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Abstract

Motivated by the CAYACS program at BC Cancer Research Center, this thesis project

introduces a latent class model to formulate event counts. In particular, we consider a pop-

ulation with two latent classes, such as an at-risk group and a not-at-risk group of cancer

survivors in the CAYACS program. Likelihood-based inference procedures are proposed for

estimating the model parameters with or without one class fully specified. The EM algo-

rithm is adapted to compute the MLE; a pseudo MLE of the model parameters is proposed

to reduce computing intensity and improve inference efficiency using readily available sup-

plementary information. The estimation procedures are studied via simulation regarding

both efficiency and robustness. We illustrate the methodology with the physician claim

data of the CAYACS cohort for risk assessment throughout the project. With the latent

class model, we identify risk factors for cancer survivors to late and on-going problems and

obtain an alternative, perhaps more desirable, comparison of the cohort with the general

population.
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Chapter 1

Introduction

1.1 Background and Motivation

The population of cancer survivors has been increasing rapidly due to improvements in

cancer treatments. These survivors are often at risk for late and ongoing problems that

are mainly treatment-related. To determine care needs and required resources and to

evaluate/develop strategies for long-term management, there have been demands of risk

assessment particularly for those diagnosed with cancer at a young age. The Childhood,

Adolescent, Young Adult Cancer Survivor (CAYACS) research program at British Columbia

Cancer Research Center (http://www.cayacs.ca), using existing population-based datasets

and record linkage methodology, has been conducting a series of epidemiologic, clinical and

health service studies relating to survivorship issues of cancer survivors diagnosed at age 0

to 19; see McBride et al. (2010).

One of CAYACS’s specific objectives is to evaluate the physician visit frequency and cost

of young cancer survivors in British Columbia and to identify the risk factors, in contrast to

the general population. McBride et al. (2011) report an analysis of the available physician

claim data associated with a cohort of young cancer survivors, compared to the general

population, to identify the risk factors for the physician visits and cost. They find that

demand for physician care among the young cancer survivors is considerably greater than

it from the general population within similar age and sex group. The analysis provides

insights into physician visit patterns of the survivors and, at the same time, raises issues

to be further explored. For example, the comparison of all the cancer survivors to the

general population may implicitly reveal whether the portion of survivors in the cohort at

1



CHAPTER 1. INTRODUCTION 2

risk for late and ongoing problems is larger than that in the general population. It does

not appropriately assess the survivor cohort’s risk rate as the consequences of the original

cancer diagnoses. For another example, the analysis in McBride et al. (2011) indicates that

females have significantly higher physician visit frequency than males in the cohort. It is

not clear whether this identifies sex as a risk factor or simply reflects a pattern of physician

visits over all, since this pattern is also seen in the general population.

Some preliminary analysis indicates that, while many survivors visit physicians rather

frequently, some survivors in the cohort show a similar physician visit frequency to people

from the general population. This leads one to conjecture that the cohort is a mixture of

“at-risk” and “not-at-risk” groups. The individuals in the “at-risk” group are those who

are suffering the later effects of the original cancer diagnosis and with potentially higher

rate of physician visits, while individuals in the “not-at-risk” group are not at an increased

risk and have the same physician visit pattern as the general population. Evaluating the

at-risk group in the cohort separately may provide a better assessment of the risk to late

and ongoing problems of cancer survivors; the risk factors can be then identified via the

associated regression analysis. However, the membership of a subject in either the at-risk

group or the not-at-risk group is not observable. This motivated us to consider a latent

class model with two latent classes: at-risk and not-at-risk groups.

Goodman (1974) formalizes the latent class modeling introduced by Lazarsfeld and

Henry (1968), and derives the maximum likelihood estimation procedure. Latent class

modeling has had a wide range of applications; see, for example, Magidson and Vermunt

(2002); Pepe and Janes (2007); Vermunt (2008). The formulation gives a convenient frame-

work for risk assessment, to study the features of physician visit patterns particularly due

to the late and ongoing treatment-related problems of cancer survivors. It also leads to a

natural comparison of the survivors in the at-risk group to the general population. We as-

sume the “not-at-risk” group in the latent class modeling has exactly the same distribution

of physician visits as the general population.

In the analysis with a latent class model, one needs to specify the underlying probability

model into a parametric form for each of the latent classes to avoid a non-identifiability

problem in general. On the other hand, in addition to other issues such as computational

robustness when implementing the likelihood-based procedures with latent class models

(e.g., Hall and Shen, 2010), the efficiency of the MLE will drop considerably due to the

increasing number of parameters. A model with two latent classes has almost 3 times as
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many parameters as a single marginal model. To address this issue, we make efforts to

utilize the potentially available rich information on the general population in this project.

We firstly assume that the distribution of the not-at-risk group is fully specified. The

estimated distribution from the general population is used as the true distribution in the

real data analysis. This allows us to focus on making inferences about the at-risk group, to

develop a more efficient inferential procedure with a partially specified model for the at-risk

group. At the same time, it reduces the computational intensity of the likelihood-based

approach. We then explore how to account for the variation of the estimated distribution

for the class of the not-at-risk cancer survivors.

This thesis project aims at formulating the CAYACS physician visits by a latent class

model, and developing the associated likelihood-based estimating procedures, to assess the

frequency of physician visits of the group at-risk and identify the associated risk factors.

We employ the CAYACS program to motivate and illustrate the proposed modeling and

inferential procedures. However, the methodology is not limited to the program and can be

applied rather broadly.

1.2 Framework and Model Specification

Let N and Z be a subject’s count of physician visits over the time period (0, T ] and covariate

vector, respectively. Here the observation period in the particular CAYACS application is

the time interval starting from when a BC resident diagnosed with cancer at a young age

becomes a “survivor” until his/her death or the end of the data collection. To formulate the

cohort’s potential two strata, we consider a cohort with two latent classes, corresponding

to the “at-risk” and “not-at-risk” groups in the cancer survivor cohorts. Introduce a latent

binary variable η to indicate if a subject belongs to the group at-risk. Assume that E(η|Z) =

P (η = 1|Z) is p(Z;α), known up to the parameter vector α. This allows us to identify risk

factors with the group at-risk, in which subjects have a pattern of physician visits different

from the general population. It leads to a finite mixture modeling as follows.

We specify the underlying probability models for N with the groups at-risk and not-

at-risk as Poisson distributed with means E(N |η = 1, T, Z) = Λ1(T,Z;β) and E(N |η =

0, T, Z) = Λ0(T,Z; θ), respectively. The popular zero-inflated Poisson (ZIP) model (e.g.,

Lambert, 1992; Hall and Shen, 2010) is a special case. Suppose that the cohort of inter-

est has n independent subjects. We allow the observation period to vary from subject to
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subject. Denote the time lengths, observed counts, at-risk indicators and covariates as-

sociated with the subjects by
{

(Ti, Ni, ηi, Zi) : i = 1, . . . , n
}

. Here Ni is the observed

count of subject i’s physician visits over time interval (0, Ti]. Our primary interest is in

estimating the parameters α, β and θ in p(Z;α), Λ1(T,Z;β) and Λ0(T,Z; θ) with the

available data
{

(Ti, Ni, Zi) : i = 1, . . . , n
}

. For example, an estimator of α can be used

to evaluate p(Z;α), which gives a numerical risk assessment, or to identify a risk factor

by conducting a significance test on the effect of a covariate. An estimator of β, on the

other hand, can be used to identify factors associated with high visit frequency in the

group at-risk. Commonly used parametric specifications are the ones used in the logis-

tic and loglinear models: logit{p(Z;α)} = α
′
Z, log{Λ1(T,Z;β)} = β0 + β

′
1Z + β2T and

log{Λ0(T,Z; θ)} = θ0 + θ
′
1Z + θ2T .

In the CAYACS application, the available physician claim data are directly about the

conditional distribution of N , given T and Z, a mixture Poisson distribution:

P (N |T,Z) = P (N |η = 1, T, Z;β)p(Z;α) + P (N |η = 0, T, Z)[1− p(Z;α)].

This may lead to some rather intensive computing in the statistical analysis. There exists

usually a large amount of information on the general population. Taking the distribution of

the not-at-risk group as the same as that of the general population, we start with assuming

that P (N |η = 0, T, Z), the distribution of N conditional on η = 0 and (T,Z), is known, and

focus on making inferences about (α, β). In the actual data analysis, we take the estimate

of the distribution obtained using the information from the general population as the true

value. We then explore how to account for the variation of the estimator.
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1.3 Project Outline

The rest of this thesis is organized as follows. Chapter 2 presents inference procedures

assuming the distribution of physician visit counts in the “not-at-risk” group is known

due to the readily available rich information from the general population. We present

three sets of maximum likelihood estimators obtained by maximizing full-data likelihood,

maximizing observed-data likelihood, and an application of EM-algorithm. The first set

is not practically useful. It is used to study the properties of the last two sets, which are

theoretically equivalent.

The discussion at the end of Chapter 2 motivates Chapter 3 to propose estimation

procedures with both latent classes not-fully specified. We start with making inferences

for all parameters (α, β, θ) by the maximum likelihood estimation using the survivor cohort

data. Then we consider a consistent estimator of θ from the general population and plug

it in the likelihood functions to attain a pseudo MLE of (α, β). We take account for the

variation of the estimation from the general population for the distribution of the not-at-risk

group in estimating the standard deviation of the pseudo MLE.

Both chapters describe and report the simulation studies conducted to examine the

finite sample properties. To illustrate the methodology, real CAYACS physician visit data

are analyzed in Chapter 4 via the approaches proposed in the previous chapters. Final

remarks are given in Chapter 5.



Chapter 2

Inference Procedures with One

Class Fully Specified

In this chapter, we assume the distribution of the not-at-risk group is known and derive

likelihood-based approaches for estimating the parameters (α, β) in the aforementioned

model for the group at-risk. An application of the EM algorithm is presented in the chapter.

A simulation study was conducted to investigate efficiency and robustness of the estimation

procedures. We show at the end of this chapter that the inferences on (α, β) can be biased

and inefficient if an estimate from the general population is used as the distribution of the

not-at-risk group. This motivates the discussion in Chapter 3.

2.1 Likelihood Functions and EM Algorithm

Consider the mixture Poisson model introduced in Section 1.2: conditional on η and (T,Z),

N ∼ Poisson(Λη(T,Z)). We assume here that Λ0(T,Z) is known and Λ1(T,Z) is specified

as Λ1(T,Z;β) up to parameter β. This model reduces to the zero-inflated Poisson (ZIP)

model (e.g., Lambert, 1992) when Λ0(T,Z) ≡ 0.

Under the mixture Poisson model, the likelihood function of (α, β) based on the available

data
{

(Ti, Ni, Zi) : i = 1, . . . , n
}

is

L(α, β;N |T,Z) =

n∏
i=1

{
P (Ni

∣∣ηi = 1, Ti, Zi;β)P (ηi = 1|Zi;α)

+P (Ni

∣∣ηi = 0, Ti, Zi)[1− P (ηi = 1|Zi;α)]
}
, (2.1)

6
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where P (Ni

∣∣ηi = 0, Ti, Zi) = Λ0(Ti, Zi)
Nie−Λ0(Ti,Zi)

/
Ni! and P (Ni

∣∣ηi = 1, Ti, Zi;β) =

Λ1(Ti, Zi;β)Nie−Λ1(Ti,Zi;β)
/
Ni!. The maximum likelihood estimator (MLE) of (α, β), de-

noted by (α̂, β̂), can be attained by directly maximizing the likelihood function (2.1) or its

log-transformation.

With the usual regularity conditions, (α̂, β̂) are consistent and have asymptotic normal-

ity. That is,
√
n(α̂ − α, β̂ − α)

′
converges in distribution as n → ∞ to the multivariate

normal distribution with mean zero and variance FI(α, β)−1, where FI(α, β) is the Fisher

information matrix. We estimate the asymptotic variance in our numerical studies using

−n−1∂2 logL(α, β;N |T,Z)
/
∂(α, β)2, which converges to FI(α, β) almost surely as n→∞.

The computing needed to attain (α̂, β̂) can be rather intensive, especially when extend-

ing to multiple latent classes. The following presents an application of the EM-algorithm

(Dempster et al., 1977), which is intuitive and easier to implement.

The log-likelihood function of (α, β) with the “full data”
{

(Ti, Ni, ηi, Zi) : i = 1, . . . , n
}

is

l(α, β;N, η|T,Z) = l1(α; η|Z) + l2(β;N, η|T,Z)

with

l1(α; η|Z) =

n∑
i=1

[
ηi log p(Zi;α) + (1− ηi) log [1− p(Zi;α)]

]
(2.2)

and

l2(β;N, η|T,Z) =

n∑
i=1

[
ηi logP (Ni|ηi = 1, Ti, Zi;β)+(1−ηi) logP (Ni|ηi = 0, Ti, Zi)

]
. (2.3)

Note thatQ(α, β;α∗, β∗) = E
{
l(α, β;N, η|T,Z)

∣∣T,N,Z;α∗, β∗
}

is the sum ofQ1(α;α∗, β∗) =

E
{
l1(α; η|Z)

∣∣T,N,Z;α∗, β∗
}

andQ2(β;α∗, β∗) = E
{
l2(β;N, η|T,Z)

∣∣T,N,Z;α∗, β∗
}

. Max-

imizingQ(α, β;α∗, β∗) with respect to α, β is equivalent to separately maximizingQ1(α;α∗, β∗)

and Q2(β;α∗, β∗) with respect to α and β, respectively. Note that both l1(α; η|Z) and

l2(β;N, η|T,Z) are linear functions of ηi’s, and thus Q1(α;α∗, β∗) and Q2(β;α∗, β∗) are

the corresponding linear functions of E(ηi|Ti, Ni, Zi;α
∗, β∗). This leads to an algorithm

of iteratively alternating between an E-step and an M-step until convergence: the E-step

estimates ηi’s with their conditional expectations using the current estimates of (α, β), and

the M-step maximizes separately (2.2) and (2.3) to attain the new estimates of (α, β) using

the estimates of ηi’s most recently updated by the E-step.
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Specifically, starting with initial values α(0) and β(0), at the kth iteration of the algorithm

with k ≥ 1 and the (k−1)th estimates α(k−1) and β(k−1), the algorithm updates the estimates

as follows.

E-Step. For i = 1, . . . , n, calculate η
(k)
i = E{ηi|Ti, Ni, Zi;α

(k−1), β(k−1)} as

P (Ni|ηi = 1, Ti, Zi;β
(k−1))p(Zi;α

(k−1))

P (Ni|ηi = 1, Ti, Zi;β(k−1))p(Zi;α(k−1)) + P (Ni|ηi = 0, Ti, Zi)[1− p(Zi;α(k−1))]
.

M-Step. Obtain α(k) and β(k) by separately maximizing l1(α; η(k)|Z) and l2(β;N, η(k)|T,Z),

respectively, which is equivalent to solving the estimating equations with mild regu-

larity conditions:

∂l1(α; η(k)|Z)

∂α
=

n∑
i=1

[η
(k)
i − p(Zi;α)]

∂p(Zi;α)/∂α

p(Zi;α)[1− p(Zi;α)]
= 0 (2.4)

and

∂l2(β;N, η(k)|T,Z)

∂β
=

n∑
i=1

η
(k)
i [Ni − Λ1(Ti, Zi;β)]

∂Λ1(Ti, Zi;β)/∂β

Λ1(Ti, Zi;β)
= 0. (2.5)

This algorithm with the ZIP model coincides the estimation procedure presented in Hall

and Shen (2010). We may follow the discussion in Hall and Shen (2010) to provide a variation

of the EM algorithm in the presence of outliers. We can verify the required conditions that

ensure the resulting sequence {(α(k), β(k)) : k = 1, 2, . . .} of the EM-algorithm converges to

the MLE (α̂, β̂) derived from L(α, β;N |T,Z) in (2.1).

The MLE (α̂, β̂) derived above is in fact the solution to the following estimating equa-

tions:
n∑
i=1

[E(ηi|Ti, Ni, Zi;α, β)− p(Zi;α)]
∂p(Zi;α)/∂α

p(Zi;α)[1− p(Zi;α)]
= 0 (2.6)

and
n∑
i=1

E(ηi|Ti, Ni, Zi;α, β)[Ni − Λ1(Ti, Zi;β)]
∂Λ1(Ti, Zi;β)/∂β

Λ1(Ti, Zi;β)
= 0, (2.7)

where E(ηi|Ti, Ni, Zi;α, β) is

P (Ni|ηi = 1, Ti, Zi;β)p(Zi;α)

P (Ni|ηi = 1, Ti, Zi;β)p(Zi;α) + P (Ni|ηi = 0, Ti, Zi)[1− p(Zi;α)]
. (2.8)

Because the sequence {η(k) : k = 1, 2, . . .} from the E-step converges to E(ηi|Ti, Ni, Zi;α, β).

Thus an alternative procedure for computing the MLE (α̂, β̂) is to directly solve (2.6) and

(2.7) jointly.
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2.2 Simulation Study

We conducted a simulation study with the proposed mixture Poisson model to examine

finite sample properties of the MLEs derived in Section 2.1 in efficiency and robustness.

Specifically, we evaluated three MLE sets obtained using datasets generated from five dif-

ferent model specifications. The three MLEs are (1) the MLE derived from the likelihood

with the full-data
{

(Ti, Ni, ηi, Zi) : i = 1, . . . , n
}

, (2) the MLE directly attained from the

likelihood with the observed-data
{

(Ti, Ni, Zi) : i = 1, . . . , n
}

, and (3) the MLE obtained

by the EM-algorithm in Section 2.1. The first set of MLE in fact cannot be evaluated

practically as it requires observation of the latent indicator η. It is used as a reference to

study the performance of the other two MLEs. The five data settings and their underlying

models are described in the following. The data generation and analysis were carried out

using the R Statistical Software package.

2.2.1 Data Generation

Each simulated dataset had n = 500 independent subjects from two latent classes, say, the

at-risk and not-at-risk groups. We considered two potential risk factors: the binary variable

sex and the continuous variable age at baseline (age), which is the age of subject at the

beginning of the study.

Risk factors, latent indicator η, and observation time length T were generated following

the distributions below, respectively. For i = 1, . . . , n,

• sexi
iid∼ Bin(1, 1/2) for the indicator of male

• agei
iid∼ Beta(0.7, 0.8), according to age trend in CAYACS data (McBride et al., 2011;

Ma, 2009) and standardized age values were used to have compatible coefficient with

sex

• ηi
iid∼ Bin(1, pi), where logit(pi) = α0 + α1sexi + α2agei,

α0 = 1, α1 = −1 and α2 = −0.8

• Ti
iid∼ Beta(2, 1) ∗ 5

We examine efficiency and robustness of the three MLEs in the following two simulation

settings, respectively. Conditional on (ηi, Ti, Zi), the observed number of physician visits

associated with subject i was generated independently in two settings described as follows.
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Simulation Setting 1:

This setting was designed to study efficiency of the estimation procedures. Conditional

on (Ti, Zi), the observed number of physician visits associated with subject i was generated

independently from a Poisson distribution conditional on ηi, i.e., Ni
iid∼ Poisson

(
Ληi(Ti, Zi)

)
given ηi. Two cases were simulated.

Case 1a. The counts Ni’s were from a ZIP model, with Ni ≡ 0 for subjects in

the not-at-risk group (i.e., with ηi = 0) and in the at-risk group Ni|ηi = 1
iid∼

Poisson
(

Λ1(Ti, Zi;β)
)

, Λ1(Ti, Zi;β) = T β3i exp(β0 +β1sexi+β2agei), where β0 = 1.8,

β1 = −0.6, β2 = −0.5 and β3 = 1.

Case 1b. The counts Ni’s were from a mixture of two Poisson distributions for

both classes, with Λ0(Ti, Zi; θ) = T θ3i exp(θ0 + θ1sexi + θ2agei), θ0 = 0.5, θ1 = −0.3,

θ2 = −0.25 and θ3 = 1 and Λ1(Ti, Zi;β) as specified before.

Simulation Setting 2:

We designed the second setting to assess robustness of the estimating procedures. Con-

ditional on (Ti, Zi), the observed number of physician visits associated with subject i, Ni, in

the not-at-risk group (i.e., ηi = 0) was generated from the Poisson distribution with mean

Λ0(Ti, Zi; θ) as Case 1b above. Three simulation cases were considered Ni|ηi = 1, Ti, Zi

for subjects in the at-risk group generated from different distributions with the same mean

function Λ1(Ti, Zi;β) as Setting 1 above.

Case 2a. Ni|ηi = 1
iid∼ Bin(9, Pi) with Pi = Λ1(Ti, Zi;β)/9. This case simulates

under-dispersed counts in the at-risk group with variance Λ1(Ti, Zi;β)(1−Λ1(Ti, Zi;β)/9).

Case 2b. Ni|ηi = 1
iid∼ NB(size, Pi) with Pi = size/(size + Λ1(Ti, Zi;β)) and size

is the number of successful trials, or the dispersion parameter of a negative bino-

mial. This case simulates over-dispersed counts in the at-risk group with variance

Λ1(Ti, Zi;β)(1 + Λ1(Ti,Zi;β)
size ). The over-dispersion gets worse as size gets small. When

size goes to infinity, the negative binomial distribution converges to a Poisson distri-

bution. We looked into cases with size = 100, 10, and 1.

Case 2c. Ni|ηi = 1
iid∼ Poisson

(
ξiΛ1(Ti, Zi;β)|ξi

)
. Here ξi is gamma-distributed

with mean 1 and variance 1/φ. This case simulates over-dispersed counts in the at-

risk group with variance Λ1(Ti, Zi;β)(1 + 1
φ). We used φ = 2, 1 and 0.5 to simulate

the counts from the at-risk group with over-dispersion levels ranging from low to high.
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2.2.2 Simulation Results

We generated datasets in each of Cases 1a-1b and Cases 2a-2c, and evaluated the three

sets of MLE for (α0, α1, α2) and (β0, β1, β2, β3), assuming the true values of θ are known.

Based on 100 repetitions of the estimates, Tables 2.1 - 2.4 present the sample means, the

sample standard deviations, and the sample means of the asymptotic standard deviation

estimates of the three estimators: the MLE by directly maximizing the observed-data like-

lihood (2.1) from {(Ni, Ti, Zi) : i = 1, . . . , n} and the MLE via the EM algorithm described

in Section 2.1, along with the MLE using “the full data”, {(Ni, ηi, Ti, Zi) : i = 1, . . . , n},
which is not practically attainable. The third MLE is used as a reference to study the other

two MLEs, which are theoretically the same.

Table 2.1 shows a summary of the simulation results with the data generated in Cases

1a-1b, following mixture Poisson distributions. All the sample means of the estimators

are close to the corresponding true values of the parameters. This confirms that the three

estimators are consistent. All the numerical outcomes with the MLE by directly maximizing

the observed data likelihood are very close to the ones by the EM algorithm. The sample

standard deviations associated with the MLEs using the observed data are slightly larger

but quite close to the ones associated with the full data, which cannot be evaluated with the

available data. We also verified the asymptotic normality for each of the three estimators,

by examining the histograms of the attained estimates in the two simulation cases. Table

2.1 includes also the sample means of the asymptotic standard deviation estimator for the

MLEs in the two cases. The standard deviation estimates are close to the corresponding

sample standard deviations of the MLEs. It indicates the standard deviation estimation is

practically satisfactory with a reasonable sample size.

Tables 2.2 to 2.4 present the outcomes of the robustness study using the data generated

from Cases 2a-2c. Those cases present certain model misspecification. The tables list

MLEs and their stardard deviation estimates in the same way as Table 2.1. In general,

the MLE with the full data shows certain robustness against model misspecification. The

MLEs with the observed data, however, appear biased in the two cases with over-dispersion,

and the bias gets heavier as over-dispersion gets worse. This indicates a great demand of a

correct model specification especially when the membership of either groups is latent.

In Case 2a with the under-dispersion data, the MLE with observed data seems accept-

able, but the standard deviation estimators of all 3 sets of MLE are overestimated; see Table
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2.2. We can see from the table that the sample means of the standard deviation estimates

are much larger than the sample standard deviations of the estimates. On the other hand,

in Case 2b and Case 2c, as over-dispersion is getting worse, not only are the MLEs with

observed data rather biased, but also the standard deviation estimators of all 3 sets of MLE

are underestimating. The sample means of standard deviation estimates are considerably

smaller than the sample standard deviations. That is, the estimates differ a lot from sample

to sample; see Table 2.3 and 2.4.

To graphically illustrate the lack of robustness of the likelihood-based estimation pro-

cedures against model misspecification of the at-risk group, we plot 3D and contour plots

of the full-data log likelihood and the observed-data log likelihood surfaces for mixture

Poisson data (Case 1b) in Figrue 2.1 and the same plots for Poisson(η = 0) and mixed

Poisson(η = 1) data (Case 2c), with φ = 1 medium over-dispersion in Figrue 2.2. For

demonstration purpose, data for these plots only include one covariate, age. Log likelihood

functions are plotted against intercept α0 and age coefficient α1, when β’s are fixed at true

values. For data generated from mixture Poisson model (Figure 2.1), we can see clearly

that both full-data likelihood and observed-data likelihood functions reach maximal points

around the true values of (α0, α1). On the other hand, if the likelihood functions are mis-

specified, e.g., data generated from the Poisson and mixed Poisson model (Case 2c), the

full-data likelihood function still attains a maximal point in an acceptable range of (α0,

α1); see Figrue 2.2. That is because η is observed and used to estimate α. However, the

observed-data likelihood fails to attain a maximum in any reasonable range of (α0, α1).
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Table 2.1: MLE of (α, β) in the Efficiency Study

Case 1a: ZIP Model
parameter α0 α1(sex) α2(age) β0 β1(sex) β2(age) β3(lnt)
true value 1 -1 -0.8 1.8 -0.6 -0.5 1

MLE via full data
sma 1.009 -1.020 -0.794 1.794 -0.607 -0.504 1.006
ssdb 0.1793 0.1546 0.2972 0.0697 0.0378 0.0558 0.0488
smc

sd 0.1996 0.1891 0.3009 0.0731 0.0398 0.0572 0.0529
MLE via observed data

sma 1.012 -1.018 -0.800 1.795 -0.607 -0.503 1.005
ssdb 0.1778 0.1515 0.2919 0.0702 0.0374 0.0556 0.0487
smc

sd 0.1996 0.1891 0.3009 0.0732 0.0398 0.0572 0.0529
MLE via observed data by EM-algorithm

sma 1.013 -1.021 -0.801 1.795 -0.607 -0.504 1.005
ssdb 0.1827 0.1543 0.3000 0.0717 0.0375 0.0556 0.0498
smc

sd 0.1996 0.1892 0.3009 0.0732 0.0398 0.0572 0.0529

Case 1b: Mixture Poisson
parameter α0 α1(sex) α2(age) β0 β1(sex) β2(age) β3(lnt)
true value 1 -1 -0.8 1.8 -0.6 -0.5 1

MLE via full data
sma 1.046 -1.010 -0.855 1.799 -0.597 -0.496 1.000
ssdb 0.2175 0.1786 0.2809 0.0808 0.0357 0.0565 0.0558
smc

sd 0.1996 0.1879 0.3002 0.0728 0.0395 0.0566 0.0522
MLE via observed data

sma 1.042 -1.012 -0.821 1.797 -0.598 -0.501 1.003
ssdb 0.2353 0.2295 0.3285 0.0851 0.0493 0.0658 0.0597
smc

sd 0.2316 0.2495 0.3808 0.0837 0.0510 0.0656 0.0598
MLE via observed data by EM-algorithm

sma 1.043 -1.0148 -0.820 1.797 -0.598 -0.500 1.003
ssdb 0.2353 0.2309 0.3231 0.0888 0.0489 0.0664 0.0628
smc

sd 0.2317 0.2494 0.3809 0.0838 0.0511 0.0657 0.0598
a Sample mean of the estimates
b Sample standard deviation of the estimates
c Sample mean of the standard deviation estimates
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Figure 2.1: 3D and Contour Plots of Likelihood Surface for Case 1b
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Figure 2.2: 3D and Contour Plots of Likelihood Surface for Case 2c
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Table 2.2: MLE of (α, β) in the Robustness Study Case 2a Poisson and Binomial

Case 2a: under-dispersion
parameter α0 α1(sex) α2(age) β0 β1(sex) β2(age) β3(lnt)
true value 1 -1 -0.8 1.8 -0.6 -0.5 1

MLE via full data
sma 1.006 -1.016 -0.798 1.848 -0.602 -0.506 0.977
ssdb 0.1949 0.1913 0.3134 0.0431 0.0315 0.0401 0.0321
smc

sd 0.2276 0.2410 0.3726 0.1097 0.0605 0.0860 0.0773
MLE via observed data

sma 1.091 -0.931 -0.736 1.804 -0.634 -0.527 1.007
ssdb 0.2126 0.2390 0.3682 0.0467 0.0407 0.0473 0.0354
smc

sd 0.2321 0.2523 0.3856 0.1039 0.0582 0.0838 0.0728
MLE via observed data by EM-algorithm

sma 1.090 -0.935 -0.728 1.804 -0.634 -0.528 1.008
ssdb 0.2154 0.2420 0.3718 0.0483 0.0404 0.0478 0.0361
smc

sd 0.2321 0.2523 0.3858 0.1038 0.0582 0.0837 0.0728

2.3 Discussion

We conclude from the simulation results in Section 2.2.2 that the likelihood-based estimation

procedures in this chapter are efficient with data from mixture Poisson distributions, but

lack robustness against model misspecification. They may lead to biased estimates when

the data have considerately heavy over-dispersion. Plus, in either of the under- or over-

dispersion cases, the conventional standard deviation estimator can be biased.

This indicates a demand of robust inference procedures using counts with latent classes.

Wang et al. (2012) presents a class of extended generalized estimating equations. The

estimating equation based approach, which is equivalent to the likelihood-based approach

when the counts are from the mixture Poisson model, requires only to specify the conditional

mean function of Ni|ηi = 1, i.e., Λ1(Ti, Zi;β), and the variance function.

In this chapter, we assume the true distribution of N in the not-at-risk group is fully

known. This is conjectured from the assumption that the not-at-risk group has exactly

the same physician visit pattern as the general population, and the fact that the general

population has much richer information than the survivor cohort. In fact, at most there

is a reasonable estimator of the distribution with the available information about the gen-

eral population. It can result in undesirable inferences if one ignores the deviation of the
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Table 2.3: MLE of (α, β) in the Robustness Study Case 2b Poisson and Negative Binomial

parameter α0 α1(sex) α2(age) β0 β1(sex) β2(age) β3(lnt)
true value 1 -1 -0.8 1.8 -0.6 -0.5 1

Case 2b: size = 100
MLE via full data

sma 1.014 -1.010 -0.821 1.803 -0.601 -0.502 0.997
ssdb 0.2066 0.2042 0.2754 0.0729 0.0353 0.0631 0.0487
smc

sd 0.1995 0.1879 0.2475 0.0690 0.0341 0.0605 0.0481
MLE via observed data

sma 0.989 -1.020 -0.826 1.806 -0.595 -0.499 0.998
ssdb 0.2334 0.2550 0.3997 0.0850 0.0462 0.0716 0.0583
smc

sd 0.2309 0.2484 0.3802 0.0811 0.0493 0.0637 0.0578
MLE via observed data by EM-algorithm

sma 0.990 -1.022 -0.828 1.805 -0.595 -0.499 0.999
ssdb 0.2377 0.2582 0.4075 0.0874 0.0462 0.0714 0.0598
smc

sd 0.2309 0.2484 0.3803 0.0811 0.0494 0.0637 0.0578

Case 2b: size = 10
MLE via full data

sma 0.984 -0.991 -0.768 1.814 -0.607 -0.506 0.989
ssdb 0.1885 0.1825 0.3096 0.1066 0.0535 0.0941 0.0744
smc

sd 0.1863 0.1776 0.2991 0.0516 0.0267 0.0361 0.0365
MLE via observed data

sma 0.632 -1.058 -0.820 1.884 -0.541 -0.445 0.977
ssdb 0.2435 0.2550 0.4275 0.1182 0.0680 0.1183 0.0811
smc

sd 0.2210 0.2366 0.3661 0.0699 0.0418 0.0491 0.0494
MLE via observed data by EM-algorithm

sma 0.650 -1.063 -0.876 1.882 -0.541 -0.443 0.979
ssdb 0.2424 0.2590 0.4367 0.1197 0.0663 0.1182 0.0818
smc

sd 0.2212 0.2368 0.3666 0.0699 0.0418 0.0492 0.0494

Case 2b: size = 1
MLE via full data

sma 1.041 -1.028 -0.850 1.772 -0.612 -0.506 1.015
ssdb 0.1949 0.1843 0.2772 0.2378 0.1300 0.2382 0.1802
smc

sd 0.1975 0.1826 0.2568 0.0234 0.0112 0.0147 0.0166
MLE via observed data

sma -0.664 -0.960 -0.772 2.449 -0.448 -0.408 0.968
ssdb 0.3445 0.3409 0.5568 0.2734 0.1617 0.2992 0.2043
smc

sd 0.2297 0.2595 0.4014 0.0436 0.0227 0.0276 0.0309
MLE via observed data by EM-algorithm

sma -0.728 -0.954 -0.688 2.460 -0.449 -0.417 0.962
ssdb 0.2474 0.2895 0.4304 0.2746 0.1621 0.2940 0.2075
smc

sd 0.2309 0.2603 0.4029 0.0437 0.0228 0.0276 0.0310
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Table 2.4: MLE of (α, β) in the Robustness Study Case 2c Poisson and Mixed Poisson

parameter α0 α1(sex) α2(age) β0 β1(sex) β2(age) β3(lnt)
true value 1 -1 -0.8 1.8 -0.6 -0.5 1

Case 2c: φ = 2
MLE via full data

sma 0.979 -0.991 -0.748 1.844 -0.606 -0.543 0.973
ssdb 0.1943 0.1850 0.2832 0.1636 0.1180 0.1674 0.1138
smc

sd 0.1796 0.1775 0.2895 0.0309 0.0152 0.0199 0.0219
MLE via observed data

sma -0.235 -0.976 -0.819 2.239 -0.474 -0.440 0.945
ssdb 0.2656 0.3000 0.4609 0.1901 0.1247 0.1774 0.1343
smc

sd 0.2150 0.2380 0.3675 0.0519 0.0292 0.0351 0.0369
MLE via observed data by EM-algorithm

sma -0.297 -0.957 -0.716 2.245 -0.474 -0.446 0.943
ssdb 0.2317 0.2819 0.4024 0.1908 0.1227 0.1752 0.1360
smc

sd 0.2155 0.2382 0.3681 0.0520 0.0292 0.0351 0.0370

Case 2c: φ = 1
MLE via full data

sma 0.993 -0.994 -0.809 1.771 -0.607 -0.486 1.001
ssdb 0.2044 0.1746 0.3002 0.2468 0.1475 0.2650 0.1778
smc

sd 0.1989 0.1876 0.2804 0.0234 0.0111 0.0147 0.0164
MLE via observed data

sma -0.695 -0.842 -0.859 2.453 -0.461 -0.369 0.956
ssdb 0.3431 0.3551 0.6578 0.3525 0.1763 0.3208 0.2423
smc

sd 0.2313 0.2581 0.4030 0.0428 0.0233 0.0282 0.0307
MLE via observed data by EM-algorithm

sma -0.765 -0.879 -0.714 2.460 -0.466 -0.377 0.954
ssdb 0.2923 0.2648 0.4733 0.3377 0.1790 0.3169 0.2326
smc

sd 0.2326 0.2592 0.4046 0.0429 0.0233 0.0282 0.0307

Case 2c: φ = 0.5
MLE via full data

sma 1.002 -0.979 -0.811 1.815 -0.577 -0.542 0.979
ssdb 0.1798 0.1905 0.2759 0.3375 0.1813 0.3147 0.2247
smc

sd 0.1805 0.1896 0.2791 0.0181 0.0085 0.0115 0.0129
MLE via observed data

sma -0.896 -0.942 -1.100 2.828 -0.412 -0.332 0.883
ssdb 0.4562 0.4608 0.8281 0.4119 0.2053 0.3760 0.2826
smc

sd 0.2490 0.2855 0.4443 0.0331 0.0163 0.0223 0.0236
MLE via observed data by EM-algorithm

sma -1.150 -0.807 -0.722 2.852 -0.420 -0.366 0.875
ssdb 0.3039 0.3277 0.4938 0.3990 0.2033 0.3727 0.2738
smc

sd 0.2540 0.2866 0.4490 0.0332 0.0163 0.0223 0.0236
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estimator from the general population to the true distribution.

Now let us see numerically what happens if we use a value of θ different from its true

value to make inferences about (α, β). We repeated the simulation of Case 1b, but used

incorrect θ value (0.3,−0.1,−0.5, 0.8) instead of the true values. Estimates of the parameters

of interest (α, β) were obtained and presented in Table 2.5. We can see that the MLEs

of (α, β) via the observed-data give biased estimates of α and underestimate the standard

deviations of β̂. The MLE via the full-data remains consistent, because with the observation

of η, the information of θ is not needed in making inferences on (α, β). This is not applicable

in real data analysis. The simulation result in Table 2.5 tells us that a untrue value of θ

may lead to undesirable inferences about the parameters of interest. We need to account

for it what available is an estimate rather than the true value. We will present the required

conditions of θ estimator to make valid inferences on (α, β) in Chapter 3.

Table 2.5: MLE of (α, β) with Incorrect θ∗

Case 1b: Mixture Poisson
parameter α0 α1(sex) α2(age) β0 β1(sex) β2(age) β3(lnt)
true value 1 -1 -0.8 1.8 -0.6 -0.5 1

MLE via full data
sma 1.014 -1.005 -0.809 1.814 -0.598 -0.498 0.988
ssdb 0.1929 0.1813 0.3016 0.0711 0.0444 0.0520 0.0528
smc

sd 0.1996 0.1878 0.2997 0.0721 0.0419 0.0548 0.0545
MLE via observed data

sma 1.054 -0.570 -0.088 1.809 -0.680 -0.615 0.989
ssdb 0.2429 0.2872 0.3648 0.0874 0.0605 0.0733 0.0619
smc

sd 0.2388 0.2524 0.3920 0.0701 0.0375 0.0512 0.0495
MLE via observed data by EM-algorithm

sma 1.005 -0.562 0.014 1.813 -0.679 -0.621 0.988
ssdb 0.2396 0.2710 0.3788 0.0861 0.0584 0.0716 0.0620
smc

sd 0.2387 0.2526 0.3933 0.0702 0.0375 0.0511 0.0495
∗ true θ = (0.5,−0.3,−0.25, 1); incorrect θ = (0.3,−0.1,−0.5, 0.8)



Chapter 3

Inference Procedures with Two

Latent Classes

Chapter 2 assumes that the distribution of Ni in the “not-at-risk” group (i.e. ηi = 0) is

fully known, and the parameters of interest (α, β) are estimated with the true values of θ.

In reality, it is virtually impossible to know the true distribution. As seen in the discussion

in Section 2.3, using misspecified values of θ to make inferences about (α, β) may result

in estimation bias of α and underestimate the standard deviation of β̂ by the estimation

procedures via the observed data proposed in Chapter 2 under latent class modeling.

In attempt to address this issue and thus to make it feasible to apply our approach in

practice, this chapter proposes two other likelihood-based approaches. Without knowing

the true distribution of N |η = 0, the most straightforward way is to estimate (α, β, θ)

simultaneously by the maximum likelihood estimation via the observed data under the

mixture Poisson distribution with the two latent classes. This approach does not require

extra information over the original data, which are referred to as “primary data” in our

context. It is feasible in practical situations. However, lower efficiency is expected since

the number of parameters increases and the information in use is the same. Moreover,

sometimes estimating θ is not one of our primary interests, such as in the CAYACS program.

One may not be willing to lose the efficiency in estimating the parameters (α, β). There is

often information about one of the two latent classes from a different resource. Using the

extra data appropriately can help us achieve more efficient estimator for the parameters

of interest. We call the additional dataset as “supplementary data”. The supplementary

20
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data in CAYACS program we described previously are the available information about the

general population from BC medical insurance database, while the primary data are the

information of the survivor cohort from the CAYACS database. In other applications, such

as the one considered in Hu and Lawless (1996), the supplementary data may not be so rich,

such that the variation of the attained estimate of θ using the supplementary information

is considerably larger. In either of the cases, we need to account for the variation of the

estimated θ in inferences on α and β.

This chapter has two goals: (1) to establish a likelihood-based approach to make in-

ferences for both latent classes with only the primary data, and (2) to propose a pseudo

likelihood-based approach with supplementary data.

3.1 Maximum Likelihood Estimation with the Primary Data

3.1.1 Likelihood Functions and Estimating Procedures

Extending the model specification in Section 2.1 for a mixture of two Poisson distributions,

we further specify the mean function of N |η = 0 up to parameter θ, defined as Λ0(T,Z; θ).

Consider θ as another set of parameters needed to be estimated, and take the loglinear model

formulation for the not-at-risk group: conditional on (T,Z), logΛ0(T,Z; θ) = θ0+θ
′
1Z+θ2T .

The likelihood function of (α, β, θ) based on the observed data
{

(Ti, Ni, Zi) : i = 1, . . . , n
}

is

the same as the likelihood function (2.1) by plugging in the parametric form of Λ0(T,Z; θ),

L(α, β, θ;N |T,Z) =
n∏
i=1

{
P (Ni

∣∣ηi = 1, Ti, Zi;β)P (ηi = 1|Zi;α)

+P (Ni

∣∣ηi = 0, Ti, Zi; θ)[1− P (ηi = 1|Zi;α)]
}
, (3.1)

where P (Ni

∣∣ηi = 0, Ti, Zi; θ) = Λ0(Ti, Zi; θ)
Nie−Λ0(Ti,Zi;θ)

/
Ni! and P (Ni

∣∣ηi = 1, Ti, Zi;β) =

Λ1(Ti, Zi;β)Nie−Λ1(Ti,Zi;β)
/
Ni!. The MLE of (α, β, θ) may be attained by directly maximiz-

ing this likelihood function or its log-transformation.

An alternative way to attain the MLE is to extend the EM algorithm described in

Section 2.1. The full-data log-likelihood functions (2.2) and (2.3) are updated as follows

after including θ:

l(α, β, θ;N, η|T,Z) = l1(α; η|Z) + l2(β;N, η|T,Z) + l3(θ;N, η|T,Z)
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with

l1(α; η|Z) =
n∑
i=1

[
ηi log p(Zi;α) + (1− ηi) log [1− p(Zi;α)]

]
, (3.2)

l2(β;N, η|T,Z) =
n∑
i=1

ηi logP (Ni|ηi = 1, Ti, Zi;β), (3.3)

and

l3(θ;N, η|T,Z) =
n∑
i=1

(1− ηi) logP (Ni|ηi = 0, Ti, Zi; θ). (3.4)

Similarly to the EM algorithm in Section 2.1, we iteratively alternate between the E-step,

calculating η
(k)
i = E{ηi|Ti, Ni, Zi;α

(k−1), β(k−1), θ(k−1)} with the current (α, β, θ) estimate,

and the M-step to maximize (3.2), (3.3), and (3.4) with the updated η
(k)
i to update the

current estimate of (α, β, θ) until convergence. Here, the computational advantage is quite

obvious with θ, since the full data log-likelihood is the summation of (3.2), (3.3), and (3.4),

each of which depends only on one set of the three sets of parameters.

3.1.2 Simulation Study

We conducted a simulation to examine finite samples of the above procedures. The simu-

lation settings are as the same as in Section 2.2.1, except omitting Case 1a, which is the

ZIP model and does not require estimation of θ. The two sets of MLE of (α, β, θ) via the

observed data by directly maximizing (3.1) and the EM algorithm were evaluated, which

are theoretically equivalent. As was done in Chapter 2, to obtain a comparison, we also

evaluated the MLE of (α, β, θ) using the “full data”, {(Ni, ηi, Ti, Zi) : i = 1, . . . , n}, which

is not practically attainable. We estimated the asymptotic variance for the MLEs in the

numerical study as the same as described in Section 2.1.

Tables 3.1 summarizes the simulation results based on 100 repetitions Case 1b, the

mixture Poisson model, for the three MLEs of (α, β, θ) and their standard deviation esti-

mates. The sample means are close to the corresponding true values of the parameters,

which confirms that the three estimators are consistent. In Table 2.1 of Chapter 2, the

sample standard deviations associated with the MLE using the observed data are slightly

larger but quite close to the ones associated with the ones using the full data. However,

when one more set of parameters, θ, is estimated from the same simulation data setting, the

standard deviations associated with the MLE using the observed data are much larger than

the ones associated with the full data. This confirms the expectation of lower efficiency for
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estimating all (α, β, θ) only from the primary data. In addition, the asymptotic standard

deviation estimates of the MLEs were evaluated with the generated data. Table 3.1 includes

the sample means of the asymptotic standard deviation estimates for the MLEs, which are

close to the corresponding sample standard deviations of the MLEs. This indicates the

asymptotic standard deviations are practically satisfactory with a reasonable sample size.

For the robustness study Case 2a-2c in Section 2.2.1, we obtained similar results as

in Section 2.2.2 that the likelihood-based estimation procedures lack robustness against

model misspecification and lead to biased estimates when the data have considerately heavy

over-dispersion.
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3.2 Pseudo Likelihood Estimation with Supplementary Data

Gong and Samaniego (1981) introduce the pseudo MLE for the parameter of interest, ρ,

by plugging in an existing estimator of nuisance parameter, π, in the likelihood function of

both ρ and π, and maximizing the resulted “pseudo-likelihood” function with respect to ρ.

They also present conditions under which the pseudo MLE is consistent and asymptotically

normal: (1) the pseudo MLE ρ̃ is consistent if the existing estimator π̂ is; (2) the efficiency of

ρ̃ depends on the relative efficiency of π̂; (3) ρ̃ is asymptotically normal if π̂ is
√
n−consistent

and asymptotically normal. They investigate the numerical and asymptotic characteristics

of the pseudo MLE under a particular functional form and derive asymptotic variances of

the pseudo MLE. Hu and Lawless (1997) extend the pseudo MLE approach in Gong and

Samaniego (1981) to situations where the nuisance parameter is an unknown distribution.

They propose to use a nonparametric estimator for the unknown, such as the empirical

distribution from a supplementary dataset. They also present an alternative to the pseudo

MLE approach, an estimating function based approach in the situations.

As described from the beginning of this chapter, we assume that the not-at-risk group has

the same physician visit pattern as the general population. By using information collected

from the general population as the supplementary data, we can estimate the distribution of

Ni in the not-at-risk group, and then follow the approaches in Gong and Samaniego (1981)

and Hu and Lawless (1997), to verify the required conditions and derive the asymptotic

properties of the pseudo MLE in our two latent classes modeling.

3.2.1 Estimating Procedure

As seen in Section 2.3, using an incorrect value of θ cannot achieve satisfactory inferences

on (α, β). We need a consistent and asymptotically normal estimator of θ to make sure

that the pseudo MLE of (α, β) has desirable asymptotic properties, such as consistency and

asymptotic normality (Gong and Samaniego, 1981). Specifically, suppose that the sample

size of the supplementary dataset used to estimate θ is M . With the usual regularity

conditions, assume the estimator of θ, θ̂ is consistent and have asymptotic normality. That

is,
√
M(θ̂− θ) converges in distribution as M →∞ to the multivariate normal distribution

with mean zero and some variance function, var(θ). For example, if θ̂ is a MLE, var(θ)

is equal to FI(θ)−1, where FI(θ) is the Fisher information matrix associated with the

likelihood function of θ. If the supplementary data are heavily over-dispersed, θ̂ can be
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the solution of quasi-Poisson score estimating equations, then var(θ) can be estimated by a

sandwich estimator (e.g., Wang et al., 2012).

By plugging in θ̂ to (3.1), we attain a pseudo-likelihood function of (α, β) based on the

observed data
{

(Ti, Ni, Zi) : i = 1, . . . , n
}

, L(α, β, θ̂;N |T,Z). A pseudo MLE of (α, β) can

be attained by directly maximizing this pseudo-likelihood function or its log-transformation

with respect to (α, β). An alternative way is to extend the EM algorithm described in

Section 2.1. The full-data pseudo log-likelihood function of (α, β) is obtained by plugging

in θ̂ to the full-data log-likelihood function in Section 3.1:

l(α, β, θ̂;N, η|T,Z) = l1(α; η|Z) + l2(β;N, η|T,Z) + l3(θ̂;N, η|T,Z),

where l1(α; η|Z) and l2(β;N, η|T,Z) are as the same as in (3.2) and (3.3). The only differ-

ences from the EM algorithm described in Section 3.1 are η
(k)
i = E{ηi|Ti, Ni, Zi;α

(k−1), β(k−1), θ̂}
in the E-step and there is no need to maximize (3.4) in the M-step. These two sets of pseudo

MLE are theoretically equivalent. Moreover, with the usual regularity conditions and a con-

sistent and asymptotically normal estimator of θ, the pseudo MLE (α̃, β̃) is consistent and

asymptotically normal distributed. That is,
√
n(α̃− α, β̃ − α)

′
converges in distribution as

n → ∞ and M → ∞ to the multivariate normal distribution with mean zero and some

variance function V (α̃, β̃).

The important issue to be addressed for the pseudo MLE, different from the MLE

proposed in Chapter 2 and Section 3.1, is estimating of the asymptotic variance of the

pseudo MLE (α̃, β̃), i.e., to estimate the variance function V (α̃, β̃). We estimate θ and its

asymptotic variance from the supplementary dataset, and get θ̂ and ˆvar(θ̂) respectively.

Obtained from plugging in θ̂ to the likelihood functions, the pseudo MLE of (α, β) are

actually functions of θ̂, α̃(θ̂) and β̃(θ̂). Theoretically, we can derive the variance function

from the law of total variance,

V (α̃, β̃) = E[V (α̃, β̃|θ̂)] + V [E(α̃, β̃|θ̂)]. (3.5)

As the sample size of the supplementary dataset, M → ∞, the second term of (3.5)

converges to zero with some mild conditions, and the first term becomes the asymptotic

variance of the MLE, which is FI(α, β)−1 derived in Section 2.1. Thus, theoretically, the

asymptotic variance of the pseudo MLE is always larger than the one of the MLE. In our two

latent classes modeling, if the supplementary dataset is fairly large, the variance estimate of

the pseudo MLE will be close to the MLE, where assume the true θ is known as in Chapter
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2. Otherwise, if the supplementary data are not rich, assuming the estimated θ is true may

result in underestimating the variance of the estimator (α̃, β̃).

3.2.2 Simulation Study

We conducted a simulation to study the pseudo MLE’s finite sample properties. We gener-

ated data from Case 1b, the mixture Poisson distributions, in Section 2.2.1. The pseudo

MLE of (α, β) via the observed data by directly maximizing and the EM algorithm were

evaluated. This two sets of the pseudo MLE are theoretically equivalent. We assumed the

existing estimator of θ to be consistent and asymptotically normal, i.e., θ̂ ∼ N(θ, sd2). So

θ̂ was generated from the normal distribution to estimate the pseudo MLE of (α, β). We

also evaluated the MLE of (α, β) using the “full data”, {(Ni, ηi, Ti, Zi) : i = 1, . . . , n}, which

is not practically attainable. As seen before, the MLE of (α, β) and its variance estima-

tion via full data does not need any information about θ, so it always has the asymptotic

characteristics of MLE no matter what estimate of θ is used.

We used different values of sd in the distribution of θ̂ to investigate how the properties

of the pseudo MLE of (α, β) and its variance estimation depends on the relative efficiency

of θ̂. Tables 3.2-3.3 summarize the simulation results based on 100 repetitions for the MLE

via full data and two sets of the pseudo MLE of (α, β), as well as their standard deviation

estimates. The pseudo MLEs for each dataset were evaluated under different realizations

of θ̂ from its distribution. As a comparison, the standard deviation estimates of MLE for

the pseudo MLEs were evaluated, assuming θ̂ as the true value. The standard deviation

estimates of the pseudo MLEs (sdpMLE) were obtained by bootstrap from B bootstrap

samples according to (3.5). The first term of (3.5) was calculated from the mean of 100

bootstrap variances for each simulated dataset, and the second term of (3.5) was the variance

of the 100 bootstrap sample means for each dataset. Table 3.2 used sd equal to 30% of the

magnitude of the true θ value and B = 100, and Table 3.3 used 5% accordingly and B = 200.

In both tables, the true values of the parameters lie in the confidence intervals con-

structed by the pseudo MLE, which confirms the consistency of the pseudo MLE developed

for two latent classes modeling, no matter the efficiency of θ̂. The results from both tables

also confirm that the efficiency of the pseudo MLE is getting low with lower efficiency of θ̂

(Gong and Samaniego, 1981). We see from Table 3.2, when the sd of θ̂ is relatively large,

if we assume θ̂ as true and take the variance estimation of the pseudo MLE as the same

as MLE, we considerably underestimate the variation of parameter estimate. On the other
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hand, when the sd of θ̂ is relatively small, the variance estimation of the pseudo MLE is

so close to the MLE. This confirms our theoretical expectations and verifies the situation

where the MLE presented in Chapter 2 is feasible.

Table 3.2: Pseudo MLE of (α, β) in the Efficiency Study
sd(θ̂) = (0.15, 0.09, 0.075, 0.3); B = 100

Case 1b: Mixture Poisson
parameter α0 α1(sex) α2(age) β0 β1(sex) β2(age) β3(lnt)
true value 1 -1 -0.8 1.8 -0.6 -0.5 1

MLE via full data
sma 0.998 -1.004 -0.781 1.787 -0.601 -0.505 1.012
ssdb 0.1799 0.1719 0.2983 0.0782 0.0377 0.0552 0.0519
smc

sd 0.1981 0.1873 0.2974 0.0720 0.0391 0.0557 0.0518
pseudo MLE via observed data

sma 0.971 -0.866 -0.710 1.786 -0.668 -0.530 1.009
ssdb 0.3340 0.7259 0.5160 0.1215 0.2570 0.1253 0.0805
smc

sd 0.2410 0.2794 0.4091 0.0837 0.0560 0.0674 0.0599
sddpMLE 0.4315 0.7875 0.6980 0.1566 0.2923 0.1392 0.1138

pseudo MLE via observed data by EM-algorithm
sma 0.942 -0.862 -0.701 1.779 -0.669 -0.527 1.012
ssdb 0.3326 0.7528 0.6223 0.1221 0.2623 0.1252 0.0818
smc

sd 0.2418 0.2806 0.4113 0.0836 0.0564 0.0675 0.0599
sddpMLE 0.4225 0.8308 0.7827 0.1549 0.2812 0.1491 0.1064

a Sample mean of the estimates
b Sample standard deviation of the estimates
c Sample mean of the standard deviation estimates of MLE
d Standard deviation estimates of the pseudo MLE
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Table 3.3: Pseudo MLE of (α, β) in the Efficiency Study
sd(θ̂) = (0.025, 0.015, 0.0125, 0.05); B = 200

Case 1b: Mixture Poisson
parameter α0 α1(sex) α2(age) β0 β1(sex) β2(age) β3(lnt)
true value 1 -1 -0.8 1.8 -0.6 -0.5 1

MLE via full data
sma 1.028 -1.057 -0.796 1.791 -0.601 -0.494 1.006
ssdb 0.2187 0.1805 0.3195 0.0685 0.0401 0.0513 0.0482
smc

sd 0.1990 0.1882 0.2995 0.0720 0.0396 0.0566 0.0515
pseudo MLE via observed data

sma 1.053 -1.062 -0.839 1.790 -0.601 -0.491 1.005
ssdb 0.2527 0.3036 0.3736 0.0758 0.0593 0.0683 0.0525
smc

sd 0.2323 0.2521 0.3819 0.0825 0.0516 0.0659 0.0591
sddpMLE 0.3446 0.3997 0.5426 0.1130 0.0793 0.0950 0.0787

pseudo MLE via observed data by EM-algorithm
sma 1.051 -1.063 -0.835 1.789 -0.601 -0.490 1.006
ssdb 0.2572 0.3040 0.3957 0.0789 0.0598 0.0693 0.0639
smc

sd 0.2324 0.2522 0.3820 0.0825 0.0516 0.0659 0.0591
sddpMLE 0.3556 0.4068 0.5645 0.1157 0.0795 0.0955 0.0805



Chapter 4

Analysis of CAYACS Physician

Visit Records

As aforementioned, this thesis project was motivated by a specific project of the CAYACS

program, to evaluate the physician visit frequency of the survivor cohort, compare it with

the general population, and identify risk factors. This chapter presents an analysis of the

CAYACS physician visit data applying the proposed approaches.

4.1 Data Description and Preparation

The newly updated physician visit database includes physician visit records of 1962 individ-

uals from the CAYACS cohort (Ma, 2009; McBride et al., 2011), who were diagnosed before

20 years of age between January 1, 1981 and December 31, 1999, with a primary cancer

or tumor, resided in British Columbia (BC) at the time of diagnosis, and have survived 5

or more years after diagnosis. We refer to this dataset as the “survivor cohort” dataset,

which is our primary data. Since the BC Medical Services Plan (MSP) database started

from January 1, 1986, the data collection period of each individual started from either this

day or the day after 5 years diagnosis, whichever is later, and ended at either the day of

individual death or December 31, 2006 , whichever is earlier. A randomly selected popu-

lation sample of 19620 individuals was obtained from the client registry of the BC MSP

database, known as the “general population” dataset and taken as the supplementary data

in the following. People in the general population dataset who are at least 5 years of age,

30
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registered with the provincial health insurance plan, and frequency-matched by birth year

and sex to the survivor cohort (McBride et al., 2011). Both datasets include physician visit

records of general practice and specialist for each individual and their associated potential

risk factors.

We chose to focus on general practice visits as the events of interest and analyzed the

observed counts of the events. Potential risk factors were selected following the CAYACS’s

previous study (McBride et al., 2011) but not including correlated factors, to avoid multi-

collinearity. For example, since type of cancer diagnosis and treatment of the cancer are

correlated, and late-occurring health problems of survivors are often related to treatment

(McBride et al., 2011), we only included treatment in the analysis. Potential risk factors

considered in the analysis are listed below:

• S − sex, the indicator of male.

• A − age at baseline, the age of individual at the beginning of the study and stan-

dardized values in the interval (0, 1] were used. Note that age at baseline = age at

diagnosis+ 5 exactly for survivors.

• SES − socioeconomic status, the indicator of ses = 4, 5(rich) according to Statistics

Canada’s census; ses = 1, 2, 3(poor) otherwise.

• C − treatment type, the indicator of chemotherapy.

• D − diagnosis period, the indicator of diagnosis in 1990 − 1999(II); 1981 − 1990(I)

otherwise.

• T − time, the length of individual’s data collection period.

We applied the latent class model described in Section 1.2, where the model for the

latent at-risk group indicator η is specified as

logit
(
P (η = 1|S,A, SES,C,D)

)
= α0 + α1S + α2A+ α3SES + α4C + α5D. (4.1)

The frequency model for the at-risk group specifies the mean of the physician visit count

conditional on η = 1 as

Λ1(T,Z;β) = E(N |η = 1, S,A, SES,C,D, T )

= T β6 exp(β0 + β1S + β2A+ β3SES + β4C + β5D).
(4.2)
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Assuming the observed physician visit count in the not-at-risk group has the same distribu-

tion as in the general population, the frequency model for the not-at-risk group is:

Λ0(T,Z; θ) = E(N |η = 0, S,A, SES, T )

= T θ4 exp(θ0 + θ1S + θ2A+ θ3SES).
(4.3)

Here the risk factors C and D are not included because they are cancer survivor specific

factors. We deleted individuals from both the survivor cohort and the general population

datasets whose treatment type and/or ses are missing. The number of the individuals

deleted is small, less than 2%.

As a preparation, we conducted a preliminary analysis of the counts by the conventional

methods, Poisson regression and quasi Poisson regression, for both the general population

and survivor cohort. The estimation results of parameters and their standard deviations

from quasi Poisson regression for the general population are presented in the second and

third columns of Table 4.1. This set of estimates served as a evaluation set of a consistent

and asymptotically normal estimator of θ in (4.3), obtained from the supplementary data

for estimating the pseudo MLE of α in the risk model (4.1) and β in the frequency model

(4.2). Without noticing of the existence of two latent classes, the marginal mean of the

physician visit counts in the survivor cohort can be specified as

Λ(T,Z;β∗) = E(N |S,A, SES,C,D, T )

= T β
∗
6 exp(β∗0 + β∗1S + β∗2A+ β∗3SES + β∗4C + β∗5D).

Here, β∗ has an interpretation different from β in (4.2). The estimates of β∗ and their

estimated standard deviations from quasi Poisson regression are presented in the last two

columns of Table 4.1. We use this model and the associated parameter estimates to make a

comparison with the analysis using the proposed approaches.

4.2 Analysis Results

We analyzed the real CAYACS data applying the proposed two latent classes model and the

associated inference procedures. The analysis evaluated the portion of the survivors who are

still at risk and thus have high frequency of physician visits, and identified the risk factors.

We firstly estimated all the parameters in (4.1), (4.2) and (4.3) with only the survivor cohort

dataset by the estimation procedure in Section 3.1. The MLE and its standard deviation
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estimates were shown in the second and third columns of Table 4.2. By using the estimates

of θ from the general population in Table 4.1, the pseudo MLE of (α, β) proposed in Section

3.2 and its standard deviation estimator were evaluated. The estimates were presented in

the last three columns of Table 4.2. The estimated standard deviation presented in the fifth

column was calculated assuming the θ estimates as true values, and we call it as “sdnaive”.

The estimated standard deviation of the pseudo MLE (sdpMLE) in the last column was

attained by nonparametric bootstrap with 200 bootstrap samples, which took account for

the variance estimation of θ̂ from the general population.

From Table 4.1, we see that both the general population and the survivor cohort data

are heavily over-dispersed. All the risk factors considered for the number of general practice

visits in the general population are statistically significant. In the quasi Poisson model for

the survivor cohort, sex, age at baseline and data collection length are significantly associated

with the marginal mean of the general practice visit counts.

The analysis of the survivor cohort data under the two latent classes model in Table

4.2 provided more interesting results. The estimates of the regression parameters in the

frequency model for counts in the not-at-risk group (see the MLE in Table 4.2), are quite

close to the corresponding estimates from the general population in Table 4.1. This verified

the CAYACS’s previous finding and our assumption for the pseudo MLE procedure with

the two latent classes model. All the potential risk factors in the frequency models for the

at-risk group and the not-at-risk group are significant based on the MLE and its estimated

standard deviations. But we also notice that, since the physician visit data in the survivor

cohort are heavily over-dispersed, the standard deviation of MLE may be considerably

underestimated. Plus, the parameter estimates may be biased, especially the estimated

intercept terms, according to our simulation study for robustness in Chapter 2.

For the pseudo MLE in Table 4.2, the estimates of significant factors were in boldface

according to the sdpMLE column and itself was in boldface too. The sdnaive estimates were

in boldface if the factors were significant according to them. Comparing the MLE and the

pseudo MLE of (α, β) in Table 4.2, we see that they are quite consistent with each other,

except the sd of MLE is significantly underestimated due to over-dispersion of the survivor

cohort data, which results in more factors being significant. We also observe that the sdnaive

considerably underestimates the standard deviation of parameter estimate, especially for β,

which means the variance estimation of θ̂ from the general population is not negligible.

According to the pseudo MLE, α̃, in the risk model and its estimated standard deviation,
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we can evaluate the proportion of the at-risk group in the survivor cohort and identify its risk

factors. For example, consider people at baseline in the risk model, who were female, age 5

at the beginning of the study, low ses, diagnosed cancer in the early stage (1981-1990), and

did not take chemotherapy. They have 19.4% to 36.0% chance to be in the at-risk group with

a level of 95% confidence. The highest chance to be in the at-risk group happens to people

who were female, age 25 at the beginning of the study, low ses, diagnosed cancer in the

early stage, and took chemotherapy, which is 21.4% to 51.6% with a level of 95% confidence.

The only significant factor for the risk model is the diagnosis period, which means that the

survivors diagnosed in the early stage have significantly larger chance to be in the at-risk

group. The pseudo MLE, β̃, in the frequency model and its estimated standard deviation

can be used to identify significant factors associated with the high frequent physician visits

in the at-risk group, and sex is the only risk factor detected by the pseudo MLE.

Most potential risk factors we considered in the risk model (Table 4.2) are not significant.

Comparing to the interpretation of factors in the frequency model, risk factors in the risk

model can be interpreted as follow. For example, the factor sex is significant in both the

frequency models for the at-risk and the not-at-risk groups, but not significant in the risk

model. This means that female has more frequent physician visits in general, no matter she

is a cancer survivor or not. So sex is not a risk factor for the late and ongoing problems

from cancer diagnosis. The two latent classes model leads to a natural comparison of the

physician visits between the cancer survivors in the at-risk group and the general population.

Recall for the outcome of the robustness simulation study about the likelihood-based

approaches in Chapter 2 under heavily over-dispersed data. Caution is required when further

interpreting the data analysis. A robust inference procedure against model misspecification

is in demand.
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Table 4.1: Quasi Poisson Regression for the General Population and the Survivor Cohorta

General Population Survivor Cohort
factor estimate sd estimate sd

the frequency model for counts
intercept 0.774 (0.0325) 1.398 (0.1379)
male (vs female) -0.358 (0.0100) -0.380 (0.0333)
age at baseline 0.396 (0.0265) 0.375 (0.0530)
ses rich (vs poor) -0.048 (0.0104) -0.065 (0.0342)
chemo (vs not) 0.011 (0.0353)
diagnosis period II (vs I) -0.007 (0.0489)
ln(time length) 1.162 (0.0114) 0.961 (0.0464)

dispersion parameter 15.10 14.52
aSignificant Effect with P-value ≤ 0.05 in Boldface
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Table 4.2: Regression Parameters of Two Latent Classes Model for the Survivor Cohorta

MLE pseudo MLE
factor estimate sd estimate sdnaive sdbpMLE

the risk model for indicator η = 1
intercept -0.355 (0.1719) -1.001 (0.2045) (0.2171)
male (vs female) -0.054 (0.1127) -0.179 (0.1322) (0.2171)
age at baseline 0.656 (0.1778) 0.334 (0.2135) (0.3141)
ses rich (vs poor) -0.004 (0.1122) -0.107 (0.1316) (0.1749)
chemo (vs not) -0.072 (0.1191) 0.048 (0.1410) (0.1528)
diagnosis period II (vs I) -0.617 (0.1125) -0.470 (0.1339) (0.2299)

the frequency model for counts in the at-risk group
intercept 2.457 (0.0189) 2.480 (0.0229) (0.2564)
male (vs female) -0.291 (0.0045) -0.193 (0.0064) (0.0955)
age at baseline 0.200 (0.0078) 0.213 (0.0109) (0.2079)
ses rich (vs poor) -0.064 (0.0045) 0.022 (0.0064) (0.0621)
chemo (vs not) 0.027 (0.0051) 0.001 (0.0076) (0.0672)
diagnosis period II (vs I) 0.020 (0.0062) 0.022 (0.0082) (0.1050)
ln(time length) 0.724 (0.0060) 0.742 (0.0072) (0.0785)

the frequency model for counts in the not-at-risk group (from the general population)
intercept 0.780 (0.0207) 0.774 (0.0325)
male (vs female) -0.422 (0.0074) -0.358 (0.0100)
age at baseline 0.192 (0.0113) 0.396 (0.0265)
ses rich (vs poor) -0.056 (0.0076) -0.048 (0.0104)
ln(time length) 1.037 (0.0078) 1.162 (0.0114)
aSignificant Effect with P-value ≤ 0.05 in Boldface
bBootstrap Estimated Standard Deviation of the pseudo MLE
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Final Remarks

5.1 Summary

Motivated by the CAYACS program, this MSc thesis project proposes a latent class model to

formulate count data from a cohort with potential two strata. In the young cancer survivor

cohort, these two classes are the “at-risk” group who still suffer the consequence of cancer

diagnosis and visit physicians more frequently and the “not-at-risk” group who have the

same physician visit frequencies as the general population. We are interested in evaluating

the proportion of the at-risk group, assessing the frequency of physician visits associated

with the at-risk group, identifying the associated risk factors, and making comparison to

the general population.

Under a mixture Poisson model, we present several likelihood-based inference procedures

with or without one class fully specified. Finite sample efficiency and robustness properties

of these procedures have been studied via simulation under different scenarios. We begin

with assuming the distribution of the not-at-risk group as known and develop the maxi-

mum likelihood estimator of the model parameters for the at-risk group. The simulation

results show that likelihood-based estimating procedures are quite efficient under the mix-

ture Poisson model, but lack of robustness against model misspecification. Without fully

specifying the not-at-risk group’s distribution, we propose approaches to making inferences

on both latent classes. The likelihood based approach is rather computationally intensive

as expected. Thus, we propose a pseudo likelihood inference procedure by estimating the

distribution of the not-at-risk group from the general population as well as taking account

for the variance estimation. The required conditions are given for an estimator of nuisance

37
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parameter from supplementary data to make inference on the parameters of interest. To

illustrate our approaches, the real CAYACS data are analyzed. We identify the risk factors

by the pseudo MLE for the risk and frequency models. Our approach provides a natural

comparison of the at-risk group to the general population.

5.2 Future Investigation

Some finial comments and interesting points for future investigation are listed below.

Theoretically, directly maximizing the observed data likelihood and the EM algorithm

are equivalent. Both simulation and the real data analysis showed the EM algorithm is

more robust to the choice of initial values used in the numerical procedures. It could be

interesting to further explore this.

Under the mixture Poisson model, (α, β, θ) always can be estimated theoretically. How-

ever, numerically, the group classification may be not easy if β and θ are too close. And in

this situation, the two latent classes model may be unnecessary, since it almost triples the

number of parameters. It could be interesting to theoretically derive or numerically study

the range of parameters to make a latent class model appropriate.

The parametric form we specified for the means of the latent variable and the counts

of both classes in Section 1.2 is just a special case. For example, in Chapter 4, we showed

age at baseline is not a significant risk factor in the frequency model for the at-risk group.

But this result could be due to the misspecification of the systematic part of the frequency

model. Quadratic or nonparametric form should be considered in the future for the right

hand side of log{Λ1(t, Z;β)} = β0 + β
′
1Z + β2t for factor age.

We are aware from the simulation study in Section 3.2 that the estimated standard

deviation of the pseudo MLE from bootstrap seems systematically larger than the ssd.

More study about the variance estimation of pseudo MLE for latent class models may be

needed.

We can extend the approaches developed in this project in multiple aspects. For example,

it is possible to extend the approaches to more than two/finite latent classes. An application

could be that more frequent physician visits occur in a third group of cancer survivors that

may be caused by fear. The count data we considered in this project are cross-sectional.

This also can be easily extended to analyse longitudinal counts. According to one of the

CAYACS’s objectives, one could try to formulate physician visit cost data by latent class
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models and develop corresponding inference procedures.

An interesting and important issue noticed from this project is that the likelihood-based

estimating procedures for latent class models have unsatisfactory robustness against model

misspecification. The simulation results indicate a strong demand of developing robust es-

timation procedures. It is frequently of demand to develop robust inferential procedures,

particularly in epidemiological and medical applications. Wang et al. (2012) develop a robust

estimating procedure for two latent class models without specifying the underlying distri-

bution but only the mean and variance functions. The EM-algorithm discussed in Section

2.1, more specifically equations (2.6) and (2.7), motivated the extended GEE approach with

estimating (2.8) non-parametrically. The approach is readily extendable to accommodate

situations with clustered data.
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