
COMPRESSION OF SOCIAL NETWORKS

by

Hossein Maserrat

B.Sc., Sharif University of Technology, 1999

M.Sc., Sharif University of Technology, 2002

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Science

c© Hossein Maserrat 2012

SIMON FRASER UNIVERSITY

Summer 2012

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Hossein Maserrat

Degree: Doctor of Philosophy

Title of Thesis: Compression of Social Networks

Examining Committee: Dr. Hao (Richard) Zhang

Chair

Dr. Jian Pei, Professor

Senior Supervisor

Dr. Tom Shermer, Professor

Supervisor

Dr. Binay Bhattacharya, Professor

SFU Examiner

Dr. Shen, Heng Tao, External Examiner Professor,

Information Technology & Electrical Engineering,

University of Queensland

Date Approved: July 18, 2012

ii

Partial Copyright Licence

Abstract

Compressing social networks can substantially facilitate mining and advanced analysis of

large social networks. Preferably, social networks should be compressed in a way that

they still can be queried efficiently without decompression. Arguably, neighbor queries,

which search for all neighbors of a query vertex, are the most essential operations on social

networks. In this thesis we develop a social network compression framework, which allows

efficient in-neighbor and out-neighbor query answering without replicating the data.

As a simple setting of the framework, we introduce the novel Eulerian data structure and

prove an upper bound on its bits-per-edge rate. Using the notion of k-linearization, a lossless

compression scheme is introduced as a practical compression scheme. The experiments on a

dozen real world social networks confirm the effectiveness of our design. Finally, we use our

framework to develop a lossy compresson scheme, which aims at capturing the community

structure of a given network using a predefined amount of storage. We affirmatively evaluate

the lossy compression scheme on both synthesis and real world social networks.

iii

Contents

Approval ii

Abstract iii

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 GPSN Compression Framework . 3

1.2 Eulerian Data Structure . 6

1.3 Lossless Compression Scheme . 8

1.4 Lossy Compression Schema . 10

1.5 Structure of the Thesis . 12

2 Related Work 13

2.1 Categorization of Related Work . 14

2.2 The Aggregation-Based Approach . 17

2.2.1 The Virtual Node Compression Scheme 17

2.2.2 The Summary Graph Compression Scheme 18

2.2.3 Discussion . 21

iv

2.3 Order-Based Approach . 24

2.3.1 WebGraph Compression Framework 24

2.3.2 The Shingle Ordering Heuristic . 27

2.3.3 Layered Label Propagation . 28

2.3.4 Discussion . 29

2.4 Clustering and Dense Subgraph Mining . 30

2.4.1 Mining Semi-Bipartite Subgraphs . 31

2.4.2 Label Propagation Clustering . 33

2.4.3 Structural Clustering Method . 36

2.4.4 Spectral Clustering . 37

2.5 The Graph Layout Problem . 43

2.5.1 Definitions and Theoretical Results . 43

2.5.2 Heuristics . 47

2.6 Summary . 49

2.7 How this thesis is related and different from the existing work 52

3 GPSN Compression Framework 54

3.1 The GPSN Compression Framework . 54

3.2 Theoretical Analysis . 57

3.2.1 Notions . 57

3.2.2 Neighbor Queries in Directed Graphs 59

3.2.3 Eulerian Paths . 59

3.2.4 1-Linearization . 60

3.3 Upper Bound on Compression Rate . 63

3.4 Summary . 68

4 Lossless Compression 69

4.1 Multi Level Linearization . 69

4.2 Data Structure . 72

v

4.3 Compression Heuristic . 73

4.4 Experiments . 75

4.4.1 Experimental Setup . 75

4.4.2 Comparison of the Compression Rates 79

4.4.3 Query Processing Time . 80

4.4.4 Tradeoff between Local Information and Pointers 82

4.5 Summary . 83

5 Lossy Compression 84

5.1 Overview . 84

5.2 Graph Linearization for Lossy Compression 86

5.3 Objective Function . 89

5.4 Linearization Method . 92

5.4.1 Connection between Parameters α and k 93

5.4.2 A Greedy Heuristic Method . 95

5.5 Empirical Evaluation . 99

5.5.1 Evaluation Methodology . 99

5.5.2 Synthesis Networks . 100

5.5.3 Centrality . 104

5.5.4 Running Time Efficiency . 105

5.6 Summary . 106

6 Conclusion 108

6.1 Summary . 108

6.2 Future Work . 110

Bibliography 112

vi

List of Tables

2.1 Reprinted from [8]. Naive representation using adjacency List and outdegree 26

2.2 Reprinted from [8]. Gap coding representation 26

2.3 Reprinted from [8]. Reference coding representation 27

2.4 An example of a cluster of vertices passed to mining phase 33

2.5 Comparison of the compression methods . 50

3.1 Comparison of compression using the Eulerian data structure against the

baseline schema. The baseline schema is the adjacency list. We presented

the ratio of the number of bits that the Eulerian data structure uses over the

number of bits that adjacency list representation uses. 67

4.1 The dataset stats. (Acc, Gcc, and Fre are defined in Section 3.2.1) 75

4.2 The average number of bits per edge. The worse cases happen on those data

sets that have very poor locality measures (Gcc and Fre) 80

4.3 The average access time per edge for processing adjacency queries and (in+out)

neighbor queries. 81

5.1 Some frequently used notions. 89

5.2 Statistic of data-sets . 106

vii

List of Figures

1.1 The illustration of GPSN Framework. Refer to the text for more details. . . . 4

1.2 The Eulerian data structure. The new identifiers of the nodes are illustrated. 7

2.1 Reprinted from [11]. The top graph is an example of a semi-complete bipartite

subgraph. The example illustrates the idea of aggregating a set of directed

edges by introducing a virtual node. 17

2.2 Reprinted from [41]. Graph G (left) is the original graph and its compressed

representation (right). For simplicity the idea of the method is illustrated on

an undirected graph. 20

2.3 Reprinted from [11]. The prefix tree for the cluster of vertices in Table 2.4 . 34

2.4 Reprinted from [19]. A graphical illustration of a few measures for a layout ϕ. 45

2.5 Reprinted from [57]. The illustration of multi-scale framework. 50

3.1 A directed graph and its underlying undirected graph 58

3.2 The Eulerian data structure. The new identifiers of the nodes are illustrated. 64

4.1 Multi-Level Linearization. The neighborhood scheme is {(0, 3), (9, 1)}. Arcs

point to the next appearance of the same vertex. The cells are indexed from

left to right. Position 0 is the most left cell and position 25 is the most right

cell. 72

viii

4.2 The trade off between the bits/edge rate of local information and that of

pointers on three data sets: ca-HepPh, p2p-Gnutella24, and soc-Slashdot0902.

(K = 20, RF = 0.9) . 82

4.3 The trade off between the bits/edge rate of local information and that of

pointers on three data sets: ca-HepPh, p2p-Gnutella24, and soc-Slashdot0902.

(DT = 0.25 and RF = 0.9) . 83

5.1 A graph G and its lossy representation using a (3, 15)-sequence graph Gs. . . 88

5.2 The span of a path. 90

5.3 A graph G and its representation by SeqGraph data structure. 97

5.4 The bit-utility-rate of our lossy compression. 101

5.5 The performance of the algorithm by Clauset et al. [16] on the original net-

work, the proximity network derived from one compression, and the aggre-

gated proximity network derived from five independent compressions. 102

5.6 The effect of (a) local range size (k) and (b) length of sequence (l). 103

5.7 Pearson Correlation of centrality measures on original and the compressed

version . 105

5.8 The running time of a single iteration of Algorithm 7. 106

ix

Chapter 1

Introduction

Real life social networks, thanks to the popularity of World Wide Web, are getting larger

and larger, to the extent that fitting them in the main memory is a challenge. The web

graph has billions of nodes and tens of billions of edges. Facebook, as a friendship network,

has more than 900 million nodes and 125 billion edges1.

From a practical point of view, most of the social network analysis methods and al-

gorithms implicitly assume the network fits into main memory. Therefore, social network

compression indirectly addresses the scalability issues for a wide variety of algorithms.

Roughly speaking, data compression is the process of representing the data using fewer

number of bits than trivial representation. Compression is useful in practice because it

reduces the consumption of critical resources such as main memory, communication capacity,

or cache memory. A compression scheme usually exploits the statistical redundancy of the

data to achieve memory efficiency.

For example, in a text corpus, some letters statistically are more frequent than others.

Therefore, by assigning shorter codes to the frequent and longer codes to the infrequent

letters, one can obtain a better bits-per-letter cost on average. However, the statistical

redundancy often significantly depends on the characteristics of the domain of data. As a

consequence, the compression scheme has to be designed accordingly.

1http://newsroom.fb.com/content/default.aspx?NewsAreaId=22

1

CHAPTER 1. INTRODUCTION 2

On the other hand, the objective of data compression could raise a variety of require-

ments. For example, as for data archival purposes, probably the most critical measure is

the compression rate. In this case, arguably, for any future process of the archived data a

decompression phase is affordable.

As a more realistic scenario, let us assume we want to apply a pattern mining algorithm

on a dataset that does not fit into main memory. Although, a compression scheme here

could be effective for fitting the data, it has to support a number of efficient basic opera-

tions directly on the compressed version of the data depending on the requirements of the

algorithm.

Having the advances in distributed computing in mind, one might argue, by using more

computers it is always possible to fit a large network in the main memory. Although the

argument is somewhat reasonable, it raises another issue. Since the capacity of commu-

nication, in a distributed computing platform, is often the main bottleneck, an extremely

challenging problem is to partition the network so that the amount of communication be-

tween different computing units is minimum.

From this point of view, a compact representation of the network could be beneficial

not only because it reduces the number of computing units, but also it implicitly increases

the utility of the communication capacity. A compact representation often encodes the

correlated nodes (edges) together. Therefore, a better compression method potentially could

lead to a better utilization of the locality of the data.

To answer queries regarding the correlation of the nodes and edges in a social network,

an expensive link analysis usually is required. For example, given a few nodes of a network,

to find out if they belong to a dense subgraph, one has to apply an extensive link analysis

method, not only on the given vertices but also on the neighbors of them. However, poten-

tially, a compression method can provide implicit information to facilitate answering such

queries.

CHAPTER 1. INTRODUCTION 3

In order to use the existing social network analysis algorithms on a compressed net-

work, the compression framework has to often support both efficient in-neighbor 2 and

out-neighbor 3 queries. Depending on the application, we might also want to perform effi-

cient incremental updates directly on the compressed network. The focus of this dissertation

is to develop a compression framework for social networks that addresses these additional

requirements. We refer to such a compression framework as a General Purpose Social Net-

work (GPSN) compression framework. To the best of our knowledge there is no compression

method for social network in the literature that qualifies as a GPSN compression framework.

For the rest of this chapter, we present a high level overview of the major results of

the dissertation. In Section 1.1, we illustrate the core idea for the General Purpose Social

Network (GPSN) compression framework. Section 1.2 discusses an upper-bound on bits-

per-edge rate for a simple setting of the framework, which we refer to it as Eulerain data

structure. In Sections 1.3 and 1.4 we review two lossless and lossy compression schemes,

respectively.

1.1 GPSN Compression Framework

For the purpose of discussion, let us assume for a graph G, we can find an ordering of the

nodes in which all the edges have length of at most k (that is all the edges connecting two

nodes that are at most k positions away in the ordering, k is a small integer). Then, we can

encode the edges that connect the position i to the positions i+1, i+2, · · · , i+k using k bits.

Another k bits would be necessary to represent the edges from i to i− 1, · · · , i− k. In this

scenario, we can save memory assuming k is small enough relative to the average degree.

Note that finding such an ordering may not be possible for a real world social network.

However, we can relax the requirements and instead of an ordering, ask for a sequence of

the nodes (with possible replication) in which all the edges connect two nodes that are at

2An in-neighbor query, given a node u, asks for all nodes v such that there is an edge from v to u.
3An out-neighbor query, given a node u, asks for all nodes v such that there is an edge from u to v.

CHAPTER 1. INTRODUCTION 4

���� ���� ���� ������ �� �� ���� ����
v1 v2 v3 v4 v5 v6 v7 v8 v9

(a) Graph G

v7 v8 v7 v6 v5 v4 v1 v2 v1v8 v9 v6 v5 v4 v3 v2 v6 v3

01 01 11 11 01 00 1110 00 10 00 11 00 0001 11 1010

(b) A representation of G using a sequence of nodes in which all the
edges connect two nodes next to each other.

00 01 01 10 01 00 01 10 11 00 11 11 00 10 01 10 10 0001 11

v6v7v8
v9 v5 v4 v3 v2 v1 v6

(c) A representation of G using a sequence of nodes in which all the
edges connect two nodes at most two positions away.

Figure 1.1: The illustration of GPSN Framework. Refer to the text for more details.

most k positions away from one another. Each copy of the node u in this new sequence is

responsible for representing a subset of edges incident to u. Thus, for each copy of u in the

sequence we need to keep 2k bits to encode the edges associated to that copy and a pointer

to the next copy of u.

Figure 1.1(a) displays a graph G, and Figure 1.1(b) illustrates a sequence of the nodes

where for any edge in G, there are two nodes next to each other in the sequence. A 2-

bits label represents the edges for each position. For example, the label 01 indicates the

respected position does not have any edge going to its left position, and it does have an edge

CHAPTER 1. INTRODUCTION 5

going to its right node. The arcs are pointers to the next copy of the same node. Figure

1.1(c) illustrates a sequence in which the maximum length of all edges is 2. The 4-bits labels

inside the box encode the edges and the arcs are pointers to the next copy of the same node.

If there is only one copy of the node in the sequence, the pointer points to itself.

Let us assume we can find a sequence S of length l, in which all the edges are connecting

two nodes at most k positions away from one another. In such a case, the network can

be represented using exactly l × (2k + ⌈log2 l⌉) bits; we need ⌈log2 l⌉ to encode the next

pointer and 2k bits to encode the associated edges for each position. This framework has

several benefits. First, similar to the order-based methods it reduces the social network

compression to an elegant combinatorial problem. Second, it allows efficient incremental

updates, in-neighbor and out-neighbor queries. Third, intuitively in the sequence S, we

expect the nodes that belong to a dense subgraph appear close to each other, and if a node

is part of several (overlapping) dense subgraphs, the node would appear several times in the

sequence.

To have a solid compression scheme within the GPSN framework, we need to develop two

modules: (1) a linearization algorithm/heuristic that given a network, outputs a sequence

of the nodes, and (2) an encoding protocol to encode the edges associated to each position

of the sequence.

As an example, we will formulate a trivial representation schema using the principles

of GPSN framework. Let us assume that the linearization algorithm enumerates all the

edges in arbitrary order, and represents each edge by its source and destination. This would

produce a sequence of length 2|E| of the nodes. Then, precisely there is one edge associated

to each position; each edge connects a position with an even index to its next position.

Therefore, the parity of the index of the positions is enough to recover the edges of the

network. The representation scheme merely stores a pointer to the next appearance of the

same node for each position. In total, the scheme uses exactly 2|E|(⌈log2(|E|)⌉ + 1) bits.

Note that, this is comparable to the adjacency list representation where each node stores

both lists of incoming and outgoing edges.

CHAPTER 1. INTRODUCTION 6

Note that to be able to compare the results with previous work in the literature, similar

to [8, 9, 14], we assume: (1) It is possible to assign new identifiers to the vertices. (2) The

data structure is not responsible for maintaining the mapping between the old and new iden-

tifiers. (3) Finally, there are no labels for edges. Please note that we can straightforwardly

extend the data structure to remove the above assumptions.

Contribution. We introduce the novel GPSN compression framework. Our method for

compressing social networks, comparing to the state-of-the-art methods, has the advantage

of supporting efficient in-neighbor4, out-neighbor queries5, and incremental updates6. The

GPSN framework exploits a sequence S, in which the nodes that belong to a dense subgraph

of a given network, appears in proximate positions to achieve compression.

1.2 Eulerian Data Structure

A k-linearization of a given graph G is a sequence of nodes in which all the edges have a

length at most k. In Chapter 3, we show that finding the optimal 1-linearization is possible

in linear time. Note that any graph would have an optimal 1-linearization regardless of

the existence of the Eulerian path. Constructing such a linearization is, in fact, equivalent

to decomposing the graph into the minimum number of edge-disjoint paths such that each

edge appears exactly once in one of the paths. However, the problem of finding an optimal

k-linearization, when k is given as part of the input, is NP-Hard.

The Eulerian data structure for a graph G stores an optimal 1-linearization L of G

using an array of the same length as L. Let v(i) be the vertex in G that appears at the

position i of L. For the cell i of the array, we keep the following two pieces of information:

(1) Edge Information: two bits specifying if edges (v(i− 1), v(i)) and (v(i), v(i− 1)) belong

to e(G), respectively. (2) Pointer: a pointer to the next appearance of v(i), if this is the

4Given the node v in a graph G, in-neighbor query asks for all the nodes u such that (u, v) be an edge G
5Given the node v in a graph G, out-neighbor query asks for all the nodes u such that (v, u) be an edge

G
6Incremental update is the operation of applying the changes directly on the compressed version of the

graph

CHAPTER 1. INTRODUCTION 7

v3

v5

v6

v7

v8
v1

v2

v4

(a) Graph G

01 11 11 11 11 11 11 11 11 11 1011

v2 v2 v2v7 v4 v1 v8 v7 v6 v5 v4 v3

(b) Illustration of the 1-linearization of G and the Eulerian data structure
(pointers are depicted by arcs).

01, 3 11, 6 11, 9 11,11 11, 4 11, 5 11, 1 11, 7 11, 8 11, 2 11,10 01, 0

0 1 2 3 4 5 6 7 8 9 10 11
v2 v7 v4 v1 v8 v6 v5 v3

(c) The Eulerian data structure. Each cell stores 2-bits label and a pointer to next appearance of the
same node. The index of the first appearance of a node is the new identifier of that node.

Figure 1.2: The Eulerian data structure. The new identifiers of the nodes are illustrated.

CHAPTER 1. INTRODUCTION 8

last appearance of v(i), then the pointer points to the first appearance of the vertex.

Example 1 (Eulerian Data Structure). In figure 1.2, the Eulerian Data Structure for graph

G is depicted. The graph is undirected; therefore, each edge is actually equivalent to two

directed edges. The number of directed edges for G is 22. The length of the optimal 1-

linearization is 12, therefore, a pointer takes 4 bits. For each position we need 4+2 bits. In

total, 12× (4+2) = 82 bits is necessary to encode G. The compression rate is 82/22 ≈ 3.72

bits per edge.

Theorem 1, in Chapter 3, states an upper-bound on the compression rate of the Eulerian

data structure: an Eulerian data structure, to encode a graph G, uses up to

(1− fre(G)

2
+

1

d̄
)
(

⌈log2(|V (G)|) + log2(d̄+ 1)⌉+ 1
)

,

bits per edge on average, where d̄ is the average degree of G, and fre(G) is the fraction of

reciprocal edges. The edge (u, v) ∈ E(G) is a reciprocal edge if and only if (v, u) ∈ E(G).

Contribution. As a simple setting of the GPSN framework, we introduce the novel

Eulerian data structure, and a nontrivial upper bound on its bits-per-edge rate is provided.

1.3 Lossless Compression Scheme

The real world networks, in many cases, exhibit some kind of locality property which can be

used to further improve our method. The notion of k-linearization introduced in Chapter 3

can be used for lossless compression.

As a lossless compression scheme, we can extend the Eulerian data structure by using

k-linearization instead of 1-linearization. However, comparing to 1-linearization, finding an

optimal, or even near optimal, k-linearization is challenging.

Example 2. Figures 1.1(b) and (c) depict two possible encoding of graph G using 1-

linearization and 2-linearization, respectively. Using the 1-linearization, we need to use

2 bits to store the local information for each position. Since in this case there are 18 posi-

tions, the pointer uses 5 bits. In total we need 18 × (5 + 2) = 126 bits, approximately 6.63

bits per edge on average.

CHAPTER 1. INTRODUCTION 9

Using the 2-linearization, we need to use 4 bits to store the local information for each

position. Since the linearization has 10 positions, each pointer takes 4 bits. In total it uses

10 × (4 + 4) = 80 bits, approximately 4.21 bits per edge. The saving of using the MP2

linearization is substantial.

Can we save more by moving from 2-linearization to 3-linearization? The length of an

k-linearization for any k cannot be less that the number of vertices in the graph. G has 9

vertices. Therefore, in the best case of using an 3-linearization, the length of the sequence

is 9. For each position we have to use 6 bits to store the local information and 4 bits to

encode the pointer. Thus, using an 3-linearization takes at least 9× (6+4) = 90 bits. Using

3-linearization instead of 2-linearization cannot improve the compression rate.

To be more adaptive, we extent the notion of k-linearization to adapt the specific prop-

erties of social networks. Multi-level linearization uses several value of k to linearize a

network. The formal definition can be found in Chapter 4. The heuristic to build the multi

level linearization is as follows: we start with a random vertex and a starting value for k.

At each step we append to the list, the vertex that has the largest number of edges with the

last k nodes of the list. We remove these edges from the graph and iterate until no edge is

left. If none of the last k vertices of the list have a neighbor, we pick a random node with

non-zero degree and continue from there.

As we are removing the edges of the graph, it becomes sparser and sparser and eventually

the rear part of the linearization may have very few new edges to encode. To be adaptive,

we watch the average density for the recent positions in the list (the last 1000 positions),

once it drops below a certain density threshold, we reduce k by multiplying it to a predefined

reducing factor.

For experimental study, we used the data sets from the SNAP project (Stanford Net-

work Analysis Package, http://snap.stanford.edu/data/). These data sets are from

very different domains, such as friendship networks, web graphs, peer-to-peer networks,

collaboration networks, citation networks, and co-purchasing networks.

Comparing to results reported in [14], our method has slightly better compression rate.

CHAPTER 1. INTRODUCTION 10

However, the real advantage of our lossless compression comes from the ability of answering

both in-neighbor and out-neighbor queries without replicating the data. More experimental

results are provided in Chapter 4.

Contribution. The lossless compression scheme is a practical setting of the GPSN

framework, in which a notion of multi-level linearization is utilized. We introduce a greedy

heuristic to build a “good” multi-level linearization for a given graph. An extensive set of

experiments validate our design.

1.4 Lossy Compression Schema

Although, there are a few pioneering studies on social network compression, they only focus

on lossless approaches. In Chapter 5, we tackle the novel problem of lossy compression

of social networks. The trade-off between memory and “information-preserved” in a lossy

compression presents an interesting angle for social network analysis, and at the same time

makes the problem very challenging. We propose a lossy graph compression approach,

based on our GPSN framework. We do so by designing an objective function to measure

the quality of a given linearization with the respect of community structure of the network.

We present an interesting and practically effective greedy algorithm to optimize such an

objective function. Our experimental results on both real data sets and synthetic data

sets demonstrate the promise of our method. However, there is no theoretical analysis to

guarantee the performance of our heuristic.

From the practical point of view, the noise edges and vertices in large social networks

do not help in analysis of the network. Instead, they may compromise the quality of social

network analysis. An appropriate lossy compression of a social network can discard the noise

edges and vertices in the network. Consequently, the lossy compression may be presented

as a higher quality input for social network analysis. In other words, lossy compression of

social networks can serve as a preprocessing step in social network analysis. This goes far

beyond just saving space. The experimental study in Chapter 5 verifies our claim.

The idea of representing the edges of a network by a sequence of vertices naturally

CHAPTER 1. INTRODUCTION 11

inspires a lossy compression scheme. To explain such a scheme, a dual definition of k-

linearization could prove to be useful. The definition of k-covered edges is presented in

Section 5.3. The intuition is as follows: a subset A ⊆ E(G) is k-covered by a sequence S of

the nodes of a given graph G, if for all e ∈ A, the length of e according to S is less than or

equal to k. Ek(S) would be the largest set that is k-covered by S.

The setting for the lossy compression problem is as follows: given two parameters k

and l, find a sequence S of nodes with length l such that Ek(S) captures the community

structure of the network. Since communities are the building blocks of a social network,

such a scheme would cover the majority of the edges of the network assuming reasonable

values for k and l.

We design an objective function to measure how well a given sequence S captures the

community structure of a social network. A critical issue would be to design such an

objective function that is sensitive to the loss of community structure. Instead of developing

a utility function parameterized by k, we consider a utility function that optimizes for edges

of short spans in the corresponding sequence S. For this purpose, we introduce a parameter

α (0 < α < 1) that controls the preference for shorter spans. We build the connection

between parameter α and parameter k in Section 5.4. The objective function is as follows:

f̄(S,G) =
∑

1≤i≤length(S)

(
∑

e∈Ei

αspan(e))2, (1.1)

where Ei is the set of edges associated to the position i of the sequence S, and span(e) is

the stretch of edge e according to sequence S. Sections 5.3 and 5.4 discuss the objective

function and the reasoning behind it in details.

A critical question is that what would the lost of information in lossy compression scheme

do to the community structure of the network. A set of experiments introduced in Section

5.5 aims to evaluate the effect of lossy compression on the community structure of the

network. Chapter 5 provides detailed results on real world and synthesis networks.

Contribution. Our lossy compression scheme is designed to capture the global com-

munity structure of social networks using a predefined amount of storage. We introduce an

objective function which quantifies how well a sequence S captures the community structure

CHAPTER 1. INTRODUCTION 12

of a given network. Our objective function turns the problem of lossy compression to an

optimization problem. For optimizing such an objective function we develop a local search

heuristic. Finally, we evaluate our method on both synthesis and real world networks.

1.5 Structure of the Thesis

In this chapter, we provide a high level and intuitive introduction of the core idea of the

GPSN compression framework. Chapter 2 reviews the related work. Then, we justify the

design of our GPSN framework by mentioning three solid compression schemes, designed

base on the principles of this framework. The first scheme, the Eulerian data structure, is

one of the simplest settings for which the framework is not trivial. The simplicity in this case

allows us to prove a theoretical upper-bound on the compression rate. The detailed proof of

the upper bound can be found in Chapter 3. A lossless compression scheme is discussed in

details in Chapter 4. For the third and last study, we present an overview of the design of

the lossy compression scheme. Chapter 5 discusses the lossy compression scheme in details.

We conclude the thesis in Chapter 6.

Chapter 2

Related Work

In the last decade, World Wide Web [3] has been the focus of much research, both from

academic and industrial perspectives. Among other things, it has been a diverse and incred-

ibly huge source of data. Particularly, it is rich with different types of social networks. In

this thesis, a social network is a graph which models the binary relations among a certain

set of objects. The nodes of the graph represent objects and the edges represent the binary

relations. Often, relations come from a social phenomenon. A binary relation could be a

one way or two ways relation.

For example, in a friendship network, a node is a person and an undirected edge is

representing the friendship between two persons. The web graph is an abstraction for the

web pages (URLs) and the hyper links among them. The nodes are representing web pages.

There is a directed edge from web page x to web page y, if there is a hyper link from x to y.

Likewise, a collaboration network typically models a set of individuals and the collaborative

relationship among them.

Social networks have been exploited in many different applications, such as search en-

gines, epidemic analysis for diseases, modeling information and behaviour cascades [45, 21].

However, the huge amount of information always comes with the scalability challenges,

in both time and memory aspects. In this chapter, we focus on the literature related to

compression of social networks.

13

CHAPTER 2. RELATED WORK 14

2.1 Categorization of Related Work

Compressibility is highly related to the amount of “regularity” in a network. It is a well

known fact that social networks are rich with dense subgraphs. Depending on the type of

network, these dense subgraphs might have different meanings. For example, in a friendship

network a dense subgraph is usually corresponding to a community of friends, while in a

web graph, a dense subgraph could be corresponding to several pages making an online

manual for a certain product. Likewise, a dense bipartite subgraph in a web graph could be

corresponding to a set of “survey” web pages that link to the same set of “reference” web

pages.

All the compression methods for social networks, at least implicitly, exploit the existence

of such dense subgraphs to achieve storage efficiency. We organize the compression methods

in the two categories of the aggregation-based and the order-based approaches. The idea of

compression in the aggregation-based approach is to reduce the number of nodes or edges, by

aggregating a set of edges (or nodes) into one super-edge (or super-node). In these methods,

the compression rate is the ratio of the number of edges in the compressed network over

the number of edges in the original network. In the order-based methods, the saving comes

from using fewer number of bits to encode a particular edge. The compression rate for these

methods is the average number of bits that is necessary to encode an edge. To compare the

compression rate of the two approaches sometimes we need to have an assumption for the

size of an identifier of a node. In those cases, we assume an identifier is encoded by a 32-bits

integer.

Having the four criteria of compression rate, in-neighbor and out-neighbor queries, and

incremental update efficiency in mind we review and compare compression methods in the

literature. Unfortunately comparing the compression rate is not always trivial for the fol-

lowing reasons: first, different methods are using different criteria as the compression rate,

and second, the performance of different methods are reported on different datasets, which

may not be publicly available.

Often, the compression method reassigns new identifiers to the nodes of the network. In

CHAPTER 2. RELATED WORK 15

the scenarios that the original identifiers are informative, storing a two-way mapping from

the original identifiers to the new ones is necessary. Consistent with the literature [41, 8, 14],

to evaluate the compression rate we ignore the cost of this mapping. This is a reasonable

assumption because the size of such a mapping is proportional to the number of nodes, and

the number of nodes is often much smaller compared to the number of edges. As the last

remark, all the compression methods that we describe in this thesis assume the input is a

simple directed graph (i.e., a directed graph without multiple edges).

We categorize the literature related to the compression methods in the following four

categories:

• The aggregation-based compression approach (Section 2.2): The general idea

of this approach is to find a set of nodes, that have similar neighbors and replace

them by a single super-node. Likewise, a super-edge represents a set of edges [23, 17].

Raghavan and Garcia-Molina [50] recursively used this idea to decompose a web graph

into a hierarchical structure. They introduced the notion of S-node to aggregate

several nodes of a web graph into one super-node. Similar to this work, the method

of Navlakha et al. [41] represents a social network by a summary graph S and a

correction set C. We will explain this method as an example of aggregation-based

approach in details. Buehrer and Chellapilla [11] used a different aggregating idea to

compress web graphs. However, their approach does not replace any node in the web

graph, rather they find semi-complete bipartite subgraphs1 and aggregate the edges

by introducing a virtual node. The challenge in their approach is how to mine the

directed semi-complete bipartite subgraph. We explain the idea of their approach in

Section 2.2, and leave the mining technique for Section 2.4.

• The order-based compression approach (Section 2.3): In the order-based ap-

proach, finding a “good” ordering of the nodes is essential. Intuitively, a “good”

ordering is an ordering in which (1) the nodes with similar neighbors are close to each

1A semi-complete bipartite subgraph is a directed bipartite graph in which all the possible directed edges
from one (source) partition to the other (destination) partition exist.

CHAPTER 2. RELATED WORK 16

other, and (2) the nodes that belong to a dense subgraph, fall in proximate positions

[8, 6, 7]. The existing order-based methods either use external information to establish

the ordering (e.g. lexical ordering of URLs) or they rely on a heuristic to produce it.

• Clustering and dense subgraph mining (Section 2.4): Dense subgraph mining

and clustering in the social networks are relevant to compression schemes. Often, the

intuition and the design of the compression scheme determines what kind of mining

or clustering technique should be used. We discuss a semi-complete bipartite mining

technique as a part of an aggregation-based compression method [11]. As another

example, we explain a clustering technique [55] that has been used for reordering the

nodes of a network, in an order-based compression method [6]. Later, we present a

structural clustering method [63] that partitions the nodes based on the similarity of

their neighbors. This is particularly interesting, because both aggregation-based and

order-based approaches exploit the existence of the nodes with similar neighbors to

achieve compression. Finally, we discuss the spectral clustering method [44, 38, 65, 64],

a major clustering technique that has the advantages of being scalable and having a

solid theoretical foundation. The spectral clustering method as a preprocessing step

embeds the nodes of the graph into a low-dimensional space. Likewise, the order-based

approach also as a preprocessing step needs to embed the nodes into a one-dimensional

space (an ordering of the nodes can be considered as an embedding of the nodes into

a line).

• Graph layout problems (Section 2.5): Order-based methods rely on an ordering

of the nodes with two specific properties. A possible approach to find such a “good”

ordering is to design an objective function that encapsulate the desired properties

of a “good” ordering. The challenge in this direction has two folds: the design of

the objective function and the algorithm to optimize such a function. A family of

combinatorial problems, known as graph layout problems have a long history in the

graph theory discipline [19, 5, 53]. The goal in these problems is to find an ordering of

the nodes that minimizes/maximizes a given objective function. In the classic variants

CHAPTER 2. RELATED WORK 17

Figure 2.1: Reprinted from [11]. The top graph is an example of a semi-complete bipar-
tite subgraph. The example illustrates the idea of aggregating a set of directed edges by
introducing a virtual node.

of graph layout problem the objective functions are motivated by applications such

as VLSI circuit design, numerical analysis and scheduling [19]. Even though these

objective functions do not have an explicit connection to the compression problem,

studying them would shed light on the nature and the challenges of this approach.

2.2 The Aggregation-Based Approach

In this section, we discuss two aggregation-based methods: (1) the Virtual Node Compres-

sion scheme [11], and (2) the Summary Graph Compression Scheme [41].

2.2.1 The Virtual Node Compression Scheme

The idea of using semi-complete bipartite subgraph for network compression is illustrated in

Figure 2.1. A set of directed edges, from the source nodes Si (i = 1, . . . , 6) to the destination

nodes Di (i = 1, . . . 5), are encoded by introducing a virtual node VN, using one level of

CHAPTER 2. RELATED WORK 18

indirection. In the original graph, there are 5 × 6 = 30 edges. However, after introducing

the virtual node the number of edges reduces to 5 + 6 = 11. The decrease in the number of

edges is 30− 11.

Generally, if we have a sources and b destinations, the decrease in the number of edges

is ab−a− b. The effectiveness of the method highly depends on the existence of large semi-

complete bipartite subgraphs. This is particularly an intuitive idea for Web graph. The set

of source nodes in a semi-complete bipartite subgraph could be corresponding to a set of

web pages on the same topic which all of them have references to a small set of “reference”

pages. For example, considering the articles on the coming US presidential election, an

statistically significant fraction of them would be sharing references to Wikipedia pages of

Barack Obama, Mitt Romney, Republican party, Democratic Party, and more. Section 2.4.1

explains the method for mining such subgraphs.

2.2.2 The Summary Graph Compression Scheme

In Figure 2.2, graph G (left) and its compressed representation (right) are depicted. For sim-

plicity, the method is illustrated using an undirected graph, however it is trivially extendible

to directed case. The compressed representation consists of a summary graph S = (VS , ES)

and a set of edge corrections C. In the summary graph S, each node is corresponding to a

set of nodes in the original graph G, e.g. d, e and f are replaced with z in the summary

graph. Edge (z, y) in the summary graph represents six edges in the original graph, namely:

(h, d), (h, e), (h, f), (g, f), (g, e) and (g, d). Observe that according to summary graph, (g, d)

is an edge in the original graph, which is not the case In order to be able to correct such

mistakes, a correction set C is maintained. In this case C contains correction −(g, d), which
means after recovering the original graph, (g, d) has to be removed. Likewise +(a, e) means,

after recovery, edge (a, e) has to be added to the graph. In addition to the summary graph

and the set of corrections, the compression scheme maintains a mapping from the nodes of

the original graph to the nodes of super-nodes of the summary graph.

In the next two subsections, we explain two algorithms for computing a compressed

CHAPTER 2. RELATED WORK 19

representation (S,C), where S is a summary graph and C is a set of corrections. The

objective is to find a representation (S,C) such that the sum of |ES | + |C| is minimized.

Before explaining the algorithms, notice that the edge set ES and the correction set C can

be optimally determined based on the super-nodes in VS .

Assuming VS is fixed, we show how to compute ES and C. Let v and u be two super-

nodes in VS . We define Πuv as the set of all pairs (a, b) such that a ∈ Au and b ∈ Av, where

Au and Av are the two set of nodes in the original graph, that are replaced by super-nodes

u and v, respectively. Observe that some of the pairs in Πuv might not be an edge in the

original graph. Let Auv ⊆ Πuv be the set of all those pairs that are also an edge of the

original graph. Now, for encoding the edges in Auv there are two possibilities: (1) add (u, v)

to the summary graph ES and Πuv − Auv to the correction set C with the negative sign.

(2) add Auv to C with the positive sign. The cost would be |Πuv| − |Auv|+1 for the former

case, and |Auv| in the case of latter. Therefore, one must add the super-edge (u, v) if and

only if |Auv| > (|Πuv|+ 1)/2. Then, the corrections have to be chosen accordingly. We can

conclude that the task here is to find a good partitioning of the nodes in the original graph

into super-nodes.

The Greedy Algorithm

The greedy algorithm starts with having each node of the original graph as a super-node

(VS = VG). Then, iteratively it tries to merge the super-nodes, based on a cost reduction

function s(u, v), until no improvement is possible. We define a neighborhood Nv for each

super-node v as follows:

Nv = {u ∈ VS |∃a ∈ Av ∧ ∃b ∈ Au → (a, b) ∈ EG}

In other words, u is in neighborhood of v if and only if for some node a ∈ Av and b ∈ Au,

edge (a, b) belongs to EG. Given two super-nodes u and v, let cvu be the cost of encoding

the edges in Auv:

cvu = min{|Πuv| − |Auv|+ 1, |Auv|}

CHAPTER 2. RELATED WORK 20

Figure 2.2: Reprinted from [41]. Graph G (left) is the original graph and its compressed
representation (right). For simplicity the idea of the method is illustrated on an undirected
graph.

Notice that cvu for node u that does not belong to Nv is equal to zero (since |Avu| is equal
to zero). Also we define:

cv =
∑

u∈Nv

cvu,

where, cv is the cost of encoding all the edges incident to v. Now, the cost reduction of

merging two super-nodes u and v into super-node w is defined as follows:

s(u, v) =
cu + cv − cw
cu + cv

The algorithm has three different phases: initialization, iterative merging and output.

As the initialization, VS is set to be VG, and cost reduction s(.) would be computed for

all the pairs that are at most 2 hops away. Note that, if two nodes are more than 2 hops

away, they do not share any neighbors in the original graph, and therefore merging them

would not have any benefit. A standard max heap structure keeps all the pairs (u, v) with

a positive s(u, v).

CHAPTER 2. RELATED WORK 21

During the merging phase, iteratively the pair (x, y) with maximum s(.) is chosen. Then,

the super-nodes x and y have to be removed from VS , and merged into the super-node w.

Finally, w has to be added to VS . Notice that as a side effect of the merging operation the

value of s(.) for some pairs might change. Precisely, those pairs that contain x, y or any

neighbor of them have to be considered for cost reduction revaluation. Algorithm 1 is the

pseudo code for this heuristic.

The Randomized Algorithm

Since recomputing the cost reduction function for all the affected pairs of super-nodes in

each step of greedy algorithm is expensive, the randomized algorithm is proposed to reduce

the time complexity. Similar to greedy algorithm, the heuristic initializes VS to VG. Then, it

iteratively merge nodes to form the final set of super-nodes. These super-nodes are divided

into two categories, unfinished (U) and finished (F). The algorithm starts with all nodes in

the U category, and ends when all the nodes are in the F category.

In each iteration a node u, uniformly at random, is chosen from the U category. The

reduction cost of this node with respect to all nodes in its 2 hop neighborhood is computed.

Let v be the node such that s(v, u) is the largest. If merging u and v gives a positive

reduction, they should be merged into super-node w, otherwise we add u to the F category.

Algorithm 2 is the pseudo code for the randomized heuristic.

2.2.3 Discussion

The Virtual Node scheme uses an adjacency list table to store the compressed graph, there-

fore incremental updates and out-neighbor queries are efficient. However, the in-neighbor

queries are not efficient, without replicating the data. Also, since the method uses a fast

heuristic for mining the semi-complete bipartite subgraph, it is scalable. A disadvantage

of the method is that the effectiveness, from the compression-rate point of view, depends

on the existence of semi-complete bipartite subgraphs. As it is clear from the experiments

in [11], web graphs tend to have relatively large semi-complete bipartite subgraphs. The

CHAPTER 2. RELATED WORK 22

Algorithm 1 Reprinted from [41]. The pseudo code for three phases of greedy algorithm
for computing the summarization graph GS and correction set C. The algorithm consisted
of three phases: Initialization, Iterative merging and Output.

/*Initialization phase*/
VS = VG; H = {};
for all u, v ∈ VS that are 2 hops apart do
if s(u, v) > 0 then
insert (u, v, s(u, v)) into H;

end if
end for
/*Iterative merging phase*/
while H 6= {} do
Choose pair (u, v) ∈ H with the largest s(u, v) value;
w = u ∪ v; /* merge super-nodes u and v */
VS = VS − {u, v} ∪ {w};
for all x ∈ VS that are within 2 hops of u or v do
Delete (u, x) and (v, x) from H;
if s(w, x) > 0 then
insert (w, x, s(w, x)) into H;

end if
end for
for all x, y ∈ VS such that x or y is in Nw do
Delete (x, y) from H;
if s(x, y) > 0 then
insert (x, y, s(x, y)) into H;

end if
end for

end while
/*Output phase*/
ES = C = {};
for all u, v ∈ VS do
if |Auv| > (|Πuv|+ 1)/2 then
Add (u, v) to ES ;
Add −(a, b) to C for all (a, b) ∈ Πuv −Auv;

else
Add +(a, b) to C for all (a, b) ∈ Auv;

end if
end for
return representation R = (S = (VS , ES), C);

CHAPTER 2. RELATED WORK 23

Algorithm 2 Reprinted from [41]. Pseudo code for the randomized heuristic.

U = VS = VG; F = {};
while U 6= {} do
Pick a node u randomly from U ;
Find the node v with the largest value of s(u, v) within two hops of u;
if s(u, v) > 0 then
w = u ∪ v;
U = U − {u, v} ∪ {w};
VS = VS − {u, v} ∪ {w};

else
Remove u from U and put it in F ;

end if
end while

compression rate for the reported web graphs is between 0.15-0.35, that is the number of

edges of the compressed network over the original graph is between 0.15-0.35. To best of

our knowledge, there is no result available concerning other types of social networks.

In the case of the summary graph scheme [41], the summary graph S and the correction

set C, both can be represented as an adjacency list table. For correction set C, a label from

{+,−} should be stored for each edge. Therefore, it can be shown that the average running

time of the out-neighbor query is O(davg), where davg is the average degree. The incremental

updates naively can be done in O(1), however, it compromises the compression rate. As for

the compression running time there is no precise analysis. We believe the merging operation

in this method is quite expensive and it is likely that a large portion of the network has to

be processed for a single merge operation. As an evidence for our claim, the largest network

in the dataset collection of [11] has about 600 thousand edges. The compression rate for

the only web graph in the dataset collection is about 0.20, while, in the case of friendship

network, it is about 0.80.

An advantage of the aggregation-based approach is that as a side product, they produce

a summarization of the network. The summary graph, as it is illustrated in [41], can be

used for visualisation purposes, and/or to get a general idea of the global structure of the

network. However, the disadvantage is that unless the network has really dense subgraphs,

the method is not effective. Precisely speaking, we can show the existence of subgraphs

CHAPTER 2. RELATED WORK 24

with a density strictly higher than 1/2 is necessary, and for substantial saving we need a

density close to one. Comparing the performances of the two compression methods could

be informative. First, the excellent compression rate of Virtual Node scheme suggests that

the web graphs have relatively large semi-complete bipartite subgraphs. We believe, this is

the reason that the summary graph scheme also works well on the web graphs. At the same

time, the poor performance of the summary graph scheme on the friendship networks is an

evidence for the lack of relatively large very dense subgraphs.

2.3 Order-Based Approach

Methods in this category rely on a particular ordering of the nodes in which similar nodes,

i.e., nodes with the similar set of neighbors, fall in the proximate positions. The ordering

might come as an external information [8], or is computed using the link analysis of the

graph [14, 6]. In either case, the ordering should have the following two properties:

• Closeness Similarity: the proximate nodes tend to have similar neighbors.

• Edge Locality: the edges of the graph tend to connect a pair of “close by” nodes.

Next, we explain the major ideas of the WebGraph framework [8, 6, 7, 14] that exploits the

lexicographical ordering of the URLs to achieve impressive compression rate on web graphs.

It is also worth mentioning that WebGraph uses and improves ideas from the Connectivity

Server [4] and the LINK database [52].

2.3.1 WebGraph Compression Framework

There are two critical components for the WebGraph framework:

• ζ codes [9]: this is a family of codes, particularly designed for storing integers that

come from a power law distribution2 in a certain exponent range. Unlike fixed length

2A power law distribution is a distribution whose density function (mass function in the discrete case)
p(x) is proportional to Lx−α, where L is a constant and α is the exponent.

CHAPTER 2. RELATED WORK 25

code, the length of the code to represent a given number x depends on the value of x. A

ζ code to represent a number x would use at most 2⌈log2(x)⌉ bits. The unary encoding

of a number x is x−1 zeros, followed by a one. The general idea for these codes can be

explained as follows: for a given number x, first we write unary encoding of ⌈log2(x)⌉,
followed by ⌈log2(x)⌉ bits encoding number x. However, we have to mention this is

only to demonstrate the general idea, while the actual encoding is more complicated.

The key observation is that most integers coming from a power law distribution are

small numbers, therefore this approach on average would use fewer number of bits,

comparing to the fixed length codes.

• The compression format [8]: the framework uses the adjacency list table (e.g. table

2.1) of a network as the starting point. The rows of the adjacency table is ordered lex-

icographically based on the URLs of the web pages. Then, by exploiting the closeness

similarity of the nodes, and the application of ζ codes, an impressive storage efficiency

is achievable.

The details of ζ codes are out of scope for this report, and can be found in [8]. However,

we will discuss the major ideas of the compression format for the rest of this subsection.

Naive Representation [8]: The naive representation is an adjacency list table, in which

the nodes are ordered according to the lexicographic order of the corresponding URLs. The

adjacency list for each node is preceded with the out degree of the node. Also the list is

sorted in the increasing order. Table 2.1 is an example of the naive representation.

Gap coding [8]: the advantage of the sorted out-neighbor list in the naive representa-

tion is that the gaps between consecutive out-links are going to follow a pattern. In fact,

experimentally it is shown that they follow a power low distribution [8]. To exploit this

observation, instead of storing the adjacency list, one can represent the out-neighbors by

storing the gap list. For a given node x let S(x) = (s1, s2, · · · , sk) be the adjacency list, then,

instead one can store the gap list: g(x) = (s1−x, s2− s1− 1, s3− s2− 1, · · · , sk− sk−1− 1).

CHAPTER 2. RELATED WORK 26

Node Outdegree Out-neighbors

· · · · · · · · ·
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
· · · · · · · · ·

Table 2.1: Reprinted from [8]. Naive representation using adjacency List and outdegree

Table 2.2: Reprinted from [8]. Gap coding representation

Node Outdegree Out-neighbors

· · · · · · · · ·
15 11 3, 1, 0, 0, 0, 0, 3, 0, 178, 111, 718
16 10 1, 0, 0, 4, 0, 0, 290, 0, 0, 2723
17 0
18 5 9, 1, 0, 0, 32
· · · · · · · · ·

Note that, since the adjacency list S(x) is sorted, except possibly for the first one, all

these numbers would be non-negative. To eliminate this exception, one can handle the first

number as a special case. The first number in the list would be encoded using the following

bijective mapping:

ν(x) =

2x if x ≥ 0

2|x| − 1 if x < 0

Table 2.2 illustrates the gap coding technique.

Reference Coding [8]: the reference coding technique exploits the similarity between

the adjacency lists of the proximate positions in the lexicographic order. The idea is that

instead of representing S(x) directly, one can represent it as a modified version of another

list S(y). Where, y is a node, or equivalently a row of the adjacency table, that appears

before x. We call S(y) the reference list, and x − y the reference number. To encode S(x)

with respect to S(y), both the reference number and a vector of bits of length |S(y)| have

CHAPTER 2. RELATED WORK 27

Table 2.3: Reprinted from [8]. Reference coding representation

Node Outdegree Ref. Copy list Extra Nodes

· · · · · · · · · · · · · · ·
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0
18 5 3 11110000000 50
· · · · · · · · · · · · · · ·

to be stored. The vector specifies those neighbors of y that are also among the neighbors

of x. Finally, those neighbors of x that do not appear in the adjacency list of y have to be

stored (S(x)\S(y)). Table 2.3 illustrates the idea.

The nontrivial part of this technique is the choice of reference number for a particular

node. For that, one can assume there is a window size W > 0. The reference number r

(0 ≤ r ≤W) for the row i of the table is chosen such that encoding the row i by referencing

to the row i− r, obtains the best compression rate. Having a larger window size W would

improve the compression rate by providing more choices in the reference coding technique,

however, would make the compression algorithm slower and less memory efficient. To find

such a reference number for each row, one need to scan all the W previous rows, therefore,

the running time for reference coding technique is O(|E|W).

2.3.2 The Shingle Ordering Heuristic

The nice properties of the lexicographical order of the nodes based on the corresponding

URLs is the crucial reason for the excellent performance of the WebGraph framework. Unfor-

tunately, the framework cannot be used for other types of social networks trivially. Recently,

Chierichetti et al. [14] extended the WebGraph framework to general social networks. The

central idea is to introduce an ordering based on Jaccard coefficient [10]:

J(A,B) =
|A ∩B|
|A ∪B| ,

CHAPTER 2. RELATED WORK 28

where A and B are two sets. Jaccard coefficient is a similarity measure for two sets A and

B. Shingle ordering is a heuristic based on this notion. Let S(x) and S(y) be the sets of

neighbors for x and y, respectively. Let σ be a random permutation of the nodes of the

network. Then, for node x:

Mσ(x) = σ−1(mina∈S(x){σ(a)})

Intuitively,Mσ(x) is the neighbor of x that appears first among all other neighbors according

to σ. We call Mσ(x) the shingle of x. It is easy to prove the following:

Pr[Mσ(x) =Mσ(y)] =
|S(x) ∩ S(y)|
|S(x) ∪ S(y)| = J(S(x), S(y))

The shingle ordering heuristic sorts the nodes based on their shingle. The idea is that if

the neighbors of two nodes highly overlap, there is a good chance that they both have the

same shingle, therefore it is likely that they will be close to each other. For breaking the

ties a second (and third ...) shingle can be used.

2.3.3 Layered Label Propagation

Very recently, Vigna et al. [6] introduced the Layered Label Propagation (LLP) algorithm

for reordering the nodes of a graph, and showed that using the output of this algorithm

the compression rate of WebGraph framework can be improved, for both web graphs and

social networks. It is worth mentioning, the layered label propagation algorithm in essence

is a clustering method built up on the work of [51, 56]. The LLP algorithm uses a variant

of label propagation algorithms, known as Absolute Pott Model (APM), as a subroutine.

APM has a parameter γ as an input and guarantees that the resulting clusters have the

density at least γ/(γ+1). The value of γ in this algorithm is related to the resolution level of

the resulting clusters. For values close to zero the algorithm returns fewer, sparser clusters.

As γ increases the clusters become smaller and denser. More details on this algorithm is

provided in Section 2.4.2.

The intuitive description of the LLP algorithm is as follows: we run the APM clus-

tering algorithm with k different parameters γ1, γ2, · · · , γk. Let λi be the label of node v

CHAPTER 2. RELATED WORK 29

corresponding to parameter γi. We assign the tuple (λ1, · · · , λk) to v as a label. Then, we

sort the nodes lexicographically based on this label. Although, there is no discussion in [6]

regarding the value of k, presumably it is the smallest number that resolves (almost) all

the ties in the lexicographic order. The parameter γi is chosen uniformly at random from

{2−i|i = 0, · · · l} ∪ 0, where l is a fixed constant. We should mention that the intuition

behind this choice is unclear for us and there is no discussion provided by the authors [6].

2.3.4 Discussion

The average neighborhood query time for the WebGraph framework is O(Cdavg), where C

is the limit on the length of the reference chains and davg is the average degree. Since C is a

predefined small constant number, the neighborhood query time on average is O(davg). The

framework does not allow sub linear incremental updates and in-neighbors query answering.

Assuming the order of the nodes is provided, the compression time is O(|E|W). The

running time to build the lexicographic order is O(|V |log|V |), however, the time to build

the shingle order depends on the number of edges as well (O(|V |log|V |+ |E|)). The running
time of LLP algorithm is proportional to |E|1.3 [54]3.

Similar to the aggregation-based approach the compression rate of the order-based ap-

proach on web graphs is extremely good, while for other types of social networks the per-

formance is quite poor. The compression rate for order-based approach is measured by

the average number of bits that is necessary to represent a single edge. The WebGraph

framework uses 2-4 bits/edge to encode a typical web graph. However, when the framework

is coupled with the shingle ordering heuristic, the compression rate for other type of social

networks is in the range of 10-15 bits/edge [14]. Also the order that is produced by the

LLP algorithm comparing to both the shingle heuristic ordering and lexicographic ordering

in most cases can improve the compression rate by up to 25 percent [6].

3However, this running time is based on experimental analysis, rather than analytical analysis. That is
why we do not use the big O notation for this case.

CHAPTER 2. RELATED WORK 30

2.4 Clustering and Dense Subgraph Mining

Any compression method, at least implicitly, exploits the existence of the dense subgraphs

of a given social network in order to achieve compression. This naturally brings the topic

of dense subgraph mining and clustering into picture. Clustering in the social networks is a

broad and diverse area.

The techniques and algorithms in this area very much depend on the problem formu-

lation. An early study formulate the problem as a min-max problem. The min-max cut

method [20] partitions the nodes of a graph into clusters C1, · · · , Ck such that it minimizes

the number of edges between different clusters, and maximizes the number of edges inside

the clusters. Later, the notion of modularity is proposed to measure the quality of a clus-

tering [43], and a fast greedy algorithm to optimize it was proposed in [16]. The SCAN

algorithm [63] introduced as a extension of the popular DBSCAN algorithm [22] to the

social networks. A comprehensive survey on the clustering method can be found here [27].

Dense subgraph mining also is studied extensively. A recent work [61] introduces a mapping

technique that maps edges and nodes to a multi-dimensional space in which dense areas are

corresponding to dense subgraphs. Furthermore, many papers studied the problem of dense

subgraph mining specific to the web graph [30, 26, 34]. The goal here is not to cover all

the aspects of clustering and dense subgraph mining, rather we explain a few methods that

have clear connections to the existing compression schemes.

In this section, we explain a dense subgraph mining method that successfully has been

used in a compression framework. A clustering method known as Absolute Pott Model,

which has been used for reordering the nodes of a network in the WebGraph framework,

is discussed. In addition, we explain a structural clustering algorithm (SCAN), which uses

the similarity between the neighborhood of the nodes as a measure for partitioning the

nodes. Since both order-based and aggregation-based approaches use the same notion of

neighbors similarity to achieve compression, we believe structural clustering potentially

can be beneficial. Finally, we consider the spectral clustering method. Spectral clustering

particularly is interesting, because as a preprocessing step it uses an embedding of the nodes

CHAPTER 2. RELATED WORK 31

to a low-dimensional space. Note that, the ordering of the nodes in the order based methods

can be considered as an embedding to the one-dimensional space.

2.4.1 Mining Semi-Bipartite Subgraphs

In this section, we explain a mining technique for finding a set of source nodes that all

share a set of destination nodes as out neighbors (the top graph in Figure 2.1 displays an

example). As we described in Section 2.2.1, this particular subgraph exploits by the Virtual

Node scheme to achieve compression. The mining of this type of bipartite subgraph can

be seen as a frequent itemset mining problem, where the out-neighbors of each vertex is a

transaction. Items are corresponding to the vertices of the graph. Then, the goal is to find

those sets of items that appeared in at least m transactions. The parameter m is called the

minimum support. The number of transactions and the number of items are both equal to

the number of vertices in the graph. The full enumeration of those patterns is particularly

challenging, because in our setting the minimum support is 2 (since an itemset with support

of 2 could be benefical for purpose of compression). However, in our setting there is no need

to recall all such frequent itemsets.

The mining method relies on a two phases heuristic: a clustering phase, in which the

vertices are clustered based on their similarity, i.e., Jaccard coefficient of their neighbor set.

Next, in a pattern mining phase, the frequent patterns are discovered using the fast frequent

itemset mining method introduced in [12].

Phase 1: Clustering

The clustering method uses k independent shingles for each vertex (see section 2.3.1 for the

definition of the shingle). These shingles can be considered as k independent samples from

the out-neighbors of each vertex. Therefore, if the out-neighbors of two vertices u and v

highly overlap, it is likely that the sets of shingles of u and v also highly overlap. Note that,

k is a small fixed number.

The clustering algorithm is as follows: first, we obtain a table in which the rows are the

CHAPTER 2. RELATED WORK 32

vertices and the columns are the shingles. Then, we sort the rows of the table based on

the lexicographic ordering of the shingle vectors. We traverse across the table to cluster the

rows with the same shingle together, starting from column one. If the size of a cluster is

larger than a threshold we move to the next shingle and refine the cluster to smaller parts.

We continue this until the size of all clusters are less than the threshold, or we reach to the

last shingle. Note that, this method biases the left-most shingle.

Phase 2: Pattern Mining

The objective of the pattern mining phase is to find common subsets of neighbors of a given

cluster of vertices. Pattern P is a subset of vertices of the network. The frequency of P

is the number of those vertices v ∈ C, that have all the vertices in P as a neighbor. The

compression performance of P is defined as follows (see section 2.2.1):

Compression(P) = freq(P)|P | − |P | − freq(P) (2.1)

The idea of the pattern mining phase is to first reorder the out-neighbor list of the nodes

such that the vertex Ids with higher frequency sort first. Then, one can treat the out-

neighbor lists as string. The out-neighbor lists would be added to a prefix tree one by one4.

Each node in the tree is associated with a vertex Id as the label. The prefix of the node t

in the tree is the sequence of vertex Ids, starting from the root, and along the path to t.

Table 2.4 is a toy example of a typical cluster of vertices, passed to mining phase. The

vertex Ids in the out-neighbor list are sorted according to their frequency. Figure 2.3 is

illustrating the corresponding prefix tree. Note that, before adding the out-neighbor list

to the tree, we remove the vertices with frequency one. Each node of the tree, in addition

of its label, is associated with a list of transactions, i.e., out-neighbor lists, that share the

prefix of the node. We refer to the vertices in this list as the support vertices of the node.

4A prefix tree (or a trie) is a data structure to store a set of strings. In prefix tree, the nodes are labeled
with letters, then the string associated with each node is the sequence of labels, starting from the root, along
the path to that node. All the descendants of a node have a common prefix of the string associated with
that node, and the root is usually associated with the empty string. Values are normally not associated with
every node, only with leaves and some inner nodes that correspond to keys of interest.

CHAPTER 2. RELATED WORK 33

Vertex Id Out-neighbor List

23 1,2,3,5,6,10,12,15

55 1,2,3,5

102 1,2,3,20

204 1,7,8,9

13 1,2,3,8

64 1,2,3,5,6,10,12,15

43 1,2,3,5,6,10,22,31

431 1,2,3,5,6,10,21,31,67

Table 2.4: An example of a cluster of vertices passed to mining phase

For example, there are two nodes in the prefix tree (Figure 2.3) with label 8. The prefix

sequence of the first one is 1, 8 and second one is 1, 2, 3, 8. The out-neighbor sequence of the

vertex 204 is the only sequence that supports 1, 8 (after removing 7 which has frequency 1),

while the out-neighbor sequence of vertex 13 supports 1, 2, 3, 8.

The merit of using the prefix tree is that it suggests a heuristic approach to exploit the

trade off between the size and the frequency of candidate patterns. The prefix associated

with each node of the prefix tree, could be a potential pattern. For leaf t of the tree, the size

of the prefix of t is large, however, the frequency of the prefix is small. As we move towards

the root from t, the size of prefix decreases and the frequency increases. The algorithm in

one scan of the prefix tree, generates those patterns with high compression performance.

Then, it sorts the patterns based on their compression performance and replace the edges

for each pattern with a virtual node (see section 2.2.1) starting from the top of the list.

More details of the mining algorithm can be found here [12].

2.4.2 Label Propagation Clustering

The label propagation algorithms are a family of algorithms that share the following idea:

at the beginning of the algorithm each node has a unique label. During each round, every

node would update its label according to a predefined rule. The algorithm terminates as

soon as no update is possible.

CHAPTER 2. RELATED WORK 34

Figure 2.3: Reprinted from [11]. The prefix tree for the cluster of vertices in Table 2.4

CHAPTER 2. RELATED WORK 35

The simplest rule for updating a node’s label would be the majority vote among the

neighbors of that node. However, using the majority vote as the updating rule, it has

been observed that the label propagation algorithm tends to produce a very large cluster,

containing most of the nodes. To resolve this problem a variety of methods have been

proposed [42, 2].

The following variant of the label propagation family, called Absolute Pott Model (APM) [56],

has been used by the WebGraph compression framework as a subroutine to reorder the ver-

tices of a network: let λ1, · · · , λk be those labels that have appeared on the neighborhood

of node u. Let ki (1 ≤ i ≤ k) be the number of neighbors of u having label λi. Let vi be

the number of nodes in the whole graph with label λi. According to the APM algorithm,

the label of u will be updated to λi such that it maximises the following:

ki − γ(vi − ki)

The intuition is that for adding a particular node to cluster λi, the number of non-existing

edges (vi−ki) is also important. It is not hard to see that the density of resulting communities

would be at least γ/(γ +1). Algorithm 3 presents the pseudo code for the APM algorithm.

Algorithm 3 The APM algorithm. λ is a function that will provide the cluster labels.
λ−1(l) is the set of nodes having label l.

π ← a random permutation of G’s nodes;
for all x: λ(x)← x, v(x)← 1;
while no update is possible do
for all i = 0, 1, · · · , n− 1 do
for every label l, kl ← |λ−1(l) ∩NG(π(i))|
l̂← argmaxl[kl − γ(v(l)− kl)]
decrement v(λ(π(i)))
λ(π(i))← l̂
increment v(λ(π(i)))

end for
end while

CHAPTER 2. RELATED WORK 36

2.4.3 Structural Clustering Method

We explain a clustering method in this section which we believe potentially can be used in

both aggregation-based and order-based compression frameworks. The idea of this approach

is to view the clusters as a set of nodes that have similar neighbors. A cluster is consisted

of a “nucleus” and a “boundary”. The vertices in the nucleus does not belong to any other

cluster. However, vertices in the boundary of a cluster might belong to other clusters as

well. First, we define the similarity measure for two nodes u and v [63]:

σ(u, v) =
|N(v) ∩N(u)|

√

|N(v)| × |N(u)|
,

where N(u) is the set of the neighbors of u. Having this notion of similarity in mind the

ǫ-neighborhood of u is the set of those neighbors of u that their similarity to u is at least ǫ:

Nǫ(u) = {v ∈ N(u)|σ(u, v) ≥ ǫ}

The method uses two parameters, ǫ and µ. A node u is a core if the ǫ-neighborhood of it, has

at least µ vertices. Then, if we only consider the core vertices and the edges among them,

in this new network, a connected component of the core vertices is forming the nucleus of a

cluster. The boundary of a cluster is consisted of those non-core vertices that are belonging

to Nǫ(u) for at least a vertex u in the nucleus.

In [63], the formalism to capture this idea has been introduced. Moreover, an algorithm

to discover all the clusters for given ǫ and µ is developed. The algorithm works as follows:

in one scan it identifies the core vertices. If a core vertex u is not assigned to a cluster

yet, the algorithm generates a new cluster Id for it. Then, in a breadth first search style, it

grows the cluster around u. The algorithm is linear in the number of edges of the network.

Note that, the reference coding technique in the order-based approach also uses the

similarity of the neighborhood of the vertices. In this technique the out-neighbor list of one

node is encoded by referring to the out-neighbor list of another node. To have an effective

reference coding we need to find an ordering in which the nodes with similar neighbors are

close to each other. Since the structural clustering method clusters the nodes based on the

CHAPTER 2. RELATED WORK 37

similarity of their neighbors, potentially it can be exploited to generate an ordering in which

reference coding technique is effective. However, the structural clustering method assumes

the graph is undirected. An immediate challenge is to extend the idea to directed networks.

2.4.4 Spectral Clustering

Spectral clustering method uses the algebraic properties of the adjacency matrix of the

network. The solid theoretical foundations and the running time efficiency are two critical

advantages of the method. The spectral clustering method as a preprocessing step embeds

the nodes of the graph into a low-dimensional space. Likewise, the order-based approach

also as a preprocessing step embeds the nodes into a one-dimensional space (an ordering of

the nodes can be considered as an embedding of the nodes into a line). However, spectral

clustering assumes that the network is symmetric, i.e., undirected. A popular technique to

apply the spectral clustering on directed networks is to simply ignore the direction of the

edges. Here, we cover the basic concepts and algorithms of the spectral clustering. We also

provide a theoretical analysis to reveal the intuition behind the method.

Definitions and Backgrounds

For a square matrix X, a non-zero vector v is an eigenvector of X if there is a real number

λ such that:

Xv = λv

The real number λ is the eigenvalue of X corresponding to v. A square matrix X is

symmetric positive semidefinite if and only if it is symmetric and for any v ∈ R
n, we

have vTXv ≥ 0. It is a basic fact in linear algebra [15], that a n × n symmetric positive

semidefinite matrix has n distinct, pairwise orthogonal eigenvectors, and the eigenvalues

corresponding to them are non-negative.

The adjacency matrix A of an undirected graph G is a |V (G)| × |V (G)| square matrix,

where Ai,j = Aj,i = 1, if i and j are connected and Ai,j = 0 otherwise5. Let di be the degree

5To be perfectly precise, we assume that V (G) = {1, · · · , |V (G)|}

CHAPTER 2. RELATED WORK 38

of vertex i, then, the degree matrix D is a diagonal |V (G)|× |V (G)| matrix, where Di,i = di

and Di,j = 0 if i 6= j. The unnormalized Laplacian matrix of G is defined as:

L = D −A

For vector v, vi is the entry corresponding to node i. The following proposition summarizes

the basic properties of L [38]:

Proposition 1. Let n = |V (G)|. The following properties holds for unnormalized Laplacian

matrix L:

1. For every vector v ∈ R
n we have:

vTLv =
1

2

n
∑

i=1

n
∑

j=1

Ai,j(vi − vj)
2

2. L is symmetric positive semidefinite.

3. L has n non-negative real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

Proof. Item 1

vTLv = vTDv − vTAv =
n
∑

i=1

div
2
i −

n
∑

i=1

n
∑

j=1

Ai,jvivj

Notice that di =
∑n

j=1Ai,j . Therefore we have:

vTLv =
n
∑

i=1

n
∑

j=1

Ai,jv
2
i −

n
∑

i=1

n
∑

j=1

Ai,jvivj

Since Ai,j = Aj,i, we have:

n
∑

i=1

n
∑

j=1

Ai,jv
2
i =

1

2

(

n
∑

i=1

n
∑

j=1

Ai,jv
2
i +

n
∑

i=1

n
∑

j=1

Ai,jv
2
j

)

Therefore,

vTLv =
1

2

(

n
∑

i=1

n
∑

j=1

Ai,jv
2
i − 2

n
∑

i=1

n
∑

j=1

Ai,jvivj +

n
∑

i=1

n
∑

j=1

Ai,jv
2
j

)

=
1

2

n
∑

i=1

n
∑

j=1

Ai,j(vi − vj)
2

CHAPTER 2. RELATED WORK 39

Item 2

L is symmetric because both D and A are symmetric, and is positive semidefinite because

according to part (1), for v ∈ R
n, we have:

vTLv =
1

2

n
∑

i=1

n
∑

j=1

Ai,j(vi − vj)
2 ≥ 0

Item 3

L is symmetric positive semidefinite, thus, it has n non-negative eigenvalues. Observe that

for the constant one vector 1, we have L1 = 0× 1. Therefore, the smallest eigenvalue of L

is zero.

As a convention, we sort the eigenvalues of a Laplacian matrix L, in a non-decreasing

order: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. λ1 is the first eigenvalue of L, λ2 is the second and so

on. Likewise, the i-th eigenvector is the eigenvector corresponding to the i-th eigenvalue.

There are many different variants of spectral clustering methods in the literature. The

common ingredient, however, is that somehow they use the eigenvectors of the Laplacian

for a preprocessing step. For example, let v be an eigenvector of the Laplacian L , with a

non-zero eigenvalue. Then, the mapping ϕ(i) = vi is an embedding of the vertices to a line.

This is particularly interesting, because the vertices of a network can be considered as a set

of points in a high dimensional Euclidean space. So, one can think of the spectral methods

as a dimension reduction technique. We like to remind the reader that many clustering

methods, e.g. K-means, perform much better on low dimensional data.

Algorithm 4 shows a simple variant of spectral clustering algorithms.

Algorithm 4 Pseudo code for the spectral clustering

1: Let A be the adjacency matrix and D be the diagonal degree matrix
2: Let L = D −A
3: Let v1,v2, · · · ,vk be the first k eigenvectors of L
4: Let U ∈ R

k×n be the matrix consisted of v1, · · · ,vk as columns
5: Let yi ∈ R

k be the vector corresponding to the i-th row of U
6: Cluster {yi|i = 1, · · · , n} using K-mean algorithm

CHAPTER 2. RELATED WORK 40

Justification

Unfortunately, there is no solid theorem that relates the eigenvalues and eigenvectors of the

Laplacian of a network to the clusters of it. However in this section, we try to justify the

relevance of the eigenvectors in an intuitive fashion. We show that the second eigenvector is

related to the relaxation of a variant of min-cut problem, which is NP-hard otherwise. The

material in this section comes from [38].

A natural formulation for node clustering is to find a partitioning such that it minimizes

the number of edges with end points in different partitions. For a subset C of vertices C̄ is

the set of those vertices that does not belong to C. Cut(C, C̄) is the number of edges that

have one end in C and the other end in C̄. For a partition C1, · · · , Ck of vertices, we define:

Cut(C1, · · · , Ck) =
1

2

k
∑

i=1

Cut(Ci, C̄i)

In particular for k = 2, the problem of finding a minimum Cut can be solved in polynomial

time. However, in many cases it separates a single vertex from the rest of the network. To

resolve this problem the notion of RatioCut tries to favor a sort of balanced partitioning:

RatioCut(C1, · · · , Ck) =
1

2

k
∑

i=1

Cut(Ci, C̄i)

|Ci|

Unfortunately, finding the partitioning that minimizes the RatioCut ,even for k = 2, is

NP-hard [60]. For k = 2, we show that how the spectral clustering can be seen as solving a

relaxed version of the RatioCut minimization problem.

The objective is to find a subset C ⊂ V such that:

min
C⊂V

RatioCut(C, C̄)

First, we rewrite the problem using the Laplacian matrix L. For a subset C ⊂ V , f =

(f1, · · · , fn)T ∈ R
n is defined as follows:

fi =

√

|C̄|/|C| if i ∈ C

−
√

|C|/|C̄| if i ∈ C̄
(2.2)

CHAPTER 2. RELATED WORK 41

Having this definition for f , we can write:

fTLf =
1

2

n
∑

i=1

n
∑

j=1

Ai,j(fi − fj)2

=
1

2

∑

i∈C

∑

j∈C̄

Ai,j

(

√

|C̄|/|C|+
√

|C|/|C̄|
)2

+
1

2

∑

i∈C̄

∑

j∈C

Ai,j

(

−
√

|C̄/|C| −
√

|C|/|C̄|
)2

= Cut(C, C̄)
(|C̄|
|C| +

|C|
|C̄| + 2

)

= Cut(C, C̄)
(|C̄|+ |C|
|C| +

|C|+ |C̄|
|C̄|

)

= RatioCut(C, C̄)× |V |

Therefore, minimizing fTLf is equivalent to minimizing the RatioCut:

minC⊂V f
TLf , subject to:

fi defined as in Equation 2.2

Moreover, the multiplication of f and the constant one vector is:

f1 =
n
∑

i=1

fi =
∑

i∈C

√

|C̄|
|C| −

∑

i∈C̄

√

|C|
|C̄| = |C|

√

|C̄|
|C| − |C̄|

√

|C|
|C̄| = 0

Also the square of norm 2 of vector f is:

‖f‖2 =
n
∑

i=1

f2i = |C| |C̄||C| − |C̄|
|C|
|C̄| = n

Hence, the addition of these two new constraints would not change the solution of the

minimization problem:

minC⊂V f
TLf , subject to:

1) fi defined as in equation 2.2

2) f1 = 0

3) ‖f‖ = √n

CHAPTER 2. RELATED WORK 42

However, this is still a NP-hard problem [38]. The variables fi can take two particular

values, according to equation 2.2. The immediate relaxation of this optimization problem is

to relax variables fi to take any real value. This leads to the following optimization problem:

minf∈Rn fTLf , subject to:

1) f1 = 0

2) ‖f‖ = √n
This problem can be solved in polynomial time. In fact, by the Rayleigh-Ritz theorem

(e.g. see Section 5.5.2 of [39]) it can be shown that the eigenvector corresponding to the

second smallest eigenvalue is the solution for this optimization problem. So, in some sense

the second eigenvector of L is an estimation for minimizing the RatioCut. However, this

solution is not a partitioning yet. In order to get the partitioning we need another step. A

simple heuristic to obtain the partitions would be:

vi ∈ C if fi ≥ 0

vi ∈ C̄ if fi < 0

This simple heuristic is not working for k > 2. Instead, we can consider fi as points in R

and use a more general clustering algorithm like K-means to partition the points. This is

exactly the spectral clustering method we presented in Algorithm 4. Notice that the first

eigenvector, that is used in Algorithm 4, is the constant one vector, therefore, it does not

have any influence in the output of K-means algorithm. Also we like to note that, using a

similar argument one can show that the following standard trace minimization problem is

a relaxation of RatioCut problem for general k:

minH∈Rk×n Tr(HTLH), subject to:

HTH = I,

where, Tr(X) for a square matrix X is the sum of the entries on the diagonal of X. The

same Rayleigh-Ritz theorem [39] tells us that the solution of this optimization problem is

the matrix H consisted of the first k eigenvectors of L as columns.

CHAPTER 2. RELATED WORK 43

2.5 The Graph Layout Problem

In the classical graph theory, the problem of finding a “good” ordering of the nodes with

respect to minimizing/maximizing a given objective function has a long history. The appli-

cations of this family of problem include VLSI circuit design, numerical analysis and more.

These problems fall in the class of combinatorial optimization problems. Often for nontrivial

objective functions, finding the ordering that has the optimal cost is NP-hard [29, 47]. In

this section, we refer to these family of problems as graph layout problems.

Both graph layout problem and order-based compression approach are looking for a

“good” ordering of the nodes. The notion of goodness in a layout problem is captured

by an objective function, while in the order-based compression framework the goodness of

an ordering is measured by the compression rate. A promising direction to pursue is to

introduce an objective function for a layout such that it captures the requirements of the

compression framework.

We review the results and heuristic algorithms for a few classical variants of the graph

layout problems. Even though, typically the objective function in these classical variants

are not explicitly connected to the compression framework, we believe studying them would

help us to understand the nature and challenges of these family of problems.

2.5.1 Definitions and Theoretical Results

In this section, first we present a few formal definitions, and illustrate them using a toy

example. Also, we give a short review of the theoretical algorithmic results. The material

of this section mostly comes from the Dı́az et al. survey [19]. A layout ϕ of an undirected

graph G = (V,E) is a bijective function ϕ : V → {1, · · · , n}, where n is the number of

vertices of the graph. Given a graph G, a layout ϕ of G, and an integer i, we define the set

of left vertices of i:

L(i, ϕ,G) = {u ∈ V : ϕ(u) ≤ i},

CHAPTER 2. RELATED WORK 44

likewise the set of right vertices of i is defined as follows:

R(i, ϕ,G) = {u ∈ V : ϕ(u) > i}

Now, having these definitions, we can define the edge cut at position i:

θ(i, ϕ,G) = |{uv ∈ E : u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G)}|

The vertex cut at position i of ϕ is defined as:

δ(i, ϕ,G) = |{u ∈ L(i, ϕ,G) : ∃v ∈ R(i, ϕ,G) : uv ∈ E}|

Finally, the length of uv ∈ E in the layout ϕ is defined as:

λ(uv, ϕ,G) = |ϕ(u)− ϕ(v)|

Figure 2.4(a) displays a sample graph, and Figure 2.4(b) illustrates a layout ϕ of the

same graph. A vertical line after position i and before position i + 1 separates two sets of

vertices L(i, ϕ,G) and R(i, ϕ,G). Then, θ(i, ϕ,G) would be the number of edges that cross

the vertical line. δ(i, ϕ,G) would be the number of vertices at the left of vertical line which

have at least an edge crossing the vertical line. Finally, λ(uv, ϕ,G) is the distance of the

two ends of the edge uv, assuming the distance of any two consecutive vertices is one.

Having these measures, we define the following layout problems:

Definition 1. Bandwidth problem (Bandwidth)

Given a graph G = (V,E), find a layout ϕ∗ such that BW (ϕ∗, G) is minimized, where:

BW (ϕ,G) = max
uv∈E

λ(uv, ϕ,G)

Definition 2. Linear Arrangement problem (MinLA)

Given a graph G = (V,E), find a layout ϕ∗ such that LA(ϕ∗, G) is minimized, where:

LA(ϕ,G) =
∑

uv∈E

λ(uv, ϕ,G)

CHAPTER 2. RELATED WORK 45

(a) Graph G

(b) Layout ϕ of graph G is illustrated. In this layout of G, λ(gi, ϕ,G) =
5, δ(4, ϕ,G) = 3 and θ(4, ϕ,G) = 6.

Figure 2.4: Reprinted from [19]. A graphical illustration of a few measures for a layout ϕ.

CHAPTER 2. RELATED WORK 46

Definition 3. Cut Width problem (Cutwidth)

Given a graph G = (V,E), find a layout ϕ∗ such that CW (ϕ∗, G) is minimized, where:

CW (ϕ,G) = max
1≤i≤|V |

θ(i, ϕ,G)

Definition 4. Vertex Separation problem (VertSep)

Given a graph G = (V,E), find a layout ϕ∗ such that V S(ϕ∗, G) is minimized, where:

V S(ϕ,G) = max
1≤i≤|V |

δ(i, ϕ,G)

All of these problems have been proven to be NP-hard for general undirected graphs [19].

Except MinLA, the other three are NP-hard even when the input is restricted to graphs

with maximum degree 3. Surprisingly, Bandwidth problem is NP-hard, when the input is

restricted to trees with maximum degree 3.

An α-approximation algorithm guarantees that the output is at most α times worse

than the optimal solution [1, 25], where α is the approximation factor. To the best of

our knowledge, the Bandwidth problem has a O(log3 n
√
log log n)-approximation algorithm.

The best approximation factor known for MinLA is O(
√
log n log log n). There are O(log2 n)-

approximation algorithms for both VertSep and CutWidth [24, 19].

Even thought, these approximation algorithms are interesting from a theoretical point of

view, they are not practical. The major tool for establishing these upper bounds is a gener-

alized linear programming technique, known as the Ellipsoid method. A linear program is an

optimization problem in which the goal is to maximize/minimize a linear objective function,

subject to a set of linear inequality constraints. The power of the Ellipsoid method is that,

under some conditions, the running time does not depend on the number of constraints.

Therefore, if the linear program has polynomial number of variables and exponential num-

ber of constraints, the Ellipsoid method could solve the problem in polynomial time. In

practice, the method suffers from a very poor running time. This motivates us to discuss

the heuristic algorithms.

CHAPTER 2. RELATED WORK 47

2.5.2 Heuristics

In this subsection we briefly discuss the heuristics for the layout problems. However, we

should mention that the layout problems are not initially motivated by the social network

analysis applications. As a result, there are not much experimental results on the perfor-

mance of these heuristics on social networks. The techniques and ideas that we describe

here are general and can be used for any layout problem.

We discuss three different approaches, spectral sequencing, a multi-scale framework and

local search technique. The first technique is merely based on the second eigenvector of the

laplacian of the network, while the multi-scale framework is using a coarsening approach,

to recursively reduce the size of the network.

Spectral Sequencing: The algorithm starts by computing the second eigenvector v2 of

Laplacian matrix L (see section 2.4.4). Then, the layout ϕ is defined as follows:

ϕ(x) < ϕ(y) ⇐⇒ v2(x) < v2(y),

where x and y are two nodes of the graph, and v2(x) is the entry of vector v2 corresponding

to node x. The ties would be broken arbitrarily. This is a very simple, yet effective heuristic.

As it is mentioned in [49], this ordering is particularly effective for those networks that have

a sort of geometric structure, e.g. VLSI networks.

Local Search: The local search technique starts with an initial layout ϕ and improves the

layout by applying local changes. The critical design factor in a local search scheme is the

definition of local changes. The following two operations are introduced in [49]:

1. F lip2: randomly chooses two vertices and switch their position in the layout ϕ.

2. F lip3: randomly chooses three vertices and rotates their positions in the layout ϕ.

The reason for choosing these operations is efficiency of applying the operation and com-

puting the cost for the new layout. This method is somehow the complement of spectral

sequencing. The performance of this local search scheme on the network with geometric

CHAPTER 2. RELATED WORK 48

structure is worse than spectral sequencing, However, it outperforms the spectral sequenc-

ing method for the random networks.

A natural idea to overcome the weakness of the local search is to use the spectral se-

quencing method as the initialization phase [48]. This combination is quit effective and

improves the result both for geometric and random graph. To the best of our knowledge,

there is no reported results for the performance of these methods on the social networks.

Multi-Scale Framework: Figure 2.5 illustrates the basic ideas of multi-scale framework.

The algorithm consisted of three phases: coarsening, initialization and uncoarsening. In

the coarsening phase, recursively, a few nodes aggregate in a super-node, and the relations

between these super-nodes are captured by weighted edges. The coarsening phase stops

when the size of the graph is small enough, e.g. ten super-nodes. Then, for the coarsest

aggregated network, using an exhaustive search, the best ordering is computed. In the

uncoarsening phase, using the layout from each level, the algorithm initiate the layout for

the next finer level. Then, a local search technique is deployed to improve the finer layout.

The framework has been used successfully for solving different problems [33, 57, 13]. One

can think of this framework as a recursive local search scheme. Arguably, coarsening phase

is the most critical step of the framework. Here, we explain the coarsening phase in [57]

that is based on an algebraic multi-grid (AMG) technique [58].

In the AMG technique, a matrix P projects the fine graph to the coarse graph. Let Af

be the adjacency matrix of the fine graph. The projection is as follows:

Ac ← P TAfP,

where Ac is the adjacency matrix of the coarse graph. Projection matrix P is a real-valued

n × m matrix, in which n and m are the number of nodes in the fine and coarse graph,

respectively. Notice that using the AMG projection, the coarse graph will be a weighted

graph, even if the fine graph is unweighted. In the rest of this section, we explain how to

construct the projection matrix P , and the meaning behind this algebraic projection.

Let Gf be the fine network. We start by choosing a set of seed nodes S ⊂ V (Gf). One

CHAPTER 2. RELATED WORK 49

can think of these seed nodes as the center of the future super-nodes of the coarse graph.

We have to choose subset S so that for node i /∈ S:
∑

j∈S

Af
i,j

/

∑

j∈V (Gf)

Af
i,j ≥ θ, (2.3)

where, θ is a threshold parameter. Intuitively, this means that any node of the fine graph

should be “well represented” by its neighbors in S. The set S can be constructed in one

scan. If a node i is not “well represented” by S, i.e., does not satisfy the inequality 2.3, we

greedily add it to S. Let I : S → {1, · · · , |S|} be a bijective function from seed nodes S to

integers {1, · · · , |S|}. The n× |S| projection matrix P is defined as follows:

Pi,I(j) =

Af
ij/

∑

k∈NS
i
Af

ik if i ∈ V (Gf)\S ∧ j ∈ NS
i

1 if i ∈ S ∧ j = i

0 otherwise

Where, NS
i is the neighbors of i in S. One can think of Pi,I(j) as the likelihood of i

belonging to super-node I(j). The merit of this approach is that a node i proportionally

could aggregate to several super-nodes. This leads to a more accurate coarsening process.

In the coarse graph Gc, the weight of the edge that connecting two super-nodes p and q

is:

Ac
p,q =

∑

k

∑

l 6=k

Pk,pA
f
k,lPl,q

This means that the contribution of every edge (k, l) in Gf to the edge (p, q) in Gc is

proportional to the likelihood of k and l belonging to super-nodes p and q, respectively.

2.6 Summary

We discussed two completely different approaches towards compressing social networks. The

first approach uses the idea of aggregating a set of nodes with a similar set of neighbors

to a super-node, while the second approach exploits an ordering of the nodes in which the

similar nodes tend to be close to each other.

CHAPTER 2. RELATED WORK 50

Figure 2.5: Reprinted from [57]. The illustration of multi-scale framework.

Inc. Update Out-Neigh. Query In-Neigh. Query Compression Time Summarization

Virtual Node [11] O(1) O(davg) O(|V |) O(|E| log |E|) no

Graph Summary [41] O(1) O(davg) O(|V |) - yes

WebGraph+Lex.[8] O(|E|) O(davg) O(|V |) O(|E|+ |V | log |V |) no

WebGraph+Shingle [14] O(|E|) O(davg) O(|V |) O(|E|+ |V | log |V |) no

WebGraph+LLP [6] O(|E|) O(davg) O(|V |) proportional to |E|1.3 no

Table 2.5: Comparison of the compression methods

CHAPTER 2. RELATED WORK 51

We reviewed a few methods for the dense subgraph mining and clustering of social

networks. A semi-complete bipartite subgraph mining technique and a clustering algorithm

known as Absolute Pott Model had been explained. The semi-complete bipartite subgraph

mining is a basic component of the Virtual Node compression scheme, and the Absolute Pott

Model is used in the LLP algorithm. A structural clustering algorithm that partitions the

nodes based on the similarity of their neighbors has been discussed. We remind that both

the reference encoding technique in the order-based approach and the aggregation technique

exploit the similarity of neighbors of a group of nodes to achieve compression. The spectral

clustering is discussed for three different reasons: (1) it has solid theoretical foundation, (2)

the method is scalable, and most importantly, (3) the spectral clustering is based on an

embedding of the nodes to a low dimension space. Note that, the order-based compression

methods also use an embedding of the nodes to a one-dimensional space.

Finally, we reviewed a family of combinatorial graph problems, known as graph layout

problems. The goal is to find an ordering of the nodes that minimizes a given objective

function. Different variants of these problems have been introduced and the hardness and

approximation results along with a few major heuristic algorithms have been reviewed. This

line of research can be inspiring if one tries to capture the notion of a “good” ordering for

the order-based approach by introducing a combinatorial objective function.

Table 2.5 summarizes and compares different features of the compression algorithms.

Generally speaking, the aggregation-based methods have the advantage of allowing efficient

incremental updates and providing a summarization of the communities (dense subgraphs)

of the network. On the other hand, the order based methods are more efficient regarding the

compression time. They both can answer the out-neighbor query efficiently, however, the

order-based methods have larger over-head due to bit-level operations. To answer the in-

neighbor query efficiently, both approaches has to replicate the data by storing the transpose

of the data.

Comparing the compression rate of the aggregation-based methods and order-based

methods, is not trivial for two reasons: first, the two approaches use different measures

CHAPTER 2. RELATED WORK 52

as the compression rate. Second, they use different datasets to report the experimental

results. We can resolve the first issue by assuming that to store an identifier of a node, one

uses 32 bits in the aggregation-base approach. With this assumption, a compression rate of

0.15, i.e., the number of edges in compressed graph over the number of edges in the original

graph, is corresponding to 0.15× 32 = 3.36 bits/edge. Using this criteria, roughly one can

imply that the compression rate of the order-based approach is better comparing to the

aggregation-based approach. Among the order-based methods, WebGraph+LLP, i.e., the

WebGraph framework coupled with the LLP ordering, has the best compression rate.

We believe both aggregation and order-based approaches suffer from major disadvantages

that disqualify them as a general purpose storage scheme for social networks. The order-

based methods does not allow incremental updates, while the aggregation methods are only

effective if the social network is rich with a certain type of very dense subgraphs (depending

on the aggregation technique). Both approaches do not allow efficient in-neighbor query

answering without replicating the data.

2.7 How this thesis is related and different from the existing

work

In Chapter 3, we will introduce GPSN compression framework, a novel compression frame-

work that can be regarded as a generalization of the order-based approach. This framework

allows efficient in-neighbor and out-neighbor queries, and incremental updates. We provide

an upper-bound on the compression rate for a simple setting of our framework. Similar

to order-based methods the framework exploits a “lineup” of nodes. However, the order-

based approach uses an ordering of nodes in which each node appear exactly once. As

oppose to the GPSN framework in which, the “lineup” is a sequence of nodes, with possible

replications. We refer to this sequence as a “linearization” of nodes.

On the other hand, similar to the aggregation-based approach, existing of dense sub-

graphs is essential to the effectiveness of the GPSN compression framework. The framework

tries to position the nodes that are part of a dense subgraph, in the proximate positions

CHAPTER 2. RELATED WORK 53

of the sequence. Chapter 4 discusses a lossless compression method designed based on

the principles of the GPSN framework. We compare the compression rate of our lossless

compression scheme with WebGraph+Shingle [14].

The lossy compression scheme is presented in Chapter 5. Motivated by graph layout

problems, we turn the problem of finding a good “linearization” of nodes to an optimization

problem. Although, our objective function is more complicated comparing to those that

we have discussed in Section 2.5. We believe this complexity is due to the combinatorial

nature of the network compression problem, and is unavoidable. The heuristic to optimize

such an objective function is designed according to the complex combinatorial nature of the

objective function, and is among the contributions of this dissertation.

Chapter 3

GPSN Compression Framework

In this chapter, we discuss our approach towards having a General Purpose Social Network

(GPSN) compression framework. A GPSN compression framework allows network analysis

algorithms directly operate on the compressed version of a network. This is particularly

interesting because most of the algorithms implicitly assume that the network fits in the

main memory. However, in the age of the online social media, applications have to analyze

and manipulate networks with hundreds of millions of nodes and billions of edges.

For the rest of this section, we take a formal approach to provide a theoretical analysis

of our framework. We introduce the notion of k-cover and k-linearization, and using these

notions, provide an upper bound on the compression rate of a simple setting of our frame-

work. The theoretical analysis provided in this section is interesting and could serve as an

evidence of the effectiveness of our framework. However, in practice often a more realistic

setting is desirable. We leave the discussion on the practical aspects of the framework for

the next two chapters.

3.1 The GPSN Compression Framework

Note that, in Section 1.1, we already discussed the core idea of the GPSN compression

framework in an intuitive fashion. We start the section by introducing two definitions that

54

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 55

will be useful for the future discussions:

Definition 5 (k-cover). We say an edge e = (u, v) ∈ E(G) is k-covered by a sequence S if

and only if there are copies of u and v in S that are at most k positions away. Ek(S) would

be the set of all edges that are k-covered by S. We might drop the subscript k if it is obvious

from the context.

Definition 6 (k-linearization). We say a sequence S is a k-linearization of a graph G if

and only if Ek(S) = E(G). The length of k-linearization S is the same as the length of S.

In this section, we define the framework and briefly discuss how by making appropriate

choices for each of its component, one can tackle different problems. The GPSN framework

is consisted of three components:

Definition 7 (GPSN Framework). The GPSN framework is consisted of the following com-

ponents:

1. A sequence S of the nodes with the parameter k. Each position Si of the sequence S

is associated with two pieces of information: a pointer to the next copy of the same

node, and a vector of 2k bits to encode the local edges corresponding to position Si.

2. A data structure to store sequence S, 2k bits labels and the next pointer associated to

each position.

3. An algorithm to find sequence S that k-covers the edges of network.

Note that the sequence S in the GPSN framework might be a k-linearization of a given

graph, or it might only k-covers the majority of the edges. We call it a lossless compression

in the former case or a lossy compression scheme for the latter one. The merit of the

GPSN framework is coming from the flexibility of its components. In fact, the focus of

this dissertation is to show that by making appropriate choices for each component, we can

achieve a variety of objectives:

• Upper Bound on Compression Rate

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 56

The first natural question regarding our method is on the possibility of proving an

upper bound on the compression rate. We know that for a k-linearization of length

l, the GPSN framework uses l × (2k + log2(l)) bits. Hence, to have an upper bound

on the compression rate, it is sufficient to prove an upper bound on the length of the

k-linearization. Having such an upper bound for arbitrary value of k is not easy to

obtain. However, we can have such an analysis for the special case of k = 1. For the

rest of this chapter we prove an upper bound for the compression rate of our framework

when it is restricted to the simple setting of k = 1. For this special case, we use a

simple array data structure to represent the input network. From an algorithmic point

of view, we show that to find the shortest sequence S that 1-covers all the edges of a

graph G, one has to cover the edges of G by the least number of paths, such that any

edge appears exactly once in the exactly one path. This can be seen as a generalization

of the Eulerian path problem where the objective is to cover the edges of the graph

by exactly one path.

• Lossless Compression

As the second major part of the thesis, we focus on evaluating our framework on real

world social networks, as a lossless compression scheme. The setting is as follows: we

fix the parameter k, and design a greedy heuristic to find a sequence S that k-linearize

a given graph G. We use an array data structure to store the sequence S and a binary

tree to store the meta-data (see Chapter 4). The focus of the experimental study is

to evaluate the compression rate for different values of k. We also report the query

processing time of our lossless compression scheme.

• Lossy Compression

In Chapter 5, we change the settings of our problem substantially. Instead of looking

for a sequence S that is a k-linearization of a given graph G, we fix k and l, and ask for

a sequence S of length l that k-covers those “important” edges of G. For the purpose

of our work, an edge is “important” if it contributes to the global community structure

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 57

of the network. In this new setting, since both k and l are fixed, the framework uses a

predefined number of bits to represent the graph. Therefore, we have to use a criteria

other than compression rate to measure the effectiveness of our lossy compression

scheme. We use two criteria: first, we ask how well it preserves the community

structure of the network. Second, we measure the utility of a single bit, that is the

number of edges over the number of bits in the compressed network. We introduce an

objective function fk(S) to measure the quality of the sequence S with respect to the

community structure of the network. We develop a local search heuristic to optimize

fk(S). Our heuristic starts with a random sequence S of length l, and improves it by

iterative insertion and deletion of the nodes. Therefore, to store S we need a data

structure that supports efficient insertion and deletion operations. We have designed

such a data structure by combining the advantages of linked lists and arrays.

3.2 Theoretical Analysis

We start the formal discussion of this chapter by reviewing the background on graph theory,

then, we proceed by relating the concept of 1-linearization to the well studied notion of

Eulerian path. We conclude the chapter by an upper bound on the compression rate of our

framework, when it incorporates a 1-linearization of the input graph.

3.2.1 Notions

In this dissertation, a social network is a directed graph G = (V,E) where V is a set of

vertices and E ⊆ V × V is a set of edges. We also refer to V by V (G) and to E by E(G).

For an edge e = (u, v), we refer to u as the source of e and v as the destination of e. Note

that (u, v) 6= (v, u).

A simple directed graph is a directed graph in which there does not exist a self-loop,

i.e., no edge (u, u) for any vertex u, and there is at most one edge from a source u to a

destination v. We consider simple directed graphs only. However, it is straightforward to

generalize our results and algorithms to deal with directed graphs that contain self-loops

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 58

�� ��

��

��

��

��

�� ��

��

��

��

��

v1

v2 v3

v4v5
v6

S2 = (v6, v5, v4, v3, v1, v2, v5)

S1 = (v6, v5, v4, v3, v5, v2, v3, v1, v2)

S3 = (v4, v5, v3, v4, v6, v5, v2, v3, v1, v2)

v1

v2 v3

v4v5
v6

graph Ḡ of G
b) The underlying undirecteda) Directed graph G

c) A set of sequences

Figure 3.1: A directed graph and its underlying undirected graph

and multiple edges between two vertices.

In an undirected graph, edges do not carry direction information, i.e., {u, v} = {v, u}.
For a directed graph G, we can obtain the underlying undirected graph Ḡ of G such that

{u, v} ∈ E(Ḡ) if and only if (u, v) ∈ E(G) or (v, u) ∈ E(G). The degree of u is the number

of edges that have u as an endpoint.

Figure 3.1 shows an example.

Hereafter, we call a simple directed graph simply a graph if there is no ambiguity.

Occasionally, we use the notion of undirected graphs which will be mentioned explicitly.

For a graph G, the transpose of G, denoted by GT , is a graph such that V (GT) = V (G)

and (u, v) ∈ E(GT) if and only if (v, u) ∈ E(G).

In a graph G, an edge (u, v) ∈ E is called reciprocal if (v, u) ∈ E as well. In such a

case, u and v are immediately connected in both directions. Let Fre(G) be the fraction of

reciprocal edges in E(G), i.e.,

Fre(G) =
number of reciprocal edges in E(G)

|E(G)| .

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 59

Therefore, G = GT if and only if Fre(G) = 1.

3.2.2 Neighbor Queries in Directed Graphs

In a directed graph G, there are two types of neighbors. For a vertex u ∈ V (G), v1 ∈ V (G)

is an out-neighbor of u if (u, v1) ∈ E(G). Moreover, v2 ∈ V (G) is an in-neighbor of u if

(v2, u) ∈ E(G). An out-neighbor query on u intents to find the set of out-neighbors of u.

Similarly, an in-neighbor query on u would search for all in-neighbors of u.

Example 3 (Neighbor queries). In Figure 3.1(a), an out-neighbor query on v5 in G returns

{v2, v3, v6}. An in-neighbor query on v5 returns {v3, v4, v6}. Please note that v3 and v6 are

both out-neighbors and in-neighbors of v5, since there are reciprocal edges between v3 and v5

as well as between v5 and v6.

All the existing methods for compressing web graphs or social networks encode only

outgoing edges. Consequently, those methods can only answer out-neighbor queries directly.

3.2.3 Eulerian Paths

A path P of length k in a graph G is a sequence of edges (u1, u2), (u2, u3), . . . , (uk, uk+1),

where (ui, ui+1) ∈ E(G) (1 ≤ i ≤ k). For the purpose of simplicity, we often write path P

as (u1, u2, . . . , uk+1). P is a simple path if u1, . . . , uk+1 are unique among one another.

Definition 8 (Eulerian path). An Eulerian path for an undirected graph is a path in the

graph which visits each edge of the graph exactly once.

Example 4 (Eulerian path). In Figure 3.1(b), path S1 is an Eulerian path for Ḡ, S2 is not

because it does not visit edge {v5, v3}. Likewise, S3 is not an Eulerian path, because it is

not a path – {v4, v6} is not an edge in the graph Ḡ.

It is well known that a connected undirected graph G has an Eulerian path if and only

if it has at most two vertices with odd degree.

A simple algorithm to construct the Eulerian path which dates back to 1883, known as

Fleury’s algorithm, is as follows: we start with a vertex of odd degree. If there is no such a

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 60

vertex, we start with any vertex. At each step we move across an edge whose deletion does

not disconnect the graph, unless there is no other choice. We repeat this process until no

edge is left.

3.2.4 1-Linearization

Here, we establish the connection between the notions of 1-linearization and Eulerian path

for a given graph G. The following proposition is immediate:

Proposition 2 (Lower bound of 1-linearization). Given a directed graph G, the lower bound

for the length of the 1-linearization of G is

|E(Ḡ)|+ 1 = (1− Fre(G)

2
)|E(G)|+ 1,

moreover the bound is tight if and only if Ḡ has an Eulerian path, or equivalently it has at

most two vertices of odd degrees.

Example 5 (Lower bound of 1-linearization). The lower bound for the length of 1-linearization

of G in Figure 3.1 is 9, since |E(Ḡ)| = 8. We can write |E(Ḡ)| in terms of |E(G)| using
Fre(G). Since Fre(G) = 6/11, |E(Ḡ)| = (1− 6/11

2)|E(G)| = 8.

Unlike the Eulerian path construction problem which is an existence problem, finding

the optimal 1-linearization is an optimization problem. No matter what structure a graph

has, always there exists an optimal (shortest) 1-linearization for the graph. The following

lemma gives the length of an optimal 1-linearization of an arbitrary directed graph.

Lemma 1. The minimum length for an 1-linearization of an arbitrary directed graph G is

|E(Ḡ)|+max{nodd/2, 1}, where nodd is the number of vertices with odd degrees in Ḡ.

Proof. In any undirected graph Ḡ, the sum of degrees of all vertices is even. Thus, the

number of vertices with odd degrees is also even.

We first prove by induction that for any graph G we can obtain an 1-linearization of

length |E(Ḡ)|+max{nodd/2, 1}.
Basis: For nodd = 0 and nodd = 2, the claim follows from proposition 2.

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 61

Induction: Since nodd must be even, we assume that the lemma holds for nodd = 2k

(k ≥ 1), and consider the case when nodd = 2(k + 1). There are two subcases.

In the first subcase, there are two vertices u and v with odd degrees such that they are

not connected in Ḡ. We add an edge {u, v} to Ḡ and call the new graph Ḡ∗. Since Ḡ∗ has

only 2k vertices with odd degrees, applying the induction assumption, we can obtain an

1-linearization of Ḡ∗ with length |E(Ḡ∗)| + k = |E(Ḡ)| + k + 1. Since E(Ḡ) ⊂ E(Ḡ∗) the

1-linearization of Ḡ∗ is also an 1-linearization for Ḡ.

In the second subcase, all vertices with odd degrees are connected. We arbitrarily take

two vertices u and v with odd degrees and remove the edge {u, v} from Ḡ. Let us call the

resulting graph Ḡ∗. Again, Ḡ∗ has 2k vertices with odd degrees. Therefore, there is an

1-linearization with length |E(Ḡ∗)| + k = |E(Ḡ)| − 1 + k for Ḡ∗. Since the 1-linearization

for Ḡ∗ does not cover {u, v}, we have to add u and v to the end of the sequence. Therefore

we just build an 1-linearization for Ḡ of length |E(Ḡ)|+ k + 1, as desired.

We prove that |E(Ḡ)|+max{nodd/2, 1} is also a lower bound for the 1-linearizations for

G. For nodd = 0 and nodd = 2, simply applying Proposition 2 gives the bound.

Now, let us consider the case where nodd ≥ 4. Let v(i) be the vertex that appears in the

position i of an 1-linearization L. For a vertex u with an odd degree in Ḡ which appears

in neither the first nor the last position of L, we denote by Pu = {i|v(i) = u} the set of all

appearances of u in L. There are in total at least nodd − 2 such vertices.

For any interior position i in L, there are two edge slots in L: (i − 1, i) and (i, i + 1).

Consider all the edge slots associated with the positions in Pu. At least one of these slots

must be a “waste”, that is, there is no edge appearing in the slot or the edge in the slot also

appears in some other slot. Otherwise, the degree of u is 2|Pu|, which is an even number.

In the best scenario, two vertices with odd degrees can share a wasted edge slot. There-

fore, we have at least (nodd− 2)/2 wasted edge slots. In addition, we need |E(Ḡ)| edge slots
to cover the edges of Ḡ. Therefore, in total L has to have at least |E(Ḡ)|+ nodd/2− 1 edge

slots. Hence, the length of L cannot be smaller than |E(Ḡ)|+max{nodd/2, 1}.

Please note that the induction in the proof of Lemma 1 also gives an linear algorithm

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 62

Algorithm 5 to find an optimal 1-linearization of G

Input: Graph G
Output: L
1: Let O be the set of all vertices in G with odd degree
2: EE = ∅; RE = ∅
3: // eliminate all the nodes with odd degree by adding or removing edges between pair

of them
4: while there are u, v ∈ O do
5: if (u, v) /∈ E(G) then
6: add (u, v) to E(G)
7: add (u, v) to EE
8: else
9: remove (u, v) from E(G)

10: add (u, v) to RE
11: end if
12: remove u and v from O
13: end while
14: Let L be the Eulerian tour of G given by Hierholzer’s algorithm
15: for all (u, v) ∈ RE do
16: add u and v to the end of L
17: end for

to find an optimal 1-linearization of a graph G. Before presenting the algoirthm we explain

Hierholzer’s algorithm [32] that is a linear time (linear to the number of edges) algorithm for

finding an Eulerian path in a given graph. The algorithm is as follows: choose any vertex v

as the starting vertex, and follow a trail of edges from that vertex until returning to v. Note

that if the degree of all edges are even it is not possible to stuck in any vertex other than v,

because by entering any vertex other than v, the number of remaining edges for that vertex

will be an odd number and therefore nonzero. Thus, we will endup at v. However, the tour

might not cover all the edges. In case there is a node in the current tour that has unused

edges, start another trail, using only unused edges, from that vertex, and join the new tour

to the old one. By the use of the simple doubly linked list data structre to maintain the list

of all nodes with unused edges and the list of unused edges for each node, this algorithm

can be implemented in linear time.

Algorithm 5 returns an optimal 1-linearization L of a given graph G. The proof of

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 63

Lemma 1 is an induction and therefore constructive. In fact each iteration of the while

loop in the algorithm is corresponding to one step of induction in the proof of the lemma.

Since the complexity of finding an Eulerian path is linear in the number of edges, finding

an optimal 1-linearization of a graph G is also of the same complexity.

Example 6. In Figure 3.2(a), G has four vertices of odd degrees, namely v9, v10, v11 and

v12. Therefore, the lower bound on the length of 1-linearization is 15+4/2 = 17. Therefore,

the 1-linearization of Figure 3.2(b) is optimal.

3.3 Upper Bound on Compression Rate

Based on the notion of 1-linearization, we present a novel data structure for encoding graphs.

To keep our discussion simple, similar to [8, 9, 14], we assume (1) we are allowed to renumber

the vertices; (2) for each vertex there is an identifier which can be used for referring to the

vertex. However, our data structure does not maintain an index of the identifiers; and

(3) the edges are not labeled. Please note that we can straightforwardly extend the data

structure to remove the above assumptions.

Definition 9 (Eulerian data structure). The Eulerian data structure for a graph G

stores an optimal 1-linearization L of G using an array of the same length as L. Let v(i) be

the vertex in G that appears at the position i of L. For cell i of the Eulerian data structure,

we keep the following two pieces of information

Local information: two bits specifying if edges (v(i−1), v(i)) and (v(i), v(i−1)) belong
to E(G), respectively.

Pointer: a pointer to the next appearance of v(i). If this is the last appearance of v(i),

then the pointer points to the first appearance of the vertex.

Example 7 (Eulerian data structure). In Figure 3.2(b), the Eulerian data structure of G,

in Figure 3.2(a), using an optimal 1-linearization is illustrated. Here we show the pointers

by arcs. Since the length of the linearization is 17, we need ⌈log2 17⌉ = 5 bits to encode each

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 64

v3

v5

v6

v7

v8
v1

v2

v4

v9

v10v11

v12

(a) Graph G. The edges that does not have direction
are equivalent with two directed edges

01 11 1011 11 11 11 11 11 11 11 11 11 101101 11

v9 v8 v10v2 v2 v2v7 v4 v1 v8 v7 v6 v5 v4 v3 v12v11

(b) Illustration of the 1-linearization of G and the Eulerian data structure (pointers are depicted by the
arcs).

6 7 8 9 10 11 120 1 2 3 4 5

01, 0 11, 7 11,10 11,12 11, 5 11, 3 11, 8 11, 9 11, 3

13 14

01,14

15 16

10,1611, 611,15 11,11 11, 1 10,1311, 4

v2 v7 v4 v1 v8 v6 v5 v3 v12v11 v9 v10

(c) The Eulerian data structure. Each cell stores a 2-bits label and a pointer to the next appearance of the same
node. The index of the first appearance of a node is the new identifier of that node.

Figure 3.2: The Eulerian data structure. The new identifiers of the nodes are illustrated.

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 65

pointer. Therefore, for each position we need 5+ 2 bits. In total we need 17× (5+ 2) = 119

bits.

We prove an upper bound on the size of the Eulerian data structure:

Lemma 2. An Eulerian data structure to encode a graph G uses at most

|V (Ḡ)|
(

d̄+ 1
)

2

(

1 + log(|V (Ḡ)|) + log(d̄+ 1)
)

bits, where d̄ is the average degree of Ḡ.

Proof. Let L be an optimal 1-linearization of Ḡ (therefore for G as well). Since there are

at most |V | vertices of odd degrees in Ḡ, the upper bound for the length of L is |E(Ḡ)| +
|V (Ḡ)|/2. Using 2 bits to store the local information and ⌈log2(|E(Ḡ)|+ |V (Ḡ)|/2)⌉ bits for
the pointer for each cell, in total the Eulerian data structure uses at most

(

|E(Ḡ)|+ |V (Ḡ)|/2
)(

2 + ⌈log2(|E(Ḡ)|+ |V (Ḡ)|/2)⌉
)

bits. We can write |E(Ḡ)| = |V (Ḡ)|d̄/2, where d̄ is the average degree of Ḡ. Therefore:

|V (Ḡ)|
(

d̄+ 1
)

2

(

1 + log(|V (Ḡ)|) + log(d̄+ 1)
)

We have the following result on the compression efficiency of the Eulerian data structure.

Theorem 1. An Eulerian data structure to encode a graph G uses at most

(1− Fre(G)

2
+

1

d̄
)
(

⌈log2(|V (Ḡ)|) + log2(d̄+ 1)⌉+ 1
)

bits per edge on average, where d̄ is the average degree of Ḡ. Moreover, using this data

structure, it is possible to answer the in-neighbor and out-neighbor queries for any vertex v

in O(
∑

u∈Nv
deg(u) log |V (G)|) time, where deg(u) is the degree of vertex u in Ḡ and Nv is

the set of out-neighbors/in-neighbors of v in out-neighbor/in-neighbor queries.

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 66

Proof. To get the bits/edge rate, we divide the upper bound on the size of the data structure

by the number of edges of G. We have

(|E(Ḡ)|+ |V (Ḡ)|/2
|E(G)|

)(

2 + ⌈log2(|E(Ḡ)|+ |V (Ḡ)|/2)⌉
)

.

Notice that we can write the ratio of |E(Ḡ)|/|E(G)| in terms of Fre(G) and also

|V (Ḡ)|
2|E(G)| ≤

|V (Ḡ)|
2|E(Ḡ)|

which is precisely the inverse of the average degree of Ḡ. Therefore, the bits/edge rate is at

most:
(

1− Fre(G)

2
+

1

d̄

)(

2 + ⌈log2(|E(Ḡ)|+ |V (Ḡ)|/2)⌉
)

We use |E(Ḡ)| = |V (Ḡ)|d̄
2 to further simplify the inside of the logarithm, and obtain

(

1− Fre(G)
2 + 1

d̄

)(

2 + ⌈log2(|V (Ḡ)|d̄/2 + |V (Ḡ)|/2)⌉
)

=
(

1− Fre(G)
2 + 1

d̄

)(

2 + ⌈log2(|V (Ḡ)|) + log2(d̄+ 1)− log2(2)⌉
)

The upper bound is proved.

For analysis of the query processing time, we assume that the data structure is a sequence

of bits. Hence reading a pointer takes O(log(|V (G)|)) time.

Since each vertex u of G appears in at least one position in the Eulerian data structure,

we use the index of the first position of u in L as the identifier for the vertex. Therefore, for

an out-neighbor/in-neighbor query on vertex u, we have to return the positions of the first

appearances of all out-neighbors/in-neighbors of u. Fetching the local information (only two

bits) for one position takes constant time. Reading the pointer takes O(log |V (G)|) time (the

number of bits for each pointer). Since the number of copies for a vertex u is ⌈deg(u)/2⌉ in
the optimal 1-linearization of G, traversing over the linked list takes O(deg(u) log2 |V (G)|)
time. By traversing the linked list corresponding to vertex u we can retrieve the positions of

all neighbors of u. However, for a neighbor v of u, the retrieved position may not be the first

appearance of v. Therefore, for each retrieved neighbor v, we have to traverse the linked list

for v to get the first appearance. So, answering an out-neighbor/in-neighbor query takes

O(log(|V (G)|)∑u∈Nv
deg(u)) time in total.

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 67

Number of vertices
Average degree 103 105 107 109

10 0.83 0.71 0.66 0.64

100 0.91 0.74 0.67 0.64

500 1.00 0.80 0.71 0.67

Table 3.1: Comparison of compression using the Eulerian data structure against the baseline
schema. The baseline schema is the adjacency list. We presented the ratio of the number
of bits that the Eulerian data structure uses over the number of bits that adjacency list
representation uses.

As a baseline for representing a graph G with sublinear in-neighbor and out-neighbor

queries, the adjacency list representation uses 2⌈log2 |V (G)|⌉ bits to encode an edge. For

social networks in practice, it is reasonable to assume that the average degree increases

logarithmically with respect to the number of nodes in the graph. Therefore, asymptotically

(that is, assuming the number of nodes approaches infinity) the Eulerian data structure uses

half of the number of bits that the baseline schema uses due to the following equation:

lim
|V (G)|→∞

(1 + 1
log

2
|V (G)|)(log2(|V (G)|) + log2 log2(|V (G)|) + 1)

2 log2(|V (G)|) =
1

2

Readers familiar with the literature of the social network analysis might recall the den-

sification law [36]. The densification law claims that the number of edges in a real world

social network G grows proportional to |V (G)|1+α where α is a real number between zero

and one. In such a case we can redo the asymptotical analysis:

lim
|V (G)|→∞

(1 + 1
|V (G)|α)((1 + α) log2(|V (G)|) + 1)

2 log2(|V (G)|) =
1 + α

2

In this equation, since the number of edges grows proportional to |V (G)|1+α the average

degree is proportional to |V (G)|α.
Table 3.1 compares the compression rate of our method and the baseline schema for a

number of combinations of d̄ and |V (G)|. Clearly, the larger and the sparser the graph,

CHAPTER 3. GPSN COMPRESSION FRAMEWORK 68

the less bits the Eulerian data structure uses. Real life social networks are often large and

sparse, therefore, the Eulerian data structure is capable of compressing social networks.

To the best of our knowledge, the Eulerian data structure is the first schema that allows

answering both out-neighbor and in-neighbor queries in sublinear time, and provides a

nontrivial upper bound on the number of bits per edge. Note that to prove the upper

bound given by Theorem 1 we did not use any assumption on the type of the network,

therefore the result is not limited to the social networks and is valid for arbitrary graphs.

3.4 Summary

In this chapter, we introduce a compression framework. Theoretically, we prove an upper

bound on the compression rate for a simple setting of the framework. This theoretical

analysis can serve as a good evidence for the storage efficiency of our framework. For the

next two chapters of this dissertation, we are going to consider two more practical settings

for our framework.

In Chapter 4, we use the principles of the GPSN framework to design a lossless com-

pression scheme for social networks. The lossless compression scheme uses a relaxed version

of k-linearization, which we call multi level linearization. We introduce this new notion to

be adaptive to the ”skewed“ structure of the real world social network.

Chapter 4

Lossless Compression

The GPSN framework has three components, namely: (1) a linearization S of the given

graph, (2) a data structure to store the sequence S, and (3) an algorithm to build the

sequence S. In the previous chapter, we used the notion of k-linearization to prove an

upper bound for the compression rate of the GPSN framework. However, in a more realistic

setting having a fixed parameter k for linearizing a real world social network is not always

practical. For the rest of this chapter, first, we introduce a relaxed notion for linearizing a

social network. Then, we explain the data structure to store the linearization. We present a

simple greedy heuristic to build such a linearization. Finally, we conclude the chapter with

the experimental results.

4.1 Multi Level Linearization

We start our discussion based on the known fact that the edges in real world social networks

are highly correlated. The building blocks of social networks are communities. The edges

are often local in the sense that if a node belongs to a community, a statistically significant

fraction of its neighbors tend to be in the same community. Therefore, a large fraction of

the edges in a given social network are intra-community edges. Intuitively, the parameter k

in the k-linearization is trying to capture the degree of locality in the network, that is the

69

CHAPTER 4. LOSSLESS COMPRESSION 70

size of the communities in a given social network.

The size and structure of such communities have been the focus of many recent works.

While Leskovec et al. [37] suggested that the communities are typically no larger than a

hundred nodes, it is unrealistic to assume all of them have the same size. Therefore, using

multiple values of k to linearize a social network is a more effective approach. The notion

of multi-level linearization is designed to capture such intuition. A multi-level linearization

is a sequence S of nodes, such that S is partitioned to several segments and each segment

uses its own value of k. The definition of multi-level linearization is as follows:

Definition 10 (Multi-Level Linearization). A multi-level linearization of a given graph G

is a sequence S and a list of integer pairs (i1, k1), · · · , (im, km), such that i1 = 0 < i2 <

· · · , < im < length(S) and k1 > k2, · · · , km > 0. Then, assuming St = S[it, it+1 − 1] we

have1:

∪mt=1Ekt(St) = E(G),

where Ekt(St) is the set of all edges that are k-covered by St. We refer to this list as the

neighborhood scheme of S.

A commonly used notion for measuring the locality in social networks is the average

clustering coefficient [62], that is:

Acc(G) = Acc(Ḡ) =
1

|V (Ḡ)|
∑

v∈V (Ḡ)

2|Ev|
|Nv|(|Nv| − 1)

,

where Ev is the set of edges that have both ends among the neighbours of v. In social

networks, the number of vertices with a small degree is much more than the number of

vertices with a large degree. Consequently, average clustering coefficient has a bias towards

the vertices with small degrees. That is, since the low degree vertices, e.g. vertices with

degree one, tend to have large clustering coefficient, the average clustering coefficient is

misleadingly large. Therefore, to measure the locality of a network we use Global Clustering

1The notation S[it, it+1−1] refers to the subsequence of S that starts from position it and ends at position

it+1 − 1

CHAPTER 4. LOSSLESS COMPRESSION 71

Coefficient [62], which is the ratio of three times the number of triangles over the number

of paths of length two:

Gcc(G) = Gcc(Ḡ) =
2
∑

v∈V (Ḡ) |Ev|
∑

v∈V (Ḡ) |Nv|(|Nv| − 1)
,

Roughly speaking, Gccmeasures the likelihood that there is an edge between two vertices

when they have a common neighbor. Consider a social network with a large Gcc value.

Suppose vertices u, v, w and t are four consecutive vertices in a linearization, and there are

edges between u and v, v and w, as well as w and t. There is a good chance that u and w

are connected, since both have v as a neighbor. Moreover, if u and w are connected, using

the same argument, there is a good chance that u and t are also connected. This argument

can be used for farther vertices to u again and again. Depending on the value of the Gcc, it

does make sense to keep more bits to encode the edges of u, specifying if (u, v), (u,w) and

(u, t) belong to E(G) or not.

There is a tradeoff between the length of the linearization against the amount of local

information. The tradeoff highly depends on the structure of the graph. Intuitively, for

a large sparse graph where each vertex has the same out degree, and the destinations

of the out-edges are picked randomly, increasing k would not influence the length of the

linearization significantly. However, for a random dense graph G where the existence of

an edge from every node to another is independently determined by a probability of 50%,

increasing k up to |V (G)|, the number of vertices, is actually beneficial. Note that the

extreme case of storing |V (G)| bits for each vertex is roughly corresponding to the adjacency

matrix representation of G.

Example 8. Figures 4.1(a) is illustrating a graph G. G consists of a set of high degree

vertices, which make the core of the network. A set of dangling low-degree vertices are

loosely connected to the core. Note that this is consistent with the structure of the social

networks that come from the real world. Figures 4.1(b) shows a multi-level linearization of

G. The neighborhood scheme for this linearization is {(0, 3), (9, 1)}. The first segment of

the sequence (positions 0 to 8) encode the edges between the vertices of the core of G, while

the rear part (positions 9-25) encode the dangling edges.

CHAPTER 4. LOSSLESS COMPRESSION 72

v3

v5

v6

v7

v8

v2

v4

v9

v10

v1

v11

v12

v13

v14

v15

v16

v17

v18

v19

(a) Graph G

000 111001 101011 101101 101101 101101 101101 110101 100011 000

v9

01

v10

10

v8

11 01 10

v13v4

1001 11

v14v3 v15

1001 11

v16v2 v17

1001 11

v18v1 v19v1v2 v3 v4 v5 v6 v7 v8 v2

01 1011

v11v6 v12

(b) Multi-level linearization of G.

Figure 4.1: Multi-Level Linearization. The neighborhood scheme is {(0, 3), (9, 1)}. Arcs
point to the next appearance of the same vertex. The cells are indexed from left to right.
Position 0 is the most left cell and position 25 is the most right cell.

Each position in the first segment of the sequence uses 6 bits to encode the edges and 5

bits for the next pointer. The second segment uses 2 bits for the labels and 5 bits for the

pointers. In total, it uses 9× (6 + 5) + 17× (2 + 5)=218, which makes a compression rate

of 218/(28× 2) = 3.89. Note that each undirected edge is equivalent to two directed edges.

4.2 Data Structure

We present the Eulerian data structure in this section:

CHAPTER 4. LOSSLESS COMPRESSION 73

Definition 11 (Multi-Level Data Structure). Let S be a multi-level linearization of a given

graph G, and (i1, k1), · · · , (im, km) be the neighborhood scheme of S. The Multi-Level

Data Structure stores the graph G using m arrays of the size ia+1 − ia for 1 ≤ a ≤ m,

where m is the length of the neighborhood scheme and im+1 is equal to the length of S. The

a-th array (1 ≤ a ≤ m) encodes the information corresponding to the positions ia up to

ia+1 − 1 of the linearization. In cell i of the a-th array, we keep the following two pieces of

information:

Local information: ka bits to encode the edges and non-edges from S(ia+ i) to S(ia+

i+1), · · · , S(ia+ i+k(i)), likewise, another ka bits to encode edges and non-edges from S(i)

to S(i− 1), · · · , S(i− k(i)).
Pointer: a pointer to the next appearance of S(i). If this is the last copy, the pointer

points to the first appearance of the vertex.

In this data structure, the index of the first appearance of a node is the identifier of that

node.

4.3 Compression Heuristic

Unlike 1-linearization, finding the most memory-efficient multi-level linearization is highly

challenging2. Instead, in this section, we focus on the designing of a heuristic that finds a

“good” multi level linearization without much cost.

To ensure that we can handle large social networks, we use a straightforward greedy

heuristic for linearizing a graph. The pseudo code is shown in Algorithm 6. Note that this

algorithm assumes the network fits in the main memory. We start with a random vertex

and a starting value of k. At each step we append to the list the vertex that has the largest

number of edges with the last k nodes in the list. We remove these edges from the graph

and iterate until no edge is left. If none of the last k vertices in the list have a neighbor,

2Finding the shortest multi-level linearization is a generalization of the problem of finding the shortest
k-linearization. Also, the latter problem is the generalization of Min-Bandwidth problem [47] which is a
NP-hard problem.

CHAPTER 4. LOSSLESS COMPRESSION 74

Algorithm 6 to find a multi level linearization of G

Input: K, reducing factor RF (0 ≤ RF ≤ 1), density threshold DT (0 ≤ DT ≤ 1) and
Graph G

Output: Linearization L of G
1: initialize L to an empty list
2: while |E(G)| ≥ 1 do
3: let u be a random node with nonzero degree
4: append u to L
5: {let X be the set of the last K vertices in L}
6: while X has at least one neighbor in V (G)−X do
7: let v be the node which has the most number of edges to and from X
8: remove all edges between v and vertices in X
9: edgecount+ = degold(v)− degnew(v)

10: append v to L
11: if Length(L)%1000==0 then
12: if edgecount/(2 ∗K ∗ 1000) < DT then
13: K = K ∗RF
14: end if
15: edgecount = 0
16: end if
17: end while
18: end while

then we pick a random node with non-zero degree and continue from there.

As we are removing the edges of the graph, the graph becomes sparser and sparser and

eventually the rear part of the linearization may have very few new edges to encode. To

be adaptive, we watch the average local density for the recent positions in the list (the last

1000 positions3 as shown in Algorithm 6). Once it drops below a certain density threshold

DT , we reduce k by multiplying it to a predefined reducing factor RF . Note that, this

algorithm guarantees that the length of the neighborhood scheme is short, i.e. O(log k),

assuming 0 < RF < 1.

We chose to use a simple heuristic to examine the feasibility of using the GPSN frame-

work for compressing social networks. Our method leaves space for further improvement

which could be the subject for future work.

3Experimentally we used the last 100 up to 10000 positions for computing the average local density. It
turns out that the algorithm is not sensitive to this number as long as it is more than a few hundreds.

CHAPTER 4. LOSSLESS COMPRESSION 75

Name |V | |E| Acc Gcc Fre

amazon0302 262111 1234877 0.424 0.236 0.542

amazon0312 400727 3200440 0.411 0.160 0.531

ca-CondMat 23133 186878 0.633 0.264 1

ca-HepPh 12006 236978 0.611 0.659 1

cit-HepPh 34546 421534 0.296 0.145 0.003

cit-Patents 3774768 16518947 0.091 0.067 0

email-Enron 36692 367662 0.497 0.085 1

email-EuAll 265009 418956 0.309 0.004 0.260

p2p-Gnutella08 6301 20777 0.015 0.020 0

p2p-Gnutella24 26518 65369 0.009 0.004 0

soc-Slashdot0902 82168 870161 0.061 0.024 0.841

soc-LiveJournal1 4846609 68475391 0.312 0.288 0.374

web-Google 875713 5105039 0.604 0.055 0.306

web-Stanford 281903 2312497 0.610 0.096 0.276

Table 4.1: The dataset stats. (Acc, Gcc, and Fre are defined in Section 3.2.1)

4.4 Experiments

To the best of our knowledge, there is no existing social network compression method that

can answer out-neighbor and in-neighbor queries in sublinear time without replicating the

network. For example, in case of adjacency list, to find the in-neighbors of a given node u

one has to search all other vertices. However, the existing methods that answer out-neighbor

queries can be made comparable to ours in functionality by encoding a given graph G and

also its transpose GT .

4.4.1 Experimental Setup

We used the data sets from the SNAP project (Stanford Network Analysis Package, http:

//snap.stanford.edu/data/). The data sets in the SNAP project are organized in different

categories. From each category we chose the data sets with the smallest and the largest

Gcc values in order to test the effect of our method with respect to social networks of

different degrees of locality. Those data sets are from very different domains, such as social

CHAPTER 4. LOSSLESS COMPRESSION 76

networks, web graphs, peer-to-peer networks, collaborative networks, citation networks,

and co-purchasing networks. Table 4.1 provides the statistics of these networks and a short

descriptions. The description of the datasets according to http://snap.stanford.edu/

data:

• amazon0302: this network is collected by crawling Amazon website. It is based on

“Customers Who Bought This Item Also Bought” feature of the website. If a product

x is frequently co-purchased with product y, the graph contains a directed edge from

x to y. The network was collected in March 02 2003.

• ca-CondMat: the Arxiv COND-MAT (Condense Matter Physics) is a collaboration

network from the e-print arXiv and covers scientific collaborations among authors of

papers submitted to Condense Matter category. If an author x co-authored a paper

with author y, the graph contains an undirected edge from x to y. If the paper is

co-authored by k authors this generates a completely connected subgraph on k nodes.

The data cover papers in the period of January 1993 to April 2003. This period starts

within a few months of the inception of the arXiv, and thus represents essentially the

complete history of its COND-MAT section.

• ca-HepPh: Arxiv HEP-PH (High Energy Physics - Phenomenology) is a collaboration

network from the e-print arXiv, and covers scientific collaborations among authors,

based on papers submitted to the High Energy Physics Phenomenology category. If

an author x co-authored a paper with author y, the graph contains an undirected

edge from x to y. If the paper is co-authored by k authors this generates a completely

connected (sub)graph on k nodes.

The data cover papers in the period of January 1993 to April 2003. This period starts

within a few months of the inception of the arXiv, and thus represents essentially the

complete history of the HEP-PH section.

• cit-HepPh: the Arxiv HEP-PH (High Energy Physics Phenomenology) is a citation

graph from the e-print arXiv, and covers all the citations within a dataset of 34,546

CHAPTER 4. LOSSLESS COMPRESSION 77

papers with 421,578 edges. If a paper x cites paper y, the graph contains a directed

edge from x to y. If a paper cites a paper outside the dataset, the graph does not

represent any information about this.

The data cover papers in the period from January 1993 to April 2003. This period

starts within a few months of the inception of the arXiv, and therefore represents

essentially the complete history of the HEP-PH section.

• cit-Patents: the U.S. patent dataset is maintained by the National Bureau of Eco-

nomic Research. The data set cover 37 years (January 1, 1963 to December 30, 1999),

and include all the utility patents granted during this period, including 3,923,922

patents. The citation graph includes all citations made by patents granted between

1975 and 1999, including 16,522,438 citations. For the patents dataset there are

1,803,511 nodes for which there is no information about their citations (only in-links

are available).

• email-Enron: the Enron email communication data cover all the email communication

within a dataset of about half million emails. This data was originally made public,

and posted to the web, during a federal investigation. Nodes of the network are email

addresses and if an address x sent at least one email to address y, the network contains

an undirected edge from x to y. Note that for non-Enron email addresses, we only

observe their communication with the Enron email addresses.

• email-EuAll: this network is generated using email data from a large European re-

search institution. For a period from October 2003 to May 2005, we have anonymous

information about all incoming and outgoing emails of the research institution. For

each email message, we know the time, the sender and the recipient of that email. In

total, we have 3,038,531 emails, sent or received by 287,755 different email addresses.

• p2p-Gnutella08: a snapshot of the Gnutella peer-to-peer file sharing network from Au-

gust 2002. The nodes of the network represent hosts, and edges represent connections

between the Gnutella hosts.

CHAPTER 4. LOSSLESS COMPRESSION 78

• p2p-Gnutella24: another snapshot of the Gnutella peer-to-peer file sharing network

from August 2002. The nodes of the network represent hosts, and edges represent

connections between the Gnutella hosts.

• soc-Slashdot0902 slashdot.org is a technology-related news website which is known for

its specific user community. The website features user-submitted and editor-evaluated

technology oriented news. In 2002, the website introduced the Slashdot Zoo fea-

ture which allows users to tag each other as friends or foes. The network represents

friend/foe links among the users of Slashdot. The network is collected in February

2009.

• soc-LiveJournal1: LiveJournal is a free on-line social network with almost 10 million

members; a significant fraction of these members are highly active. For example,

roughly 300,000 users update their content in any given 24-hour period. LiveJournal

allows members to maintain journals, individual and group blogs, and it allows people

to declare which other members are their friends. The data was released on 2006

• web-Google: this network is the web-graph of google.com domain. The nodes of the

network represent web pages in the domain, and directed edges represent hyper-links

among them. The data set released in summer 2002 as part of Google Programming

Contest.

• web-Stanford: this network is the web-graph of stanford.edu domain. The nodes of the

network represent web pages in the domain, and directed edges represent hyper-links

among them. The data was collected in 2002.

We implemented our algorithms using C++, on top of the SNAP4 library which is

publicly available at http://snap.stanford.edu/. We used a heterogeneous Linux based

cluster to run most of the experiments. To report the running time, we selected a subsets

of our experiments and ran them on a core(TM)2 Duo 2.66GHz Linux system with 2GB of

main memory.

4Stanford Network Analysis Package

CHAPTER 4. LOSSLESS COMPRESSION 79

Our method has three parameters: Reducing Factor (RF), (Starting) neighborhood

size (K) and Density Threshold (DT). The last two parameters are more important than

the first one, since they have direct control on the generated linearization. Therefore, we

conducted an extensive experimental study on different values of those two parameters for

each network in our collection. Particularly, we are interested in the tradeoff between the

length of the linearization and the neighborhood size. That is, whether starting from a

larger neighborhood size would reduce the length of the linearization significantly.

We measured the compression performance using the bits/edge rate, as the previous

studies did. In addition, we also report query processing time for the multi level data

structure.

Another interesting tradeoff in our method is between the out-neighbor query processing

time and in-neighbor query processing time. An implementation decision is how to store

the local information for each position. There are two options: (1) for each position of the

linearization, we use the first k bits to record the out-edges to the previous k vertices in

the linearization sequence, and use the next k bits to record the out-edges to the next k

vertices. (2) we use 2k bits to encode both the out-edges and in-edges between the current

position and the next k positions.

The first option biases the compression scheme towards the out-neighbor queries. To

answer an in-neighbor query on a vertex u, we have to scan the k positions preceding and

following every occurrence of u in the linearization sequence. We implemented the second

option in our experiments which is not biased on any specific types of neighbor queries.

4.4.2 Comparison of the Compression Rates

Table 4.2 summarizes the results on compression rate. While the performance of our method

varies on different data sets, the interesting observation here is the strong negative correla-

tion between the bits/edge rate and the value of locality measures, Fre,Gcc and the average

degree of the network. In particular, Fre and Gcc are larger in Amazon0302 than in Ama-

zon0312, however the performance of our method is better on Amazon0312. We believe that

CHAPTER 4. LOSSLESS COMPRESSION 80

(K, reducing factor) (10, 1) (10, 0.9) (15, 0.9) (20, 0.9) (30, 0.9)

Density threshold 0 0.15 0.25 0.30 0.15 0.25 0.30 0.15 0.25 0.30 0.15 0.25 0.30

amazon0302 15.38 14.61 13.99 14.43 15.08 13.97 14.16 15.09 13.98 14.49 15.39 14.07 14.49

amazon0312 14.35 13.32 12.70 12.79 13.57 12.74 12.84 13.92 12.73 12.90 14.08 12.79 12.86

ca-CondMat 7.89 7.69 6.96 6.69 8.35 7.16 6.77 8.94 7.33 6.93 9.55 7.56 7.26

ca-HepPh 5.24 5.09 4.76 4.63 5.00 4.59 4.57 5.20 4.65 4.53 5.51 4.79 4.69

cit-HepPh 17.07 15.65 14.59 14.23 15.99 14.69 14.29 16.47 14.85 14.31 16.97 15.02 14.48

cit-Patents 31.59 27.69 25.95 25.75 27.63 25.97 25.69 27.73 25.95 25.69 27.78 25.97 25.78

email-Enron 8.72 8.11 7.39 7.26 8.53 7.47 7.27 8.88 7.52 7.31 9.19 7.64 7.44

email-EuAll 30.73 25.31 22.96 22.55 25.63 22.97 22.55 25.56 22.97 22.61 25.81 23.11 22.72

p2p-Gnutella08 30.36 25.48 22.90 21.63 26.70 23.88 23.42 29.82 27.13 26.88 33.84 33.21 33.21

p2p-Gnutella24 35.76 29.51 25.59 24.33 28.67 25.69 24.93 29.41 26.90 26.02 31.25 28.94 28.10

soc-Slashdot0902 16.17 14.19 12.68 12.14 14.55 12.69 12.15 14.63 12.68 12.17 14.75 12.74 12.19

soc-LiveJournal1 16.13 14.48 13.96 13.97 14.50 13.92 13.93 14.49 13.95 13.93 14.56 13.91 13.95

web-Google 12.84 12.22 11.63 11.66 12.29 11.58 11.68 12.74 11.61 11.70 12.99 11.59 11.65

web-Stanford 10.79 10.27 10.17 10.76 10.19 10.23 10.41 10.14 10.05 10.22 10.19 9.88 9.92

Table 4.2: The average number of bits per edge. The worse cases happen on those data sets
that have very poor locality measures (Gcc and Fre)

this is due to the higher average degree in Amazon0312 than Amazon0302.

It is interesting to look at the difference between email-Enron and email-EuAll data

sets from the same category. the email-Enron data set has one of the best bits/edge rates

and email-EuAll has one of the worse. We believe this is a footprint of the difference in

communication patterns in industry and in academia.

The results clearly shows that our method can exploit the locality properties of social

networks. Our best result for the LiveJournal data set is 13.91 bits/edge, while the best

result of BV scheme for the same data set is 14.308 (reported in [14]). Please note that

BV scheme supports only the out-neighborhood queries. To answer both out-neighbor and

in-neighbor queries, the BV schema needs 2× 14.308 bits per edge, assuming that encoding

the transpose of the graph has approximately the same rate. Moreover, our method is

flexible for incremental updates. We only need to encode the incremental subgraph. The

BV schema does not allow sublinear updates.

4.4.3 Query Processing Time

We report the query processing time for two types of queries. An adjacency query reports

whether a query edge (u, v) belongs to E. A neighbor query searches for all out-neighbors

and in-neighbors of a query vertex u.

CHAPTER 4. LOSSLESS COMPRESSION 81

adj queries(ns) Neigh. queries(ns)

dataset comp. SNAP comp. SNAP

amazon0302 800 750 951 72

amazon0312 1170 790 1753 46

ca-CondMat 390 420 777 30

ca-HepPh 520 400 1849 19

cit-HepPh 1300 480 2745 28

cit-Patents 1400 930 1842 91

email-Enron 620 500 5539 31

email-EuAll 530 670 21518 148

p2p-Gnutella08 640 320 1663 34

p2p-Gnutella24 600 320 1488 50

soc-LiveJournal1 3050 1130 9734 49

soc-Slashdot0902 1380 610 7884 35

web-Google 810 830 4110 66

web-Standford 890 810 39939 49

Table 4.3: The average access time per edge for processing adjacency queries and (in+out)
neighbor queries.

We used K = 20, RF = 0.9 and DT = 0.25 as the default values for the parameters.

Table 4.3 compares the average access time for the adjacency queries performed on the

compressed graphs (comp.) and on the original graphs (SNAP), using the SNAP imple-

mentation of the graph data structure. We ran 1 million adjacency queries and 1 million

neighborhood queries, and normalized the time by the number of edges that those queries

returned. The time is in nano second.

Our method spends up to 3 times more time to answer an adjacency query than that

on the original graph. In most cases, extra cost in our method is very minor. For neighbor

queries, the query answering time depends on the efficiency of the linearization. We believe

at least one order of magnitude in the reported neighbor query time is due to bit-level

encoding of the information. That is because to read a pointer we have to read it one bit

by one bit.

CHAPTER 4. LOSSLESS COMPRESSION 82

 0

 5

 10

 15

 20

 25

 30

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

bi
ts

/e
dg

e

Density threshold

"ca-Hep.local"
"ca-Hep.total"
"soc-S.local"
"soc-S.total"

"p2p.local"
"p2p.dt.total"

Figure 4.2: The trade off between the bits/edge rate of local information and that of pointers
on three data sets: ca-HepPh, p2p-Gnutella24, and soc-Slashdot0902. (K = 20, RF = 0.9)

4.4.4 Tradeoff between Local Information and Pointers

We divide the compression rate in our method into two parts, the rate for encoding the

local information, and that for encoding the pointers. The total compression rate is simply

the sum of the two.

We studied the tradeoff between the local bits/edge rate and that of the pointers, while

we varied the parameters of our method. We report here the tradeoff for two parame-

ters: the density threshold (DT) and the starting window size (K). We chose three data

sets: ca-HepPh which has the best compression rate, p2p-Gnutella24 which has the worse

compression rate, and soc-Slashdot0902 which has about the average compression rate.

In the first experiment, we varied DT = 0.15 to 0.45 with step 0.05, and fixed the other

two parameters K = 20 and RF = 0.9. Figure 4.2 shows the local information bits/edge

rate and the total bits/edge rate. Clearly, the compression rate is insensitive to parameter

DT .

In the second experiment, we fixed DT = 0.25 and RF = 0.9, and varied K from 1

to 30. Figure 4.3 shows the results. Increasing k leads to better compression rates on the

CHAPTER 4. LOSSLESS COMPRESSION 83

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

bi
ts

/e
dg

e

K (starting window size)

"ca-Hep.local"
"ca-Hep.total"
"soc-S.local"
"soc-S.total"

"p2p.local"
"p2p.total"

Figure 4.3: The trade off between the bits/edge rate of local information and that of pointers
on three data sets: ca-HepPh, p2p-Gnutella24, and soc-Slashdot0902. (DT = 0.25 and
RF = 0.9)

ca-HepPh and Soc-Slashdot0902 data sets. However, when k is 5 or larger, increasing k

does not gain big advantage. Therefore, setting k to a value between 5 and 10 is a good

experimental choice.

4.5 Summary

In this chapter, we tackled the problem of compressing social networks in a neighbor

query friendly way. We developed an effective social network lossless compression approach

achieved by a novel notion of multi level linearization of directed graphs. To the best of

our knowledge, our approach is the first that can answer both out-neighbor and in-neighbor

queries in sublinear time, without replicating the network. An extensive empirical study on

more than a dozen benchmark real data sets justifies the effectiveness of our method.

Chapter 5

Lossy Compression

From both practical and theoretical points of views, compression plays an important role

in social network analysis. Although there are a few pioneering studies on social network

compression [9, 4, 52], they only focus on lossless approaches. In this chapter, we tackle

the problem of lossy compression of social networks. The trade-off between memory and

“information-preserved” in a lossy compression presents an interesting angle for social net-

work analysis, and at the same time makes the problem very challenging. We propose a

lossy graph compression approach, based on our GPSN framework. We do so by design-

ing an objective function to measure the quality of a given linearization with respect to

community structure of social networks. We present an interesting and practical greedy

algorithm to optimize such an objective function. Our experimental results on real data

sets and synthetic data sets demonstrate the promise of our method.

5.1 Overview

Partly motivated by the recent success of many online social networking sites such as Face-

book and Twitter, managing and analyzing huge social networks have attracted dramatic

interest from both industry and academia. An essential challenge is that many social net-

works are huge and ever growing. For example, from January to September 2008, the

84

CHAPTER 5. LOSSY COMPRESSION 85

number of active users of Facebook grew from 60 million to 140 million, and Facebook has

over 900 million active users nowadays.

As illustrated by several recent studies [8, 14, 40, 6], compressing social networks can

substantially facilitate mining and advanced analysis of huge social networks. Social network

compression plays an important role in social network analysis from both practical and

theoretical points of view.

Practically, many advanced social network analysis tools are sensitive to the input size.

Those methods are highly efficient when the data can be held completely or largely into

main memory, but are very costly if most of the data is out of memory. If social networks

can be compressed effectively and efficiently, it may help such advanced analysis tools to

handle much larger social networks.

Theoretically, compression is always achieved by utilizing some local “regularity” in

data. Thus, the compressibility of a social network can provide valuable insights into the

structure of the network. For example, if a subnetwork can be compressed well, it may

indicate that the members in the subnetwork share some regularity, or the subnetwork

follows some structural patterns that are shared by similar subnetworks.

As indicated by a literature review in Chapter 2, almost all the existing social network

compression methods target at lossless compression. We argue that lossy compression in

fact is very interesting and useful for social networks, because it is well-known that large

social networks are often noisy.

From the practical point of view, noise edges and vertices in large social networks may

hinder the quality of social network analysis. An appropriate lossy compression of a social

network should discard the noise edges and vertices in the network. Consequently, the lossy

compression may be present as the input of higher quality for social network analysis. In

other words, lossy compression of social networks can serve as a preprocessing step in social

network analysis. This goes far beyond just space saving.

From the theoretical point of view, lossy compression of social networks can help to dis-

cover the importance of edges and vertices in a social network, and identify noise edges and

CHAPTER 5. LOSSY COMPRESSION 86

vertices. Suppose ideally we have a lossy compression method that preserves the important

information about a social network and filters out noise. If the method can assign to each

element in a social network (e.g., each edge and vertex) a priority of being included into a

lossy compression, then the priority can be regarded as a good indicator of the importance

of the element. The lower the priority of an element, the more likely the element is noise.

Lossy compression of social networks is interesting and important for social network

analysis. At the same time, it is a very challenging problem. To achieve good lossy com-

pression of social networks, we have to develop good methodology that can detect and

preserve important information in social networks.

In this chapter, we tackle the novel problem of community preserving lossy compression

of social networks, and make several important contributions. First, we advocate community

preserving lossy compression of social networks due to the importance of communities in

social networks. To the best of our knowledge, we are the first to identify and tackle the

problem. Second, we propose a sequence graph compression approach. We design a simple

yet meaningful objective function that optimizes for community structure preservation. We

are not aware of any other objective function for the same purpose in the literature. A

heuristic algorithm is developed. Last, we report an empirical study on both synthetic and

real data sets, which verifies the effectiveness of our method.

The rest of the chapter is organized as follows. In Section 5.2, the notations and the

essential idea of our compression method using the GPSN framework is discussed. The

design of the community preserving objective function is covered in Section 5.3. We present

the compression algorithm in Section 5.4, and report the experimental results in Section 5.5.

Section 5.6 summarizes the chapter.

5.2 Graph Linearization for Lossy Compression

For the sake of simplicity, in this chapter, we model a social network as an undirected simple

graph G = (V,E), where V is a set of vertices, E ⊂ V × V is a set of edges, and (u, u) 6∈ E
for any u ∈ V . We also refer to V by V (G) and to E by E(G). Our discussion can be

CHAPTER 5. LOSSY COMPRESSION 87

straightforwardly extended to directed and non-simple graphs.

We first formulate a notion of sequence graph.

Definition 12 (Sequence graph). A graph Gs is a (k, l)-sequence graph, if |V (Gs)| = l

and there is a bijection φ between V (Gs) and the set of integers {1, . . . , l} such that for every

edge (x, y) ∈ E(Gs), |φ(x) − φ(y)| ≤ k. We call k the local range size, l the sequence

length, and span(x, y) = |φ(x)− φ(y)| the span of edge (x, y).

Intuitively, in a sequence graph, the vertices can be lined up into a sequence so that all

edges are “local”, that is, the two end points locate within a segment of at most k in the

sequence. Since φ is a bijection between V (Gs) and integers {1, . . . , l}, hereafter, we may

simply refer to the vertices in Gs by integers in {1, . . . , l}, and may draw the vertices of a

sequence graph in a sequence and omit the integers if they are clear from the context.

Example 9 (Sequence graph). Graph Gs in Figure 5.1(b) is a (3, 15)-sequence graph. Please

note that we simply line up the vertices in a sequence and omit the integers in the graph.

The function ψ(·) in the figure is for Example 10 and should be ignored at this moment.

To store a (k, l)-sequence graph, for each vertex, we only need to allocate 2k bits to

represent the edges involving the vertex. This representation can also enable efficient neigh-

borhood queries — finding all neighbors of a vertex u takes only O(k) time.

The general idea behind graph compression using linearization is that we try to “unfold”

a graph into a sequence graph, so that many vertices have the associated edges in their local

ranges. Then, storing the corresponding sequence graph can save space, because many

edges are stored using only 2 bits each, one for each end point. We refer to this process as

“unfolding” because a vertex in the original graph may be mapped to several vertices in the

sequence graph.

Definition 13 (Graph linearization). A (k, l)-sequence graph Gs is a (k, l)-linearization

of a graph G if there exists a function ψ : V (Gs) → V (G) such that (1) for every edge

(x, y) ∈ E(Gs), (ψ(x), ψ(y)) ∈ E(G), and (2) there does not exist two edges (x, y), (x′, y′) ∈

CHAPTER 5. LOSSY COMPRESSION 88

v3

v5

v6

v7

v8

v2

v1

v12

v10

v9

v11

v4

v13

v14

(a) Graph G

v3 v4 v13 v14ψ(.) v2 v3 v4 v5 v6 v7 v8 v1 v11 v12 v10

(b) A (3, 15)-sequence graph Gs that is a lossy linearization of G.

Figure 5.1: A graph G and its lossy representation using a (3, 15)-sequence graph Gs.

E(Gs), (x, y) 6= (x′, y′) such that (ψ(x), ψ(y)) = (ψ(x′), ψ(y′)). To keep our notation simple

we overload the symbol ψ by writing ψ(x, y) = (ψ(x), ψ(y)).

Gs is a lossless linearization of G if for every edge (u, v) ∈ E(G), there exists an

edge (x, y) ∈ E(Gs) such that ψ(x, y) = (u, v). Otherwise, Gs is a lossy linearization of

G.

The second condition in the definition of (k, l)-linearization ensures that an edge in the

original graph is encoded at most once in the linearization. This condition helps us to design

a simple yet effective objective function for lossy compression in the next section.

Example 10 (Lossy linearization). The (3, 15)-sequence graph Gs in Figure 5.1(b) is a

lossy linearization of graph G in Figure 5.1(a). The mapping ψ(·) from the nodes of Gs to

CHAPTER 5. LOSSY COMPRESSION 89

Symbol Meaning

Gs a (k, l)-sequence graph
G a graph to be compressed
k the neighbor range size
l the sequence length
φ the mapping between V (Gs) and the

set of integers {1, . . . , l}
span(x, y) the span of edge (x, y) ∈ E(Gs), |φ(x)−

φ(y)|
Ns(x) the neighbor set of x, {y ∈

V (Gs)||φ(x)− φ(y)| ≤ k}
ψ the mapping from V (Gs) to V (G) in a

linearization
ψ(x, y) (ψ(x), ψ(y))
p a path

span(p) the span of a path in Gs,
max1≤i≤m{φ(u′i)} −min1≤i≤m{φ(u′i)}

Pm(Gs) the set of length-m paths in Gs

Table 5.1: Some frequently used notions.

the nodes of G is depicted.

In general, a graph G may have multiple (k, l)-lossy linearizations. Finding the best

(k, l)-lossy linearization for a graph G is a novel problem not touched by any previous work.

To make the problem concrete, we need to explore how to quantify the “loss of information”

and assess the degree of community preservation in lossy compression. We answer this

question by designing an objective function in the next section.

The frequently used notions are summarized in Table 5.1.

5.3 Objective Function

Consider the following optimization problem. Given a graph G and parameters l > 0 and

k > 0, find a (k, l)-lossy linearization Gs for G and the mapping ψ : V (Gs) → V (G) such

that a utility objective function f(Gs) is maximized, where f(Gs) measures the degree of

CHAPTER 5. LOSSY COMPRESSION 90

7

a b cde

3 4 5 6

Figure 5.2: The span of a path.

information preservation in Gs.

Lossy compression trades off some edges in the original graph G for space saving. What

information in G should be preserved in priority? Since communities are the essential

building blocks of social networks, in this chapter, we focus on lossy compressions of social

networks that preserve communities. We regard a dense area in a graph as a potential

community. We intently avoid an exact definition of community, since different applications

may have different definitions.

We want to obtain a utility function that optimizes for edges of short spans in the

corresponding sequence graph. Instead of developing a utility function parameterized by k,

we introduce a parameter α (0 < α < 1) that controls the strength of preference on shorter

spans. We will build the connection between parameters α and k in Section 5.4.1.

A path p = (u1, u2, . . . , um) in a graph G is a series of edges such that (ui, ui+1) ∈ E(G),

1 ≤ i < m. The length of path p is (m − 1), the number of edges involved in the path. In

a linearization Gs of G under mapping ψ, path p′ = (u′1, u
′
2, . . . , u

′
m) in Gs is the embedding

of path p if ψ(ui, ui+1) = (u′i, u
′
i+1) for 1 ≤ i < m.

Definition 14 (Span of path). Let Gs be a linearization of graph G, p = (u1, u2, . . . , um) a

path in G, and p′ = (u′1, u
′
2, . . . , u

′
m) the embedding of p in Gs. The span of p is

span(p) = max
1≤i≤m

{φ(u′i)} − min
1≤i≤m

{φ(u′i)}

Example 11. Figure 5.2 shows a segment of a (3, l)-sequence graph. For path p = (d, a, c, b, e),

the span is 7− 3 = 4.

Let us start our design of the objective function by considering a simple function. Sup-

pose Gs is a (k, l)-linearization of G, where k = l = |V (G)|. If we only consider individual

CHAPTER 5. LOSSY COMPRESSION 91

edges, and try to decrease the sum of spans of all edges, then we have the following utility

function:

f1(Gs) =
∑

(x,y)∈E(Gs)

αspan(x,y)

Utility function f1 has the following two properties.

Property 1: the shorter the spans of edges in the sequence graph, the higher the utility.

This property is consistent with our goal of preserving community information. A com-

munity typically has a high density, which means there exist many edges among the set of

vertices belonging to the community. If the vertices of a community are placed in proximate

positions in the sequence, the spans of the edges within the community tend to be short.

The edges of long spans contribute little to the utility. The utility decreases exponentially

with respect to the span. This property encourages the arrangement of vertices belonging

to the same community in the close-by positions, and discourages the inclusion of edges

crossing communities far away in the original graph G.

Property 2: the more edges included in the compression, the higher the utility. Consider

two linearization graphs Gs and G′
s such that V (Gs) = V (G′

s) and E(Gs) ⊂ E(G′
s). Then,

f1(Gs) < f1(G
′
s). This property encourages a linearization graph to include as many edges

as possible in addition to optimizing for short span edges.

Utility function f1 is sensitive to individual edges. We can extend it to incorporate

community information better. Instead of edges, we can consider how paths of a certain

length are represented in a sequence graph. Generally, a community as a dense subgraph has

many short paths traversing members within the community. If a sequence graph preserves

the community information, then the members of the community are lined up close to one

another in the sequence graph and thus the paths in the community fall into short ranges

of the sequence.

To incorporate the above idea, let Pm(Gs) be the set of paths of length m in a sequence

graph Gs. We can extend utility function f1 to

fm(Gs) =
∑

p∈Pm(Gs)

αspan(p)

CHAPTER 5. LOSSY COMPRESSION 92

Clearly, utility function fm is a generalization of f1. The longer the paths considered, the

more community oriented the utility function becomes. At the same time, the optimization

problem becomes more challenging when the value of m increases.

Observe that the function f1 takes its maximum value when the span of each edge is one,

and that is basically an adjacency representation of the graph. In this chapter, we focus on

the simplest nontrivial setting m = 2 as the first step. Interestingly, several recent studies,

such as [28], suggested that even considering random walks of short length can generate high

quality results in network analysis. Note that for m ≥ 3, the problem is computationally

more expensive. Optimizing fm for larger values of m is the subject of future studies.

For the sake of simplicity, we omit the subscript 2. In the rest of the chapter, we tackle

the optimization of the following objective function:

f(Gs) = f2(Gs) =
∑

p∈P2(Gs)

αspan(p) (5.1)

5.4 Linearization Method

In this section, we simplify the objective function, build the connection between parameters

α and k, and develop a greedy heuristic linearization method.

How difficult is the problem of finding the optimal lossy linearization using utility func-

tion f in Equation 5.1, that is, finding a sequence graph maximizing the objective function?

In literature, there is a family of graph layout problems [19], whose objective is to find an or-

dering of nodes to optimize a particular objective function. Many variants of these problems

have been shown to be NP-hard [47, 14]. To the best of our knowledge, even no constant

factor approximation algorithm for any variation of these problems is known [59, 19]. Note

that our setting is even more complex, since one node can appear in several positions in

a sequence graph. These evidences suggest that very likely the problem is not solvable in

polynomial time, unless P = NP . Therefore, in this section, we design a greedy heuristic

method.

In order to obtain effective greedy heuristics, we try to bound the objective function.

We observe the following.

CHAPTER 5. LOSSY COMPRESSION 93

Theorem 2 (Bounds). Let Gs be a sequence graph. Then,

f(Gs) ≤
∑

p∈P2(Gs)

(α1/2)span(e1)+span(e2) (5.2)

f(Gs) ≥
∑

p∈P2(Gs)

αspan(e1)+span(e2) (5.3)

Proof. For any path p = e1e2 in Gs, we have span(p) ≥ max{span(e1), span(e2)} ≥
span(e1)+span(e2)

2 . Since 0 < α < 1, Equation 5.2 follows immediately.

Apparently, span(p) ≤ span(e1) + span(e2). Thus, Equation 5.3 holds.

Heuristically, if we can obtain a sequence graph optimizing the lower bound in Theo-

rem 2, the sequence graph have a good chance to boost the objective function f . Note that,

optimizing the lower bound in Theorem 2 is computationally less expensive.

Let Ei be the set of edges incident to vertex i in Gs and Pi be the set of those paths of

length two that have vertex i as the middle vertex. Then,

(
∑

e∈Ei

αspan(e))2 =
∑

p=e1e2∈Pi

αspan(e1)+span(e2)

The equation holds, because after expanding the left side, for any possible pair of edges e1

and e2 in Ei, we have the term αspan(e1)+span(e2). Moreover, each possible pair of edges in

Ei is corresponding to a path in Pi, and vice versa. Therefore, we optimize the lower bound

in Theorem 2 if we optimize the following nice double summation:

f̄(Gs) =
∑

1≤i≤|V (Gs)|

(
∑

e∈Ei

αspan(e))2

5.4.1 Connection between Parameters α and k

We have the following interesting upper bound for the span of any given edge in the optimal

sequence graph, assuming the value of α is given.

Theorem 3. For a given α, the maximum span of all edges in the optimal sequence graph

is at most logα
α(1−α)

4 .

CHAPTER 5. LOSSY COMPRESSION 94

Proof. Let wi =
∑

e∈Ei
αspan(e), where Ei is the set of edges associated with position i.

wi =
∑

e∈Ei

αspan(e) < 2
∞
∑

t=1

αt

Notice that, in Ei, there are at most two edges with span equal to t for any possible t.

However,
∑∞

t=1 α
t is the sum of a geometric sequence and is equal to α/(1 − α). Thus we

can rewrite the inequality in the following form:

wi <
2α

1− α

The contribution of edge e is at most:

w2
i − (wi − αspan(e))2 = 2αspan(e)wi − α2span(e)

<
4αspan(e)+1

1− α − α2span(e)

This value should be larger than the contribution of a single isolated edge, otherwise

removing this edge and adding it to the end of the sequence graph would increase the

objective function. Thus,

α2 <
4αspan(e)+1

1− α − α2span(e)

α(1− α)
4

<
α2(1− α)

4α− αspan(e)(1− α) < αspan(e)

Since 0 < α < 1 and span(e) is an integer, we have

span(e) < logα
α(1− α)

4

Our problem formulation assumes a parameter k is given as the maximum local range size

for the sequence graph. However, the objective function uses the parameter α. Theorem 3

builds the analytical ground to connect α with k. We use the equation k = logα
α(1−α)

4 to

estimate α. Specifically, to estimate α given k, we do a binary search on the interval [0, 1],

and stop when the value of logα
α(1−α)

4 is between k and k− 0.01. Using this estimate of α,

experimentally we observe that in the resulting sequence graphs the spans of an extremely

small fraction of edges are more than k/2. This is consistent with Theorem 3. Therefore,

we use the equation 2k = logα(1− α)α/4 to estimate α.

CHAPTER 5. LOSSY COMPRESSION 95

Algorithm 7 Compression Algorithm

Input: G: input network, k: local range,
l: length of compression (l ≥ |V (G)|)

Output: SeqG: sequenced compression
1: Initialize SeqG with a random ordering of nodes
2: α← EstimateAlpha(k)
3: repeat
4: b = f(SeqG, α)
5: for all u ∈ V (G) do
6: IPos = NULL, DPos = NULL
7: (IPos,Nbh)← ReAllocate(u,G, SeqG, α)
8: if (IPos 6= NULL) and (Length(SeqG) = l) then
9: DPos← SeqG.LowestBenf(IPos− k, IPos+ k)

10: end if
11: x← UtilityIncrease(IPos,Nbh, SeqG)
12: y ← UtilityDecrease(DPos, SeqG)
13: if x− y > 0 then
14: Insert(IPos,Nbh, SeqG)
15: Delete(DPos, SeqG)
16: end if
17: end for
18: a = f(SeqG, α)
19: until convergence condition

5.4.2 A Greedy Heuristic Method

In this section, we develop a greedy heuristic method for the community preserving lossy

compression problem. We will use a local search heuristic.

Overview and General Ideas

The basic operation for local improvement in our heuristic is that, given a node, we find a

position in the sequence to insert a new copy of the node, and find a position to delete such

that the total change in the objective function is positive after the insertion and deletion.

Similar to most local search heuristic methods, our method does not have any theoretical

guarantee for the convergence time or the quality of the result. However, using an extensive

set of experiments in the next section we verify the effectiveness of our design in practice.

CHAPTER 5. LOSSY COMPRESSION 96

Algorithm 7 shows our main algorithm. we initialize Gs with a random ordering of the

vertices of G (Line 1). Later, we show that the random initialization would help us to

improve the quality of our lossy compression by aggregating several independent outputs

of this algorithm. There is no edge in Gs at this stage. Then, iteratively we consider

all vertices for possible reallocation. The ReAllocate(u,G,Gs, α) procedure (Algorithm 8)

returns a position in Gs for possible insertion of an extra copy of u and its associated edges.

If the length of Gs is already l, the algorithm searches the local range of the insertion point

for a possible deletion. We apply the changes if they improve the objective function.

To implement this algorithm we need a data structure to store the sequence graph Gs,

which allows fast insertion and deletion operations. We explain our data structure next.

SeqGraph Data Structure

Similar to the Eulerian data structure we need to store a sequence of cells (Figures 5.3(a)

and (b)), where each cell represents a position in Gs. Each cell contains two pieces of

information: a next-copy pointer to the next copy of the same vertex, and a vector of 2k

bits to represent the local edges. All copies of the same vertex form a cyclic linked list,

which we refer to it as a vertex cycle. The Eulerian data structure [40] uses an array, in

which the cost of inserting and deleting a cell is linear.

In our heuristic algorithm, we have to frequently insert and delete cells. The linear cost

for these operations is too expensive. Thus, we need a better data structure to avoid the

cost of shifting long segments in the sequence graph in insertions and deletions. Specifically,

we divide the cells into segments. Each segment has up to M cells and is stored in an array.

Then, the SeqGraph data structure is a double linked list of segments. In Figure 5.3(c), a, b

and c are the segments. In each cell, a next-copy pointer is stored. For example, in the first

cell of segment a, the next-copy pointer b:4 points to the fourth cell in segment b. To point

to a cell, unlike the Eulerian data structure [40] where an integer index can be simply used,

we need to use an index consisting of a pointer to a segment and an offset in that segment.

Fortunately, we only need to search within the range size k. That is, in Algorithm 8, we

CHAPTER 5. LOSSY COMPRESSION 97

���� ���� ���� �������� ���� �� ���� ����

v1 v2 v3 v4 v5 v6 v7 v8 v9

(a) Graph G

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��

ψ(.)

φ(.) 1

v6 v6

2

v1

3 4 5 6 7 8 9 10

v2 v3 v4 v5 v7 v8 v9

(b) (2, 10)-Sequence Graph Gs and the mapping ψ to original ver-
tices of G

b:4
0011 0111 1110 1110 0111 0110 1111

0111 1110 1100

a:2 a:3 b:1 b:2 b:3 a:1

c:1 c:2 c:3

x y zx′y′

segment a segment b

segment c

v6 v6v1 v2 v3 v4 v5

v7 v8 v9

(c) SeqGraph data structure (the cell ids in cells, such as b : 4,
are the next-copy pointers to the next copy of the same vertices)

Figure 5.3: A graph G and its representation by SeqGraph data structure.

only need to compute the exact distance between positions i1 and i2 if the distance is up to

k. This can be achieved efficiently by searching a small neighborhood.

Let M be the maximum number of cells in a segment. Without loss of generality, we

assumeM is an even number. If an insertion operation causes a segment to haveM cells, we

split the segment into two segments of equal size. Moreover, if a deletion operation results

in the sum of the lengths of two consecutive segments equal to M/2, we merge them. This

is to avoid having many tiny segments in the data structure.

For an insertion (deletion) operation, a shift in the affected segment is necessary. More-

over, the next pointers should be updated for those that point to the positions affected by

CHAPTER 5. LOSSY COMPRESSION 98

the insertion and deletion, that is, the position of insertion or deletion and the positions

thereafter in the same segment. A nice property of our SeqGraph data structure is that all

other segments are not affected. Finally, those edges that pass over the insertion (deletion)

position should be updated, too.

Example 12. In Figure 5.3(c), let us call the cells b:2, b:3 and b:4, x, y and z, respectively,

as labeled in the figure. To insert a copy of v7 at position b:2, a shift in the segment b is

needed. Moreover, we have to change the next-copy pointers of all the cells that point to x,

y and z to b:3, b:4 and b:5, respectively. Note that we can find these pointers by following

the vertex cycles of x, y and z, respectively. The edges associated with those cells that are

at most 2 positions away from the inserted cell should be updated, that is x, x′, y and y′.

Finally, the newly inserted cell should be added to the vertex cycle of v7.

The cost of the insertion and deletion operations depends on the sizes of segments,

vertex cycles and maximum span of edges. The time complexity of an insertion or deletion

operation is O(M∆+ k2), where ∆ is the maximum degree of the graph.

The Reallocation Procedure

For a node u, the reallocation procedure (Algorithm 8) partitions the edges incident to u

into groups. Each group is associated with a copy of u in Gs. Let C1 be the set of positions

of copies of u that already exist in Gs, and C2 be the set of positions of potential new copies.

C2 is generated as follows: let E(G \ Gs) be the set of edges (u, v) ∈ E(G) that are not

represented in Gs. For (u, v) ∈ E(G \Gs), we add a potential new copy of u right behind a

random copy of v in Gs (Lines 3-7).

We insert these new potential copies at the beginning, and delete them all at the end of

the procedure (Lines 1-12). In the edge reassigning step (Lines 13-26), each edge is added

to the group for which it has the best contribution (Line 19). The reassigning process stops

when no improvement is possible. At the end, for the existing copies of u, that is, C1,

the associated edges will be updated if they have been changed (Lines 27-29). For those

potential new copies, that is, C2, we remove them and return the best in the set as the

CHAPTER 5. LOSSY COMPRESSION 99

position of a potential new copy of u in Gs. We also return the edges associated to this

potential new copy (Lines 30-35).

Running Time Analysis

Let dv be the degree of node v. We have at most dv groups for each vertex. Inserting and

deleting the groups in the SeqGraph data structure takes O(dv(M∆ + k2)) time. In an

iteration of the edge reassigning process, all edges have to be considered for reassigning.

Each edge takes O(dvk) time. In total each iteration takes O(d2vk) time.

We notice that the number of iteration in practice is extremely low, typically 2 or 3.

We do not have any theoretical bound on the number of iterations. However, since the

contribution of any single edge is increasing, the convergence is guaranteed.

Likewise, the overall time complexity of Algorithm 7 depends on the convergence con-

dition and the number of iterations. However, the complexity of a single iteration can be

estimated as follows. Assuming the number of iterations for the reallocation process is at

most I, the running time is proportional to
∑

v∈V (G) dv(dvkI +M∆+ k2). Since k and M

are constants, the sum is proportional to
∑

v∈V (G) dv(dvI + ∆). Notice that dv is at most

∆, therefore, the time complexity of an iteration is O(|E|∆I).

5.5 Empirical Evaluation

In this section, we report a systematic empirical evaluation.

5.5.1 Evaluation Methodology

Our compression algorithm assumes the parameters k, the local range size, and l, the length

of linearization, are given. Having these parameters fixed, the size of compression can be

computed precisely. Therefore, compression rate does not have a straightforward meaning

here. Instead, we consider a measure to assess the utility of a single bit.

Definition 15 (Bit-utility rate). The bit-utility rate is the ratio of the number of edges

encoded in the lossy compression over the total number of bits.

CHAPTER 5. LOSSY COMPRESSION 100

To evaluate the quality of a lossy compression, one has to look at the quality of com-

munity preservation. This is a challenging task. It is hard to find a ground truth for the

community structure of real world networks. Moreover, our method does not explicitly

identify communities of networks.

For a sanity check of our method, we design the following methodology. Using the

distance of the vertices in the sequence graph compression, we define a proximity graph

(Definition 16), which is a weighted graph on the vertex set of the original network. The

weight of edge (u, v) is an indicator for u and v belonging to the same community. Then, we

run a simple community structure detection algorithm on both the original network and the

proximity graph. A significant improvement in community detection should be interpreted

as the effectiveness of our community preservation lossy compression method. To have a

ground truth, we use synthesis networks with implanted communities.

The second experiment is concerned with the effect of missing edges in the lossy com-

pression. We compare three different centrality measures on both the network with the

original set of edges and the network with the set of those edges that are encoded in the

compressed version. We use a collection of real world networks for this experiment.

5.5.2 Synthesis Networks

The LFR [35] benchmark is a random model to generate networks with implanted commu-

nities of variable size, while the degree of the nodes follows a power law distribution. We

use the algorithm by Clauset et al. [16] for detecting the community structure. This is a

simple and scalable greedy modularity-based algorithm. As reported by Fortunato [27] in

his Figure 33, this algorithm has a poor performance on the LFR benchmark. A significant

improvement of the performance of this algorithm over our lossy representation of the net-

work supports our claim that our method is more than a compression framework and can

serve as a preprocessing step for clustering analysis.

To generate synthesis networks, we use the same settings as those used by Fortunato [27].

We set the parameters as follows: average degree to 20, maximum degree to 50, exponent

CHAPTER 5. LOSSY COMPRESSION 101

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

B
it-

U
til

ity
 R

at
e

Mixing parameter

N=1000,S
N=1000,B
N=5000,S
N=5000,B

Figure 5.4: The bit-utility-rate of our lossy compression.

for degree distribution to 2, exponent for the community size distribution to 1.

In Figure 5.4, N is the number of nodes, S stands for the data sets where the community

sizes are made between 10 and 50, while B stands for the data sets where the community

sizes are set between 20 and 100. The X-axis is the mixing parameter, which is the fraction of

edges going outside of the community for any particular vertex, used by the data generator

[35]. The Y-axis is the bit-utility rate. A larger bit-utility rate means that the lossy

compression scheme makes a better use of the available space. As expected, if the density

of the communities decreases, the bit-utility rate decreases, too.

We define a proximity graph as follows.

Definition 16 (Proximity graph). Let Gs be a linearization of G, and ψ : V (Gs)→ V (G)

be the mapping. Note that V (Gs) = {1, · · · , |V (Gs)|}. The proximity graph of G with

respect to Gs is defined as follows. Consider (u, v) ∈ E(G) and (i, j) ∈ E(Gs) such that

|i − j| ≤ k and ψ(i) = u, ψ(j) = v. Without losing the generality we assume i < j. The

CHAPTER 5. LOSSY COMPRESSION 102

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Mixing parameter

N=1000,S
N=1000,B
N=5000,S
N=5000,B

(a) Original network

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Mixing parameter

(b) Proximity network

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Mixing parameter

(c) Aggregated proximity network

Figure 5.5: The performance of the algorithm by Clauset et al. [16] on the original network,
the proximity network derived from one compression, and the aggregated proximity network
derived from five independent compressions.

weight of undirected edge (u, v) in the proximity graph is

∑

(i,l)∈E(Gs),l≥j

α|i−l| +
∑

(j,l)∈E(Gs),l≤i

α|j−l|

The first (second) term is over all the edges associated with position i (j) that pass over

position j (i). If there is no such a pair of (i, j), then the weight for (u, v) is zero. If there

are more than one such pair, for each of those pairs, we compute the weight and take the

sum over all of them.

The merit of this weighting schema is that, when i and j belong to a dense part of the

CHAPTER 5. LOSSY COMPRESSION 103

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

k (local range size)

N=1000,S
N=1000,B
N=5000,S
N=5000,B

(a) µ = 0.6 and L = 1.2×N

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

l (length in multiple of number of nodes in the graph)

(b) µ = 0.6 and K = 8

Figure 5.6: The effect of (a) local range size (k) and (b) length of sequence (l).

sequence graph Gs, (ψ(i), ψ(j)) receives a relatively large value, even if there is no direct

edge between i and j. In practice, there is no need to explicitly store the proximity graph,

rather one can compute the weights from the linearization graph on the fly. Note that,

since the unfolding algorithm uses a random order of the vertices as the starting seed, to

exploit the power of randomization, one can use several independent linearizations to derive

an aggregate proximity graph, i.e., the weight of (u, v) is the sum of its weights in the

independent proximity graphs.

Figure 5.5 shows the results of the algorithm by Clauset et al. [16] on the original

CHAPTER 5. LOSSY COMPRESSION 104

graph, the proximity graph and the aggregate proximity graph on five independent lossy

linearization. For these experiments k = 16 and l = 1.2 × N , where N is the number of

vertices in the original graph. The Y-axis is the Normalized Mutual Information (NMI)

[18, 27], which measures the similarity between two clusterings, i.e. community structures,

of the same set of nodes. We compute NMI using the code at http://sites.google.com/

site/andrealancichinetti/mutual.

The results clearly show that the algorithm is not effective on the original graph, but

performs significantly better on the proximity graph. Moreover, the results on the aggregate

proximity graph are comparable to the state-of-the-art algorithms reported by Fortunato [27]

in his Figure 33. This strongly suggests that our method captures the community structure

of the network, and can serve as an effective preprocessing step.

Figure 5.6 shows that our framework can benefit from increasing local range size k.

However, the benefit of increasing the length of lossy linearization is limited.

5.5.3 Centrality

Betweenness [31] is a centrality measure of vertices for a given graph. It gives higher

values to those vertices that occur on many shortest paths between other pairs of vertices.

PageRank [46] is another centrality measure that uses random walks in a network to evaluate

the importance of nodes. Degree of a vertex also can be considered as a simple centrality

measure. In this section, we evaluate the effect of information loss in lossy compression on

those centrality measures.

For a graph G and its lossy linearization Gs, ψ(Gs) is a graph on vertex set V (G).

Edge (u, v) ∈ E(G) is an edge in ψ(Gs) if and only if there exists (i, j) ∈ E(Gs) such that

(u, v) = (ψ(i), ψ(j)). Intuitively, ψ(Gs) consists of those edges in G that are encoded in Gs.

Each vertex has a centrality score. A centrality measure on a network G can be regarded

as a centrality vector of size |V (G)|. To make comparison we use the Pearson correlation of

the centrality vectors of G and ψ(Gs).

Figure 5.7 shows the results on three real world networks whose statistics are given in

CHAPTER 5. LOSSY COMPRESSION 105

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

P
ea

rs
on

 C
or

re
la

tio
n

k (local range size)

PageRank
Betweenness

Degree

(a) Collaboration network

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

P
ea

rs
on

 C
or

re
la

tio
n

k (local range size)

PageRank
Betweenness

Degree

(b) Wiki vote network

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

P
ea

rs
on

 C
or

re
la

tio
n

k (local range size)

PageRank
Betweenness

Degree

(c) Email exchange network

Figure 5.7: Pearson Correlation of centrality measures on original and the compressed
version

Table 5.2. As the value of k increases the correlation between the two centrality vectors

increases.

5.5.4 Running Time Efficiency

The running time of our method depends on the number of iterations in Algorithm 7. For

our setting the number of iterations is typically between 15 to 30. Figure 5.8 depicts the

running time of our method with respect to the graph size on the same LFR benchmarks

[27]. The running time of a single iteration, when parameter k is fixed, is scaling almost

linearly.

CHAPTER 5. LOSSY COMPRESSION 106

Description #nodes #edges

ca-GrQc Coll. net. of Arxiv Gen Relativity 5242 14990
em-ExCh UVR Email Exchange 1133 5451
wiki-vote Wikipedia who-votes-on-whom network 7115 100763

Table 5.2: Statistic of data-sets

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 200 300 400 500 600 700 800 900 1000

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

Number of nodes (times 1000)

k=8
k=16
k=32

Figure 5.8: The running time of a single iteration of Algorithm 7.

5.6 Summary

In this chapter, we developed a lossy compression scheme for social networks. In our design,

the size of compression is given, and the objective is to preserve the community structure

of a given network as much as possible. We tackled this problem by introducing a notion of

sequence graph. Moreover, we designed an objective function that measures the quality of a

sequence graph with respect to the community structure of the network. Also, we designed

a non-trivial heuristic to optimize our objective function. Finally, we validated our method

using both synthesis and real world networks.

CHAPTER 5. LOSSY COMPRESSION 107

Algorithm 8 Reallocation Procedure

Input: G: original graph, SeqG: sequence graph, u ∈ V (G), α: weighting parameter
Output: IPos: potential position to insert a new copy of u, Nbh: the edges associated to

the new copy of u
1: C1 = ψ−1(u); C2 = ∅;
2: for all {v|(u, v) ∈ E(G \ SeqG)} do
3: Let p be a random member of ψ−1(v);
4: C2 = C2 ∪ {p};
5: N(p) = {+1}; /* neighbors of p in SeqG */
6: U(p) = α; /* utility of p */
7: SeqG.Insert(u, p);
8: end for
9: for all p ∈ C1 do

10: N(p) = SeqG.Nbh(p); U(p) =
∑

a∈N(p) α
|a|;

11: end for
12: C = C1 ∪ C2;
13: repeat
14: for all {v|(u, v) ∈ E(G)} do
15: Let pu and pv be s.t. (ψ(p1), ψ(p2)) = (u, v);
16: /* pu ∈ C and pv ∈ ψ−1(v) */
17: a = Dist(pu, pv); /* the distance in SeqG */
18: U(pu) = U(pu)− α|a|;
19: Let p∗u ∈ C and p∗v ∈ ψ−1(v) be s.t. maximize:

(α|dist(p∗u,p
∗

v)| + U(p∗u))
2 − U(p∗u)

2

20: U(p∗u) = U(p∗u) + αdist(p∗u,p
∗

v);
21: if p∗u 6= pu then
22: N(p∗u) = N(p∗u) + {dist(p∗u, p∗v)};
23: N(pu) = N(pu)− {dist(pu, pv)};
24: end if
25: end for
26: until Convergence
27: for all p ∈ C1 do
28: SeqG.UpdateNeighbor(p,N(p));
29: end for
30: for all p ∈ C2 do
31: SeqG.Delete(p);
32: end for
33: Let p ∈ C2 s.t. U(p) is maximum;
34: IPos = p; Nbh = N(p));
35: return (IPos,Nbh);

Chapter 6

Conclusion

The central idea of the thesis is to use a notion of “linearization of the nodes” in order to

design a General Purpose Social Network (GPSN) compression framework. The study has

three main components: the Eulerian data structure, the lossless GPSN compression scheme

and the lossy GPSN compression scheme. All three components are different settings of the

same framework. The Eulerian data structure is the simplest setting for which we can have

an analytical analysis. The lossless compression scheme, comparing to the Eulerian data

structure, is a more general setting of the framework, where the goal is to represent all the

edges of the network using the least number of bits. However, for the lossy compression

scheme, we assume that there is a constraint on the available storage, and the goal is to

encode as much as “information” as possible.

6.1 Summary

We like to highlight the following main contributions of this dissertation:

• The Eulerian Data Structure. The novel Eulerian data structure is a non-trivial

data structure which is memory efficient for any type of network, including real world

social networks. To the best of our knowledge, this is the first data structure for

network data that allows both efficient in-neighbor and out-neighbor queries without

108

CHAPTER 6. CONCLUSION 109

replicating the data.

A solid process for evaluating a computational system is to provide a proof for efficiency

and correctness of the system. The Eulerian data structure is a setting of the GPSN

compression framework for which it is possible to prove an upper bound on the bits-

per-edge rate. To the best of our knowledge this is the only nontrivial upper bound on

the bits-per-edge rate of any representation scheme for social networks. We compare

the upper bound with the trivial baseline data structure that can answer both in-

neighbor and out-neighbor queries, which is the adjacency list representation of the

network and the transpose of it. Chapter 3 provides an in-depth discussion on the

Eulerian data structure.

• Lossless Compression Scheme. We exploit the notions of k-linearization, and

multi-level linearization introduced in Section 3.2.4, in order to design a general pur-

pose lossless compression scheme. Interestingly, this approach reduces the social net-

work compression to a combinatorial optimization problem. However, we believe find-

ing the optimal solution of this problem is NP-hard. We develop a heuristic algorithm

to construct the compressed network. A comprehensive set of experiments has been

conducted to study the compression rate of the lossless compression scheme. Chapter

4 presents the experimental study for the lossless GPSN compression scheme.

The lossless compression scheme is a practical setting of the GPSN framework, and

there is no upper bound on its compression rate. However, experimentally, we compare

the bits-per-edge rate of lossless compression scheme with the results reported in [14]

for those publicly available datasets. Note that the framework used in this study

does not support sub-linear incremental updates, nor efficient in-neighbor queries.

Therefore, to justify our lossless compression scheme, we do not require a significant

improvement of the compression rate, rather we show that the compression rate is

comparable.

CHAPTER 6. CONCLUSION 110

• Lossy Compression Scheme. The challenge of developing a lossy network com-

pression framework has two folds. First, it is the matter of designing an efficient rep-

resentation scheme to represent the links, and second, having a mechanism in place to

determine whether a given edge, or vertex, has to be included in the compression. For

this part of the thesis, we show that the GPSN compression framework, in addition to

being storage-efficient, offers a natural edge ranking mechanism. Chapter 5 discusses

the lossy compression scheme in details.

For the lossy compression, the goal is to encode as much as possible information

using a given amount of memory. Therefore, the compression rate does not have a

straightforward meaning here. However, a notion of utility can be useful. Bit-utility-

rate measures the amount of information that a single bit represents, that is the

number of edges over the number of bits. For example, the meaning of a bit-utility-

rate of 0.5 is that for representing a certain number of edges, the lossy scheme uses

twice as many bits. We evaluate the bit-utility-rate of our lossy compression scheme.

One might argue that the edges in a real world social network are not of the same

importance. The majority of them form a community structure for the network, while

others considered being abnormal or even depending on the context, regarded as noise.

From this perspective, a legitimate question is that what would the lossy compression

scheme do to the community structure of the network. A set of experiments introduced

in Section 5.5 evaluate the effect of lossy compression on the community structure of

the network. We show that our framework is quit effective in capturing the global

community structure of a given social network.

6.2 Future Work

There are several future directions for this dissertation, both from theoretical and practical

perspectives. We distinguish five interesting directions for further investigation:

CHAPTER 6. CONCLUSION 111

• Hardness Result. From a theoretical point of view, a hardness result for the problem

of finding the optimal k-linearization, when k is fixed, would be interesting.

• Approximation Algorithm. Assuming the problem is NP-hard, the next natu-

ral question would concern the existence of a nontrivial approximation algorithm for

finding the optimal k-linearization. The optimal 1-linearization is already a k approx-

imation for the problem, and since finding the optimal 1-linearization can be done

in linear time, therefore we have a k-approximation algorithm. Then, the accurate

question is that can we have an approximation algorithm with a factor better than k?

• Upper Bound. Having an upper bound on the length of the optimal k-linearization

would give us an upper bound on the compression rate. Proving an upper bound for

general graphs might be hard. However, having some assumption on the structure of

the network could make the problem easier. For example, proving an upper bound

parametrized by the number of edges and the Global Clustering Coefficient might not

be out of reach.

• Better Linearization. As for the practical side, exploring alternative methods for

linearizing a given network, is of great interest. We believe the study of this disser-

tation should be regarded as a baseline both for lossless and lossy compression. As a

possible future direction, developing linearization methods based on spectral analysis

of the network could be quit fruitful both for lossless and lossy compression.

• Distributed Computing. Another interesting direction for exploring further is the

possibility of extending the GPSN framework to a distributed network management

system. We believe the notion of linearization suggests a natural partitioning paradigm

that relies on partitioning of the edges rather than the nodes of a given network.

Bibliography

[1] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and

V. Kann. Complexity and Approximation: Combinatorial Optimization Problems and

Their Approximability Properties. Springer-Verlag New York, Inc., Secaucus, NJ, USA,

1st edition, 1999.

[2] M. J. Barber and J. W. Clark. Detecting network communities by propagating labels

under constraints. Physical Review E, 80(2):026129+, Aug. 2009.

[3] T. Berners-Lee and M. Fischetti. Weaving the web: The original design and ultimate

destiny of the world wide web by its inventor. Harper, San Francisco, 1999.

[4] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S. Venkatasubrama-

nian. The connectivity server: fast access to linkage information on the

web. In 7th International WWW Conference, Brisbane, Australia, 1998.

http://www7.scu.edu.au/programme/fullpapers/1938/com1938.htm.

[5] A. Blum, G. Konjevod, R. Ravi, and S. Vempala. Semi-definite relaxations for minimum

bandwidth and other vertex-ordering problems. In J. S. Vitter, editor, STOC, pages

100–105. ACM, 1998.

[6] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: a multireso-

lution coordinate-free ordering for compressing social networks. In Proceedings of the

20th international conference on World wide web, WWW ’11, pages 587–596, New

York, NY, USA, 2011. ACM.

112

BIBLIOGRAPHY 113

[7] P. Boldi, M. Santini, and S. Vigna. Permuting web graphs. In Proceedings of the

6th International Workshop on Algorithms and Models for the Web-Graph (WAW’09),

pages 116–126, Berlin, Heidelberg, 2009. Springer-Verlag.

[8] P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In WWW,

pages 595–602, 2004.

[9] P. Boldi and S. Vigna. The webgraph framework II: Codes for the world-wide web. In

Data Compression Conference, page 528, 2004.

[10] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent

permutations. J. Comput. Syst. Sci., 60(3):630–659, 2000.

[11] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to web graph

compression with communities. In WSDM, pages 95–106, 2008.

[12] G. Buehrer, K. Chellapilla, and S. Parthasarathy. Itemset mining in log-linear time. In

OSU-CISRC-11/07-TR76, 2007.

[13] T. F. Chan, J. Cong, T. Kong, J. R. Shinnerl, and K. Sze. An enhanced multilevel

algorithm for circuit placement. In Proceedings of the 2003 IEEE/ACM international

conference on Computer-aided design, ICCAD ’03, pages 299–, Washington, DC, USA,

2003. IEEE Computer Society.

[14] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Ragha-

van. On compressing social networks. In KDD, pages 219–228, 2009.

[15] F. R. K. Chung. Spectral Graph Theory.

[16] A. Clauset, M. E. J. Newman, , and C. Moore. Finding community structure in very

large networks. Physical Review E, pages 1– 6, 2004.

[17] T. Cour, F. Bnzit, and J. Shi. Spectral segmentation with multiscale graph decompo-

sition. In CVPR (2), pages 1124–1131. IEEE Computer Society, 2005.

BIBLIOGRAPHY 114

[18] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas. Comparing community structure

identification, Oct. 2005.

[19] J. Dı́az, J. Petit, and M. J. Serna. A survey of graph layout problems. ACM Comput.

Surv., 34(3):313–356, 2002.

[20] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for

graph partitioning and data clustering. In Proceedings of the 2001 IEEE International

Conference on Data Mining, ICDM ’01, pages 107–114, Washington, DC, USA, 2001.

IEEE Computer Society.

[21] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly

Connected World. Cambridge University Press, 2010.

[22] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. In KDD, pages 226–231, 1996.

[23] T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algo-

rithms. J. Comput. System Sci., 51(2):261–271, 1995. Earlier version in STOC’91.

[24] U. Feige and J. R. Lee. An improved approximation ratio for the minimum linear

arrangement problem. Inf. Process. Lett., 101(1):26–29, 2007.

[25] M. R. Fellows and M. A. Langston. On search, decision, and the efficiency of

polynomial-time algorithms. J. Comput. Syst. Sci., 49(3):769–779, 1994.

[26] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web communi-

ties. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’00, pages 150–160, New York, NY, USA, 2000. ACM.

[27] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75 – 174,

2010.

BIBLIOGRAPHY 115

[28] J. Gao, W. Yuan, X. Li, K. Deng, and J.-Y. Nie. Smoothing clickthrough data for web

search ranking. In J. Allan, J. A. Aslam, M. Sanderson, C. Zhai, and J. Zobel, editors,

SIGIR, pages 355–362. ACM, 2009.

[29] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman and Co., San Francisco, CA, 1979.

[30] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive

graphs. In K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson, and B. C.

Ooi, editors, VLDB, pages 721–732. ACM, 2005.

[31] M. Girvan and M. E. Newman. Community structure in social and biological networks.

Proc Natl Acad Sci U S A, 99(12):7821–7826, June 2002.

[32] C. Hierholzer. ber die mglichkeit, einen linienzug ohne wiederholung und ohne unter-

brechung zu umfahren. J. Math. Ann, 6:30–32, 1873.

[33] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partition-

ing. In Proceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM),

Supercomputing ’98, pages 1–13, Washington, DC, USA, 1998. IEEE Computer Soci-

ety.

[34] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for

emerging cyber-communities. In Proceedings of the eighth international conference on

World Wide Web, WWW ’99, pages 1481–1493, New York, NY, USA, 1999. Elsevier

North-Holland, Inc.

[35] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing com-

munity detection algorithms. Phys. Rev. E, 78(4):046110, Oct. 2008.

[36] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws,

shrinking diameters and possible explanations. In In KDD, pages 177–187. ACM Press,

2005.

BIBLIOGRAPHY 116

[37] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of

community structure in large social and information networks. In WWW ’08: Pro-

ceeding of the 17th international conference on World Wide Web, pages 695–704, New

York, NY, USA, 2008. ACM.

[38] U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395–416,

December 2007.

[39] J. R. Magnus. Handbook of matrices. Econometric Theory, 14(03):379–380, 1998.

[40] H. Maserrat and J. Pei. Neighbor query friendly compression of social networks. InKDD

’10: Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 533–542, New York, NY, USA, 2010. ACM.

[41] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded

error. In SIGMOD Conference, pages 419–432, 2008.

[42] M. E. Newman and M. Girvan. Finding and evaluating community structure in net-

works. Phys Rev E Stat Nonlin Soft Matter Phys, 69(2):026113.1–15, Feb. 2004.

[43] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Physical Review, E 69(026113), 2004.

[44] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algo-

rithm. In Advances in Neural Information Processing Systems 14, pages 849–856. MIT

Press, 2001.

[45] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:

Bringing order to the web. In Proceedings of the 7th International World Wide Web

Conference, pages 161–172, Brisbane, Australia, 1998.

[46] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:

Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, November

1999. Previous number = SIDL-WP-1999-0120.

BIBLIOGRAPHY 117

[47] C. H. Papadimitriou. The NP-completeness of the bandwidth minimization problem.

Computing, 16(3):263–270, 1976.

[48] J. Petit. Combining spectral sequencing and parallel simulated annealing for the minla

problem. Parallel Processing Letters, 13(1):77–91, 2003.

[49] J. Petit. Experiments on the minimum linear arrangement problem. ACM Journal of

Experimental Algorithmics, 8, 2003.

[50] S. Raghavan and H. Garcia-Molina. Representing web graphs. In ICDE, pages 405–416,

2003.

[51] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect

community structures in large-scale networks. PHYSICAL REVIEW E, 76:036106,

2007.

[52] K. H. Randall, R. Stata, J. L. Wiener, and R. Wickremesinghe. The link database:

Fast access to graphs of the web. In DCC, pages 122–131, 2002.

[53] E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez. Memetic algorithms for the

minla problem. In E.-G. Talbi, P. Liardet, P. Collet, E. Lutton, and M. Schoenauer,

editors, Artificial Evolution, volume 3871 of Lecture Notes in Computer Science, pages

73–84. Springer, 2005.

[54] P. Ronhovde and Z. Nussinov. Multiresolution community detection for megascale

networks by information-based replica correlations. Phys. Rev. E, 80(1):016109, Jul

2009.

[55] P. Ronhovde and Z. Nussinov. Local resolution-limit-free potts model for community

detection. Physical Review E, 81(4):046114+, Apr. 2010.

[56] P. Ronhovde and Z. Nussinov. Local resolution-limit-free potts model for community

detection. PHYSICAL REVIEW E, 81:046114, 2010.

BIBLIOGRAPHY 118

[57] I. Safro, D. Ron, and A. Brandt. Multilevel algorithms for linear ordering problems. J.

Exp. Algorithmics, 13:4:1.4–4:1.20, February 2009.

[58] K. Stüben. A review of algebraic multigrid. J. Comput. Appl. Math., 128:281–309,

March 2001.

[59] V. V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc., New York,

NY, USA, 2001.

[60] D. Wagner and F. Wagner. Between min cut and graph bisection. In Proceedings of

the 18th International Symposium on Mathematical Foundations of Computer Science,

MFCS ’93, pages 744–750, London, UK, UK, 1993. Springer-Verlag.

[61] N. Wang, S. Parthasarathy, K.-L. Tan, and A. K. H. Tung. Csv: visualizing and

mining cohesive subgraphs. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, SIGMOD ’08, pages 445–458, New York, NY, USA,

2008. ACM.

[62] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature,

393(6684):440–442, June 1998.

[63] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: a structural clustering

algorithm for networks. In KDD, pages 824–833, 2007.

[64] S. X. Yu and J. Shi. Multiclass spectral clustering. In ICCV, pages 313–319. IEEE

Computer Society, 2003.

[65] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In NIPS, 2004.

