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Abstract

Recent studies have suggested that molecular interaction networks within cells could be

decomposed into different subnetworks of molecules that are involved in common biological

processes. Such subnetworks are known as pathways, protein complexes or, in general,

as functional modules. Many computational methods have been developed to discover

functional modules based on various hypotheses. For example, network motifs are abundant

subnetworks in natural networks but not random networks with similar global properties.

Networks motifs have been utilized for comparing protein-protein interaction (PPI) networks

of various organisms and for assessing the random models in terms of capturing the global

and local properties of PPI networks. In another example, subnetwork markers are connected

subnetworks from PPI networks in which member gene expressions correlate with labels of

the samples. Such subnetwork markers could be used as predictors for phenotype of the

samples such as the disease statuses of the patients.

In this dissertation, I first present novel computational methods for discovering network

motifs that use the confidence scores from protein interactions. Since there are many false

positives and false negatives in the current binary PPI networks, utilizing confidence scores

could result in better network motifs. I have used this algorithm to compare PPI networks of

prokaryotic unicellular, eukaryotic unicellular and multicellular organisms. Later, I present

two efficient and optimal computational approaches for identifying subnetwork markers.

The first one utilizes confidence scores from PPIs. And the second one is a randomized

algorithm for discovering the subnetworks markers with the best predicting performance. I

have applied these algorithms to predict disease statuses of colon cancer and breast cancer

patients and treatment outcomes of a combinatory therapy for a breast cancer study.
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Chapter 1

Introduction

1.1 Motivations

In classical molecular biology, the functions of a cell are studied through the functions of

its components such as DNAs, RNAs, proteins, metabolites and other organic molecules.

However, the functions of a biological system might not be due to the functions of individual

components [78]. In fact, most of the functions of a cell usually arise from complex interactions

among the consitutent molecules [78]. For example, in yeast there is a signal transduction

system that converts the detection of a pheromone into the act of mating. However, no

single molecule in the system is known for for amplifying the input signal provided by the

pheromone molecule [78]. Thus, many recent studies have focused on understanding the

structure and dynamics of the interaction network of molecules.

High-throughput technologies have recently provided comprehensive mappings of cel-

lular molecular interaction networks such as protein-protein interaction (PPI) networks.

Such interactomes have helped to understand the physical architecture of the cells . For

instance, many studies have derived pairwise protein interactions [187, 223, 197, 20] or

protein complexes [23, 57, 112, 183] . Other types of physical interactions that have been

mapped systematically include transcriptional protein-DNA interactions [159, 91] and kinase-

substrate interactions [153, 125]. Many databases have also been developed to record these

experimentally derived protein interactions together with predicted ones: BIND [9], BioGRID

[185], DIP [165], IntAct [107], MINT [25], MIPS [144], HPRD [108].

Recent studies have suggested that molecular interaction networks within cells could be

decomposed into different subnetworks of molecules that are involved in common biological
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CHAPTER 1. INTRODUCTION 2

processes [78, 14]. Such sets of molecules are known as signalling pathways, protein complexes

or in general functional modules. One of the well known protein complex is the ribosome, a

large molecule which is responsible for formation of proteins from individual amino acids

using messenger RNA.

Many computational tools are developed to extract functional modules from only PPI

data such as network motifs. Network motifs are small subgraphs which occurs more

frequent in PPI networks than random networks of similar global properties such as degree

distribution. Studies on these network motifs have yielded insights into the information

processing in biological networks [79, 128].

Other computational methods have been developed for discovering functional modules by

integrating network topology data (PPIs) with other genomic profiles. Such tools can identify

active functional modules which are subnetworks from a PPI network of which member genes

are differentially expressed in a set of conditions/samples. Specific activation of member

genes can be detected through gene/protein expression profiles. Recent computational efforts

on active functional modules have focused on subnetwork markers of which the member

gene activities correlate with the labels of the samples. For example, tumour samples taken

from a cancer study usually come with clinical labels such as subtypes of the cancers. Recent

studies show that subnetwork markers could be used as predictors for the disease status

of the patients and provide a comprehensive view of the molecular mechanisms underlying

pathology.

1.2 Contributions

The problems of discovering functional modules such as network motifs and subnetwork

markers can be formulated as combinatorial optimization problems, which are typically

solved through heuristics, exact/approximation algorithms, or machine learning methods.

In this dissertation we will develop a randomized approximation algorithm for discovering

network motifs, an exact enumeration algorithm and a randomized algorithm for identifying

subnetwork markers. These algorithms not only have efficient running time and space

but also have provable performance on real data sets. In what follows, we summarize our

contributions on developing these algorithms:

• Previous computational methods for network motif discovery are based on binary PPI

networks derived from high throughput experiments. However, there is a high false
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discovery rate in these experiments. Recently, many groups for example STRING

database [93] have assigned the confidence scores to the protein interactions by in-

tegrating many large scale experiments and other genomic evidences such as mRNA

coexpression. Utilizing the confidence scored PPI networks can yield more reliable

network motifs. Subgraph counting or counting the number of isomorphic subnetworks

from a PPI network of a given query subnetwork has been the main algorithmic tool

for discovering network motifs. We will present a novel randomized approximation

algorithm based on color coding to count the occurrences of a given subgraph in a

confidence scored PPI network. In other words, we count the weight of non-induced

isomorphic subnetworks of a given tree T with k vertices in a confidence scored PPI

network G with n vertices with polynomial running time with n, provided k = O(logn)

for a given error probability and an approximation ratio. We also introduce two

definitions for the weight of an subnetwork in which is isomorphic to the query tree T .

• Similar to computational tools for discovering network motifs, current computational

methods for identifying subnetwork markers have not made use of confidence scored

PPI networks. We present a novel computational strategy wDCB for exhaustive

enumeration of dense subnetwork biclusters of which the average edge weight is more

than a given threshold and member genes are differentially expressed in sufficiently

many, but not necessarily all the samples. Conditions on partial differential expression

model the fact that samples from cancer patients usually divide into many different

subgroups. These subnetwork markers can correspond to dysregulated pathways in

many, but not necessarily all samples under consideration.

• Current computational methods for identifying subnetworks do not provide both

efficient running time and optimality of subnetwork markers. The authors from the

seminal works [31] and others propose heuristic methods which do not guarantee the

optimality of the solution for marker selection. Other exact approaches based on

branch and bound or exhaustive enumeration as introduced in the above can yield an

optimal solution under some fixed set of parameters; however, their worst-case running

time can be super-polynomial (and hence intractable). Thus, we introduce a novel and

efficient randomized algorithm to compute optimally discriminative subnetworks for

classification of samples from different classes. The discriminative score is calculated

as the difference between the total distance between samples from different classes and
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the total distance between samples from the same class. Our algorithm is based on

the color-coding paradigm [6] which allows for identifying the optimally discriminative

subnetwork markers for any given error probability. Since the running time of our

algorithm is a logarithmic function of the error probability, we can set the error

probability to a small value, close to zero, while the running time does not increase

much. When the maximum size of a subnetwork is k = O(logn), where n is the size of

the network, we have a polynomial time algorithm with a fixed error probability.

1.3 Organization of This Thesis

The dissertation is organized as follows:

• In the second chapter, we look into experiments to derive protein-protein interactions.

Then we discuss various computational methods for assigning confidence scores to

PPIs. At the end of the chapter, we introduce two databases for PPI networks that

our algorithms are implemented on.

• In the third chapter, we review existing computational approaches for discovering

functional modules. We first discuss computational tools solely based on PPI network

data. Later we discuss other approaches for integrating network topology and other

genomic data such as gene expression and genomic variation profiles. We conclude

the chapter with discussion about computational methods for discovering subnetwork

markers.

• In Chapter 4, we present our randomized algorithm for counting network motifs in

a confidence scored PPI network. Later, we show how to apply the algorithms to

compare the weighted PPI networks of various species. We show that there are

differences between PPI networks of multicellular and prokaryotic organisms in terms

of the occurrences of network motifs while global properties of such networks such as

degree distribution and clustering coefficient fail to capture.

• In Chapter 5, we present the wDCB algorithm for complete enumeration of densely

connected subnetwork markers. We then show how to apply wDCB on two cancer

datasets. We show that the predictive performance of WDCB outperform other
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heuristics for deriving subnetwork markers and single gene marker approaches which

ranked the discrimative scores of genes based on statistical tests such as t-test.

• In Chapter 6, we present the OPTDIS algorithm for identifying optimal discriminative

subnetwork markers. We present its application to predicting chemotherapy response

of patients from a breast cancer study. The predictive performances of OptDis is better

than all other approaches including wDCB. At the end of the chapter, we examine

difference sources of performance improvement of OptDis.

• In the last chapter, we first provide a brief summary of the algorithms presented in

this thesis. Later, we discuss the limitations of the current algorithms. At last, we

conclude the thesis with future works.



Chapter 2

Protein-Protein Interaction

Networks

In this chapter, we will discuss in vivo and in vitro experiment techniques for deriving PPIs

to build PPI networks. Then we look at how to combine these PPI networks with other

genomic data to build functional protein interaction networks in which edges denote pairs of

proteins with similar functions. We will introduce some databases of PPIs and functional

protein interaction networks such as HPRD [108] and STRING [181, 195]. Finally, we look

at other types of biological network models.

2.1 Experiments for Deriving Protein-Protein Interactions

Protein-protein interaction data have increased dramatically throughout the last few years.

For instance, the systematic identification of pairwise protein interactions [187, 223, 197, 20]

or protein complexes [23, 57, 112, 183] has been a widely used strategy for understanding the

physical architecture of the cell. Other types of physical interactions that are being mapped

systematically include transcriptional protein-DNA interactions [159, 91] and kinase-substrate

interactions [153, 125].

There are many experimental techniques for detecting PPIs: Bimolecular Fluorescence

Complementation [106], Chemical Crosslinking [27], Co-Immunoprecipitation (CoIP) [53],

Tandem Affinity Purification [160] and yeast Two-Hybrid (Y2H) [222] . However, the main

high throughput methods for detecting protein interactions probably are CoIP, TAP and

6
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Y2H.

2.1.1 Yeast Two-Hybrid Experiments

Figure 2.1: A yeast two-hybrid experiment. In this experiment, the presence of interaction
between two proteins of interest Pr1 and Pr2 is detected by measuring the mRNA expression
of the reporter protein. The physical binding of Pr1 and Pr2 will form a transcription factor
that is capable of binding to the promoter region using binding domain (DBD) attached to
Pr1 of the reporter gene and activating its transcription using the activating domain (AD)
attached to Pr2. Figure is taken from [120].

The Y2H technique is a wet lab technique for detecting physical binding between two

proteins [222] or a protein and a DNA molecule [99, 86]. The idea is that the interaction of

two considered proteins causes the transcription of a reporter gene. The transcription of a

reporter gene can only be activated if a transcription factor is present. This transcription

factor consists of two protein domains: a DNA-binding domain (DBD) that is capable of

binding to the promoter region of the reporter gene and an activation domain (AD) that

is capable of activating the transcription. So if either of these domains is absent then

transcription of the reporter gene will be unlikely. Hence, each of two proteins of interests is

attached to either the AD or DBD domain. The one attached to DBD in its N-terminus
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is called the bait while the one attached to activation domain is called the prey. If there

is a physical binding between two proteins of interests, mRNA expression of the reporter

gene could be captured or detected using microarray or RNA-Seq technologies. Figure 2.2

illustrates a Y2H experiment. Moreover, the expression level of the reporter gene can be

used as a measure of interaction between two protein of interests. Since Y2H experiments

are done in vitro, they can detect spurious protein interactions which are physical bindings

of protein domains outside of cellular environments.

The yeast S. cerevisiae is the most common used model organism for high throughput

two hybrid experiments. The Gal4 transcription factor domains (DBD and AD) are used to

fused to two proteins of interest. The expression of reporter gene LacZ is measured to detect

the existence of the fused protein product.

2.1.2 Co-Immunoprecipitation and Tandem Affinity Purification Experi-

ments

CoIP experimental technique is used to detect interactions among a bait protein and other

proteins in a cell [118]. First, the bait protein is marked by a tag. The bait protein is

put into a cell. Potential interaction partners could bind to the bait protein during this

process. Then an antibody which can recognize the tag is used to capture bait protein and

precipitate it. Any proteins which already binded to the bait protein are also precipitated.

An mass spectrometry experiment is used to detect the presence of the precipitated proteins.

Figure 2.2 illustrates a CoIP experiment. Similar to CoIP experiments, the TAP experiments

requires two successive steps of protein purification. Recent genome-wide TAP experiments

were performed by Krogan [112] and [57] providing updated protein interaction data for yeast

S. cerevisiae. Since a precipitated protein could bind to another precipitated protein but the

bait protein, these experimental techniques can not distinguish direct from indirect PPIs.

However, it can be used to detect protein complexes or interactions of multiple proteins.

In contrast to Y2H approach, the accuracy of CoIP and TAP are comparable to those of

small-scale experiments since the interactions are examined inside the cellular environment.

2.1.3 Scoring Protein Interactions

The above high throughput technologies for discovering PPIs suffer from high false positive

rate [40, 216]. It was estimated by the study [203], the number of false interactions returned
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Figure 2.2: A CoIP experiment. A) A protein of interest (the bait) is attached to affinity
tag. B) The bait is put into the cells in order to check whether there are bindings between
the bait and associated proteins C) The cells are then lysed. D) The lysed protein complex
is purified using a pull down assay with an antibody to the tag. E) Protein bands are
extracted and digested into small peptide fragments. The peptides are identified using mass
spectrometry methods. The protein associated with the bait is determined by comparing its
peptide fingerprint against known databases. Figure was taken from [132].
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by a Y2H experiment could be up to 50%. The error rate can be reduced by integrating

data from various experiments as a false interactions are not be likely to be observed in

repeated experiments. The false negative rate of Y2H experiments could be even higher.

Reguly et. al. [158] estimated the number of protein interactions in the yeast network is

around 30k whereas current Y2H experiments could detect about 20k interactions.

Various computational approaches have been developed to reduce the false positive rates

by integrating data from many high throughput experiments. Gavin et al. [58] designed

a simple approach for deriving the confidence scores for high-throughput interaction data.

Suppose we would like to estimate the confidence score for a pair of proteins a and b. Let N

be the number of high throughput experiments, Ntogether be the number times both a, b are

observed to be pulled out together, Na (Nb) be the number of times a (b) is pulled out alone.

Then the confidence score is estimated as follows:

wab = log
NtogetherN

(Na + 1)(Nb + 1)

A more sophisticated method [194] quantifies the confidence scores for protein-protein

interactions using logistic regression as follows. Each gold standard positive or negative

interaction is associated to a vector of multiple dimensions that corresponds to experiments

from Y2H, TAP, CoIP, large scale and small scale experiments. For each dimension, an

interaction is assigned with the confidence score derived from the corresponding experiment.

Using logistic regression model on training data, the authors can assign a confidence score

for a novel pair of two genes/proteins.

2.2 Functional Protein Association Networks

A functional association network is a generalization of a protein interaction network. There

exists an edge between two proteins if they physically interact with each other or they are

predicted to interact with each other. Or two proteins are connected by an edge if they

share similar functions or are predicted to share similar functions.

Functional associations can be predicted based on the vast and increasing high throughput

genomic, transcriptomic and proteomic data. The predictions are possible due to the fact that

genes whose products interact physically or in a protein complex often have similar functions

[203, 215]. Moreover, genes that exhibit similar patterns of expression [189], synthetic

lethality [225], chemical sensitivity [62] often have some similar functions. Previous studies
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also reveal shared functions among genes with similar phylogenetic profiles [148] or with

similar protein domains [80].

2.3 Databases of PPI and Functional Protein Association

Networks

There is an increasing number of databases of protein interaction network with quickly

growing number of interactions for various organisms: BIND [9], BioGRID [185], DIP [165],

IntAct [107], MINT [25], MIPS [144], HPRD [108]. These databases record experimentally

determined protein-protein interactions. Besides, there are many available collections of

well studied pathways: CellMap [1], KEGG [101], NCI Pathway Interaction Database [2],

Panther [131] and Reactome [36]. Recently, databases of functional association networks

such as GeneMANIA [137], Skypainter [219] and STRING [181, 195] have been built and

growing at the increasing speed.

In this thesis, we will discuss the Human Protein Interaction Database (HPRD) and

the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database in

details since they were used in our experiments. Other databases of protein interactions and

functional associations of proteins are built based on similar principles.

2.3.0.1 HPRD

As in the latest update [108], there are around 30047 annotated protein sequences. Around

39000 PPIs are documented in HPRD. Experiments for PPIs are divided into three categories

namely in vitro, in vivo and yeast two hybrid (Y2H). Sixty percent of PPIs in HPRD are

supported by a single experiment whereas around 26% of them are found to have two of

the three experimental methods annotated. Overall, in HPRD, 8710 proteins are annotated

with at least one PPI, whereas 2015 and 774 proteins have more than 5 or 10 PPIs.

2.3.0.2 STRING

Search Tool for the Retrieval of Interacting Genes (STRING) database [181, 195] has recorded

protein functional associations based on various genomic contexts. First, they import protein

interactions from high throughput experiments and interactions from co-expression analysis.

They also search for genes that are found in close proximity within chromosomes, genes that
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jointly encode for a single fusion protein which is a good indicator for functional linkage, gene

families which have similar phylogenetic profiles. All of these evidences are good indicators

that there are functional linkages among genes/gene products of interests.

Other sources of interactions in STRING are text-mining and interaction transfer among

organisms. They parse a large body of scientific texts for example abstracts from PubMed.

Using Natural Language Processing, they search for statistically relevant co-occurrences of

gene names, and also extract a subset of semantically specified interactions. For the transfer

of interactions between organisms, they estimate whether a pair of interacting proteins found

conserved in another organism justifies the transfer of the interaction to that other organism.

Each edge in STRING database is assigned with a confidence score. This confidence

score is integrated based on confidence scores from various evidences. And it is often higher

than the individual sub scores reflecting the increasing confidence when there are various

evidences that support the functional association. Suppose that W is final confidence score

and Wi’s are the confidence scores of the supported evidences. Based on the naive Bayesian

framework and the assumption of independence of the evidences, the confidence score W is

computed as

W = 1−
∏
i

(1−Wi)

The functional interactions stored in STRING are divided into three categories based on

their confidence scores: low confidence (scores < 0.4), medium (scores from 0.4 to 0.7) and

high (scores > 0.7).

2.4 Other Biological Networks

Gene/mRNA coexpression networks are built from gene expression profiles across

many tissue types and experimental conditions. Nodes in the network represent genes

and two nodes are connected if the corresponding gene expression profiles are significantly

coexpressed. The typical measures for coexpression are Pearson and Spearman correlations.

Gene regulatory networks are built on nodes which are genes, mRNAs and proteins

and their interactions include transcription, translation, transcriptional regulation and post-

translational reactions. Specifically, the nodes have distinct identities if they correspond to

diverse cellular components, and the edges can have two different signs corresponding to
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activation and inhibition.

Metabolic networks are designed to capture the metabolism of an organism. That

is the biological process that generates essential components such as amino acids, sugars

and lipids, and the energy required to synthesize them and to use them in creating proteins

and cellular structures. Nodes in metabolic networks are proteins, particles, molecules and

metabolites. Edges represent chemical reactions and each edge has labels which are enzymes

or genes.



Chapter 3

Functional Module Discovery

Biological networks have been observed to share global properties with other technological

and social networks such as the Internet [13, 94, 188]. For example, two nodes in these

networks tend to have short distance between them. In many of these networks, there are a

few nodes with many more connections than the average node has. Thus, it might indicate

that there are some common principles that govern these complex networks which allows

the knowledge from well studied non-biological systems to be transferred to characterize

complex interaction networks of molecules in the cells.

Recent studies by Milo et al. [134] suggested that complex networks could be constructed

from subunits (modules) with similar structures or functions. Recent research in biological

networks has also suggested that molecular interaction network in a cell could be decomposed

into subnetworks with similar functions or in short functional modules [78, 14]. Many

hypotheses have been formulated to discover functional modules. Probably, the two most

prominent ones are: 1) abundant subnetworks in biological networks but not random networks

with similar global properties (network motifs) 2) subnetworks in biological networks in

which there many interactions among the component genes (dense subnetworks).

In this chapter, we will discuss related works on computational methods for discovering

functional modules from protein interaction networks. In Section 3.2, we will discuss

approaches that only take into account of the topology of protein interaction network. In

Section 3.3, we will discuss methods that not only take into account of network topology but

also other genomic data. At the end of this chapter, we will discuss computational methods

for discovering functional modules that exist in a particular condition but not the others and

applications in biomarker discovery. Before that, we will discuss graph theory terminologies

14
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that will be discussed throughout this chapter.

3.1 Graph Theory Terminology

Before we delve deeper into each category, we introduce the necessary terminologies. We

denote the original network G = (V,E) and for an edge uv ∈ E (u ∈ V, v ∈ V ) we denote

0 ≤ w(uv) ≤ 1 as the associated confidence score for the interaction. Suppose that n = |V |
is the number of vertices in the network. In an unweighted network w(uv) = 1 if there is an

interaction; 0 otherwise.

Two graphs G and H are said to be isomorphic if there is a mapping f(v) from V (H)

to V (G) such that (v, w) ∈ E(H) if and only if (f(v), f(w)) ∈ E(G). If such a map exists, it

is called an isomorphism from H to G.

A subgraph H of a graph G is said to be induced if, for any pair of vertices x and y of

H, xy is an edge of H if and only if xy is an edge of G. In other words, H is an induced

subgraph of G if it has exactly the edges that appear in G over the same vertex set. If the

vertex set of H is the subset S of V (G), then H can be written as G[S] and is said to be

non-induced by S.

Intuitively, a tree decomposition of a graph is the mapping of the graph into a tree

where each node of the tree is a subset of vertices of the graph. vertices are adjacent only

when the corresponding subtrees intersect. The tree decomposition of a graph is not unique.

And tree decompositions are also known as junction trees, clique trees.

Thus, given a graph G = (V,E), a tree decomposition is a pair (S, T ) where S =

S1, ..., Sn is a family of subsets of V , and T is a tree whose nodes are the subsets Si, satisfying

the following properties:

Each vertex v in V belongs to one of Si’s or the union of all sets Si equals V .

For each edge (v, w) in the graph, there is a subset Si such that v, w ∈ Si.
If Si and Sj both contain a vertex v, then each Sk of the tree T on the path between Si

and Sj contains v as well.

The width of a tree decomposition (S, T ) is the size of its largest set Si minus one. The

treewidth of a graph G is the minimum width among all possible tree decompositions of G.
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3.2 Using Network Topology

The input for the approaches in this section is a biological network. Edges could be assigned

with/without confidence scores. The output of the below algorithms is a list of sets of

genes. These sets are usually connected subnetworks in the examined biological networks.

Many approaches do not output gene sets which are connected subnetworks, however, their

member genes are at short distance from one another based on predefined measurements

from network topology.

3.2.1 Network Motifs

The idea to build larger systems by combining smaller subsystems has been applied extensively

in many areas of science and engineering. Engineering design of a large system usually is a

hierarchical organization of similar subsystems of structures or functions. The subsystems

are able to interact and exchange information by adhering to a standard interface. Recently,

many research groups have also observed that some subnetworks are abundant in naturally

occurring, evolving biological networks [157, 73, 134]. Studying these abundant subnetworks

has helped in yielding insights into the information process in biological networks [128, 174].

Milo et al. [134] have recently looked at ways in which such networks can be broken

down into smaller functional units in order to more easily identify structures within the

network. The authors defined a network motif as a subgraph that occurs much more

frequently in a network G than one in a random network whose global properties are similar

to those of G. Similarly, a subgraph that occurs much less frequently in G in comparison

to random networks is called an anti-motif of G. Some of most important motifs are the

feed-forward motif and bifan motif (see Figure 3.1). A number of recent studies have

proposed mathematical models to study the dynamics of feed-forward motifs [79, 128]. The

information processing roles of feed-forward motifs have also been experimentally verified

[129, 161, 224].

There are many generalizations of network motifs in various types of biological networks.

The authors of [113] suggested reaction motifs in metabolic networks. These reaction motifs

are subnetworks within metabolic networks that share similar functional annotations rather

than similar topologies. Banks et al. [12] proposed network schema which add properties

to nodes and edges such that network schema can be wildly applicable to many biological

networks. A network schema is a subgraph where genes/proteins can come with functional
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Figure 3.1: Some abundant network motifs in yeast gene regulatory network: a) a feed-
forward loop b) a bifan. Figure is taken from [132].

annotations or putative domains, edges could be specified as regulatory relationships for

example inhibiting/promoting. And its number of occurrences should be more than expected

from a random network. Network motifs could be considered as subgraphs that are present

in in a set of biological networks instead of occurring many times within one. Sharan et

al. [170] generalized the concept of network motifs as subgraphs that are present in PPI

networks of many species.

3.2.1.1 Exact Counting

The algorithm in the seminal work [134] is probably the most popular algorithm for counting

the occurrences of a particular subgraph S in a network G = (V,E). The algorithm basically

uses depth first search to enumerate all the connected non-induced subgraphs of G which

have size |S| and are isomorphic to S. There are maximum O(nk) such subgraphs (when

G is a complete graph). The number is then corrected by dividing by the number of

automorphisms of S.

In order to assess the significance of the number of occurrences t of S in G, random

networks that capture the topological properties of G are generated. For each random

network, the number of occurrences of S is computed and we have a distribution of the

numbers of occurrences of S in random networks. A statistical test such as t-test is used to

compute p-value for the number of occurrences of S in G.

Subgraph counting has been applied to compare the protein interaction networks with

networks generated by random models. Such comparison helps to assess the quality of

different generative random models that capture the properties of protein interaction network

such as degree distribution, betweenness and subgraph distributions. It was argued that
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the distribution of subgraphs of up to k = 5 vertices in the yeast PPI network is quite

different from that of the preferential attachment model [151]. The authors from the same

group have also used the distribution of subgraphs of up to k = 5 to assess the quality of

geometric random models in emulating PPI networks [82, 152]. Hormozdiari et al. [84]

demonstrated that the subgraph distribution of the preferential attachment model and that

of the duplication model for k ≤ 6 can be substantially different and the seed network of the

duplication method could be chosen in a way that its subgraph distribution can be made

very similar to that of the available PPI networks including that of yeast.

Grochow and Kellis [67] have improved the running time of this simple counting algorithm

significantly using many heuristics. The first one is based on graph or vertex invariants.

An invariant is a property that is the same for isomorphic graphs. The number of vertices,

the number of edges, and the degree distribution are some common use invariants. If two

graphs differ in one of these invariants, they are not isomorphic to each other. The sequence

of degrees of the neighbours of a vertex is used. That is when we need to match a vertex v

from S to a vertex v′ in G, the sequence of degrees of v’s neighbours should be a subset of

the sequence of degrees of v′’s neighbours.

The second heuristic is the use of symmetry breaking to eliminate double counting the

automorphisms of an isomorphic subgraph in G. The authors divide the vertices of S into

groups. Vertices from the same group could map to each other to create an automorphism.

For example, when S is a triangle of three vertices, there is only one group including all

the vertices. When S is path of size three, there is two groups, one group includes two

vertices of degree one and the other group includes vertex of degree two. The third heuristic

is based on the degree distribution of the original network. Since the algorithm discards

all the vertices at which all the isomorphic subgraphs are already searched, starting depth

first search at a hub or high degree node in the network simply could give more subsets of

vertices to look at. The vertices are sorted in the increasing order of their degrees then the

degree sequence of their neighbours.

Grochow and Kellis [67] were able to search for all network motifs of size 7 within a

couple of hours in yeast PPI network. This a significant improvement over other naive

approaches. By combining the counting of smaller network motifs, they could discover a

network motif of 29 nodes. This motif consists of two protein complexes that are enriched

with chromatin modification and histone acetylation.

Later algorithms for exact counting the copies of a subgraph H in a graph G have
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improved the average running time across different subgraphs of the same size. The running

time of the algorithms typically depends on a parameter from the subgraph H for example

the treewidth, pathwidth and maximum independent set. The authors from [213] compute

the number of copies of an H in G in O∗(2snk−s+3) time where k is the size in terms of

vertices in H and s is the size of the maximum independent set of H. Note that the O∗

notation omits a poly(k) factor. This algorithm relies on fast algorithms for computing the

permanent of a matrix. Another algorithm for exact counting the occurrences of H in G

with running time depending on the treewidth of H was proposed by the authors from [54].

This algorithm runs in time and space
(
n
k/2

)
nO(t log k) where t is the treewidth of H.

3.2.1.2 Approximate Counting

Kashtan et al. [103] proposed a sampling procedure to approximate the number of occurrences

of a particular subgraph in a network. First the algorithm pick a random edge in a gene

regulatory network. From the current sampled subgraph, one of the adjacent edges is picked

with a uniform probability. The process is repeated until we obtain a k-node subgraph.

However the sampled subgraph is defined as the induced subgraph that contain the same set

of vertices i.e. including the sampled edges and together unsampled edges on the same set of

vertices. The probabilities of sampling non-induced subgraphs are not equal eventhough they

are isomorphic to each other. So the algorithm needs to correct for this unbiased sampling.

Finally, the authors calculate the concentration of each possible subgraph that have the

same number of vertices k. Suppose that we have K possible subgraphs H1, H2, . . . ,HK of

size k and S1, S2, . . . , SK are the numbers of their occurrences. The concentration of Hi is

calculated as:

Ci =
Si∑
i Si

The authors ran the sampling algorithm on a variety of networks including a WWW network

[13] that consists 3.25 x 105 nodes, 1.46 x 106 edges for subgraphs up to 5 nodes. In all the

experiments that they performed, they showed that the results converge toward the real

values within 105 samples or less.

Arvind and Raman [8] used the color coding approach to count the number of subgraphs

in a given graph G which are isomorphic to a bounded treewidth graph H. They give a

randomized approximate counting algorithm with running time kO(k) · nb+O(1) where n and

k are the number of vertices in G and H, respectively, and b is the treewidth of H. The
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framework which they use is based on approximate counting via sampling [102]. Even when

k = O(log n), the running time of this algorithm is super-polynomial with n, and thus is not

practical.

Alon and Gutner [5] combined the color coding technique with a construction of what is

called Balanced Families of Perfect Hash Functions to obtain a deterministic algorithm to

count the number of simple paths or cycles of size k in an input graph G with running time

2O(k log log k)nO(1), still super-polynomial in n when k = O(log n).

The above algorithm has been improved by [4], given an additive error ε and error

probability δ, we present a randomized approximation algorithm that with success probability

1− 2δ outputs a number within ε of the number of non-induced occurrences of a tree T of k

vertices in a graph G of n vertices running in time O(|E| · 2O(k) · log(1/δ) · 1
ε2

). Note that if

k = O(log n) and ε, δ are fixed, we have a polynomial time algorithm. The idea is to divide

detecting an occurrence of T in G into detecting occurrences of subgraphs T and T in G.

Assigning colors or labels to vertices in G keeps track of which vertices in T and T have

been used so far i.e. to make sure that T and T does not share any vertices. The algorithms

consists of many iterations. At each iteration, there are two main steps:

1. Color coding. Assign each vertex of input graph G independently and uniformly at

random with one of the k colors.

2. Counting. Using dynamic programming, count the number of non-induced occurrences

of T in which each vertex has a unique color.

For each iteration, the probability that an subgraph H in G isomorphic to T is colorful is

k!/kk = O(e−k). Thus, after around O(ek) iterations, we have high constant probability

that we count H one time. By summing up the number of colorful occurrences of T in G

and accounting for some overcounting factor, they can obtain a good estimate of the real

number of occurrences.

In [4], the authors obtained treelet distributions (distributions of occurrences of trees up

to 10 vertices) of available PPI networks of unicellular organisms (Saccharomyces cerevisiae,

Escherichia coli and Helicobacter Pyloris), which are all quite similar, and a multicellular

organism (Caenorhabditis elegans) which is significantly different. Furthermore, the treelet

distribution of the unicellular organisms are similar to that obtained by the duplication

model but are quite different from that of the preferential attachment model.
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Other randomized algorithms have improved the running time for counting subgraphs

of smaller size and with specific structures. Gonen et al. [65] designed a sublinear time

algorithm to approximate the occurrences of a path of length 2 or in general a star of small

size. Tsourakakis et al. [202] proposed a randomized approximation algorithm for counting

triangles in a massive graph.

3.2.2 Dense Subnetworks

Perhaps the second common hypothesis about biological functional modules is that dense

subnetworks in biological networks may correspond to functional subunits. Analogous to

network motifs where their occurrences are more frequent than expected , a dense subnetwork

in a biological network contains more edges among the constituent genes than a random

subnetwork of the same size. It is interesting to note that dense subnetworks seem to be more

abundant in biological networks than random networks generated to match the topological

properties for example degree distribution of the natural networks [34].

Dense subnetworks from protein interaction networks have been observed to correspond

to protein complexes or functional units of protein complexes [184, 9]. Densely connected

subnetworks that are conserved across protein interaction networks of various organisms

and species also correspond to protein complexes or functional modules [171]. The authors

from [9, 184] revealed that dense sunetworks that presents in gene coexpression networks

also correspond to functional modules. In genetic interaction networks, a functional module

may consist of two sets of nodes A and B where there are abundant of interactions among

member genes from A and from B and less connections among genes in a same group [105].

A and B could correspond to complete/partial known pathways [105].

In the ideal case, a dense subnetwork S is a clique which contain |S| ∗ (|S| − 1)/2 edges.

Finding out whether a network contain a clique of at least k vertices is a NP-Complete

problem. However, in practice many heuristics, enumeration approaches, and approximation

algorithms could yield relative good results in terms of meaningful biological subnetworks.

Computational methods have been developed for extracting dense subnetworks from

protein interaction and other biological networks. They can be broadly divided into three

categories: minimum/normalized cut based, average clustering coefficient based, and random

walk based approaches.
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3.2.2.1 Graph Cut Based Approaches

First of all, we give the definitions of a minimum cut and a minimum normalized cut.

Suppose that we have two disjoint subsets of vertices A ⊂ V and B ⊂ V such that A∩B = ∅
and A ∪B = V . an edge cut is a set of edges Ec such that E(G)− Ec is disconnected. The

set of edges Ec with the minimum number of edges is defined as a minimum cut. We defined

a cut cut(A,B) as the weights of edges pass through A and B:

cut(A,B) =
∑

u∈A,v∈B
w(uv)

A minimum cut is the cut with the minimum value by the above definition. In order to

define a normalized cut, we define assoc(A, V ), assoc(A, V ) as the total weights of edges

connecting vertices A, B to other vertices in V :

assoc(A, V ) =
∑

u∈A,t∈V
w(ut)

assoc(B, V ) =
∑

v∈B,t∈V
w(vt)

The value of a normalized cut is defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

A minimum normalized cut [175] is the one with minimum value defined as above.

The computational methods in this category are usually top-down approaches. They

start with an original network, divide the network into two subnetworks such that there are

less edges among these two. Then, they repeat the same process for each subnetwork.

The CLICK (CLuster Identication via Connectivity Kernels) algorithm [173] is a graph

partitioning approach that separates a graph into several subgraphs based on minimum cuts.

It first separates the whole network into two subnetworks G1 and G2 based on minimum

cuts. It then recursively partition G1 and G2 into small small graphs. The recursive process

ends when the minimum cut is less than a certain threshold. The authors applied the

algorithm on mRNA coexpression networks to reveal tighter coexpressed gene clusters and

clustered proteins based on their sequence similarity into families. Another graph partitioning

algorithm highly-connected subgraph (HCS) [77] is also based on minimum cut. Original

network G is rst separated into two subgraphs G1 and G2 in which G1 is a highly connected

subgraph and G2 is not. The algorithm repeats the process on G2.
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The minimum cut criterion usually cuts small sets of nodes from the graph. As verified

by the experiments in [85] found HCS often cuts off one node in each iteration. Since it

is time consuming to compute a minimum cut, algorithms based on minimum cuts could

take a long time to run. Instead of using minimum cut as a criterion for graph partitioning,

the CODENSE algorithm [85] is similar to CLICK but based on normalized cuts. The

authors built a consensus graph from many mRNA coexpression networks from many yeast

microarray datasets. They applied CODENSE on this consensus graph to discover many

gene clusters where member genes share a biological process annotation. They also used

these gene clusters to annotate genes with unknown functions.

3.2.2.2 Clustering Coefficient Based Approaches

In contrast to the approaches based on minimum cut and minimum normalized cut, the

algorithms developed for this category are usually bottom up approaches. They start with

each vertex in the original network and grow a subnetwork by adding one vertex at each

iteration as long as the density defined by clustering coefficient is greater than some threshold.

However, each algorithm has a distinct mathematical definition of density.

One of the most common clustering coefficient is defined as follows. Let S ∈ V be a

subset of vertices. The clustering coefficient of S is

density(S) =
2
∑

u,v∈S w(uv)

|S|(|S| − 1)

S is α-dense connected subnetwork if density(S) ≥ α. S is α-dense connected subnetwork if

S is α-dense and S forms a connected subnetwork in G.

Many greedy algorithms and heuristics have been developed using the above density

notion. MCODE [9] defines a weight for each vertex u as the density of the best subnetwork

formed by vertices which are adjacent to u. They greedily grow a cluster adding a node that

maximize the density of the best subnetworks formed by adjacent vertices. The authors

applied MCODE on yeast Saccharomyces cerevisiae protein interaction networks and

discovered that gene clusters correspond to many known protein complexes. NetworkBLAST

[100, 170] was originally designed for comparing multiple PPI networks but is applicable

for finding densely connected subnetworks in a PPI network by growing the subnetworks

by adding one node at each iteration. Similar greedy strategies have been used by other

other algorithms CFinder [145], DCPLus [7] , SPICI [96] for detecting protein complexes
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in protein interaction networks. The authors in [121] formulate the problem of finding the

maximum dense subgraphs across many mRNA coexpression networks as a quadratic integer

program. Then authors relaxed several constraints and solve the problem based on convex

continuous optimization.

Several enumeration algorithms have been developed for the above density definition.

These algorithms work based on the observation that α-densely connected network S

(α ≥ 0.5) contains a α-densely connected subnetwork S′ where |S′| = |S| − 1. The authors

in [136, 35] extended the observation for densely connected subnetworks. The observation

entails a bottom up search fashion. Starting from each node in a protein interaction network,

at the end of k-th iteration, we maintain the list of all the densely subnetworks of size k. At

beginning of each iteration, we extend a dense subnetwork in the current list by adding an

adjacent vertices as long as the newly formed subnetwork is still dense. Spirin and Mirny

[184] proposed an exhaustive enumeration of all cliques in a PPI network. The authors from

[61] enumerate all the α-dense but not connected subnetworks (α ≥ 0.5) in yeast and human

PPI networks. Finally the authors from [136, 35] provide algorithms for enumerating all the

α-densely connected subnetworks (α ≥ 0.5) in PPI networks.

Another common density notion is α-quasi-clique. A subset of vertices S ∈ V is a

α-quasi-clique if each vertex v in S has a degree at least α(|S| − 1). In a weighted network,

we can generalized the degree of vertex v in S as d(v, S) =
∑

u∈S,uv∈E w(vu). The authors

from [147, 95] proposed efficient pruning techniques for mining all the frequent quasi-cliques

from many gene coexpression networks. Another relaxed version of α-quasi-clique requires

the average degree
∑

uv∈E w(vu)/|S| is greater a threshold. It is interesting to note that, the

densest subgraphs by this definition could be retrieved by algorithms from [63] in polynomial

time by computing series of s-t min cuts. There is a 2-approximation to the problem [26]

but it does not yield the densest subgraphs but offers much more efficient running time.

[164] utilized both versions for annotating the functions of genes from Arabidopsis genome.

3.2.2.3 Random Walk Based Approaches

The Markov clustering (MCL) algorithm was designed specially simple and weighted graphs

[50]. The MCL algorithm simulates random walks within a graph by the alternation of

expansion and inflation operations. Expansion refers to taking the power of a stochastic

matrix using matrix multiplication. Inflation operation changes the probabilities for all these

walks in the graph, boosting the probabilities of intra-cluster walks and reducing inter-cluster
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walks so that the resulting matrix is again a stochastic matrix i.e. all the entries in the

matrix are non negative and for each row or each column, the summation of the entries is 1.

The process is repeated until all the entries in the matrix do not change. All the edges in

the resulted graph which are less than some threshold are removed. The returned clusters

are the connected components.

Enright et al. [50] employed the MCL algorithm for the assignment of proteins to

families. A protein-protein similarity graph is built where edges within the graph are weighted

according to a sequence similarity score obtained from an algorithm such as BLAST. [149]

applied MCL to the protein interaction network of Saccharomyces cerevisiae to detect

functional modules. Others [112, 154, 76, 56] have applied MCL algorithm to detect protein

complexes from the Tandem Affinity Purification and Co-Immunoprecipitation data.

3.2.2.4 Other Approaches

King et al. [111] proposed a local search algorithm Restricted Neighborhood Search Clustering

Algorithm (RNSC) based on the tabu search. The algorithm begins with an initial random

or user-input clustering and denes a cost function. Nodes are then randomly added to or

removed from clusters to nd a partition with minimum cost. RNSC removes clusters based

on their size, density and functional homogeneity. The disadvantage of RNSC is that it

depends on the quality of initial clustering which is random or user defined.

Navlakha et al. [139] proposed a novel graph summarization (GS) technique based on

graph compression [140] to discover functional modules from a PPI networks. The method

defines a biological module as a set of proteins that have similar sets of interaction partners.

GS compresses the original PPI graph into a summary graph where the nodes correspond

to biological modules. The authors applied GS to predict complex memberships, biological

processes, functional annotations.

3.3 Using Network Topology And Other Genomics Data

In the previous section, we have looked at various computational methods for discovering

functional modules in terms of network motifs and dense subnetworks from PPI networks.

These protein interactions in these PPI networks are recorded in regular lab conditions.

Many of these interactions are collected by different labs when the cells are in different

states. Thus, all the protein interactions which are reported from a database provide a static
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view of the interaction networks in which all the methods in the previous section apply

on. However, living cells are dynamics by nature: a functional module or biological process

might be active in a condition and off in another condition. Therefore, detecting active

functional modules in a condition or a set of conditions could provide valuable insights into

dynamic behaviours of the cells.

Recent high-throughput genomic technologies have generated increasingly vast amount

of data about cells in various states and under various conditions. These technologies

allow for simultaneous genome-wide assaying of the snapshots of genomic variation, gene

expression, DNA methylation, microRNA expression of the cells under the conditions or

states of interest. Therefore, integrating PPI data with other genomic data could help to

discover active biological processes/functional modules under a condition or set of conditions.

Previous works have established the interconnection between multi omics data and protein

interactions. And these interconnections have been exploited to discover new hypotheses.

For example, the authors in [59, 71] have shown that the encoded proteins of genes with

similar expression profiles are more likely to interact. Later, Jansen et al. [92] made use

of pairwise gene expression similarities to predict protein interactions. In another example,

it is well known that cancer is a disease of pathways and it is hypothesized that somatic

mutations target genes in some regulatory and signalling pathways [72]. Recent studies on

cancer based on sequencing assess whether mutated genes significantly overlap known cancer

pathways [180, 218, 41].

In this section, we will explore various computational methods for discovering functional

modules by integrating PPI network data and multi-omics profiles. The approaches are

presented in the chronological order.

The input of the considered algorithms here is a biological network and expression profiles

of genes. Expression profile of a gene is mRNA expression measurements under different

conditions or with different samples from a population. Other approaches in this section also

consider genomic variations from different samples or individuals. The output like before is

a list of gene sets.

Before we go into the descriptions of the prominent approaches, we first describe a couple

of notations that we are going to make use of. We denote g1, g2, . . . , gn as the genes/protein

products which have available measurements. We denote the original network G = (V,E)

and for each uv ∈ E (u ∈ V, v ∈ V ) we denote 0 ≤ w(uv) ≤ 1 is the associated confidence

score for the interaction. Suppose that n = |V | is the number of vertices in the network.
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In an unweighted network w(uv) = 1 if there is an interaction; 0 otherwise. In addition

to the biological network G, we denote M denote the expression matrix of gene expression

measured across m conditions. So M is a n×m matrix and Mij is the expression of gene i

measured at condition j.

3.3.1 Ideker et al.

Ideker et al. [89] was probably the first to introduce a computational approach for discovering

active subnetworks in a set of samples. Each gene gi in a sample is associated with a z(gi)

score that quantifies its expression change. The z score of a subnetwork S with k vertices is

computed as

z(S) =
∑
i

z(gi)√
k

For each subnetwork, z values are computed for all the conditions. These z scores are

then combined into a single z score. The authors designed a heuristic approach to search for

subnetworks with the best z score based on Simulated Annealing. Random subnetworks

with the same size are sampled and their z scores are computed. For each subnetwork

discovered from the original network, a p-value is computed from the distribution of z scores

from random subnetworks. The insignificant subnetworks are then discarded. The authors

applied their algorithms on a yeast data set.

3.3.2 Segal et al.

Segal et al. [169] proposed a probabilistic model to search for sets of genes that have similar

expression profiles, and have a significant number of protein-protein interactions among

them. Suppose that each gene belongs to one of k functional modules f1, f2, . . . , fk. They

denote Aij (1 ≤ i ≤ n, 1 ≤ i ≤ m, Aij ≥ 0) as the probability that the gene gi is in the

functional module fj . Thus, for each gene gi, we have∑
j

Aij = 1

The authors used a naive Bayes model for conditional distribution of the expression of gene

gi given that it belongs to the functional module fj . Let θE be the parameters for this Bayes

model and denote this probability P (M,A|θE). Remind the readers that M is the gene
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expression matrix. And the authors made use of Markov Random Field model to estimate

the probability that a group of genes belong to a functional module given a binary protein

interaction network G. Let θN be the parameters for this Markov Random Field model and

denote this probability as P (G,A|θN ) . Assuming the independence between two probability

models, they could estimate:

P (G,M,A|θE , θN ) = P (M,A|θE)× P (G,A|θN )

The authors utilized the Expectation Maximization algorithm to learn the parameters θB

and θN . Initial assignment of genes into functional modules is based on the MCL algorithm

[50]. The authors ran this algorithms on two yeast gene expression datasets and they could

not only discover coherent functional groups but also protein complexes.

3.3.3 Hanisch et al.

Hanisch et al. [75] proposed a biclustering model for to combine expression data and protein

interaction network. For each pair of genes, they calculated a distance score from the

underlying biological network and a distance score from their expression profiles. The

similarity scores from network and expression data are then combined into a single distance

score. Specifically, for each pair of genes g and g′, the distance score from the underlying

biological network λnet(gg
′) is calculated as the shortest path from gene g to gene g′ in the

distance graph where a weight for an interaction is equal 1 minus its confidence score. The

distance score λexp(gg
′) is calculated as 1 minus the Pearson correlation from their gene

expression profiles. They combined the computed similarity scores as follows:

1− 0.5x(λnet(gg
′) + λexp(gg

′))

The authors then applied hierarchical average linkage clustering on the similarity matrix.

Each cluster starts with a single gene. At each step, the clustering method joins two clusters

A and B if the average pairwise distance between gene g in A and gene g′ in B is the smallest

among any two pairs of clusters. The method stops when the smallest average pairwise

distance is greater than some threshold.

The authors applied their algorithm on a yeast time series data set. In this experiment,

yeast is inoculated into a sugar rich medium. Gene expression are measured when the sugar

is progressively depleted through seven time points.
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3.3.4 Ulitsky et al.

Ulitsky et al. [204] designed MATISSE for discovering functional modules from binary PPI

network and gene expression data. The idea is that each functional module corresponds to a

connected subgraph in the considered PPI network and their gene expression profiles are

very similar. Let Gexp = (Vexp, Eexp) be the similarity graph built from calculating pairwise

expression profiles where there is an edge gg′ ∈ Eexp if the correlation between two gene

expression profiles is greater than some threshold. The authors would like to partition the

genes into k non-overlapping sets F1, F2, . . . , Fk such that Fi (1 ≤ i ≤ k) forms a connected

subgraph in G and each Fi has a significant number of edges that belong to Eexp compared

to one of a random connected subnetwork of similar size.

Since the combinatorial optimization is intractable, the authors implemented several

heuristics for solving the problem. The heuristic that seems to perform the best on biological

data consists of three steps. First, several small seed networks that consist of one node and

its neighbors are picked. In the second step, seed networks are extended by adding each

node at a time. In the last step, the significant score for each subnetwork is computed and

the insignificant ones are filtered.

The authors from the same group later proposed CEZANNE [206], an improved version

of MATISSE that could run on a confidence score PPI network. Now instead of requiring

each functional module to be a connected subgraph as in the binary PPI network, each

functional module should be a densely connected subnetwork. A functional module is dense

if the minimum cut of the induced subgraph is greater than some threshold.

3.3.5 Colak et al.

Colak et al. [35] designed Densely Connected Biclustering (DECOB) to discover functional

modules which are densely connected subgraphs from a binary PPI network. To remind the

readers the density of a connected subgraph H = (VH , EH) is defined as

density(H) =
2
∑

u,v∈VH w(uv)

|VH |(|VH | − 1)

Constituent genes from a functional module H are required to have similar expression or

homogeneous in at least k columns/conditions in the expression matrix M . Suppose that we

discretize the gene expression matrix M and obtain expression matrix B where Bij = 1/− 1

if gene gi is up-regulated/down-regulated in the j-th condition; Bij = 0 otherwise. Let
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C = {c1, c2, . . . , ck} be the set of conditions that member genes of the functional module

required to have similar expression. For every pair of genes gi and gj in VH and for any l-th

condition (l ∈ C), we have Bil = Bjl.

The problem of discovering densely connected homogeneous modules is intractable.

However with a certain density threshold and the sufficient number of conditions k, the

number of densely connected homogeneous functional modules is not abundant. Thus, the

authors designed an efficient enumeration algorithm to discover all the proposed functional

modules. This algorithm is similar to the one discussed in Section 3.2.2. And it is based on

the observation that a densely connected homogeneous functional module of size k contains

a densely connected homogeneous functional module of size k − 1. The authors derived a

bottom up search approach: starting where each module has only one node, extending module

by one node at a time while maintain connectivity, density and homogeneity constraints.

3.3.6 Vandin et al.

Vandin et al. [210] proposed a computational method to integrate genomic variation profiles

and PPI network data. Specifically, the authors made use of somatic mutation data from

from Cancer Genome Atlas and lung adenocarcinoma samples from the Tumor Sequencing

Project. It is known that two tumors rarely have the same complement of mutations in cancer

and most cancer genes are mutated at much lower frequencies. The observed frequency of

mutation is an inadequate measure of the importance of a gene. However, most previously

pathway analyses are using the frequencies.

The goal is to recover subnetworks that harbour a significant number of mutations

compared to random subnetworks from PPI networks. A subnetwork or a subset of genes is

mutated in (covers) a patient if the patient has a somatic mutation in one of the member

genes. The computational problem is to uncover a connected subnetwork with an upper

limit on the number of vertices that cover the most number of patients. The authors could

recover known pathways such as p53 pathway that are previously known to be important in

these cancer data sets.

3.3.7 Kim et al.

Kim et al. [110] proposed a computational approach that aims to extract driver mutations

and deregulated pathways from Glioblastoma multiforme (GBM) patients. They integrated
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multi omics data including copy number, gene expression profiles and protein interaction

networks. Assuming that disease-associated gene expression changes are caused by genomic

alterations, they uncover potential paths from copy number altered regions to differentially

expressed genes through a network of molecular interactions.

Similar to the approach by Ulitsky et al. [204], a gene g covers a sample if it is differentially

expressed in that sample. At first, the authors look for a set S of minimum number of

genes such that each sample is covered with at least a pre-defined number of times. Based

on correlation with the expression profiles in S, only genes with significant copy number

alteration and high correlation scores remain. For each remaining gene g, they assess whether

there is a path in protein interaction network from g to other genes in S. The weights of

the edges in the PPI network are calculated as correlation scores of gene expression profiles.

3.3.8 Sharan et al.

Sharan et al. [172] proposed a computational approach for constructing signalling pathways

from phosphoproteomics data. Phosphoproteomics data could provide additional and better

information compared to gene expression data. By reporting phosphorylation status of

proteins using mass spectrometry, they are could be more reliable as a change in phospho-

rylation status usually reflects a change in protein activity. The phosphoproteomics data

can indicate which proteins might be potential drug targets by using the kinase inhibitors.

In this work, the authors tried to construct signalling network models from two datasets

for epidermal growth factor receptor (EGFR) signalling and interleukin 1 (IL-1) signalling

pathways. In both datasets, the cells were stimulated with different ligands and treated with

different inhibitors, the activity (phosphorylation) levels of certain proteins were recorded.

Each vertex (a protein) in G is either active (1) or inactive (0). They also assume that

the state of a vertex u is a boolean function f(u) of the states of its direct predecessors

P (u). They further assume that f(U) is monotone non-decreasing with respect to its input

and regulatory relationships. In more details, given a vertex u and one of its predecessors

v ∈ P (u), the function f(u) is monotone non-decreasing in v (v̄) when v promotes/inhibits

the activity of u. The input data is a set of experiments in which some genes/vertices are

perturbed and the states of some affected vertices are recorded. The computational problem

is to find a boolean function f(u) for each vertex u that fits the data the best.



CHAPTER 3. FUNCTIONAL MODULE DISCOVERY 32

3.3.9 Other Approaches

Most of the earlier approaches on active subnetwork discovery focus on discovering well-

characterized pathways which are active in the considered experiments. For example, gene-set

enrichment analysis (GSEA) [191] takes a set of genes and check out whether genes from

the set are significantly differentially expressed compared to a randomly picked gene set

with the same size. Many other approaches have been developed with improved statistical

procedures [115, 201, 47]. Recent approaches have been developed to consider regulatory

relationships among member genes rather than consider them as a set [44, 198, 212].

Many computational approaches have been improved on the seminal approach by Ideker

et al. [89]. Dittrich et al. [42] designed an exact approach for discovering functional modules.

Specifically, the authors formulated an integer linear program to solve the problem, however,

there is no guarantee that it can run efficiently for a large PPI network like human. Guo

et al. [69] generalized the approach proposed by Ideker et al. [89] on weighted interaction

network. Specifically, they searched for the optimal subnetworks where edges are assigned

to weights equal to correlation scores computed from expression data.

Other groups designed computational methods to uncover functional modules in the

models of signalling pathways [186, 168, 226]. For example, Steffen et al. [186] designed

Netsearch to reconstruct signalling pathways which consists of linear paths that start at any

membrane protein and ending at any DNA-binding protein. Scores of the linear pathways

are computed based on correlation of the member genes. Only top ranked pathways

still remain. Other groups designed computational approaches to discovered signalling

pathways specifically for quantitative trait loci and gene perturbation data [193, 221]. For

example, Yeger-Lotem et al. [221] uncovers signalling pathways from perturbed genes to

affected/differentially expressed genes in a yeast data set.

3.4 Using Labels of Samples

Finally, we will review computational methods for discovering functional modules that

correlate labels of the samples. Unlike the input for the approaches in the previous section,

the samples are supplied with meta data that can potentially divide the samples into different

groups. For example, tumour samples from taken a cancer study usually come with clinical

information such as subtypes of the cancers. Functional modules in which member gene

expression correlates with the subtypes of cancers/diseases could provide a comprehensive
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view of the molecular mechanisms underlying pathology. Such functional modules could be

used as predictors or subnetwork markers for the disease status of the patients.

In recent years, there is an increasing number of prognostic markers of cancers that

have been discovered through genome-wide expression data [64, 3, 208, 156, 217]. In these

studies, each gene is ranked based on its differential expression between subgroups of samples

and top ranked genes are picked. Typical measures for differential expression are t-test

and mean-based fold-change. These approaches are known as single gene marker based

approaches. In breast cancer, single gene marker based approaches [208, 217] have identified

marker sets around 70 genes which are 60-70% accurate for prediction of metastasis of breast

cancer.

Despite these successful results, single gene based approaches suffer from multiple

weaknesses. First, they may only detect the genes with the strongest differentiation whereas

single genes with weaker signals that could be combined to have much better discrimination

scores could be missed. Moreover, single gene based approaches could be very sensitive to

noise and variations in training data, resulting in marker sets which are not reproducible in

another data set. Recent studies have shown that small differences in training data (such

as the changes in ratio of subtypes) may produce very different marker sets. In fact, two

studies on breast cancer [208, 217] that identified around 70 gene signatures only have 3

overlapping genes. However, it is hypothesized that a reproducible marker set should provide

more robust predictive performance which is required for clinical applications [49].

To address these shortcomings, many groups have aimed to identify de novo markers

associated with phenotype by integrating gene expression data and network topology. Here

each marker is called subnetwork marker and its activity is calculated as a function of the

expression of component genes in the subnetwork. In the seminal work, Chuang et al. [31]

introduced the use of all members of a protein-protein interaction (PPI) subnetwork as a

marker for predicting metastasis in breast cancer. Chuang et al. [31] demonstrated that

subnetwork markers are more robust, i.e. their results tend to provide more reproducible

results across different cohorts of patients. Moreover, subnetwork markers seem to provide

better insights into pathways involved in tumor progression.

The input of the considered algorithms here is a biological network, expression/genomic

variation profiles of genes. Expression/genomic variation profile of a gene is measured for all

the samples from a population. The samples here come with meta data that could help us

to categorize them into different groups. The output of all the algorithms is again a list of
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gene sets. The algorithms in this section should utilize the meta data from the samples in

the process of discovering subnetwork markers.

The general strategy for discovering subnetwork markers consists of three major steps:

(1) data integration, (2) search for optimal subnetworks, and (3) marker selection. These

steps are illustrated in 3.2.

Figure 3.2: A general strategy for identifying subnetwork markers: 1) mapping gene
expression profiles to protein products in the PPI network 2) Search for optimal subnetworks
whose gene expression profiles correlate with the labels of the samples 3) Retain the best
subnetworks as predictors. Here we have two groups of tumor samples: sensitive to a
treatment (responder) and resistant to a treatment (non-responder)

In the first step, the gene expression profile and PPI data are integrated by overlaying

each gene in the expression profile onto its corresponding protein in the PPI network. In

this way, an edge is assigned for a pair of genes if there exists an interaction between their

corresponding proteins. Note that only genes with corresponding proteins in the network

are used to identify subnetwork markers in the subsequent steps.

In the second step, a search algorithm is employed to identify subnetworks with activities

that best correlate with the phenotype (such as response to treatment). A subnetwork is a
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set of connected genes extracted from the PPI network, and the activity of a subnetwork

in any sample is calculated as a function of the expression levels of constituent genes of

the subnetwork in that sample. A typically used function is the aggregate one. This

aggregation essentially collapses many gene features into one subnetwork feature that

captures the discriminatory potential of multiple gene markers in a single metagene marker.

For example, if gene A discriminates drug-response in one set of patients and gene B

discriminates drug-response in a second set of patients, then the aggregate activity of these

two genes can potentially discriminate response in both sets of patients. To identify candidate

subnetwork markers, the search algorithm scans the PPI network for subnetworks with

maximal discrimination scores, where the discrimination score is a measure of the association

between subnetwork activity and the phenotype. If a simple greedy search algorithm is used,

it would search in the following manner. To find the optimal subnetwork that includes a

specific gene (seed gene), the algorithm starts by including that gene in the subnetwork.

Then, it iteratively adds neighbouring genes from the PPI network into the subnetwork

if they improve the discrimination score. If no additional gene can be added to improve

the discrimination score, then that subnetwork is considered the optimally discriminative

subnetwork containing the seed gene and is subsequently added to the list of candidate

subnetwork markers. The search algorithm is applied repeatedly, using each node in the PPI

network as the seed gene, in order to return the list of all candidate subnetwork markers.

In the third and final step, all the candidate subnetwork markers returned by the search

algorithm are ranked based on their discrimination scores and the top k subnetworks are

selected as predictors of phenotype. The activity levels of the selected subnetwork markers

are used to train a classifier for predicting on new samples.

3.4.1 Chuang et al.

Chuang et al. [31] were one of the first that proposed a computational approach to discover

connected subnetworks whose member gene expression is correlated with phenotypes. For

each gene gi in a sample, it is associated with a z(gi) score that quantifies its expression

change. For each subnetwork S with k vertices, we define the subnetwork activity as

z(S) =
∑
i

z(gi)√
k

The goal here is find a connected subnetwork that is the best correlated with the
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phenotype variable C. The correlation measure is Mutual Information (MI). Unfortunately,

this problem is NP-Hard. The authors designed a greedy algorithm to search for optimal

subnetworks by extending one node at a time. The authors assessed the significance of

the returned subnetworks by applying the same greedy algorithms on the datasets where

the labels of the samples are swapped. For each subnetwork discovered from the original

network, a p value is computed from the distribution of MI scores of subnetworks discovered

when the sample labels are swapped. The insignificant subnetworks are then discarded. The

author applied their algorithm to predict metastasis status of breast cancer patients. The

authors shown that the subnetwork markers have better predictive performance than top

ranked genes using t-test. The identified subnetworks are significantly more reproducible

between different breast cancer cohorts than individual marker genes selected without

network information and provide better models of the molecular mechanisms underlying

metastasis.

3.4.2 Ulitsky et al.

Ulitsky et al. [205] proposed a computational method that detects differentially expressed

subnetworks from case/control gene expression data and PPI networks. A gene is differentially

expressed or covers a case sample if it is over/under expressed based on a statistical significant

score from the distribution of the gene expression in the control samples. A subnetwork

covers a sample if a member gene covers that sample. The computational problem is to

find the smallest subnetwork such that it covers all the case samples and each sample is

covered with at least a predefined number of times. Even though the problem is NP-Hard,

the authors could provide some basic approximation algorithms. The authors applied their

algorithms on case/control gene expression data from Huntington disease.

3.4.3 Hwang et al.

Hwang et al. [87] proposed a novel approach for discovering network based markers by

modelling similarity among samples in the training data using hyperedges in a hypergraph.

Vertices are samples and an hyperedge is present among some samples if a gene g is either up-

regulated or down-regulated in that set of samples. Labelled (unlabelled) samples/vertices

are from training (testing) data respectively. The goal is to assign a label for an unla-

belled sample/vertex and a weight to each gene/hyperedge to maintain the similarities
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among vertices that have edges in the hypergraph and the PPI network. The weight of a

gene/hyperedge reflects how informative the gene in predict samples in the training data.

The authors formulated a quadratic program to optimize the following criteria: 1) penalizing

inconsistent labelling of samples that have a lot of edges in the hypergraph; 2) penalizing

inconsistent labelling of samples with known outcomes 3) penalizing inconsistent weighting

of pairs of genes that form edges in the PPI network.

The authors applied their algorithm on two breast cancer expression datasets to predict

metastasis status of breast tumors. Without looking for connected or densely connected

subnetworks, subnetworks formed by their genes are significantly enriched with biological

pathways are closely linked with breast cancer. Note that this approach can also make use

of samples from the testing set. Thus, it could utilize the interrelations among samples in

the testing set through the use of hypergraph. So it probably results in better predictive

performance.

3.4.4 Chowhudry et al.

Chowhudry et al. [30] proposed an interesting approach to discover subnetwork markers

from PPI networks based on information theory. For the purpose of illustrations, I present a

simplified model of this approach. Gene expression data from the case samples are discretized

into two states (1: differentially expressed, 0: otherwise). Each subnetwork H of k vertices is

associated with 2k network states and States(H) be the set of states of H. For each network

state S, its probability/frequency f(S) is same as the number of case samples in which

member genes exhibit the same state. If the expression of genes from a subnetwork form a

frequent state i.e. many case/control samples are associated with it, the subnetwork could

be used as a predictor. The higher the frequency is the lower the entropy of a subnetwork is.

Formally, the entropy of the subnetwork S is

f(H) =
∑

S∈States(H)

f(S)log(f(S))

The goal is to look for a connected subnetwork with minimum entropy. This problem

is also NP-Hard, thus, the authors provided a branch and bound approach to search for

the subnetwork with the minimum score. The subnetwork activity is calculated as a

linear combination of expression levels of its component genes. The weights of the linear

combination is learnt through training a neural network model. They applied their algorithms

on colorectal cancer data sets to predict the disease progression.
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3.4.5 Fortney et al.

Fortney et. al [55] designed a novel method based on density for discovering subnetwork

markers to predict the chronological ages of C. elegans. The density definition is quite different

from the ones introduced earlier. The density of a subnetwork is inversely proportional to the

number edges among the genes from the subnetworks and genes outside of the subnetworks

(external weight) and proportional to the number of edges among the member genes (internal

weight). Thus, they defined the external weight (wext) and internal weight (wint) of a

subnetwork as follows:

wext(H) =
∑

g∈H,g′ /∈H,gg′∈E

w(gg′)

wint(H) =
∑

g,g′∈H,gg′∈E
w(gg′) (3.1)

Thus, the density of H is w2
int(H)/(1+w2

ext(H)). The authors made use of the functional

association network WormNet [116]. In fact, it is a genetic interaction network that was

constructed for around 80% of the known/predicted genes. It is also a weighted network

where the weights of the edges are computed using Spearman correlation from gene expression

profiles. Subnetwork activity is calculated as the average expression of the member genes.

And the correlation between the subnetwork activity and phenotype is also calculated using

Spearman correlation. The authors used a simple greedy algorithm to discover their defined

subnetwork markers. The authors demonstrated that their subnetwork markers could be a

relative good predictors for aging process and the subnetworks are enriched for many genes

known longevity genes. The authors also made used of their subnetwork markers to annotate

genes without annotations.

3.4.6 Other Approaches

Earlier approaches for discovering subnetwork markers utilized curated pathway databases

or groups of genes annotated with same Gene Ontology (GO) terms. For example, Guo et

al. [68] ranked groups of genes annotated with the same GO terms for their correlation with

different subtypes of cancer cell lines. They also examined two possibilities of estimating the

activity of a group of genes as the mean or median of the expression levels of constituent

genes. Bild et al. [18] proposed to take first principle component as pathway/network
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activity instead of taking average expression of members like previous approaches. They

have shown that pathway activities could be used as predictors for patient subgroups, and

sensitivity to therapeutic compounds. Later, Lee et al. [114] examined various methods

for combing expression profiles of a set of genes into a single value: average or median as

in [68], first principle component as in [18], and divided by square root of the number of

genes as in [31]. If pathway/subnetwork activity is estimated as in the seminal work by

Chuang et al. [31], it seems to yield the best predictive performance. Teschendorff et al.

[200] discovered decomposed known pathways into subnetworks in which member genes have

similar expression profiles. Then they ranked the subnetworks based on their correlation

(Penalized Cox regression) with the phenotype.

Similar to MATISSE that was discussed earlier, Su et al. [190] proposed a greedy

algorithm to discover a connected subnetwork whose combined activity is correlated with

the phenotype and member genes have high correlations in their expression profiles. Note

that in this approach, subnetwork activity is defined as linear combination of expression of

member genes. Taylor et al. [199] proposed an interesting approach for discovering network

based markers based on hubs in the interaction networks. They have shown that the average

Pearson correlation of the expression of a hub protein and its interacting partners can be

used to reliably predict survival of breast cancer patients. Zhu et al. [228] designed a support

vector machine approach that incorporates protein interaction information on expression

data sets related to the Parkinson’s disease and breast cancer. The authors adds an extra

penalty term into the objective function of the quadratic program to enforce that genes form

edges in PPI networks should be taken/leaved out together.

Recent approaches on subnetwork marker discovery have integrated genomic variation

with/without expression profiles with PPI networks. Chen et al. [28] proposed an approach

that first discovers the frequently altered copy number genes and subnetwork markers rooted

at these genes in PPI networks for predicting survival time in ovarian cancer. Vandin et

al. [209] also integrated somatic mutation and copy number data to discover connected

subnetworks that are correlated with the survival time in ovarian cancer.



Chapter 4

Confidence-Scored Network Motif

Counting

A current major issue in evolutionary systems biology is to reliably quantify both organismic

complexity and evolutionary diversity from a systemic point of view. While currently

available biomolecular networks provide a data basis, the assessment of network similarity

has remained both biologically and computationally challenging. Since currently available

network data is still incomplete, simple edge statistics, for example, do not apply. Moreover,

recent research has revealed that many biomolecular networks share global topological

features which are robust to missing edges, which rules out many more straightforward

approaches to the topic (see e.g. [84] for a related study on global features such as degree

distribution, k-hop reachability, betweenness and closeness). On the more sophisticated

end of the scale of such approaches would be attempts to perform and appropriately score

alignments of the collection of all systemic subunits of two organisms. However, the

development of workable scoring schemes in combination with related algorithms comes with

a variety of obvious, yet unresolved, both biological and computational issues. Clearly, any

such scoring schemes would already establish some form of condensed, systemic evolutionary

truth by themselves.

This explains why recent approaches focused on monitoring differences between biomolec-

ular networks in terms of local structures, which likely reflect biological arrangements such

as functional subunits. A seminal study which reported that statistically overrepresented

graphlets, i.e. small subnetworks, are likely to encode pathway fragments and/or similar

40
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functional cellular building blocks [134] sparked more interest in the topic. In the meantime,

to discover and to count biomolecular network motifs has become a thriving area of research

which poses some intriguing algorithmic problems. As is summarized in the comprehensive

review [32], such approaches are supported by various arguments.

As discussed in the earlier chapter, most of the previous works focused on determining

the number of all possible ‘‘induced’’ subgraphs in a PPI network, which already is a very

challenging task. Recently developed algorithms improved on this by counting induced

subgraphs of size up to k = 6 [84] and k = 7 [67]. However, the running time of these

techniques all increase exponentially with k. To count subgraphs of size k ≥ 8 required novel

algorithmic tools. A substantial advance was subsequently provided in [4] which introduced

the ‘‘color coding’’ technique for counting non-induced occurrences of subgraph topologies in

the form of bounded treewidth subgraphs, which includes trees as the most obvious special

case. Counting non-induced occurrences of network motifs is not only challenging but also

quite desirable since non-induced patterns are often correlated to induced occurrences of

denser patterns which, in turn, often reflect functional cellular building blocks, as is widely

established (e.g. [227]).

While these studies successfully revealed differences between PPI networks of uni- and

multicellular organisms, a binary edge has remained a notoriously noisy datum. However,

none of the studies considered PPI networks with weighted edges where edge weights reflect

the confidence that the interactions are of cellular relevance instead of being experimental

artifacts. Weighted network data have recently become available and have already been

employed for other purposes (see e.g. [206] and the references therein for a list of weighted

network data sources). One of the main reasons for the lack of network motif studies on

such data might be that to exhaustively mine biomolecular networks with probabilistic edge

weights poses novel computational challenges.

In [38] and this chapter, we show how to apply the ‘‘color coding’’ technique to networks

with arbitrary edge weights and two different scoring schemes for weighted subgraphs. Edge

weights are supposed to reflect our confidence in the interactions, as provided for instance in

the STRING database, and we will apply a scoring scheme which reflects our expectation1

in entire subgraphs to be present or not. STRING is a major resource for assessments of

protein interactions and/or associations predicted by large-scale experimental data (in the

1Expectation is meant to be in the very sense of probability theory, by interpreting confidence scores as
probabilities
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broad sense, including e.g. literature data) of various types (see [93] for the latest issue of

STRING and the references therein for earlier versions). Here, we focus on physical protein

interactions in order to follow up on the recent discussions. Clearly, statistics on weighted

PPI networks will establish substantial improvements over studies on binary network data

in terms of statistical significance and robustness.

We compute the expected number of non-induced occurrences (E-values) of tree motifs

G′ (‘‘treelets’’) with k vertices in a network G with n vertices in time polynomial in n,

provided k = O(log n). Note that, in binary edge weight graphs, computation of the number

of expected occurrences and counting occurrences is equivalent when interpreting an edge

to be an interaction occurring with probability 1. This provides the basis on which we can

benchmark our results against previous studies. We use our algorithm to obtain normalized

treelet distributions, that is the sum of the weights of non-induced occurrences of different

tree topologies of size k = 8, 92 normalized by the total weight of all non-induced trees of

size 8, 9 for weighted PPI networks. We analyze the prokaryotic, unicellular organisms

(E.coli, H.pylori), B. subtilis and T. pallidum, which are all quite similar, the eukaryotic

unicellular organism S.cerevisiae (Yeast), and a multicellular organism (C.elegans). Beyond

the previously reported similarities among the prokaryotic organisms, we were able to

also reveal strong differences between Yeast and the prokaryotes. As before, statistics

on C.elegans are still different from all other ones. As a last point, we demonstrate that

our weighted treelet distributions are robust relative to reasonable amounts of network

sparsification as suggested by [74].

To summarize, we present a novel randomized approximation algorithm to count the

weight of non-induced occurrences of a tree T with k vertices in a weighted-edge network G

with n vertices in time polynomial with n, provided k = O(log n) for a given error probability

and an approximation ratio. We prove that resulting weighted treelet distributions are

robust and sensitive measures of PPI network similarity. Our experiments then confirm,

for the first time on a statistically reliable PPI network data, that uni- and multicellular

organisms are different on an elevated systemic cellular level. Moreover, for the first time,

we report such differences also between pro- and eukaryotes.

2We recall that there are 23 resp. 47 different tree topologies on 8 resp. 9 nodes, see e.g. [142].
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Figure 4.1: An example of counting the total weight of non-induced subgraphs in a given
network G which are isomorphic to a query tree T .

4.1 Problem Definition

In the following, let G = (V,E) be a graph on n vertices and w : E → R be an edge-weight

function. Let T be a tree on k vertices where, in the following, k = O(log n). We define

S(G,T ) to be the set of non-induced subgraphs of G which are isomorphic to T and let

E(H) to be the edges of such a subgraph H ∈ S. We extend w to weight functions on the

members of S(G,T ) by either defining

w(H) =
∏

e∈E(H)

w(e) or w(H) =
∑

e∈E(H)

w(e) (4.1)

Note that if w(e) is interpreted as the probability that e is indeed present in G then, assuming

independence between the edges, w(H) of the first case is just the probability that H is

present in G. In the following, we will focus on the first case. Proofs for the second choice

of w(H) can be easily obtained, mutatis mutandis, after having replaced multiplication by

addition in the definition of w(H). Finally, let w(G,T ) =
∑

H∈S(G,T )w(H) be the total

weight of non-induced occurrences of T in G. We would like to provide reliable estimates

ŵ(G,T ) on w(G,T ). Note that w(G,T ) is the number of expected occurrences of T in G

due to the linearity of expectation.

Consider Fig. 4.1. Here, T is a star-like tree on 4 vertices. There are two subgraphs H

and H ′ in G which are isomorphic to T ; therefore, w(G,T ) = w(H) + w(H ′). In the case

that the weight of a subgraph in G is calculated as the product of the weights of its edges,

we have w(G,T ) = w(H) + w(H ′) = 0.5× 0.4× 0.3 + 0.7× 0.8× 0.9. In the other case, we

have w(G,T ) = w(H) + w(H ′) = (0.5 + 0.4 + 0.3) + (0.7 + 0.8 + 0.9).
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4.2 Computational Methods

In the following, in order to estimate w(G,T ) by color coding, we will randomly assign k

colors to the vertices of G where k is the size of T . Therefore, we introduce the notations

[k] = {1, ..., k} for the set of k colors and S(G,T, [k]) for the set of all non-induced subgraphs

of G which are colorful in terms of [k], that is occurrences of T where each vertex has been

assigned to a different color.

The following algorithm ApproxWeightedOccur, when given an approximation factor

ε and an error probability δ, computes an estimate ŵ(G,T ) of w(G,T ) efficiently in n and

k, given that k = O(log n) such that with probability 1 − 2δ, ŵ(G,T ) lies in the range

[(1− ε)w(G,T ), (1 + ε)w(G,T )].

Algorithm 1 ApproxWeightedOccurr (G, T , ε, δ)

G = (V,E), k ← |V (T )|, t← log(1/δ), p← k!/kk, s← 4/(ε2p)
for i = 1 to t do
Yi ← 0
for j = 1 to s do

Color each vertex of G independently and uniformly at random with one of k colors
X ← total weight of colorful subgraphs of G which are isomorphic to T
Yi ← Yi +X

end for
Yi ← Yi/s

end for
Z ← median of Y1 . . . Yt
Return Z/p as the estimate ŵ(G,T ) of w(G,T )

The following lemmas give rise to a theorem that supports our claims from above.

Lemma 4.1. The algorithm ApproxWeightedOccurr (G, T , ε, δ) returns ŵ(G,T ) such

that with probability at least 1− 2δ we have (1− ε)w(G,T ) ≤ ŵ(G,T ) ≤ (1 + ε)w(G,T )

Proof. Consider we are at starting the j-th iteration of the second for loop. Since each vertex

in G is colored independently and uniformly at random with one of k colors, the probability

p that the vertices of a subgraph H of size k are assigned to k different colors (H is colorful)

evaluates as p = k!/kk. Let xH be the indicator random variable whose value is w(H) if H

is colorful in a random coloring of G and 0 otherwise. We define X =
∑

H∈S(G,T ) xH , which

is the random variable that counts the total weight of colorful subgraphs of G which are
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isomorphic to T . The expected value of X is

E(X) = E(
∑

H∈S(G,T )

xH) =
∑

H∈S(G,T )

E(xH) =
∑
H∈S

w(H)p = w(G,T )p (4.2)

In order to get a bound on the variance V ar(X) of X, we estimate V ar(xH) and

Cov(xH , xH′) for H,H ′ ∈ S(G,T ) as follows. We first observe that V ar(xH) = E(x2H) −
E2(xH) ≤ E(x2H) = [w(H)]2p. Moreover, the probability that both H and H ′ are colorful is

at most p which implies

Cov(xH , xH′) = E(xHxH′)− E(xH)E(xH′) ≤ E(xHxH′) ≤ w(H)w(H ′)p.

Therefore, the variance of X satisfies

V ar(X) =
∑
H∈S

V ar(xH) +
∑

H 6=H′∈S
Cov(xH , xH′)

≤
∑
H∈S

w2(H)p+
∑

H 6=H′∈S
w(H)w(H ′)p = (

∑
H∈S

w(H))2p = w2(G,T )p.
(4.3)

Since Yi is the average of s independent copies of random variable X, we have E(Y ) =

E(X) = w(G,T )p and V ar(Yi) = V ar(X)/s ≤ w2(G,T )p/s. Therefore, the probability that

Y is smaller than or bigger than its expectation by at least εw(G,T )p due to s = 4
ε2p

is at

most

P (|Yi − w(G,T )p| ≥ εw(G,T )p) ≤ w(G,T )2p

ε2w(G,T )2p2s
=

1

ε2ps
=

1

4
. (4.4)

Thus, with constant error probability, Yi/p is an ε-approximation of w(G,T ). To obtain

error probability 1− 2δ, we compute t independent samples of Yi (using the first for loop)

and replace Yi/p by Z/p where Z is the median of Yi’s. The probability that Z is less than

(1 − ε)w(G,T )p is the probability that at least half of the copies of Yi computed are less

than Z, which is at most
(
t
t/2

)
4−t ≤ 2−t. Similarly we can estimate the probability that Z

is bigger than (1 + ε)w(G,T )p. Therefore, if t = log(1/δ) then with probability 1− 2δ the

value of ô will lie in [(1− ε)w(G,T ), (1 + ε)w(G,T )]. � �

We still need to argue that given the graph G where each vertex is colored with one of k

colors, we can compute the total weight of all non-induced colorful occurrences w(G,T, [k])

of T in G which refers to the variable X in the second for loop efficiently.

Lemma 4.2. Given a graph G where each vertex has one of k colors, we can estimate

w(G,T, [k]) in time O(|E| · 2O(k)).
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Figure 4.2: Counting the total weight of colorful non-induced occurrences of T in G by
counting the total weight of colorful non-induced occurrences of subtrees Tρ′ and Tρ′′ in G.

Proof. We pick a vertex ρ of T and consider Tρ to be a rooted version of the query tree T

with designated root ρ. We will compute w(G,Tρ, [k]) recursively in terms of subtrees of Tρ;

so let T ′ρ′ be any subtree T ′ of T with designated root ρ′. Let C ⊂ [k] and S(G,T ′ρ′ , v, C) be

the set of all non-induced occurrences of T ′ρ′ in G which are rooted at v and colorful with

colors from C and w(v, T ′ρ′ , v, C) =
∑

H∈S(G,T ′
ρ′ ,v,C)w(H) to be the total weight of all such

occurrences. We observe that

w(G,T, [k]) =
1

q

∑
v∈G

w(G,Tρ, v, [k]) (4.5)

where q is equal to one plus the number of vertices % in T for which there is an automorphism

that ρ is mapped to %. For example, if T in Figure 4.2 is rooted at ρ′′, q is equal to 3.

The key observation is that we can compute w(G,Tρ, v, [k]) or the total weight of colorful

non-induced subtrees rooted at v in G which are isomorphic to Tρ in terms of total weight

of colorful non-induced occurrences of subtrees of Tρ in G. Let T ′ρ′ be an arbitrary rooted

subtree of Tρ. We decompose T ′ρ′ into two smaller subtrees and count the total weight of

colorful non-induced occurrences of these subtrees in G as follows. We choose a child ρ′′ of ρ′

and, by removing the edge between ρ′ and ρ′′ to decompose T ′ρ′ into two rooted subtrees T 1
ρ′

(that does not contain ρ′′) and T 2
ρ′′ (that does not contain ρ′); see Figure 4.2 for an example.

Analogously, for every neighbor u of v in G, we denote a colorful copy of T 1
ρ′ rooted at v by

H1(v, u) and a colorful copy of T 2
ρ′′ rooted at u by H2(v, u). To obtain a copy H of T ′ρ′ in G

by combining H1(v, u) and H2(v, u), H1(v, u) and H2(v, u) must be colorful for color sets

C1(v, u), C2(v, u) such that C1(v, u) ∩ C2(v, u) = ∅, C1 ∪ C2 = C where the cardinality of C

is the number of vertices of T ′ρ′ . Finally, independent of the choice of u, we have

w(H) = w(H1(v, u))w(H2(v, u))w(vu) (4.6)

To initialize the base case of single-vertex trees T ′ρ′ , we set w(G,T ′ρ′ , v, {i}) = 1 if the color

of v is i; otherwise 0. In general, we have
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w(G,T ′ρ′ , v, C) =
1

d

∑
u∈N(v)

∑
C1∩C2=∅
C1∪C2=C

∑
H1∈S(G,T1

ρ′
,v,C1)

H2∈S(G,T2
ρ′′
,u,C2)

w(H1(v, u))w(H2(v, u))w(vu)

=
1

d

∑
u∈N(v)

∑
C1∩C2=∅
C1∪C2=C

w(G,T 1
ρ′ , v, C1)w(vu)w(G,T 2

ρ′′ , u, C2).

(4.7)

Note that w(H) will, as in the summands, appear exactly d times across the different suitable

choices of color sets C1, C2. For example, H in Fig. 4.2, rooted at v, is a colorful copy of a

star-like rooted tree T with three leaves. There are three different ways by which one can

decompose H into a path of length 2, denoted by H1 and a single node H2, meaning that

d = 3 in this case. Now observe that the weight of H w(H) will appear three times as a

summand in the above summation scheme, according to the three different decompositions

of H. The proof for the case of additive weight schemes proceeds mutatis mutandis, after

having replaced multiplication by addition and adjusted the base case (w(G,T ′ρ′ , v, {i} = 0

regardless of the color of v). Let N(v) be the set of neighbors of v, we have

w(G,T ′ρ′ , v, C)

=
1

d

∑
u∈N(v)

∑
C1∩C2=∅
C1∪C2=C

n2w(G,T 1
ρ′ , v, C1) + n1n2w(vu) + n1w(G,T 2

ρ′′ , u, C2) (4.8)

where n1 = |S(G,T 1
ρ′ , v, C1)|, n2 = |S(G,T 2

ρ′′ , u, C2)| are the cardinalities of the respective

sets of colorful copies of T 1
ρ′ resp. T 2

ρ′′ rooted at v resp. u which can be computed efficiently

[4] and parallely with w(G,T 1
ρ′ , v, C1) and w(G,T 2

ρ′′ , u, C2).

Note that each w(G,T ′ρ′ , v, C) can be computed in O(deg(v) · 2O(k)) time where deg(v) is

the degree of v. Thus, the computation of the total weight of colorful non-induced occurrences

of T in G is in O(|E|2O(k)) time. �

Theorem 4.1. The algorithm ApproxWeightedOccurr (G, T , ε, δ) estimates the total

weight of non-induced occurrences of a tree T in G with additive error ε and with probability

at least 1− 2δ and runs in time O(|E| · 2O(k) · log(1/δ) · 1
ε2

) where |E| is the number of edges

in the input network.

Proof. Now we only need to consider its running time. Notice that we need to repeat the color

coding step and counting step s · t times and each iteration runs in time O(|E| · 2O(k)) where
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|E| is the number of edges in the input network. Thus, since 1/p = kk/k! = O(ek) = O(2O(k)),

the asymptotic running time of our algorithm evaluates as

O(s · t · |E| · 2O(k)) = O(|E| · 2O(k) · log(1/δ) · 1

ε2p
) = O(|E| · 2O(k) log(1/δ) · 1

ε2
). (4.9)

�

4.3 Experimental Results

4.3.1 Data and Implementation

Weighted PPI Networks We downloaded PPI networks with confidence scores from

the STRING database, version 8.0 [93] for the prokaryotic, unicellular organisms E.coli,

H.pylori, B.subtilis, T. pallidum, the eukaryotic, unicellular organism S.cerevisiae (Yeast)

and the eukaryotic, multicellular organism C.elegans. As mentioned above, edges are assigned

to weights reflecting confidence scores which can be interpreted as probabilities that the

corresponding interactions are not experimental artifacts. See Table 4.1 for some basic

statistics about these networks.

Table 4.1: Number of vertices, edges, in the studied PPI networks.

E.coli H.pylori B. subtilis T. pallidum S.cerevisiae C.elegans

Vertices 2482 1019 939 398 5913 5353

Edges 22476 9274 9184 4198 207075 43100

Other Global Properties of Confidence-Scored PPI Networks Two of the most

commonly studied properties to measure the global structure of PPI networks are degree

distributions and clustering coefficient distributions. First we extend the concepts of degree

and clustering coefficient distributions to confidence-scored PPI networks; then we compare

these weighted degree and clustering cofficient distributions of the studied species. For any

node v in a confidence-scored PPI network G, let N(v) be the set of vertices that are adjacent

to v in G. We denote deg(v) be expected degree of node v i.e. deg(v) =
∑

u∈N(v)w(uv) where

w(uv) is the confidence score of the edge uv. Let P (k) be the fraction of the number nodes

that have expected degree greater than or equal to k. Since we would like to compare PPI

networks with differences in the number of nodes and edges, we obtain P ′(k) be the fraction
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(a) Weighted cumulative degree distributions
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(b) Weighted cumulative clustering coefficient distributions

Figure 4.3: Weighted cumulative degree distributions (top row) and weighted cumulative
clustering coefficient distributions (bottom row) of the prokaryotes H.pylori, E.coli, B.subtilis,
T. pallidum, S.cervisiae (Yeast) and C.elegans PPI networks (top row)
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of the number nodes that have expected degree greater than or equal to k times maximum

degree in the network where 0 ≤ k ≤ 1. Thus, the weighted cumulative distribution of a

PPI network G is the distribution of P ′(k) for 0 ≤ k ≤ 1. To obtain a robust weighted

cumulative degree distribution, we first remove top one percent of vertices with highest

degrees.

Similarly for any node v with |N(v)| ≥ 2 in a PPI network G, let C(v) = {us|u, s ∈
N(v), us ∈ E(G)}. We denote c(v) be expected clustering coefficient of v:

c(v) =
∑

e∈C(v)

2 ∗ w(e)

|N(v)| ∗ (|N(v)| − 1)

In the case that |N(v)| ≤ 1, we set c(v) = 0. Let H(k) be the fraction of the number

nodes that have expected clustering coefficient greater than or equal to k where 0 ≤ k ≤ 1.

Thus, the weighted cumulative clustering coefficient distribution of a PPI network G is the

distribution of H(k) for 0 ≤ k ≤ 1.

To compare global network properties of unicellular prokaryotic organisms E.coli, H.pylori,

B.subtilis, T. pallidum, the unicellular eukaryotic organism S.cerevisiae (Yeast) and the

multicellular eukaryotic organism C.elegans, we obtained the weighted cumulative degree

distributions and clustering coefficient distributions Figure 4.3 of these species.

As seen from the figures, the weighted cumulative distributions of degree and clustering

coefficient of different species especially unicellular prokaryotic organisms and multicellular

eukaryotic organism C.elegans are quite similar. Eventhough the distributions of Yeast are

quite different from ones of unicellular prokaryotic organisms, they are pretty much similar

in their shapes. These motivate us to study local network properties of these species in order

to compare them.

Query Tree Topologies There are 23 and 47 possible tree topologies with 8 and 9 nodes

respectively. We obtained the list of treelets from the Combinatorial Object Server [142].

Here we give the lists of all tree topologies with 8 vertices in Figure 4.4 and with 9 vertices

in Figure 4.5. Note that the treelets are enumerated from 1 in these figures while they are

enumerated from 0 in the normalized weighted treelet distributions.

Implementation / Choice of Parameters We implemented our algorithm Approx-

WeightOccur with the multiplicative weight scheme such that the weight of a query tree

can be interpreted as its probability to be present in the network, as aforementioned. We



CHAPTER 4. CONFIDENCE-SCORED NETWORK MOTIF COUNTING 51

9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

1 7 1 8 1 9 2 0 2 1 2 2 2 3

1 2 3 4 5 6 7 8

Figure 4.4: List of treelets with 8 vertices

1 2 3 4 5 6 7 8

2 4

9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2

3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7

Figure 4.5: List of treelets with 9 vertices

set ε = 0.01 as the approximation ratio and δ = 0.001 as the error probability. Then we

computed expected numbers of occurrences of all query trees of size 8 and 9 for each of

the networks described above. By normalizing the occurrences of the different query trees

of size 8 resp.9 over the 23 resp. 47 different query trees, we obtained size 8 resp. size 9

treelet distributions which we refer to as normalized weighted treelet distributions. The

idea behind normalizing expected occurrences is for comparing PPI networks with different

number of nodes and edges and to increase robustness with respect to missing data which

still is a considerable issue in PPI network studies. We will demonstrate the robustness by

an approved series of experiments [74] in the subsequent subsection 4.3.2. Experiments were

performed on a Sun Fire X4600 Server with 64GB RAM and 8 dual AMD Opteron CPUs

with 2.6 Ghz speed each.

4.3.2 Robustness Analysis

In order to assess the reliability of the normalized weighted treelet distributions as a measure

of weighted PPI network similarity one needs to ensure that they are robust w.r.t. small

alterations to the network. This is motivated by the fact that currently available PPI data

is still rather noisy, containing significant amounts of both false positive and false negative

edges. In this section, we evaluate the robustness of normalized weighted treelet distributions

meaning that minor changes in the weighted PPI networks do not result in drastic changes

in their normalized weighted treelet distributions.

Therefore, we used the random sparsification method which was proposed in [74] and was
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applied in earlier studies [4]. The method iteratively sparsifies networks by removing vertices

and edges in a sampling procedure. This is based on two parameters, the bait sampling

probability αb and the edge sampling probability αe which refer to sampling vertices and

edges. As in [4], we set αb = 0.7 and αe = 0.7 and shrank the weighted PPI network of Yeast

to five smaller networks accordingly with approximately the same number of nodes and edges.

A comparison of the normalized weighted treelet distributions of the shrunken networks is

displayed in Figure 4.6. As can be seen, the normalized weighted treelet distributions are

very similar to one another which confirms the robustness of the normalized weighted treelet

distributions.
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(a) Treelet distribution of size 8
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Figure 4.6: Normalized weighted treelet distributions of of five networks (a) size 8, (b) size
9 generated from the S.cervisiae Yeast PPI network with both the bait and edge sampling
probability equal to 0.7.

4.3.3 Comparison of PPI Networks

In order to be able to appropriately benchmark our results against previous findings we

considered the same organisms that were examined in [4]. We also considered the two

prokaryotic organisms B.subtilis (a Gram-negative bacterium commonly found in soil) and

T.pallidum (a Gram-negative pathogen giving rise to congenital syphilis). The corresponding

weighted treelet distributions are displayed in Figure 4.7. The upper row of figures shows

that the treelet distributions of the prokaryotic organisms are all similar. This is quite

amazing since the weighted PPI networks have been determined in experiments which were

independent of one another and without the integration of cross-species associations [93].
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As can be seen in the bottom row of Figure 4.7, the treelet distributions of the Yeast PPI

network is quite different from the ones of the prokaryotic organisms, which had not been

observed in the boolean networks used in [4]. Still, there are obvious differences between the

unicellular organisms and C.elegans, the multicellular model organism under consideration.

It might be interesting to note that the greatest differences occur for the expected numbers

of occurrences of tree topologies 23 resp. 47, which are the stars with 8 resp. 9 nodes.
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(a) Treelet distribution of size 8
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Figure 4.7: Normalized weighted treelet distributions of the prokaryotes H.pylori, E.coli,
B.subtilis, T. pallidum PPI networks (top row) and of the prokaryotes H.pylori, E.coli,
B.subtilis, T. pallidum, S.cervisiae (Yeast) and C.elegans PPI networks (bottom row)



Chapter 5

Subnetwork Marker Discovery by

Density-Constrained Biclustering

Inference of subnetwork markers comes with most demanding computational and combi-

natorial challenges due to the tremendous number of plausible subnetwork patterns to be

examined. Here we aim at solving a combinatorial problem which particularly addresses

that the same cancer can come in many different subtypes and stages of progression which

cannot be necessarily distinguished by visual inspection (e.g. [162]). Namely, we address that

pathways which are dysregulated in cancer can show in many, but not all cancer patients.

This reflects that cancer is a most diverse disease which, nonetheless, can be classified---there

are phenomena which are common to many (but not necessarily all) different specimens.

In [37] and this chapter, we present a computational strategy to solve this combinatorial

search problem and show that applying it results in exhaustive enumeration of subnetwork

biclusters that is combinations of gene and sample clusters where participating genes form

dense, connected subgraphs in a PPI network. Hence our markers can be taken as (fractions

of) pathways which are dysregulated in sufficiently many, but not necessarily all cancer

(subtype) samples. To serve the purposes of a fair benchmarking competition we first perform

cross-platform classification on colon cancer datasets as described in the state-of-the-art

approach of [30] and outperform the prior approaches partly by raising accuracy by a relative

increase of nearly 50%. Second, we perform cross-validation (within the same platform)

experiments on breast cancer as described in [133] and outperform all approaches which

yield universal, platform-independent markers. In both cases, we analyze the subnetworks

54
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associated with our top-ranked markers.

Three things are substantially different:

1. The PPI networks we employ are confidence-scored [93].

2. Our subnetworks need not only be connected, but also need to contain a sufficient

amount of edge weight (= confidence scores).

3. In our case, all genes in a subnetwork need to be dysregulated in a subset of patients

of size at least L, but not necessarily in all patients. In other words, the genes of the

subnetwork and the L cancer samples in which the subnetwork, as a whole, is dysregulated

form a bicluster. See Figure 5.1 for two examples of subnetwork markers and the Problem

Definition section for precise definitions.

The advantage of confidence-scored physical PPI networks is that each detected physical

interaction is rated by the likelihood that the interaction does play a cellular role and is not

merely an experimental artifact. As a consequence, dense connectivity can be interpreted as

that the genes in the subnetwork establish a cellular functional element through physically

interacting with each other which comes from accumulating high confidence scores within the

subnetwork [93]. In fact, many markers we compute are enriched with Gene Ontology terms

whereas this is not as obvious for the previous approaches (see the section Experimental

Results). The third point finally reflects the discussion from above: unlike in the previous

approaches, we would like to have markers apply as an entity for a sufficient percentage but

not necessarily all cancer samples.

5.1 Problem Definition

Let G = (V,E) be a network where the set of nodes V is identified with the genes resp. their

associated proteins and an edge e = uv indicates a potential physical protein-protein

interaction between the proteins associated with u, v ∈ V . We also have a weight function

on the edges

w : E → [0, 1]

where w(e) is the confidence score associated with edge e ∈ E. We recall that w(e)

reflects our degree of belief that the physical protein-protein interaction associated with e

plays a functional cellular role. In order to have gene expression experiments included in our

considerations we have a differential expression label function
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Figure 5.1: Two density constrained biclusters [see the below for the definition of density]
where genes are differentially, either consistently over- (+) or under- (−) expressed in a
subset of size at least 2 of cancer samples. 0 is for no differential expression.

D : V → {+,−, 0}K

which assigns a K-dimensional vector D(v) with entries + (overexpressed in cancer

sample), − (underexpressed in cancer sample) and 0 (not differentially expressed in cancer

sample) to each of the nodes where K is the number of cancer samples in the dataset. We

denote the i-th entry of D(v) by D(v)i such that, for example, D(v)i = + means that gene

v is overexpressed in cancer sample i. We then define:
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• The density θ(G′) of a subnetwork G′ = (V ′, E′) of G is

θ(G′) :=

∑
e∈E′ w(e)(|V ′|

2

) =
2 ·
∑

e∈E′ w(e)

|V ′|(|V ′| − 1)

where
(|V ′|

2

)
is the number of possible edges in G′.

• G′ is called α-dense if

θ(G′) ≥ α

where α ∈ [0, 1].

• An α-dense, connected subnetwork G′ is called α-densely connected.

• A subset of genes V ′ ⊂ V is called a differential L-bicluster if there is a subset

{i1, ..., iL} ⊂ {1, ...,K} such that

D(v)il = ... = D(v)iL ∈ {+,−}

for all v ∈ V ′. That is each gene needs to be consistently differentially either over- or

underexpressed in a subset of samples of size at least L. As an example, see Figure

5.1. There, genes G1, G2, G3, G4 resp. G4, G5, G6, G7 form a differential bicluster with

respect to the samples S1, S2 resp. S2, S3.

• An α-densely connected subnetwork G′ = (V ′, E′) where V ′ forms a differential

L-bicluster is called a α-density constrained L-bicluster.

5.2 Computational Methods

We would like to devise a strategy by which to tractably mine all α-density constrained

L-biclusters. To outline our strategy we define:

• A graph property is called strong antimonotone if in each graph of size n with the

property every induced subgraph of size n− 1 has the property.

• A graph property is called loose antimonotone if in each graph of size n with the

property there is an induced subgraph of size n− 1 with the property.
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Strong antimonotonicity implies loose antimonotonicity. As a simple example consider

graphs where nodes are labeled by either red or blue color. Clearly, the property to have only

red nodes is strong antimonotone: all subgraphs of a red graph are red. As a simple example

for loose antimonotonicity consider paths: clearly, removing either the start or the end

node results in another, shorter path. However, not every node can be removed---removing

internal nodes splits the path. Another loose antimonotone property on red-blue graphs

is that at least half of the nodes are red. Removing blue nodes works while removing red

nodes does not necessarily result in a predominantly red colored graph. We make a few

observations:

• Combining a strong antimonotone with a loose antimonotone results in a loose anti-

monotone property. For example, in red-blue colored graphs, to be a red path is a

loose antimonotone property.

• Combining a loose antimonotone with a loose antimonotone property does not nec-

essarily result in a loose antimonotone property. Consider the property (on red-blue

colored graphs) to be a path with at least half of the nodes being red. To see that this

is not loose antimonotone take a path of length 4 where both start and end node are

colored red whereas the two internal nodes are colored blue. Removal of none of the

nodes results in a predominantly red colored path.

In the following, we will show that α-density is loose antimonotone. Before proving this,

we need a lemma. And in what follows, we denote the necessary notations for proving the

lemma.

We denote G− v as the graph which results from removing the node v from G together

with all incident edges. The diameter diam (G) of a graph G = (V,E,w) is defined as

diam (G) := max
u,v∈V

d(u, v) (5.1)

where d(u, v) ∈ N is the length of the shortest path between u and v in terms of number of

edges to be traveled (independent of edge weight). We also refer to a node v for which there

is u such that d(u, v) = diam (G) as a diameter node.

The following, straightforward lemma is crucial for our main result. Note that an

analogous, more general statement was established before ([136]). The diameter argument

shown here, however, is crucial for the version of the proof displayed here. Therefore, we

display the corresponding alternative proof.
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Lemma 5.1. Let G be a boolean connected graph and v be a diameter node. Then G− v
is connected.

Proof. Let u be such that diam (G) = d(u, v). Consider an arbitrary node u′ 6= v and the

shortest path between u and u′. The assumption that this shortest path leads through v

would yield

d(u, u′) = d(u, v) + d(v, u′) ≥ d(u, v) + 1 = diam (G) + 1 > diam (G). (5.2)

which is a contradiction w.r.t. the definition of the diameter of a graph. Hence in G − v
every node u′ is connected to u which yields that G− v is connected. �

As stated above, the ideas of the lemma are related to the ideas of the proof of the

subsequent theorem. Note that in this theorem the observation that one has to distinguish

between graphs with different diameters establishes the technical novelty in this class of

results. As abovementioned, a full compendium of observations necessary for related theorems

for boolean edge-weight graphs can be looked up in [136].

We are aware that there are also several other alternative proofs, sometimes seemingly

simpler, but as compensation based on strong theorems from graph theory (such as a version

making use of the block tree of a connected graph). We opted to display the following proof

which does not need any stronger results from graph theory. Clearly, this is a matter of

taste.

Theorem 5.1. In every connected, weighted-edge graph G = (V,E,w) where θ(G) = α ≥
1/2 there is a node v ∈ V such that also G− v is connected and θ(G− v) ≥ α.

Proof.

θ(G) =
w(V )

n(n− 1)/2
≥ α ≥ 1/2 (5.3)

translates to

w(V ) ≥ αn(n− 1)/2 ≥ n(n− 1)/4. (5.4)

Assuming that there is a node v ∈ V for which

w(v) ≤ α(n− 1) (5.5)
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yields

θ(G− v) =
w(V )− w(v)

(n− 1)(n− 2)/2

(5.5)

≥ w(V )− α(n− 1)

(n− 1)(n− 2)/2

(5.4)

≥ α(n/2− 1)

(n− 2)/2
= α · n/2− 1

n/2− 1
= α.

(5.6)

Therefore, it suffices to show that there exists a node v in G such that G − v both

is connected and w(v) ≤ α(n − 1). We do this by distinguishing between graphs G with

different diameters.

diam(G) > 2: Let u and u′ be such that diam (G) = d(u, u′). Thanks to lemma 5.1 both

G−u and G−u′ are connected subgraphs. Therefore, it remains to show that w(u) ≤ α(n−1)

or w(u′) ≤ α(n− 1).

We denote by N(u), N(u′) the sets of neighbors of u, u′ in the boolean version Gbool.

The choice of u, u′ (d(u, u′) = diam (G) > 2) yields that u and u′ cannot share a neighbor.

W.l.o.g. let u be the node with less neighbors which implies (G was supposed to be loop-free)

|N(u)| ≤ |V − {u, u
′}|

2
=

1

2
(|V | − 2). (5.7)

Therefore,

w(u) =
∑

v∈N(u)

w(uv)
w(uv)≤1
≤ |N(u)|

(5.7)

≤ |V | − 2

2
≤ α(n − 2) < α(n − 1) (5.8)

which yields that G− u is of the desired quality.

diam(G) = 2: Here, every node u which is not connected to every other node is a diameter

node hence, due to lemma 5.1, G− u is connected for any such u. To find such a node with

w(u) ≤ α(n− 1) would deliver a good candidate to be removed. Therefore, it remains to

treat the case where

w(u) > α(n− 1) >
n− 1

2
(5.9)

for every diameter node u. However, (5.9) translates to that every diameter node u is

connected to more than half of the other nodes. Let u′ be a complementary diameter node

for u (i.e. d(u, u′) = 2) and, w.l.o.g. let u be the node with less neighbors. The assumption

that u and u′ share at most one neighbor would then yield

w(u) ≤ |N(u)| ≤ n− 2

2
(5.10)
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which is a contradiction to (5.9). Hence every two diameter nodes share at least two

neighbors. As a consequence, since every non-diameter node is connected with every other

node, every pair of nodes shares at least two neighbors. [A non-diameter node shares all

neighbors with other non-diameter nodes and at least (n− 1)/2 + 1 with the diameter nodes,

due to (5.9).] Therefore, G− u is connected for all u. It remains to show that there is a node

u such that w(u) ≤ α(n− 1).

However, assuming the contrary yields the contradictory

θ(G) =
2w(G)

n(n− 1)
=

∑
u∈V w(u)

n(n− 1)

(5.9)
>

∑
u∈V α(n− 1)

n(n− 1)

|V |=n
=

α(n− 1)n

n(n− 1)
= α. (5.11)

diam(G) = 1: In this case, G is a clique, which again translates to that one can remove

all nodes u without that G− u is disconnected. Therefore, the proof proceeds completely

analogously to the last part of the case diam (G) = 2. �

In our setting, we obtain the following results where G− v is the subgraph of G which

results from removing v and all edges incident to v:

Theorem 5.2.

1. Every subgraph of a differential bicluster of degree at least L is a differential bicluster

of degree at least L.

2. In every connected, weighted-edge graph G = (V,E,w) where θ(G) = α ≥ 1/2 there is

a node v ∈ V such that G− v is connected and θ(G− v) ≥ α.

3. In every (α,L)-density constrained bicluster G = (V,E) where 0.5 ≤ α ≤ 1.0 there is

a node v ∈ V such that G− v is a α-density constrained L-bicluster.

In other words, theorem 5.2 establishes that to be a differential L-bicluster is strong

antimonotone whereas to be an α-densely connected graph or to be a density constrained

bicluster are both loose antimonotone.

Proof. Strong antimonoticity of differential biclusters is easy. If G is differentially

expressed in L samples then so is any subgraph of G. And we know that dense connectivity

is loose antimonotone. Since (see above) combining a strong antimonotone with a loose

antimonotone property results in a loose antimonotone property, (3) follows immediately

from (1) and (2).
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An Enumeration Algorithm Theorem 5.2 supports a search strategy which is based on

the loose antimonotonicity of density constrained biclusters and is completely analogous

to that of [136] for the case 0.5 ≤ α ≤ 1.0 which was also employed in[35]. This strategy

will yield all α-density constrained L-biclusters U for α ∈ [0.5, 1.0] which are maximal in

the sense that there is no proper α-density constrained L-bicluster which contains U as an

induced subgraph. This strategy applies for all loose antimonotone properties and therefore

applies when mining α-density constrained L-biclusters. Subnetworks are screened in a

breadth-first fashion by starting with subnetworks of size 2 and subsequently neglecting

subnetworks of size n ≥ 3 which do not contain any density constrained bicluster of size

n − 1. Loose antimonotonicity guarantees that subnetworks of size n cannot be density

constrained biclusters if not containing a density constrained bicluster of size n − 1. As

was also demonstrated in [136, 35] this results in a tractable strategy when combining PPI

network with gene expression data. Here, all maximal density constrained biclusters were

computed in runtimes of at most 2− 3 minutes on an ordinary personal computer.

Ranking Procedure The resulting set of all density-constrained biclusters is ranked with

respect to statistical significance. We randomly sampled 105 connected subnetworks and

determined the p-value of a density-constrained L-bicluster G′ as the fraction of randomly

sampled subnetworks H with θ(H) ≥ θ(G′) and H being consistently dysregulated in at least

L samples. We select markers top-down from this p-value based ranking list while discarding

biclusters where more than half of the genes are already contained in previously selected

markers. We furthermore re-ranked our 50 most significantly dense modules by applying

the information-theoretic criteria as described for the approaches which were employed for

benchmarking. See Description of Benchmarking Partners for details.

Classification Process Classification is performed by a support vector machine approach

implementing a linear kernel using Matlab’s svmclassify. For colon cancer vs. healthy

classification, the training data is identical with that used for marker computation (i.e. either

GSE8671 or GSE10950). For colon cancer with vs. without liver metastasis, markers are

computed using GSE8671 or GSE10950 and classification is performed by leave-one-out

cross-validation in GSE6988. This coincides with the procedures described in [30]. For breast

cancer TP53 wildtype vs. mutant markers are computed using GSE3494 and classification

is performed by leave-one-out cross-validation in the same dataset. The breast cancer

classification scheme is the only non-cross-platform experiment. In colon cancer data used



CHAPTER 5. SUBNETWORK MARKER DISCOVERY BY BICLUSTERING 63

for marker computation and classification test data come from two different platforms. For

feature space construction, we choose the best K markers to obtain a feature space of

dimension K. Each sample j is transformed into a K-dimensional vector A(j) ∈ RK where

the entries A(j)k for each marker k are A(j)k :=
∑

v E(v, j)/K where v ranges over all

genes v contained in the subnetwork associated with marker k. In other words, each sample

j becomes a point A(j) in the K-dimensional marker feature space RK .

5.3 Experimental Results

5.3.1 Network Data and Cancer Datasets

Network Data We downloaded the licensed protein-protein interaction network from

the STRING database, version 8.1 [93]. In this version, STRING network consists of 9927

proteins and 62539 edges. Edges have a positive confidence score in case that there is

evidence that the two proteins in question physically interact within a cellular context. We

opted to exclusively treat physical interactions since comparison partners only considered

(ordinary) physical protein-protein interaction networks. Note that their methods do not

allow to make use of edge weights. For these methods unweighted PPI network data as

described in [30] was used.

Colon Cancer Gene Expression Data In analogy to [30]’s study we treated the

microarray datasets with the accession numbers GSE8671, GSE10950 and GSE6988 from the

Gene Expression Omnibus [60] database. GSE8671 contains 8987 gene expression profiles

across 32 prospectively collected adenomas with those of normal mucosa from the same

individuals [163]. GSE10950 contains 18171 gene expression profiles across normal and tumor

pairs [97]. GSE6988 contains 17104 gene expression profiles for 25 normal colorectal mucosa,

27 primary colorectal tumors, 13 normal liver, 27 liver metastasis and 20 primary colorectal

tumors without liver metastasis [109].

Breast Cancer Gene Expression Data We considered the gene expression dataset

GSE3494 treated in [133] along with all available additional information. Experiments

performed in [133] aim at predicting TP53 mutation status, tumor grade and survival

time. Therefore, they first identify platform-specific (Affymetrix U133 A and B) probes as

being correlated with TP53 mutation and estrogen receptor status as well as tumor grade,
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using multivariate linear regression from their own data. Subsequently, they select 32 such

platform-specific probes as being the features which yield best accuracy when performing

cross-validation on their own data. This means that accuracy values cannot be taken as

unbiased results since feature selection is based on the outcome of the cross-validation.

Differential Expression For the colon cancer datasets GSE8671 and GSE10950 we

determine differential expression as follows. We first normalize expression values for each

gene v individually. Let E(v, j) be the resulting normalized expression value for gene v

in sample j. We then determine the top 10% of the values E(v, j) in each sample j and

declare them ‘‘overexpressed’’. In both datasets samples come in pairs cancer vs. healthy.

Let j1 be the cancer and j2 be healthy sample for one patient l. We then put D(v)l = +

resp. D(v)l = − if v is overexpressed in j1, but not in j2 resp. the other way round.

In the breast cancer dataset GSE3494 (see below) we determine a normal distribution for

all values and normalize the entire data accordingly. For an arbitrary sample l let E(v, l) be

the corresponding normalized value. Subsequently, D(v)l = + for a sample l if E(v, l) is

among the top 5% resp. D(v)l = − if E(v, l) is among the lowest 5%.

Description of Benchmarking Partners

The idea which is common to the majority of prior approaches is to aim at inferring genes g

whose gene expression profiles E(g) ∈ RK (where K is the number of samples) share large

mutual information with the phenotype profile P = (1, ..., 1, 2, ..., 2) ∈ {1, 2}K where Pk = 1

if k is a cancer sample and 2 if not (dimensions k are ordered such that cancer tissue samples

come before healthy tissue samples). Mutual information is an information-theoretic concept

which here can be taken as a measure for the similarity of a K-dimensional vector with P .

For groups of genes g1, ..., gN mutual information is determined by using the average gene

expression profile
∑N

i=1E(gi)/
√
N . Correspondingly, single gene markers are computed as

genes g where E(g) achieves maximal mutual information with P regardless of any network

considerations. [31], as the first subnetwork marker approach, greedily collect genes g which

form a connected subnetwork in the PPI network such that the average expression profile

has high mutual information with P . [30] aim at finding groups of genes which have low

network distance where network distance equal to 1 translates to a connected subnetwork.

The algorithm described (NetCover) then finds minimal groups of genes having bounded

network distance such that the group covers the samples. This translates that for each
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sample, one of the genes in the group is dysregulated. A theorem then points out that such

groups achieve good mutual information.

In all of these approaches subnetwork markers are ranked according to the average

mutual information they achieve. Note that the subnetworks produced by [30]’s method are

not necessarily connected. None of the approaches from above follows the idea that certain

subnetworks might be dysregulated in some, but not all samples. In fact, expression levels

of genes in one subnetwork can vary across the patients, individually for each gene while

trying to cover as many patients as possible. Our approach specifically prevents this.

5.3.2 Analysis of Colon Cancer Dataset

Marker Computation We computed and subsequently ranked subnetwork markers as

described in the Computational Methods section both using GSE8671 (parameter choices:

α = 0.5, L = 3) and GSE10950 (α = 0.5, L = 2). Parameters were chosen as non-restrictive as

possible such that the total number of subnetwork markers did not exceed 1000. Throughout

this section, our method is referred to as wDCB. Since GSE6988 does not contain paired

cancer/control samples one cannot compute markers as described in [30] We also computed

and ranked subnetwork markers as described in [31] (GMI), single gene markers (SGM)

as described in [30] and were provided with subnetwork markers by [30] extracted from

GSE8671, accordingly ranked (NETCOVER=NC). However, we were neither provided with

the subnetwork markers from GSE10950 nor the implementation of the NC algorithm. In

the following, values for [30] referring to subnetwork markers extracted from GSE10950 are

adopted from their paper.

Classification Performance We was performed as described in the Computational

Methods section, using support vector machines for both GMI and NC as was evaluated as

yielding maximal predictive power in both cases [30]. Predictions refer to predicting cancer vs.

healthy tissue resp. with vs. without liver metastasis (henceforth referred to as ‘‘Prognosis’’)

in GSE6988 using the markers from GSE8671 and GSE10950. Note that we cannot display

certain values referring to markers from GSE10950 for NC since we were not provided

with the corresponding subnetworks nor the software. In the following, positives (=P) and

negatives (=N) are cancer and healthy resp. liver metastasis and non-liver-metastasis tissue

samples such that true resp. false positives resp. negatives (=TP,FP,TN,FN) are correctly

resp. misclassified cancer/metastasis resp. healthy/non-metastasis samples.
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Figure 5.2: AUC for different choices of numbers of subnetwork markers using markers
extracted from GSE10950 for cancer vs. non-cancer prediction of GSE8671. Values for
NETCOVER were not available.
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Figure 5.2 displays AUC (area under the precision-recall curve) which is computed as

the arithmetic average of precision (= TP/(TP + FP )) and recall (= TP/(TP + FN)) for

different choices of subnetwork markers and the two prediction tasks where markers are

chosen according to the corresponding rankings.

Note that values for NC using markers from GSE10950 are missing due to the above-

mentioned reasons. In [30] an average AUC of 0.86 is reported for prediction of GSE6988

(wDCB: 0.91, see Table 5.2 for more information).

See also Figure 5.3 and 5.4 for plots referring to making predictions in GSE8671 from

GSE10950 and vice versa; the corresponding results are rather negligible---every competitor

achieves AUC / Accuracy close to 100%. We recall that GSE6988 is the most difficult

dataset, due to size (123 samples) and comprehensiveness in terms of subtypes and stages of

progression.

K SGM GMI NC wDCB SGM GMI NC wDCB

8671→6988 10950→6988

1 0.56 0.84 0.72 0.84 0.63 0.37 N/A 0.77
5 0.73 0.72 0.72 0.82 0.82 0.68 N/A 0.86
10 0.76 0.76 0.83 0.85 0.82 0.81 N/A 0.88
20 0.80 0.84 0.86 0.89 0.84 0.83 N/A 0.89
30 0.80 0.83 0.84 0.91 0.83 0.85 N/A 0.85
40 0.85 0.85 0.87 0.90 0.84 0.84 N/A 0.89
50 0.85 0.84 0.85 0.93 0.81 0.82 N/A 0.89

8671→6988, Prognosis 10950→6988, Prognosis

1 0.57 0.57 0.51 0.56 0.57 0.68 N/A 0.47
5 0.74 0.62 0.74 0.6 0.63 0.81 N/A 0.68
10 0.76 0.77 0.74 0.88 0.57 0.77 N/A 0.74
20 0.72 0.62 0.77 0.83 0.61 0.79 N/A 0.85
30 0.65 0.74 0.83 0.88 0.63 0.81 N/A 0.85
40 0.67 0.79 0.83 0.90 0.78 0.85 N/A 0.89
50 0.74 0.77 0.81 0.92 0.76 0.85 N/A 0.91

Table 5.1: Accuracy for varying numbers K of markers relating to experiments on colon
cancer. NC=NETCOVER. Boldface: top score. NC 10950 subnetworks are not available.
See Supplement for sensitivity and specificity values

We also display Accuracy (= (TP + TN)/(P +N)) values in table 5.1 for predictions

using GSE8671 markers, which are available for all competitors. See also Tables 3 and 4 in

the Supplement for more values on cancer vs. non-cancer including sensitivity (recall) and

specificity (= TN/N) which translate to fractions of correctly predicted cancer resp. healthy

samples. We do think that sensitivity/specificity/accuracy statistics make most sense.
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Figure 5.3: Colon cancer: AUC vs. numbers of subnetwork markers using markers extracted
from GSE8671 and GSE10950 for cancer vs. non-cancer prediction in GSE6988.
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Figure 5.4: Colon cancer: AUC vs. numbers of subnetwork markers using markers extracted
from GSE8671 and GSE10950 for liver metastasis vs. non-metastasis prediction in GSE6988.
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However, for fairness reasons, we followed the workflow scheme of [30] which is based on

AUC. Overall, our method outperforms all competitors both when predicting cancer vs. non-

cancer and metastasis vs. non-metatastis. In the latter case, when using subnetworks from

GSE8671, the increase in accuracy from 83%, the best value obtained by the competitors, to

92%, obtained by our method wDCB is quite remarkable. Note that this is a relative increase

of more than 50% (9% out of possible 17%) translating to more than 50% less misclassified

samples. In conclusion, our method proves best on a difficult colon cancer dataset in all

categories tested, raising accuracy beyond 90% as the only method in three test cases.

8671 Subnetworks 10950 Subnetworks
# ER-50 6988 10950 # ER-50 6988 8671

GMI 806 0.38 0.86 0.95 755 0.34 0.84 0.99
NC 923 0.12 0.87 0.99 N/A N/A 0.86 N/A

wDCB 282 0.76 0.91 1.00 216 0.74 0.91 1.00

Table 5.2: Head-to-head statistics for subnetwork marker approaches: [#]: total number of
subnetwork markers computed, [ER-50]: Gene Ontology Enrichment of the top 50 subnetwork
markers, [6988], [10950] and [8671]: Average AUC when classifying GSE6988, GSE10950
and GSE8671 with the top 50 markers

Enrichment Analysis In table 5.2 we also display statistics for the subnetwork marker

methods on the total number of networks and the Gene Ontology (GO) term enrichment of

the top 50 markers used for prediction. Average AUC refers to averaging values in the plots

of Figure 5.2. Values for NETCOVER on markers extracted from GSE10950 have been

adopted from the corresponding paper [30]. Enrichment is based on statistical significance

(p = 10−3) relative to the hypergeometric probability distribution, Bonferroni corrected for

multiple testing, computed by making use of Gene Ontologizer [15]. The obviously superior

enrichment rate of wDCB subnetwork markers (76% resp. 74%) certainly is an explanation

for their high quality and covenient interpretability in terms of cellular contexts. Note

that NETCOVER subnetworks need not be connected which might explain the relatively

inferior enrichment. Personal communication revealed that the authors expect the connected

components to be more enriched. In conclusion, there is good evidence that our subnetwork

markers are biologically more meaningful.

Top Subnetwork Markers GO enrichment analysis of the 186 genes identified in the

top subnetworks from GSE8671 revealed a significant role for genes involved in the biological
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Figure 5.5: Top-ranked subnetwork markers both extracted from GSE8671 (top) and
GSE10950 (bottom). Edge weights indicate confidence scores.

Dataset Ranking Genes in Subnetworks Enriched GO Terms

GSE8671

1
BRCA1 CCNA2 CDC6 CDC7 DNA replication initiation (p=6.39e-14)
MCM10 MCM2 MCM3 MCM4 DNA replication (p=2.13e-13)
MCM5 MCM6 MCM7 TP53 DNA metabolic process (p=6.15e-12)

2
BRCA1 CHEK1 EXO1 FEN1 DNA repair (p=6.44e-18)
MLH1 MRE11A MSH2 MSH6 Cellular response to DNA damage stimulus (p=5.29e-17)
PCNA PRKDC RAD51 TP53 Response to DNA damage stimulus, (p=1.905371e-16)

3
CD2 CD247 CD28 FYN Leukocyte activation (p=2.70e-8)

ITKLCK LCP2 PTPN22 PTPN6 Cell receptor signaling pathway (p=3.08e-8)
PTPRC ZAP70 T cell activation (p=5.53e-8)

GSE10950

1
DNMT1 FEN1 PCNA RFC2 nucleotide-excision repair (p=5.01e-11))
RFC3 RFC4 RFC5 WRN Protein-DNA loading ATPase activity (p=3.08e-10)

DNA clamp loader activity (p=3.08e-10)

2
CDC6 DBF4 GMNN MCM10 DNA replication (p=1.61e-10)

MCM4 MCM6 MCM7 DNA metabolic process (p=4.96e-8)
DNA replication initiation (p=1.42e-7)

3
CCNA2 CDC2 CDC25C CKS1B cell cycle (p=2.94e-6)

MYC RBL1 SKP2 Cell cycle process (p=1.57e-3)
Cell division (p=4.57e-3)

Table 5.3: Analysis of gene and gene ontology term content of the three top-ranked subnet-
works both extracted from GSE8671 and GSE10950
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processes of DNA replication, DNA metabolic process, DNA repair and cell cycle progression

(Bonferonni corrected, p < 1e − 20). In particular tumor suppressor genes such as TP53,

BRCA1 and mis-match repair genes MLH1, MSH2 and MSH6 all well characterized genes

known to be involved in colon cancer tumorigenesis [52] are featured in the top ranked

subnetworks. The top ranked subnetwork contains TP53 and most of the minichromosome

maintenance (MCM) complex components, which are essential for replication of DNA during

cell division. In particular MCM2 and MCM5, have been shown to be early markers for

CRC [22] and overall almost all CRC display dysregulation of the TP53 pathway through

mutations or other means of functional inactivation.

See Figure 5.5 and Table 5.3 for pictures and additional statistics on our colon cancer

top markers. See also Table 5.2 for a comparative enrichment analysis of all subnetwork

marker approaches which reveals that ≈ 75% of our colon cancer top markers are enriched

with GO terms which substantially differs from other subnetwork approaches (at most 38%

of the top markers are enriched).

5.3.3 Analysis of Breast Cancer Dataset

Here, we use [133] as a guideline. We focus on TP53 mutation status and predict wildtype

(wt) vs. mutant (mt), a binary classification task. We first compute markers from GSE3494

and subsequently employ the suggested leave-one-out cross-validation scheme in the same

dataset. As has been recently pointed out [49, 48, 31] non-cross-platform evaluations (marker

computation and classification are performed in the same dataset) come with two issues:

first, they are biased towards markers which do not have to rely on mapping probes to

well-established gene identifiers and second, single gene markers traditionally ‘‘overperform’’,

i.e. when using them for classification on other platforms their predictive power tends to

significantly decrease. We recall that cross-platform stability is a major source of motivation

for subnetwork marker approaches. In the following we will distinguish between Single Probe

Markers (SPM) that is a single gene marker approach making use of all probe data available

in GSE3494 even if probes cannot be mapped (possibly reflecting non-coding RNA etc.) 1

SGM (single gene markers) which is the equivalent of SPM using only mappable gene probes,

GMI [31] and our approach wDCB which both rely on mapping probes onto nodes in PPI

1The signature genes reported in [133] are 32 such probes chose such as to achieve maximum training
accuracy in the cross-validation scheme.
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Figure 5.6: Breast cancer: Accuracy vs. numbers of subnetwork markers using markers
extracted from GSE3494 for predicting TP53 mutation status (wildtype vs. mutant) in
GSE3494 (leave-one-out cross-validation).

networks.

Marker Computation We computed markers for SPM, SGM, GMI and wDCB as

described in the Computational Methods section. For wDCB, we used parameters α =

0.5, L = 5 again chosen as being most non-restrictive while keeping the computed numbers

of subnetworks below 1000.

Classification Performance We plotted accuracy vs. different numbers of markers (see

Figure 5.6) and observed that for more than 25 markers none of the methods achieved

further improvements. The non-mappable SPM achieve maximum accuracy for numbers of

markers between 5 and 25 whereas wDCB achieves best values for choosing only up to 5

top-ranked markers. Among the approaches generating universally mappable marker sets,

wDCB performs best. Note that, as was reported in previous studies, it is reasonable to

assume that the mappable single gene marker set SGM will suffer from decreased performance
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rates in cross-platform evaluations [48, 31] whereas such effects have not been reported

for subnetwork marker approaches. We conclude that our approach wDCB comes is of

substantial value also in breast cancer subtyping.

Top Subnetwork Markers Here we focused on the role of TP53, whose expression

signature was used previously to classify prognostic classes in two breast cancer and one liver

cancer cohorts with known TP53 status [133]. We found similar enrichment of GO terms such

as DNA replication, DNA metabolic process and cell cycle progression (Bonferonni corrected,

p < 1e − 20) in the 174 genes identified in our top subnetworks used for classification of

TP53 mutational status. Furthermore, the subnetworks identified for known TP53 status

in breast cancer were comprised of many of the same genes identified in the colon cancer

subnetwork analysis (65 genes in total, ≈ 35% overlap). Given the well characterized role

of dysregulated TP53 signaling (e.g. caused by TP53 mutations) in both colon and breast

cancers, these findings suggest that in addition to its utility for developing multivariate

classifiers, DCB may also have additional functionality for extracting biologically relevant

networks of genes.



Chapter 6

Optimal Subnetwork Markers

Predict Drug Response

In the treatment of cancers, patients presenting tumors with similar clinical characteristics

will often respond differently to the same chemotherapy [211]. In fact, for many types of

cancer, only a minority of treated patients will observe regression of tumour growth. This is

the case for both conventional chemotherapeutic agents and newer targeted therapies that

affect specific molecules. To achieve an effective cancer treatment, it is critical to identify

the underlying mechanisms that confer chemoresistance in some tumours but not others.

The advent of genome-wide expression profiling technologies has allowed the discovery of

novel biomarkers for cancer diagnosis, prognosis and treatment [211]. While some progress

has been made towards identifying reliable prognostic markers for breast and other cancers,

development of molecular markers predictive of response to chemotherapy has proved to be

far more difficult [211].

In recent years, a number of studies have used genome-wide expression profiling to

identify genes that could be used as predictors of drug response in breast cancer [81, 33].

In these studies, single gene marker methods were used, where each gene is individually

ranked for differential expression and the top genes were selected as predictors known as

single gene markers. Other studies [117, 123] required single gene markers not only to

be differentially expressed but also to have similar coexpression between the training and

test cohorts. While some of these predictive markers have shown promising results in a

limited number of patient cohorts, many of these signatures have failed to achieve similar

75
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performance in additional validation studies [19]. In addition, single gene markers developed

from different cohorts have been shown to have very little overlap [48]. A further limitation

of single gene markers is that they provide relatively limited insight into the biological

mechanisms underlying response to drug response. Thus, predictive markers with robust

performance, greater reproducibility and improved insights into drug action - which are

critical for clinical application - still remains elusive.

Motivated by the limitations in predicting drug response using single gene markers and

the better performance promised by subnetwork markers, this chapter aims to identify

subnetwork markers to predict chemotherapeutic response.

Available approaches for subnetwork marker discovery have a number of disadvantages.

Network based approaches such as [31, 55, 29] are heuristic methods and thus do not

guarantee the optimality of the solution for marker selection - an optimal solution would

presumably provide a better prediction performance. The branch and bound approach [30] or

exhaustive enumeration using biclustering in the previous chapter [37] can yield an optimal

solution under some fixed set of parameters; however their worst-case running time can

be super-polynomial (and hence intractable). Therefore, there is a keen need for designing

efficient algorithms to retrieve the optimal subnetwork markers that could successfully

distinguish samples from different classes.

In [39] and this chapter, we introduce a novel and efficient randomized algorithm to

compute ”optimally discriminative” subnetworks for classification of samples from different

classes. The discriminative score is calculated as the difference between the total distance

between samples from different classes and the total distance between samples from the same

class. Our algorithm is based on the color coding paradigm [6], which allows for identifying

the optimally discriminative subnetwork markers for any given error probability. Since the

running time of our algorithm is a logarithmic function of the error probability, we can

set the error probability to a small value - close to zero - while the running time does not

increase much. When the maximum size of a subnetwork is k = O(log n) where n is the size

of the network, we have a polynomial time algorithm with a fixed error probability. Since

the discriminative score is additive, we can easily adapt our method to retrieve subnetwork

markers to distinguish samples from more than two classes. This is very helpful in particular

when there are more than three categories for responses to treatment: complete, partial and

non-response.
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Figure 6.1: The main idea behind our approach: samples (denoted as points in a high
dimensional space) are projected into k-dimensional space while ensuring that samples from
the same class are clustered together, while samples from different classes stay separated.
These k dimensions/genes have to form a connected subnetwork in a PPI network. The
main difference between our approach and earlier ones is that we can identify the optimal
subnetwork SOPT in polynomial time when k = O(log n); here n is the size of the network.
This is done by minimizing the total distance of samples from same class while maximizing
the total distance of samples from different classes.

6.1 Problem Definition and Its Complexity

In our methodology, each patient sample is represented as a point in high dimensional

space where each dimension represents one gene. We perform dimensionality reduction by

projecting samples (points) into a subspace of at most k dimensions such that samples from

different classes are well separated. The separation criteria is defined based on minimizing

the distances of samples from the same class while maximizing the distances of samples from

different classes. Figure 6.1 sketches the idea behind our approach.

We formalize our problem as the Optimal Discriminating k-Subnetwork (ODkS) problem
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below. We then assess the complexity of the problem and finally give a randomized algorithm

to solve it for any given error probability.

Before formally defining ODkS problem, we would like to introduce the notations used.

Without loss of generality, we assume that we have only two classes of samples: positive

and negative. Note that it is easy to generalize our approach for more than two classes.

Let A and A′ denote the expression matrices for positive and negative samples respectively.

For each gene gi, let Ai and A′i respectively denote the expression profiles of gene gi in

positive class and negative class. For expression matrix A (A′), let Ai(j) (A′i(j)) denote the

expression of gi in sample j.

Given n genes, let a and a′ denote the number of samples in positive class and negative

class respectively. We denote the PPI network by G = (V,E), where |V | = n and |E| = m.

We define the weight function score on subnetwork S as the difference between the total

of distance between samples from different classes and the total of distance between samples

from the same class - under L1 distance:

score(S) =

a∑
j=1

a′∑
j′=1

∑
∀i:gi∈S

|Ai(j)−A′i(j′)|
aa′

−
a∑
j=1

a∑
j′=1

∑
∀i:gi∈S

|Ai(j)−Ai(j′)|
aa

−
a′∑
j=1

a′∑
j′=1

∑
∀i:gi∈S

|A′i(j)−A′i(j′)|
a′a′

The ODkS problem asks to compute the connected subnetwork SOPT (|SOPT | ≤ k) from G

such that SOPT ‘‘distinguishes’’ samples from different classes ‘‘optimally’’, i.e. score(SOPT )

is the maximum among score(S)’s for any connected subnetwork S. We call SOPT the

optimally discriminative subnetwork.

For any connected subnetwork S, score(S) could be rewritten as:

score(S) =
∑
∀i:gi∈S

( a∑
j=1

a′∑
j′=1

|Ai(j)−A′i(j′)|
aa′

−
a∑
j=1

a∑
j′=1

|Ai(j)−Ai(j′)|
aa

−
a′∑
j=1

a′∑
j′=1

|A′i(j)−A′i(j′)|
a′a′

)

We will extend the discriminative score function score so that it can apply on a single gene.
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We assign each gene gi to a weight score(gi):

score(gi) =

a∑
j=1

a′∑
j′=1

|Ai(j)−A′i(j′)|
aa′

−
a∑
j=1

a∑
j′=1

|Ai(j)−Ai(j′)|
aa

−
a′∑
j=1

a′∑
j′=1

|A′i(j)−A′i(j′)|
a′a′

Now we can rewrite the discriminative score of a connected subnetwork S as:

score(S) =
∑
∀i:gi∈S

score(gi)

Thus, identifying the optimally discriminative connected subnetwork SOPT (|S| ≤ k) is

equivalent to finding the connected subnetwork for which the total weight of the vertices

is maximum possible. A variant of this problem without any restriction on the size of the

subnetworks (k ≤ n) was defined to extract dysregulated pathways in different cancer types

by two independent studies ([42, 155]). Both studies provided integer linear programming

formulations but rather than solving the IP formulation, [155] solved a relaxed version

of the program, thus, didn’t give the optimal solution, and [42] tried to solve the integer

linear program using a cutting plane method - however, this approach doesn’t guarantee a

worst-case running time.

Another variant of the ODkS problem, the Connected k-Subgraph problem (where the

weights of vertices are either 0 or 1), is proved to be NP-hard by [83]. Here we prove that

ODkS problem is also NP-hard:

Theorem 6.1. The ODkS problem is NP-hard even when we have one sample for each

class.

Proof. The reduction is done from Connected k-Subgraph problem defined by [83]. We are

given an instance of Connected k-Subgraph problem where we have a graph G = (V,E), a

weight function h : V −→ {0, 1} and positive integers k and l. For a subnetwork S, let g(S)

be the number of vertices with weight 1. The Connected k-Subgraph problem asks whether

there exists a subgraph S in G with at most k vertices such that g(S) ≥ l.
We build an instance of the ODkS problem as follows. The network G′ for the instance

of ODkS problem is the same as the given graph G i.e. V ′ = V and E′ = E. We only have

one sample a = 1 for the positive class and another sample for the negative class a′ = 1. For
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each gene gi corresponding to a vertex vi in G, set Ai(1) = 0 and A′i(1) = h(v). Now for

every vertex vi such that h(vi) = 1, we have the discriminative score score(vi) = 1. By the

construction, the discriminative score of any connected subnetwork S′ from G′ is equivalent

to the number of vertices with weight 1 of the corresponding subgraph S in G. Thus, G

has a subgraph S with at most k vertices and g(S) ≥ l if and only if the network G′ has a

subnetwork S′ also with at most k vertices and score(S) ≥ l. �

6.2 Computational Methods

A Randomized Algorithm In this section, we give a randomized algorithm to solve the

ODkS problem for any given error probability. This randomized algorithm is based on color

coding technique [6].

Color coding is an algorithmic technique that was first introduced by [6] to detect a simple

path or a cycle of length k in a given graph. The algorithm consists of a predefined number

of iterations. In each iteration, there are two main steps: assign each vertex uniformly at

random with one of k colors and detect whether there is a ‘‘colorful’’ path or cycle of length

k in the given graph. A path or cycle is colorful if it is not the case that two vertices u, v in

the path or cycle have the same color.

The idea behind the algorithm is the clever use of colors to reduce the number of paths

that need to consider in the detecting step. In the naive algorithm, we need to keep track of

every vertices visited so far which uses O(nk) time and space. Now we only keep track of all

possible sets of vertices of distinct colors which only take O(n2k) time and space.

Color coding is widely applicable in the context of retrieving ‘‘homologous’’ subnetworks

from a PPI network given a particular query pathway or protein complex [168, 179, 43, 21].

Color coding has also been successfully applied to retrieve network motifs (subnetworks

which are recurrent more than expected in a PPI network) and comparing PPI networks of

different species [4, 38].

Similar to color coding technique, our algorithm consists of a predefine number of

iterations ni (we will show how to determine ni later). Each iteration consists of two main

steps:

1. Assign a vertex uniformly at random with one of k colors.

2. Identifying the colorful connected subnetwork S′OPT (|S′OPT | ≤ k) with the maximum
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discriminative score score(S′OPT ).

We remind the readers that SOPT is the optimally discriminative connected subnetwork

while S′OPT is the colorful optimally discriminative subnetwork after each iteration. After

ni iterations, we return S′OPT of some iteration that has the the maximum score(S′OPT ).

We will prove that we return SOPT with the given error probability δ by determining the

number iterations ni and identifying the colorful optimally discriminative subnetwork S′OPT

in the second step efficiently.

In the following, we describe how to estimate the number iterations ni. For each iteration,

the probability that we could retrieve SOPT is the same as the probability that SOPT is

colorful which is k!/kk ≥ e−k. In order to boost the success probability to at least 1− δ for

a given error probability δ, we need

ni ≤ ln(1/δ)ek

iterations to yield the SOPT .

In what follows, we describe an efficient dynamic programming algorithm to retrieve

the S′OPT . At each iteration, for any vertex v ∈ V let color(v) denote the color of v. By

extending the notation of the discriminating function w defined earlier, we let score(u, T )

denote the colorful connected subnetwork S′ such that S′ contains u, the color set of vertices

in S′ is T and S′ has the maximum discriminative score compared to ones of the colorful

connected subnetwork S′′’s that contain u. For the base case, for each vertex u, we have:

score(u, {c}) =

{
score(u) if c = color(v)

−∞ otherwise.

In the general case we can compute score(u, T ) as follows:

score(u, T ) = max
∀v:uv∈E

{
max

∀P,Q:P∩Q=∅,P∪Q=T
{score(u, P ) + score(v,Q)}

}
Here we assume that the addition of −∞ and any real number or −∞ is −∞. We first

compute score(v, T1) for each vertex v and each set T1 of one color and so on. In the final

step, we compute score(v, Tk) for each vertex v and each set Tk of k colors. Now we compute

score(S′OPT ) as follows:

score(S′OPT ) = max
∀v:v∈V

{
max

∀T :T 6=∅,|T |≤k
{score(v, T )}

}
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Now we estimate the running time complexity of this randomized algorithm. Let deg(u)

be the degree of vertex u. For any vertex u and a set of colors T , in order to compute

each score(u, T ), it takes O(deg(u)2|T |) time. To retrieve S′OPT at each iteration, it takes

O(mk4k) time. Thus, the worst-case running time to retrieve SOPT is O(mk ln 1/δ(4e)k).

For our interests in subgraphs of small size k = O(log n) and for a fixed probability of error,

it takes polynomial time to find the optimally discriminative subnetwork SOPT .

Ranking Subnetwork Markers From now on, we fix the error probability δ = 0.001

and the maximum size of a subnetwork k = 7 of for any experiment performed later. For

each vertex v ∈ V and for each size n′ from 4 to k, we compute the optimal discriminative

subnetwork that contain v with n′ vertices. In total, we have at most kn subnetworks.

For each subnetwork S, we aggregate the expression profiles of genes in S into a metagene

s:

As(j) =
∑
gi∈S

Ai(j)/|S| (1 ≤ j ≤ a)

A′s(j
′) =

∑
gi∈S

A′i(j
′)/|S| (1 ≤ j′ ≤ a′)

Now the normalized discriminative score of a subnetwork S is calculated in the same way as

we calculate the discriminative score score(g) for any gene g in Section 2.1. We rank all the

extracted subnetworks by their normalized discriminative score. Then we select subnetwork

markers from the top to the bottom of the list as follows. Suppose L is the number of genes

in the selected subnetworks so far and S is the current considered subnetwork. S is only

selected if we have at least |S|/2 genes that are not from L. We finish the selection process

with 50 subnetworks.

Classification Process and Performance Assessment We always consider top 50

subnetworks for our method for any experiment performed after this point. For any l

(1 ≤ l ≤ 50), we represent a sample using top l subnetworks (S1, ..., Sl) as follows. Each

sample j is transformed into a l-dimensional vector V (j) ∈ Rl where the entries V (j)l for

each marker l are

V (j)l :=
∑
v∈Sl

E(v, j)/|Sl|

where v ranges over all genes v contained in the subnetwork marker Sl and E(v, j) is the

expression of gene v in sample j. In other words, each sample j becomes a point V (j) in the
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l-dimensional feature space Rl. Now, all the classification experiments were performed using

3-nearest neighbour classifier under L1 distance.

Since the tested datasets have an imbalanced ratio between number of samples in positive

and negative class, accuracy is not a good measure for classification performance. We utilize

Matthews Coefficient Correlation (MCC) as a measure to compare different classifiers [24].

MCC is essentially the Pearson correlation between the vectors of predicted labels and true

labels of a testing set. Suppose that TP is the number of true positives, TN the number of

true negatives, FP the number of false positives and FN the number of false negatives. The

MCC can be also calculated as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

If one of the four sums in the denominator is zero, the denominator set to one. This results

in a Matthews correlation coefficient of zero. MCC value of 1 indicates a perfect prediction,

-1 an inverse prediction, and 0 a completely random prediction.

MCC is a recommended measure when compared with other measures for classification

performance [10]. We have chosen MCC over area under ROC curve (AUC) to facilitate

comparison to competing models from the MAQC-II study [176].

6.3 Experimental Results

Dataset and Network We retrieved the human protein-protein interaction data from

the Human Protein Reference Database (HPRD) version April 2010 [108]. By including

both binary interactions and considering each protein complex as a clique of proteins, we

obtained 46,370 protein interactions involving 9,617 proteins.

We assessed the performance of our method on a human breast cancer dataset contributed

by the University of Texas M.D. Anderson Cancer Center (MDACC, Houston, TX, USA).

The gene expression profiles were retrieved from NCBI Gene Expression Omnibus (GEO)

with accession number GSE20194. Gene expression data from 230 stage I-III breast cancers

were generated from fine needle aspiration specimens of newly diagnosed breast cancers before

any therapy. Patients received 6 months of neoadjuvant chemotherapy that comprising

paclitaxel (T), 5-fluorouracil(F), doxorubicin (A) and cyclophosphamide (C) (and denoted

as TFAC) followed by surgical resection of the cancer. Responders to chemotherapy was

categorized as a pathological complete response i.e. no residual invasive cancer in the breast
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or lymph nodes or residual invasive cancer. RNA extraction and gene expression profiling

were performed in multiple batches over time using Affymetrix U133A microarrays. This

dataset was split into two different cohorts according to the time of collection. One cohort

consists of 130 samples while the other one consists of 100 samples. The expression profiles

were normalized with Robust-chip Median Average (RMA) algorithm [90] and adjusted for

batch effect using ComBat [98]. Prior to model generation, the expression values of the two

cohorts were normalized but not standardized.

Classification Performance We evaluated the performance of our method (we denote

as OptDis) against both single gene marker models and other subnetwork-based methods

following the workflow presented by the MicroArray Quality Control (MAQC)-II studies

[176, 150]. In those studies, the MAQC project assessed the performance and limitations

of various data analysis methods in developing and validating microarray-based predictive

models with the ultimate goal of discovering best practices. Thirty-six groups participated

in the project to develop classifiers for 13 large datasets, including the one used in our

study. MAQC models (denoted as MAQC) were constructed by these groups using different

methods for data processing (i.e. normalization), feature selection, and classification.

To assess the predictive performance, we performed two analyses. In the forward cross-

dataset (FXD) analysis, we treated the 130 patient cohort as the training set used for

deriving markers, and validated their performance on the 100 patient cohort. We also

performed the complementary backward cross-dataset (BXD) analysis and swapped the

cohorts used in training and validation. In Figure 6.2, we compare the performance of

OptDis against single gene marker models. The single gene marker classifier constructed

using t-test is denoted by SGM and includes only genes that map to the PPI network. For

each mappable gene, the corresponding probe with the lowest p value was used in the model.

We also compared the performance of our method OptDis against implementations of existing

subnetwork-based methods, one based on mutual information (GreedyMI) [31], and another

based on dense subnetworks (we denote as Dense) using the STRING functional network

[37]. The density threshold to extract all dense subnetworks is set at 0.7 as implemented

in [37]. Note that, top 50 subnetworks for GreedyMI and Dense are ranked based on their

mutual information scores. Starting from around 20 features, the performance of OptDis

is better than competing methods. While the maximum MCC value is not that high, it is

still significant compared to the random classifier which has a MCC value of 0. Moreover,
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Figure 6.2: Line graphs show the MCCs for different predictive models using the top 1 to 50
features. The compared approaches are single gene marker model based on t-test (SGM)
and subnetwork marker models include [31] (GreedyMI), dense subgraphs from STRING
functional network by [37] (Dense) and our approach (OptDis).
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Figure 6.3: Bar charts show the average MCCs of different predictive models. Single gene
marker models include based on t-test (SGM) and models from MAQC project (MAQC).
Subnetwork marker models include [31] (GreedyMI), [37] (Dense), and our method (OptDis).
The white bars and blue bars show the classification performance in FXD and BXD analyses
respectively. The green bars show the average of the white and blue bars.

predicting response to chemotherapy has been shown as a difficult endpoint to predict in the

recent MAQC publications [176]. The difficulties might be due to the known heterogeneity

within tumours of the same cancer type, subtype-specific response, differences in drug

metabolism between individuals, and variations in chemotherapy schedules between patients

[150]. Figure 6.3 shows the average performance of models in cross-dataset validation of FXD

and BXD analyses. Here, the average performance for a model is the average MCC of 50

models generated using the top 1 to 50 features. The MAQC performance was derived from

the average of top model from each participating group. As shown in Figure 6.3, OptDis

outperforms all other competitors on the average classification performance in FXD and

BXD analyses.

For further analyses, we compared the average best performance of different classifiers in
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Figure 6.4: The bar charts show the average best MCCs of different classifiers. The average
best performance of a classifier is the average of its best model from FXD analysis and its
best model from BXD analysis. Single gene marker models include simple one based on t-test
(SGM) and top 3 models from MAQC project (MAQC GeneGo, MAQC SAI, MAQC
GSK). Subnetwork marker models include [31] (GreedyMI), [37](Dense), and our approach
(OptDis). The green bars show the average best MCCs. A red bar of a classifier shows the
difference in terms of MCC between its best model from FXD analyses and its best one from
BXD analyses.

Figure 6.4. The average best performance of a classifier is the average of its best model from

FXD analysis and its best one from BXD analysis. Here we compare against the top three

MAQC models. Figure 6.4 shows that our top OptDis model has consistent performance

in cross-dataset validation experiments. In contrast, the top three MAQC models show

discrepancy in performance when the datasets used for training and test were swapped -

especially in the case of the MAQC GeneGo model, which has the largest difference in

performance (0.25) between the FXD and BXD analysis. The second and third best MAQC

models also show similar discrepancy in performance.
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Figure 6.5 shows the performance of OptDis against one of the predictive model con-

structed, where the constituent genes were taken from the top x (1 ≤ x ≤ 50) OptDis

subnetworks (we denote as SGM OptDis). We also compare our method against another

single gene marker model that ranks all genes by t-test and matches the number of genes in

the top x (1 ≤ x ≤ 50) subnetworks from OptDis (SGM M). OptDis is consistently better

than SGM OptDis across different number of features. This suggests the importance of

treating genes as functional modules. Moreover, on the average constituent genes taken

from OptDis subnetworks tend to perform better than genes from simple predictive model

using t-test. Hence, OptDis subnetworks might capture genes more informative to predicting

chemotherapy response.

In summary, our subnetwork markers have the best combination of relatively high

performance and greater stability between different cohorts of patients and thus could be

more clinically applicable to other independent cohorts of patients.

Reproducibility of Predictive Markers We compared the reproducibility of subnet-

work markers identified by OptDis against gene markers by deriving top markers from the

two different cohorts of breast patients and calculating the number of overlapping genes.

Since each subnetwork marker may comprise multiple genes, we compared subnetwork

markers to an equivalent number of gene markers equal to the number of genes in those

subnetworks (i.e. 1 subnetwork marker = k gene markers). The degree of gene overlap

across a range of top markers is shown in Figure 6.6. With ten subnetwork markers, OptDis

markers already have 25% reproducibility, which is much higher than the 8% reproducibility

for an equivalent number of top gene markers. Although the percentage of overlap for

gene markers increases as more genes are considered, it remains consistently lower than the

reproducibility of subnetwork markers. The greater reproducibility of OptDis markers may

contribute to its more robust performance in cross-dataset validation experiments.

Role of Predictive Markers in Drug Response

Gene Function Analysis

We hypothesized that the set of 39 genes (O39) common between the two T50 SN signatures

trained on different cohorts may be important to the activity of TFAC therapy. Some of their

biological functions are listed in Table 6.1. About half are implicated in apoptosis, suggesting
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Figure 6.5: Line graphs show the MCCs for different predictive models: our approach
(OptDis), the model that constitutes genes from top x (1 ≤ x ≤ 50) subnetworks from
OptDis (SGM OptDis) and another model that ranks genes by t-test and matches the
number of genes from top x (1 ≤ x ≤ 50) subnetworks from OptDis (SGM M).
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Figure 6.6: Reproducibility is quantified as the degree of gene overlap between top markers
identified from different datasets. This overlap is calculated for 10, 20, 30, 40, and 50 OptDis
subnetworks and the equivalent number of genes derived from t-test.

that changes in strengths of pro-apoptotic and anti-apoptotic signals can induce resistance to

chemotherapy. There are also genes involved in DNA repair, which is expected given many

of the anticancer drugs within TFAC therapy induce DNA damage (i.e. cyclophosphamide

by cross linking DNA strands).

Some of the 39 genes have specific functions related to mechanism of individual TFAC

drugs. Paclitaxel is a mitotic-inhibitor that stabilizes microtubule activity during mitosis

and induces cell death. While paclitaxel is known to act on beta-tubulin, some studies [104]

have also shown association between the actin and tubulin cytoskeleton in drug response,

and suggest that regulation of actin cytoskeleton can induce sensitivity to mitotic-inhibitors.

From our O39 list, the EVL, RET, and CST3 genes have regulatory roles in organization

and assembly of actin filaments.

Fluouracil’s primary anti-cancer activity blocks DNA replication by suppressing thymidy-

ate synthetase activity and depleting thymidine [127]. In vitro studies have shown that

AR and IGF2, from our O39 list, can increase incorporation of thymidine, which acts in

antagonist to thymidyate synthetase suppression, to allow DNA synthesis through the actions
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of thymidine kinase [220, 146].

Doxorubicin is an anthracycline antibiotic that intercalates with DNA and causes double-

stranded breaks induce to cell apoptosis or disruption in mitosis [135, 138]. SMAD3 from

our list has been observed to affect BRCA1-dependent double-stranded DNA break repair

in breast cancer cell lines and thus potentially may contribute to differential response to

doxorubicin [45].

Signalling Pathway Analysis

Finally, we also compared subnetwork and single gene markers based on their insights into

the mechanisms underlying drug response. We derived the T50 SN, T50 SG, and Tx SG

from the combined cohort of 230 patients and used the Ingenuity Pathway Analysis software

(IPA; Ingenuity c© Systems, www.ingenuity.com) to identify significant pathway associations.

Interestingly, several signalling pathways associated with chemotherapy response were

identified for SN markers, whereas no significantly enriched pathways were found for the

T50 and T111 SG markers (Figure 6.7). A closer examination of the top associated pathways

suggests response to TFAC treatment is affected by the crosstalk between tumour subtype-

specific mechanisms and pathways regulating apoptosis. Chemotherapy response in breast

cancer have been observed to be subtype-specific [182], with ER+ tumours exhibiting much

higher response rates to taxane-based therapies than ER- tumours [124, 51, 150]. Therefore,

it was expected to find that the predictive subnetwork signature was strongly enriched for

genes activating the estrogen receptor (ER) signalling pathway. For the same reason, we also

observe an enrichment for the androgen receptor (AR) signalling pathway. With nearly all

ER+ tumors and few ER- tumours showing AR expression [141], it is likely that AR-based

Enriched terms Gene symbols p-value
Apoptosis AR, EP300, ESR1, GADD45G, IGF2, 1.27E-06

IGF1R, IGFBP4, IL6ST, MAPK3,
MDM2, MED1, NCOA3, PRKACA, RARA,

RET, SHC1, SMAD3, SRC, TSC2
DNA Synthesis AR, ESR1, IGF2, IGFBP4, IL6ST, 1.74E-06

MDM2, SHC1, SRC
Actin Filament EVL, CST3, RET, SRC, TSC2 7.16E-03
Organization
DNA Repair GADD45G, MDM2, RARA, SMAD3 1.89E-02

Table 6.1: Table of enriched molecular and cellular functions related to drug response of
overlapping gene set. The p-values are adjusted using Benjamini-Hochberg method.
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Figure 6.7: Signaling pathways associated with TFAC response ranked by enrichment in
T50 SN from our method OptDis. We also show the comparison among the enrichments of
genes from T50 SN (dark blue), C39 (light blue), T50 SG (cyan), and T111 SG markers
(black). Significantly enriched pathways have Benjamini-Hochberg corrected p-values above
threshold of 0.05 (dotted line).

subnetworks serve as good predictive markers of TFAC treatment based on their association

with ER status. Based on the enriched IPA pathways associated with response, we speculate

that the differential response between subtypes may be attributed to differential regulation

of apoptosis. Experimental studies have shown that expression of ERα selectively inhibits

paclitaxel-induced apoptosis through modulation of glucocorticoid receptor activity [192].

Other response-associated pathways may also contribute to differential response to

TFAC treatment. For example, signalling of insulin-like growth factor (IGF-1) has known

functions in cancer proliferation and inhibition of apoptosis, and has been experimentally

implicated in chemotherapy resistance [46, 66, 17]. The PI3K/AKT pathway can also increase

resistance to taxane-based therapies through downstream anti-apoptotic effectors BCL-2

and BCL-XL [130]. Experiments have shown that tumours with increased phosphorylated

BCL-2 expression have increased sensitivity to paclitaxel compared to tumours with reduced

expression [177].

We measured the reproducibility of these pathway enrichments by performing IPA

pathway analysis on both C39 genes and the T50 SNs derived from the pooled 230 patients
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using another SN method (GreedyMI). Figure 6.7 shows both predictive SN signatures were

significantly enriched with the same pathways, which may implicate a strong role for these

pathways in response to TFAC treatment.

6.4 Source of Performance Improvement

As known in the previous section, OptDis has better performance over single gene markers

ranked by t-test . There could be two primary factors that may contribute to the improvement

of classification performance of OptDis:

1. Distance-based discrimination score function

2. Use of prior knowledge from PPI networks

Approaches deriving single gene marker rank genes based on how well they distinguish

samples from different classes. In the previous section, single genes are ranked by on t-test

while subnetwork markers are ranked based on a distance function. Thus the distanced based

function could be the source of the improvement in performance of subnetwork markers.

Each subnetwork marker consists of genes which form a connected subnetwork or are in

proximity with each other in PPI networks. This is different from approaches deriving single

gene markers which do not enforce genes must be near each other on the PPI networks. Thus

prior knowledge from PPI network could contribute the improvement in the performance of

subnetwork markers.

In this section, we focus on assessing the value of these two aspects. We evaluated the

worth of the distance-based discrimination score by comparing the average cross-dataset val-

idation performance of the top gene markers identified by the distance score (SGM Distance)

and the top subnetwork markers from OptDis (OptDis HPRD). Similar to previous exper-

iments, average performance is calculated as the average of the 50 classifiers built across

the range of top markers. We evaluated the value of using prior knowledge, in the form

of known protein-protein interactions from PPI networks, to guide marker discovery. To

investigate, we re-ran OptDis on randomized networks generated using the Erdős-Rényi

model. This model produces a random network with the same average degree as the original

PPI network in other words with the same number of edges. Note that this model might

not preserve the degree distribution of the original network which is known to be similar

among all the PPI networks.

The classification performance of OptDis markers identified using the true PPI network
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(a) DRUG dataset (b) METASTASIS dataset

(c) DRUG dataset (d) METASTASIS dataset

Figure 6.8: Average classification performances of single gene markers ranked by distance
function, OptDis on the natural PPI network HPRD, OptDis on randomized networks on
two datasets DRUG and METASTASIS as measured in MCC (top row) and in AUC (bottom
row). The average performance for each predictive model is estimated using the top 1 to 50
features. The error bars for the performance of OptDis on randomized networks denote the
standard variation on 20 randomized networks. Note that single gene markers ranked based
on distance functions matches the number of genes from top x (1 ≤ x ≤ 50) subnetworks
from OptDis on HPRD network.

(OptDis HPRD) against the random networks (OptDis Random) and the top gene markers

identified by the distance score (SGM Distance) are shown for two datasets. The first dataset

is the one that was examined in the previous section and we denote this one as DRUG.

The second dataset is a combination of two datasets on human breast cancer previously

reported by van de Vijver et al. [207] and Wang et al. [217]. Expression profiles from

both datasets were obtained from primary breast tumors but hybridized to two different

microarray platforms (Agilent oligonucleotide Hu25K microarrays and Affymetrix HGU133a

GeneChips). For 78 patients in [207] and 106 in [217], metastasis had been detected during

follow-up visits within 5 years of surgery. Profiles for these patients were assigned to the



CHAPTER 6. OPTIMAL SUBNETWORK MARKERS 95

class metastatic, whereas profiles for the remaining 217 and 180 patients were labeled non-

metastatic. We denote this dataset as METASTASIS. Similarly, we denote the classification

process by training on [217] and testing on [207] as FXD and the classification process by

training on [207] and testing on [217] as BXD.

The classification performance of all the experiments is based on MCC and AUC as

shown in Figure 6.8. In order to compute more accurate AUC values for all the experiments,

we made use of nearest neighbour classifier and the number of nearest neighbors k is equal

to 5.

If interaction knowledge from PPI networks is useful, then the performance of OptDis

should decrease when it runs on the random network. However, from the BXD analyses of

two datasets, the performance of OptDis on random networks is comparable to the original

network. To explain this, we note that the performance of subnetwork markers using the

random networks appears to be similar with the performance of gene markers using the

distance-based scoring function in DRUG dataset. Thus the distance-based function appears

to contribute to the entire the performance improvements demonstrated by OptDis in the

DRUG dataset. This suggests that OptDis does not find edge information from the random

networks to help in marker discovery in the DRUG dataset.

From FXD analyses of both datasets, we observe a significant drop in performance

between OptDis HPRD and OptDis Random. Moreover, the average performance of OptDis

on the original network is ranked first among all the average performances of OptDis in

the randomized networks of both datasets. Thus, results from the FXD analyses from both

datasets suggest that knowledge of protein-protein interactions improves marker discovery

and classification performance.



Chapter 7

Conclusion

Functional modules which are groups of molecules in the cells together with the interactions

among them exhibit a particular function under a biological process. Discovering functional

modules is an essential task towards understanding molecular biology of the cells. In this

thesis, we present novel computational methods for discovering functional modules in terms

of network motifs and subnetwork markers. Our algorithms not only have efficient running

time but also have good accuracy on real world biological datasets.

7.1 Summary

In the first part of this dissertation, we have presented background on PPI networks and

computational approaches for discovering functional modules from PPI networks. In Chapter

2, we have discussed various wet lab techniques for deriving PPI networks and computational

methods for assigning confidence scores for PPIs.

In Chapter 3, we have reviewed existing computational methods for identifying functional

modules in static conditions or under a condition or a set of conditions of interest. We have

only focused on approaches for detecting functional modules from PPI and functional protein

association networks. We also discussed computational approaches for discovering functional

modules in which the multi-omics profiles of member genes correlate with the phenotype.

To quantify organismic complexity and evolutionary diversity from a systemic point

of view poses challenging biological and computational problems. In Chapter 4, we have

investigated normalized weighted treelet distributions, based on the exploration of PPI

network whose edges are assigned to confidence scores, which can be retrieved from the

96
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STRING database. As a theoretical novelty, we have extended the color coding technique to

weighted networks. As a novelty in terms of applications, we applied it to confidence-scored

PPI networks. As a result, we were able to reveal differences between uni- and multicellular

as well as pro- and eukaryotic organisms. Systemic differences based on local features in

PPI networks between pro- and eukaryotes had not been reported before. In sum, our study

reveals novel systemic differences and confirms previously reported ones on substantially more

reliable PPI network data. Our study also confirms that confidence-scored PPI networks can

capture the biological reality more accurately than currently available boolean PPI network

data.

Recent studies have strongly confirmed that cancer comes in a great variety of phenotypes

as well as multiple evolutionary stages. In Chapter 5, we have explicitly addressed this when

searching for systemic subnetwork markers: we employ a biclustering approach (wDCB)

which allows that our markers may apply to several but not all cancer samples under

examination. As a result, we have outperformed the state-of-the-art approaches, achieving

relative increases in prediction accuracy of about 50% in the most demanding cross-platform

instances. Our top-ranked markers contained, for example, well-known dysregulated genes

involved in TP53 signaling.

In Chapter 6, we have described a novel network-based classification algorithm (OptDis)

using the color coding technique to identify optimally discriminative subnetwork markers.

Focusing on PPI networks, we have applied our algorithm to drug response studies: we

have evaluated our algorithm using published cohorts of breast cancer patients treated

with combination chemotherapy. We have shown that our OptDis method improves over

previously published subnetwork methods and provides better and more stable performance

compared with other subnetwork including wDCB and single gene methods. We have also

shown that our subnetwork method produces predictive markers that are more reproducible

across independent cohorts and offer valuable insight into biological processes underlying

response to therapy. At the end of this chapter, we assessed the main sources of the predicting

performance improvement of OptDis.

7.2 Limitations

Most of the computational methods for discovering functional modules including the ones

introduced in this thesis have utilized molecular interaction networks which are constructed
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mainly from PPI networks. As mentioned in Chapter 2, PPI network data are incomplete

and noisy. Some interactions have not been discovered yet. As a result, existing compu-

tational methods that search for connected subnetworks from PPI networks could miss

many functional modules. Some interactions exist only in some particular conditions. As

a consequence, extracted functional modules may not exist under a given condition, thus,

are false discoveries. To tackle the incompleteness problem of PPI networks, as we have

learnt from Chapter 3, many groups have integrated other genomic evidences to build

protein functional association networks. For example, the STRING database has utilized

mRNA coexpression and comparative genomics to transfer PPIs from related species to the

considered species. To provide a local view of PPI networks, recent efforts have tried to

build molecular interaction networks under specific conditions. Thus, future PPI network

data could not only be more complete but also provide a local view under the condition of

interest.

Many existing algorithms for functional module discovery have integrated gene expression

into PPI network data. However, regulation of gene expression is complex and controlled

by many factors. In addition, gene expression does not necessarily correspond to protein

expression under the condition of interest. Therefore, high expression level of a pair of genes

which form an edge in a PPI network may not imply an interaction between their protein

products. However, the identification of interactions in PPI networks could be improved with

the progress of wet lab techniques to measure protein expression such as mass spectrometry.

7.3 Future Work

Although we have made good progress with algorithms for discovering network motifs and

subnetwork markers, there are several interesting directions that need to be explored, in

particular the following ones:

• First, it can been seen from previous works in Chapter 3 and our approach in Chapter

4 that currently available approaches for discovering network motifs only take into

account of network topology. Since there is a high false positive rate in PPI networks,

using network topology may result in false positive discovery. On the other hand,

a set of genes which are highly coexpressed and connected from a network might

correspond to a functional module. This suggests that integrating PPI network data

and gene expression profiles could yield more reliable network motifs. We could redefine
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network motifs as connected subgraphs which are more abundant in PPI networks

than in random networks with the same global properties and all member genes are

coexpressed.

• It is well known that many genes/proteins are known to be expressed only in specific

tissues and thus the biological networks in various tissues could be very different.

Moreover, the majority of protein interactions in online databases are collected from

various tissue types and are examined under standard lab conditions. Thus, current

available PPI networks can only offer a static view of molecular interaction networks

in cells. Recent efforts have aimed to examine molecular interaction networks under

specific tissue types [178] or under specific conditions [11]. As condition-specific

interaction data will become abundant in the near future, our algorithms in this

thesis in general computational approaches for functional module discovery could be

re-examined and could potentially result in better identification. For example, tissue

specific data could be utilized to detect tissue specific functional modules.

• Recent high throughput genomic technologies have produced various measurements that

capture activities of many molecules DNAs, mRNAs, proteins, metabolites, miRNAs

and etc... However, integrating network topology with data from single genomic

technology is usually done. Consider all of these multi-omic profiles under a systems

biology view could provide more complete and reliable view of molecular interactions

of the cells. Thus, novel computational methods for integrating all multi-omic data

(for example integrate genomic variations, gene expression, miRNA expression and

network topology) will be highly in demand. In addition, future computational tools

for integrating multi-omic profiles and network topology should not only discover a

functional module as a set of genes but should also recover the regulatory relationships

(for example promoting/inhibiting) among its members.



Bibliography

[1] Cellmap. http://cancer.cellmap.org.

[2] Nci pathway interaction database. http://pid.nci.nih.gov.

[3] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C.
Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore,
J. Hudson, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C. Greiner,
D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R. Grever,
J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt. Distinct types of diffuse
large B-cell lymphoma identified by gene expression profiling. Nature, 403:503--511,
Feb 2000.

[4] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. Biomolecular
network motif counting and discovery by color coding. Bioinformatics, 24:i241--249,
Jul 2008.

[5] Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their
applications. ACM Transactions on Algorithms, 6(3), 2010.

[6] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844--856,
1995.

[7] M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya. Develop-
ment and implementation of an algorithm for detection of protein complexes in large
interaction networks. BMC Bioinformatics, 7:207, 2006.

[8] Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some param-
eterized counting problems. In ISAAC, pages 453--464, 2002.

[9] G. D. Bader, D. Betel, and C. W. Hogue. BIND: the Biomolecular Interaction Network
Database. Nucleic Acids Res., 31:248--250, Jan 2003.

[10] Pierre et al. Baldi. Assessing the accuracy of prediction algorithms for classification:
an overview. Bioinformatics, 16(5):412--424, 2000.

100



BIBLIOGRAPHY 101

[11] S. Bandyopadhyay, M. Mehta, D. Kuo, M. K. Sung, R. Chuang, E. J. Jaehnig, B. Bo-
denmiller, K. Licon, W. Copeland, M. Shales, D. Fiedler, J. Dutkowski, A. Guenole,
H. van Attikum, K. M. Shokat, R. D. Kolodner, W. K. Huh, R. Aebersold, M. C.
Keogh, N. J. Krogan, and T. Ideker. Rewiring of genetic networks in response to DNA
damage. Science, 330(6009):1385--1389, Dec 2010.

[12] E. Banks, E. Nabieva, R. Peterson, and M. Singh. NetGrep: fast network schema
searches in interactomes. Genome Biol., 9:R138, 2008.

[13] A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286:509--512, Oct 1999.

[14] A.-L. Barabási and Z. N. Oltvai. Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics, 5(2):101--113, 2004.

[15] S. Bauer, S. Grossmann, M. Vingron, and P.N. Robinson. Ontologizer 2.0 - a multi-
functional tool for go term enrichment analysis and data exploration. Bioinformatics,
24:1650--1, 2008.

[16] P. Beltrao, J. C. Trinidad, D. Fiedler, A. Roguev, W. A. Lim, K. M. Shokat, A. L.
Burlingame, and N. J. Krogan. Evolution of phosphoregulation: comparison of
phosphorylation patterns across yeast species. PLoS Biol., 7:e1000134, Jun 2009.

[17] S. et al. Benini. Inhibition of insulin-like growth factor I receptor increases the
antitumor activity of doxorubicin and vincristine against Ewing’s sarcoma cells. Clin
Cancer Res., 7:1790--1797, Oct 2001.

[18] A. H. Bild, G. Yao, J. T. Chang, Q. Wang, A. Potti, D. Chasse, M. B. Joshi, D. Harpole,
J. M. Lancaster, A. Berchuck, J. A. Olson, J. R. Marks, H. K. Dressman, M. West, and
J. R. Nevins. Oncogenic pathway signatures in human cancers as a guide to targeted
therapies. Nature, 439:353--357, Jan 2006.

[19] H. Bonnefoi, C. Underhill, R. Iggo, and D. Cameron. Predictive signatures for
chemotherapy sensitivity in breast cancer: are they ready for use in the clinic? Eur. J.
Cancer, 45:1733--1743, Jul 2009.

[20] P. Braun, A. R. Carvunis, B. Charloteaux, M. Dreze, J. R. Ecker, D. E. Hill, F. P.
Roth, M. Vidal, M. Galli, P. Balumuri, V. Bautista, J. D. Chesnut, R. C. Kim, C. de los
Reyes, P. Gilles, C. J. Kim, U. Matrubutham, J. Mirchandani, E. Olivares, S. Patnaik,
R. Quan, G. Ramaswamy, P. Shinn, G. M. Swamilingiah, S. Wu, J. R. Ecker, M. Dreze,
D. Byrdsong, A. Dricot, M. Duarte, F. Gebreab, B. J. Gutierrez, A. MacWilliams,
D. Monachello, M. S. Mukhtar, M. M. Poulin, P. Reichert, V. Romero, S. Tam,
S. Waaijers, E. M. Weiner, M. Vidal, D. E. Hill, P. Braun, M. Galli, A. R. Carvunis,
M. E. Cusick, M. Dreze, V. Romero, F. P. Roth, M. Tasan, J. Yazaki, P. Braun, J. R.
Ecker, A. R. Carvunis, Y. Y. Ahn, A. L. Barabasi, B. Charloteaux, H. Chen, M. E.
Cusick, J. L. Dangl, M. Dreze, J. R. Ecker, C. Fan, L. Gai, M. Galli, G. Ghoshal,



BIBLIOGRAPHY 102

T. Hao, D. E. Hill, C. Lurin, T. Milenkovic, J. Moore, M. S. Mukhtar, S. J. Pevzner,
N. Przulj, S. Rabello, E. A. Rietman, T. Rolland, F. P. Roth, B. Santhanam, R. J.
Schmitz, W. Spooner, J. Stein, M. Tasan, J. Vandenhaute, D. Ware, P. Braun, and
M. Vidal. Evidence for network evolution in an Arabidopsis interactome map. Science,
333:601--607, Jul 2011.
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