM 32

definition. The set of the problems that can be described using MXG language is exactly

those problems in NP. It is developed explicitly based on the model expansion framework.

The MXG grounder translates its inputs into a propositional formula (a SAT instance), and

the resulting SAT instance can be input to any o↵-the-shelf SAT solver. Similar to Enfragmo,

the grounding in MXG is done in a bottom-up manner, based on algebraic database theory.

Thus almost all the optimization techniques developed in the database community can be

applied during the MXG grounding phase. MXG grounder works well with relatively small

size tables. It can perform very well in lots of cases since instance predicates are normally

sparse. However, when the tables for the instance predicates are negated, they result in very

large tables. This issue is handled in Enfragmo by using the concept of True/False tables.

The concept of hidden variables is also used in Enfragmo grounder to avoid instantiating

unnecessary variables. MXG input language does not have built-in arithmetic functions and

aggregate, which makes some interesting real-world problems not be conveniently expressed

in MXG input language. Examples of such problems include Knapsack, Scheduling, and

other problems involving weights and costs.

KodKod [61, 60] is another SAT-based constraint solver for an extension of first-order

logic. Its grounder also translates the program input into a pure SAT instance in a bottom-

up manner, then uses a SAT solver to search for a solution. Its grounding procedure is based

on Sparse-matrix representation of relations, where each relation over a finite universe is

represented as a matrix of Boolean values. Details can be found from [60]. The grounding

approach used in KodKod and MXG, though they look quite di↵erent on the surfice, have

close correspondence. The table used in MXG can be seen as a data structure representing

the sparse matrix. On the other hand, every data structure used in KodKod to represent

the matrix can also be used to represent the answer to a formula in MXG. One di↵erence

between the two grounders is that MXG translates its input into a ground formula, before

it gets further transformed into CNF, while KodKod directly translates its inputs into

equivalent CNF by assigning a CNF variable to each subformula. By design, the number

of variables in KodKod grounding output is generally larger than that in MXG’s. In some

cases, manipulating the collection of possible values for relation variables in KodKod results

in huge non-sparse matrices, which a↵ects the performance of the KodKod system.

The IDP system [68, 69, 67, 38] is a model finder for the first-order logic extended with

inductive definition, arithmetic functions and aggregates. The input language of IDP system

is very similar to that of Enfragmo. The IDP system supports full inductive definition of

CHAPTER 3. THE ENFRAGMO SYSTEM 33

the ID logic FO(ID) [17], while Enfragmo only supports a special case. The grounder

of the IDP translates its input into the language of its own low level solver, MinisatID.

MinisatID extends the classical Minisat SAT solver [19] by adding supports of the inductive

definition, arithmetic and aggregate functions. IDP’s grounder takes a top-down approach.

It first computes the true bound and the false bound from its inputs by representing the

bounds symbolically as a first-order formula of instance predicates. The main advantage of

symbolic computation is that the performance of the computation is independent of the size

of variables’ domains. On the other hand, in the symbolic computation of bounds, one needs

to have access to a function which can decide whether two given FO formulas are equivalent.

We know that this problem is generally undecidable. However, in the IDP grounder, the

formulas are converted into a canonical format represented in first-order Binary Decision

Diagram (BDD) structure, and two formulas having the same canonical representations are

considered the same. It is claimed that a first-order BDD with 12 decision nodes is su�cient

to handle most of real world specifications [67]. The performance of the IDP system deeply

relies on the quality of computed bounds. On the other hand, the bound computation

phase will terminate after a fixed amount of time if not completed. Thus, it is not intended

to find the best bounds possible. One can construct specifications for which IDP fails to

find complete bounds. In [63], the authors show how a lifted version of Unit Propagation

technique can be used in Enfragmo system to always compute the complete bounds by,

instead of symbolic computation, using information from the instance structure. Another

potential disadvantage of IDP system comes from the fact that IDP grounder translates its

input into a special syntax only accepted by its specialized solver. The output of the IDP

grounder is not pure CNF, thus is not accepted by normal SAT solvers. In order for the

IDP system to benefit from the latest techniques, the existing low level solver (MinisatID)

has to be extended using corresponding new techniques.

Answer Set Programming (ASP) is a framework for declarative problem solving based

on the stable model semantics [32]. The existing high level ASP solvers are, e.g., Clingo

[27, 28] and DLV [15, 49]. ASP systems work by grounding the input logic program by

substituting the variables by ground terms in the Herbrand universe in every possible way.

The instantiated program is then solved by propositional logic programming solvers. The

di↵erence between languages of Enfragmo and ASP systems is that Enfragmo allows arbi-

trary sentences in an extended FO and inductive definition, while the ASP program is one

big inductive definition under the stable model semantics, and in the definition, each rule

CHAPTER 3. THE ENFRAGMO SYSTEM 34

body is restricted to conjunctions of literals and weight constraints.

3.7 Conclusion

We presented the Enfragmo system for modelling and solving combinatorial search problems.

It provides users with a convenient way to specify and solve computationally hard problems,

in particular search problems whose decision versions are in the complexity class NP. The

performance of the Enfragmo system is comparable to that of related systems. As future

work, we plan to optimize the implementation of the inductive definition solver and Sum

aggregates, develop more optimization techniques in our grounder, and extend the grounder

to ground to other low level languages like ILP or SMT.

Chapter 4

Solving Modular Model Expansion

4.1 Introduction

The research described in this chapter is a part of a research program of developing for-

mal foundations for specification/modelling languages (declarative programming) for solving

computationally hard problems. Mitchell and Ternovska [42] formalize search problems as

the logical task of model expansion (MX), the task of expanding a given (mathematical)

structure with new relations. They started a research program of finding common under-

lying principles of various approaches to specifying and solving search problems, finding

appropriate mathematical abstractions, and investigating complexity-theoretic and expres-

siveness issues. The next step in the development of the MX-based framework is adding

modularity concepts. The following example clarifies our goals.

Example 11 (Business Process Planner) Business Process Planner takes a set S of

services and a set R of restrictions (such as dependencies between services or their deadlines)

and generates a plan P in the output. Each Provideri is allocated a potential subset of

services Si and restrictions Ri on it. The provider then generates a set of potential plans Pi

(and their associated costs) and returns it to the planner. Depending on whether the planner

is satisfied with the partial plans, it may reconsider service allocations or relax restrictions

on services. The output plan P is generated by combining plans Pi. The business process

planner relies on external services for particular tasks. The tasks performed by each of

the providers or the planner are often NP-complete, e.g. the Traveling Salesman Problem.

Therefore, finding a combined solution is a computationally (as well as conceptually) complex

35

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 36

Planner

Provider1 Provider2 Provider3

R

S

P

R1 R2 R3S1 S2 S3

P1 P2 P3

P1' P3'P2'

Figure 4.1: Business Process Planner

task. Such a central planner could be used in business process management in many areas.

We give three examples below.

Logistics Service Provider is a high level approach to use contracted carriers, local post,

fleet management, driver dispatch, warehouse services, transportation management

systems, e-business services as well as local logistics service providers with their own

sub-modules.

Manufacturer Supply Chain Management uses a supply chains planner relying on

transportation, shipping services, various providers for inventory spaces, etc.. It uses

services of third party logistics (3PL) providers, which themselves depend on services

provided by smaller local companies.

Mid-size Businesses Relying on External Web Services and Cloud Computing

Such businesses often use data analysis services, storing, spreadsheet software (o�ce

suite), etc.. The new cloud-based software paradigm satisfies the same need in the

domain of software systems.

We would like to find a method for finding solutions to such complex tasks. Modularity

is incorporated through representing each part in the most suitable language. For example,

the planner module is more easily specified in extended first-order logic, while some provider

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 37

modules perhaps are most easily specified using MILP (mixed integer linear programming).

Note that all the applications mentioned in the example are increasingly web-based, and

declarative programming of a web service is an open problem. In this thesis and related

papers, we take initial steps towards solving some aspects of this problem, namely the

underlying computationally complex task.

Such a method should treat each primitive module as a black-box (i.e., should not assume

access to a complete axiomatization of the module). Not assuming complete knowledge is

essential in solving problems like business process planning. This is because each of the solid

boxes in Figure 4.1 represents a business entity which often, while interested in participating

in the process, is not necessarily willing to share the information that has a↵ected their

decisions. Therefore, any approach to representing and solving such systems that assumes

unlimited access to complete axiomatizations of these entities is impractical.

In recent work [53], the authors extended the MX framework to be able to represent

a modular system. The most interesting aspect of that proposal is that modules can be

considered from both model-theoretic and operational views. Under the model-theoretic

view, an MX module is a set (or class) of structures, and under the operational view it is

an operator, mapping a subset of the vocabulary to another subset. An abstract algebra

on MX modules is given, and it allows one to combine modules on an abstract model-

theoretic level, independently from what languages are used for describing them. Perhaps

the most important operation in the algebra is the loop (or feedback) operation, since

iteration underlies many solving methods. The authors show that the power of the loop

operator is such that the combined modular system can capture all of the complexity class

NP even when each module is deterministic and polytime. Moreover, in general, adding loops

gives an increase in the polynomial time hierarchy, one step from the highest complexity

of the components. It is also shown that each module can be viewed as an operator, and

when each module is (anti-) monotone, the number of potential solutions can be significantly

reduced by using ideas from the logic programming community.

To develop the framework further, we need a method for “solving” modular MX systems.

By solving we mean finding structures which are in the modular system, where the system

is viewed as a function of individual modules. The goal is to come up with a way to find

the structures in the given modular system. Since we aim at developing the foundations of

language-independent problem solving, we tackle the problem model-theoretically.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 38

We take our inspiration in how “combined” solvers are constructed in the general field

of declarative problem solving. The field consists of many areas such as Integer Linear Pro-

gramming (ILP), Answer Set Programming (ASP), Satisfiability Modulo Theories (SMT),

Satisfiability (SAT), and Constraint Programming (CP), and each of these areas has de-

veloped multitudes of solvers, including powerful “combined” solvers such as SMT solvers.

Moreover, SMT-like techniques are needed in the ASP community [44]. Our main challenge

is to come up with an appropriate mathematical abstraction of “combined” solving. Note

that existing “combined” solvers are very powerful, but in some sense are not general enough

to solve arbitrary modular systems. They are designed to solve problems axiomatized in

their designated languages, e.g., SMT solvers for SAT extended with di↵erent theories, Con-

straint Answer Set solvers for the combination of ASP and CP language, etc. Our goal of

this paper is to design an algorithm which takes an arbitrary modular system as input and

finds a structure in the modular system. Note that our hope is not to compete with existing

systems, nor to replace them, but to build something completely new, that contributes to

solving computationally complex tasks that are presented in a modular way and interact

with each other during solving. In order to achieve this general goal, we need to study

existing systems for combing solvers.

Our contributions of this chapter are listed below:

1. We formalize common principles of “combined” solving in di↵erent communities in

the context of modular model expansion. Just as in [53], we use a combination of a

model-theoretic, algebraic and operational view of modular systems.

2. We design an abstract algorithm that, given a modular system, computes the models

of that modular system iteratively, and we formulate conditions on languages of indi-

vidual modules to participate in the iterative solving. Correctness of our algorithm is

proven model-theoretically.

3. We introduce abstractions for many ideas in practical systems such as the concept

of a valid acceptance procedure that abstractly represents unit propagation in SAT,

well-founded model computation in ASP, arc-consistency checkers in CP, etc.

4. We show that, in the context of the model expansion task, our algorithm generalizes

the work of solvers from di↵erent communities in a unifying and abstract way. In

particular, we show that DPLL(T) framework [45], branch-and-cut based ILP solver

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 39

[47] and state-of-the-art combination of ASP and CP [30] are all specializations of our

algorithm.

5. For each system (DPLL(T), ILP, ASP and CP) with a problem specification, we design

a compound modular system which takes a problem instance as input, and outputs the

solution, such that the set of structures in the modular system corresponds to the set

of solutions for the given problem specification. For example, for the DPLL(T) system

with a specification � which axiomatizes a scheduling problem, we design a compound

modular system such that the set of the structures in the modular system represents

all pairs of possible scheduling instances and corresponding solutions (schedule).

6. Each primitive modules in a modular system could be described in di↵erent language,

e.g., a modular system constructed from joining two primitive modules, where one

module is described in the language of ASP, and the other one is axiomatized using

the CP language. We show how our algorithm can benefit from the techniques used

in practical solver constructions to solve the modular system described in di↵erent

language e�ciently. For example, we show that the unit propagation techniques in

ASP solver construction, and the constraint propagation techniques in the CP solver

implementation can be used to solve the modular system described in both languages

e�ciently.

7. For each existing system S (DPLL(T), ILP, and ASP and CP), we construct a mod-

ular system M such that our algorithm on M models the solving procedure of the

corresponding system S. In this way, we show the feasibility of our algorithm for

solving arbitrary modular systems.

4.1.1 My Contributions

The work described in this chapter is based on the joint work with Shahab Tasharrofi [58, 56].

Shahab contributed the formal definitions of the modular systems and the operations to

combine the modules. The algorithm for computing the models of modular systems is

jointly designed. The work on modelling existing frameworks is done mainly by me with

some help from Shahab Tasharrofi.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 40

4.2 Background

4.2.1 Modular Systems

This section reviews the concept of a modular system defined in [53] based on the initial

development in [36]. As in [53], each modular system abstractly represents an MX task, i.e.,

a set (or class) of structures over some instance (input) and expansion (output) vocabulary.

A modular system is formally described as a set of primitive modules (individual MX tasks)

combined using the operations of: (1) Projection(⇡⌧ (M)) which restricts the vocabulary

of a module, (2) Composition(M1 B M2) which connects outputs of M1 to inputs of M2,

(3) Union(M1 [M2), (4) Feedback(M [R = S]) which connects output S of M to its inputs

R and, (5) Intersection(M1\M2). In this chapter, we only consider modular systems which

do not use the union operator.

Formal definitions of these operations are not essential for understanding this chapter,

thus, we refer the reader to [53] for details. We illustrate these operations by giving the

following algebraic specification for the modular system in Example 11.

BPP := ⇡{R,S,P}(Planner B (Provider1 \ Provider2 \ Provider3))

[P1 = P1
0][P2 = P2

0][P3 = P3
0].

(4.1)

Considering Figure 4.1, symbol BPP refers to the whole modular system denoted by the box

with dotted borders. R, S and P are the only vocabulary symbols important outside BPP .

So, other symbols are projected out. Also, there are three feedbacks from Pi (i 2 {1, 2, 3})
to P 0

i . Since each modular system is a set of structures, each such structure is called a model

of that system. We are looking for models of a modular system M which expand a given

instance structure A. Those are M ’s solutions for A.

Our goal is to give a method to solve the MX task for a given modular system, i.e.,

given a modular system M and structure A, find B in M which expands A. We find our

inspiration in existing solver architectures by viewing them at a high level of abstraction.

4.3 Computing Models of Modular Systems

In this section, we introduce an algorithm which takes a modular system M and a structure

A and finds an expansion B of A in M . Our algorithm uses a tool external to the modular

system (a solver). It uses modules of a modular system to “assist” the solver in finding a

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 41

model (if one exists). Starting from an empty expansion of A (i.e., a partial structure which

contains no information about the expansion predicates), the solver gradually extends the

current structure (through an interaction with the modules of the given modular system)

until it either finds a model that satisfies the modular system or concludes that none exists.

To model this procedure, we use the notion of the partial structure defined in 3.2.3.

In the following, by structure we always mean a total structure, unless otherwise speci-

fied. We may talk about “bad” partial structures which, informally, are the ones that cannot

be extended to a structure in M . Also, when we talk about a ⌧p-partial structure, in the

MX context, ⌧p is always a subset of ".

Total structures are partial structures with no unknown values. Thus, in the algorithmic

sense, total structures need no further guessing and should only be checked against the

modular system. A good algorithm rejects “bad” partial structures sooner, i.e., the sooner

a “bad” partial structure is detected, the faster the algorithm is.

Up to now, we defined partial and total structures and talked about modules rejecting

“bad” partial structures. However, modules are sets of structures (in contrast with sets

of partial structures). Thus, acceptance of a partial structure has to be defined properly.

Towards this goal, we first formalize the informal concept of “good” partial structures. The

actual acceptance procedure for partial structures is defined later in the section.

Definition 5 (Good Partial Structures) For a set of structures S and partial structure

B, we say B is a good partial structure wrt S if there is B0 2 S which extends B.

4.3.1 Requirements on the Modules

As expressed in the introduction, there is practical desire to solve complex computational

tasks in a modular way so that full access to a complete axiomatization of the module is

not assumed, i.e., the module is treated as a black box and accessed via controlled methods.

However, clearly, as the solver does not have any information about the internals of the

modules, it needs to be assisted by the modules themselves. Therefore, the next question

could be: “what assistance does the solver need from modules so that its correctness is

always guaranteed, i.e., the solver only returns correct solutions (structures in the modular

system)?” Intuitively, modules should be able to tell whether the solver is on the “right”

direction or not, i.e., whether the current partial structure is bad, and if so, tell the solver to

stop developing this direction further. We accomplish this goal by letting a module accept

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 42

or reject a partial structure produced by the solver and, in the case of rejection, provide

a “reason” to prevent the solver from producing the same model later on. Furthermore, a

module may “know” some extra information that a solver does not. Due to this fact, modules

may give the solver some hints to accelerate the computation in the current direction. Our

algorithm models such hints using “advice” to the solver.

Definition 6 (Advice) Let Pre and Post be formulas in a language L. Formula � is by

definition Pre � Post, which is advice wrt a partial structure B and a set of structures M

if:

1. B |= Pre,

2. B 6|= Post and,

3. for every total structure B0 in M , we have B0 |= �.

The role of advice is to prune the search and to accelerate extending a partial structure B
by giving a formula that is not yet satisfied by B, but is satisfied by any total extensions

of B in M . Pre corresponds to the part that is satisfied by B and Post corresponds to the

unknown part that is not yet satisfied by B.
Note that in order to pass advice to a solver, there should be a common language that the

solver and the modules understand (although it may be di↵erent from all internal languages

of the modules). Such a language should satisfy the following properties:

Definition 7 (Solver Language) For a language L, we say L is a solver language if:

• If � is a ground atom (i.e., R(t1, · · · , tn) in language L where R is an n-ary predicate

symbol and t1, · · · , tn are variable-free terms in language L), then � 2 L. Also, if

�1,�2 2 L then ¬�1 2 L and (�1 � �2) 2 L.

• Satisfiability relation for L respects the standard extension of FO satisfiability relation

to partial structures.

• Satisfiability relation for L gives a classical semantics to connectives ¬ (negation) and

� (implication).

• L is monotone, i.e., for sets of axioms �,�0: � ✓ �0) ConL(�) ✓ ConL(�0).

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 43

Note that we are defining a family of languages. Except for the first item in the definition,

the other items are not part of the language itself. They are the properties of the language

should have. Also note that the third item in the definition of the solver language implies

the resolution theorem, i.e., � |=L A � B implies �[{A} |=L B, and the deduction theorem,

i.e., �[{A} |=L B implies � |=L A � B. The resolution theorem in Definition 7 guarantees

that, once an advice of form Pre � Post is added to the solver, and when the solver has

deduced Pre under some assumptions, it can also deduce Post under the same assumptions;

while the deduction theorem allows the modules to generate the advice accordingly. From

now on, we assume that our advice and reasons are expressed in a language as above, i.e.,

a solver language.

We talked about modules assisting the solver, but a module is a set of structures and

has no computational power. Instead, we associate each module with an “oracle” to ac-

cept/reject a partial structure and give “reasons” and “advice” accordingly. Note that

assuming access to oracles which accept a partial structure i↵ it is a good partial structure,

one can always find a total model by polynomially many queries to such oracles. While

theoretically possible, in practice, access to oracles with such a strong acceptance proce-

dure is usually not provided, and most practical solvers apply propagation through more

e�cient and simple local consistency checking methods. Thus, we have to (carefully) relax

our assumptions for a weaker procedure, which we call a Valid Acceptance Procedure.

Definition 8 (Valid Acceptance Procedure) Let S be a set of ⌧ -structures. We say

that P is a valid acceptance procedure for S if for all ⌧p-partial structures B, we have:

• If B is total, then (1) P accepts B if B 2 S, and (2) P rejects B if B 62 S.

• If B is not total but B is good wrt S, then P accepts B.

• If B is neither total nor good wrt B, then P is free to either accept or reject B.

The procedure above is called valid as it never rejects any good partial structures. How-

ever, it could be a weak acceptance procedure because it may accept some bad partial

structures. This kind of weak acceptance procedure is abundant in practice, e.g., Unit

Propagation in SAT, Arc-Consistency Checks in CP, and computation of Founded and Un-

founded Sets in ASP. As these examples show, such weak notions of acceptance can usually

be implemented e�ciently as they only look for local inconsistencies. Informally, oracles ac-

cept/reject a partial structure through a valid acceptance procedure for a set containing all

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 44

possible instances of a problem and their solutions. We call this set a Certificate Set. Before

giving its formal definition, we should however point out one di↵erence to the readers who

are not accustomed to the logical approach to complexity: In theoretical computer science, a

problem is a subset of {0, 1}⇤. However, in descriptive complexity, the equivalent definition

of a problem being a set of structures is adopted. Now, we give the formal definition of the

Certificate Set.

Definition 9 (Certificate Set) Let � and " be instance and expansion vocabularies, re-

spectively. Let P be a problem, i.e., a set of �-structures, and C be a set of (�[")-structures.
Then, C is a (�[")-certificate set for P if for all �-structures A: A 2 P i↵ there is a struc-

ture B 2 C that expands A.

Example 12 (Graph 3-coloring: Certificates) Consider Example 1 of graph 3-coloring.

There, � = {E} and " = {R,G,B}. The problem P is the set of graphs G = (V G ;EG) which

are 3-colorable. A certificate set C for problem P of graph 3-coloring is, as one might ex-

pect, the same as 3-coloring certificates in complexity theory, i.e., a partitioning of vertices

into three sets R, G and B such that no edge of the graph connects vertices of the same

color together. The certificate set C, as expected, should be such that A 2 P (i.e., A is

3-colorable) i↵ C has at least one 3-coloring for A (i.e., there is at least one expansion B of

A in C which interprets R, G and B correctly).

Recall that each module is associated with an oracle to accept/reject a partial structure

and give reasons and advice accordingly. The role of the reasons is to prevent some bad

structures and their extensions from being proposed more than once, i.e., when a model is

deduced to be bad by an oracle, a new reason is provided by the oracle and added to the

solver such that all models of the system satisfy that reason but the “bad” structure does

not. The role of advice is to provide useful information to the solver (satisfied by all models)

but not yet satisfied by the partial structure B. Next, we present conditions that oracles

should satisfy so that their corresponding modules can contribute to our algorithm.

Definition 10 (Oracle Properties) Let L be a solver language. Let P be a problem, and

let O be an oracle. We say that O is:

• Complete and Constructive (CC) wrt L if O returns a reason B in L for each partial

structure B that it rejects such that: (1) B |= ¬ B and, (2) all total structures accepted

by O satisfy B.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 45

• Advising (A) wrt L if O gives a (possibly empty) set of advices in L wrt B for all

partial structure B.

• Verifying (V) if O is a valid acceptance procedure for some certificate set C for P .

Oracle O di↵ers from the usual oracles in the sense that it not only gives yes/no answers,

but also provides a reason for its “no” answers. It is complete wrt L because it ensures the

existence of such a reason and constructive because it provides such a reason. Also, it is

advising because it provides some facts that were previously unknown to guide the search.

Finally, it is verifying because it guides the partial structure to a solution through a valid

acceptance procedure. Although the procedure can be weak as described above, good partial

structures are never rejected and O always accepts or rejects total structures correctly. This

property guarantees the convergence to a total model. In the following sections, we use

the term CCAV oracle to denote an oracle which is complete, constructive, advising, and

verifying. Properties of CCAV oracles are later used in Proposition 1 to prove the correctness

of our algorithm.

Example 13 (Graph 3-coloring: Reasons and Advice) Consider the graph 3-coloring

example of Example 1. We want to describe some possible scenarios for an oracle O

of graph 3-coloring. Consider graph G = (V G ;EG) with V G = {a, b, c, d} and EG =

{(a, b), (b, a), (a, c), (c, a), (a, d), (d, a), (c, d), (d, c)}. Also consider a partial expansion B =

(V G ;EG , RB, BB, GB) of G to {R,B,G} which assigns color red to vertices a and b, color

green to vertex c and (yet) no color to vertex d. Obviously, B is a bad partial 3-coloring and

no matter what color we assign to d, we will not obtain a valid 3-coloring. Therefore, one

scenario for oracle O is to reject this partial coloring and give a reason like: ¬(R(a)^R(b)).

However, oracles do not always recognize a bad partial structure right away (recall that

although oracles are valid acceptance procedures, they can be weak). Therefore, another

scenario for O is to accept B but still help the solver by giving the advice := (R(a)^G(c)) �
B(d). Formula helps the solver to infer that B cannot be extended to a valid 3-coloring by

checking only one of B’s three possible extensions. The worst scenario, however, is that O

accepts B and does not give any advice. In this case, the solver has to check all colors for d

before inferring that B is a bad partial structure.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 46

Implementation of Oracles

When a module is described using some well-studied language, we often have existing e�-

cient Valid Acceptance Procedures used in solver constructions, e.g., Well-Founded Model

computation for ASP, Arc-Consistency checking for CP, Theory Propagation for various

SMT theories, a lifted version of Unit Propagation [63] for FO, etc. In these cases, corre-

sponding techniques can be used to implement oracles to accept/reject partial structures

and to provide reasons and advice accordingly. For example, we could use the propagation

techniques used in the CP community to design an oracle for a primitive module described

in some CP language. We may not simply use the CP solver to solve the whole problem

since we may have other primitive modules axiomatized in other languages such as ASP or

ILP. In this case, the propagation techniques in the ASP or ILP communities can also be

used to construct oracles for the corresponding primitive modules which assist the solver to

solve the modular system with each primitive modules described in di↵erent languages. In

this way, we benefit from the techniques used in practical solver constructions in di↵erent

communities to solve the modular system e�ciently. More examples of Valid Acceptance

Procedures used in practice are given in Section 4.4.

4.3.2 Requirements on the Solver

The role of the solver is to provide a possibly good partial structure to the oracles, and if

none of the oracles reject the partial structure, keep extending it until we find a solution or

conclude no extension exists. If the partial structure is rejected by some oracle, the solver

gets a reason from that oracle for rejection and tries some other partial structure. The solver

also gets advice from oracles to accelerate the search. In this section, we discuss properties

that a solver must satisfy in order for it to participate in our iterative solving procedure.

Although the solver can be realized by many practical systems, for them to work in an

orderly fashion and for algorithm to converge to a solution fast, it has to satisfy certain

properties. First, the solver has to be online since the oracles keep adding reasons and

advice to it. Furthermore, to guarantee termination, the solver has to guarantee progress,

which means it either produces a proper extension of the previous partial structure or, if

not, the solver is guaranteed to never return any extension of that previous partial structure

later on. Now, we give the requirements on the solver formally.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 47

Definition 11 (Complete Online Solver) A solver S is complete and online if the fol-

lowing conditions are satisfied by S:

• S supports the actions of initialization, adding sentences (reasons and advices from

oracles), and reporting its state as either hUNSAT i or hSAT,Bi.

• If S reports hUNSAT i then the set of sentences added to S are unsatisfiable over the

domain A,

• If S reports hSAT,Bi then B does not falsify any of the sentences added to S,

• If S has reported hSAT,B1i, · · · , hSAT,Bni and 1  i < j  n, then either Bj is a

proper extension of Bi or, for all k � j, Bk does not extend Bi.

For finite structures, a solver as above is (1) Sound: it returns partial structures that at

least do not falsify any of the axioms in solver language, and (2) Complete: it reports unsat-

isfiability only when unsatisfiability is detected and not when, for example, some heuristic

has failed to find an answer or some time limit is reached. Proposition 1 gives the exact

correspondence in this regard.

4.3.3 Lazy Model Expansion Algorithm

In this section, we present an iterative algorithm to solve model expansion tasks for modular

systems. This algorithm takes an instance structure and a modular system (and its CCAV

oracles) and integrates them with a complete online solver to solve a model expansion task in

an iterative fashion. The algorithm works by accumulating reasons and advice from oracles

and gradually converging to a solution to the problem.

Algorithm 4 presents the lazy model expansion algorithm for solving general modular

systems. The word “lazy” comes from the SMT community which refers to the integration

of the DPLL-style reasoning and theory specific propagation techniques. The main idea is

to incrementally build the expansion structure to satisfy all the primitive modules in the

compound modular system in the input. Note that this simple approach respects all the

operators defined for the modular system except the union operator.

Proposition 1 (Correctness) Algorithm 4 is sound and complete 1 for finite structures,

1
It follows the idea of completeness for search algorithms.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 48

Algorithm 4: Lazy Model Expansion Algorithm
Data: Modular System M with each module Mi associated with a CCAV oracle Oi,

input structure A and complete online solver S
Result: Structure B that expands A and is in M
begin

Initialize the solver S using the empty expansion of A ;
while TRUE do

Let R be the state of S ;
if R = hUNSAT i then return Unsatisfiable ;
else if R = hSAT,Bi then

Add all the advice from oracles wrt B to S ;
if M does not accept B then

Find a module Mi in M such that Mi does not accept B|vocab(Mi) ;

Add the reason given by oracle Oi to S ;

else if B is total then return B ;

i.e., given a modular system M with CCAV oracles, a complete online solver S and a finite

instance structure A:

1. If Algorithm 4 returns B, then B 2M ,

2. If Algorithm 4 returns ”Unsatisfiable” then none of structures B 2M expands A.

3. Algorithm 4 always terminates.

Proof: (1) If structure B is returned, it is total and it is accepted by all oracles. So, as all

oracles are verifying, total structures are decided correctly. Therefore B|vocab(Mi) 2 Mi for

all primitive modules Mi of M . Thus, B 2M .

(2) If “Unsatisfiable” is returned, then the set of sentences added to the solver S are unsat-

isfiable (by properties of S). Also, by monotonicity of language L of the solver, no superset

of such set of sentences is satisfiable. Also, as these sentences are only advice and reasons

returned by oracles, they are true in every B 2M which expands A (by properties of CCAV

oracles). Therefore, there is no B 2M which expands A.

(3) By the property of complete online solvers, S can never report hSAT,Bi (for some

B) twice. Therefore, as there are only finitely many di↵erent partial expansions of finite

structure A, either there should be a point where S reports hSAT,Bi for some total structure

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 49

B accepted by all modules (which terminates the algorithm), or a time when S reports

hUNSAT i (which also terminates the algorithm).

Proposition 2 (Time Complexity) For all modular systems M , there is k 2 N s.t. for

each finite structure A, Algorithm 4 terminates after at most 3O(|dom(A)|k) calls to the solver.

Proof: Let k be the maximum arity of the predicate symbols in the expansion vocabulary

of M . Then, the proof follows the proof for Proposition 1 plus the fact that 3O(|dom(A)|k)

di↵erent partial interpretations exist.

4.4 Case Studies: Existing Frameworks

In this section, we describe algorithms from three di↵erent areas and show that they can

be e↵ectively modelled by our proposed algorithm in the context of model expansion. We

show that our algorithm acts similarly to the state-of-the-art algorithms used in the areas

of SMT, ASP, and ILP, when the right components are provided.

Notation 1 We sometimes use a ⌧ -structure B (which gives an interpretation to vocabulary

⌧) as the set of ⌧ -atoms of B. For example, when ⌧ = {R,S} and RB = {(1, 2)} and

SB = {(1, 1), (2, 2)}, then we may use B to represent the following set of atoms:

B = {R(1, 2), S(1, 1), S(2, 2)}.

We may also use a partial interpretation as a set of true atoms in a similar fashion. Some-

times, we also use B to represent a formula, i.e., the conjunction of the atoms in the above

set. The complement of a set is defined as usual, e.g., RBc
= dom(B)2 \RB. Negation of a

set S of literals is also defined such that l 2 S if and only if ¬l 2 ¬S.

4.4.1 Modelling DPLL(T)

The DPLL(T) [45] system is an abstract framework to model the lazy SMT approach. It is

based on a general DPLL(X) engine, where X can be instantiated with a theory T solver.

The DPLL(T) engine extends the Decide, UnitPropagate, Backjump, Fail and Restart ac-

tions of the classic DPLL framework with three new actions: (1) TheoryPropagate gives

literals that are T -consequences of the current partial assignment, (2) T -Learn learns T -

consistent clauses, and (3) T -Forget forgets some previous lemmas of theory solver.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 50

To participate in the DPLL(T) solving architecture, a theory solver provides three op-

erations: (1) taking literals that have been set true, (2) checking if setting these literals

true is T -consistent and, if not, providing a subset of them that causes inconsistency, (3)

identifying some currently undefined literals that are T -consequences of the current partial

assignment and providing a justification for each. More details can be found in [45].

In this section, the the following MX task is used as a running example to show how

Algorithm 4 models the DPLL(T) system.

Example 14 (Disjoint Scheduling) Given a set of Tasks, {t1, · · · , tn} and a set of con-

straints, the goal is to find a schedule that satisfies all the constraints. Each task ti has

an earliest starting time EST (ti), a latest ending time LET (ti) and a length L(ti). There

are also two predicates P (ti, tj) and D(ti, tj) which say, respectively, that task ti should

end before task tj starts, and two tasks ti and tj cannot overlap. We are asked to find

the function S(ti) for the start time which satisfies the conditions above. In this example,

� = {EST,LET,L, P,D} and " = {S}.

We solve the disjoint scheduling problem in Example 14 using the DPLL(T) system with

the theory T being the Theory of Di↵erence Logic [45].

Example 15 (Disjoint Scheduling (Specification, Instance, Ground Program))

We use following specification to represent the disjoint scheduling problem.

8t (EST (t)  S(t)),

8t (S(t) + L(t)  LET (t)),

8t18t2 (P (t1, t2) � S(t1) + L(t1)  S(t2)),

8t18t2 (D(t1, t2) � S(t1) + L(t1)  S(t2) _ S(t2) + L(t2)  S(t1)).

(4.2)

However, one can notice that the specification above is not separated into the theory part

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 51

and the propositional part (as required by DPLL(T)). This can be done as follows:

“Propositional” part � is:

8
>>>>>>>>>><

>>>>>>>>>>:

8t (after(t)),

8t (before(t)),

8t18t2 (P (t1, t2) � prec(t1, t2)),

8t18t2 (D(t1, t2) � prec(t1, t2) _ prec(t2, t1)).

Theory part is:

8
>>>>>><

>>>>>>:

after(t) () S(t) � EST (t),

before(t) () S(t) + L(t)  LET (t),

prec(t1, t2) () S(t1) + L(t1)  S(t2).

(4.3)

In the real world, the DPLL(T) system works on the propositional level and the program

above is first grounded before being fed to the DPLL(T) system. The first part is called

“propositional” because the formulas will be turned into propositional ones. In this example

we assume that the instance structure A has domain A = {1, 2} and the following inter-

pretations: ESTA = {(1 : 2), (2 : 2)}, LETA = {(1 : 4), (2 : 4)}, LA = {(1 : 2), (2 : 1)},
PA = ;, and DA = {(1, 2)}. The ground DPLL(T) program for instance structure A is the

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 52

conjunction of � and , where:

Propositional part � is:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

a1

a2

b1

b2

p12 _ p21

Theory part is:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

a1 () s1 � 1

a2 () s2 � 2

b1 () s1  2

b2 () s2  3

p12 () s1 + 2  s2

p21 () s2 + 1  s1

(4.4)

The DPLL(T) system solves ground program 4.4 as follows: Starting from the empty

assignment, the assignment is gradually extended for the set of boolean atoms and, mean-

while, queries to the Theory Solver are made to check whether the current assignment is

T -consistent. If not, the theory solver returns a set of literals which are true in the cur-

rent assignment, but cannot be true together according to theory T and specification . For

example consider the partial assignment below:

a1 = a2 = b1 = b2 = p21 = >, p12 =? (unknown) (4.5)

When this set of assignments is passed to the theory solver for di↵erence logic, it can

detect that if both a2 (s2 � 2) and b1 (s1  2) are true, then s2 � s1. Thus, p21 (s2+1  s1)

cannot be true. So, the assignment (4.5) conflicts with the part of ground program (4.4).

The reason for this conflict can be described using the set of literals {a2, b1, p21} saying

that they cannot all be true at the same time. Also, the theory solver may even assist the

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 53

MTψ

MPΦ

TOTAL

1E


1E


E E

2E


2E


I

E

Figure 4.2: Modular System DPLL(T)�^ Representing the DPLL(T) System on Input
Formula � ^

propositional solver by asserting ¬p21 before it is assigned true. For example, once the

propositional solver has decided a2 and b1 to be true and not yet made p21 true, the theory

solver can use the fact a2 ^ b1 � ¬p21 (which is a logical T -consequence of) to assert that

p21 should be false. These two behaviors are modeled in our system through reasons and

advice, respectively.

Next, we show our modular representation of the general DPLL(T) system, and show

how the Algorithm 4 on this representation models the solving procedure of the DPLL(T)

system. The modular system representing the DPLL(T) system on the input formula �^
is shown in figure 4.2, where � = I, " = E, and E+ [E� [E+

1 [E�
1 [E+

2 [E�
2 is the

internal vocabulary of the module. Also, there is feedback from E+
1 to E+

2 and from E�
1 to

E�
2 . The set of symbols in E+ and E� (similarly for E+

1 and E�
1 , E

+
2 and E�

2) semantically

represents a partial interpretation of the symbols in the expansion vocabulary, i.e., E+ (resp.

E�) represents the positive (resp. negative) part of the partial interpretation.

Example 16 (Disjoint Scheduling Continued) Continuing our running example, the

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 54

assignment (4.5) is equivalent to the following partial structure B:

after+
B
= {1, 2} after�

B
= ;

before+
B
= {1, 2} before�

B
= ;

prec+
B
= {(1, 2)} prec�

B
= ;

This means that, in our representation of the DPLL(T) modular system, we should have:

{after(1), after(2), before(1), before(2), prec(1, 2)} ✓ E+B
.

There are three MX modules in DPLL(T)�^ . The modules MP� and MT work on

di↵erent parts of the specification. The formula � in MP� is a CNF representation of

the problem specification with all non-propositional literals replaced by new propositional

atoms, and the formula in MT is the formula
V

i di , li where li and di are, respectively,

an atomic formula in theory T and its associated propositional literal used in MP� . The

module MP� is the set of structures B such that:

(E+
1
B
, E�

1
B
) =

8
>>>>>><

>>>>>>:

(D,D) if R+ \R� 6= ;

(R+, R+c) if R+ \R� = ;, IB [¬IBc [R+ [¬R� |= �

(R+, R�) if R+ \R� = ;, IB [¬IBc [R+ [¬R� 6|= �

,

where D = Bn, n is the arity of E+, and (R+, R�) is the result of Unit Propagation on �

under IB [¬IBc [E+B [¬E�B.

Example 17 (Disjoint Scheduling Continued) Continuing our running example, as-

suming that E+B
= E�B

= ;, in order for the module MP� to accept the structure B, we
should have that E+B

1 = {after(1), after(2), before(1), before(2)}. This is because R+ (the

positive atoms deduced by unit propagation on �) asserts that a1, a2, b1 and b2 should all be

true (look at the propositional part of Equation (4.4)).

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 55

Similarly, the module MT is defined as the set of structures B such that:

(E+B
, E�B

) =

8
>>>>>>>>>><

>>>>>>>>>>:

(D,D) if R+ \R� 6= ;

(D,D) if R+ \R� = ;, IB [¬IBc [R+ [¬R�|=T¬

(R+, R+c) if R+ \R� = ;, IB [¬IBc [R+ [¬R�|=T

(R+, R�) if R+ \R� = ;,T-satisfiability unknown

,

where D is as before and (R+, R�) is the result of Theory Propagation on under IB [
¬IBc[E+

2
B[¬E�

2
B
, and R|=T denotes that is T -satisfiable under the set of facts R. Note

that the satisfiability test is not necessarily complete. It can be done in di↵erent degrees

depending on the complexity of di↵erent theories, e.g., exhaustive theory propagation could

be applied for low complexity theories like Theory of Di↵erence Logic, and non-exhaustive

theory propagation for more complex theories like Theory of Equality with Uninterpreted

Functions (EUF) [45].

Example 18 (Disjoint Scheduling Continued) Continuing our running example, as-

sume that E+B

2 = {after(1), after(2), before(1), before(2)} and E�B

2 = ;. In order for the

module MT to accept the structure B, we should have that E�B
= {prec(1, 2)}. This is

because R� (the negative facts deduced by T -propagation on) tells us that if a2 and b1 are

true (which they are), then p12 should be false.

The module TOTAL is the set of structures B such that E+
1
B\E�

1
B
= ;, E+

1
B[E�

1
B
= D,

and E+
1
B
= EB.

We define the modular system DPLL(T)�^ as:

DPLL(T)�^ := ⇡{I,E}(((MT BMP�)[E
+
1 = E+

2][E
�
1 = E�

2])B TOTAL). (4.6)

To show that the combined module DPLL(T)�^ is correct, we prove that a structure

is in the modular system DPLL(T)�^ i↵ it satisfies both formula � and . Consider any

model of the modular system. Note that for both modules MP� and MT , the outputs

always contain all the information that the inputs have, i.e., for any structure B in the

module MP� , we have E+
1
B ◆ E+B and E�

1
B ◆ E�B, and for any structure B in MT ,

we have E+B ◆ E+
2
B
and E�B ◆ E�

2
B
. Furthermore, from the semantics of the feedback

operator, we know that E+
1
B
= E+

2
B
and E�

1
B
= E�

2
B
. Thus, we have E+B = E+

1
B
= E+

2
B

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 56

and E�B = E�
1
B
= E�

2
B
. Moreover, from the definition of module TOTAL, we know that

(E+
1
B
, E�

1
B
) represents a total interpretation of the symbols in E and EB = E+

1
B
. Finally,

from the definitions of MP� and MT on encodings of total interpretations, we can conclude

that B |= � and B|=T . On the other hand, it is easy to see that for any structure B such

that B |= � and B|=T , B is in DPLL(T)�^ .

So, there is a one-to-one correspondence between models ofDPLL(T)�^ and the propo-

sitional part of the solutions to the DPLL(T) system on input formula � ^ . To find a

solution, one can compute a model of this modular system.

To solve DPLL(T)�^ , we introduce a solver S to be any DPLL-based online SAT

solver, so that it performs the basic actions of Decide, UnitPropagate, Fail, Restart, and

also Backjump when the backjumping clause is added to the solver. The three modules

TOTAL, MT and MP� are attached with oracles OTOTAL, OT and OP respectively. They

accept a partial structure B i↵ their respective module constraints are not falsified by B.

Example 19 (Disjoint Scheduling Continued (OP , OT and OTOTAL)) Let � and

in Figure 4.2 be, respectively, the propositional part and theory part of the specification in

Example 15. Let the structure B contain the same set of partial assignments as the one

in Example 15, i.e., after+1
B

= before+1
B

= {1, 2}, prec+1
B

= {(2, 1)}, and after�1
B

=

before�1
B
= prec�1 = ;. When OT is queried on B, it returns after+1 (2) ^ before+1 (1) �

prec�(2, 1) as the advice to the solver S. Together with the advice prec�(2, 1) � prec�1 (2, 1)

from the oracle OP , in the next round, S will conclude prec�1 (2, 1) to be true. This new struc-

ture from S will be rejected by the oracle OTOTAL with the reason prec�1 (2, 1) � ¬prec+1 (2, 1).

Detailed constructions for the solver S, oracle OTOTAL, oracle OT and OP follows:

Solver S is a DPLL-based SAT solver (clearly complete and online).

Oracle OTOTAL accepts a partial structure B i↵ E+
1
B \E�

1
B
= ;, E+

1
B [E�

1
B
= D, and

EB = E+B. If B is rejected, OTOTAL returns
V
!2⌦0 ! as the reason, where ⌦0 is any non-

empty subset of the set ⌦ = {E+
1 (d), ¬E�

1 (d) | d 2 D,B 6|= E+
1 (d), ¬E�

1 (d)}[{E(d),
E+

1 (d) | d 2 D,B 6|= E(d), E+
1 (d)}. OTOTAL returns the set ⌦ as the set of advices when

B is the empty expansion of the instance structure, and the empty set otherwise.2 Clearly,

OTOTAL is a CCAV oracle.

Oracle OT accepts a partial structure B i↵ it does not falsify the constraints described

2This makes sure that ⌦ is returned only once at the beginning.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 57

above for module MT on I, E+, E�, E+
2 , and E�

2 . Let (R
+, R�) denote the result of the

Theory Propagation on under IB [¬IBc [E+
2
B [¬E�

2
B
. Then, if B is rejected,

1. If R+ \ R� 6= ; or is T -unsatisfiable under IB [¬IBc [R+ [¬R�, OT returns

a reason ! of the form
V

d2D1
E+

2 (d) ^
V

d2D2
E�

2 (d) �
V

d2D3
(E+(d) ^ E�(d)) with

D1 ✓ D, D2 ✓ D, ; (D3 ✓ D, T |=
W

d2D1
¬l(d) _

W
d2D2

l(d), and B |= ¬!, where
l(d) denotes the atomic formula l in whose associated propositional atom is d. Note

that from the advices and reasons from oracles, the solver can understand that right

hand side of the implication is inconsistent, and thus the reason corresponds to the

set of T -inconsistent literals from the theory solver in the DPLL(T) system.

2. Else if is T -satisfiable under IB [¬IBc [R+ [¬R�, OT returns a reason ! of the

form
V

d2D1
E+

2 (d) ^
V

d2D2
E�

2 (d) �
V

d2R+ E+(d) ^
V

d2R+c E�(d), where D1 ✓ D,

D2 ✓ D, and B |= ¬!.

3. Else, OT returns a reason similar to the second case except that it uses R� instead of

R+c.

By the definition of MT , we know that B falsifies the reason and all models of MT

satisfy the reason. Thus, OT is complete and constructive. OT may also return some advices

in the same form as any ! above such that B satisfies the left hand side of the implication,

but not the right hand side. Also, since the outputs of MT always subsume the inputs, OT

may also return the set {E+
2 (d) � E+(d) | d 2 D, B |= E+

2 (d),B 6|= E+(d)} [{E�
2 (d) �

E�(d) | d 2 D,B |= E�
2 (d),B 6|= E�(d)} as the set of advices.3 Clearly, all the structures in

MT satisfy all sets of advices. Hence, OT is an advising oracle. Finally, OT always makes

the correct decision for a total structure and rejects a partial structure only when it falsifies

the constraints for MT . Oracle OT never rejects any good partial structure B (although it

may accept some bad non-total structures). Therefore, OT is a verifying oracle.

Oracle OP accepts a partial structure B i↵ it does not falsify the constraints for module

MP� on I, E+, E�, E+
1 , and E�

1 . Let (R
+, R�) denote the result of the Unit Propagation

on � under IB [¬IBc [E+B [¬E�B. Then, if B is rejected,

1. If R+ \ R� 6= ;, OP returns a reason ! of the form
V

d2D1
E+(d) ^

V
d2D2

E�(d) �
V

d2D3
(E+

1 (d)^E
�
1 (d)) with D1 ✓ D, D2 ✓ D, ; (D3 ✓ D, � |=

W
d2D1

¬d_
W

d2D2
d

3Again OT only returns this set when B is the empty expansion of the instance structure.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 58

and B |= ¬!.

2. Else if IB [¬IBc [R+ [¬R� |= �, OP returns a reason ! of the form
V

d2D1
E+(d)^

V
d2D2

E�(d) �
V

d2R+ E+
1 (d)^

V
d2R+c E�

1 (d), where D1 ✓ D, D2 ✓ D, and B |= ¬!.

3. Else, OP returns a reason similar to the second case except that it uses R� instead of

R+c.

OP may return the set of advices in the same form as any ! above such that B satisfies

the left hand side of the implication, but not the right hand side. Also, since the outputs of

MP� always subsume the inputs, OP may also return the set {E+(d) � E+
1 (d) | d 2 D,B |=

E+(d),B 6|= E+
1 (d)} [{E�(d) � E�

1 (d) | d 2 D,B |= E�(d),B 6|= E�
1 (d)} as the set of

advices.

Proposition 3 1. Modular system DPLL(T)�^ is the set of structures B such that

B |= � and B|=T .

2. Solver S is complete and online.

3. OP , OT , and OTOTAL are CCAV oracles.

4. Algorithm 4 on modular system DPLL(T)�^ associated with oracles OP , OT , OTOTAL,

and the solver S models the solving procedure of the DPLL(T) system on input formula

� ^ .

The DPLL(T) architecture is known to be very e�cient and many solvers use it, including

most SMT solvers [51]. The DPLL(Agg) module [12] is suitable for all DPLL-based SAT,

SMT and ASP solvers to check satisfiability of aggregate expressions in DPLL(T) contexts.

All these systems are representable in our modular framework.

4.4.2 Modelling ILP Solvers

Integer Linear Programming solvers solve optimization problems. In this thesis, we model

ILP solvers which use general branch-and-cut method to solve search problems instead, i.e.,

when the target function is a constant. Throughout the section, we use the following MX

task as a running example to show how Algorithm 4 models branch-and-cut based ILP

solvers.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 59

Example 20 (Facility Opening Problem) Given a set of facilities F = {1, 2, · · · , n}, a
set of clients C = {1, 2, · · · ,m}, a function E(f, c) denoting whether the facility f is avail-

able to the client c, a function OC(f) indicating the cost of opening the facility f , a function

UC(c, f) representing the cost of the client c using the facility f , and a constant d, the

task is to open a subset of the facilities (O(f)) and assign open facilities to available clients

(U(c, f)) such that each client has at least one open facility assigned, and the total cost (both

opening cost and using cost) does not exceed d. Above, we have � = {available, OC,UC, d},
and " = {O,U}.

Example 20 describes a famous problem of facility opening where you want to minimize

the total cost of opening and using facilities so that all your clients are covered by at least

one facility. This problem showcases some of the strengths of ILP solvers. First, we describe

how ILP solvers utilize the general branch-and-cut algorithm [47] to tackle such problems.

The general algorithm is:

1. Initialization: S = {ILP0} with ILP0 the initial problem.

2. Termination: If S = ;, return UNSAT.

3. Problem Select: Select and remove problem ILPi from S.

4. Relaxation: Solve LP relaxation of ILPi (as a search problem). If infeasible, go to

step 2. Otherwise, if solution XiR of LP relaxation is integral, return solution XiR.

5. Add Cutting Planes: Add a cutting plane violating XiR to relaxation and go to 4.

6. Partitioning: Find partition {Cij}j=k
j=1 of constraint set Ci of problem ILPi. Create k

subproblems ILPij for j = 1, · · · , k, by restricting the feasible region of subproblem

ILP ij to Cij . Add those k problems to S and go to step 2. Often, in practice, finding

a partition is simplified by picking a variable xi with non-integral value vi in XiR and

returning partition {Ci [{xi  bvic}, Ci [{xi � dvie}}.

In order for the branch-and-cut algorithm above to solve the problem in Example 20,

we must describe the example using a set of linear inequalities as follows.

Example 21 (Facility Opening (Specification, Instance, Ground Program))

We use the following high level ILP specification to represent the facility opening problem

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 60

f1 f2

C1 C2 C3

1 2

1 43 2

Figure 4.3: Facility Opening Problem Instance

in Example 20.
P

f OC(f) ⇤O(f) +
P

c,f UC(c, f) ⇤ U(c, f)  d

8c8f U(c, f)  O(f)

8c8f U(c, f)  E(f, c)

8c
P

f uses(c, f) � 1

8c8f 0  U(c, f)  1

8f 0  O(f)  1

(4.7)

However, the specification in Equation 4.7 contains a set of quantifiers which must first

be expanded before giving the program into an ILP solver. Next we show how such a task

can be accomplished given a problem instance.

A problem instance is shown in Figure 21. In Figure 21, two facilities are shown on the

top and three clients are shown below. The availability of facilities to clients is represented

as edges between facilities and clients. The opening costs for facilities are shown on top of

facilities, and the costs of use are shown on the edges. The ground ILP program for this

instance is as follows:

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 61

U1,1  0 U1,2  1

U2,1  1 U2,2  1

U3,1  1 U3,2  0

U1,1 + U1,2 � 1 U2,1 + U2,2 � 1 U3,1 + U3,2 � 1

U1,1 �O1  0 U1,2 �O2  0

U2,1 �O1  0 U2,2 �O2  0

U3,1 �O1  0 U3,2 �O2  0

0.5 O1 + 1.5 O2 + U1,2 + 3 U2,1 + 2 U2,2 + 4 U3,1  10

0  U1,1, U1,2, U2,1, U2,2, U3,1, U3,2, O1, O2  1

Now, consider one of the non-integral solutions of this as follows:

U1,1 = 0, U1,2 = 1, U2,1 =
1

3
, U2,2 = 1, U3,1 = 1, U3,2 = 0, O1 = 1, O2 = 1

From the description of a branch-and-cut ILP solver above, this solution can be discarded

either by performing partitioning or adding a cutting plane to the set of linear constraints.

Partitioning: U2,1  0 _ U2,1 � 1

Cutting plane: U2,1 + U2,2  1

Note that the non-integral solution above does not satisfy any of the two conditions while all

integral solutions satisfy both of them.

Next, we describe how we construct the modular system representing the ILP solver,

and show how our algorithm on the modular system models the solving procedure of the

ILP solver. We use the modular system shown in Figure 4.4 to represent the ILP solver

solving the problem axiomatized in the specification �. The specification is shared among

the modules and also among the oracles associated to the modules. The module C� takes a

set of variable assignments F1 and a set of cutting planes SC1 as inputs and returns another

set of cutting planes SC2. When all the assignments in F1 are integral, SC2 is equal to

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 62

PΦ

LPΦ

CΦ

F
SC3

F1 F2

SC2 B

SC1

I

Figure 4.4: Modular System Representing an ILP Solver

SC1, and if not, SC2 is the union of SC1 and a cutting plane violated by F1 w.r.t. the set

of linear constraints SC1 [�. The module P� takes a set of assignments F2 as input and

outputs a set of range constraints B = {Bx | F2(x) 62 Z}, where Bx is non-deterministically

chosen from the set {x  bF2(x)c, x � dF2(x)e}. The module LP � takes the set of cutting

planes SC2 and the set of range constraints B as inputs and outputs the set of cuttings

planes SC3 and the set of assignments F in a deterministic way such that SC3 is the union

of SC2 and B, and F is a total assignment satisfying SC2 [B [�. LP � is undefined when

SC2 [B [� is inconsistent. We define the compound module ILP � to be:

ILP � := ⇡{F}(((C� \ P�)B LP �)[SC3 = SC1][F = F1][F = F2]).

To show that the combined module ILP � is correct, consider any model of the modular

system. By the definition of LP �, we know that F satisfies �. Furthermore, the set B is

empty in the model because F satisfies all the linear constraints in B, but F2 (which is equal

to F by the semantics of feedback operator) falsifies those constraints. Thus by the definition

of the module P�, we know that F2 (also F) is integral. Thus F is an integral solution to

�. On the other hand, for any integral solution S to �, consider a structure B such that

FB = FB
1 = FB

2 = S, BB = ;, and SCB
1 = SCB

2 = SCB
3 =

S
x{x  F (x), x � F (x)}. Then

clearly, B is in the module ILP �, i.e., B is the model of the module ILP �.

So there is one-to-one correspondence between the solutions of the ILP problem with

input �, and the models of the modular system ILP �. We compute a model of this modular

system by associating modules with oracles (Oc, Op and Olp) and introducing a solver S that

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 63

interacts with those oracles. Each oracle rejects a partial structure B if it contradicts the

corresponding module definition and in this case, the reason for the rejection is provided.

Example 22 (Facility Opening Problem Continued (Op and Oc))

Let � in Figure 4.4 be the specification shown in Example 21. Let FB contain the same

non-integral solution as the one in Example 21, i.e., FB = FB
1 = FB

2 = {U(1, 1) =

0, U(1, 2) = 1, U(2, 1) = 1/3, U(2, 2) = 1, U(3, 1) = 0, U(3, 2) = 0, O(1) = 1, O(2) = 1},
and let BB = SC1

B = SC2
B = SC3

B = ;. As shown in Example 21, this non-integral

solution can be eliminated by either partitioning or adding a cutting plane violating the set

of assignments. The partitioning is modelled by Op rejecting the structure B and returning

the reason B(”U(2, 1)  0”) _ B(”U(2, 1) � 1”) 4 ; and the cutting plane method can be

modelled by Oc rejecting B with the reason SC2(”U(2, 1) + U(2, 2)  1”).

The LP solving in ILP solver is modelled by the oracle Olp for the module LP �.

Example 23 (Facility Opening Problem Continued (Olp)) Let FB, FB
1 , and FB

2 con-

tain the same non-integral solution as in Example 22, but let BB = {”U(2, 1)  0”} and

SC2 = {”U(2, 1) + U(2, 2)  1”}. Note that the non-integral solution violates both con-

straints U(2, 1)  0 and U(2, 1) + U(2, 2)  1. Then Olp rejects B with the reason either

being B(”U(2, 1)  0”) � F (”U(2, 1)”)  0 (for violating the partitioning constraint), or

being SC2(”U(2, 1) + U(2, 2)  1”) ^ F1(”U(2, 2)”) > 1 � F1(”U(2, 1)”) < 0 (for violating

the cutting plane). This way, Olp guides the assignments F to satisfy all the constraints in

SC2
B and BB.

Next, we give the formal constructions of the solver and the oracles.

Solver S accepts the full propositional language with atomic formulas being either

boolean variables or range constraints. In addition, S can assign numerical values (for F),

according to the set of derived range constraints.

Oracle Op accepts a partial structure B if it does not falsity the constraints described

above for module P� on F2 and B. If B is rejected and F2
B is non-integral, Op returns the

reason B(”F2(x)  bvc”)_B(”F2(x) � dve”), where v is equal to F2
B(x) and is non-integral.

Oracle Oc accepts a partial structure B if it does not falsify the constraints described

above on F1, SC1, and SC2 for the C� module. If B is rejected, Oc returns the reason

4
As the specification � is shared between the module and the oracle, Op can also return B(”U(2, 1) =

0”) _B(”U(2, 1) = 1”) as the reason.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 64

V
i F1(xi) = vi �

V
c2SC1�SC2

(SC1(c) () SC2(c)) when FB
1 is integral, and the reason

(
V

c2I SC1(c)) ^ (
V

i F1(xi) = vi) � SC2(c0), where I ✓ SC1 [�, F1 is the only intersection

of the set of linear constraints I, and c0 is the cutting plane on I that violates F1.

Oracle Olp accepts a partial structure B if it does not falsify the constraints of the

module LP � on SC2, B, SC3, and F . If B is rejected, Olp returns the reason of the

form = (
V

c2SC2
B SC2(c)) ^ (

V
c2BB B(c)) � (

V
c2SC0

3
SC3(c)) ^ (

V
x F (x)), such that

SC 0
3 ✓ SC2

B [BB, the new assignments to F satisfy SC2
B [BB [�, and B 6|= .

No advices are needed from any oracles in order to model the branch-and-cut ILP solvers.

Thus, all oracles always return the empty set as the set of advices.

Proposition 4 1. Modular system ILP � is the set of structures representing the sets of

integral solutions of �.

2. S is complete and online.

3. Oc, Op and Olp are CCAV oracles.

4. Algorithm 4 on modular system ILP �, associated with oracles Oc, Op, Olp, and the

solver S models the branch-and-cut-based ILP solver on the input formula �.

There are many other solvers in the ILP community that use some ILP or MILP solver

as their low-level solver. It is not hard to observe that most of them also have similar

architectures that can be closely mapped to our algorithm.

4.4.3 Modelling Constraint Answer Set Solvers

The Answer Set Programming (ASP) community puts a lot of e↵ort into optimizing their

solvers. One such e↵ort addresses ASP programs with variables ranging over huge domains

(for which, ASP solvers alone perform poorly due to the huge memory needed). However,

embedding Constraint Programming (CP) techniques into ASP solving is proved useful

because complete grounding can be avoided.

In [9], the authors extend the language of ASP and its reasoning method to avoid

grounding of variables with large domains by using constraint solving techniques. The

algorithm uses ASP and CP solvers as black boxes and non-deterministically extends a

partial solution to the ASP part and checks it with the CP solver. Also, in [40], the

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 65

authors integrate answer set generation and constraint solving using a traditional DPLL-

like backtracking algorithm which embeds a CP solver into an ASP solver.

Recently, the authors of [30] developed an improved hybrid Constraint Answer Set Pro-

gramming (CASP) solver which supports advanced backjumping and conflict-driven nogood

learning (CDNL) techniques. They show that their solver’s performance is comparable to

state-of-the-art SMT solvers. In [30], a partial grounding is applied before running the algo-

rithm, thus, the algorithm in [30] is on a propositional level. In addition, instead of directly

computing the answer set of the ASP program, the authors compute a boolean assignment

satisfying a set of nogoods obtained from the Clark completion of the ASP program and

from the loop formulas [29]. This enables them to be able to apply solving technology from

the areas of CSP and SAT, e.g., conflict-driven learning, backjumping, watched literals, etc.

A brief description of this algorithm follows: Starting from an empty set of assignments

and derived nogoods, the algorithm gradually extends the partial assignments by both unit

propagation in ASP [31] and constraint propagation in CP [50]. If a conflict occurs (during

either unit propagation or constraint propagation), a nogood containing the corresponding

unique implication point (UIP) [41, 39] is learned 5 and the algorithm backjumps to the

decision level of the UIP. Otherwise, the algorithm decides on the truth value of one of

the currently unassigned atoms and continues to apply the propagation. If the assignment

becomes total, the CP oracle queries to check whether this is indeed a solution for the

corresponding constraint satisfaction problem (CSP). This step is necessary because simply

performing constraint propagation on the set of constraints is not su�cient to decide the

feasibility of constraints.

In this section, following MX task is used as a running example to illustrate how Al-

gorithm 4 can model above CASP solver. To improve the readability, all examples in this

section is axiomatized in ASP program, instead of its completion and loop formulas as in

the CASP solver.

Example 24 (Planning with Cumulative Scheduling) Given a set of tasks, Task =

{t1, · · · , tn}, a set of states, {s1, · · · , sm}, a predicate CS(t, s1, s2) saying that perform-

ing task t changes the state from s1 to s2, a starting state S, and a goal state G, the

5Practical CP solvers do not provide reasons for rejecting partial structures. This issue is dealt with in
[30] by wrapping CP solvers with a conflict analysis mechanism to compute nogoods based on the first UIP
scheme.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 66

goal is to perform a set of tasks to get to the goal state from the starting state. In ad-

dition, each task ti has an earliest starting time EST (ti), a latest ending time LET (ti),

a duration D(ti), and the amount of resources it needs (R(ti)). The tasks could be per-

formed simultaneously, but the total amount of resources occupied at any time should not

exceed the total available resources TR. Let do(ti) denote that the task ti is performed, then

� = {CS, S,G,EST, LET,D,R, TR} and " = {do}.

We axiomatize the problem in Example 24 in ASP, together with the cumulative con-

straint in Constraint Programming. The cumulative constraint may be written

cumulative(est, let, d, r, R),

where the arguments represent, respectively, the set of earliest starting time of the tasks,

the set of latest ending time of the task, the set of duration of the tasks, the set of resource

consumption of the tasks, and the amount of available resources. It returns true only when

there is a feasible scheduling that respects all the specified constraints.

Example 25 (Planning Continued (Specification, Instance, Ground Program))

Following CASP specification is used to represent the planning with cumulative scheduling

problem 6.

0{do(t)}1 Task(t).

reaches(s2) do(t), CS(t, s1, s2), reaches(s1).

reaches(S).

 not reaches(G).

 not CP :: cumulative({EST (t) : do(t)},

{LET (t) : do(t)}, {D(t) : do(t)}, {R(t) : do(t)}, TR).

(4.8)

Consider the instance shown in figure 25 with the set of tasks {t1, t2, t3, t4} and the

set of states {S,U, V,G}. The CS relation is shown as the edges between two states, i.e.,

6
This specification does not necessarily follow the syntax of any specific system.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 67

S V

U

G
t1 t2

t3
t4

Figure 4.5: Planning with Cumulative Scheduling Problem Instance

CSA = {(t1, S, U), (t2, U, V), (t3, S, V), (t4, V,G)}. Moreover, let ESTA = {(t1 : 0), (t2 :

0), (t3 : 0), (t4 : 0)}, LETA = DA = {(t1 : 2), (t2 : 2), (t3 : 2), (t4 : 2)}, RA = {(t1 : 1), (t2 :

2), (t3 : 4), (t4 : 4)}, and TRA = 7. Then the ground program corresponding to this instance

is as follows:

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 68

ASP part � is:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0{do(t1)}1.

0{do(t2)}1.

0{do(t3)}1.

0{do(t4)}1.

reaches(U) do(t1), reaches(S).

reaches(V) do(t2), reaches(U).

reaches(V) do(t3), reaches(S).

reaches(G) do(t4), reaches(V).

reaches(S).

 not reaches(G).

 not C

CP part is:

8
>>>>>>>>>><

>>>>>>>>>>:

C , cumulative({0 : do(t1), 0 : do(t2), 0 : do(t3), 0 : do(t4)},

{2 : do(t1), 2 : do(t2), 2 : do(t3), 2 : do(t4)},

{2 : do(t1), 2 : do(t2), 2 : do(t3), 2 : do(t4)},

{1 : do(t1), 2 : do(t2), 4 : do(t3), 4 : do(t4)}, 7)
(4.9)

The CASP system solves the ground program 4.9 in a similar way to the DPLL(T) system

described in Section 4.4.1: Stating from the empty assignment, the CASP solver gradually

computes the answer set and meanwhile, queries to the CP solver to check whether the set

of constraint corresponding to the current assignment is consistent. If not, the CP solver

returns a set of literals that cannot be true together. For example, consider the partial

assignment below:

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 69

do(t3) = do(t4) = reaches(S) = reaches(V) = C = >, the others unknown

When the CP solver gets this set of assignments, it can deduce that the cumulative con-

straint (C) cannot be true based on the assignments, because all the tasks have the same

earliest starting time and the latest ending time with the intervals the same as the durations,

which enforces all the tasks being scheduled at the same time. However, t3 and t4 cannot be

scheduled simultaneously as they together require 8 resources while only 7 resources are avail-

able. The reason for this conflict can be described using the set of literals {C, do(t3), do(t4)}.
On the other hand, before the ASP solver decides to schedule both t3 and t4, the CP solver

may return the fact C ^ do(t3) � ¬do(t4) to prevent the two tasks from both being per-

formed. These two behaviors are modelled later in the section through reasons and advices,

respectively.

Next, we show our modular representation of the CASP solver and illustrate how the

Algorithm 4 on this representation models the solving procedure of the CASP system. The

modular system we use to represent the CASP solver is very similar to the one in Figure

4.2 (for the DPLL(T) system), except that we have module ASP � instead of MP� and CP

instead of MT .

Similar to the modules MP� and MT in Figure 4.2, ASP � and CP work on di↵erent

parts of the specification. The formula � in ASP � corresponds to the ASP program with all

CP constraints replaced by propositional literals, and the formula in CP is the formula
V

i di , li where li and di are, respectively, an atomic CP constraint and its associated

propositional atom used in ASP �.

The module ASP � is the set of structures B such that:

(E+
1
B
, E�

1
B
) =

8
>>>>>><

>>>>>>:

(D,D) if R+ \R� 6= ;

(R+, R+c) if R+ \R� = ;, IB [¬IBc [R+ [¬R� |= �

(R+, R�) if R+ \R� = ;, IB [¬IBc [R+ [¬R� 6|= �

,

where D = Bn, n is the arity of E+, and (R+, R�) is the result of unit propagation in ASP

[31] on � under IB [¬IBc [E+B [¬E�B.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 70

Example 26 (Planning with Cumulative Scheduling Continued)

Continuing our running example, assume that E+B
= E�B

= ;. An observant reader can

notice that in all models of ASP�, we should have that do(t4) should be true. This is because

if do(t4) is false then G becomes not reachable. Our module ASP� can also deduce this fact

using its unit-propagation. Therefore, do(t4) belongs to E+B

1 .

Similarly, the module CP is defined as the set of structures B such that:

(E+B
, E�B

) =

8
>>>>>><

>>>>>>:

(D,D) if R+ \R� 6= ;

(D,D) if R+ \R� = ;, F is inconsistent with

(R+, R�) if R+ \R� = ;, F is consistent with

,

where D is as before and (R+, R�) is the result of constraint propagation on under

IB [¬IBc [E+
2
B [¬E�

2
B
, and F = IB [¬IBc [R+ [¬R�. In practical Constraint

Programming solvers, various constraint propagation techniques such as arc-consistency

checking and k-consistency checking, are applied and it can be shown that they are all

Valid Acceptance Procedures. The reader is referred to [50] for complete details on di↵erent

propagation techniques.

Example 27 (Planning with Cumulative Scheduling Continued)

Continuing our running example, now assume that E+B

2 contains do(t4) as discussed in

Example 26. Then, for the CP to accept structure B, we should have that do(t3) should

be false. This is because by the constraint propagation for the cumulative constraint in

our example, the CP module understands that do(t3) and do(t4) cannot be true together.

Therefore, do(t3) belongs to E�B
.

The compound module CASP �^ is defined as:

CASP �^ := ⇡{I,E}(((CP BASP �)[E
+
1 = E+

2][E
�
1 = E�

2])B TOTAL).

The correctness of the module CASP �^ can be proved using the same arguments as

the one in Section 4.4.1.

As a CDNL-like technique is also used in SMT solvers, the above algorithm is modelled

similarly to Section 4.4.1. The solver S is defined as a DPLL-based online SAT solver

and the module ASP � (resp. CP) is associated with an oracle OASP (resp. OCP). The

constructions of these oracles are very similar to the ones described in Section 4.4.1.

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 71

Example 28 (Planning with Cumulative Scheduling Continued (OASP and OCP))

Let � and in CASP �^ be, respectively, the ASP part and the CP part of the specification

in Equation 4.9. Let the structure B contain the same set of partial assignment as the one

in Example 25, i.e., do+1
B

= {t3, t4}, reaches+1
B

= {S, V }, and C+
1
B

= >. When OCP

is queried on B, it returns the advice C+
1 ^ do+1 (t3) � do�(t4) to the solver S. Obtain-

ing this advice and the advice do�(t4) � do�1 (t4) from OASP , in the next phase, the solver

S will make do�1 (t4) true and OTOTAL rejects the new structure from S with the reason

do�1 (t4) � ¬do+1 (t4).

Next, we give exact constructions for the solver S and oracle OCP :

Solver S is a DPLL-based SAT solver (clearly complete and online).

Oracle OCP accepts a partial structure B i↵ it does not falsify the constraints described

above for module CP on I, E+, E�, E+
2 , and E�

2 . Let (R
+, R�) denote the result of the

constraint propagation on under IB [¬IBc [E+
2
B [¬E�

2
B
. Then, if B is rejected,

1. If R+\R� 6= ; or IB [¬IBc[R+[¬R� is inconsistent with , OCP returns a reason

! of the form
V

d2D1
E+

2 (d) ^
V

d2D2
E�

2 (d) �
V

d2D3
(E+(d) ^ E�(d)) with D1 ✓ D,

D2 ✓ D, ; (D3 ✓ D,
W

d2D1
¬l(d) _

W
d2D2

l(d) is always true in , B |= ¬!, where
l(d) denotes the atomic formula l in whose associated propositional atom is d. This

corresponds to the nogood (the set of literals on the left hand side of the implication

of ! which cannot be true together) returned by the conflict analysis mechanism of

the CP solver.

2. Otherwise, OCP returns a reason ! of the form
V

d2D1
E+

2 (d) ^
V

d2D2
E�

2 (d) �V
d2R+ E+(d) ^

V
d2R� E�(d), where D1 ✓ D,D2 ✓ D,B |= ¬!.

By the definition of CP , we know that B falsifies the reason and all models of CP

satisfy the reason. Thus, OCP is complete and constructive. OCP may also return some

advices in the same form as any ! above such that B satisfies the left hand side of the

implication, but not the right hand side. Also, since the outputs of CP always subsume

the inputs, OCP may also return the set {E+
2 (d) � E+(d) | d 2 D,B |= E+

2 (d),B 6|=
E+(d)} [{E�

2 (d) � E�(d) | d 2 D,B |= E�
2 (d),B 6|= E�(d)} as the set of advices. Clearly,

all the structures in CP satisfy all sets of advices. Hence, OCP is an advising oracle.

Finally, OCP always makes the correct decision for a total structure and rejects a partial

structure only when it falsifies the constraints for CP . OCP never rejects any good partial

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 72

structure B (although it may accept some bad non-total structures). Therefore, OCP is a

verifying oracle.

Proposition 5 1. Modular system CASP �^ is the set of structures B such that B |= �

and B is consistent with according to corresponding theory of the constraints.

2. Solver S is complete and online.

3. OASP , OCP and OTOTAL are CCAV oracles.

4. Algorithm 4 on modular system CASP �^ associated with oracles OASP , OCP , OTOTAL,

and the solver S models the solving procedure of the CASP solver on input formula

� ^ .

4.5 Related Work

There are many papers on modularity in declarative programming, we only review the most

relevant ones. The authors of [36] proposed a multi-language framework for constraint

modelling. That work was the initial inspiration of [53], but the authors extended the

ideas significantly by developing a model-theoretic framework and introducing a feedback

operator that adds a significant expressive power.

An early work on adding modularity to logic programs is [22]. The authors derive a

semantics for modular logic programs by viewing a logic program as a generalized quantifier.

The ideas are further generalized in [46] by considering the concept of modules in declarative

programming and introducing modular equivalence in normal logic programs under the

stable model semantics. This line of work is continued in [35] to define modularity for

disjunctive logic programs. There are also other approaches to adding modularity to ASP

languages [13, 33, 8, 7]. The related approach of ID-Logic is described in [16].

The works mentioned earlier focus on the theory of modularity in declarative languages.

However, there are also papers that focus on the practice of modular declarative program-

ming and, in particular, solving. These generally fall into one of the two following categories.

The first category consists of practical modelling languages which incorporate other mod-

elling languages. For example, X-ASP [52] and ASP-PROLOG [23] extend Prolog with

ASP, CP techniques are incorporated into ASP solving in [9], [40], and [30]. Also, ESRA

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 73

[25], ESSENCE [26] and Zinc [14] are CP languages extended with features from other lan-

guages. However, these approaches give priority to the host language while our modular

setting gives equal weight to all modelling languages that are involved. It is important to

note that, even in the presence of this distinction, such works have been very important in

the development of this chapter because they provide guidelines on how a practical solver

deals with e�ciency issues. The second category is related to multi-context systems. In

[11], the authors introduce non-monotonic bridge rules to the contextual reasoning and

originated an interesting and active line of research followed by many others for solving or

explaining inconsistencies in non-monotonic multi-context systems [6, 10, 21, 20]. However,

these papers do not consider the model expansion task. Moreover, the motivations of these

works originate from distributed or partial knowledge, e.g., when agents interact or when

trust or privacy issues are important. Despite these di↵erences, the field of multi-context

systems is very relevant to our research. Investigating this connection is an important future

research direction.

4.6 Conclusion

We took a language-independent view on iterative modular problem solving. Our algorithm

is designed to solve combinatorial search problems described as modular systems in the

context of model expansion. This model-theoretic approach allows us to abstract away from

particular languages of the modules. We performed several case studies of our algorithm in

relation to existing systems such as DPLL(T), ILP, ASP-CP. We demonstrated that, in the

context of the model expansion task, our algorithm generalizes the work of these solvers. As a

side e↵ect of this analysis, we demonstrated how Valid Acceptance Procedures from di↵erent

communities could be used to implement oracles for modules to achieve e�cient solving. For

example, the procedures of Well-Founded Model computation and Arc-Consistency checking

can be used to implement oracles for the ASP and CP languages to construct an e�cient

combined solver, which corresponds to the state-of-the-art combination of ASP and CP

described in [30].

Our general approach for solving modular systems can be applied to systems such as

Business Process Planners in di↵erent areas and their variants including Logistics Service

CHAPTER 4. SOLVING MODULAR MODEL EXPANSION 74

Provider, Manufacturer Supply Chain Management, Mid-size Businesses Relying on Exter-

nal Web Services and Cloud Computing. With the increasing use of service-oriented archi-

tecture, such modular systems will become increasingly more applicable. We believe we are

taking important initial steps addressing the core aspect of this complex multi-dimensional

problem, namely the underlying computationally complex task. As a future direction, we

plan to develop a prototype implementation of our algorithms. This thesis is a continuation

of [53, 57, 58].

Chapter 5

Conclusion

This thesis contains two di↵erent parts. In the first part, a model-based solver Enfragmo

is presented. Its language supports full first order logic extended with a limited form of

inductive definitions, arithmetic operations, and aggregates. Despite its rich language, En-

fragmo’s performance is comparable to the state-of-the-art model based solvers as demon-

strated through experiments. In the second part, modularity concepts are added to the MX

based framework. The extended framework allows one to combine individual modules in a

model-theoretic level, independent of the specific languages used to describe each module.

An abstract algorithm is introduced to search for a structure in a given compound modu-

lar system, and through several case studies, the algorithm is shown to be closely related

to the work done in di↵erent research areas such as Satisfiability Modulo Theories, Inte-

ger Linear Programming, Satisfiability Testing, Constraint Programming, and Answer Set

Programming.

75

Appendix A

Syntax of Enfragmo System

A.1 Problem Specification Grammar

<theory_file> ::= <given_part> <find_part>

<phase_part> <print_part>

<given_part> ::= GIVEN : <types_decl> ; <funcs_decl> ;

| GIVEN : <types_decl> ; <preds_decl> ;

| GIVEN : <types_decl> ; <preds_decl> ;

<funcs_decl> ;

<types_decl> ::= TYPES : <identifier_list> ;

INTTYPES : <identifier_list>

| TYPES : <identifier_list>

| INTTYPES : <identifier_list>

<identifier_list> ::= | <identifier_list> <identifier>

<preds_decl> ::= PREDICATES : <preds_list>

<a_pred_DCL> ::= <identifier> (<IdentifierListSeparatedByComma>)

<preds_list> ::= | <a_pred_DCL> <preds_list>

<IdentifierListSeparatedByComma> ::= | <identifier>

76

APPENDIX A. SYNTAX OF THE ENFRAGMO SYSTEM 77

| <IdentifierListSeparatedByComma> , <identifier>

<funcs_decl> ::= FUNCTIONS : <funcs_list>

<funcs_list> ::= | <func_DCL> <funcs_list>

<func_DCL> ::= <identifier> () : <identifier>

| <identifier> (<IdentifierListSeparatedByComma>): <identifier>

<find_part> ::= FIND : <identifier_list> ;

<phase_part> ::= <a_phase> | <a_phase> <phase_part>

<a_phase> ::= PHASE : <fixpoint_part> <satisfying_part>

<fixpoint_part> ::= | FIXPOINT (<identifier_list>) :

<induction_part> ;

<induction_part> ::= <an_induction>

| <induction_part> <an_induction>

<an_induction> ::= <an_inflation> | <a_definition>

<an_inflation> ::= INFLATE <inflate_description>

<an_inflate_description> ::= { <var_DCL> : <identifier>

(<IdentifierListSeparatedByComma>) <=> <FO_formula> }

<inflate_description> ::= <an_inflate_description>

| <inflate_description> <an_inflate_description>

<a_definition> ::= DEFINE { <induction_description> }

<induction_description> ::= <an_induction_description>

| <induction_description> <an_induction_description>

<an_induction_description> ::= <var_DCL> : <identifier>

APPENDIX A. SYNTAX OF THE ENFRAGMO SYSTEM 78

(<IdentifierListSeparatedByComma>) <- <FO_formula>

<satisfying_part> ::= | SATISFYING : <satisfying_rules>

<satisfying_rules> ::= <FO_formula> ;

| <satisfying_rules> <FO_formula> ;

<FO_formula> ::= (<FO_formula>) | <unitary_formula>

| <FO_formula> <connective> <unitary_formula>

<unitary_formula> ::= (<FO_formula>)

| <quantifier> <var_DCL> : <FO_formula>

| <quantifier> <a_var_DCL> <ord_operator>

<term_nodes>: <unitary_formula>

| <unitary_formula> <binary_operator> <unitary_formula>

| ~ <unitary_formula>

| <atomic_formula>

<atomic_formula> ::= <relation_formula>

| SUCC [<identifier>] (<term_nodes> , <term_nodes>)

| <ord_relation> | TRUE | FALSE

<relation_formula> ::= <identifier> (<args>)

<ord_relation> ::= <term_nodes> <ord_operator> <term_nodes>

<min_func> ::= MIN [<identifier>]

<max_func> ::= MAX [<identifier>]

<size_func> ::= SIZE [<identifier>]

<abs_func> ::= ABS (<term_nodes>)

<func_ref> ::= <identifier> (<args>) | <identifier> ()

<var_DCL> ::= | <a_var_DCL> | <var_DCL> <a_var_DCL>

APPENDIX A. SYNTAX OF THE ENFRAGMO SYSTEM 79

<a_var_DCL> ::= <identifier> : <identifier>

<args> ::= | <term_nodes> | <args> , <term_nodes>

<term_nodes> ::= <a_term_node> | (<term_nodes>)

| <term_nodes> + <term_nodes>

| <term_nodes> * <term_nodes>

| <term_nodes> - <term_nodes>

<a_term_node> ::= <var_ref> | <min_func> | <max_func>

| <abs_func> | <func_ref> | <size_func>

| <aggregate> | <int_term_node>

<aggregate> ::= COUNT { <var_DCL> ; <FO_formula> }

| MIN { <var_DCL> ; <term_nodes> ; <FO_formula> ; <term_nodes> }

| MAX { <var_DCL> ; <term_nodes> ; <FO_formula> ; <term_nodes> }

| SUM { <var_DCL> ; <term_nodes> ; <FO_formula> }

<var_ref> ::= <identifier>

<int_term_node> ::= <int_number> | INTEGER { <term_nodes> }

<arit_operator> ::= + | * | -

<quant_part> ::= <quantifier> <var_DCL>;

<quantifier> ::= ? | !

<binary_operator> ::= & | ’|’ (or)

<ord_operator> ::= < | <= | > | >= | =

<connective> ::= & | ’|’ (or) | => | <=>

<print_part> ::= | PRINT : <predicates>

APPENDIX A. SYNTAX OF THE ENFRAGMO SYSTEM 80

<predicates> ::= | <predicates> <identifier>

<identifier> ::= [a-zA-Z][0-9a-zA-Z_]+

A.2 Instance Description Grammar

<instance_file> ::= <type_parts> <pred_parts> <func_parts>

<type_parts> ::= <a_type_part> | <type_parts> <a_type_part>

<a_type_part> ::= TYPE <identifier> <range>

<range> ::= [continous_values]

<continous_values> ::= <integer>..<integer>

<discrete_values> ::= <a_discrete_value>

| <discrete_values>, <a_discrete_value>

<a_discrete_value> ::= <integer> | <string>

<pred_parts> ::= | <pred_parts> <a_predicate_part>

<a_predicate_part> ::= PREDICATE <identifier> <predicate_values>

<predicate_values> ::= | <a_predicate_value>

| <predicate_values> <a_predicate_value>

<a_predicate_value> ::= (<discrete_values>)

<func_parts> ::= | <func_parts> <a_function_part>

<a_function_part> ::= FUNCTION <identifier> <function_values>

<function_values> ::= <a_function_value>

APPENDIX A. SYNTAX OF THE ENFRAGMO SYSTEM 81

| <function_values> <a_function_value>

<a_function_value> ::= (<func_args>:<func_return_value>)

<func_args> ::= | <discrete_values>

<func_return_value> ::= <integer> | <string>

<identifier> ::= [a-zA-Z][0-9a-zA-Z_]+

<string> ::= ’[0-9a-zA-Z_]+’

<integer> ::= [0-9]+

Bibliography

[1] http://www.cs.sfu.ca/research/groups/mxp/.

[2] Amir Aavani, Shahab Tasharrofi, Gulay Ünel, Eugenia Ternovska, and David G.
Mitchell. Speed-up techniques for negation in grounding. In LPAR-16, pages 13–26,
2010.

[3] Amir Aavani, Xiongnan (Newman) Wu, David G. Mitchell, and Eugenia Ternovska.
Grounding Cardinality Constraints. LPAR-16 short paper, 2010.

[4] Amir Aavani, Xiongnan (Newman) Wu, Shahab Tasharrofi, Eugenia Ternovska, and
David G. Mitchell. Enfragmo: A system for modelling and solving search problems
with logic. In 18th International Conference on Logic for Programming, Artificial In-
telligence, and Reasoning, pages 15–22, 2012.

[5] Amir Aavani, Xiongnan (Newman) Wu, Eugenia Ternovska, and David G. Mitchell.
Grounding formulas with complex terms. In Canadian AI, the 24th Canadian Confer-
ence on Artificial Intelligence, pages 13–25, 2011.

[6] Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas
Krennwallner. The dmcs solver for distributed nonmonotonic multi-context systems.
In Tomi Janhunen and Ilkka Niemelä, editors, Logics in Artificial Intelligence - 12th
European Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Pro-
ceedings, volume 6341 of Lecture Notes in Computer Science, pages 352–355. Springer,
2010.

[7] Marcello Balduccini. Modules and signature declarations for a-prolog: Progress report.
In SEA, pages 41–55, 2007.

[8] Chitta Baral, Juraj Dzifcak, and Hiro Takahashi. Macros, macro calls and use of
ensembles in modular answer set programming. In ICLP’06. LNCS, pages 376–390,
2006.

[9] Sabrina Baselice, Piero A. Bonatti, and Michael Gelfond. Towards an integration of
answer set and constraint solving. In In Proc. of ICLP’05, pages 52–66, 2005.

82

BIBLIOGRAPHY 83

[10] Markus Bögl, Thomas Eiter, Michael Fink, and Peter Schüller. The mcs-ie system
for explaining inconsistency in multi-context systems. In Tomi Janhunen and Ilkka
Niemelä, editors, Logics in Artificial Intelligence - 12th European Conference, JELIA
2010, Helsinki, Finland, September 13-15, 2010. Proceedings, volume 6341 of Lecture
Notes in Computer Science, pages 356–359. Springer, 2010.

[11] Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-
context systems. In Proceedings of the 22nd national conference on Artificial intelligence
- Volume 1, pages 385–390. AAAI Press, 2007.

[12] Broes De Cat and Marc Denecker. DPLL(Agg): An e�cient SMT module for aggre-
gates. In LaSh’10 Workshop, 2010.

[13] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Modular
nonmonotonic logic programming revisited. In Hill and Warren [33], pages 145–159.

[14] Maria J. Garćıa de la Banda, Kim Marriott, Reza Rafeh, and Mark Wallace. The
modelling language Zinc. Principles and Practice of Constraint Programming-CP 2006,
pages 700–705, 2006.

[15] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Christoph Koch, Nicola Leone, Si-
mona Perri, and Gerald Pfeifer. System description: DLV. In LPNMR, pages 424–428,
2001.

[16] M. Denecker and E. Ternovska. A logic of non-monotone inductive definitions. ACM
transactions on computational logic (TOCL), pages 1–51, 2008.

[17] Marc Denecker and Eugenia Ternovska. A logic of non-monotone inductive definitions.
TOCL, (2):1–51, 2008.

[18] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw
Truszczyński. The second answer set programming competition. LPNMR, pages 637–
654, 2009.

[19] Niklas Een and Niklas Sörensson. MiniSat v1.13 - A SAT Solver with Conflict-Clause
Minimization, System description for the SAT competition, 2005.

[20] Thomas Eiter, Michael Fink, and Peter Schüller. Approximations for explanations
of inconsistency in partially known multi-context systems. In James P. Delgrande
and Wolfgang Faber, editors, Logic Programming and Nonmonotonic Reasoning - 11th
International Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Pro-
ceedings, volume 6645 of Lecture Notes in Computer Science, pages 107–119. Springer,
2011.

[21] Thomas Eiter, Michael Fink, Peter Schüller, and Antonius Weinzierl. Finding expla-
nations of inconsistency in multi-context systems. In Fangzhen Lin, Ulrike Sattler, and

BIBLIOGRAPHY 84

Miroslaw Truszczynski, editors, Principles of Knowledge Representation and Reason-
ing: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario,
Canada, May 9-13, 2010. AAAI Press, 2010.

[22] Thomas Eiter, Georg Gottlob, and Helmut Veith. Modular logic programming and
generalized quantifiers. In Proc. of LPNMR, pages 290–309. Springer-Verlag, 1997.

[23] Omar Elkhatib, Enrico Pontelli, and Tran Cao Son. ASP- PROLOG: A System for
Reasoning about Answer Set Programs in Prolog. In the Proc. of PADL’04, pages
148–162, 2004.

[24] Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
Complexity of Computation, pages 43–74, 1974.

[25] Pierre Flener, Justin Pearson, and Magnus Agren. Introducing ESRA, a relational
language for modelling combinatorial problems. In Proc., LOPSTR’03, 2003.

[26] Alan M. Frisch, Warwick Harvey, Chris Je↵erson, Bernadette Mart́ınez-Hernández,
and Ian Miguel. Essence: A constraint language for specifying combinatorial problems.
Constraints, 13:268–306, 2008.

[27] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Marius Schneider. Potassco: The Potsdam answer set solving collection.
AI Commun. 24(2), pages 105–124, 2011.

[28] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven answer set solving. In Proceedings of the 20th international joint conference on
Artifical intelligence, IJCAI’07, pages 386–392, San Francisco, CA, USA, 2007. Morgan
Kaufmann Publishers Inc.

[29] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven answer set solving. In IJCAI, pages 386–392, 2007.

[30] Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint answer set solving. In
Proc. of ICLP’09, LNCS, pages 235–249. Springer-Verlag, 2009.

[31] Martin Gebser and Torsten Schaub. Characterizing asp inferences by unit propagation.
In IN: LASH ICLP WORKSHOP, pages 41–56, 2006.

[32] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In ICLP/SLP, pages 1070–1080, 1988.

[33] Patricia M. Hill and David Scott Warren, editors. Logic Programming, 25th Interna-
tional Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings,
volume 5649 of Lecture Notes in Computer Science. Springer, 2009.

[34] Wilfrid Hodges. Cambridge University Press, 1993.

BIBLIOGRAPHY 85

[35] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modularity
aspects of disjunctive stable models. In Proc. of LPNMR, volume 4483 of LNAI, pages
175–187, 2007.

[36] Matti Järvisalo, Emilia Oikarinen, Tomi Janhunen, and Ilkka Niemelä. A module-based
framework for multi-language constraint modeling. In Proc. of LPNMR, volume 5753
of LNCS, pages 155–168. Springer-Verlag, 2009.

[37] Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fixpoint? In
Proceedings of the seventh ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, PODS ’88, pages 231–239, New York, NY, USA, 1988. ACM.

[38] Maarten Mariën, Johan Wittocx, Marc Denecker, and Maurice Bruynooghe. Sat(id):
Satisfiability of propositional logic extended with inductive definitions. In Hans
Kleine Büning and Xishun Zhao, editors, Theory and Applications of Satisfiability Test-
ing SAT 2008, volume 4996 of Lecture Notes in Computer Science, chapter 20, pages
211–224. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[39] Joaäo P. Marques-silva and Karem A. Sakallah. Grasp: A search algorithm for propo-
sitional satisfiability. IEEE Transactions on Computers, 48:506–521, 1999.

[40] Veena S. Mellarkod, Michael Gelfond, and Yuanlin Zhang. Integrating answer set
programming and constraint logic programming. Annals of Mathematics and Artificial
Intelligence, 53:251–287, 2008.

[41] David G. Mitchell. A sat solver primer. Bulletin of the EATCS, 85:112–132, 2005.

[42] David G. Mitchell and Eugenia Ternovska. A framework for representing and solving
NP search problems. In Proc. AAAI, pages 430–435, 2005.

[43] Raheleh Mohebali. A method for solving NP search problems based on model expansion
and grounding. Master’s thesis, Simon Fraser University, 2006.

[44] Ilkka Niemelä. Integrating answer set programming and satisfiability modulo theories.
In LPNMR, volume 5753 of LNCS, pages 3–3. Springer-Verlag, 2009.

[45] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat mod-
ulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to
DPLL(T). J. ACM, 53:937–977, November 2006.

[46] Emilia Oikarinen and Tomi Janhunen. Modular equivalence for normal logic programs.
In the Proc. of NMR’06, pages 10–18, 2006.

[47] Panos M. Pardalos and Mauricio G. C. Resende. Handbook of applied optimization,
volume 126. Oxford University Press New York;, 2002.

BIBLIOGRAPHY 86

[48] Murray Patterson, Yongmei Liu, Eugenia Ternovska, and Arvind Gupta. Grounding for
model expansion in k-guarded formulas with inductive definitions. In Proc. IJCAI’07,
pages 161–166, 2007.

[49] Francesco Ricca and Nicola Leone. Disjunctive logic programming with types and
objects: The dlv+ system. Journal of Applied Logic, 5(3):545 – 573, 2007.

[50] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Program-
ming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY,
USA, 2006.

[51] Roberto Sebastiani. Lazy Satisfiability Modulo Theories. JSAT, 3:141–224, 2007.

[52] Terrance Swift and David S. Warren. The XSB System, 2009.

[53] S. Tasharrofi and E. Ternovska. A semantic account for modularity in multi-language
modelling of search problems. In 8th International Symposium Frontiers of Combining
Systems (FroCoS), October 2011.

[54] Shahab Tasharrofi and Eugenia Ternovska. Built-in arithmetic in knowledge repre-
sentation languages. In NonMon at 30 (Thirty Years of Nonmonotonic Reasoning),
October 2010.

[55] Shahab Tasharrofi and Eugenia Ternovska. PBINT, a logic for modelling search prob-
lems involving arithmetic. In Proc. LPAR-17. Springer, October 2010. LNCS 6397.

[56] Shahab Tasharrofi, Xiongnan Newman Wu, and Eugenia Ternovska. Solving modular
model expansion tasks. In 25th Workshop on Logic Programming, September 2011.

[57] Shahab Tasharrofi, Xiongnan (Newman) Wu, and Eugenia Ternovska. Solving mod-
ular model expansion tasks. CoRR, abs/1109.0583, 2011. 25’th Workshop on Logic
Programming.

[58] Shahab Tasharrofi, Xiongnan Newman Wu, and Eugenia Ternovska. Solving modular
model expansion: Case studies. In INAP/WLP, July 2012.

[59] Eugenia Ternovska and David G. Mitchell. Declarative programming of search problems
with built-in arithmetic. In Proc. of IJCAI, pages 942–947, 2009.

[60] Emina Torlak. A constraint solver for software engineering: finding models and cores
of large relational specifications. PhD thesis, Cambridge, MA, USA, 2009.

[61] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Orna Grum-
berg and Michael Huth, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, volume 4424 of Lecture Notes in Computer Science, pages 632–647.
Springer Berlin / Heidelberg, 2007.

BIBLIOGRAPHY 87

[62] Grigori S. Tseitin. On the complexity of derivations in the propositional calculus.
Studies in Mathematics and Mathematical Logic, pages 115–125, 1968.

[63] Pashootan Vaezipoor, David Mitchell, and Maarten Mariën. Lifted unit propagation
for e↵ective grounding. CoRR, abs/1109.1317, 2011. Appears in the Proceedings of
the 19th International Conference on Applications of Declarative Programming and
Knowledge Management (INAP 2011).

[64] Maarten H. Van Emden and Robert A. Kowalski. The semantics of predicate logic as
a programming language. J. ACM, 23(4):733–742, October 1976.

[65] Allen Van Gelder. The alternating fixpoint of logic programs with negation. J. Comput.
Syst. Sci., 47(1):185–221, August 1993.

[66] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics
for general logic programs. J. ACM, 38:619–649, July 1991.

[67] Johan Wittocx. Finite domain and symbolic inference methods for extensions of first-
order logic. AI Commun., 24(1):91–93, January 2011.

[68] Johan Wittocx, Maarten Marién, and Marc Denecker. The IDP system: A model
expansion system for an extension of classical logic. In Proceedings of the 2nd Workshop
on Logic and Search, pages 153–165, 2008.

[69] Johan Wittocx, Maarten Mariën, and Marc Denecker. Grounding fo and fo(id) with
bounds. J. Artif. Int. Res., 38(1):223–269, May 2010.

