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Abstract

Financial market models are able to help the investors foresee the risk of a financial market

crash and reduce the probability of its occurrence. Modelling in financial markets is cat-

egorized into microscopic models and macroscopic models. The microscopic models study

the mechanisms behind the market and their behaviour. These models assist in an under-

standing of the causes of financial market crashes. Macroscopic models find the disciplines

and rules from the historical macroscopic data for the prediction of market trends, direc-

tions and crashes. They aim to provide forecasts of when the crashes should occur. Except

for large fluctuations, the stock market price or index movements can be characterized by

a random walk. The stock price trajectory possesses the properties of self-similarity and

scale invariance, and hence mimics fractals. Furthermore, the stock price movement is a

manifestation of the actions and interactions of stock traders. The hierarchical model with

fractal structures, representing the interaction structure of the stock traders, is applicable

to the study of the microscopic mechanisms of stock price movements. In the language of

statistical mechanics, stock market crashes are viewed as critical phenomena where a crash

occurs only at the critical point with a phase transition. The renormalization group is a

mathematical apparatus that allows the decomposition of a macroscopic problem viewed

at different scales. The renormalization group analysis of the hierarchical model finds that

the time to reach the critical point of a system is a function of the interaction degree of

stock traders in a power law. Moreover, the hierarchical model with the renormalization

group formalism shows that the behavior of the fraction of all stock traders putting buy

orders over time follows a power law coupled with log-periodic oscillations. Based on the

renormalization group analysis results of the hierarchical model, a log-periodic power law

model is derived by constructing an renormalization group formalism from the risk-driven

model. In the log-periodic power law model, the expected time to crash is always finite.

Therefore, market crashes are inevitable, but the existence of bubbles and crash risks is

foreseen by the model.

Keywords: Financial Market Crashes; Hierarchical Model; Renormalization Group; Log-

Periodic Power Law; Critical Phenomena; Phase Transition
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Chapter 1

Introduction

Financial market crashes have major impacts on the society. For example, the crash of the

US housing market in 2007 and 2008 not only directly affects housing related industries,

such as real estate, home builders, home valuations, but also has significant impacts on

home supply retailers, credit markets, stock markets, manufacturers. It nearly sank the

US mortgage market and resulted in an increasing risk of economic recession. Financial

market crashes tend to be associated with steep increases in many social issues, such as

unemployment, family breakdown, crime, and suicide. There are many components of

financial markets: the capital market, the money market, the commodity market, the foreign

exchange market, and the insurance market. These can be divided into numerous sub-

categories. For example, the capital market contains the stock market and the bond market.

It can also be categorized into the primary market and the secondary market.1

Other than banks, the stock market is the most common place for “small” investors.

However, as a result of its prevalence, a stock market crash has wider and deeper effects on

the economy than other financial markets. There were four notable stock market crashes

in the history of finance that occurred in 1929, 1987, 2000 (1997 in Asia) and 2008. The

loss of wealth from a crash affects people through direct stock ownership, mutual funds

investments, and investments in education funds and pension funds. A stock market crash

usually results in an economic recession,2 such as the crash in 1929, or leads to a financial

1The primary market deals with the issuance of new securities. The secondary market is the market
where securities are traded after initially issued in the primary market.

2GDP growth is negative for two consecutive years.

1



CHAPTER 1. INTRODUCTION 2

aspect of crisis, such as the Black Monday in 1987. The crash in 1929 was followed by a

worldwide economic depression, known as the Great Depression, lasting ten years in most

countries. Black Monday on October 19, 1987 led to the Savings and Loan Crisis in the

United States.

The most common questions that investors have about these crashes are why they occur,

whether they are predicable or avoidable, and when they would happen in the future. The

most simple answer to the question of ‘why’ is that there are more sellers than buyers in

the market. The sellers are trying to sell their stocks immediately with little consideration

of the price. since they would rather take a small loss than be exposed to the crash. The

problem is the cause of those seller behaviors, which leads to crash concerns and the decision

of selling theirs stocks at the same moment.

The financial market is a complex system3 characterized by many natural and social

systems. Price change is the result of the buying and selling actions of all interacting

traders in the market. Similar to behaviors in physics, price change is a ‘macroscopic’

behavior and the trading of market participants is a ‘microscopic’ behavior.

At the ‘microscopic’ level, as discussed by Sornette (2003) [94], there are a number of

explanations for a crash, such as computer trading, derivative securities, and over valuation.

At the ‘macroscopic’ level, the crashes are inevitable when the price reaches a critical point

– traders reinforce imitation by other investors. This is the fundamental idea of the analysis

in this thesis. The basic assumption in the thesis is that there are herding behaviors among

traders. Herding behavior means that interactions among traders exist which reinforces

trading in the same direction (buy or sell). At the critical point, the millions of small minor

events trigger the occurrence of an extreme event.

A suitable model of the financial market assists in the prediction of financial market

crashes. Market traders are able to foresee the high risks in the stock market when the

market bubbles emerge and increase through the model.

Financial market crash modelling is a simulation of the behaviors of the market partic-

ipants that applies the analytical theories and techniques of critical phenomena in physics,

statistics and mathematics. The price changes in financial markets are simulated by the

3A complex system is any system comprised of a number of interacting entities, processes, or agents,
whose aggregate activity is nonlinear and typically exhibits hierarchical self-organized, but unpredictable
behaviors.



CHAPTER 1. INTRODUCTION 3

movements of a random walk in physics. Each price change is considered as an event, and

a large price change, such as a crash, is an extreme event. The extreme value theory in the

study of extreme events is used to evaluate the probability of the occurrence of extreme

events [95].

The Renormalization Group (RG) is a technique of finding the macroscopic behavior

of a complex system by decomposing it into a succession of problems with a decreasing

number of microscopic interacting parts at different scales [94, 95]. Analogous to critical

phenomena in physics, a financial market crash can be considered as a transit from one phase

to another. The susceptibility of a system diverges and anomalies arise in specific quantities,

like a bomb explosion or a big earthquake. The theory of critical phenomena, developed

in 1937 by Landau [60], naturally explains universality and is devoted to describing such

critical behavior. The problem becomes finding the critical point of a critical phenomenon.

Technical analysts have attempted to model the behavior of financial market prices for

forecasting purposes. The moving average is a widely used measure of market trend direc-

tion. Early research focuses on finding patterns in the financial market price movements.

The classic Dow theory, which was derived from 255 journals in 1890s and 1900s, is the

oldest technical analysis principles of stock market theory and it is still used in market

trend analysis [45, 25]. It assists to confirm the primary trend of the market by analyz-

ing several market parameters, such as average high and low, volume, and sector rotation.

Ralf Nelson Elliott discovered, after the crash of 1929, that the trend in financial market

prices is explained as pattern recognition with self-similar fractal geometry, called Elliott

Wave Principle [31]. Elliott asserted that financial market price changes are the result

of the collective behaviors of the traders in the market. Following Elliott, Collins, Frost,

and Prechter published Elliott’s Wave Principles during the 1980s. Advances in computing

science allow for increased data and volume computation for modelling financial markets.

Similar to critical phenomena in physics, the behavior of market traders was studied and

analysts found that the increasing trend of homogeneous characteristics of market traders

explains financial market crashes in over long time periods.

Starting from the mid-1990s, many academic and financial institutions, and physicists

examined and researched financial market modelling. They discovered many characteristics

in financial markets have analogous behaviors in physics, such that certain theories and
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models in physics are applicable in financial market analysis, such as chaos in dynamical

systems [17], entropy [35], and thermodynamics [80]. Didier Sornette [94] recognized that

models of financial market crashes follows the non-linear regression of the power laws associ-

ated with log-periodic oscillatory corrections to critical phenomena. He posits the existence

of self-reinforcement imitation and herding behaviors among investors. Most research con-

firms the log-periodic power law characteristic. The study of financial market crashes is

interdisciplinary and includes finance, mathematics, statistics, physics, geometry, computer

science, psychology, and social science.

The questions of predictability and crash time lead to a paradox in modelling financial

market crashes. The financial market is not a completely objective and independent system,

and crash events are not experimentally repeatable. The reliability and accuracy of the

model analysis results have mutual effects on the ‘microscopic’ units (traders) in the system.

The occurrence of an extreme event is not solely based on the intrinsic characteristics, but

also on the outside information, outside events, and modelling results. For example, the

tsunami in Japan resulted in a nearly 20% index drop of Nikkei225. There are several

possible outcomes of the influence of modelling results on a financial market. First, if

everyone believes a crash prediction of the model, people are motivated to sell their stocks

which triggers an earlier crash time than predicted, and makes the model less reliable.

Second, if a sufficiently large amount of people believe the crash prediction, the stock price

drops without a crash, and makes the model unreliable. Third, everyone continues their

original trading strategies without confidence in the the model outcomes, and the market

collapses as predicted. This makes the model predictions more reliable. Even if the last

case occurs, some may consider it as ‘lucky’ if there is a prediction without the validation of

statistical repetition [87]. Therefore, it is more reasonable to consider the financial market

modelling as a tool for explaining the behavior of the system rather than as a prediction

tool.

This thesis introduces the reader to major financial market theories and models of

current research. Two main aspects in the research of financial markets are investment

analysis and market modelling. Investment analysis focuses on forecasting the direction and

trend of prices based on the study of past market data and financial information. Market

modelling examines the pricing mechanism of financial products through the simulation of
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the market operations. This thesis concentrates on the modelling analysis for the stock

market crashes. Notwithstanding, no financial market can be isolated from others. One

financial market crash can trigger crashes in other markets (i.e., the stock market crash in

2008). This thesis comprises both aspects of the financial market study. The purpose of

this thesis is to illustrate how stock markets are modeled in a hierarchical structure with the

Renormalization Group (RG) techniques. It shows how to mathematically derive a model,

so called Log-Periodic Power Law model, for the prediction of the stock market crashes,

and shows how to fit the model to financial data.

Following Sornette’s LPPL model [87], this thesis introduces the modelling of financial

market crashes through the hazard rate with the techniques of renormalization group anal-

ysis of critical phenomena in physics. It focuses on the mathematical theories deriving the

model and proves the relationship between the crash time and the interaction degree. In

addition, it deduces and validates the model with real data fitted to the model. Moreover,

as a mathematical thesis in a interdisciplinary field, it introduces the reader to knowledge

in other fields relevant to the modelling financial systems.

This thesis is organized as follows. Chapter 2 presents a selection of classic financial

market models. Chapter 3 explains the mathematical and physical theories and methods

relevant to the analysis of the financial markets. Chapter 4 describes the techniques of

Renormalization Group analysis used in the hierarchical modelling. Chapter 5 presents the

structure and design of the hierarchical model as applied to financial market behavior. This

chapter also shows the methodology of applying RG analysis. Chapter 6 introduces the

tools and techniques for fitting the non-linear regression, and the validation of the model

through data analysis. The last section of Chapter 6 provides an example of fitting the

model to the data and proposes a profile. Chapter 7 provides conclusions of the research

and recommendations for future research on modelling financial markets.



Chapter 2

Financial Market Models

The financial market is a complex system. The modeling of the microscopic mechanisms

behind the market and the market behavior, such as price trajectory and market crashes,

has been widely studied, but the results are ambiguous.

2.1 Microscopic Mechanism Models

The microscopic mechanism model is constructed by the analysis of the microscopic mecha-

nisms. It explains market phenomena, such as oscillations and distributions, and simulates

market behaviors, like the Hierarchical model and Ising model in chapter 5. A microscopic

mechanism model can be used to construct a prediction model, such as the Log-Periodic

Power Law model.

2.1.1 Reaction-Diffusion Model

In 1997, Bak, Paczuski and Shubik proposed a reaction-diffusion model [4, 107] for the

stock market. The traders are split into two groups: rational traders and noise traders.

Rational traders, which are termed “fundamentalists”, are those whose behaviors are derived

from fundamental analysis of the stock price. Noise traders, which are termed “chartists”,

are those whose behaviors are governed solely by studying the market dynamics. This

categorization is widely used in many subsequent microscopic model studies.

Suppose that the model market comprises only N traders and one stock with N/2 shares.

Each trader has at most 1 share, so half of the traders have the stock and become potential

6



CHAPTER 2. FINANCIAL MARKET MODELS 7

sellers. The other half traders then become potential buyers. There are several assumptions

in this model:

• The ratio of fundamentalists to chartists is fixed.

• The traders in either of the two groups do not transfer to the other.

• Each trader has its own pricing strategy, which is fixed.

• The amounts of the dividend are set at two possible values only, distributed by a

Bernoulli process, which is A with probability ρ or B with probability 1− ρ.

• The annual interest rate is fixed at i.

Initially, the shares are randomly assigned to N/2 traders, including fundamentalists

and chartists. Each trader determines his/her own willing-to-buy price pb for potential

buyers, or willing-to-sell price ps for potential sellers in the range of [0, pmax]. The utility

function for the fundamentalists determines the buying/selling price:

U = νmin[A,B] + (1− ν)[ρA+ (1− ρ)B], (2.1)

where ν represents the risk aversion posture of the trader ranged in [0, 1] with ν = 1 for

total risk aversion and ν = 0 for risk neutral. The values of ν are in any fixed distribution.

Also, the buy/sell decision of fundamentalists is influenced by the interest rate i. They only

buy the stock when its return rate is greater than i + ∆1, or sell when less than i + ∆2,

where ∆1 and ∆2 are determined characteristic behavior parameters. For the chartists, the

prices pb and ps at time t are uniformly distributed in [0, p(t)] and [p(t), pmax], respectively,

or randomly picked from a previous transaction price. In the actual simulation, Bak et al.

[4] neglected the effects of the distributions of pb and ps, and assumed that they are not

important if the mean of pb is less than the mean of ps.

For each simulation step at time t, pb and ps are updated, and one of the N traders is

randomly picked. If the trader is a buyer with pb, then the trader with the least ps is found

and the values of pb and ps are compared. If pb ≥ ps, the transaction is made and the ps

becomes the current market price p(t). Otherwise, if the trader is a seller, the transaction

is made at the greatest pb under the condition pb ≥ ps, and pb becomes p(t).
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The model simulation results found that:

1. If the market has fundamentalists only, it converges to an equilibrium without trans-

actions.

2. If the market is comprised by independent chartists, the price variation has a Hurst

exponent H = 1/4.1

3. If the market is composed by chartists with self-simulation behavior, the price varia-

tion has a Hurst exponent H = 1/2, which is consistent with the random walk.

This model can explain the “fat tails” in the probability distribution for price variations

from the microscopic mechanisms of the financial market.

2.1.2 Stochastic Multi-Agent Model

Lux proposed a new microscopic model, called stochastic multi-agent model, in 1999 [71,

72, 75]. This model separated the traders/agents in the market into three groups: funda-

mentalists, optimistic chartists, and pessimistic chartists. As shown in Figure 2.1 traders

can transit from one group to another together with endogenous price changes resulting

from the traders operations.

The transition probability of agents from one group to another in a unit time step is

denoted by π. The probability of switches during a small time increment ∆t is then π∆t.

The first subscript of π denotes the group of inflow, and the second subscript denotes the

group of outflow. The transition of agents between groups is the substantial difference from

the reaction-diffusion model. The key of this model is to decide the function for the π’s in

Figure 2.1.

Suppose the total number of agents is N , containing nf fundamentalists and nc chartists,

such that N = nf + nc. The nc chartists are split up into n+ optimistic chartists and

n− pessimistic chartists, such that nc = n+ + n−. In the model, two factors affect the

transition between the two groups of chartists: the majority opinion of their fellow agents

x = (n+ − n−)/nc and the price trend dp(t)/dt. A transition function U1 is defined as

1The Hurst exponent (H) is a statistical measure used to classify time series. H = 0.5 indicates a random
series while H > 0.5 indicates a persistent series, and H < 0.5 indicates an anti-persistent series [78].
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Figure 2.1: Stochastic multi-agents model.
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the sum of those two factors weighted by the measure of their importances α1 and α2

respectively:

U1 = α1
n+ − n−

nc
+ α2

dp(t)

dt
= α1x+ α2ṗ. (2.2)

The larger proportion of optimists in the chartists or the larger increase in price produces a

higher probability that pessimistic chartists transit to optimistic chartists, and vice versa.

Then

π+− = ν1 exp(U1), (2.3)

π−+ = ν1 exp(−U1), (2.4)

where ν1 is the frequency of revaluation of opinions. The transition function U2,1 from

the fundamentalists to the optimistic chartists is determined by the comparison between

the relative profit of the chartists and the expected profit of the fundamentalists, which is

defined as:

U2,1 = α3

[
r + ṗ

ν2

p
−R− s

|pf − p|
p

]
, (2.5)

where R is the average real risk-adjusted return available from other investments, pf is the

fundamental price, r = R ·pf is the nominal dividends, ν2 is the frequency of reconsideration

of trading strategies, and s is the discount factor due to the uncertain time horizon of return

to the fundamental value. Similar to equations 2.3 and 2.4, the transition probabilities

between fundamentalists and optimistic chartists are:

π+f = ν2 exp(U2,1), (2.6)

πf+ = ν2 exp(−U2,1). (2.7)

Likewise, the transition function and transition probabilities between fundamentalists and
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pessimistic chartists are defined as:

U2,2 = α3

[
R−

r + ṗ
ν2

p
− s
|pf − p|

p

]
, (2.8)

π−f = ν2 exp(U2,2), (2.9)

πf− = ν2 exp(−U2,2), (2.10)

The price fluctuation is driven by the difference in total demand and total supply at

the time. A variable named excess demand D = Dc + Df , which is the sum of the excess

demand of chartists and fundamentalists is defined. The excess demand of chartists is:

Dc = (n+ − n−)Vc, (2.11)

where Vc is the average trading volume per transaction among chartists. The excess demand

of fundamentalists is:

Df = nfγ
pf − p
p

, (2.12)

where γ is the strength of reaction of fundamentalists on price deviation. The price change

is then:

dp/dt = β(Dc +Df ) = β

[
(n+ − n−)Vc + nfγ

pf − p
p

]
. (2.13)

The change of the number of agents in each group is determined by the transitions between

each of two groups, which are controlled by the transition probabilities π, and the exit and

entry probabilities at each time step, which are the probabilities a and b, respectively.

Using the model described above, Lux derived a dynamical system with three variables:

the market confidence index x = (n+ − n−)/nc, the market rationality index y = nf/N ,
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and the price p. The three dimensional differential equations of the system are defined as:


ẋ = 2ν1(1− a)(1− y)[tanh(U1)− x] cosh(U1) + ν2(1− a)(1− x2)[sinh(U2,1)− sinh(U2,2)]

ẏ = −ν2(1− a)y(1− y)[(1 + x) sinh(U2,1) + (1− x) sinh(U2,2)]− a(1− b)y + ab(1− y)

ṗ = β[x(1− y)Vc + y(pf − p)Vf ]

(2.14)

where Vf ≡ γN , and U1, U2,1 and U2,2 are as defined in equations 2.2, 2.5, and 2.8, respec-

tively.

Through the simulation of this model, Lux and Marchesi found that the price variation

has a “fat tail” distribution and is in accordance with absence of long memory in empirical

financial returns. However, the absolute returns have strong volatility. Also, they asserted

theoretically that the model has equilibrium and stability regimes. Yu, who followed Lux

and Marchesi’s model in later works [121, 120], successfully simulated four kinds of dynamic

regimes in the model: fundamental equilibrium, non-fundamental equilibrium, periodicity,

and chaos. The simulation shows the power law scaling and temporal dependence in volatil-

ity. One disadvantage of this model is that the fraction of chartists relaxes fast to about zero

as N → 0, which indicates that it has strong finite-size effects [26]. Another disadvantage

of this model is that there are too many parameters. To simulate a realistic market, a lot

of adjustments to the parameters are necessary to find the equilibrium.

2.1.3 Cont-Bouchaud Percolation Model

Cont and Bouchaud [18] proposed another microscopic model to explain the power law

distribution with exponential tail in the price fluctuation of financial markets. This model

simulates the herding behavior through the imitation among market traders. It observes

that the return rates have a “fat tail” distribution. Therefore, the herding behavior is

considered the microscopic mechanism of the “fat tail” distribution. This model does not

include the effects of outside factors on the market and traders. The market traders form

clusters through mutual communications and influences. All traders in the same cluster

apply the same trading strategy. The simulation generates the macroscopic market behav-

iors and rules. The clusters are analogous to various funds, such as mutual fund and hedge

fund.
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The Cont-Bouchaud percolation model applies percolation theory to the stock market

[98]. Consider N traders in the market trading one single asset. Any pair of traders are

linked with the probability π. The connection probability π is constant and independent of

the traders. All the connected traders form a trading cluster. With ns clusters, a cluster

i has si traders. Within every cluster, all traders have the same trading behavior. Three

trading behaviors are denoted by ai = +1 for buying, by ai = −1 for selling, and by ai = 0

for no trading action [99]. At a time t, the price change ∆x during the time step ∆t is

determined by the excess demand D(t):

∆x = x(t+ ∆t)− x(t) = D(t)/λ, (2.15)

where λ is the market depth [10].2 The excess demand is equal to the difference between

the sum of buying orders and the sum of selling orders placed at time t. Thus,

∆x = D(t)/λ =
1

λ

ns∑
i=1

siai. (2.16)

After the completion of the trading at time t, all traders are disconnected and form new

clusters at time t+ ∆t. The behavior of every trader is independent to its behavior in the

previous time step.

The model shows that the tails of the price change density asymptotically have an

exponentially truncated power law form as ∆x→∞:

p(∆x) ∼
|∆x|→∞

|∆x|−u · exp

(
− ∆x

∆x0

)
, (2.17)

where ∆x0 is the value after which the pdf is exponentially truncated and u is about 5/2

for stocks and market indexes [18]. This implies that the return rate approximates the

power law with a heavy tail when the microscopic market is approaching the critical point.

According to the percolation theory, when a percolation system on a d-dimensional lattice

closes to the critical point, the exponent is 5/2 for d > 6. Hence, the Cont-Bouchaud model

corresponds to the percolation model with 6 or higher dimensions.

Every agent is assumed to have the same probability of buying and selling, which means

2Market depth is the excess demand needed to move the price by one unit [18].
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that the individual demand is symmetric:

P (ai = +1) = P (ai = −1) = ν, P (ai = 0) = 1− 2ν. (2.18)

The parameter ν is called the activity parameter. A larger value of ν indicates more

transactions of the market. When ν is in certain ranges, the Cont-Bouchaud model sim-

ulation illustrates multi-scaling [13] and time-reversal asymmetry [16] of the return rate.

Furthermore, varied expanded forms of the model generate many characteristics observed

in financial markets. For instance, the different behavior of the price is barely seen if the

fundamental value of the traded object is also taken into account other than the herding

behavior of the traders [15]. If the probabilities of buying or selling are proportional to the

price changes, the asymmetry between sharp peaks and flat valleys of the price trajectory

in the real markets is reproduced [97]. The modified Cont-Bouchaud model is able to gen-

erate the power law distribution with a “fat tail” without fixing it around the critical point

when the model parameters change during the simulation process [113] or when the average

number of connections evolves over time [27, 101].

2.2 Market Prediction Models

Market prediction models are built to forecast the price direction of financial products

through the study of historical and current macroscopic market data, such as price and

volume. They are categorized by the modelling tools and types of data used, such as fun-

damental analysis,3 technical analysis,4 time series method,5 and neural networks.6 Stock

traders are able to profit from the results of market prediction models if the prediction is ac-

curate. Therefore, market prediction models are used practically by stock traders. However,

the explanation of the prediction rules of these models is usually unclear and subjective.

3Fundamental analysis is the techniques for stock fundamental price determination and stock selection
by applying the principles of the firm foundation theory [85].

4Technical analysis is the method of deducing pictured probable future trend of stock prices from the
actual trading historical data for the determination of buy or sell time of a stock [25].

5Time series method is an analysis method of analyzing historical data and estimating future values of a
time series as a linear combination of the historical data [108].

6Neural Networks is one of the machine learning techniques that use a set of samples to generate an
approximation of the prediction function to forecast stock price [33].
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Moreover, the efficiency of the market prediction model is disputed by the random walk

hypothesis of stock prices and the efficient-market hypothesis [94].

2.2.1 Dow Theory

The Dow theory[8] is named after Charles H. Dow. Charles Dow wrote editorials focusing

on the rail and industrial averages for The Wall Street Journal. The principles in those

articles became the prototype of the Dow theory. From 1902 to 1929 William P. Hamilton

extended Dow’s work and in editorials to improve Dow’s principles. Hamilton systematically

explained the principles in his book The Stock Market Barometer’ in 1922. In 1932, Robert

Robea published The Dow Theory which was resulted from the study of the 252 editorials

of Dow and Hamilton.

The core ideas of Dow theory are based in six tenets [25]:

1. The averages discount everything. This is the foundation of all technical analysis.

It suggests that Dow theory solely focuses on price changes in the analysis.

2. The three trends. They are primary trends, secondary trends and minor trends.

3. Three phases of a primary trend. A primary uptrend is divisible into an accumu-

lation phase, a participation phase and an excess phase. On the contrary, a primary

downtrend is divisible into a distribution phase, a panic phase and a discouraged selling

phase.

4. The two averages must confirm. In Dow theory, the two averages refer to the Dow

Jones Industrial Average (DJIA) and Dow Jones Transportation Average (DJTA).

The start or the end of a primary trend is confirmed only if both averages provide the

same signal.

5. Volume goes with the trend. This means that the volume increases if the price

movement has the same direction as the primary trend, and vice versa.

6. A trend should be assumed to continue in effect until such time as its rever-

sal has been definitely signaled. This requires investors to distinguish whether a

direction change of price movements is a reversal of the primary trend or a secondary

trend.
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An important part of Dow theory is the ability to recognize the market direction using

trend analysis. The price movement trajectory is not a straight line. It has many oscillations

between peaks and troughs. In a rising trend, there are a series of higher peaks and troughs.

This means that a peak or trough is higher than preceding peaks or troughs. Conversely,

there are a series of lower peaks and troughs in a downward trend. The basic tenets of Dow

theory are based on the assumption that both primary trends and secondary trends cannot

be manipulated. According to the tenets of Dow theory, the trading strategy is buying the

stocks when the start of a primary uptrend is confirmed and holding them until the end

of the primary uptrend is confirmed. One of difficulties for the users of Dow theory is the

accurate and timely recognition of the start or reversal of a trend using the peak and trough

analysis.

Dow theory asserts that the primary trend of the stock market could be accurately

determined through the analysis of the general economic environment. The stock price is

the most important information and it reduces the importance of any other information. As

a result, Dow theory only uses daily closing prices for analysis, and pays no attention to the

daily highs and lows. Dow theory is a technical analysis tool, which means it predicts price

behaviours based on the investigation of price patterns. It requires its users to implement

all its tenets carefully and objectively with regard to the price movements. Otherwise, it

leads to a subjective analysis result and an erroneousl investment judgement. The accuracy

of Dow theory depends on the understanding of the users. Different Dow theory users may

produce different analysis results.

A decade after its invention, it is still widely used by investors and speculators, and

forms parts of other theories, such as the Elliotte wave theory. There is no doubt that

Dow theory is very important in the technical analysis of financial markets. However, its

limitations make it difficult as the sole tool for investment strategy. One common criticism

of the Dow theory is the possibility of missing a large part of a primary trend. The signal of

a trend reversal is not confirmed until a higher or lower peak or trough appears. It results in

a lower return rate compared to other analysis tools. Another problem of the Dow theory is

its fourth tenet. The industries of the two averages do not dominate in the current economy.

More averages should be considered to evaluate the economic environment. However, it is

rare to see these averages confirm each other.
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2.2.2 Elliott Wave Theory

Elliott wave theory, sometimes called the Elliott wave principle, is a technical analysis tool

of price trends invented by Ralph Nelson Elliott in the 1930s [31]. It is a set of rules derived

completely from empirical observations. It is used to analyze the stock market price or

index trends. It is one of the most widely used analysis tools, but is difficult to understand.

Elliott believes that the movements of commodity prices or stock prices are similar to those

of tides and waves in the sea. Waves always come one ofter another in cycles following

certain patterns. According to these patterns, the investors can predict the future price

trends and apply them to trading strategies.

The core theory of the Elliott wave principle is the “eight-wave cycle”. The analysis of

the eight-wave cycle for prediction is as complicated as it is popular. The basic tenets of

the Elliott wave principle are described below [31].

Figure 2.2: An example of a single wave structure. Reprinted from Copsey [19].

1. The stock market unfolds in a basic cycle pattern. Figure 2.2 is an example of a single

eight-wave structure. A complete cycle comprises eight waves with five waves (waves 1

to 5) up followed by three waves (waves A to C) down. The five waves in the uptrend

constitute the impulsive phase and the three waves in the downtrend constitute the
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Figure 2.3: An example of complex wave structure. Reprinted from Copsey [19].

corrective phase.

2. A wave is always a component of another wave of higher degree and subdivides into

waves of lower degree. Figure 2.3 shows an example of complex wave structure with

multi-degrees. This exhibits a fractal structure of the stock price and index move-

ments.

3. Among the three motive waves 1, 3 and 5, wave 3 is not the shortest one.

4. If any one of the three motive waves is extended, the other two have similar length

and height.

5. A basic corrective wave is usually in a 3-wave sequence.

6. The Golden ratio is the numerical basis of the wave theory.

7. Classic ratio values of the relations between waves are 0.382, 0.5, 0.618 and 1.618.

8. The bottom of wave 4 is higher than the top of wave 1.

9. The three most important aspects of the Elliott wave principle in order are: pattern,

time and ratio.
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10. The Elliott wave principle reflects the predominant psychology of the masses. The

more participants the market has, the more accurate the prediction will be.

Both Dow theory and Elliott wave theory are essentially wave theories analogous to the

movements of the sea. In comparison to Dow theory, Elliott’s concept of wave action has a

mathematical base, needs only one market average for interpretation, and unfolds according

to a specific structure [31]. In addition, the Elliott wave principle is able to provide timely

reversal information and a prediction of wave peaks. However, it is not easy for users of

Elliott wave theory to derive predictions because of its disadvantages.

The first advantage is that there is no clear definition of a completed wave, so Elliot-

ticians do not agree on the wave counts. The perfect ‘five waves up three waves down’

pattern does not happen in the real market most of time. Every Elliottician, including

R. N. Elliott, has difficulty determining the end of a wave and the start of another wave.

Different answers to this question make the wave counts completely subjective. It is dan-

gerous for users making trading decisions to rely on the results of uncertain wave counts.

Second, there are no clear rules for the confirmation of extension waves. Hence, the wave

counts become random. Third, the complex rules of the theory forces the users to focus on

individual fluctuations of price movements so that it is easy to neglect the big picture of

the price foundation.

Many Elliott wave advocates have tried to improve the Elliott wave theory, such as

Copsey [19] and Swannell [105, 104]. However, the subjectivity in its analysis means that

controversy of Elliott wave theory continues.

There are some other wave theories, such as Kondratieff wave theory and the Gann

wave theory. All of them are based on empirical observations and complement each other

in practice. However, either their principles do not have mathematical foundation or they

cannot be mathematically proved or simulated. When they assert a mathematical base,

they possess mathematical rules matching some market values devoid of explanations.



Chapter 3

Fundamental Principles in

Financial Markets

This thesis is based on the simulation of physical behaviors in financial studies, so that

existing physical theories, analysis methods, and models can be used in the modelling of

financial markets under specific assumptions. This chapter introduces the phenomena and

principles of mathematics and physics that are used in later modelling analysis of financial

markets.

3.1 Random Walk

The simplest random walk problem is the 1-dimension walk on a straight line [82]. Starting

at time zero, the walker takes a step in one direction or the other with the same step length

l and the same probability (50%) in each time interval τ . Therefore the expected value of

all steps is zero. Figure 3.1 is an example of a single 1-dimension random walk with 1000

steps. The X axis denotes time t, and the Y axis denotes the displacement d(t) of the walker

after t steps. The walker has one step ‘up’ or ‘down’ with a step length ‘1’ in each time

interval ‘1’.

The earliest research on the random walk is from the rigorous results on a physical

phenomenon called Brownian motion[110]. Considering n random variables with values of

l or −l presenting the random walk ‘up’ or ‘down’ with a step length of l in n steps, the

displacement of the walker after n steps is the sum of the n random variables. Supposing

20
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Figure 3.1: An example of a single 1-dimension random walk of 1000 steps with a step length ‘1’
and same probability (50%) for either step direction at each time interval ‘1’.

Figure 3.2: One thousand of 1-dimension random walks of 1000 steps with a step length ‘1’ and
same probability (50%) for either step direction at each time interval ‘1’.
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Figure 3.3: Normal probability plot for the displacement of the 1000 random walks at time t = 1000.

the probability of step ‘up’ (50%) or ‘down’ (50%) is the same, the Central Limit Theorem

(CLT) implies that the displacement d of the walker should be normally distributed with

mean zero and variance nσ2 where σ2 is the variance of each step, after n steps if n is

large enough. Figure 3.2 is a simulation plot of 1000 random walks. Each random walk

has 1000 steps with a step length ‘1’ and same probability for either step direction at each

time interval ‘1’. The normal probability plot for the displacement of these 1000 walkers

after 1000 steps in Figure 3.3 shows that they are normally distributed with a mean of

approximately zero. The calculated mean and variance of this simulation are −0.1380 and

973, respectively.

The expected value and variance of the displacement after n steps can be mathematically

calculated [95]. Let d(t) be the displacement of the walker at time t about time zero. The

step length l(t) is the random step made between time t and t + τ where τ is the time

interval of one step. All l(t)’s are assumed to be independently identically distributed (iid)

with a pdf Π(l). Then the random walk can be described by the equation:

d(t+ τ) = d(t) + l(t) (3.1)
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This equation is a simple example of a stochastic process equivalent to a sum of multiple

elementary step lengths:

d(t) = l(t− τ) + l(t− 2τ) + · · ·+ l(τ) + l(0). (3.2)

The variable d(t) is defined as a sum of n = t/τ random variables li. It is assumed that all

li’s are distributed with pdf Π(l) while the expected value of d(t) can be written as:

<d(t)> =
n∑
i=1

<li> = n <l> = 0. (3.3)

Since the lis are iid, which implies they are uncorrelated with < lilj >= 0 where i 6= j, the

variance of d(t) is:

<d2(t)> − <d(t)> 2 =
n∑
i=1

n∑
j=1

[ <lilj> − <li> <lj> ]

=

n∑
i=1

n∑
j=1
j 6=i

[ <lilj> − <li> <lj> ] +

n∑
i=1

[ <l2i > − <li>
2]

= n[ <l2> − <l>2] ≡ nσ2, (3.4)

where σ2 = <l2> − <l>2 is the variance of l. If the step length is 1, li = ±1, then the

variance σ2 is 1. The results in equations 3.3 and 3.4 are consistent with the statistics of

d(t) given by the CLT. This is an important prediction result of the random walk model.

It implies that the variation of the displacement at time zero increases in proportion to the

square root of time scale [94]. The recovery of the distribution of d(t) concluded by CLT is

shown in the next chapter by renormalization group analysis.

Random walk has been widely applied in several fields: dyadic expansions1 in number

theory, coin tossing and gains in gambling, and price change in stock markets [81]. Except

for large fluctuations, the random walk model constitutes a good model of relative changes

of stock market prices. Hence, the prediction results and analysis techniques on random

walk models are applicable to the analysis of stock market models.

1A number expressed in the binary system.
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3.2 Fractals

3.2.1 Introduction

Another important concept for financial markets is the ‘fractal’. Coastlines, cauliflower,

ferns, mountains, and trees are real world examples of fractals. Although the idea of fractals

has been studied since the 17th century, the term “fractals” was not used until 1975 by Benoit

Mandelbrot who is known as the “father of fractal geometry”. There is no precise definition

for fractals, because the idea of fractals is too broad. Although Mandelbrot [74] defines

a fractal as a set whose Hausdorff-Besicovitch dimension strictly exceeds its topological

dimension, he asserts that fractals “would do better without a definition”. Sornette [95]

interprets this technical definition of a fractal as “a rough or fragmented geometric shape

that can be subdivided into parts, each of which is a reduced-size copy of the whole”.

Figure 3.4: The top five iterations of the construction of the triadic Cantor set.

Fractals are based on the fact that the dimension of certain object structures are too

narrow to possess a fine structure, or the structure is too irregular to be geometrically

described or defined. Instead, several forms of self-similarity and scale invariance called

a “fractal dimension” defines those structures [95]. The computation of the Hausdorff-

Besicovitch dimension is very complicated, which makes it unsuitable as a computational

tool [5]. The fractal dimension is not computationally equivalent to the Hausdorff dimen-

sion. Nevertheless, their values coincide for many examples of fractals, and the fractal

dimension is much easier to compute. Figure 3.4 is the first five iterations of the triadic

Cantor set from top to bottom. It is an example of a fractal set. The construction of the

Cantor set starts from the top with a line segment of unit length, labeled the 0th level.

At level 1, it cuts out the middle third of level 0. The next iteration cuts out the middle

thirds of the two remaining portions of level 1. The continuation of this process cuts out the

middle thirds of the remaining portions of the previous level at each iteration, ad infinitum.

Notwithstanding, the point becomes a line if the figure is enlarged. Running the iterations
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till the nth level as n → ∞, each portion becomes a point with topological dimension 0.

However, they are actually a set of discrete points. Obviously, the dimension of a set of

discrete points should be different from that of a single point. This leads to the definition

of the fractal dimension, which generalizes dimension to non-integer values.

3.2.2 Fractal Dimension

Consider the cases of standard geometry shapes with topological dimension 1, 2 and 3.

First, consider a line segment of unit length 1. Equally divide it into three segments, then

each of the divided line segments has length of 1/3, and the total number of congruent line

segments is 3. This can be expressed by the equation:

3 =

(
1

1/3

)1

.

Next, consider a unit square. Equally divide it into nine squares, then each side of the unit

square is divided into three of length 1/3, which means the side length of those nine squares

is 1/3. Similarly, this can be expressed by the equation:

9 =

(
1

1/3

)2

.

Last, consider a unit cube. Equally divide it into 27 cubes, then each side of the unit cube

is divided into three of length 1/3, which means the side length of those 27 cubes is 1/3.

Thus, the expression is:

27 =

(
1

1/3

)3

.

Notice that all these three cases satisfy one equation:

N =

(
1

l

)d
, (3.5)

where N is the total number of equal elements divided at the linear scale of l and d is the

dimension of the object. Equation 3.5 suggests that the fractal dimension can be defined
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as:

df =
ln(N)

ln(1/l)
(3.6)

Returning to the Cantor set example in figure 3.4, the length of a line segment is reduced

to 1/3 of the previous, and two segments are produced from one segment of the previous

level. Hence, at the nth level, l = (1/3)n and N = 2n. Inserting into equation 3.6 these

values produces the fractal dimension of the Cantor set:

df =
ln 2

ln 3
≈ 0.63093 (3.7)

The definition of the fractal dimension in equation 3.6 produces an equivalent formula for

the “mass” M of an object with fractal structure within a sphere of radius R and with a

resolution ε:

M ∝ εd
(
R

ε

)df
, (3.8)

where d is the dimension of the space in which the object is embedded and df is the fractal

dimension given by equation 3.6 [95]. The equivalence of the two expressions is based on

the identities R ∼ r/ε and M ∼ Nεd. For a fixed size object R, the observability of a mass

M of the object decreases as εd−df , while the resolution of ε decreases.

3.2.3 Application in Financial Markets

The random walk is a fractal. It possesses the properties of self-similarity and scale invari-

ance. Self-similarity refers to arbitrary sub-parts of an object that are statistically similar

to the whole object provided a suitable magnification is performed in all directions and

scale invariance refers to the remaining invariance under a specific scaling transformation.

Figure 3.5 is an arbitrary random walk of 10000 steps. It shows that a sub-part (step 400

to 2000) is similar to itself with scaling in both time and displacement. As the random walk

has a fractal structure, the notions of formula 3.8 are applicable to a random walk with an

appropriate definition of “mass” and “resolution” in the random walk [94, 95].
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With the one-dimensional random walk discussed in the last section, the diffusion coef-

ficient D is defined as:

D =
σ2

0

2τ
, (3.9)

where σ2
0 =< l2 > − < l >2 is the variance of step length l, and τ is the step time. The

diffusion coefficient for the random walk is proportional to the product of l and the walking

velocity c between two consecutive changes of direction with the relationship l ∼ cτ . Thus,

the expression of the diffusion coefficient can be written as:

D ∼ cl ∼ c(cτ) ∼ c2τ ∼ l2

τ
(3.10)

The variance of the total displacement of the random walk as defined in equation 3.4 is

σ2 = nσ2
0, then

σ(t) ∼
√
Dt ∼ l( t

τ
)1/2 ∼ σ0(

t

τ
)1/2. (3.11)

The notation for “mass” of a random walk for the fractal structure can be generally mea-

sured by the arc length joining the starting point to the ending point in the space-time

diagram with d = 2 dimensions

L ∼
√
t2 + σ2(t) ∼ t

√
1 +

(σ
t

)2
. (3.12)

Interpreting t as the resolution ε of the fractal structure notation in formula 3.8, the fractal

dimension is equal to d = 2 minus the exponent of t. At small scales implying t < σ2
0/τ ,

then (σ/t)2 � 1 in 3.12 becomes

L ∼ t
√(σ

t

)2
∼ t
√
σ2

0

τt
∼ t1/2 (3.13)

=⇒df = 3/2 (3.14)

In contrast, at large scales, then (σ/t)2 � 1 means L ∼ t, so df = 1.

Section 3.1 shows that stock market price/index movements can be characterized by a
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Figure 3.6: An example of fractal characteristics in stock index movements. The data is from FTSE
100 index at different time scales. The top figure is the plot of weekly end index values. The bottom
one is the plot daily end index values. Both are observed to have similar movement patterns with
different scales in both time and amplitude directions.
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random walk. The above discussion shows that a random walk is a fractal. Therefore, stock

price/index movements mimic fractals. Fractals are the basis of the Elliott Wave Theory

that claims they have similar patterns along all time scales. The stock price or index can

be observed per minute, hourly, daily, and weekly. The observation charts are very similar

at each different time scale. Figure 3.6 shows an example of fractal properties that appears

in Financial Times Stock Exchange (FTSE) 100 stock index2. The top figure is the plot

of weekly closing index values. The bottom figure is the plot of daily closing index values.

Both have similar movement patterns with different scales in both time and index value

changes. The finding that these markets have properties of fractals is the principle in stock

market technical analysis that history repeats itself.

The Elliot wave principle uses the fractal characteristic of the stock market in its analysis.

As the patterns repeat themselves, to get an accurate identification of the Elliot wave pattern

for prediction of stock market trends, it is necessary for an analyst to start with a 1-minute

chart, to identify all Elliot waves, and then repeat this in half-hourly, hourly, daily and

weekly charts. It is important to fit each small fluctuation to a pattern to make sense of

the larger move in Elliot wave patterns.

Moreover, this characteristic produces a method to interpret why the price/index os-

cillations appear as in fractals. This is because each stock price/index movement is a

manifestation of the actions (buy/sell) of a number of individual traders. Traders in the

market are not isolated from each other. They exchange market information with their

neighbours and interact on trading decisions (buy, sell or hold). In addition, the interaction

behavior of the traders is observable at different levels, such as the single trader, the broker,

the stock agent, the mutual fund, or the bank. Hence, a Hierarchical Model (HM) is feasi-

ble for stock price/index modelling. Since the hierarchical structure used to describe trader

behavior is a fractal, the behavior of traders in the market also follows fractal. Accordingly,

stock market price/index movement unfolds in similar manner.

This result is also useful for chartists who need to understand which time frame chart

is more suitable. The market analysis system is made up of various technical tools, such

as moving averages, draw-down limits, and trend lines, on the price chart. If the fractal

2FTSE 100 index is a stock index of 100 London Stock Exchange listed companies maintained by the
FTSE Group, which is jointly owned by Financial Times and London Stock Exchange.
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structure of the movement charts are fractals is understood, then the analysis of charts in

different time frames is the same. Chart patterns occur in one time frame as frequently as

others.

3.2.4 Hierarchical Model

Figure 3.7: Example of Hierarchical Model structure with n+ 1 levels and group members of 2.

The Hierarchical Model (HM) is suitable for data that come from multilevel or hierar-

chical social structures in which individuals are nested within larger social units [23]. A HM

has the hierarchical structure in the form of a fractal tree [109]. Figure 3.7 is an example

of hierarchical model structure with n + 1 levels and coordination number 2, which is an

example of a perfect binary tree. Any subtree of it has the same structure at different scale,

which is a fractal structure.

The assumption is that traders interact and influence the buy/sell behavior of each other.

Therefore, individual traders are nested in a larger unit. For example, two traders in the

same family can be grouped together, and the traders from two families in the same building

may be grouped. In order to study the macroscopic behavior of stock market traders,

it is reasonable to construct the trader behavior in the stock market with a hierarchical

structure. The Renormalization Group (RG) approach is applicable to the hierarchical
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structure for finding macroscopic properties from microscopic behavior. The stock market

price can be viewed as the result of the sum of all trader behavior, and the fractal structure

in trader behavior leads to the fractal visualization in stock prices. This is consistent with

the observation in subsection 3.2.3. Sornette [86] proposed a hierarchical model for stock

markets analogous to the hierarchical fiber rupture model with time-dependence. Under

the assumption of hierarchical organization of traders, the model considers the individual

traders as agents of order 0. Using the renormalization group formalism, the traders are

organized in groups of m traders with m = 2, where each of these groups becomes a

single agent of order 1. Agents of order 1 are organized in groups to form agents of order

2. Continuing this process, a hierarchical organization with order n and 2n individuals is

obtained. This HM is hierarchical because of the time traders spend making a buy order

and the position of the agents according to their size. The detailed definition, calculation

and application to the financial market is discussed in Chapter 5.

3.3 Phase Transition: Critical Phenomena

The terms “phase” and “critical” have many different meanings in the sciences. In the

context of statistical physics, critical phenomena refer to the phenomena observed near a

critical point [95]. A critical point is the point at which the system has a phase transition

at all existing scales in the system [116]. A phase transition is a transformation of a system

or matters from one phase or state to another [116].

There are plenty of examples of phase transition in nature. A common example is

the transition from the three phases of H2O: ice, water and vapor. Figure 3.8 is a phase

transition diagram of H2O [118]. Phase transitions for H2O occur at certain combinations

of temperature and pressure on the phase curves. Temperature and pressure at many scales

of length have an equally important effect on the class of phenomena [116]. At each point

on the phase curves there exists a phase transition and both phases coexist during the whole

process of transition. Transitions between solid and gas occur only below the Triple Point.

The phase boundary of liquid/gas disappears at the Critical Point. It is called the super

critical liquid/gas state beyond the Critical Point where the distinction between the liquid

and gaseous phases is almost non-existent [118].
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Figure 3.8: Phase diagram of H2O with critical point. Ice is in solid phase, water is in liquid phase,
and vapor is in gas phase. (Source: [118])

Phase transitions are classified into two basic categories: first-order and second-order

phase transitions [44]. According to Ehrenfest, a phase transition is of order one if the first

derivative of the free energy with respect to some other variables (e.g., temperature and

pressure) are discontinuous. Similarly, the phase transition is of the order two if the first

derivative is continuous across the phase transition, whereas the second derivative is discon-

tinuous. However, this classification is incorrect for the derivative divergent cases. Landau

proposed another classification scheme to deal with discontinuous second derivatives. In

the first-order phase transitions the two phases coexist across the phase transition. The

solid-liquid-gas phase transitions above are examples of first-order phase transitions. If the

two phases do no coexist, it is classified as a second-order or higher-order phase transition.

An example of second-order transitions is the ferromagnetic transition at the Curie point.

The word “critical”, in the context of statistical physics, implies the occurrence of a

second-order phase transition. Criticality at the microscopic level between the order and

disorder equilibria transition produces a complex macroscopic behavior characterized by

self-similarity of long-range correlations. Fundamentally, the critical behavior results from
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the repeated interactions between microscopic elements which progressively phase up and

construct a macroscopic self-similar state. Such non-analytic behavior can be dealt with by

functions in response to the system at the mathematical level[95].

Many researchers, such as Kaizoji [55], Kiyono et al. [59], Sornette [94, 95], Vandewalle

et al. [111], and Yalamova and McKelvey [118], view the financial market crashes as critical

phenomena. The trader behavior in the stock market system is categorized into three

macroscopic states: the fundamental phase, the bullish phase and the bearish phase. The

transitions among these three phases are associated with approach to and retreat from

criticality involving a combination of first- and second-order (or spinodal) phase changes

[7]. The fundamental phase is a stable equilibrium. The trajectory of the market price

performs like a random walk. If this fundamental equilibrium is broken, there is a first-order

phase transition from the fundamental phase to the bullish phase. When the system stays

in the bullish phase, speculative bubbles occur in the stock market. This accelerates the

stock price in a power law. Furthermore, the increasing price stimulates more speculative

bubbles. If the investment environment reaches the critical point, a second-order phase

transition and market crash tends to be observed. This means that at the critical point,

the investment attitude of all traders changes from “buy” to “sell”. In contrast, if the

investment environment reaches the phase transition boundary between bullish and bearish

phase without reaching the critical point, a first-order phase transition is observed and a

crash is avoided. For a certain range across the phase transition, the bullish phase and

bearish phase coexist. In this instance, the market is in an anti-bubble regime and returns

to the fundamental phase.



Chapter 4

Renormalization Group

4.1 Background

Renormalization Group (RG) theory was invented to address critical phenomena, which

are a class of behaviors characterized by structures on many different scales and power law

dependences of measurable quantities on the control parameters [95]. It enables a more

accurate understanding of ordering phenomena such as magnetism and superconductivity

[60]. The Renormalization Group analysis is a mathematical apparatus. It allows the

decomposition of the problem of finding the “macroscopic” behavior of a large number

of interacting parts into a succession of simpler problems. Every simplified problem has

a decreasing number of interacting parts, whose effective properties vary with the scale

of observation. The RG approach to modelling consists of breaking down an intractable

problem with multiple scales of length into a sequence of smaller problems, each of which

is confined to a single scale of length[116]. The RG approach works best when the system

possesses the properties of scale invariance and self-similarity of the observables at the

critical point.

4.2 Two Main Transformation

A classic example illustrating the RG process is to derive the central limit theorem in two

RG steps: Decimation and Rescaling [95]. Decimation means “decimating” the degrees of

freedom to transform the problem into a simpler one. The step of decimation finds out

35
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whether or not the distribution type of the X sum is the same as the original distribution

type. Rescaling means rescaling the sum of the variables. When a variable is rescaled, the

cumulants, which characterizes the pdf , are also rescaled. After these two steps, the same

pdf as the initial pdf is found if the distribution is stable.1

4.2.1 Decimation

The very first step in RG analysis is to eliminate the degrees of freedom representing short-

distance fluctuations involving a certain interval of small wave lengths [62]. There are

several types of RG transformations for this step. Conceptually, the RG decimation or

thinning of degrees of freedom is the simplest [63]. Originally, the decimation technique is

only for exact one-dimensional models with nearest-neighbor tight-binding [115]. Kushnir

and Rosenstein [63] illustrated how to perform the decimation transformation in more than

one dimension in free theory.

Consider the displacement of a 1-dimensional random walk problem after N steps, to

which the decimation technique can be applied. As discussed in Section 3.1, the random

walk can be viewed as a stochastic process equivalent to a sum of multiple elementary

step lengths. Each step length is identical and independent. In a more general case it is

substantially a problem of sum (X) of N random iid variables (X1, X2, . . ., XN ):

X = X1 +X2 + . . .+XN , (4.1)

where N = 2m. It is possible to sum each two of these variables to a new variable X ′i as

X ′1 = X1 + X2, X ′2 = X3 + X4, . . ., X ′N/2 = XN−1 + XN . Then the original sum variable

X is rewritten as:

X = X ′1 +X ′2 + . . .+X ′N/2, (4.2)

where X ′js are iid as their summands are iid. This operation decimates half of the degrees

of freedom.

1A stable distribution function is defined as one such that if X1 and X2 are independent random variables
with the given distribution, then for every a1 > 0, a2 > 0, there exists a3 > 0 satisfying a1X1+a2X2 = a3X3,
where X3 again has the given distribution. Examples of stable distributions are Gaussian distribution and
Lévy distribution. [67].
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The probability of the new N/2 variables X ′j is the joint probability of X2j−1 and X2j .

Suppose all the N random variables Xi are iid distributed with pdf p(xi), then the pdf of

X ′j is the integral of the product of p(x2j−1) and p(x2j) for all values of x2j−1 and x2j that

satisfy the condition of x2j−1 + x2j = x′j . All X ′js have the same pdf p′(x′j). If this pdf p′ is

expressed in terms of p, the decimation process can be repeated m times to reach the pdf

of the sum p(x). To simplify the notation, let X = X ′j , X1 = X2j−1, and X2 = X2j in the

equation:

p′(x) =

∫ ∞
−∞

dx1p(x1)

∫ ∞
−∞

dx2p(x2)δ(x− (x1 + x2))

=

∫ ∞
−∞

dx1p(x1)p(x− x1), (4.3)

where δ is the Dirac delta fuction defined as:

δ(x) =

 ∞, x = 0

0, x 6= 0

constrained with the identity

∫ +∞

−∞
δ(x)dx = 1.

Equation 4.3 shows that p′ is defined as the convolution of two identical pdfs p.

Convolution

The convolution of two functions f and g is defined as:

(f ∗ g)(t) =

∫ +∞

−∞
f(τ)g(t− τ)dτ (4.4)

=

∫ +∞

−∞
f(t− τ)g(τ)dτ, (4.5)

which is the integral of the product of f and g for all values of τ [21].

The convolution of two pdfs, p1(x) and p2(x), noted as p = p1 ∗ p2, is defined as:

p(x) =

∫ +∞

−∞
p1(x1)p2(x− x1)dx1, (4.6)
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which is the pdf of the random variable X = X1 +X2 [95].

The Fourier Transform of f(x) [21] is defined as:

F (k) =

∫ +∞

−∞
f(x)e−ikxdx (4.7)

with inverse f(x) =

∫ +∞

−∞
F (k)eikx

dk

2π
. (4.8)

If each pdf p above has Fourier transform p̂, for the convolution p = p1 ∗ p2, then

p̂(k) = p̂1(k)p̂2(k), (4.9)

which is called the Fourier Convolution. The Fourier transform of p(x) is also called the

characteristic function p̂(k), which is the expected value of eikX , in probability theory [114].

Extending the pdf convolution of two random variables, for a sum of N independent random

variables, its pdf is the convolution of the N pdfs. A general form for equation 4.9 is then:

p̂(k) = p̂1(k)p̂2(k) . . . p̂N (k). (4.10)

Moments, Cumulants and Characteristic Function

The nth-order moment of a random variable X about the origin is defined by the expected

value of the nth power of x, denoted by:

mn = <xn> =

∫ +∞

−∞
xnp(x)dx, (4.11)

where p(x) is the pdf of X [65]. From the right hand side (right hand side) of the definition

equation 4.11, it is obvious that the existence of mn depends on the convergence of xnp(x),

which means that the decay of p(x) has to be faster than the increase of xn for large values

of |x|. Although it is not always correct that random variables with the same moments have

the same distribution, the knowledge of all moments has the same level of importance as

the functional behavior form of the pdf [70].
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The characteristic function of a pdf [22] is defined by the Fourier transform of the pdf :

p̂(k) =

∫ +∞

−∞
exp(ikx)p(x)dx. (4.12)

The nth-order moment of the pdf is obtained from the nth successive derivatives of the

characteristic function at k = 0:

mn = (−i)n d
np̂(k)

dkn

∣∣∣∣
k=0

. (4.13)

The nth-order cumulant of the pdf is defined by the nth successive derivatives of the loga-

rithm of its characteristic function at k = 0:[22]

cn = (−i)n d
n ln p̂(k)

dkn

∣∣∣∣
k=0

. (4.14)

The Taylor series expansion of the characteristic function and the logarithm of the

characteristic function shows that the characteristic function can be rewritten in terms of

the moments or the cumulants provided that all moments and cumulants exist:

p̂(k) =

∞∑
n

[mn

n!
(ik)n

]
= exp

∞∑
n

[cn
n!

(ik)n
]
. (4.15)

In the expansion of equation 4.15, a moment mn is a combination of the first n cumulants,

and the nth cumulants can be expressed as an nth-degree polynomial of the first n moments

[57]. The first moment and cumulant are the same and equal to the mean of the variable.

The second cumulant is the variance of X written as c2 = m2 − m2
1 = σ2. In contrast,

the second moment is the expected value of X2 expressed as m2 = c2 + c2
1 = < x2 >.

With such relationships between the moments and cumulants, under additional analyticity

conditions of the characteristic function in the neighborhood of the origin, the knowledge

of all cumulants determines the functional behavior of the pdf . Specifically, a distribution

with identical zero cumulants of order larger than two follows the Gaussian law.

In equation 4.9, the Fourier transform of the pdf for the convolution of two pdfs is

equal to the product of the Fourier transform of the two pdfs respectively. As the Fourier
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transform of a pdf is its characteristic function, given in equation 4.15, suppose the two

convolution pdfs have the cumulants c
(1)
n and c

(2)
n , then:

exp

∞∑
n

[cn
n!

(ik)n
]

= exp

∞∑
n

[
c

(1)
n

n!
(ik)n

]
exp

∞∑
n

[
c

(2)
n

n!
(ik)n

]

= exp

{ ∞∑
n

[
c

(1)
n

n!
(ik)n

]
+
∞∑
n

[
c

(2)
n

n!
(ik)n

]}

= exp

{ ∞∑
n

[
c

(1)
n + c

(2)
n

n!
(ik)n

]}
. (4.16)

Thus, another useful property of cumulants is shown that

cn = c(1)
n + c(2)

n . (4.17)

With the above attributes of convolution and cumulants, it is simple to obtain the

following results of the first step of decimation from equation 4.3:

p̂′(k) = p̂(k)p̂(k) = p̂2(k) (4.18)

and c′n = 2cn. (4.19)

Equation 4.19 provides the pdf of X ′, the sum of two iid variables X in terms of the

cumulants of X:

p′(x′, c′1, c
′
2, . . . , cl, . . .) = p′(x′, 2c1, 2c2, . . . , 2cl, . . .). (4.20)

Repeating such a decimation process m times (total number of variables is assumed to be

N = 2m), the distribution of X(m) is obtained as:

p(m)(x(m), c
(m)
1 , c

(m)
2 , . . . , c

(m)
l , . . .) = p(m)(x(m), 2mc1, 2

mc2, . . . , 2
mcl, . . .), (4.21)

where X(m) is actually the X in equation 4.1, which is the sum of X1, X2, . . ., XN .

As the cumulants play the crucial role of the distribution, the pdf

p(m)(x(m), 2mc1, 2
mc2, . . . , 2

mcl, . . .)
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is equivalent to the pdf p(x(m), 2mc1, 2
mc2, . . . , 2

mcl, . . .) at different scales. To find the

exact pdf of the sum, a rescaling step is necessary.

4.2.2 Rescaling

The second step of the iterative RG procedure is rescaling, which expresses the function in

terms of rescaled quantities such that it has the same form as that before the decimation

transformation [62]. An inherent property of a pdf is the normalization constraint that∫ +∞
−∞ p(x) = 1. In the right hand side of equation 4.20, the pdf p′ for X ′i, which is the sum

of two iid variables, has a different form from the original pdf p of those two iid variables

Xi, because the scales of X ′i and Xi are different. To derive the same form of p, it needs

to renormalize the pdf to conserve probabilities, which is the process of the rescaling step,

such that X ′i is changed to the same scale of Xi.

Now we need to find the scale for X ′i. Recall that the random walk problem is the sum

of n random variables with values of ±l. Section 3.2.3 shows that the diffusion behavior of a

random walk follows L(t) ∼ t1/2. This is equivalent to X(N) ∼ N1/2 in the case of the sum

of N random variables. For two iid random variables X, whose N is 1, the sum of them X ′

with N = 2, we have X ′ ∼ 21/2. If defining a scalar s, such that the X ′i is changed to X ′i/s,

then s = 21/2. As the variable is scaled by s, the cumulants cl, representing the distribution

behavior of the random variable, are scaled by sl, where l is the order of the cumulants. In

terms of the conservation of probabilities p(y)dy = p(x)dx, a factor of 1/s = 2−1/2 needs to

be multiplied by the probability. Accordingly, equation 4.20 is rewritten as:

p′(x′, c′1, c
′
2, . . . , cl, . . .) = p′(x′, 2c1, 2c2, . . . , 2cl, . . .)

=
1

21/2
p(

x′

21/2
, 21−1/2c1, 2

1−2·1/2c2, . . . , 2
1−l·1/2cl, . . .). (4.22)

Similarly, repeating this rescaling process after each of decimation step, equation 4.21 be-

comes:

p(m)(x(m), c
(m)
1 , c

(m)
2 , . . . , c

(m)
l , . . .)

=
1

21/2m
p

(
x(m)

21/2m
, 2m(1−1/2)c1, 2

m(1−2·1/2)c2, . . . , 2
m(1−l·1/2)cl, . . .

)
. (4.23)
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When m → +∞, all cumulants with an order greater than two in equation 4.23 approach

zero:

p(m)(x(m), c
(m)
1 , c

(m)
2 , . . . , c

(m)
l , . . .)→ 1√

N
p

(
x(m)

√
N
,
√
Nc1, c2, c3 = 0, . . . , cl = 0, . . .

)
.

(4.24)

The pdf on the right hand side of equation 4.24 shows that the distribution is Gaussian as

discussed in Section 4.2.1. Therefore, the pdf f(x) for the sum of N iid random variables

is:

f(x) =
1√
N

1√
2πσ2

exp−(x/
√
N −

√
Nµ)2

2σ2

=
1√

2πNσ2
exp−(x−Nµ)2

2Nσ2
. (4.25)

This shows that the distribution of the sum of N iid random variables with same mean

µ and variance σ converges to the Gaussian Law when N → ∞ with mean Nµ and vari-

ance Nσ2, which proves the central limit theorem. In addition, this result shows that the

Gaussian law is a fixed point for the transformation from pm−1 to pm in the form of:

pm(x) =

∫ +∞

−∞
dx1pm−1(x1)pm−1(x− x1), (4.26)

where pm(x) is the pdf of the sum of N = 2m iid random variables.

In the RG process, the combined effect of decimation and rescaling is taken into ac-

count through a modification of the coupling constants. There are many RG applications.

Decimation is not the only way to reduce the degrees of freedom in the RG transformation.

Rescaling is a key step to find the accurate function describing the macroscopic behav-

ior. There is no single universal method for rescaling. Kopietz [62] lists several rescaling

methods for important cases.
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4.3 General Formalism

4.3.1 Elements of RG theory

The specific problem of the distribution of the sum of N iid random variables in the last

section shows how the RG analysis follows the “divide and conquer” proverb by organizing

the description of a system scale-by-scale [95]. In studies of critical phenomena, the overall

behavior of the system is the foremost concern. Such a behavior is viewed as the aggregation

of an ensemble of arbitrarily defined sub-systems, as is the behavior of each of these sub-

systems. There are a lot of different formalisms in explaining RG approach. They have

different analysis techniques, but the same ideas [112]. The Discrete Scale Invariance(DSI)

formulation is one of those developed for critical phenomena, such as earthquake faults

[84] and financial market crashes. This RG framework leads to a simple power law, or a

power law associated with complex exponents, which manifests itself in data by log-periodic

corrections to scaling[93]. The presentation in this section follows Sornette [95].

The RG analysis is based on the characteristic of scale invariance and self-similarity. DSI

is a weaker kind of scale invariance where the observable system obeys scale invariance only

for specific countable, but infinite scales[93]. For illustration purposes, consider the example

of free energy F behavior in a spin system. Scale invariance means that the observation

F depends on a control parameter x, for an arbitrary change of x → λx. There exists a

number µ such that

F (x) = µF (λx).

In the RG formalism, the scale on x defines a RG flow map. To study observable behavior

close to the critical point using the RG formalism, we define the control parameter x =

|Tc − T | as the distance of temperature T to the critical point Tc, and the transformation

of the free energy F under the RG flow map x′ = φ(x) representing the relationship of the

values of the free energy F at the temperatures T and T ′, such that:

F (x) = g(x) +
1

µ
F [φ(x)], (4.27)

where µ is a constant describing the rescaling of free energy upon the rescaling of tempera-

ture distance to the critical point and g(x) defines the non-singular part of F (x). Without
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loss of generality, we can assume that F (0) = 0.

To find the solution for F in equation 4.27, first, we must define a recurrence relation:

fn(x) = g(x) +
1

µ
fn−1[φ(x)], n = 1, 2, . . . (4.28)

with f0(x) = g(x). Then we can list the equation of fn as following:

f1(x) = g(x) + 1
µf0(φ(x)) = g(x) + 1

µg(φ(x))

f2(x) = g(x) + 1
µf1(φ(x)) = g(x) + 1

µ

[
g(φ(x)) + 1

µg(φ(φ(x)))
]

= g(x) + 1
µg(φ(x)) + 1

µ2
g(φ(2)(x))

f3(x) = g(x) + 1
µf2(φ(x)) = g(x) + 1

µ

[
g(φ(x)) + 1

µg(φ(φ(x))) + 1
µ2
g(φ(φ(φ(x))))

]
= g(x) + 1

µg(φ(x)) + 1
µ2
g(φ(2)(x)) + 1

µ3
g(φ(3)(x))

. . . . . . . . . . . . . . . . . . . . .

fn(x) = g(x) + 1
µfn−1(φ(x)) =

∑n
i=0

1
µi
g[φ(i)(x)], n > 0.

The superscripts (i) of φ(i)(x) represent the number of compositions of the function. The

free energy is then equal to fn as n→∞:

F (x) = lim
n→∞

fn(x) =

∞∑
i=0

1

µi
g[φ(i)(x)] (4.29)

The usefulness of the RG analysis formulation is to mathematically reconstruct the

nature of the critical singularities from the embedding of scales, so that the problem is

translated into a mathematical problem of critical singularity. In this formalism example,

the critical point is described by the singular point of F (x), and the singularity of F (x)

corresponds to the unstable fixed point on the RG flow map φ(x) that describes the change of

scale. The unstable fixed point of φ(x) exists when the absolute value of its derivative at the

corresponding fixed point is greater than 1, and is written as |λ| > 1 where λ = dφ/dx|x=φ(x).

A singular point x of the function F (x) exists when a finite kth derivative of F is infinite

at x. Since F (x) is expressed as a sum, its kth derivative is also a sum of the kth derivative

of each term. As in equation 4.29 the superscripts (i) below consistently represent the

ith term. The first and the second derivative of the ith term of F (x) at the critical point
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x = φ(x) are:

d

dx
F (i)(x)

∣∣∣∣
x=φ(x)

=
1

µi
· dg(φ(i)(x))

dφ(i)(x)
· dφ(i)(x)

dφ(i−1)(x)
· dφ

(i−1)(x)

dφ(i−2)(x)
. . .

dφ(x)

dx

∣∣∣∣∣
x=φ(x)

=

(
λ

µ

)i
g′(φ(i)(x))

d2

dx2
F (i)(x)

∣∣∣∣
x=φ(x)

=

(
λ

µ

)i dg′(φ(i)(x))

dφ(i)(x)
λi

=

(
λ2

µ

)i
g(2)(φ(i)(x))

Similarly, the kth derivative is deduced as:

dk

dxk
F (i)(x)

∣∣∣∣
x=φ(x)

=

(
λk

µ

)i
g(k)(φ(i)(x)) ∼

(
λk

µ

)i
(4.30)

The right hand side term of equation 4.30 shows that no matter what the value of µ is, with

the appropriate choice of scale |λ| > 1, there always exists sufficiently large k, such that

λk/µ > 1, which implies the existence of the infinite value of the kth derivative of F (x).

Hence, it implies the existence of a singularity of F (x).

The defined unstable fixed point at x = 0 and the linearized RG flow map φ(x) = λx+C

close to the critical point and the solution close to x = 0 follows the power law F (x) ∼ xm

with m = lnµ/ lnλ deduced from the solution of λm/µ = 1. The critical behavior of F

solely depends on the exponent m of x, and m is controlled by the two scaling parameters

µ and λ.

4.3.2 Calculation

The previous section introduces the general framework and elements in the RG analysis

of the free energy. This section presents the RG method applied to a spin system as

an example for the calculation of the RG formalism parameters. The illustration of the

calculation follows the diamond lattice example in Saleur, Sammis and Sornette[83].

Consider a spin network system in which the spins are put at the vertex of a diamond

lattice with 2p magnification, 4p bonds, and 2
3(2 + 4p) sites. The first three iterative con-

structions are shown in figure 4.1. The location of the spins σi is at the vertex of the
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Figure 4.1: The construction of the first three magnification of a diamond lattice.

diamond fractal. Suppose the spins are coupled with interaction energy

E = −J
∑
<ij>

δ(σiσj), (4.31)

where J is a coupling parameter. The sum is taken over the nearest neighbors. The δ

function value is one if σi and σj are equal, and zero otherwise. Defining the partition

function at p as

Zp =
∑
E

e−βE , (4.32)

such that the normalization of the Boltzmann function, which is the probability to find a

system in any given state of energy E,

P (E) = Ce−βE (4.33)

is written as

P (E) =
e−βE

Zp
. (4.34)
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The parameters β, in equation 4.33 and 4.34, is defined as a function of temperature T :

β =
1

kBT
, (4.35)

where kB is called Boltzmann constant. Thus, the expected value of E is

<E>=
∑
E

EP (E) =
∑
E

E
e−βE

Zp
=
∂ lnZp
∂β

(4.36)

The definition of free energy in thermodynamics is

F = <E> −TS, (4.37)

where S is the entropy which is defined by

S = −kB
∑
E

P (E) lnP (E). (4.38)

Then the free energy can be expressed using equations 4.32, 4.34, 4.36 and 4.38 as

F = <E> −TS (Definition) (4.39)

=
∑
E

[
EP (E) +

1

β
P (E) lnP (E)

]
=
∑
E

P (E)

β
[βE + lnP (E)]

=
1

β

∑
E

P (E) [βE − βE − lnZp]

= − lnZp
β

∑
E

P (E)

= −kBT lnZp (4.40)

Consider only one isolated diamond in the lattice, and call the spins σ1, σ2 at the

extremities and s1, s2 of the other two, as shown in figure 4.1. Defining K = eβJ , the

contribution of this diamond to e−βE is Kδ(σ1,s1)+δ(σ2,s1)+δ(σ1,s2)+δ(σ2,s2). The contribution
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of a single lattice to the total partition function Zp is

∑
s1,s2

Kδ(σ1,s1)+δ(σ2,s1)+δ(σ1,s2)+δ(σ2,s2)

=

 (2K +Q− 2)2, σ1 6= σ2

(K2 +Q− 1)2, σ1 = σ2

=(2K +Q− 2)2

[
1 +

(
(K2 +Q− 1)2

(2K +Q− 2)2
− 1

)
δ(σ1, σ2)

]
(4.41)

=(2K +Q− 2)2

[
(K2 +Q− 1)2

(2K +Q− 2)2

]δ(σ1,σ2)

(4.42)

=(2K +Q− 2)2K ′δ(σ1,σ2), (4.43)

whereQ is the number of states that the spins can take andK ′ = (K2+Q−1)2/(2K+Q−2)2.

Using equation 4.43, for a system with magnification 2p, if the interaction of spins is Kp,

then the interaction at a lower magnification 2p−1 is

Kp−1 =

[
K2
p +Q− 1

2Kp +Q− 2

]2

= φ(Kp), (4.44)

which defines the RG flow map. Equation 4.43 shows that the contribution of each diamond

to Zp is equal to an edge in the next lower magnification 2p−1 that contributes to Zp−1 with

a factor (2K +Q− 2)2. Hence, a transformation equation from Zp−1 to Zp can be written

as

Zp(Kp) = [(2Kp +Q− 2)2]4
p−1

Zp−1(Kp−1) (4.45)

=⇒Zp(K) = (2k +Q− 2)2×4p−1
Zp−1[φ(K)]. (4.46)

The extra power of 4p−1 is the total number of bonds at magnification 2p−1. The definition of

free energy bonds related to the partition function in equation 4.40, along with equation 4.46
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is

fp(K) = (−kBT )
1

4p
lnZp(K) (4.47)

= (−kBT )
1

4p
[2 · 4p−1 ln(2K +Q− 2) + lnZp−1(K ′)]

= (−kBT )

[
1

2
ln(2K +Q− 2) +

1

4
· 1

4p−1
lnZp−1(K ′)

]
= (−kBT )

1

2
ln(2K +Q− 2) +

1

4
fp−1[φ(K)], (4.48)

which is the RG formalism

fp(K) = g(K) +
1

µ
fp−1[φ(K)], (4.49)

where g(K) = 1/2(−kBT ) ln(2K + Q − 2) and µ = 4. The RG calculation recovers the

functional form of equation 4.27, which indicates that the free energy of an infinite fractal

for some microscopic coupling K satisfies equation 4.49. Therefore, the behavior of the free

energy close to a critical point Kc follows a power law.

4.3.3 Real and Complex Exponent Solutions

Section 4.3.1 shows that the solution to equation 4.27 close to the critical point x = 0

follows the power law

F (x) ∼ xm, (4.50)

with a real exponent

m = lnµ/ lnλ. (4.51)

As g(x) is the non-singular part of equation 4.27, and the proportional relation 4.50 only

reflects the singular behavior about the critical point of F (x), the solution to the exponent
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m of 4.50 can be derived by a substitution of the singular part on both sides of equation 4.27:

xm =
1

µ
(λx)m

=⇒λm/µ = 1. (4.52)

The expression 4.51 is only one specific solution to the exponent m for real numbers. A

general solution to the complex critical exponent m can be deduced by adding a zero term

using the identity exp(i2πn) = 1. Nothing forces m to actually be a real number [83]. From

equation 4.52, it is simple to obtain

m lnλ = lnµ+ ln 1

=⇒mn =
lnµ

lnλ
+ n

2π

lnλ
i n ≥ 0. (4.53)

If we use the complex expression 4.53 to substitute the exponent in 4.50, then the solution

is:

F (x) ≈ A+ xm
[
x(

∑
n≥0

2πn
lnλ

i)
]

(4.54)

However, F (x) is real. Therefore, the general solution to F (x) with a complex exponent m

only takes the real part of the complex solution in 4.54:

F (x) ≈ A+Bxm + xm
∑
n>0

Cn cos (2πnΩ lnx+ Φn) , (4.55)

where m = lnµ/ lnλ, Ω = 1/λ, and A,B,Cn are parameters. The general solution to

F (x) with complex critical exponent in equation 4.55 exhibits a power law associated with

log-periodic oscillations.



Chapter 5

Hierarchical Model

The Hierarchical Model (HM) was introduced in Chapter 3, where it was discussed how

it is appropriate in modeling the trading behavior in the stock market. This chapter de-

rives the periodic oscillation power law characteristics from the hierarchical model and the

construction of the Log-Periodic Power Law (LPPL) model for the prediction of financial

crashes.

Figure 5.1: Example of Hierarchical Model structure with n+ 1 levels and group members of 2.

51
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5.1 Model Definition and Structure

Figure 3.7 in Chapter 3 shows an example of hierarchical model. Each vertex in the graph

represents a trader in the market. The traders at any levels other than level 0 are considered

as trading agents of all its descendants. The purpose of this HM analysis is to find the

macroscopic behavior of the traders under the assumption of interaction between traders.

Accordingly, the model structure can be simplified to a fractal binary tree, which means

each vertex has exactly two children, and the interactions between two siblings are same

for all levels.

Suppose a trader i of order 0 has a preferred time ti to buy the stock with the same

utility function σ that measures willingness and timing for buying. Assume ti has the pdf:

p0(t) = κ[σ(t)]ρexp{−κ[σ(t)]ρt}, (5.1)

then the cdf is:

P0(t) ≡
∫ t

0
p0(t′)dt′ = 1− exp

{
−κ
∫ t

0
[σ(t′)]ρdt′

}
(5.2)

and when σ(t′) is constant, P0 becomes

P0(t) = 1− exp{−κσρt} (5.3)

This is an exponential distribution with the memoryless property, which means

P0(T > t+ s|T > s) = P0(T > t) (5.4)

This property is similar to the Markov property.1 Consider that each purchase event of

trader i changes its state, so the state variable is a jump process. Since P0(t) is an ex-

ponential distribution, this jump process is a Markov process. For a time independent σ,

the purchase events of trader i is a Poisson process, as shown in figure 5.2. The mean

1Given times 0 < t1 < t2 < ... < tn < s and t > 0, the Markov property is:

P [X(t+ s) = y|X(s) = x,X(tn) = xn, ..., X(t1) = x1] = P [X(t+ s) = y|X(s) = x] (5.5)
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time between purchase events is (κσρ)−1. The parameter ρ, called the sensitivity of the

time-to-buy on σ, measures the response of the trader to changes in his utility function.

Figure 5.2: Starting from t = 0, the trader i makes the first purchase of a stock at time ti1. The
time from ti1 to the trader’s second purchase is ti2.

As assumed in the model structure, each group has two traders at the mth level. There

exists an imitation process between the two traders within the group. If one of the two

traders buys a stock at time t1, the utility function for the other trader is affected, from σ

to 2β/ρσ, after t1 until the second trader buys a stock at t12. Therefore, using equation 5.3,

the cdf of t12 becomes:

P0(t12) = 1− exp{−κσρ[t1 + 2β(t12 − t1)]}, (5.6)

where t12 is influenced by the first trader from t2 to t12. This cdf is conditional on the first

trader buying at time t1. Without the condition of t1, the cdf of t2:

P0(t2) = 1− exp{−κσρt2} (5.7)

is equal to equation 5.6. So we have

t1 + 2β(t12 − t1) = t2 (5.8)

=⇒t12 = t1 + 2−β(t2 − t1), (5.9)

with β > 0 an influence exponent measuring the strength of interaction between the two

traders. If β → 0, the interaction is weak with t12 → t2; if β →∞, the interaction is strong

with t12 → t1. Under the assumption of the hierarchical structure, this imitation process is

transferred to the next (m+ 1)th level when both of the traders at mth level buy the stock.

The trader of order m + 1 is considered having bought the stock once the two traders at

the mth level in its group have done so. With this information, the other trader of order
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m + 1 of the pair changes the time-to-buy from t34 to t1234. This process may continue

to higher levels and lead to a complex superposition of actions and influences starting at

the lowest level of the hierarchy and progressively overlapping as more groups get linked at

higher levels.

Suppose there are initially M = 2N traders in the market at level 0. Each adjacent pair

of traders are grouped together viewed as an agent at level 1. Continuing this grouping,

every m = 2 agents make up of a new agent of the next level in the hierarchical model. As

a hierarchical model scale is the same for each level, we can start from the highest order N

of the hierarchy. The buy time of the two groups of traders at level N − 1 are coupled. If

the pdf of the traders at level N − 1 is pN−1(t), by equation 5.9, the coupled pdf of the buy

time of the groups of traders at level N is:

pN (t) = 2

∫ t

0
dt1

∫ ∞
t1

dt2pN−1(t1)pN−1(t2)δ[t− t1 − 2−β(t2 − t1)]

=
2

2−β

∫ t

0
dt1pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
. (5.10)

Equation 5.10 is the renormalization group (RG) equation for the probability that the

whole hierarchical system of traders buy a stock at time t. It is the fundamental equation

of the analysis of the hierarchical model. Theoretically, as N →∞ all traders in the stock

market place a buy orders at the time t in equation 5.10. At this interval a crash maturing

time for the system is signaled:

pN (t)→ p∞(t) ≡ δ(t− tc) as N →∞, (5.11)

where tc is the critical crash time.

5.2 Modelling Formulation and Solutions

5.2.1 Special Solution for the Case of β = 1

As β = 1, equation 5.10 becomes:

pN (t) = 4

∫ t

0
dt1pN−1(t1)pN−1(2t− t1) (5.12)
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The Fourier transform of pN (t) is:

p̂N (k) = 4

∫ +∞

−∞

∫ t

0
pN−1(t1)pN−1(2t− t1)e−iktdt1dt

= 2

∫ +∞

−∞

∫ 2t

0
pN−1(t1)pN−1(2t− t1)e−iktdt1dt, since it is symmetric by t1 = t

= 2

∫ +∞

−∞

∫ +∞

−∞
pN−1(t1)pN−1(2t− t1)e−iktdt1dt,

since pN−1(t1) = 0 as t1 < 0 and pN−1(2t− t1) = 0 as t1 > 2t

= 2

∫ +∞

−∞
pN−1(t1)dt1

∫ +∞

−∞
pN−1(2t− t1)e−iktdt

= 2
1

2

∫ +∞

−∞
pN−1(t1)dt1

∫ +∞

−∞
pN−1(u)e−iku/2e−ikt1/2du

=

∫ +∞

−∞
pN−1(t1)e−ikt1/2dt1p̂N−1(

k

2
)

= p̂N−1(
k

2
)p̂N−1(

k

2
)

The Fourier transform of the pdf defines the characteristic function as [95]:

p̂N (k) = exp

[ ∞∑
n

c
(N)
n

n!
(ik)n

]
(5.13)

p̂N−1(
k

2
)p̂N−1(

k

2
) = exp

[ ∞∑
n

c
(N−1)
n

n!
(i
k

2
)n

]
exp

[ ∞∑
n

c
(N−1)
n

n!
(i
k

2
)n

]
(5.14)

= exp

[ ∞∑
n

c
(N−1)
n

n!

(ik)n

2n−1

]
(5.15)

Since equations 5.13 and 5.15 are equal, we have the equation for the cumulants of the

distributions of two adjacent levels as:

c(N)
n =

c
(N−1)
n

2n−1
(5.16)

Let t be the average time for all traders M of order 0 to buy a stock. As the pdf is completely
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determined from the knowledge of its cumulants, the pdf of t is:

p(t,M, c1, c2, c3, ..., cn, ...) = p(t′,
M

2
, c1,

c2

2
,
c3

22
, ...,

cn
2n−1

, ...) (5.17)

= p(t(2),
M

22
, c1,

c2

22·1 ,
c3

22·2 , ...,
cn

22(n−1)
, ...) (5.18)

......

= p(t(N),
M

2N
, c1,

c2

2N
,
c3

2N ·3
, ...,

cn

2N(n−1)
, ...) (5.19)

As N → ∞, all cumulants other than c1 are all zero, i.e. converging to a Gaussian with

variance approaching 0. This is expressed in equation 5.11 for the special case of β = 1 where

the distribution converges to a δ function at t = tc, which is the crash time. Theoretically,

this is the time that every trader in the market buys a stock. However, this is not reflected

in the real world. Instead, it provides a status that all traders in the market are highly

connected and their trading actions are highly simulated. When one of the millions of

traders sells a stock, all others follow. It results in a market crash.

5.2.2 Special Solution for the Case of β → 0 and β →∞

For the case of β → 0, all traders in the market are totally independent. The decision of

every trader to buy a stock is not affected by any other traders’ decisions. It is apparent

that as β → 0, then 2−β approaches 1. equation 5.10 becomes

pN (t) =
2

1

∫ t

0
pN−1(t1)pN−1(

t− (1− 1)t1
1

) as β → 0

= 2pN−1(t)

∫ t

0
pN−1(t1)dt1

= 2pN−1(t)PN−1(t) where PN−1(t) is the cdf . (5.20)

The integral of equation 5.20 is the cdf of the distribution, which is:

PN (t) =

∫ t

0
pN (τ)dτ

= 2

∫ t

0
pN−1(τ)PN−1(τ)dτ

= P 2
N−1(t) (5.21)
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Figure 5.3: Cobweb diagram for the function f(x) = x2 starting from x0 = 0.8.

Since the cdf PN−1 ∈ (0, 1), then P 2
N−1 < PN−1. So we have 0 < PN < PN−1. Equa-

tion 5.21 is equivalent to a discrete dynamical system defined by the function f(x) = x2

with 0 < x < 1. The stable equilibrium for the function. Figure 5.3 is a cobweb diagram of

the function showing the convergence to . Therefore, equation 5.21 gives that PN → 0 as

N →∞, i.e. 0 is an attracting fixed point of this discrete dynamical system.

As shown in Figure 5.4, a cdf of an exponential distribution is a function starting from

zero approaching 1. The cdf curve of each level is beneath the cdf curve of the adjacent

lower level with a later time approaching 1. The cdf curve is similar to a step function with

the jump at time tc = ∞ as N → ∞. The pdf of the distribution is a δ function with the

pulse at the time when the cdf has the jump. Therefore, the pdf of crash times converges

to a delta function at the time of infinity when there is no interaction among traders. In

this instance the market never crashes.

For the case of β → ∞, the traders in the market are fully interacted. In other words,

if one of the two traders in a group purchases the stock at time t1, the other trader in the

same group is affected and buys the stock immediately at t1. The analysis of this case is

much more complicated than the previous case of β → 0 because the factor of equation 5.10

exhibits unstable properties. Both 2
2−β

and t−(1−2−β)t1
2−β

diverge to infinity as β approaches

infinity. As expected, pN (t) converges to a δ function at t = 0 as N → ∞ when the
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Figure 5.4: The cdf curve of each level is beneath the cdf curve of the adjacent lower level with a
later time approaching 1.

traders are fully interacted. The mathematical proof below shows this behavior from the

fundamental equation 5.10 of the hierachical model.

Proof: Defining a function fN (t), which extending the integral range to t
1−2−β of equa-

tion 5.10.

fN (t) =
2

2−β

∫ t

1−2−β

0
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1 (5.22)

It is noticed that pN−1(t1)pN−1

(
t−(1−2−β)t1

2−β

)
= 0 when t1 < 0 or t1 >

t
1−2−β

. The integral

range can be further extended as

fN (t) =
2

2−β

∫ +∞

−∞
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1 (5.23)
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The Fourier transform of fN (t) is:

f̂N (k) =
2

2−β

∫ +∞

−∞

∫ +∞

−∞
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
e−iktdt1 dt

=
2

2−β

∫ +∞

−∞
pN−1(t1)

∫ +∞

−∞
pN−1

(
t− (1− 2−β)t1

2−β

)
e−iktdt dt1

=
2

2−β
2−β

∫ +∞

−∞
pN−1(t1)

∫ +∞

−∞
pN−1(u)e−ik2−βue−ik(1−2−β)t1du dt1

= 2

∫ +∞

−∞
pN−1(t1)e−ik(1−2−β)t1dt1p̂N−1(2−βk)

= 2p̂N−1

[
(1− 2−β)k

]
p̂N−1(2−βk)

(5.24)

Let 2−α = 1− 2−β, equation 5.24 becomes

f̂N (k) = 2p̂N−1

[
(1− 2−β)k

]
p̂N−1(2−βk)

= 2p̂N−1

[
(1− 2−α)k

]
p̂N−1(2−αk).

(5.25)

Therefore, if there exists an α such that 2−α = 1− 2−β, then equation 5.25 implies

2

2−β

∫ t

1−2−β

0
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

=
2

2−α

∫ t
1−2−α

0
pN−1(t1)pN−1

(
t− (1− 2−α)t1

2−α

)
dt1 (5.26)

From equation 5.22, one can show that

fN (t) =
2

2−β

∫ t

1−2−β

0
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

=
2

2−β

[∫ t

0
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

+

∫ t

1−2−β

t
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

] (5.27)

Using a substitution with u = t−(1−2−β)t1
2−β

on the second term of the right side of equa-

tion 5.27, then t1 = t−2−βu
1−2−β

and dt1 = 2−β

2−β−1
du. For the lower and upper limits, u = t as
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t1 = t, and u = 0 as t1 = t
1−2−β

. Then the integral becomes

∫ t

1−2−β

t
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

=
2−β

2−β − 1

∫ 0

t
pN−1

(
t− 2−βu

1− 2−β

)
pN−1(u)du

=
2−β

1− 2−β

∫ t

0
pN−1(u)pN−1

(
t− 2−βu

1− 2−β

)
du (5.28)

Putting equation 5.28 into equation 5.27, changing the variable to t1, and writing the second

term in terms of α using equation 5.26, the equation appears as

fN (t) =
2

2−β

∫ t

1−2−β

0
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

=
2

2−β

∫ t

0
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

+
2

1− 2−β

∫ t

0
pN−1(t1)pN−1

(
t− 2−βt1
1− 2−β

)
dt1

=
2

2−β

∫ t

0
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

+
2

2−α

∫ t

0
pN−1(t1)pN−1

(
t− (1− 2−α)t1

2−α

)
dt1

(5.29)

Combining equation 5.29 and 5.26 together, the fundamental equation 5.10 is written as

pN (t) =
2

2−β

∫ t

0
pN−1(t1)pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

=
2

2−α

∫ t
1−2−α

0
pN−1(t1)pN−1

(
t− (1− 2−α)t1

2−α

)
dt1

− 2

2−α

∫ t

0
pN−1(t1)pN−1

(
t− (1− 2−α)t1

2−α

)
dt1 (5.30)

Recalling that α satisfies the equation 2−α = 1 − 2−β. As β → ∞, α → 0, then 2−α
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approaches to 1. equation 5.30 is simplified as

pN (t) = 2

∫ ∞
0

pN−1(t1)pN−1(t)dt1 − 2

∫ t

0
pN−1(t1)pN−1(t)dt1

= 2pN−1(t)− 2pN−1(t)PN−1(t),

and the cdf is

PN (t) = 2PN−1(t)− P 2
N−1(t) (5.31)

Rewrite equation 5.31 as

PN (t) = PN−1(t)(2− PN−1(t)). (5.32)

Since the cdf PN−1 ∈ (0, 1), then (2 − PN−1) is greater than 1. So we have PN > PN−1

from equation 5.32. If equation 5.31 is rewritten as

PN (t) = 1− (1− PN−1(t))2, (5.33)

it shows that PN < 1 as PN−1 ∈ (0, 1).
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Figure 5.5: Cobweb diagram for the function f(x) = 2x− x2 starting from x0 = 0.2.

Equation 5.31 is equivalent to a discrete dynamical system defined by the function



CHAPTER 5. HIERARCHICAL MODEL 62

f(x) = 2x − x2 with 0 < x < 1. The stable equilibrium for the function. Figure 5.5 is

a cobweb diagram of the function showing the convergence to 1. Therefore, equation 5.31

gives that PN → 1 as N →∞, i.e. 1 is an attracting fixed point of this discrete dynamical

system.

This concludes the proof for the case of β approaching ∞. �

Figure 5.6: The cdf curve of each level is over the cdf curve of the adjacent lower level with a later
time approaching 0.

As shown in Figure 5.6 the result from equation 5.31 implies that PN (t) converges to a

step function at tc = 0 as N →∞. Similarly, with a step function at tc = 0 being the cdf ,

the pdf of the distribution has to be the δ function at tc = 0. Whenever one of the two

traders at a level in a group of the hierarchical model buys a stock, the other trader buys

it immediately. This leads to a crash time of zero, where one trader buying a stock triggers

all traders in the market buying stocks simultaneously.
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5.2.3 General Solution

Assume pN−1 is a rectangle, then

pN−1(t) =

 1
ε , t ∈

[
tc − ε

2 , tc + ε
2

]
0, otherwise

(5.34)

which converges to the δ function as ε→ 0. Putting equation 5.34 into equation 5.10, pN (t)

can be written as:

pN (t) =


0 t ∈

[
0, tc − ε

2

]
2

2−βε

∫ t
tc− ε2

pN−1

(
t−(1−2−β)t1

2−β

)
dt1 t ∈

[
tc − ε

2 , tc + ε
2

]
0 t ∈

[
tc + ε

2 ,∞
] (5.35)

For t < tc− ε
2 , it is apparent that pN−1(t1) in equation 5.10 is zero in [0, t]. For t > tc+

ε
2 ,

we have

t− (1− 2−β)t1
2−β

>
t− (1− 2−β)t

2−β

=
2−βt

2−β

> tc +
ε

2

which means pN−1

(
t−(1−2−β)t1

2−β

)
= 0 in [0, t].

To find the solution for t ∈
[
tc − ε

2 , tc + ε
2

]
, we let u = t−(1−2−β)t1

2−β
, then

pN (t) =
2

6 2−βε
6 2−β

2−β − 1

∫ t

t−(1−2−β)(tc− ε2 )

2−β

pN−1(u)du, t ∈
[
tc −

ε

2
, tc +

ε

2

]
(5.36)

As pN−1 is only defined when u is in
[
tc − ε

2 , tc + ε
2

]
, both limits of the integral should be

in this interval. It is easy to show when u = tc − ε
2 , t = tc − ε

2 ; and when u = tc + ε
2 ,

t = tc − ε
2 + 2−βε. For β > 0, 2−βε is smaller than ε, then tc − ε

2 + 2−βε < tc + ε
2 . As a
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result, equation 5.36 is separated into two integrals:

pN (t) =


2

ε(2−β−1)

∫ t
t−(1−2−β)(tc− ε2 )

2−β
pN−1(u)du, t ∈

[
tc − ε

2 , tc −
ε
2 + 2−βε

]
2

ε(2−β−1)

∫ t
tc+

ε
2
pN−1(u)du, t ∈

[
tc − ε

2 + 2−βε, tc + ε
2

] (5.37)

=


2

ε2(2−β−1)
(t− t−(1−2−β)(tc− ε2 )

2−β
), t ∈

[
tc − ε

2 , tc −
ε
2 + 2−βε

]
2

ε2(2−β−1)
(t− (tc + ε

2)), t ∈
[
tc − ε

2 + 2−βε, tc + ε
2

] (5.38)

=

 2
ε2
t−tc+ ε

2

2−β
, t ∈

[
tc − ε

2 , tc −
ε
2 + 2−βε

]
2
ε2
tc−t+ ε

2

1−2−β
, t ∈

[
tc − ε

2 + 2−βε, tc + ε
2

] (5.39)

This process of pN−1 to pN changes the shape of the pdf from a rectangle to a triangle

within the same scale, which satisfies the requirement of normalization. With ε→ 0, both

pN−1 and pN approach the δ function at the fixed point tc. The value of the critical point

tc depends on the intrinsic distribution for the time the traders buy a stock . Next, we need

to find the general renormalization group equation.

Since pN (t) approaches to the fixed point pdf , which is a δ function, as N →∞, we can

express the pdf pN−1(t) as the fixed point distribution with a normalization constant plus

a function of their difference ∆pN−1(t). This is written as:

pN−1(t) = Cp∞(t) + ∆pN−1(t). (5.40)

To find the constant C, we integrate on both sides.

∫ ∞
0

pN−1(t)dt = C

∫ ∞
0

p∞(t)dt+

∫ ∞
0

∆pN−1(t)dt (5.41)

As both pN−1(t) and p∞(t) are normalized pdfs, and their integrals are 1, then equation 5.41

becomes:

1 = C +

∫ ∞
0

∆pN−1(t)dt (5.42)

⇒C = 1−
∫ ∞

0
∆pN−1(t)dt (5.43)
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Let ∆N−1 ≡
∫∞

0 ∆pN−1(t)dt, then equation 5.40 becomes

pN−1(t) = (1−∆N−1)p∞(t) + ∆pN−1(t) (5.44)

Putting it into equation 5.10, we have:

pN (t) =
2

2−β

∫ t

0
[(1−∆N−1)p∞(t1) + ∆pN−1(t1)][

(1−∆N−1)p∞(
t− (1− 2−β)t1

2−β
) + ∆pN−1(

t− (1− 2−β)t1
2−β

)

]
dt1 (5.45a)

=
2

2−β

[∫ t

0
(1−∆N−1)(1−∆N−1)p∞(t1)p∞(

t− (1− 2−β)t1
2−β

)dt1 (5.45b)

+

∫ t

0
(1−∆N−1)∆pN−1

(
t− (1− 2−β)t1

2−β

)
p∞(t1)dt1 (5.45c)

+

∫ t

0
(1−∆N−1)∆pN−1(t1)p∞

(
t− (1− 2−β)t1

2−β

)
dt1 (5.45d)

+

∫ t

0
∆pN−1(t1)∆pN−1

(
t− (1− 2−β)t1

2−β

)
dt1

]
(5.45e)

By dropping all the second or higher order in ∆, it becomes:

=
2

2−β

[∫ t

0
(1− 2∆N−1)p∞(t1)p∞(

t− (1− 2−β)t1
2−β

)dt1 (5.45f)

+

∫ t

0
∆pN−1

(
t− (1− 2−β)t1

2−β

)
p∞(t1)dt1 (5.45g)

+

∫ t

0
∆pN−1(t1)p∞

(
t− (1− 2−β)t1

2−β

)
dt1 (5.45h)

+0] (5.45i)

Also, as ε→ 0, p∞(t) can be written as a δ function centered at tc:

=
2

2−β

[∫ t

0
(1− 2∆N−1)δ(t1 − tc)δ(tc −

t− (1− 2−β)t1
2−β

)dt1 (5.45j)

+

∫ t

0
∆pN−1

(
t− (1− 2−β)t1

2−β

)
δ(t1 − tc)dt1 (5.45k)

+

∫ t

0
∆pN−1(t1)δ

(
tc −

t− (1− 2−β)t1
2−β

)
dt1 (5.45l)

+0] (5.45m)
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After above simplification, we need to solve the three integrals (5.45j, 5.45k, 5.45l) one

by one.

Integral 5.45j: Since (1−2∆N−1) is a constant, it can be removed from the integral. We

now need to prove:

∫ t

0
δ(t1 − tc)δ(tc −

t− (1− 2−β)t1
2−β

)dt1 =
2−β

2
δ(t− tc) (5.46)

Proof: To prove this, we show that the integral of the product of an arbitrary continuous

function f(t) and the left side is equal to the the product of f(t) and the right side:

∫ ∞
0

∫ t

0
δ(t1 − tc)δ(tc −

t− (1− 2−β)t1
2−β

)dt1f(t)dt =

∫ ∞
0

2−β

2
δ(t− tc)f(t)dt (5.47)

RHS of equation 5.47:

∫ ∞
0

2−β

2
δ(t− tc)f(t)dt =

2−β

2
f(tc) (5.48)

LHS of equation 5.47:

∫ ∞
0

∫ t

0
δ(t1 − tc)δ(tc −

t− (1− 2−β)t1
2−β

)f(t)dt1dt

=

∫ ∞
0

δ(t1 − tc)
∫ ∞
t1

δ(tc −
t− (1− 2−β)t1

2−β
)f(t)dtdt1

=2−β
∫ ∞

0
δ(t1 − tc)

∫ ∞
t1

δ(2−βtc + (1− 2−β)t1 − t)f(t)dtdt1

=2−β
∫ ∞
tc

δ(2−βtc + (1− 2−β)tc − t)f(t)dt

=2−β
∫ ∞
tc

δ(tc − t)f(t)dt

=
2−β

2
f(tc)

(5.49)

Since the LHS and the RHS of equation 5.47 are equal, this completes the proof of equa-

tion 5.46. �

In the last step of above proof, the result of the integral from tc to ∞ is half of the
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integral from 0 to ∞. To show this, we can define a function δε(t), such that

lim
ε→0

δε(t) = δ(t),

which can be defined as:

δε(t) =

 1
ε t ∈

[−ε
2 ,

ε
2

]
0 otherwise

(5.50)

So the integral in the last step of equation 5.49 becomes:

∫ ∞
tc

δ(tc − t)f(t)dt = lim
ε→0

∫ ∞
tc

δε(tc − t)f(t)dt

= lim
ε→0

∫ tc+
ε
2

tc

δε(tc − t)f(t)dt

Using the Mean Value Theorem, there exists a tε ∈ [tc, tc + ε
2 ], such that

lim
ε→0

∫ tc+
ε
2

tc

δε(tc − t)f(t)dt = lim
ε→0

f(tε)

∫ tc+
ε
2

tc

δε(tc − t)dt

= lim
ε→0

f(tε)
1

ε
(tc + ε/2− tc)

=
1

2
lim
ε→0

f(tε)

=
1

2
f(tc)

Integral 5.45k: As t < tc, the values of δ(t1 − tc) for t1 from 0 to t are 0. The integral

is then zero when t < tc. For t = tc, similar the proof above, the integral is equal to

1
2∆pN−1(tc). This can be dropped because it is comparably small to the integral of the

term 5.45j, which is a δ function at tc. The only non-zero and valid part of the integral is

when t > tc. In conclusion, the integral 5.45k can be written as

∫ t

0
∆pN−1

(
t− (1− 2−β)t1

2−β

)
δ(t1 − tc)dt1 =

 0, t ≤ tc

∆pN−1

(
t−(1−2−β)tc

2−β

)
, t > tc

(5.51)
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Integral 5.45l: This integral is the compensation of integral 5.45k. It is zero for t > tc

and is dropped for t = tc. For t < tc, it is solved by a substitution of u = t−(1−2−β)t1
2−β

, then

∫ t

0
∆pN−1(t1)δ

(
tc −

t− (1− 2−β)t1
2−β

)
dt1

=

∫ +∞

t
∆pN−1

(
t− 2−βu

1− 2−β

)
δ(tc − u)

2−β

1− 2−β
du

=
2−β

1− 2−β
∆pN−1

(
t− 2−βtc
1− 2−β

)

Therefore, the solution to the integral of 5.45l is

∫ t

0
∆pN−1

(
t− (1− 2−β)t1

2−β

)
δ(t1 − tc)dt1

=


2−β

1−2−β
∆pN−1

(
t−2−βtc
1−2−β

)
, t < tc

0, t ≥ tc
(5.52)

Combining the results of equations 5.46, 5.51, and 5.52, the solution to equation 5.45 is

pN (t) =


2

1−2−β
∆pN−1

(
t−2−βtc
1−2−β

)
, t < tc

(1− 2∆N−1)δ(t− tc), t = tc

2
2−β

∆pN−1

(
t−(1−2−β)tc

2−β

)
, t > tc

(5.53)

This can be re-written as one single equation

pN (t) = (1− 2∆N−1)δ(t− tc) + ∆pN (t) (5.54)

= (1− 2∆N−1)p∞(t) + ∆pN (t), (5.55)

where

∆pN (t) =
2

1− 2−β
∆pN−1

(
t− 2−βtc
1− 2−β

)
, t < tc

∆pN (t) =
2

2−β
∆pN−1

(
t− (1− 2−β)tc

2−β

)
, t > tc
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Shifting the fixed point tc to zero by changing the variable to τ = t − tc, equation 5.55 is

re-written as

pN (τ) = (1− 2∆N−1)p∞(τ) + ∆pN (τ), (5.56)

where ∆pN (τ) =
2

1− 2−β
∆pN−1

(
τ

1− 2−β

)
, τ < 0 (5.57)

∆pN (τ) =
2

2−β
∆pN−1

( τ

2−β

)
, τ > 0 (5.58)

equations 5.57 and 5.58 are in the renormalization group formalism with τ = 0 as the fixed

point and β as the exponent determining the re-scaling factor to τ . Let φ(τ) = τ
1−2−β

and φ(τ) = τ
2−β

, respectively, which is the RG flow map, and µ = 1−2−β

2 and µ = 2−β

2 ,

respectively, which is the re-scaling factor corresponding to the RG flow map. equation 5.57

and 5.58 are re-written as

∆pN (τ) =
1

µ
∆pN−1(φ(τ)) =

1

µN
∆p0(φ(N)(τ)) (5.59)

where the superscript (N) denotes the N th composition.

The solution to an equation in the form of a renormalization group close to the critical

points is expressed in a power law: [95]

∆pN (τ) ∼ τκ. (5.60)

The critical points correspond to the unstable fixed points of the RG flow map φ(τ) when

the absolute value of the derivative of φ with respect to τ becomes greater than 1. Defining

this value as λ = dφ/dτ |τ=φ(τ), the kth derivative of ∆pN (τ) is proportional to (λk/µ)N .

Since λ > 1, the singular behavior emerges for a sufficiently large k, such that (λk/µ)N is

greater than the unit radius of convergence. Therefore, the solution to ∆pN (τ) close to the

critical point is proportional to τκ with λκ/µ = 1. This gives a solution to κ:

κ =
lnµ

lnλ
(5.61)



CHAPTER 5. HIERARCHICAL MODEL 70

Using equation 5.61, for τ < 0,

λ− =
1

1− 2−β

µ− =
1− 2−β

2

κ− =
lnµ

lnλ

=
ln(1− 2−β)− ln 2

− ln(1− 2−β)

=
ln 2

ln(1− 2−β)
− 1, τ < 0. (5.62)

Similar to equation 5.61

κ+ = − 1

β
− 1, τ > 0. (5.63)

equations 5.62 and 5.63 are the real exponents of the power law in 5.60, which is just

a special solution, denoted by ∆p0
N (τ) ∼ τκ. For a more general solution with periodicity,

∆pN (τ) ∼ τκn considering κ being a complex number, it can be derived as

λκn = µ

⇒κn lnλ = lnµ+ ln 1 = lnµ+ ln ei2πn

⇒κn =
lnµ

lnλ
+ i

2πn

lnλ
(5.64)

Substituting κn in τκn with equation 5.64, it gives

τκn = τ
lnµ
lnλ

+i 2πn
lnλ

= τκτ i
2πn
lnλ

= τκei
2πn
lnλ

ln τ (5.65)

The additional term ln 1 in equation 5.64 is a zero term, thus an infinite number of such

terms can be added to the equation and n is an arbitrary integer. Considering this and
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taking the real part of equation 5.65, a more general form is then:

τκn = τκ[a0 +

∞∑
n=1

an cos(nΩ ln τ + φn)], (5.66)

where Ω = 2π
lnλ . equation 5.66 shows that the general singular solution ∆pN (τ) and the

special solution ∆p0
N (τ) are related by a periodic function p(τ):

∆pN (τ) = ∆p0
N (τ)p(ln ∆p0

N (τ)) (5.67)

The periodic function p(τ) satisfies the periodicity requirement with a period lnµ, where µ

is as defined in equation 5.59. This is expressed as

p(lnµ+ ln ∆p0
N−1(τ)) = p(ln ∆p0

N (τ)) (5.68)

Thus, the general solution to the hierarchical model of stock markets is an asymptotic power

law associated with log-periodic oscillations, which is consistent with findings in Bree and

Joseph [11], Sornette [87], and Zhou and Sornette [123].

If the pdf of the number of traders at level n buying stock is pn(t), then the proportion

of the total traders at level n buying the stock at time t is Pn(t) =
∫ t

0 pn(τ)dτ . This cdf is

under the assumption that the traders at the same level are independent individuals without

any interactions. For example, P0(t) is the cdf for level 0 traders without interactions, and

likewise, P1(t) is the cdf for level 1 traders without interactions, and so forth. However,

P1(t) is determined by the distribution of level 0 traders and the strength of interactions

between traders at level 0. Therefore, the fraction of traders at level 0 buying the stock

with interactions is:

F0(t) ≈ P0(t) + [1− P0(t)]P1(t) + [1− P0(t)][1− P1(t)]P2(t) + ... (5.69)

The renormalization group recursion equation of pn(t) derived above has log-periodic oscil-

lations as t closes to the crash time tc, and the cdfs of Pn(t) also exhibit such oscillations,

as does F0(t).
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5.2.4 Simulation of General Solutions

Two general solutions of the model are not mathematically proved from section 5.2.1 to

section 5.2.2. One is the general solution to crash time tc as a function of traders interaction

strength β, with the characteristic of approaching to infinity as β → 0 and converging to

zero as β increases to infinity. The other is the general solution to F0(t), which is a power

law distribution associated with log-periodic oscillations. However, both of their properties

are presented by numerical simulations.

Crash Time tc

The derivation in Section 5.2.1 and Section 5.2.2 shows the crash time tc for three special

cases of β:

β 0 1 ∞
tc ∞ t̄ 0

Table 5.1: Relationship of interaction strength β vs. crash time tc.

The greater the interaction exists between traders, the faster the market crashes. The

results shown in Table 5.2.4 and the definition of β indicate that the crash time tc is

monotonically decreasing as β increases. equation 5.3 indicates that the simulation starts

by defining the pdf p0(t) with numerical values from 0 to t, for level zero. By the fundamental

equation 5.10, the pdf values of each level (i.e., p1(t), p2(t), · · · ) are calculated. The analysis

in Section 5.2.3 shows that the pdf pn(t) converges to a δ function as N → ∞. The

calculation for pN (t) in the simulation is terminated when the maximum value of the pdf is

greater than a large number, such as 100. The time t where the maximum pdf is obtained

is approximately the crash time as we defined. Thus, for each β, the crash time can be

calculated. The plot of crash time tc to the interaction parameter β is shown in Figure 5.7.

The MatLab program for the simulation is in Appendix A.

Figure 5.7 demonstrates a power law relationship between the crash time tc and the

interaction strength β. The relationship is expressed as:

tc(β) ∼ t

βµ
(5.70)
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Figure 5.7: Plot for the relationship between the crash time and the interaction strength between
traders. The initial distribution p0(t) is exponential with λ = 1. The fit to the power law of expres-
sion 5.70 gives the estimated values t = 0.9602 and µ = 0.6685 with the coefficient of determination
of R2 = 0.9349.

where t is the original mean of buying times of all traders without interactions, and µ is

the parameter that depends on the buying time distribution.

Fraction of Traders Buying Stocks F0(t)

The simulation of F0(t) is more complicated than that of tc. As the derivation of equa-

tion 5.69 is an approximation, it smooths the oscillation characteristics. Furthermore, the

truncation on the pdf in the numerical simulation and the precision of the pdf as n gets

large and approaches a δ function prevents the appearance of the expected log-periodic os-

cillations. Based on equation 5.10 and 5.69 the log-periodic oscillations are not observable

in the simulation experiments.

This hierarchical model for stock market crashes is analogous to the hierarchical fiber

rupture model in Sornette [95] or the hierarchical failure model to precursory seismic acti-

vation in Newman [77]. The time of traders buying the stock is the rupture or failure time,

and the effects of one trader after buying the stock on the other in the same group is the

stress transfer. To illustrate the log-periodic behavior, the simulation analysis starts from
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equation 5.9.

Figure 5.8: Examples of the evolution of traders buying stock in the hierarchical model.

Figures 5.8 are three examples of the evolution of traders buying stock with interactive

effects in the hierarchical model [77]. The box in white with a notation ti stands for the

time at which the agent is expected to buy the stock. The box in green represents the agent

buying the stock at that time. The box in grey is the agent influencing its descendants on

the expected time of buying the stock. This implies that the impact is on the descendants

who have not bought the stock (white boxes).

Initially, both cases (A) and (B) have the same time assigned when traders of level 0
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buy the stock with the relation t1 < t3 < t2 < t4. The difference between these two cases

is that they have different interaction parameters, βa > βb. At time t1, the first trader at

level 0 buys the stock in both cases. As discussed in Section 5.1, when one of the agents in

the same group buys a stock, this information transfers to the other agent and influences its

buying time with the relation as equation 5.9: t12 = t1 + 2−β(t2 − t1). Accordingly, under

the effect of the first trader at level 0 through the first agent at level 1, the buy time of the

second trader at level 0 becomes T2, but with different values for the two cases. In case (B)

with smaller interaction parameter βb, supposing T2 is still greater than t3, the third trader

buys the stock at its original time t3 and then the second trader buys at T2. In contrast, case

(A) has larger interaction between traders. Supposing T2 is less than t3, the second trader

buys the stock prior to the third. After the second trader buys the stock, the first agent

at level 1 also buys the stock at time T2, and it affects its neighbour and the neighbour’s

children who have not bought the stock yet through the top agent. Consequently, the buy

time of the third agent is changed to T3 instead of t3. Eventually, the fourth trader is under

the effects of the preceding three traders, which significantly shortens the buy time.

In case (C), the assigned buy time is t1 < t3 < t4 < t2. The first trader buys at t1.

The second trader buy time is initially t2. It changes to T2 calculated using equation 5.9.

Supposing t3 < T2, then the third trader buys of the second order at t3. With the influence

of the third trader, the buy time of the fourth trader becomes T4. Again, supposing T4 < T2,

then the fourth trader buys at T4. After time T4, the second trader is affected from the

second agent at level 1 through the top agent besides the first trader at level 0. Its buy

time should be changed again.

In the interpretation above, the calculation of the evolution of traders buying the stock

is different depending on the initial buying time and the interactive parameter. In case (A)

illustrated in Figure 5.8, the actual buy time of the second trader is T2 = t1 + 2−βa(t2− t1).

The buy time of the third trader is affected by the first agent at T2, and its actual buy time

is:

T3 = T2 + 2−βa(t3 − T2)

= t1(1− 2−βa)2 + t2(1− 2−βa)2−βa + 2−βat3 (5.71)
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The fourth trader, at time T3, receives the same amount of effects as the third trader. When

the third trader buys the stock, the fourth trader is further influenced from the third. The

actual buy time of the fourth trader is:

T4 = T3 + 2−βa [T2 + 2−βa(t4 − T2)− T3]

= t1(1− 2−βa)2 + (t2 + t3)(1− 2−βa)2−βa + t42−2βa (5.72)

Using the same analysis for case (B) and case (C), the actual buy times are:

Case (B)

T2 = t1 + 2−βb(t2 − t1) (5.73)

T4 = T2 + 2−βb [t3 + 2−βb(t4 − t3)− T2]

= t1(1− 2−βb)2 + (t2 + t3)(1− 2−βb)2−βb + t42−2βb (5.74)

Case (C)

T4 = t3 + 2−β(t4 − t3) (5.75)

T2 = T4 + 2−β[t1 + 2−β(t2 − t1)− T4]

= t3(1− 2−β)2 + (t4 + t1)(1− 2−β)2−β + t22−2β (5.76)

The analysis shows that the calculations are not identical for different cases. The situation

is much more complicated when the number of traders is getting larger. Based on the

algorithm provided in Newman et al. [76] for the hazard rate, the algorithm below is

applied to the programming using recursion methods in the simulation.

We use the mathematical literature instead in the interpretation of the algorithm. Each

trader/agent in the model is a node. The nodes are connected by edges. Two nodes in the

same group are neighbours of each other. They are both connected to the same node, which

is their parent, and they are both children of this parent. The nodes at the bottom level

have no children and the top node has no parent. Each node has a time value representing

the buy time of the stock, and has a property with ‘bought’ or ‘un-bought’ status indicating

whether the trader/agent has bought the stock or not. If a node with a positive time value

has ‘un-bought’ status, the time value is the expected buy time. It is finalized as the actual

buy time only if the status of the node is ‘bought’, and the time value of the node is not
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changed. If the time value of a non-zero level node is -1, it indicates that the status of both

of its children are ‘un-bought’.

Algorithm for the simulation of the number of traders who have bought the stock:

1. Assign initial expected buy times to the lowest level (level 0) nodes associated with a

certain distribution (e.g., exponential and power law).

2. Set the buy time of all other nodes (other than level 0) as -1.

3. Set the status of all nodes as ‘un-bought’.

4. Compare the buy time of all nodes with the ‘un-bought’ status and the buy time

greater or equal to zero. Then find the node whose buy time is minimal (called ‘node

C’ below).

5. Set the status of node C and its children with the ‘un-bought’ status as ‘bought’, and

set the buy time of those children to the same as node C.

6. Check the status of the neighbour of node C.

7. If the status of the neighbour is ‘bought’, set the status of its parent as ‘bought’, set

the buy time of its parent as node C, and set the parent node as node C and return

to step 6.

8. If the status of the neighbour is ‘un-bought’, find all its descendents at level zero with

an ‘un-bought’ status, and recalculate their time value with equation:

T = t+ 2−β(T − t), (5.77)

where T is the time value of the ‘un-bought’ child being calculated, and t is the time

value of node C. The time value of ‘un-bought’ children is updated by the new value.

9. Repeat step 4 to step 8 until the status of the top node is ‘bought’.

Figure 5.9 is a plot of the simulation experiments that illustrates the existence of log-

periodic oscillation and power law relationship. The simulation experiments show that
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the initial distribution of time that traders buy the stock has no apparent effects on the

characteristics of the convergence. It is the interaction strength parameter in the control

of convergent speed and the amplitude of the oscillation. Figure 5.10 is the log-log plot of

five simulations with same parameter values in figure 5.9. The MatLab source code that

applies the algorithm above is detailed in Appendix B.

Figure 5.9: Total number of traders who have bought the stock as a function of time with an
interaction parameter of 5 and an exponential initial distribution.

5.3 Construction of the Power-Law Regression Model

The Hierarchical Model shows the characteristics of a power-law distribution associated with

log-period oscillation in the behavior of financial market traders placing buy orders over

time. Theoretically, it explains that the imitation and herding behavior of market traders

is the intrinsic reason for financial crashes. The extreme scenario is that the stock market

collapses when all traders have bought the stock, which means that there are no active

traders in the market. It describes the phase transition of the system in the context of critical

phenomena in science. This is not going to happen in a real financial market. Moreover,

the solution to the hierarchical model of the crash time tc depends on the distribution of
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Figure 5.10: Log-Log plot of five simulation runs of total number of traders who have bought the
stock over time with an interaction parameter of 5 and an exponential initial distribution.

original time when traders plan to buy the stock and on the interaction exponent β. Neither

of them is measurable in any financial market. Hence, the hierarchical model is not directly

applicable to the prediction of a financial market crash time.

An applicable model for the prediction of crash time ought to have similar characteristics

to the hierarchical model with measurable variables as a function of time. For the stock

market example, the stock price is the most accessible data variable over time. The stock

price increases when more traders put in buy orders. Consequently, the stock price has

the trajectory of a power-law associated with log-periodic oscillations, which is consistent

with most observable stock market price patterns. This characteristic of the stock price

trajectory is similar to the trader behavior of buying the stock in the hierarchical model,

which indicates that a model based on the stock price over time is feasible for the prediction

of the stock market crash time.

Johansen et al. [51] first constructed a non-linear regression model suitable for the

prediction of crash time in both microscopic and macroscopic modelling. The model was

further developed and discussed in many papers [48, 87, 49, 50]. It is widely used in a lot

of studies in the prediction of many regional and global crashes by fitting the power-law
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regression model to real data.

The risk-driven model, the model such named in Sornette [87], characterizes the occur-

rence of a crash by the hazard rate h(t). All the traders/agents in the world are organized

into a network and they influence each other locally through this network. The model as-

sumes that agents tend to imitate the opinions of their connections. The imitation process

is described by the hazard rate h(t) with a power law [87].

dh

dt
= Chδ, with δ > 1, (5.78)

where C is a positive constant. The hazard rate h(t) is the collective result of the interactions

between traders. It has an unstable fixed point at zero with power law increase or decrease

with the hazard rate. The exponent δ quantifies the number of interactions δ − 1 felt by a

trader. Integrating equation 5.78, we get

h(t) =
B

(tc − t)α
, with α ≡ 1

δ − 1
(5.79)

The critical time tc, at which the bubble ends, is determined by the initial conditions at

the origin of time. In order to get a finite stock price close to tc, we have 0 < α < 1,

and correspondingly 2 < δ < +∞. By that means an agent has at least one interaction

with other agents. The hazard rate reaches infinity in a finite critical time tc, called the

finite-time singularity.

The derivation from the Ising Model provides an intuitive description to the equa-

tions 5.78 and 5.79. The Ising model is defined by the equation

si = sign(K
∑
j∈N(i)

sj + σεi +G), with K > 0, εi ∼ N(0, 1) (5.80)

• si: the buy(+1) or sell(−1) decision of the trader i at time t.

• N(i): the number of relatives with whom the trader i interacts significantly.

• K: called coupling strength, governs the tendency of traders towards imitation, pro-

portional to time.

• σ: governs the tendency towards idiosyncratic behavior, the degree that agents buy/sell
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decision is influenced by market noise.

• G: global influence term, tends to favor state +1(−1) if G > 0(< 0).

When K < Kc, a critical point determining the properties of the system, the imitation

between traders is weak. The traders are not self-organized and are in disorder regimes.

Since K is a proportion of time t, K increases and approaches Kc at time tc. When K

gets close to Kc, the imitation between traders becomes strong and propagates over long

distances. The traders self-organize into order regimes. However, either tc for the hazard

rate or Kc in the Ising model does not indicate that a crash must occur at the critical

point. It may happen at any point before tc or Kc. The critical point just signals the death

of the speculative bubble. Even after the critical point, there exists a finite probability

1−
∫ tc
t0
h(t)dt > 0 of ending a bubble without crash. We can also define the traders average

decision (buy/sell) as M = 1
I

∑I
i=1 si. When G = 0, the expected value of M is 〈M〉 = 0.

The susceptibility (χ) of the system is defined as

χ =
d(< M >)

dG

∣∣∣∣
G=0

, (5.81)

which quantifies the chance that a large group of traders finds themselves suddenly at the

same decision. The dynamics of the stock price is given by

dp = µ(t)p(t)dt− κ[p(t)− p1]dj, (5.82)

where κ ∈ (0, 1) is the percentage of the price drops of the price increased above a reference

value p1, µ(t) denotes the return rate, and j is zero before a price jump and one afterwards.

One assumption of this model is that a fair game condition holds, which is equivalent to

the Martingale hypothesis.2

Et[p(t
′)] = p(t), with ∀t′ > t, (5.83)

where p(t) denotes the price of the asset at time t and Et[.] denotes the expectation condi-

tional on information up to time t. When the fair game condition holds, we have dp = 0.

2A process yt; t = 1, ..., T is a Martingale if and only if Et(yt+1) = yt, where Et is the conditional
expectation given the information y0, ..., yt.
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Then equation 5.82 becomes

0 = µ(t)p(t)dt− κ[p(t)− p1]dj (5.84)

=⇒µ(t)p(t) = κ[p(t)− p1]
dj

dt
(5.85)

Taking the expectation on both sides, we get

µ(t)p(t) = κ[p(t)− p1]Et(
dj

dt
) (5.86)

Since Et(
dj
dt) = h(t), this yields [87]:

µ(t)p(t) = κ[p(t)− p1]h(t) (5.87)

This means that the hazard rate increases as the return rate increases. By equation 5.87

and 5.82, we find the solution to the price p(t) for |p(t)− p(t0)| < |p(t0)− p1|:

p(t) ≈ p(t0) + κ[p(t0)− p1]

∫ t

t0

h(t′)dt′ with t < t0 (before the crash) and t→ t0 (5.88)

Proof: By taking the integral of both sides of equation 5.87, we have

∫ t

t0

µ(t′)p(t′)dt′ =

∫ t

t0

κ[p(t′)− p1]h(t′)dt′ (5.89)

Under the condition of before crash, dj
dt = 0, equation 5.82 leads to:

dp

dt
= µ(t)p(t) (5.90)

=⇒p(t)− p(t0) =

∫ t

t0

µ(t′)p(t′)dt′ =

∫ t

t0

κ[p(t′)− p1]h(t′)dt′ (5.91)

Let

g(t) =

∫ t

t0

κ[p(t′)− p1]h(t′)dt′ − κ[p(t0)− p1]

∫ t

t0

h(t′)dt′ (5.92)

=⇒g(t0) = 0 (5.93)

=⇒g′(t0) = κ[p(t0)− p1]h(t0)− κ[p(t0)− p1]h(t0) = 0 (5.94)



CHAPTER 5. HIERARCHICAL MODEL 83

By the Taylor series expansion

g(t) = g(t0) + g′(t0)(t− t0) +
g′′(t0)

2!
(t− t0)2 +O[(t− t0)3] ≈ 0 (5.95)

=⇒
∫ t

t0

κ[p(t′)− p1]h(t′)dt′ ≈ κ[p(t0)− p1]

∫ t

t0

h(t′)dt′ (5.96)

=⇒p(t) ≈ p(t0) + κ[p(t0)− p1]

∫ t

t0

h(t′)dt′ (5.97)

�

If κ ∈ (0, 1) is the percentage drop of the price instead, then we have the following:

dp = µ(t)p(t)dt− κp(t)dj (5.98)

=⇒Et[dp] = µ(t)p(t)dt− κp(t)h(t)dt = 0 (5.99)

=⇒µ(t) = κh(t) (5.100)

=⇒log

[
p(t)

p(t0)

]
= κ

∫ t

t0

h(t′)dt′ before the crash (5.101)

Substituting h(t′) in equation 5.88 with equation 5.79, letting t0 = tc and p(t0) = pc,

the following is given:

p(t) ≈ pc + κ(pc − p1)

∫ t

tc

B

(tc − t′)α
dt′ with α ∈ (0, 1) (5.102)

= pc + κ(pc − p1)
B

α− 1
(tc − t′)1−α∣∣t

tc
(5.103)

= pc −
κB

1− α
(pc − p1)(tc − t)1−α (5.104)

Let z = 1− α and κ denotes the actual amount of price drop instead,which is κ(pc − p1) in

equation 5.104, then we have

p(t) ≈ pc −
κB

z
× (tc − t)z, before the crash with z ∈ (0, 1) (5.105)

This equation shows that the price before the crash follows a power law. Since the price

evolves with log-periodic oscillations, the regression equation of the price before the crash
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becomes:

p(t) ≈ pc −
κ

z
{B0(tc − t)z +B1(tc − t)z cos[ω ln(tc − t)− φ]} (5.106)

This non-linear regression model is also applicable using the log-price instead, which is:

ln[p(t)] ≈ ln(pc)−
κ

z
{B0(tc − t)z +B1(tc − t)z cos[ω ln(tc − t)− φ]} (5.107)

5.4 General Form

The derivative of the non-linear regression model in Section 5.3 gives the power law regres-

sion equation 5.105. The log-periodic property in equation 5.106 and 5.107 is an add-in

term according to the analysis of the hierarchical model in Section 5.2. equation 5.107 is a

log-periodic power law formula, which has been used for modeling physical quantities with

observable singular behavior at time tc of rupture [3, 53, 88, 90]. The price or index in

financial markets has similar physical behavior, which becomes scale-invariant at the crit-

ical point. The trajectory of the fitting is often not satisfactorily accurate because of the

variant oscillation behavior in financial markets, with a single angular log-frequency ω. The

analogous study of the discrete renormalization group equations show that a more general

form for expanding equation 5.107 with higher order terms of log-periodicities can account

for more complex alternation of increases and decreases of financial market prices. This

section shows the derivative of equation 5.106 and 5.107 using RG formalism inspired by

Sornette and Zhou [91, 95, 123].

Rewriting the log-period power law formula 5.107 by combining and re-labeling the

parameters, it becomes:

ln[p(t)] ≈ A+B(tc − t)α + C(tc − t)α cos[ω ln(tc − t)− φ] (5.108)

First, a scale invariance renormalization group equation is necessary for the use of RG

formalism analysis. Defining a factor 1/γ = e2π/ω relating to the prices at two time scales,
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let µ = γα. After a substitution of t by tc − (tc − t)/γ, equation 5.108 becomes:

ln p

[
tc −

tc − t
γ

]
= A+B

(
tc − t
γ

)α
+ C

(
tc − t
γ

)α
cos[ω(ln(tc − t)− ln γ)− φ]

As γ = e2π/ω, ω ln γ is then a multiple of 2π, which can be removed.

=⇒ ln p

[
tc −

tc − t
γ

]
= A+B

(tc − t)α

µ
+ C

(tc − t)α

µ
cos[ω log(tc − t)− φ]

=⇒µ ln p

[
tc −

tc − t
γ

]
= µA−A+A+B[(tc − t)α] + C[(tc − t)α] cos[ω log(tc − t)− φ]

=⇒µ ln p

[
tc −

tc − t
γ

]
= µA−A+ ln p(t)

=⇒ ln p

[
tc − t
γ

]
=
µ− 1

µ
A+

1

µ
ln p(tc − t) (5.109)

equation 5.109 is an RG equation with µ describing the rescaling of the price upon the

rescaling the length of time to the critical time. It implies that the market price p at a

given time t is related to that at another time t′. According to this relationship, constructing

an RG formalism equation as a function of variable x is:

F (x) = ln p(tc)− ln p(t),with x = |tc − t| (5.110)

The corresponding variable for another time t′ related to t is:

x′ = R(x) = γx, (5.111)

where R(x) is the RG flow map with the approximation by taking its first order linearized

transformation. Then F (x) in equation 5.110 can be re-written to describe the correspond-

ing correlation transformation in RG formalism:

F (x) = G(x) +
1

µ
F [R(x)] (5.112)

This equation is in the same form as in Section 4.3, where G(x) represents the non-singular

part of the function F (x) and µ describes the scaling of F (x) upon a rescaling of R(x). As

shown in section 4.3, with R(x) = γx as the flow map, solving equation 5.112 recursively
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gives

F (x) =

∞∑
n=0

1

µn
G
[
R(n)(x)

]
=
∞∑
n=0

1

µn
G [γn(x)] (5.113)

In the mathematical literature, a Weierstrass function is originally defined as [41]:

f(x) =

∞∑
n=0

an cos(bnπx), (5.114)

where 0 < a < 1, ab > 1 + 3
2π, and b is an odd integer. Or, in a special case with a = b−α,

the Weierstrass function is

Wα(x) =
∞∑
n=0

b−nα cos(bnx), (5.115)

corresponding to equation 5.113 with γ = b, µ = γα, and G(x) = cosx. Then equation 5.113

becomes

F (x) =
∞∑
n=0

1

µ
G [γn(x)] =

∞∑
n=0

γ−nα cos(γnx) (5.116)

a Weierstrass function. With the condition of equation 5.114, an important property of

the Weiestrass function, found by Weierstrass in 1876, is ‘continuous everywhere, but dif-

ferentiable nowhere’ [61]. This property makes it exhibit self-similarity, like fractals. The

geometrical concept of fractals is generalized by the symmetry of scale invariance. A hall-

mark of scale invariance is the power law distribution. Following Gluzman and Sornette[38]

and Saleur and Sornette [84], a power law series of equation 5.113 is obtained by applying

Mellin transform.

The Mellin transform is defined as [30]:

M{f(x); s} = f̃(s) =

∫ ∞
0

xs−1f(x)dx, (5.117)
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and the inverse of the Mellin transform

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sf̃(s)ds. (5.118)

The Mellin transform is related to the two-sided Laplace transform of f(x) by:

f̃(s) = L{f(e−x); s}+ L{f(ex);−s}. (5.119)

Following these definitions, the Mellin transform of equation 5.113 is

F̃ (s) =

∫ ∞
0

∞∑
n=0

1

µn
xs−1G[γnx]dx

=

∞∑
n=0

1

µn

∫ ∞
0

xs−1G[γnx]dx

=
∞∑
n=0

1

µnγns

∫ ∞
0

(γnx)s−1G[γnx]
d(γnx)

γn

=
∞∑
n=0

1

µnγns
G̃(s)

=
µγs

µγs − 1
G̃(s), (5.120)

where G̃(s) is the Mellin transform of G(x). The inverse of the Mellin transform F̃ (s) in

equation 5.120 is equivalent to F (x) in equation 5.113. We split the function F (x) into a

singular part and a regular part:

F (x) = Fs(x) + Fr(x), (5.121)

where Fs(x) is the series expansion in singular and Fr(x) is the regular power law of x for

the property of self-similarity. Given the definition of Mellin transform, the inverse of F̃ (s)

is

F (x) =
1

2πi

∫ c+i∞

c−i∞
x−sF̃ (s)ds

=
1

2πi

∫ c+i∞

c−i∞

µγs

µγs − 1
x−sG̃(s)ds (5.122)
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The poles3 of equation 5.122 are in G̃(s) contributing to the regular part Fr(x), and the

term µγs

µγs−1 from the infinite sum over successive embeddings of scales contributing to the

singular part Fs(x) [38]. The poles of the latter one are at s = sn such that

µγsn − 1 = 0

=⇒γsn =
1

µ

=⇒sn ln γ = − lnµ+ ln 1

=⇒sn = −m+ i
2π

ln γ
n (5.123)

where m = lnµ
ln γ . Cauchy’s Residue Theorem4 indicates that F (x) can be expanded as the

sum of its residue at the poles of both the singular part and the regular part. The residue5

of F̃ (s) at sn with lims→sn µγ
s = 1 is

Res(F̃ (s), sn) = lim
s→sn

(s− sn)
µγs

µγs − 1
G̃(s)

= lim
s→sn

s− sn
µγs − 1

G̃(s)

= lim
s→sn

1

µγs ln γ
G̃(s)

=
G̃(sn)

ln γ
(5.124)

Using the method of contour integral,

∫ c+i∞

c−i∞
x−sF̃ (s)ds =

∮
C
x−sF̃ (s)ds−

∫
Arc

x−sF̃ (s)ds (5.125)

The path of the arc length integral is a half circle from c + i∞ to c − i∞, so |s| along the

path approaches infinity. Given the power term x−s, the arc length integral on the right

hand side of the second term of equation 5.125 approaches zero. Therefore, according to

3In simple words, a pole of a function f(z) on an open subset D of the complex plane is a point z0 such
that f(z) approaches infinity as z approaches z0

4Cauchy’s residue theorem is stated for the equation
∮
C
f(z)dz = 2πi

∑n
k=1Res(f(z)), for detail state-

ment of the theorem, see Ref. [12].
5Residue Res(f, z0) is the R such that (f(z)−R)/(z − z0) has an analytic antiderivative in a punctured

disk. The residue is given by Res(f, z0) = limz→z0(z − z0)f(z) at a simple pole z0.
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Cauchy’s Residue Theorem, F (x) can be expressed in a sum series as:

F (x) =
1

2πi

∫ c+i∞

c−i∞
x−sF̃ (s)ds

=
1

2πi

∮
C
x−sF̃ (s)ds

=
∞∑
n=0

Res(x−sF̃ (s), sn)

=
∞∑
n=0

G̃(sn)

ln γ
x−sn (5.126)

As justified in Gluzman and Sornette [38], G̃(sn) is expressed as the product of an expo-

nential decay by a power prefactor and a phase as n→∞:

G̃(sn) =
1

np
e−κneiψn , (5.127)

where p, κ ≥ 0 and ψn are determined by G(x), µ and γ. For the case of the proposed form

of G(x) = cos(x), the parameters are found to be

p = m+ 0.5,

κ = 0,

ψn = ωn ln(ωn),

giving its Mellin transform to be

G̃(s) = n−m−0.5eωn ln(ωn), for large n. (5.128)

Plugging equation 5.128 into 5.126, the general form of the log-periodic power-law regression

formula is generated as

F (x) = A+Bxm + C

N∑
n=1

n−m−0.5eωn ln(ωn)x
−m+i 2π

ln γ
n

(5.129)

As a more general formula for fitting the market price, the equation used for the model fit
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is

ln[p(t)] = A+B(tc − t)m + C<

(
N∑
n=1

n−m−0.5eωn ln(ωn)(tc − t)−m+iωn

)
(5.130)

The first three terms of the equation 5.130 are the same as equation 5.107.



Chapter 6

Data Analysis

This chapter applies the model to FTSE 100 index as an example to illustrate the data

analysis for the prediction of the crash and for possible investment strategies. The Log-

Periodic Power Law (LPPL) model has been used in past research to predict crash times, and

the trends of bubble and anti-bubble regimes in variant stock markets, real estate markets,

option markets, and exchange markets [11, 47, 52, 96, 68, 69, 124, 125, 123, 126, 127, 128].

Some of the research describes the fitting procedure in the data analysis [11, 47, 68, 123, 125].

As the LPPL model formula is a non-linear regression function with a combination of both

linear parameters and non-linear parameters, there is no statistical analysis guaranteeing a

best fit with least square errors. The fitting procedures in those papers are slightly different,

but substantively the same. The term “non-linear” here refers to the form non-linearizable

with any kinds of mathematical transforms.

6.1 Fitting Procedure

The basic method for fitting procedure separates the estimation of the parameters into

linear parameters and non-linear parameters by rewriting equation 5.130 as:

h(f, g) = A+Bf(x; Φ) +
N∑
n=1

Cngn(x; Φ), (6.1)

where the variable x is the time to the crash tc − t instead of time t, and Φ denotes all

non-linear parameters, including m and ω. Considering the functions f(x) and gn(x) as

91
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variables of the function h, then the parameters A,B, and Cn are linear parameters. Using

the linear estimation technique of least squares, the estimations of the linear parameters

with the best fit satisfying the sum of least square is found. Hence, the estimation of A,B,

and Cn are slaved to the estimation of the non-linear parameters. For the estimation of

non-linear parameters, the methods and techniques, such as Taboo search[47, 123], Nelder-

Mead Simplex search [11], Harmony search [34], etc., are variants for the optimization of

the fit of the model. We use the Taboo search to limit the search range of global optima of

the non-linear parameters, then the Quasi-Newton method with line search is employed to

find the estimation of the non-linear parameters.

6.1.1 Least Square Estimations.

Given data set {(fj , g1j , g2j , · · · , gnj , hj) : j = 1, 2, · · · , J} for the linear regression model 6.1,

with the assumption of normal error, the function can be written as [64]:

hj = A+Bfj + C1g1j + · · ·+ Cngnj + εj , j = 1, · · · , J (6.2)

where εj is the normal error. It can be expressed in a matrix system as defined below:


h1

h2

...

hj

 =


1 f1 g11 g21 · · · gn1

1 f2 g12 g22 · · · gn2

...
...

...
...

. . .
...

1 fj g1j g2j · · · gnj





A

B

C1

C2

...

Cn


+


ε1

ε2

...

εj



↑ ↑ ↑ ↑

H = X β + ε

(6.3)
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Using the method of least squares [64], in a matrix notation, the quantity to be minimized

is

Q = (H −Xβ)T (H −Xβ)

= HTH − βTXTH −HTXβ + βTXTXβ

= HTH − (HTXβ)T −HTXβ + βTXTXβ

= HTH − 2HTXβ + βTXTXβ. (6.4)

So the values of β at which minimizing Q are the roots of β to the the derivative of

equation 6.4 with respect to β equating to zero.

∂Q

∂β
= −2XTH + 2XTXβ = 0 (6.5)

The estimations for β are then

b = (XTX)
−1
XTH (6.6)

For each set of estimated non-linear parameters, the linear parameters are estimated by

equation 6.6 for a best fit with least square sum. A stochastic search method (i.e., Taboo

search) can be employed to determine the solutions to the non-linear parameters by an

ensuing line search procedure combined with the quasi-Newton method.

In the search for non-linear parameters, the optimal estimated value is measured by the

Sum of Squared Error (SSE). The SSE is defined as:

SSE =
n∑
i=1

(yi − f(xi))
2. (6.7)

6.1.2 Taboo Search

Taboo Search (TS), or Tabu Search, was first introduced by Fred Glover in 1986 [36] as

a device for implementing the oscillating assignment strategy [37]. The use of the Taboo

search was extended and a more efficient algorithm was developed to provide simple and

effective procedures for solving a wide range of global optimization problems, including
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discrete functions, mix-integer problems, continuous functions, and graph theory problems

[79, 54]. The Taboo search is a meta-heuristic procedure starting from an initial solution,

moving to the best neighbour of the current solution without cycling by ‘Tabu’.

The TS was modified in researches for different purposes. The core of the TS does not

change: quicken the search to the attractor by the tabu of re-visit and enhance the searching

movement around the attractor. The flow chart in Figure 6.1 illustrates the process and

algorithm employed in this LPPL model fitting procedure. The step of ‘Initialization’

predefines several key variables and some structures.

Dimension: The dimension d in the TS is the number of non-linear parameters to be

estimated.

Range & Interval: The values of each parameter are empirically limited in a certain

range. Within the range, the possible values of the ith parameter are evenly or un-

evenly divided into pi intervals.

Cells: The sample points for the possible values of the estimated parameters are stored in

many cells. The total number of cells to be structured is the product of the number

of intervals of each parameter, which is N = p1 · p2 · · · pd.

Sample points: Sample values are taken from each interval of the estimated parameters.

A combination of the parameter sample values is a sample point. There are m sample

points defined in each cell with values in the intervals pre-assigned.

Address: Each cell has a distinct address to exclusively represent the combination of the

intervals for every parameter.

Taboo list: A taboo list is a structure storing an address list to record the most recently

visited cells. This is the key element to avoid cycling in the TS. The length of the

taboo list is set in the initialization as TL. The larger the TL, the longer the memory

of the TS process.

Elite list: The Elite list is also an key element in the TS. It is a structure storing the

information, including the value, address and solution to the sample point, of the first

ELth cells with the best values. The list encourages more searching movements in the
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Figure 6.1: Taboo Search Process.
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cells with current best values, which have more opportunities to contain the optima,

so that it enhances the move to the attractor more quickly.

Aspiration Function (AF ): AF memorizes the current best value in the elite list.

Worst Function Value (WFV ): The opposite of the AF , WFV memorizes the current

worst value in the elite list.

Local Best Value (LBV ): There are m points in each cell. For each search, ns sample

points are selected and calculated. LBV stores the local best value of those sample

points.

No Improvement (NI) count and Stopping Criteria (I) For each successful search,

NI is reset to zero when a new AF is updated, and NI is increased by 1 when the

improvement is on the elite list only. I is initialized at the beginning and the TS stops

after I iterations with no improvement.

As shown in Figure 6.1, the fitting procedure starts with the initialization as described

above. The first step after initialization is to assign initial values to the taboo list and elite

list. To do this, we pick the number of TL cells and pick ns sample points from each cell.

The addresses of the TL cells are assigned to the taboo list. For each sample point, we

calculate the Sum Square Error (SSE) of the fit. The point with the minimum SSE among

those ns sample points in each cell is the local best value (LBV). Comparing the TL local

best values, the smallest LBV is assigned to AF, the greatest LBV is assigned to WFV,

and the information of the first ELth smallest LBV, involving the sample point values, cell

addresses, and the SSEs, fill up the elite list. Practically, this is considered the end of the

initialization.

The searching procedure is implemented in two loops, with one embedded in the other.

The outer loop begins with picking nc cells and ns sample points in each of these cells. The

LBVs are calculated and compared them, and we get the address of the cell with the best

value of the LBVs. The inner loop is to scans all the nc cells one by one. For each cell, its

LBV is first compared with the WFV. If it is worse than the WFV, the LBV is dropped.

However, before scanning the next cell, one cell from the elite list is randomly selected and

re-sampled to enhance its LBV, or to enhance the AF. This is the step of enhancing move
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to the attractor. Conversely, if the comparison with the WFV shows the current LBV is

better than the WFV, the enhancement process stops. Instead, the taboo list, and the

elite list, as well as the WFV, are updated by this cell. Notwithstanding, if the current

cell is already in the taboo list the step of comparing the LBV to the WFV is skipped.

Next, if the cell is not in the taboo list or the LBV is better than the WFV, the LBV is

checked against the AF. If the current LBV is better than the AF, the AF and the elite list

are updated. Furthermore, the NI is reset to zero whenever the AF is updated. Then the

process is repeated in the next cell. When all the nc cells are checked, the process stops in

the inner loop and proceeds to the outer loop. Let NI increase by 1, and jump out of the

loop when NI is equal to the predefined I. This represents I consecutive no improvement

searches. Then the global optima is considered to be in one of the cells in the elite list. A

line search procedure in conjunction with a quasi-Newton method is employed to find the

global optima.

6.1.3 Quasi-Newton Method with Line Search

The Newton method [103] for optima is based on the iterative use of the quadratic approx-

imation, which is the second order Taylor series expansion, to a function f(X) : Rn → R

around an iteration,

f(Xk+1) ≈ f(Xk) +∇f(Xk)
T∆X +

1

2
∆XT∇2f(Xk)∆X, (6.8)

where Xk+1 = Xk + ∆X. The gradient of f(Xk+1) with respect to ∆X is

∇f(Xk+1) = ∇f(Xk) +∇2f(Xk)∆X, (6.9)

which is close to zero with the optimization of f . By optimizing equation 6.8, equation 6.9

yields Newton’s formula:

∆X = −H−1
k ∇f(Xk) (6.10)

or

Xk+1 = Xk −H−1
k ∇f(Xk), (6.11)
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where Hk = ∇2f(Xk) is the Hessian matrix.

The Newton method gives a fast convergent iteration to the optimization with the

calculated Hessian matrix. Notwithstanding, for a lot of non-linear problems, it is difficult

to evaluate the Hessian matrix. The Quasi-Newton method [103] is a method providing

a similar convergent quality without actually calculating the Hessian matrix. Instead, a

series of Hessian approximations are generated by the gradient of f . For the Quasi-Newton

method, the Hessian matrix in equation 6.10 and 6.11 is usually replaced by Bk denoting

the approximate Hessian matrix of f(Xk),

∆X = −B−1
k ∇f(Xk) (6.12)

or

Xk+1 = Xk −B−1
k ∇f(Xk), (6.13)

In equation 6.12 and 6.13, to approximate Bk, the next step Xk+1 or the step size ∆Xk

needs to be determined. The line search [103] is a method to find the suitable step direction

and step size for Xk in multivariable optimization algorithms. The purpose of the line

search is to find the α∗ such that

α∗ = arg min
α>0

f(Xk + α∆X), (6.14)

where ∆X is in decent direction for f(Xk). ∆X is obtained by equation 6.12 with the

current approximated Hessian matrix: ∆X = −B−1
k ∇f(Xk). Many other choices for the

descendent direction are valid only if its dot product with the gradient of f is less than 0.

If α∗ is “good enough,” the function value of next step fk+1 is reduced compared to the

current step fk:

f(Xk + α∆X) < f(Xk)

.

There are several options for the approach of α∗. In the LPPL fitting case, we employ

the Quadratic Interpolation Method. This method approximates f(Xk + α∆X) by fitting

a quadratic polynomial in α to known data. The steps of the procedure are:

Step 1 Initially, let α = 1.
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Step 2 Calculate and compare f(Xk + α∆X) and f(Xk). If f(Xk + α∆X) < f(Xk),

then α∗ = α and the search ends. If not move to Step 3.

Step 3 Fit q(α) = a+ bα+ cα2 with


q(0) = f(Xk)

q(α) = f(Xk + α∆X)

q′(0) = ∇f(Xk)
T∆X

Step 4 With computed values for a, b and c, find

α̃ = arg min
0<α<1

q(α).

Step 5 Let α = α̃, and repeat at Step 2.

Once a “good enough” step size is found, the next approximation of the Hessian matrix

is updated. One direct method to update B is by Newton’s method in equation 6.9 with

Bk+1 =
∇f(Xk+1)−∇f(Xk)

Xk+1 −Xk
.

However, the BFGS update1 method is more preferable as it often works well in conjunction

with some line searches with lower accuracy. Let Y k = ∇f(Xk+1)−∇f(Xk), then by the

BFGS update, the new approximate to the Hessian matrix is:

Bk+1 = Bk +
Y kY

T
k

Y T
k ∆Xk

+
Bk∆Xk(Bk∆Xk)

T

∆XT
kBk∆Xk

(6.15)

Summarizing the procedures above, the algorithm using the quasi-Newton method with

a line search for local optima of a cell in the elite list from the taboo search is:

Step 1 Given n number of parameters to be estimated, choose one point X0 ∈ Rn from a

cell in the elite list, B0 = I ∈ Rn×n, 0 < ε < 1, and k = 0.

Step 2 If ‖∇f(Xk)‖ < ε, STOP.

1The BFGS update was discovered independently by Broyden, Fletcher, Goldfarb and Shanno in 1970
[103].
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Step 3 Compute ∆Xk = −B−1
k ∇f(Xk).

Step 4 Find a step size α∗k > 0 using a line search such that f(Xk + α∗k∆X) < f(Xk),

and then set Xk+1 = Xk + α∗k∆Xk.

Step 5 Update Bk+1 using the BFGS update with equation 6.15.

Step 6 Let k = k + 1 and return to Step 2.

The Xk found by this algorithm is the local minimum in the given cell of the elite list.

Repeat this procedure for each cell in the elite list generated by the Taboo search. The

minimum of all the local minima is considered the global minimum.

6.2 Bubble vs. Anti-Bubble

A bubble is a well-known term in financial markets, especially in stock markets. A bubble

in a market, usually called a financial bubble, an economic bubble, or a price bubble, refers

to the inflated market price of a product, such as a stock or a property, where it is above

its intrinsic value without being realized by most of traders. It is originally a metaphor for

an over speculative market. The inflation of a bubble is based on nothing, but speculation.

A bubble eventually bursts when it is expanded beyond a certain point. The same thing

happens to the price of a market: if the price of a product rises rapidly, departing from its

fundamental price because of mania only, it is fragile and open to a sudden drop. That is

why a bubble is usually followed by a crash. Examples include the US stock market in the

late 20th century and the housing market during 2005 - 2006. They are considered bubbles

and were followed by a large crash. An attribute of a large crash in the stock market is

its considerable financial impact. Hence, by definition, bubbles and crashes are of profound

importance to risk management of investment portfolios [56]. Accordingly, the existence of

a bubble is usually related to potential financial crisis.

By the bubble definition, the question of identifying a bubble is what the inherent

value is and how to measure it. Therefore, whether or not a bubble exists in a market is

always debatable. For instance, there is no consensus opinion of the existence of bubbles

in the Greater Vancouver real estate market. The reason is that the fundamental value of

a product, especially in financial markets, is based on a collection of various factors. No
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one is able to master all the information of these determination factors. For example, the

goodwill of a company can be realized only if a large portion, or all, of its shares are traded

in one transaction. Bubbles can be absolutely confirmed in hindsight only after a crash

occurs. Moreover, even if a bubble is identified, it is obvious that a substantial contraction

will be induced preempting the bubble, which is an outcome that all researchers are trying

to avoid. Nonetheless, a crash is always induced by the bursting of accumulated bubbles.

For the purpose of data analysis in crash prediction, the LPPL model is valid if the price

trajectory is in a bubble regime. Following the LPPL model definition, a bubble regime is

defined as a transient regime where the increasing price trajectory is self-reinforcing and

faster-than-exponential, created by positive price-to-price feedbacks feeding an overall sense

of optimism effect market strengthened by interpersonal interactions [119]. Mathematically,

it is characterized by a power law increase of the price time series with accelerating log-

periodic oscillations created by the imitation and herding behavior of market traders [122].

Figure 6.2: The Argentinian stock market bubble and anti-bubble of 1992. Reprinted from [52].

The mechanics of an anti-bubble regime is the inverse of a bubble regime. It is a

result of herding reverse behavior of market traders. More and more traders make the

buy/sell decisions on their own without being influenced by others. From this point of
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Figure 6.3: The Polish stock market bullish anti-bubble of 1998-2000. Reprinted from [39].

view, an anti-bubble regime should be mathematically defined as a price trajectory in the

form of decreasing power law with decelerating log-periodic oscillations [122]. An anti-

bubble regime is in an overall downward price trajectory with longer and longer periodic

oscillations. Although a bubble regime often leads to a crash, it can lead to an anti-bubble

regime. The bubble is gradually squeezed out in an anti-bubble regime. The anti-bubble

regime above is applicable to this case. Figure 6.2 is an example of such anti-bubble regime

following a bubble regime. However, a new regime was identified in Zhou and Sornette [122],

and Gnaciński and Makowiec [39]. This regime still has the characteristic of expanding log-

periodic oscillations, but it is generally increasing. P. Gnaciński and D. Makowiec identified

it in the Polish stock market and named it as the “inverted bubble regime”. W.X. Zhou and

D. Sornette identified it in the stock markets of other six countries and named it the “bullish

anti-bubble regime”. To distinguish it, they renamed the “common” anti-bubble regime, as

previously defined, to the “bearish anti-bubble regime”. The section c of Figure 6.3 is an

example of the “bullish anti-bubble regime”.

This thesis incorporates the conventions of Zhou and Sornette [122]. A “bullish anti-

bubble regime” is then defined as a price trajectory in the form of increasing power law

with decelerating log-periodic oscillations. Therefore, an anti-bubble regime is identified

by the expanding log-periodic oscillations. If a bubble leads to a crash, depending on the

size of the crash and other factors, the market may enter any one of the three regimes: the

bubble regime, the normal regime, or the anti-bubble regime. It is easy to notice that a

bullish anti-bubble regime only occurs after a big crash, but a bearish anti-bubble regime



CHAPTER 6. DATA ANALYSIS 103

follows a bubble regime with or without a crash. A bearish anti-bubble regime is considered

a process of market correction to an overvalued market price. On the contrary, a bullish

anti-bubble regime is a process of market correction to an under-valued market price. This

usually occurs after a deep crash such that the market is over-corrected to a price under

the fundamental price.

The RG analysis of HM in Chapter 5, in equation 5.108 or equation 5.130 with har-

monics, is applicable for the model fitting in a bubble regime. Since the anti-bubble regime

is the inverse of the bubble regime, the RG analysis is applicable to anti-bubble regime

studies, and similar equations can be deduced for anti-bubble regimes as:

ln[p(t)] ≈ A+B(t− tc)α + C(t− tc)α cos[ω ln(t− tc)− φ], (6.16)

or the general form

ln[p(t)] = A+B(t− tc)m + C<

(
N∑
n=1

n−m−0.5eωn ln(ωn)(t− tc)−m+iωn

)
. (6.17)

The fitting equations with harmonic terms in equation 5.130 and 6.17 are supposed to

have a better fit. However, there are more parameters to estimate, which increases the

computation time. The most important aspect of the prediction in the bubble regime is

the crash time tc. Accordingly, equation 5.107 may provide a “good fit” to bubble regimes.

On the other hand, in the anti-bubble regime, the prediction has more concerns on the

length and the amplitude of the anti-bubble process. A more accurate fitting is required,

and equation 6.17 may be more applicable. This will be tested in the next section.

6.3 Results Discussion

This section uses FTSE 100 Index as an example to illustrate how to implement the LPPL

to the data and how to interpret the fitting results. It is used as a tool to predict possible

market crashes and trends to prevent the investment large losses from investment.

Figure 6.4 shows the FTSE 100 index daily closing from Apr. 4, 1984 to Jan. 20,

2012. During this period, three faster than exponential increasing segments, A, B and

C, are identified, which implies a bubble price is more or less generated. After each of
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Figure 6.4: FTSE 100 index daily closing from Apr. 4, 1984 to Jan. 20, 2012.

these three increases, a significant drop follows. Depending on the depth and the speed

of the downward trend these significant drops are classified as either crashes or significant

corrections. In financial markets, a crash is generally defined as more than a 10% decrease

over several days. Nonetheless, there is no unified definition for it. The definition is diverse

for different purposes of analysis, different market categories, and different market regions.

For example, Sergio Albeverio et al. [1], defined a crash as “a drop of more than 15% in less

than two weeks”. Also, some markets may have a larger fluctuation amplitude on average.

To distinguish a crash from a significant correction or a bearish anti-bubble regime, we

apply a relatively strict definition: a drop of more than 10% within two days, more than

a 20% drop within a week, or more than a 30% drop within two weeks. According to this

rule, the accelerating growth of trajectories A and C leads to a crash on Oct. 15, 1987 and

Oct. 6, 2008, respectively.

6.3.1 Analysis of Crash Prediction in 1987

Figure 6.5 is a magnification of segment A in Figure 6.4. In Figure 6.6 the fitted line is

shown of the LPPL model of equation 5.108 to the FTSE 100 index daily closing. The

predicted crash time from the LPPL model is April 15, 1988, which is about half a year
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Figure 6.5: FTSE 100 index daily closing from Apr. 4, 1984 to Jun. 28, 1988.

Figure 6.6: Fitting LPPL to the data of FTSE 100 index daily closing for the 1987 crash.
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behind the actual crash date.

Data tc α ω φ A B C MSE

Origin 1988/4/15 0.17215 13.806 0.68671 9.8800 -0.87757 -0.012823 0.0016549

Smoothed 1988/3/18 0.18488 12.665 5.2531 9.5838 -0.72311 -0.010683 0.0013454

Table 6.1: Estimated parameters of the LPPL fitted by unsmoothed and smoothed data.

Outliers among the data should be considered, as the existence of noise in the stock

market impacts the price,. A process of smoothing the data can eliminate the effects of

noise on the stock market volatility, and may assist in finding a better model fit to the

data with more accurate crash time prediction. Figure 6.7 shows the difference between

the original data and the smoothed data in two plots. As shown in Table 6.1, fitting the

LPPL model to the smoothed data gives a slightly better prediction on the crash time tc

and smaller MSE. However, there is still a big gap between the actual and predicted crash

time.

6.3.2 Prediction Comparison of Bubble Regimes

Fitted Data Section A Section B Section C
Estimated Crash Time 1988/3/18 1998/11/27 2000/3/30 2006/7/31 2008/5/30
Start of Drop Time 1987/10/16 1998/7/20 2000/4/11 2006/5/11 2008/6/6
Estimated Index at Crash 14527 15540 6543 7831 6796
Time Elapsed of the Drop 18 Days 38 Days 705 Days 8 Days 195 Days
Time Elapsed to Recover 438 Days 117 Days 1185 Days 100 Days >800 Days
Drop % of Increased 65.49% 38.97% 89.59% 25.25% 108.64%
Estimated Exponent (α) 0.18488 0.25753 1.45311 0.38703 1.48788

Table 6.2: Comparison of estimations by the LPPL model of the three bubble regimes.

Comparing the fitting results of different bubble regime data helps discover whether or

not the LPPL model provides reliable predictions. We fit the LPPL model to the data of

section B and C in Figure 6.4. The estimated results are as shown in Table 6.2. The second

columns of section B and C use the data for the higher peak after the drops of B and C

respectively. For descriptive purposes, we name the columns as ‘A, B1, B2, C1, C2’. The

row called “Start of Drop Time” is the actual crash time or the reversal time of bullish to
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Figure 6.7: Comparison of the unsmoothed and smoothed data plots.



CHAPTER 6. DATA ANALYSIS 108

bearish. Each of them is within 6 months prior or posterior to the estimated crash time of

the model.

First, the table indicates a crash in ‘A’ and ‘C1’, and a significant drop ‘B1’. They

all occur before the estimated crash time. Ideally, if the stock traders tend to imitate the

trading behavior of others and herd to have the same trading behavior, the stock index

converges to the estimated index value close to the crash time. However, in the real world,

there is a lot of information which may change trading decisions instead of simple imitations.

When a bubble regime appears in the market, it suggests that the traders start herding.

While some of those herded traders make selling actions based on some market information,

the remaining in the herded group follow. It leads to an earlier, but smaller crash than

expected as the un-herded traders do not follow those selling behaviors. After the drops of

‘B1’ and ‘C1’, most of the herded traders do not lose their confidence in following others

as their loss is not large. They are still highly connected. When some of the traders in the

herded group start buying stocks, it does not take long for others to imitate those buying

behaviors. This pushes the index back to the increasing trajectory quickly (117 days and

100 days, respectively). The drop of ‘A’ produces a 65.49% loss of the total index increase

in the uptrend. This relatively big drop breaks most connections among the herded traders.

The system goes back to the state where traders are not connected. Therefore, it a takes

longer for the index to reach the peak value of ‘A’ before the crash (438 days). Viewing

these drops from the point of chartists, ‘B1’ and ‘C1’ are considered big corrections of the

bullish market as the percentages of the drops over the index increase are less than 50%

according to the Dow theory. The uptrend directions are not changed thereafter. The index

increases immediately after the drops. The index losses from the drops are recovered soon.

Thereafter, the drop of ‘A’ is not considered a correction because it is more than 50%. The

time elapsed to recover the losses is much longer.

Second, the drops of ‘B1’ and ‘C1’ are viewed as outliers in the power law increases.

They make the index deviate from the expected power law trajectory. Even though the

index comes back to the same value much faster as compared to a big crash like ‘A’, some

imitation connections are broken. To a certain extent, the time elapsed for the recovery

relaxes the tension of the bubbles in the market, or looses the degree of imitation behaviors

among traders. This makes the system have less likely to reach the critical point, which
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means an expected large crash is less likely to occur. When the stock index deviates from the

predicted trajectory, the effects of the herding behavior are released. The phase transition

from the bullish market to the bearish market becomes a first order transition through the

phase curve instead of a critical point.

Third, the estimated exponent parameters α in ‘B2’ and ‘C2’ are both greater than 1

and the actual index drop time is later than the critical time. From Chapter 5 we know

that the increasing index is supposed to have an acceleration close to the critical point and

the exponent α should be less than 1. An exponent greater than 1 represents a deceleration

close to the critical point. In this case, in ‘B2’ and ‘C2’, a crash does not occur. Instead,

there is a long deep downtrend reversal bearish market. This is a result of the traders not

all herded together, and the negative market information and bubbles in the market are

interpreted differently by traders. The index is corrected to the fundamental value in a

bearish regime.

According to the analysis results of this experiment, we observe the following in these

three cases:

1. Fitting the model to the data of bubble regimes before a crash, we observe that the

exponent α is less than 1 and the predicted crash time is within 6 months after the

actual crash time.

2. Fitting the model to the data of bubble regimes followed by a bearish regime, we

observe that the exponent α is greater than 1 and the predicted crash time is within

3 months before the actual crash time.

3. A crash or a drop with less loss is recovered faster.

6.3.3 Fitted Data Selection

This experiment investigates the influence of the fitted data selection on the estimated crash

time. We fit the LPPL model to the FTSE 100 index data for the crash of 1987. The end

date of the fitted data is fixed on September 15th, 1987. The start date of the first fit

is April 2nd, 1984. We fit the model for other 29 time intervals. For each fit, the start

date is changed to ten trading days after the previous fit. The estimated crash time tc and

exponent α, and the MSE are shown in Table 6.3. The difference of the 30 estimated crash
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Start Date Crash Time (tc) Exponent (α) MSE

1 1984/4/2 1988/3/30 0.182433118 0.001347094

2 1984/4/16 1988/3/21 0.235738023 0.001339332

3 1984/5/1 1988/3/17 0.236238927 0.001330794

4 1984/5/17 1988/3/7 0.296874373 0.001274485

5 1984/6/4 1988/2/24 0.301489466 0.001253046

6 1984/6/18 1988/2/17 0.37820528 0.001317338

7 1984/7/2 1988/2/19 0.402719857 0.001326867

8 1984/7/16 1988/2/24 0.407552321 0.001347968

9 1984/7/30 1988/3/9 0.321206044 0.001314963

10 1984/8/13 1988/2/24 0.295420051 0.001199494

11 1984/8/28 1988/2/25 0.266146652 0.001272485

12 1984/9/11 1988/2/24 0.262105913 0.001284701

13 1984/9/25 1988/2/29 0.219542164 0.001294597

14 1984/10/9 1988/1/26 0.102446099 0.001279831

15 1984/10/23 1988/3/1 0.109153643 0.001293101

16 1984/11/6 1988/4/27 0.104298623 0.001223542

17 1984/11/20 1988/5/31 0.10340906 0.001192343

18 1984/12/4 1987/11/26 0.117938908 0.001103518

19 1984/12/18 1987/11/25 0.163055232 0.001016401

20 1985/1/4 1987/12/3 0.124898678 0.000996585

21 1985/1/18 1987/12/2 0.1307454 0.000972989

22 1985/2/1 1987/12/11 0.107437736 0.001007242

23 1985/2/15 1987/11/30 0.135003068 0.000999824

24 1985/3/1 1987/11/26 0.133263826 0.001017643

25 1985/3/15 1987/12/11 0.12332109 0.001043232

26 1985/3/29 1987/12/3 0.121554009 0.001068174

27 1985/4/16 1987/11/30 0.15961844 0.001080545

28 1985/4/30 1987/11/23 0.25666129 0.001130043

29 1985/5/15 1988/5/26 0.103939557 0.001057986

30 1985/5/30 1988/4/29 0.10769114 0.000884669

Table 6.3: Fitting results of fitted data with different start dates. The end date is on
September 15th, 1987.
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times is between ‘1987/11/23’ and ‘1988/5/26’. It means that the start date of the data

selection has significant effects on the accuracy of the estimated crash time. The actual

crash time is October 11th, 1987. From the 18th fit to the 28th fit, the estimated crash time

is closer to the actual crash time. Also, these fits have smaller MSE than those before the

18th fit. Therefore, to fit the crash of 1987, the start time of the bubble regime should be

around ‘1984/12/4’.

End Date Crash Time (tc) Exponent (α) MSE

1 1986/7/23 1988/5/3 1.484784931 0.000428073

2 1986/8/6 1988/9/1 1.384789979 0.000455443

3 1986/8/20 1988/11/7 1.495917775 0.000441328

4 1986/9/4 1987/9/30 1.453348814 0.000439849

5 1986/9/18 1988/8/30 1.40293958 0.000426439

6 1986/10/2 1989/2/8 1.461537507 0.000429573

7 1986/10/16 1989/4/10 1.181633799 0.00039795

8 1986/10/30 1989/3/28 1.350925476 0.000384138

9 1986/11/13 1989/3/23 1.495535725 0.000377618

10 1986/11/27 1989/4/12 1.263370913 0.000415845

11 1986/12/11 1989/4/11 1.421976455 0.000439906

12 1986/12/29 1989/2/27 1.494008423 0.000377547

13 1987/1/13 1989/4/6 1.492027678 0.000452758

14 1987/1/27 1989/3/21 1.497612331 0.000488167

15 1987/2/10 1989/4/11 1.49314106 0.000479557

16 1987/2/24 1989/4/6 1.339593241 0.000551335

17 1987/3/10 1989/4/5 0.90992444 0.000611878

18 1987/3/24 1989/4/5 0.321873484 0.000638905

19 1987/4/7 1989/4/7 0.343823597 0.000616065

20 1987/4/23 1989/4/10 0.368128702 0.000615077

21 1987/5/8 1989/4/11 0.126095922 0.000618263

22 1987/5/22 1987/7/15 0.135300287 0.000624672

23 1987/6/8 1987/7/22 0.150558536 0.000655556

24 1987/6/22 1987/7/21 0.173425401 0.000699345

25 1987/7/6 1987/7/31 0.147063092 0.000713049

26 1987/7/20 1987/8/10 0.159536988 0.000738745

27 1987/8/3 1987/9/10 0.177866273 0.00078871

28 1987/8/17 1987/10/5 0.162561332 0.000872845

29 1987/9/1 1987/10/28 0.128773786 0.00095274

30 1987/9/15 1987/11/18 0.184915091 0.001097953

Table 6.4: Fitting results of fitted data with different end dates. The start date is on
December 4th, 1984.
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Next, we fit the LPPL model with to the FTSE 100 index data with the fixed start date

on December 4th, 1984, but with different end dates from ‘1986/7/23’ to ‘1987/9/15’. The

fitting results are shown in Table 6.4. The estimated exponents α from the 1st to the 16th

are greater than 1. This suggests a low risk of a crash. Furthermore, the estimated crash

time is far away from the end date until the 22nd fit with the end date of ‘1987/7/15’. The

result of the 22nd fit provides a strong signal of the existence of bubbles and the high risk

of a crash. Suppose a stock trader uses the LPPL model periodically. If he buys the stocks

around April 2nd, 1984 when the market is still in the fundamental regime, and sells it

around May 22nd, 1987 when the crash time within 6 months is predicted, the total return

rate is 96.3%. In such a case, the trader misses the increase to the peak on July 16, 1987,

which is about 15% more in the return rate. However, he may not avoid the crash if he

continues holding the stocks. Eventually, his total return rate is down to about 50%.

This experiment shows that the LPPL model is able to provide early indications of the

existence of bubbles in the market and a strong selling signal when the risk of a crash is

high. However, the choice of the start date for fitted data has influence on the predicted

crash time, and the users of the model should check their start date choice periodically.



Chapter 7

Conclusion

Merits and weaknesses of LPPL model

The LPPL model is a non-linear regression model of market price/index over time. The

fitting techniques used to estimate its parameters are somewhat complicated. but the users

do not need to know about those techniques. The use of computer programs of the model

provides a simple implementation for the users with price/index data. The LPPL model is

categorized as a macroscopic model. A macroscopic model is usually constructed based on

historical patterns. In contrast to other macroscopic models, the LPPL model is derived

from a microscopic model - the hierarchical model. Hence, it is a macroscopic model with

strong microscopic foundation. In addition, as the expected time to crash in the LPPL

model is always finite, a market crash or recession is inevitable.

On the contrary, the simplicity of the LPPL model is also a disadvantage for users. The

model asserts that the crash is the result of the herding behaviors of market traders that

leads to a critical point. Hence, the time to crash can be estimated by fitting the critical

phenomena approaching the critical point. It does not account for the effects of any other

market factors. However, the financial market is a complex system which is not isolated.

The LPPL model assumes that the financial market is isolated or the negative and positive

effects of other market factors cancel the effects of each other. Therefore, further study in

the LPPL model may involve corrections responding to the effects of large market events.
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Use of RG in financial market modelling

The Renormalization Group (RG) is a mathematical apparatus that allows the decomposi-

tion of a macroscopic problem viewed at different scales. It is a crucial tool in the analysis

of physical systems exhibiting critical behavior. It is applicable to the physical modelling

of microscopic interactions and macroscopic phase transitions. The financial market price

or index movement is a manifestation of the actions and interactions of stock traders. The

similarity of the fractal structure of price movements suggests the modelling of the inter-

actions among stock traders with fractal structures, such as the hierarchical model. Thus,

the systematic investigation of the interactions viewed at different scales is possible. The

RG is applicable to the financial market modelling considering financial crashes as critical

phenomena and the reversals of market trends as phase transitions.

Finding the RG flow is the crucial step in RG analysis. The RG analysis of the Hierar-

chical Model (HM) finds that the time to the critical point of a system is a function of the

interaction degree of stock traders in power law. The RG formalism of the HM deduces that

the fraction of all stock traders putting buy orders over time follows a power law coupled

with log-periodic oscillations. Based on the RG analysis results of the HM, a Log-Periodic

Power Law (LPPL) model is derived by constructing an RG formalism from the risk-driven

model.

Meaning of the LPPL model

Financial market traders expect a model to provide accurate information of market move-

ments, such as the exact crash time and the exact price peaks and troughs. Sornette [94]

states the paradox of a financial model giving accurate predictions.

The total money in a financial market does not increase from transactions. For example,

assume a stock market with only one stock of 100 shares is initially sold at $1 per share.

The total money invested in this market is $100. If a transaction of one share at the price of

$10 is made, the total money in the market becomes $109. However, as the price is changed

to $10 per share, it seems that the total stock value becomes $1000. Using simulation

terminology, suppose a financial market is an isolated physical system, and the money

invested in the market is the energy in the system. According to the law of conservation

of energy in physics, the total amount of energy remains constant in an isolated system if
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there is no energy transferred into or out of the system. It implies that the form or location

of the energy may change, but the total amount does not change. Therefore, excluding

the company profits and the transaction fees and taxes, the total amount of money in a

financial market is equal to the total investments from the traders. When a trader has

gains, some traders must have losses. The money is transferred from one trader to another.

Therefore, no model can ensure that every investor has gains in the financial market. The

purpose of modelling a financial market is similar to the study of critical phenomena in

natural sciences, to avoid the occurrence of critical phenomena or reduce loss in an extreme

event.

Many recent studies show that it is possible to model the price trajectory of financial

markets and predict the time of crashes. However, no model trained by the data of a

market can be validated by other markets or by other crashes of the same market. The

LPPL model requires case by case training with data and self-validation by comparing the

results of different ranges of training dates for the prediction. Even though the exact crash

time is unpredictable in the LPPL model, the uncertainty makes it possible for the market

to avoid a crash if some, or even all, traders believe the model predictions. The fitting

analysis in Section 6.3 shows the actual time to a crash or a big price drop is within 6

months of the estimated critical time when the estimated exponent and MSE agree. It

implies that if a trader holding stocks sells them as soon as the model signals a crash he

can definitely avoid the losses from a crash. However, he may miss an increasing trend to

a higher price. The traders have different investment risk tolerance. These diversities in

risk tolerance induce stock holders to sell their stocks at different times. The conservative

investors may sell their stocks immediately after a bubble signal. The aggressive investors

may continue holding their stocks until they believe the price is at the peak. To some extent,

it prevents traders from further herding behavior. Then the price trajectory deviates from

the original power-law trajectory. This process is like an invisible intervention leading the

market phase transition through the transition curve instead of the critical point, which

implies a sudden crash.
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Further study

The financial market price or index movements possess similar characteristics of random

walks and fractals. As a result, some other models with fractal structure, such as lattice

models and cellular automata (CA) models, are applicable to the microscopic financial

market modelling. The RG formalism is a useful tool for solving these models because the

systematic decomposition of the models at different scales is possible. Levin and Nave [66]

show a simple real space RG technique for 2D lattice models in physics. The behavior of

the traders structured in these models is worth investigating.

The behaviors of the traders in financial markets are social behaviors. Therefore, some

modelling techniques of social systems are probably applicable to financial market modelling.

For example, the fuzzy cognitive map (FCM) may help include other market information

into the LPPL model such that the model provides a more accurate estimation of crash

time or a better prediction of price trends.



Appendix A

Convergent Time Vs. Interaction

Parameter

This MATLAB code is used to simulate the general solution to crash time tc as a function

of traders interaction strength β and plot the resulting diagram. The detailed simulation

method is described in Section 5.2.4.

clc; clear;

%initial parameters

kapa = 1;

zigma = 1;

rou = 4;

ts = .02; %time step for the simulation

et = 5; %truncated distribution end point

tp = et / ts + 1; %number of points used in the simulation

time(1:28)=0; %array for convergent time

bt(1:28)=0; %array for beta

t = 0:ts:et; %array for time points

p(1, 1:tp) = pzero(t,kapa,zigma,rou); %array for pdf

%separate into two loops for better result of the graph

for b = .1:.1:1

bn = round((b-.1)*10+1); %beta index in ’bt’

for i = 1:10

pcov(i, 1:tp, 1:tp) = pconver(p(i,:), t, b, tp, ts);
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p1(1:tp) = p(i,:);

p2(1:tp, 1:tp) = pcov(i,:,:);

p(i+1, 1:tp) = pnext(p1, p2, t, b, tp, ts ); %pdf of convolution

[pmax, tau] = max(p(i+1, 1:tp));

if (pmax > 10) %break the loop if converged enough

time(bn) = (tau - 1) * ts;

bt(bn) = b;

break;

end

end

%assign beta and convergent time to the arrays

if (bt(bn) == 0)

time(bn) = (tau - 1) * ts;

bt(bn) = b;

end

end

for b = 1.5:.5:10

bn = round((b-1)/.5+10);

for i = 1:10

pcov(i, 1:tp, 1:tp) = pconver(p(i,:), t, b, tp, ts);

p1(1:tp) = p(i,:);

p2(1:tp, 1:tp) = pcov(i,:,:);

p(i+1, 1:tp) = pnext(p1, p2, t, b, tp, ts ); %pdf of convolution

[pmax, tau] = max(p(i+1, 1:tp));

if (pmax > 10) %break the loop if converged enough

time(bn) = (tau - 1) * ts;

bt(bn) = b;

break;

end

end

%assign beta and convergent time to the arrays

if (bt(bn) == 0)

time(bn) = (tau - 1) * ts;

bt(bn) = b;

end

end
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plot(bt,time);



Appendix B

Simulation of the Hierarchical

Model

This MATLAB code is used to compute the fraction of all traders in the market buying

stocks over time and plot the resulting diagram. The detailed simulation method is described

in Section 5.2.4.

clc; clear;

N = 12; %number of levels

m = 2^N - 1; %number of nodes

M = 2^(N - 1); %number of first level nodes

miu = .03125; %mean of the exponential distribution

%Hierarchy initialization

global hmtree;

hmtree = struct(’time’, ones(1,m) * (-1), ...

’parent’, zeros(1,m), ...

’child’, zeros(1,m), ...

’neighbor’, zeros(1,m), ...

’level’, zeros(1,m), ...

’broken’, zeros(1,m), ...

’alpha’, miu);

%hmtree.time(1:M) = random(’gp’, 2, 1, 0, 1, M); %pareto

%hmtree.time(1:M) = random(’logn’, 0, 1, 1, M); %log-normal
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hmtree.time(1:M) = random(’exp’, 2, 1, M); %exponential

%hmtree.time(1:M) = random(’wbl’, 1, 2, 1, M); %weibull

ubase = 0;

lbase = 0;

for i = 1:N

prvlbase = lbase;

lbase = ubase + 1; %start node number of current level

ubase = 2^(N-i) + ubase; %end node number of current level

hmtree.level(lbase : ubase) = i;

for j = lbase : ubase

if i < N

hmtree.parent(j) = ceil((j - lbase + 1) / 2) + ubase;

if mod(j, 2) == 0

hmtree.neighbor(j) = j - 1;

else

hmtree.neighbor(j) = j + 1;

end

end

if i>1

hmtree.child(j) = (j - lbase) * 2 + prvlbase;

end

end

end

cnt = 0;

%continue the calculation till the top node

while hmtree.broken(m) == 0

%1. Find the min unbroken node

mintime = 999;

minnode = 0;

for i = 1:m

%do not compare nodes with broken status of ’2’

if (hmtree.broken(i) == 0) && (hmtree.time(i) >= 0)

if hmtree.time(i) < mintime
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mintime = hmtree.time(i);

minnode = i;

end

end

end

%2. Set the min node and its childre broken and the time

hmtree.broken(minnode) = 1; %the node is broken

if hmtree.level(minnode) > 1;

unbnode = minnode;

for i = 1 : hmtree.level(minnode) - 1

if hmtree.broken(hmtree.child(unbnode)) == 2

unbnode = hmtree.child(unbnode);

else

unbnode = hmtree.child(unbnode) + 1;

end

hmtree.broken(unbnode) = 1;

end

end

%3. main calculation of the tree of the neighbor of the current node.

caltree(minnode, mintime);

%A control of jumping out of the loop in case of not going up to

%the top of the tree of any errors

cnt = cnt + 1;

if cnt > 3*m

break;

end

end

A(1,1:M) = sort(hmtree.time(1:M));

A(2,1:M) = 1:M;

plot(A(1,:), A(2,:));

xlabel(’Time (t)’);

ylabel(’Total number of traders who have bought the stock’);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function caltree( minnode, mintime )

%CALTREE Summary of this function goes here

% 1. This function calculates the subtree with ’minnode’ as the top node

% under the effect of its neighbor at ’mintime’. The calculation does all

% necessary updates of broken time and broken status.

%

% 2. If the neighbor has been broken, which means it has been fully

% calculated, the calculation continues to its parent by recursion.

global hmtree;

if hmtree.parent(minnode) ~= 0 %not the top node

if hmtree.broken(hmtree.neighbor(minnode)) == 1

%if the neighbor node has been broken, their parent node should be

%broken with the broken time of curren node.

minnode = hmtree.parent(minnode);

hmtree.time(minnode) = mintime;

hmtree.broken(minnode) = 1;

caltree(minnode, mintime); %calculate neighbor of the parent node.

else

%if the neighbor node has not been broken, the broken of current

%node will have immediate impact on all the nodes of its neighbor

%calculate the neighbor’s new broken time under its effect by

%calculating the broken time of the neighbor’s children and taking

%the greater one as its broken time

udttime = calchild(hmtree.neighbor(minnode), mintime);

%if an expected broken time of the neighbor node has been

%calculated, that time also becomes the broken time of its parent.

%The status of the neighbor node is set to 2, in which case the

%node will not be used in searching the minimum unbroken node.

if hmtree.time(hmtree.neighbor(minnode)) >= 0

node = hmtree.neighbor(minnode);
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hmtree.time(node) = udttime;

hmtree.broken(node) = 2; %Set the broken status of the neighbor

hmtree.time(hmtree.parent(node)) = udttime;

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function udttime = calchild( node, time )

%CALCHILD Summary of this function goes here

% This function calculates the expected broken time of a node with the

% impact at ’time’. The calculation is on the lowest level nodes only and

% the parent’s expected broken time is updated by the greater childs

% expected broken time. It traces down to the lowest level node by

% recursion.

global hmtree;

if hmtree.broken(node) ~= 1 %only for unbroken nodes

if hmtree.level(node) == 1

%the calculation runs only when the node is at the lowest lever.

hmtree.time(node) = time + hmtree.alpha * (hmtree.time(node) - time);

udttime = hmtree.time(node);

else

if hmtree.time(node) > 0

%if an expected broken time has been calculated, only one of its

%child must be broken, then the calculation will only traces

%down on the unbroken one. The newly calculated one is always

%greater than its neighbor.

if hmtree.broken(hmtree.child(node)) == 1

udttime = calchild( hmtree.child(node) + 1, time);

else

udttime = calchild( hmtree.child(node), time);

end
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hmtree.time(node) = udttime;

else

%if no expected broken time is calculated, both children’s

%expected broken time should be calculated, but not need to

%update the node’s expected broken time.

udttime = calchild( hmtree.child(node), time);

udttime = calchild( hmtree.child(node) + 1, time);

end

end

else

udttime = time; %A fake operation of assigning the return variable

end

end
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[60] Ulrich Köbler and Andreas Hoser. Renormalization group theory: impact on experi-
mental magnetism, volume 127. Springer, Heidelberg, 2010.

[61] Kiran M. Kolwankar and Anil D. Gangal. Fractional differentiability of nowhere
differentiable functions and dimensions. CHAOS, 6:505, 1996.



BIBLIOGRAPHY 130

[62] Peter Kopietz, L. Bartosch, and F. Schütz. Introduction to the functional renormal-
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[109] Alejandro Tejedor, Javier B. Gómez, and Amalio F. Pacheco. Hierarchical model
for distributed seismicity. Physical review. E, Statistical, nonlinear, and soft matter
physics, 82(1 Pt 2):016118, 2010.

[110] András Telcs. The art of random walks, volume 1885. Springer, New York, 2006.

[111] N. Vandewalle, P. Boveroux, A. Minguet, and M. Ausloos. The crash of October 1987
seen as a phase transition: amplitude and universality. Physica A: Statistical and
Theoretical Physics, 255(1-2):201–210, 1998.

[112] A. N. Vasil’ev. The field theoretic renormalization group in critical behavior theory
and stochastic dynamics. CRC Press, Boca Raton, 2004.



BIBLIOGRAPHY 133

[113] Bing-Hong Wang, Jie Wang, Chun-Xia Yang, Pei-Ling Zhou, Tao Zhou, and Ying-Di
Jin. Evolutionary percolation model of stock market with variable agent number.
Physica A: Statistical Mechanics and its Applications, 354:505–517, 2005.

[114] Edward C. Waymire and R. N. Bhattacharya. A basic course in probability theory.
Springer, New York, 2007.

[115] C. Wiecko and E. Roman. Renormalization-group decimation technique for spectra,
wave functions, and density of states. Phys. Rev. B, 30:1603–1605, Aug 1984.

[116] K.G. Wilson. Problems in physics with many scales of length. Scientific American,
241:158–179, August 1979.

[117] Yan-Bo Xie, Bing-Hong Wang, Bo Hu, and Tao Zhou. Power law distribution of wealth
in population based on a modified Eqúıluz-Zimmermann model. Physical review. E,
Statistical, nonlinear, and soft matter physics, 71(4 Pt 2):046135, 2005.

[118] Rossitsa Yalamova and Bill McKelvey. Explaining what leads up to stock market
crashes: A phase transition model and scalability dynamics. Journal of Behavioral
Finance, 12(3):169–182, 2011.

[119] W. Yan, R. Woodard, and D. Sornette. Diagnosis and prediction of market rebounds
in financial markets. ArXiv e-prints, March 2010.

[120] Tongkui Yu. Scaling in different dynamic regimes of a multi-agent stock market model.
volume 1, pages 143–146. IEEE, 2010.

[121] Tongkui Yu and Honggang Li. Dynamic regimes of a multi-agent stock market model.
MPRA Paper 14339, University Library of Munich, Germany, November 2008.

[122] W.-X. Zhou and D. Sornette. Evidence of a worldwide stock market log-periodic
anti-bubble since mid-2000. Physica A: Statistical Mechanics and its Applications,
330:543–583, December 2003.

[123] W.-X. Zhou and D. Sornette. Renormalization group analysis of the 2000-2002 anti-
bubble in the US S&P500 index: explanation of the hierarchy of five crashes and
prediction. Physica A: Statistical Mechanics and its Applications, 330:584–604, De-
cember 2003.

[124] W.-X. Zhou and D. Sornette. Antibubble and prediction of China’s stock market and
real-estate. Physica A: Statistical Mechanics and its Applications, 337:243–268, June
2004.

[125] W.-X. Zhou and D. Sornette. Testing the stability of the 2000 US stock market
”antibubble”. Physica A: Statistical Mechanics and its Applications, 348:428–452,
March 2005.

[126] W.-X. Zhou and D. Sornette. Fundamental factors versus herding in the 2000-2005 US
stock market and prediction. Physica A: Statistical Mechanics and its Applications,
360:459–482, February 2006.



BIBLIOGRAPHY 134

[127] W.-X. Zhou and D. Sornette. Is there a real-estate bubble in the US? Physica A:
Statistical Mechanics and its Applications, 361:297–308, February 2006.

[128] W.-X. Zhou and D. Sornette. A case study of speculative financial bubbles in the
South African stock market 2003-2006. ArXiv Physics e-prints, January 2007.



Index

BFGS update, 99
Boltzmann constant, 47
Boltzmann function, 46
Brownian motion, 20
bubble, 100

Cantor set, 24, 26
Cauchy’s Residue Theorem, 88
central limit theorem, 22, 42
characteristic function, 38, 39
chartist, 6
Cont-Bouchaud percolation model, 12
control parameter, 43
convolution, 37
critical phenomena, 32, 78
critical point, 32, 43, 44
cumulant, 36, 38, 39

decent direction, 98
decimation, 35–37
diamond lattice, 45
discrete scale invariance, 43
DJIA, 15
DJTA, 15
Dow theory, 3, 15, 108
dyadic expansion, 23

economic recession, 1
Elliott wave principle/theory, 3, 17
expected value, 38
exponential distribution, 52, 57

Fourier
Fourier convolution, 38
Fourier transform, 38

fractal dimension, 24, 25
fractal set, 24
fractals, 24
free energy, 43
FTSE 100, 103

fundamental analysis, 14
fundamentalist, 6

Hausdorff-Besicovitch dimension, 24
hierarchical model, 30, 51, 78
Hurst exponent, 8

independently identically distributed (iid), 22
Ising Model, 80, 81

Laplace transform, 87
least square estimation, 92
line search, 98, 100
log-periodic power law, 51, 91

market depth, 13
market prediction model, 14
Markov process, 52
Markov property, 52
Martingale hypothesis, 81
Mellin transform, 86
memoryless property, 52
microscopic mechanism model, 6
moment, 38, 39

neural networks, 14
Newton’s method, 97

for optima, 98

partition function, 46
phase transition, 32, 78
pole, 88
power law, 45
primary market, 1

quadratic interpolation method, 98
quasi-Newton method, 98

random walk, 20, 23, 28
reaction-diffusion model, 6
regime

135



INDEX 136

anti-bubble regime, 101
bearish anti-bubble regime, 102, 103
bubble regime, 101
bullish anti-bubble regime, 102, 103
inverted anti-bubble regime, 102

renormalization group, 23, 35
flow map, 43–45
formalism, 43
method, 45
process, 35

rescaling, 35, 41
residue, 88
risk-driven model, 80

scale invariance, 26, 43
secondary market, 1
self-similarity, 26
spin network system, 45
stable distribution, 36
stochastic multi-agent model, 8
stochastic search, 93

Taboo/Tabu search, 93
Taylor series expansion, 39
technical analysis, 14
time series method, 14
topological dimension, 24, 25

utility function, 52, 53

Weierstrass function, 86


