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Abstract

Continuing the study of connections amongst Dense Model Theorem, Low Complexity Ap-

proximation Theorem and Hardcore Lemma initiated by Trevisan et al. [TTV09], this thesis

builds on the work of Barak et al., Impagliazzo, Reingold et al. and Zhang [BHK09, Imp09,

RTTV08a, Zha11] to show the essential equivalence of these three results. The first main re-

sult obtained here is a reduction from any of the standard black-box Dense Models Theorems

to the Low Complexity Approximation Theorem. The next is the extension of Impagliazzo’s

reduction from Strong Hardcore Lemma to Dense Model Theorem. Then using Zhang’s Dense

Model Theorem algorithm we reduce Weak Hardcore Lemma to Strong Hardcore Lemma. Last

we distill the methods of Barak et al. and Zhang to extract a single algorithm which yields

uniform constructions for all three. Putting all this together demonstrates the three results are

essentially equivalent.
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Chapter 1

Introduction

1.1 Introduction

The focus of this thesis lies on the interface of additive combinatorics and computational com-

plexity specifically exploring the connections between a fundamental result in complexity, The

Hardcore Lemma and a recent technique in additive combinatorics, The Dense Model Theorem.

The Hardcore Lemma addresses hypothesis under which hardcore measures exist: a measure

can be thought of as a distribution over sets and hardcore measure characterizes a subset on

which a given function can be guessed no better than a random coin toss (i.e. a hardcore

measure is the “hard-core” of the function). While The Dense Model Theorem describes the

conditions under which a set of small size is indistinguishable from a much larger set - this

larger set (or measure) is said to be the dense model for the original set.

The starting point for the interplay between dense models and hardcore measures is the

Weak Szemerédi Regularity Lemma of Frieze and Kannan [FK99] which addresses the existence

of approximations to graphs with the complexity of the approximating graphs depending on

the approximating parameter and not the size. In [TTV09] Trevisan et al. establish that

Weak Szemerédi Regularity Lemma follows from their Low Complexity Approximation Theorem

(Lcat) since the Low Complexity Approximation Theorem essentially says that every function

can be approximated by a function with complexity dependent only on the approximation

quality. Because the idea of approximation lines up with that of Weak Szemerédi Regularity

Lemma this means that Low Complexity Approximation Theorem is simply Weak Szemerédi

Regularity Lemma in a different language.

Trevisan et al. also show that the existence of such low complexity approximations can be

harnessed to obtain forms of The Hardcore Lemma and Yao’s xor Lemma (albeit quantitatively

weak). In more detail Trevisan et al. prove that if a boolean function is hard to predict for

functions of certain complexity, then there exists a hardcore measure for functions of polynomi-

1



CHAPTER 1. INTRODUCTION 2

ally smaller complexity and of relatively big size. This is the standard setting for the Hardcore

Lemma: if a function is hard to guess for a collection of functions then there exists hardcore

measure for a sub-collection of those functions. The Hardcore Lemma has two standard forms:

The Weak Hardcore Lemma (HCLweak) and The Strong Hardcore Lemma (HCLstrong), the

difference lies in the size of the hardcore measure whose existence is guaranteed. HCLweak was

used by Russell Impagliazzo [Imp95] to show that if a function is hard to predict then the hard-

ness can be amplified by taking the xor of multiple copies of the function (this is informally

the Yao xor Lemma [GNW95]). Trevisan et al. further demonstrate the multi-faceted nature

of Lcat by using low complexity approximations to derive the The Dense Model Theorem

The Dense Model Theorem has roots in a technique from additive combinatorics used by

Green, Tao and Ziegler [GT08, TZ08] in their papers on existence of polynomial progressions

in primes. Trevisan [Tre09] boils down the essence of methods of Tao et al. as follows:

1. Every set D having positive density inside a pseudorandom set R of integers

must have arbitrarily long arithmetic progressions.

2. The primes have positive density inside the set of almost primes, and the set

of almost primes is pseudorandom.

The main step of (1) is showing that if D is a dense subset of a pseudorandom

subset R of the integers, then there is a set M , of positive density in all the integers,

which is is indistinguishable from D (where the indistinguishability involves Gowers

norms).

The Dense Model Theorem (DMTpseudorandom) formalizes this transfer from the dense sub-

set of a pseudorandom set to the dense model. In complexity theoretic formulation though, the

notion of indistinguishability is generalized to be with respect to any class of bounded functions

now just Gowers norms. However, Gowers norms do provide an another connection between

complexity and additive combinatorics: since the original use of Gowers norms by Timothy

Gowers in an analytic proof of Szemerédi’s theorem on arithmetic progression in primes [TG06],

objects similar to Gower’s norms were noticed in analysis of complexity theoretic protocols for

number-on-the-forehead problem model[Tre09]. And more recently Bogdanov, Lovett and Viola

[BV07, Lov09, Vio08] use them to analyze pseudorandom generator constructions, while Viola

and Wigderson [VW07] apply Gowers norms to communication complexity and to obtain xor

Lemma type results for correlation involving low degree polynomials.

It was noted by Impagliazzo [Imp09] that if a set looks bigger than it’s actual size then the

set must be hard to identify. This yields a natural hard to guess function. It can be shown (after

much work) that from the hardcore measure for this function, a dense model for the original set

can be extracted. We make an observation of converse nature: every hardcore measure “looks”



CHAPTER 1. INTRODUCTION 3

relatively big in almost the sense needed by The Dense Model Theorem. So The Dense Model

Theorem can be used on small hardcore measures to build large hardcore measures from them.

1.2 Results

With this setup an interesting question is whether there are more direct connections between

Lcat, HCL, DMT (and hopefully without excessive appeal to heavy technical machinery).

Proofs of each of the three results (Lcat, HCL, DMT) are known via von Neumann’s Min-Max

Theorem for zero sum games (alternatively the duality of Linear Programming/Hahn-Banach

Theorem) with the methods of proof similar. Uniform constructions1 as implied by Dense

Model Theorem and Strong Hardcore Lemma have been given (by Zhang [Zha11] and Barak et

al. [BHK09] respectively) using the framework of Bregman Projections and are again parallel

while Trevisan et al’s constructive proof of Lcat mirrors Holenstein’s uniform HCLstrong

[Hol06, Hol05]. Furthermore, in contrapositive form all three of Lcat, HCL, DMT can also

be thought of as problems in learning theory − the connection for connection for the case of

HCL has been formalized by Vitaly Feldman [Fel10] as well as by Klivans and Servedio [KS99].

This lends credence to the program of trying to place Lcat, HCL, DMT on the same footing.

In [Imp09] Russell Impagliazzo gave a direct (and algorithmic) reduction from Holenstein’s

Strong Hardcore Lemma to a stronger form of the Dense Model Theorem (DMTpseudodensity).

Along these lines, the work that follows explores the equivalence of the Strong Hardcore Lemma,

Low Complexity Approximation Theorem and Dense Model Theorem by showing the following

sequence of reductions:

HCLstrong
Impagliazzo−−−−−−−−→ DMT pseudodensity

pseudorandom

Here the notation Theorem A → Theorem B means that assuming hypothesis of Theorem

B along with Theorem A yields the conclusion of Theorem B. Note that both are theorems so

are individually true. Therefore, for the above reduction to carry any weight it needs to be

shown that there is no loss in the quality of the assumptions we need when we pass from the

conclusion of one theorem to the other; furthermore, the constructive form of one should yield

the constructive form of the other.

Our original contribution to this reduction here is the extension of Impagliazzo’s reduction

[Imp09] from sets in a probability space with base distribution fixed as uniform to distributions

in arbitrary finite probability spaces2.

Next we demonstrate:

1By uniform constructions we mean that the constructions carry through in the setting where all functions
are replaced by uniform algorithms.

2The extension from sets to distributions follows from an observation by Valentine Kabanets.
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DMT pseudodensity
pseudorandom −−−−→ Lcat

The above reduction is obtained without loss in parameters and in most general setting.

Coupled with Trevisan et al’s proof of HCLweak from Lcat and creative use of Zhang’s

DMTAlgorithmic [Zha11] allows us to show:

Lcat
Trevisan−−−−−−→
et al

HCLweak
DMT−−−−−−−−→

Algorithmic
HCLstrong

Again, our setting is that of arbitrary probability spaces which is more general than [Zha11].

However, because we need Trevisan et al’s reduction which has weaker parameters we end up

with an overall loss as we chain our reductions together to start and end at HCLstrong and this

is suboptimal. Since there really is no need for such loss in our techniques, so if it were possible

to bypass Trevisan et al’s reduction there would be no loss. To this end we give direct and

uniform constructions as needed by Lcat, HCL, DMT from a more general form of DMT

(DMTMin-Max) based on Zhang’s DMTAlgorithmic.

HCLstrong ←−−−− DMTMin-Max −−−−→ DMT pseudodensity
pseudorandomy

Lcat

The DMTMin-Max to HCLstrong reduction has much in common with Barak et al. [BHK09],

and DMTMin-Max to DMT pseudodensity
pseudorandom is inspired by Zhang, however, our setting is more

general as we work in arbitrary finite probability spaces, don’t demand functions to be Boolean

and give complexity bound on our constructions in the sense of Trevisan et al. The last reduction

to Lcat is original.

With this scheme, there is no loss in terms of parameters in any of the reductions. More

so, by Watson [Wat11] and Lu et al. [LTW07] in the first and the second cases the parameters

obtained are known to be tight3.

Our work also implies the converse of Trevisan et al’s reduction [TTV09] from Lcat to

DMTpseudorandom. In addition, we separately give the converse of their proof of HCLweak

from Lcat although with a polynomial loss in parameters. Exploring the methods of Trevisan

et al. further we show that their reduction from Lcat to HCLweak does not always extend to

HCLstrong and we address this by generalizing Lcat to Low Complexity Rational Approxi-

mation Theorem which we show is equivalent to HCLstrong.

Putting all this together, the work here establishes that almost equivalence (“almost” be-

cause of loss in Lcat → HCLweak) of Lcat, HCL, DMT and shows that tight forms of

DMT, HCL and Lcat are simply manifestations of a single algorithmic technique: DMTMin-Max.

So answers to questions regarding one are revealing about the others.

3We conjecture that our parameters are tight for Lcat as well
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The exposition here borrows from joint work with Valentine Kabanets and Russell Impagli-

azzo.



Chapter 2

Main Results

2.1 Preliminaries and Observations

In this section we give the definitions and make note of some easy to see (and some not)

observations.

2.1.1 Distributions and measures

2.1.1.1 Distributions

A probability distribution over a finite domain U is a function σ : U → [0, 1] satisfying∑
x∈U σ(x) = 1. The support of the distribution σ is support(σ) = {x ∈ U | σ(x) 6= 0}.

We define the pair U = (U, σ) to be a finite probability space1. Without loss of generality,

we assume that for probability space (U, σ), support(σ) = U as otherwise we simply restrict

U to support(σ). The uniform distribution on U is denoted by u with u(x) = 1/|U | where

|U | the size U . Also, we use the notation x ∈ σ to indicate that x ∈ U is randomly sampled

according to the probability distribution σ. Throughout U will represent a finite domain and

σ a distribution over U .

Given two probability distributions ρ and σ over U , the statistical distance between ρ and

σ, dist(ρ, σ), is defined as the half of the `1-norm of the vector ρ− σ, i.e.,

dist(ρ, σ) = (1/2) ·
∑
x∈U
|ρ(x)− σ(x)|.

For a set T and a distribution ρ, we define T [ρ] = Eρ[T ] =
∑

x∈T ρ(x). This yields an

1Every singleton is measurable here so without loss of generality the standard probability triple is reduced to
this pair

6
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equivalent characterization of dist(ρ, σ):

dist(ρ, σ) = max
T⊆U
|T [ρ]− T [σ]|,

This allows us to formalize what it means for two distributions to be close: two distributions

ρ and σ are considered to be ε-close (with the parameter ε ∈ [0, 1]) if dist(ρ, σ) ≤ ε.

2.1.1.2 Measures

A measure over the finite domain U is any function µ : U → [0, 1]. Note that Boolean measure

is simply the indicator function of the support of the measure. Informally, a measure µ can

be thought of as a generalization of a set in the sense that for each x ∈ U , µ(x) measures the

likelihood of x being in the set. More precisely, a measure µ specifies a probability distribution

over the subsets of U , where a random subset R is picked by placing each x ∈ U into R with

probability µ(x) independently. The notation R ∈ µ is used to indicate that a set R ⊆ U is

randomly chosen according to the measure µ.

Since a set A ⊆ U , A can be thought of as a Boolean measure 1A : U → {0, 1}(where

1A(x) = 1 iff x ∈ A, 0 otherwise), the complement of the set A, Ac is represented by measure

1Ac = 1 − 1A (without loss of generality, we’ll use A for 1A when it’s clear from context that

the object in question is a function). Extending the idea of thinking of measures as sets, we

can define the complement of a measure µ over U by µ̄ = 1− µ.

2.1.1.3 Density

For a subset A of the domain U in the probability space (σ, U) the probability that x ∈ A,

Pσ[x ∈ A], measures the “size” of the set A relative to U .

We formalize this idea as the density of a set A in probability space U = (U, σ), dσ(A).

Density, the probability mass assigned to A by the distribution σ, has multiple equivalent

mathematical forms:

dσ(A) = Pσ[x ∈ A] = Eσ[A] =
∑
x∈U

A(x)σ(x).

In case the distribution σ is the uniform distribution over the entire domain, Pu[x ∈ A] =

|A|/|U | = du(A) which is where the idea of using density as relative size arises.

More generally, for a measure µ : U → [0, 1], the density of the measure µ in the probability

space U = (U, σ), denoted by dσ(µ), is defined as

dσ(µ) = Eσ[µ] =
∑
x∈U

µ(x)σ(x).
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Equivalently, the density of a measure is the average density of the set randomly chosen

according to the measure.

Claim 2.1.1. dσ(µ) = EA∈µ[dσ(A)].

Proof. EA∈µ[dσ(A)] = EA∈µEx∈σ[A(x)] = Ex∈σEA∈µ[A(x)] = Ex∈σ[µ(x)] = dσ(µ)

For any non-empty subset A of U , σ|A denotes the distribution σ restricted to A, which is

defined as the conditional probability of sampling an element x according to σ conditioned on

x ∈ A, i.e., for each x ∈ U :

σ
∣∣
A

(x) = σ(x)A(x)/dσ(A)

The significance of density lies in that it allows for decomposition of the distribution σ in

the following sense:

σ = dσ(A)
A · σ
dσ(A)

+ dσ(Ā)
Ā · σ
dσ(Ā)

= dσ(A)σ
∣∣
A

+ dσ(Ā)σ
∣∣
Ā

(2.1)

Note that every measure µ over a probability space (U, σ) induces a probability distribution,

denoted by µσ, where µσ(x) = µ(x)σ(x)/dσ(µ) for each x ∈ U . In particular for any constant

measure c1 the induced distribution, (c1)σ = σ. The following lemma shows that the above

decomposition is simply an artifact of identity 1 = 1A + 1Ac .

Lemma 2.1.2. Suppose µ, γ, η are measures in (U, σ) with µ = γ + η and Eσ[γ]/Eσ[µ] =

δ,Eσ[η]/Eσ[µ] = δ̄ then µσ, γσ, ησ satisfy µσ(x) = δγσ(x) + δ̄ησ(x).

Proof.

µσ(x) =
(γ(x) + η(x))σ(x)

Eσ[µ]
=
γ(x)σ(x)

Eσ[µ]

Eσ[γ]

Eσ[γ]
+
η(x)σ(x)

Eσ[µ]

Eσ[η]

Eσ[η]
= δγσ(x) + δ̄ησ(x)

Based on the decomposition as given by equation 2.1, the distributions γσ, ησ can be thought

of as δ-dense, δ̄-dense respectively in µσ. The conditions Eσ[γ]/Eσ[µ] = δ,Eσ[η]/Eσ[µ] = δ̄ also

tie in with intuition of density as relative size. We can abstract away from distributions related

to this additive decomposition of a measure and consider density for distributions in general by

noting that for any two probability distributions ρ and σ over U , it’s always possible to express

σ as a convex combination of ρ and τ , for some distribution τ :

σ(x) = δ · ρ(x) + (1− δ) · τ(x) ≥ δ · ρ(x), (2.2)
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with parameter δ ∈ [0, 1] which means that to sample from σ, we need to sample from ρ with

probability at least δ. We say that the distribution ρ is δ-dense in σ. The maximum value δ,

0 ≤ δ ≤ 1, such that σ can be expressed by Eq. (2.2) is defined as the density of ρ in σ, and is

denoted by dσ(ρ). That is,

dσ(ρ) = max{δ ∈ [0, 1] | ∀ x ∈ U σ(x) ≥ δ · ρ(x)}.

Next we focus on the relation between the density of a measure µ in probability space (U, σ)

and the density of the induced distribution µσ in the distribution σ. To start we consider sets,

i.e., Boolean measures.

Claim 2.1.3. For every set ∅ 6= A ⊆ U , dσ(A) = dσ(σ|A).

Proof. We can write σ as the convex combination σ = dσ(A) · σ|A + dσ(Ā) · σ|Ā, which implies

by definition that dσ(σ|A) ≥ dσ(A). Next consider any x0 ∈ A. Again by definition we get that

σ(x0) ≥ dσ(σ|A) · σ(x0)A(x0)/dσ(A), so summing over A implies that dσ(σ|A) ≤ dσ(A).

Observe that, for a set A ⊆ U , we have Aσ = σ|A. We also have the following easy

observation:

Claim 2.1.4. For arbitrary probability space (U, σ) and any measure µ over U , we have

dσ(µσ) ≥ dσ(µ).

Proof. For every x ∈ U such that µ(x) 6= 0, we have σ(x) = µσ(x)·(dσ(µ)/µ(x)) ≥ dσ(µ)·µσ(x),

as µ(x) ≤ 1. For any x ∈ U with µ(x) = 0 (and hence µσ(x) = 0), we also get that σ(x) ≥
dσ(µ) · µσ(x).

Remark 2.1.5. Unlike the case of sets (or Boolean measures µ : U → {0, 1}), for [0, 1]-valued

measures µ, the density of the induced distribution µσ can be arbitrarily bigger than the density

of the measure µ in (U, σ). For example, consider µ(x) = ε for every x ∈ U , where 0 < ε < 1 is

any constant. The density of the measure µ is ε. On the other hand, the induced distribution

µσ is identical to the distribution σ, and so has density 1 inside σ. Even though the density is

not preserved by going from a measure to the induced distribution, we know by Claim 2.1.4 that

it is not reduced.

The following claim relates a measure µ and its scaled version µ′ = c · µ, for a constant

c > 0.

Claim 2.1.6. For any measure µ over (U, σ) and any constant c > 0, the measure µ′ = c · µ
satisfies:

1. dσ(µ′) = c · dσ(µ)
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Proof. dσ(µ′) = Eσ[c · µ] = c · Eσ[µ] = c · dσ(µ).

2. µσ = µ′σ

Proof. Since for every x ∈ U, µ′(x) = cµ(x), therefore, µ′σ(x) = cµ(x)σ(x)/dσ(µ′) =

µ(x)σ(x)/dσ(µ) = µσ(x)

2.1.1.4 Indistinguishability

Suppose F be a set of bounded functions f : U → [0, 1]. Usually, F will contain the constant

functions 1 and 0 and be closed under complement; such a set F is called a class of functions.

For any [0, 1]-bounded function f , we define its complement f̄ = 1−f . By default, when saying

“class F”, we mean a class of [0, 1]-valued functions f : U → [0, 1]. When we need to restrict to

the class of Boolean functions f : U → {0, 1}, we will indicate this by explicitly saying “Boolean

class F”.

The set F can be thought of as a collection of “tests” that can be used to distinguish dis-

tributions and measures from one another by noting that a bounded function can be “applied”

to a distribution (or measure) as follows: for any function f : U → [0, 1] and a probability

distribution ρ over the universe U , we denote by f [ρ] the expectation of f over the probability

distribution ρ, i.e.,

f [ρ] = Eρ[f ] =
∑
x∈U

f(x)ρ(x).

For f : U → [0, 1] and any measure µ over a probability space (U, σ) we define the expectation

of f over the measure µ, denoted by fσ[µ], as the expectation of f over the distribution µσ, i.e.,

fσ[µ] = Eµσ [f ] =
∑
x∈U

f(x)µ(x)σ(x)/dσ(µ) =
1

dσ(µ)
· Eσ[f · µ].

Note that f [ρ] = dρ(f) is the density of f (when viewed as a measure) in the probability space

(U, ρ); similarly, fσ[µ] is the density of f in the probability space (U, µσ).

Recall the definition of ε-closeness: distributions ρ1 and ρ2 over U are ε-close if, for every

subset T ⊆ U , we have |T [ρ1] − T [ρ2]| ≤ ε. By restricting our tests to the set F , we get the

notion of closeness, or indistinguishability, relative to F . For a parameter ε ∈ [0, 1], we say that

two distributions ρ1 and ρ2 over the universe U are (ε,F)-indistinguishable if, for every f ∈ F ,

we have

|f [ρ1]− f [ρ2]| ≤ ε.

Definition 2.1.7. A distribution ρ over U is called (ε,F)-pseudorandom over the probability

space (U, σ) if it is (ε,F)-indistinguishable from σ.
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Note that for σ = u, we get the standard notion of pseudorandom distribution as indistin-

guishable from the uniform distribution.

For two functions g : U → [0, 1] and h : U → [0, 1], if, for all f ∈ F ,

|Eσ[f(g − h)]| ≤ ε.

then, we say that h is an (ε,F)-approximation of g over the probability space (U, σ).

2.1.2 Models and pseudodensity

Using the definition of density for distributions for a restricted collection F of tests, we get the

following definition of pseudodensity for distributions.

Definition 2.1.8. For distributions σ and ρ over U , for a set F of [0, 1]-valued functions over

U , and parameters ε, δ ∈ [0, 1], we say2 that the distribution ρ has (ε,F)-pseudodensity δ inside

σ if, for all f ∈ F , f [σ] ≥ δ · f [ρ]− ε.

A test f ∈ F such that f [σ] < δ · f [ρ]− ε witnesses the fact that ρ has density less than δ;

such a test is called (ε, δ)-distinctive. The negative ε term is needed to ensure that poly(1/ε)

random samples are enough to verify that a given f ∈ F is indeed (ε, δ)-distinctive. Thus, ρ

has pseudo-density δ inside σ if there are no (ε, δ)-distinctive tests in F .

For a set A ⊆ U , a measure µ over the probability space (U, σ), and a parameter ε ∈ [0, 1],

we say that µ is an (ε,F)-model for A if the induced distributions Aσ and µσ are (ε,F)-

indistinguishable. Similarly, for a distribution ρ over U , a measure µ over U is an (ε,F)-model

for ρ in the probability space (U, σ) if ρ and µσ are (ε,F)-indistinguishable.

Remark 2.1.9. Note that if µ is a model for some distribution ρ (or a set A), then, by

Claim 2.1.6, so is µ′ = c · µ, for any constant c > 0. By choosing c appropriately, we can thus

get from µ another model µ′ of smaller density.

We will be interested in the case where A is a set of small density, yet is indistinguishable

from a measure µ of high density (so A has a “large” model µ). Such a large model for A

turns out to exist if the density of A “looks” big to the tests in F . We define the notion of

pseudo-density for sets next.

By Claim 2.1.3, a set A ⊆ U in a probability space (U, σ) has (true) density dσ(A) equal

to the density of the distribution σ|A inside σ. Thus, the density of A is at least δ (for some

δ ∈ [0, 1]) iff, for all x ∈ U , σ(x) ≥ δ · σ|A(x). The latter is true iff, for all tests T : U → [0, 1],

we have T [σ] ≥ δ · T [σ|A]. By restricting the tests to the set F , we derive the notion of

pseudodensity for sets.

2Equivalently ρ is δ-(ε,F)-pseudodense
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Definition 2.1.10. For A ⊆ U over the probability space (U, σ), a set F of [0, 1]-valued

functions over U , and parameters ε, δ ∈ [0, 1], we say that A has (ε,F)-pseudodensity δ inside

(U, σ) if, for every f ∈ F , we have f [σ] ≥ δ · f [σ|A]− ε.

Remark 2.1.11. It follows from the definition of density that if a distribution ρ has actual

density δ then for any ε > 0 and any class of bounded functions F , ρ will be δ-(ε,F)-pseudodense

2.1.3 Hardness

Next we introduce what it means for functions and measures to be hard and hardcore respec-

tively. The definitions here are generalizations of those that are standardly used as we allow

our class of functions to be [0, 1]-bounded and not just {0, 1}-Boolean.

Definition 2.1.12. For a Boolean function g : U → {0, 1} over a probability space (U, σ), a

collection of [0, 1]-bounded functions F over U and a parameter δ ∈ [0, 1], we say that g is

(δ,F)-hard in (U, σ) if, for all f ∈ F ,

Eσ[|f − g|] ≥ δ.

Definition 2.1.13. For a Boolean function g : U → {0, 1} over a probability space (U, σ), a

collection of [0, 1]-bounded functions F over U , a measure µ over U , and a parameter ε ∈ [0, 1],

we say that the measure µ is (ε,F)-hardcore for g in (U, σ) if, for all f ∈ F ,

Eµσ [|g − f |] ≤ 1/2 + ε.

Note that for {0, 1}-Boolean functions φ, g and any distribution ρ, Pρ[g 6= φ] = Eρ[|g − φ|]
so the above definitions reduce to the standard ones for Boolean classes.

We’ll be working in the setup that F is a class of functions. This is reasonable to demand,

since all we need is that F contain the constant functions and be closed under complementation.

In case F is a class the above definitions become symmetric about half which is nice.

Lemma 2.1.14. Given δ, ε > 0, a class F and g : U → {0, 1}, (δ,F)-hard on (σ, U), the

following hold:

1. Eσ[|f − g|] ≤ 1− δ.

Proof. Since f̄ ∈ F , so Eσ[|f̄ − g|] = 1−Eσ[|f − g|] ≥ δ, therefore, 1− δ ≥ Eσ[|f − g|].

2. A measure γ is (ε,F)-hardcore for g w.r.t. σ iff
∣∣Eγσ [|g − f |]− 1

2

∣∣+ ε for every f ∈ F .
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Proof. The only if direction is trivial since
∣∣Eγσ [|g−f |]− 1

2

∣∣ ≤ ε implies Eγσ [|g−f |] ≤ 1
2 +ε.

To see that γ being (ε,F)-hardcore implies
∣∣Eγσ [|g− f |]− 1

2

∣∣ ≤ ε, note that by closure of

F under complementation Eγσ [|g − (1 − f)|] ≤ 1
2 + ε follows giving Eγσ [|g − f |] ≥ 1

2 − ε,
so
∣∣Eγσ [|g − f |]− 1

2

∣∣ ≤ ε as needed.

3. If 2ε+ 2δ ≥ 1 then the measure 1 is (ε,F)-hardcore.

Proof. Now 2ε+2δ ≥ 1 implies δ ≥ 1
2−ε and as for every f ∈ F , Eσ[|g−f |] ≤ 1−δ because

F is closed under complementation, therefore, E1σ [|g − f |] = Eσ[|g − f |] ≤ 1 − 1
2 + ε =

1
2 + ε.

2.1.4 Relative Complexity

Here we define the complexity of functions relative to the given class F of [0, 1]-bounded func-

tions, following [TTV09].

Definition 2.1.15. For a function h : U → [0, 1], its complexity relative to F , denoted by

compF [h], is the number of operations needed to express h in terms of functions f ∈ F , where

the allowed operations are: (i) scalar multiplication, (ii) scalar addition, (iii) addition, (iv)

subtraction, (v) multiplication, (vi) truncation (trunc), and (vii) threshold (th).

The latter two operations are defined as follows: Given f : U → R, θ ∈ R, and a < b ∈ R,

fθ(x) = thθ[f ](x) =

1 if f(x) ≥ θ

0 otherwise
and truncba[f ](x) =


b if f(x) > b

f(x) if f(x) ∈ [a, b]

a if f(x) < a.

(2.3)

Note that for a function g : U → [0, a] with a > 0, we have trunc1
0[g](x) = g(x)(1 −

th1[g](x)) + th1[g](x), and so the operation trunc is not strictly necessary, but is included for

convenience.

This allows us to formalize the idea of functions of small complexity w.r.t. to a class:

Definition 2.1.16. Given t ∈ N, Ft = {f : compF [f ] ≤ t}.

In the set up of multiplicative updates that we utilize, the operation βf(x) (for any constant β

and [0, 1]-bounded f) is very useful. Although functions which involve such exponentiation don’t

have small complexity as defined in definition 2.1.15, they may still be efficiently describable.

So we extend the permissible set of operations to include exponentiation of constants, and
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consider complexity of a function h relative to a class F (comp∗F [h]) as in definition 2.1.15 but

with respect to this extended set of operations. Analogous to definition 2.1.16, this yields:

Definition 2.1.17. Given t ∈ N, F∗t = {f : comp∗F [f ] ≤ t}.

Also, of relevance are the following collections of functions:

Definition 2.1.18. Given g : U → {0, 1} and a class F on U , g ⊕F = {|g − f | : f ∈ F}.

So Ft is the set of functions with complexity at most t w.r.t. F , while g ⊕F in the case F
is boolean consists of indicator functions of event g(x) 6= f(x).

Definition 2.1.19. For any collection of [0, 1]-valued functions F , Thλ[F ] = {thθ[ 1
λ′
∑λ′

i=1 fi] :

fi ∈ F , θ ∈ [0, 1], λ′ ≤ λ}.

That is, Thλ[F ] is the collection of Linear Threshold Functions of particularly simple form

built from at most λ functions from F .

Definition 2.1.20. Given ε > 0, F ε = {tht[f ], tht[f ] : f ∈ F , t ∈ {0, 1, nε : n ∈ N} ∩ [0, 1]}.

Definition 2.1.21. Given a class F , CH[F ] is the convex hull of F , i.e. CH[F ] = {
∑

i cifi :

fi ∈ F , ci ∈ (0, 1],
∑

c ci = 1}.

Remark 2.1.22. Note that g⊕F is closed under complementation as for Boolean g and class

F , |g − f | = 1− |g− f | = |g− f̄ | ∈ g⊕F , however, g⊕F is not a class as 1,0 6∈ g⊕F unless

g ∈ F .

Remark 2.1.23. If F is a boolean class then F = F ε for any ε > 0 and for any λ ∈ N, Thλ[F ]

is also a class.

Remark 2.1.24. If fi are all {0, 1}−Boolean, then thθ[
1
λ′
∑λ′

i=1 fi] = 1 iff dθλ′e out of λ′ fi

are 1.

2.1.5 Bregman Projections

Both entropy and the Kullback-Leibler (KL) divergence are versatile tools, though usually only

considered for finite domains with base distribution as uniform; however, they extend in the

obvious way to general finite probability spaces U = (U, σ) (there is some work that needs to

be done to verify that the new definition of KL-divergence is indeed a divergence, but we leave

that for Chapter 5).
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2.1.5.1 Generalized Entropy/KL-divergence

Given a finite domain U (with N = |U |), the elements of U can be ordered in some canonical way

and assigned indices from [N ]. The distribution σ over U can be viewed as an N -dimensional

vector over R+ (the positive reals3): σ = (σ1, . . . , σN ), with σi being the probability mass

assigned by σ to the ith element of U .

For an arbitrary vector x = (x1, . . . , xN ) ∈ (R+)N , we define the generalized entropy function

for U = (U, σ) as ent(x) = −
∑N

i=1 σixi log xi. As for the standard entropy function Ent(x) =

−
∑N

i=1 xi log xi, one can show (following [CZ97]4) that −ent(x) is a Bregman function, with

the associated Bregman divergence D(x||y) between x and y from (R+)N defined as follows:

D(x||y) =
N∑
i=1

σixi log (xi/yi)−
N∑
i=1

σixi +

N∑
i=1

σiyi = Eσ[x · log(x/y)]− Eσ[x] + Eσ[y];

the latter generalizes the standard KL divergence KL(x||y) =
∑N

i=1 xi log (xi/yi)−
∑N

i=1 xi +∑N
i=1 yi.

Definition 2.1.25. Let ∅ 6= Γ ⊆ [0, 1]N be any closed convex set of measures, and let φ ∈ [0, 1]N

be any measure. We define the Bregman projection of φ onto Γ, denoted by PΓφ, as

PΓφ = arg min
γ∈Γ

D(γ||φ).

By [CZ97], since D(γ||φ) is a Bregman Divergence, therefore D(γ||φ) ≥ 0 (with D(γ||φ) = 0

iff γ = φ) which means φ ∈ Γ implies that PΓφ = φ.

Definition 2.1.26. For δ ∈ [0, 1], Γδ = {φ ∈ [0, 1]N | dσ(φ) ≥ δ}.

Note that Γδ is a convex and closed set of measures. We denote by Pδφ the Bregman

projection of a measure φ onto Γδ.

Now any Bregman divergence, hence D here, satisfies Bregman’s theorem:

Theorem 2.1.27 (Bregman[Bre67]). Let Γ ⊆ [0, 1]N be any non-empty closed convex set of

measures. Let γ, φ be measures such that γ ∈ Γ. Then D(γ||PΓφ) +D(PΓφ||φ) ≤ D(γ||φ), and,

in particular, D(γ||PΓφ) ≤ D(γ||φ).

Bregman projections can be slightly relaxed to Approximate Bregman Projections which are

efficiently computable when the projection is on to Γδ:

3Recall we assumed that on U σ never vanishes
4ent(x) is simply Ent(x) with each coordinate scaled by a positive constant, and such scaling does not affect

the continuity, differentiability, and limit properties, as required for Bregman functions.
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Definition 2.1.28. For a non-empty closed convex set Γ of measures and a parameter α ≥ 0, a

measure φ∗ ∈ Γ is called an α-approximate Bregman projection of a measure φ onto Γ, denoted

by α-PΓφ, if for all γ ∈ Γ, D(γ||φ∗) ≤ D(γ||PΓφ) + α.

Generalizing the results in [BHK09], we get the following results about projections Pδ. The

proofs (which we give in Chapter 5) are extensions of [BHK09].

Theorem 2.1.29 (generalizing [BHK09]). Let φ be any measure over the probability space

U = (U, σ) such that dσ(support[φ]) ≥ δ, for some δ ∈ [0, 1]. Let c ≥ 1 be the smallest

constant such that the measure µ = trunc1
0[c · φ] has dσ(µ) = δ. Then Pδφ = µ.

As pointed out above Approximate Bregman Projections onto Γδ are efficiently computable

and this is formalized as follows:

Lemma 2.1.30 (generalizing [BHK09]5). For δ ∈ [0, 1], let φ be a measure over the probability

space U = (U, σ) such that Pδφ = trunc1
0[c · φ] for c ∈ [1, 1 + ζ], where ζ > 0. Suppose we

have oracle access to φ, and that we can sample an element from U in time t. Then, for any

0 < p < 1, we can compute an implicitly represented approximate projection εδ-Pδφ in time

O
(
tδ−1ε−2(log log ζε−1 + log p−1)

)
, with probability 1−p. Moreover, the computed approximate

projection has the form trunc1
0[c̃ · φ], for some c̃ ∈ [1, 1 + ζ].

2.1.5.2 Game playing by multiplicative updates

Next we get the following generalization of the Total Loss Lemma due to Barak et al [BHK09]

for the general probability space U = (U, σ). The lemma captures the setting of a two-player

game where one of the players whose strategies come from a closed and convex set of measures,

Γ, starts off by playing an arbitrary measure µ1. The other player plays penalty functions

countering on the first players choice. In round t the first player updates his measure from

previous round to µt+1 after taking into account the “penalty” function mt played by the second

player. The update is through a simple multiplicative procedure, followed by an approximate

Bregman projection onto the desired set Γ of measures (since the player’s strategies must come

from Γ and a simple multiplicative update cannot ensure this). Intuitively, the lemma says

that the expected performance of the measures obtained in this game is not much worse than

the performance achieved by an single measure µ where µ is completely arbitrary and could

depend on all the penalty functions mt played in the game.

The following lemma is fundamental to our uniform constructions and is an extension of

the work of Barak et al [BHK09] to our setting of arbitrary finite probability spaces. The proof

follows that of Lemma 4.1 from [BHK09] closely6.

5The approximation parameter in [BHK09] is εδN rather than εδ in our case; this difference is due to our
scaling of N -dimensional vectors by the distribution σ.

6[BHK09] had a typo: the factor 1/ε was missing in the last term on the right-hand side of Eq. (2.4).
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Lemma 2.1.31 (Generalized Total Loss Lemma, generalizing [BHK09, Lemma 4.1]). For a

probability space U = (U, σ) with |U | = N , let Γ be a non-empty closed convex set of measures

over U . Let ε ∈ (0, 1
2) and let T ∈ N be arbitrary. Let µ1 ∈ Γ be an arbitrary measure over U ,

and, for 1 ≤ t < T , let mt : U → [0, 1] be an arbitrary function (“penalty”). Define, for each

1 ≤ t < T , the following measures:

φt+1(x) = (1− ε)mt(x) · µt(x), and µt+1 = α-PΓφ
t+1.

Then, for every measure µ ∈ Γ, we have

T∑
t=1

Eσ(µt ·mt)− α
ε · T ≤ (1 + ε) ·

T∑
t=1

Eσ(µ ·mt) + 1
ε ·D(µ||µ1). (2.4)

2.2 Main Results

In this section we introduce our results with technical details and give a comparison of our

results with other recent work.

2.2.1 Low Complexity Approximations

Theorem 2.2.1 (Low Complexity Approximation Theorem (Lcat) [TTV09]). Given any ε >

0, there exists a λ = O(ε−2) such that the following holds: suppose U = (U, σ) is any finite

probability space, and F is any class of functions over U , then for every g : U → [0, 1], there

exists a function h ∈ Fλ such that h is an (ε,F)-approximation of g w.r.t. σ.

Remark 2.2.2. Since 1 ∈ F , therefore |Eσ[h]− Eσ[g]| ≤ ε.

Theorem 2.2.1 was first proven by Trevisan et al. [TTV09] with λ = O(ε−2 log(ε−1)) in the

general case and λ = O(ε−2) in the case class F is Boolean. Our construction is uniform7 in

general with λ = O(ε−2). Note that this result can be thought of as special case of following

class of theorems:

Generic Low Complexity Approximation Theorem: For every ε > 0, there

exists a λ = poly(1/ε) such that the following holds for any probability space U =

(U, σ) and any class F over U : there exists a class F ′ parametrized by F , λ such

that every function g : U → [0, 1] has an (ε,F)-approximation h ∈ F ′ w.r.t. σ.

Here Theorem 2.2.1 gives λ and F ′ explicitly.

7As remarked in Chapter 1, by uniform proof we mean in the setting of uniform algorithms.
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2.2.2 Hardcore Measures

Theorem 2.2.3 (Strong Hardcore Lemma: HCLstrong, [Hol05, BHK09]). Given any ε, δ ∈
[0, 1], there exists a λ = O(ε−2 log(δ−1)) such that the following holds: suppose U = (U, σ) is

any finite probability space and F is any class of functions over U . If a function g : U → {0, 1}
is (δ,Thλ[F ])-hard in U , then there is a 2δ-dense measure µ ∈ [g ⊕ F ]∗O(λ) which is an (ε,F)-

hardcore for g in U .

Remark 2.2.4. In case F is Boolean, or g is (δ,Thλ[FO(ε)])-hard, then the 2δ-dense measure

µ lies in [g ⊕F ]O(λ).

Again our construction is more general than previous ones as it is uniform in an arbitrary

(U, σ) and does not demand that F be Boolean while achieving parameters which are known

to be tight [LTW07].

A weak version of Theorem 2.2.3 (Weak Hardcore Lemma: HCLweak) with dσ(µ) = δ

was first proved by Impagliazzo [Imp95], with the tight version (Strong Hardcore Lemma with

dσ(µ) = 2δ) implicit via a bootstrapping argument (albeit with significantly weaker parame-

ters). Klivans and Servidio [KS99] gave a proof of the strong version, again with suboptimal

parameters, via two-stage boosting and, along with Kale [Kal07], made explicit the connec-

tions to computational learning. The first uniform proof (of the strong version) was given by

Holenstein [Hol05], with λ = O(ε−2δ−2). The best known parameter λ = O(ε−2 log(δ−1)) was

achieved by Barak et al. [BHK09], using the computational learning framework, and this λ was

shown to be tight by Lu et al. [LTW07] using Turán’s Theorem and bounds on tail probabili-

ties of binomial distributions. With the exception of Trevsian et al., all previous work is in the

setting U = (U, u) and Boolean F .

Trevisan et al. [TTV09] also derive a constructive form of Weak Hardcore Lemma with the

additional property that the hardcore measure µ = |g − h|, where h ∈ Fλ is the (εδ,F) −
approximation to g, however, they need g to be (δ,Th1[Fλ])− hard with λ = O(ε−2δ−2).

Remark 2.2.5. The form of hardcore measure derived by Trevisan et al. is particularly nice

as it can be shown that if the δ-dense (ε,F)-hardcore measure is of form |g − h| with h ∈ Fλ,

then h must be (ε,F)-approximation (as against the ideal (εδ,F)-approximation) to g, giving

us a weak converse to Trevisan et al.’s reduction from Lcat to HCLweak.

As before these various formulations are simply explicit forms of the Generic Constructive

Strong Hardcore Lemma:

Generic Constructive Strong Hardcore Lemma: For every ε, δ ∈ (0, 1), there

is a λ = poly(1/ε, 1/δ) so that the following holds for any probability space U =

(U, σ), any class F , and any Boolean function g over U : there exists classes F ′,F ′′
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parametrized by F , λ such that if g is (δ,F ′)-hard w.r.t. σ, then there is a 2δ-dense

measure µ ∈ F ′′ that is (ε,F)-hardcore for g w.r.t. σ.

2.2.3 Dense Models

Theorem 2.2.6 (Dense Model Theorem, Pseudorandom formulation: DMTPseudorandom [TTV09,

RTTV08c, Zha11, GT08, TZ08]). Given ε, δ ∈ (0, 1), there is a λ = O(ε−2 log δ−1) such that for

any finite probability space U = (U, σ) and any class F over U , the following two implications

hold for a distribution ρ inside U :

1. If ρ is δ-dense inside a distribution τ , where τ is (εδ,Thλ[F ])-pseudorandom in U , then

there is a δ-dense measure µ ∈ F∗O(λ) which is a (O(ε),F)-model for ρ in U .

2. If ρ is δ-dense inside a distribution τ , where τ is (εδ,Thλ[FO(ε)])-pseudorandom in U ,

then there is a δ-dense measure µ ∈ FO(λ) which is a (O(ε),F)-model for ρ in U .

Note that the σ is free, whereas the versions of DmtPseudorandom due to Zhang and Tre-

visan et al. are in the fixed probability space (U, u). DMTPseudorandom was originally proved

by Green, Tao, and Ziegler [GT08, TZ08] with regards to arithmetic and polynomial pro-

gressions in primes, however, the result was formulated in functional analytic language rather

than complexity theoretic; Trevisan et al. [TTV09] were the first to derive the result in the

complexity theoretic setting, where they show that (εδ,F)-approximation to ρ w.r.t. τ is the

required model with the parameter λ = O(ε−2δ−2). This λ is suboptimal, and the need for τ to

be (εδ,Fλ)-pseudorandom is more than required (we demand (εδ,Thλ[F ])-pseudorandomness).

Zhang [Zha11], using the online learning setup, achieves the the parameter λ = O(ε−2 log(δ−1))

and shows that it is tight in a certain sense with methods reminiscent of Lu et al. and their

analysis of Hardcore Lemma constructions. A similar tightness analysis of query as well as

advice complexity was given by Watson [Wat11].

We give a generalization of the Pseudorandom formulation of the Dense Model Theorem

showing that a weaker Pseudodensity condition (originally due to Russell Impagliazzo [Imp09])

suffices to give existence and constructions of dense models:

Theorem 2.2.7 (Dense Model Theorem, Pseudodensity formulation: DMTPseudodensity [Imp09,

RTTV08a]). Given ε, δ ∈ (0, 1), there is a λ = O(ε−2 log δ−1) such that for any finite probability

space U = (U, σ) and any class F over U , the following two implications hold for a distribution

ρ inside U :

1. If ρ has (εδ,Thλ[F ])-pseudodensity δ w.r.t. σ, then there is a δ-dense (O(ε),F)-model

µ ∈ F∗O(λ) for ρ in U .
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2. If ρ has (εδ,Thλ[FO(ε)])-pseudodensity δ w.r.t. σ, then there is a δ-dense (O(ε),F)-model

µ ∈ FO(λ) for ρ in U .

Remark 2.2.8. Note that in case F is Boolean the two implications in Theorems 2.2.6, 2.2.7

are identical. So not only do we show that dense models exists but give the conditions under

which they also have small complexity as considered by Trevisan et al.

It is easy to see that DmtPseudorandom follows from DmtPseudodensity since, as shown in

the following lemma, if a distribution ρ is δ-dense inside a (ε,F)-pseudorandom distribution τ ,

then ρ also has (ε,F)-pseudodensity at least δ.

Lemma 2.2.9. For U = (U, σ), suppose that distribution ρ has density δ inside a distribution

τ where τ is (ε,F)-pseudorandom in U . Then ρ has (ε,F)-pseudodensity at least δ inside σ.

Proof. By assumption, τ(x) ≥ δ · ρ(x) for all x ∈ U . Hence, for every f ∈ F , we have f [τ ] ≥
δ · f [ρ]. By the definition of pseudorandomness, we have for every f ∈ F that |f [τ ]− f [σ]| ≤ ε.
It follows that, for every f ∈ F , f [σ] ≥ f [τ ]− ε ≥ δ · f [ρ]− ε, as required.

A non-constructive form of 2.2.7 (with σ = u, λ = O(ε−2 log(ε−1δ−1))) was also given by

Reingold et al in [RTTV08a, RTTV08b] and this is the approach we willl also follow.

Impagliazzo [Imp09] gave the constructive proof of Theorem 2.2.7 in the setting U = (U, u),

with ρ restricted to the uniform distribution on sets, and the Boolean class F . Impagliazzo’s

reduction is from Holenstein’s Strong Hardcore Lemma and generalizes to arbitrary probability

spaces (U, σ) and extension to [0, 1]-bounded F is natural. However, the parameter λ, is the

suboptimal O(ε−2δ−2) in [Imp09] even if we assume the optimal λ = O(ε−2 log(2/δ)) in the

Strong Hardcore Lemma; furthermore, the measure µ in [Imp09] is an (O(εδ−1),F)-model with

density δ − O(ε). Still as Impagliazzo’s reduction is from the Strong Hardcore Lemma it does

give us one direction of the equivalence between Strong Hardcore Lemma and Dense Model

Theorems that we want, with the parameters still polynomial in δ and ε.

Not only is the Pseudodensity formulation of the Dense Model Theorem more general,

but we show that in this form Dense Model Theorem reduces to the Strong Hardcore Lemma

(HCLStrong) with parameters still poly(ε−1, δ−1). This allows us to demonstrate the equiv-

alence of Algorithmic Dense Model Theorems (DmtAlgorithmic) and the HCLStrong since we

can use known DmtAlgorithmic as a blackbox to yield HCLStrong (in fact we can use any

construction of dense model satisfying a certain condition to this end). We prove and use the

following formulation of the HCLStrong which we finesse to obtain DmtAlgorithmic.

Along the lines of Generic Low Complexity Approximation Theorem and Generic Con-

structive Strong Hardcore Lemma, Theorems 2.2.7 and 2.2.7 are regarded as special cases of

corresponding classes of theorems:
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Generic Constructive Dense Model Theorem (Pseudodensity Version):

For every ε, δ ∈ (0, 1), there is a λ = poly(1/ε, 1/δ) such that the following holds for

any probability space U = (U, σ), any class F , and any distribution ρ over U : there

exists classes F ′,F ′′ parametrized by F , λ such that if ρ has (ε,F ′)-pseudodensity

δ inside σ, then there is a δ-dense (O(ε/δ),F)-model µ ∈ F ′′ for ρ w.r.t σ.

Generic Constructive Dense Model Theorem (Pseudorandom Version):

For every ε, δ ∈ (0, 1), there is a λ = poly(1/ε, 1/δ) such that the following holds for

any probability space U = (U, σ), any class F , and any distributions ρ and τ over

U : there exists classes F ′,F ′′ parametrized by F , λ such that if ρ is δ-dense inside

τ , where τ is (ε,F ′)-pseudorandom in U , then there is a δ-dense (O(ε/δ),F)-model

µ ∈ F ′′ for ρ w.r.t. σ.

2.2.4 Learning Theory Connections

Consider Theorems 2.2.1, 2.2.3, 2.2.6, 2.2.7 in contrapositive form:

1. Theorem 2.2.1 (Lcat) says that for any bounded function there is exists an efficiently

constructible function which is indistinguishable from that function i.e. every function

can be “learnt” efficiently.

2. Theorem 2.2.3 (HCLstrong) says that if on every 2δ-dense measure we can guess a function

g correctly with probability better than 1
2 + ε then we can efficiently come up with a

function that guesses g correctly with probability better than 1− δ, i.e. we can boost the

probability of making a correct guess.

3. Theorem 2.2.6 (DmtPseudorandom) says that if for every δ-dense distribution µσ we can

come up with a function which distinguishes ρ and µσ (i.e. ρ has no δ − dense model),

then we can learn the base distribution σ well enough that we can tell it apart from any

distribution τ in which ρ is δ-dense (i.e. τ cannot be pseudorandom).

4. Theorem 2.2.7 (DmtPseudodensity) says that assuming we can tell ρ apart from every

candidate model then we can learn ρ well enough to get a (ε, δ)-distinctive test, that is,

we can come up with a function which has a disproportionately higher correlation with ρ

than with σ.

All four results are about using witnesses to failure of a certain condition to show that we

can produce a witness to failure of a stronger related condition; so in a sense we are learning

from one set of witnesses to produce a more powerful witness. In particular, boosting as given

by 2 has been explicitly addressed in learning theory: Feldman [Fel10] showed that any hardcore
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measure construction satisfying the Strong Hardcore Lemma is a distribution specific agnostic

boosting algorithm. Furthermore, the framework of online learning has been utilized to address

both dense model and hardcore constructions [BHK09, Zha11].

With this in mind we frame a more general version of Dense Model Theorem, DMTMin-Max,

which better captures this idea of a collection of witnesses being used to build another witness,

and so can be used to give a black box proof of all of the above theorems.

Theorem 2.2.10 (Min-Max Formulation of Dense Model Theorem DMTMin-Max). There is a

universal constant c > 0 such that for every ε, δ ∈ (0, 1), there is a λ = poly(1/ε, 1/δ) so that

exactly one of the following two conditions holds for any probability space U = (U, σ), any class

F , and any distribution ρ over U :

• Either ρ has a δ-dense (ε,F)-model µ ∈ F ′′ ⊆ F∗O(λ) w.r.t σ, i.e. there are no witnesses

that can distinguish ρ from δ-dense µ better than ε.

• Or there is a function F , the average of fewer than λ functions f from F such that F is

an ε/c-distinguishes ρ and any given δ-dense measure, i.e. for every δ-dense measure γ,

F [γσ]− F [ρ] > ε/c.

Remark 2.2.11. As has been the case so far if F is Boolean then F ′′ = FO(λ).

The Min-Max apropos DMTMin-Max alludes to fact that a result of this flavor can be

obtained by setting up a two-player, zero sum game between a player who plays candidate

models for ρ and another who plays over possible witnesses showing the failure of the other

player’s choice of model and appealing to von Neuman’s Min-Max Theorem.

2.3 The Scope

We first show direct reductions amongst Theorems 2.2.1, 2.2.3, 2.2.6, 2.2.7 pointing out various

artifacts of interest along the way. Next we generalize the online-learning framework of [BHK09,

Zha11] to first obtain DMTMin-Max and then use the essence of our reductions to obtain all

four of the results from DMTMin-Max.



Chapter 3

Low Complexity Approximations

3.1 Hardcore Measures and Low Complexity Approximations

To ease into technical details we start in the framework of Trevisan et al and demonstrate

a converse (with some relaxation) to their reduction from Low Complexity Approximation

Theorem to Weak Hardcore Lemma.

Being able to interchangeably work with [0, 1]-bounded functions and [−1, 1] bounded func-

tions lends transparency to computations. So for any φ : U → [0, 1] consider the corresponding

φ† defined as follows:

Definition 3.1.1. For φ : U → [0, 1], φ† = 2φ− 1.

Remark 3.1.2. Note that φ† : U → [−1, 1] with φ† = 1 iff φ = 1 and φ† = −1 iff φ = 0. Also

φ = (φ† + 1)/2 and (f̄)† = −(f †).

Definition 3.1.3. For a [0, 1]-bounded class F on U , F† denotes the collection {f † : f ∈ F}.

Remark 3.1.4. Since F is a class 1 ∈ F meaning 1 ∈ F† and for every f ∈ F , ±f † ∈ F†.

As f and f † are related by an affine transformation, the estimates relevant here turn out to

be the same up to a constant multiple. The following lemma (proof deferred till A.2.1) gives

some algebraic relations between f and f † and relates estimates for functions in the two ranges:

Lemma 3.1.5. Given ε ∈ (0, 1
2) for a [0, 1]-bounded class F on (U, σ) and functions g, h : U →

[0, 1]:

1. If g is {0, 1}-Boolean then 2|g − f | = (1− f †g†) and 2|g − f̄ | = (1 + f †g†).

2. If g is {0, 1}-Boolean then g†|g − h| = g − h.

3. 2|Eσ[f †(g − h)]| = |Eσ[f †(g† − h†)]|.

23
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4. For every f † in class F†, |Eσ[f †(g†− h†)]| = O(ε) iff |Eσ[f(g− h)]| = O(ε) for every f in

class F .

With this in hand, consider Trevisan et al’s following result:

Theorem 3.1.6 (Trevisan et al’s Lcat-HCLweak-reduction). Suppose in a finite probability

space (U, σ), given parameters ε, δ > 0 and a class of functions F , h : U → [0, 1] is an (εδ,F)-

approximation to g : U → {0, 1} w.r.t σ. If h ∈ Fλ (for some λ = poly(1/ε, 1/δ)) with g

(δ,Th1[Fλ])-hard w.r.t. σ, then the measure µ = |g − h| is δ-dense, (O(ε),F)-hardcore.

Sketch of Trevisan et al’s reduction. Using that Eσ[Et∼[0,1][|g−tht[h]|]] = Eσ[|g−h|] along with

(δ,Th1[Fλ])-hardness of g, it’s easy to show Eσ[|g − h|] ≥ δ. By the fact that h is an (εδ,F)

approximation to g along with Lemma 3.1.5,

Eσ[µ|g − f̄ |] = 1
2Eσ[|g − h|(1 + f †g†)] = 1

2dσ(µ) + 1
2Eσ[(g − h)f †] ≤ 1

2dσ(µ) +O(εδ)

Therefore, it follows that Eµσ [|g − f̄ |] = Eσ[|g − h||g − f̄ |]/dσ(µ) is as claimed.

So Trevisan et al. can use the existence of (εδ,F)-approximations of low complexity to derive

their formulation of Weak Hardcore Lemma:

Theorem 3.1.7 (Trevisan et al Weak Hardcore Lemma). Given parameters ε, δ > 0, there

exists λ = poly(1/ε, 1/δ) such that if in a finite probability space (U, σ) with a class of functions

F on U , a function g : U → {0, 1} is (δ,Th1[Fλ])-hard w.r.t. σ, then there exists h ∈ Fλ such

that the measure |g − h| is δ-dense, (O(ε,F))-hardcore.

We will demonstrate the following which shows that assuming existence of hardcore measures

of the form given by Trevisan et al is enough to show existence of low complexity approximations:

Theorem 3.1.8. In any finite probability space (U, σ), given δ > 0, g : U → {0, 1} and a

class F , then Trevisan et al’s Weak Hardcore Lemma (Theorem 3.1.7) implies that there exists

h ∈ Fλ such that h is an (O(δ),F)− approximation to g w.r.t. σ with λ = poly(1/δ).

Proof. Fix ε = δ/4 and choose λ′ = poly(1/ε, 1/δ) as needed in Theorem 3.1.7 with parameters

ε, δ implying λ′ = poly(1/δ) and set λ = λ′ + 1 = poly(1/δ).

There are two mutually exclusive possibilities:

1. ∃f∗ ∈ Fλ with Eσ[|g − f∗|] ≤ δ

2. ∀f ∈ Fλ, Eσ[|f − g|] > δ
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If 1 holds then ∀f ∈ Fλ, |Eσ[f(g− f∗)]| ≤ Eσ[|f(g− f∗)|] ≤ Eσ[|g− f∗|]| ≤ δ, so f∗ ∈ Fλ is the

required (δ,F)-approximation.

So assume 2. Since Th1[Fλ′ ] ⊂ Fλ, therefore, g is (δ,Th1[Fλ′ ])− hard. As λ′ is exactly as

needed by Theorem 3.1.7, there exists h ∈ Fλ′ such that µ = |g− h| is δ-dense-(ε,F)-hardcore.

As µ is (ε,F)-hardcore,

ε ≥ |Eµσ [|g − f |]− 1
2 | =

1
2 |Eµσ [f †g†]| = Eσ[f †g†|g − h|]/dσ(µ)

By Lemma 3.1.5,

∀f ∈ F , 2εd(µ) ≥ |Eσ[(2f − 1)g†|g − h|]| ≥ |Eσ[2fg†|g − h|]| − |Eσ[g†|g − h|]|

Therefore,

∀f ∈ F , 2εd(µ) + Eσ[g†|g − h|]| ≥ 2|Eσ[f(g − h)]|

Consider |Eσ[g†|g − h|]| = |Eσ[(2g − 1)µ]|. Using Lemma 3.1.5 and that g = |g − 0|,
|Eσ[(2g − 1)µ]| = Eµσ [2|g − 0| − 1]dσ(µ). And since |Eµσ [|g − 0| − 1

2 ]| ≤ ε because 0 ∈ F and µ

is (ε,F)-hardcore for g:

|Eσ[g†|g − h|]| = 2dσ(µ)|Eµσ [|g − 0| − 1
2 ]| ≤ 2dσ(µ)ε

This yields

∀f ∈ F , δ ≥ 2dσ(µ)ε ≥ |Eσ[f(g − h)]|

.

Thus h ∈ Fλ′ is the required (δ,F)-approximation.

Remark 3.1.9. If we could guarantee dσ(µ) = O(δ), then we could have set ε to a small

absolute constant instead; however, the best upper bound we can guarantee for density of a

hardcore measure is 1 − δ. The choice of ε = O(δ) makes the complexity parameter achieved

quadratically worse as compared to 2.2.1. The obvious solution to scale µ to have density exactly

δ does not resolve this as then the measure has form µ = k|g− h| for some constant k and this

k carries throughout.
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3.2 Dense Models to Low Complexity Approximations

Now we give reductions from existence of dense models to existence of low complexity approx-

imations:

DMT
pseudodensity

pseudorandom
→ Lcat.

In particular as Trevisan et al derive Pseudorandom form of Dense Model Theorem from

existence of low complexity approximations, the reductions here imply the equivalence of the

two results. Also, there is a direct correspondence between the parameters we obtain i.e. there

is no loss in parameters when going from assumptions of Dense Model Theorem to conclusion

of Low Complexity Approximation Theorem.

Theorem 3.2.1. Suppose g : U → [0, 1] is arbitrary. Then in any probability space (U, σ),

for any class F on U , assuming Dmtpseudodensity(Theorem 2.2.7), yields h ∈ Fλ which is

(O(ε),F)− approximation to g w.r.t. σ, with λ = O(ε−2) and any 0 < ε < 1
2 .

Proof. Without loss of generality we can assume that α = dσ(g) is known since we can always

estimate it within ε by taking poly(ε−1) samples, and our parameters would be worse only by

a constant multiple of ε because of this slack. Also, we can assume α ≥ 1
2 as otherwise we can

choose to work with ḡ since Eσ[f(g − h)] = −Eσ[f(ḡ − h̄)].

Notice that Eσ[g] = α implies, by Claim 2.1.4, that the induced distribution gσ has density

at least α inside σ, and hence also (ε,Thλ[FO(ε)])-pseudodensity at least α for every ε >

0, λ ∈ N, hence also for λ = λ(ε−1, α−1) as needed by Theorem 2.2.7. Note that since α ≥ 1
2 ,

Theorem 2.2.7 fixes λ = O(ε−2).

By Theorem 2.2.7, g has a α-dense (ε′,F)-model h ∈ Fλ, for ε′ = O(ε). Suppose β = dσ(h)

is the true density of h. Note that β ≥ α. Using standard concentration bounds, by random

sampling β can be estimated within an additive error ε with high probability. Let β′ denote

the estimate.

Now β′ ≥ β − ε ≥ α − 2ε. In case β′ > α, replace h by h′ = c · h with c = α/β′. By

Remark 2.1.9, h′ is also a model for gσ, and dσ(h′) = c · dσ(h) = αβ/β′. By using the fact that

β′ ∈ [β − ε, β + ε] with high probability, dσ(h′) ≥ α − ε and dσ(h′) ≤ α + 2ε, also with high

probability. If β′ ≤ α then keep h as the model with h satisfying α− ε ≤ dσ(h) ≤ α+ ε.

In either case, we get a measure in Fλ+1 which is a model for distribution gσ with the

density of the measure within an additive 2ε from the density α of g. For simplicity of notation,

we will denote this model by h.

By definition of being a model, we have for every f ∈ F , |f [hσ] − f [gσ]| ≤ ε′, which is

equivalent to ∣∣∣∣Eσ[f · h]

dσ(h)
− Eσ[f · g]

dσ(g)

∣∣∣∣ ≤ ε′.
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The following simple estimate (proof deferred) which formalizes the idea that if two fractions

are close and their denominators are also close, then their numerators are also close allows us

to complete the proof.

Lemma 3.2.2. For any a, b, x, y, if |x−y| ≤ ε1 and |a/x−b/y| ≤ ε2, then |a−b| ≤ (b/y)ε1+xε2.

Applying Lemma 3.2.2 with a = Eσ[f · h], b = Eσ[f · g], x = dσ(h), y = dσ(g), ε1 = 2ε,

and ε2 = ε′, observe that b ≤ y and x ≤ 1 (since f and h are at most 1 on any input in

U). Thus, we get that |a − b| ≤ ε1 + ε2, implying that |Eσ[f · (h − g)]| ≤ 2ε + ε′. So h is an

(O(ε),F)-approximation to g, and the complexity of h relative to F is O(ε−2) as required.

Along similar lines, we derive Lcat from DmtPseudorandom.

Theorem 3.2.3. Suppose g : U → [0, 1] is arbitrary. Then for the probability space U = (U, σ)

and any class F on U , assuming DmtPseudorandom (Theorem 2.2.6), yields an h ∈ Fλ such

that h is a (ε,F)-approximation to g in U , for λ = O(ε−2) and any 0 < ε < 1
2 .

Proof. We simply use Theorem 2.2.6, with ρ = gσ and τ = σ. For α = dσ(g), we get

by Claim 2.1.4, that the density du(gu) ≥ α. Trivially, for every class G, σ is (O(ε),G)-

pseudorandom in the space (U, σ). Hence, by Theorem 2.2.6, there exists δ-dense (O(ε),F)-

model h ∈ Fλ for g. The rest is exactly as in proof for Theorem 3.2.1.

3.3 Low Complexity Rational Approximations

In section 3.1 we gave a reduction (albeit with a relaxation in parameters) from Trevisan et al.

Weak Hardcore Lemma (3.1.7) to Lcat (Theorem 2.2.1). Then we showed that Trevisan et al.

original reduction is strictly weaker than the Strong Hardcore Lemma. We note that Lcat as

formulated by Trevisan et al. intuitively says that if Eσ[f(g− h)] is small for every f ∈ F then

h “looks” like g to F . Here h is pretty much a polynomial made from functions from F (with

the exception of truncation and threshold operations, though these can be approximated well

by polynomials of bounded degree (see Reingold et al.[RTTV08b])); however, an interesting

generalization is to consider a rational function approximation to g. Since division is not

a permissible operation, we think of g as being approximated by a rational function u1/u2

with both u1, u2 ∈ Fλ if for every f ∈ F , Eσ[f(u2g − u1)] is small. This “rational function”

approximation to g is sufficient to get at Holenstein’s Strong Hardcore Lemma (2.2.3) which was

beyond the reach of Lcat with Trevisan et al’s reduction. To motivate this Low Complexity

Rational Approximation Theorem, we first consider an equivalent formulation of Lcat inspired

by the techniques of section 3.1, before formulating and proving the Low Complexity Rational

Approximation Theorem.
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3.3.1 Low Complexity Approximation Theorem: Weak Alternative Form

Assuming the Trevisan et al. Weak Hardcore Lemma (3.1.7), Low Complexity Approximation

Theorem 2.2.1 is equivalent to Proposition 3.3.1 (though the parameter λ is quadratically worse

again as remarked in 3.1.9).

Proposition 3.3.1. In any probability space (U, σ), given ε, ε′ > 0, {0, 1} − boolean class F
on U , a {0, 1} − boolean g, there exists λ = poly(1/ε, 1/ε′) such that one of the two conditions

must hold:

(a) ∃u∗ ∈ Fλ satisfying Eσ[|g − u∗|] ≤ ε.

(b) ∃u∗ ∈ Fλ satisfying ∀f, |Eσ[f(g − u∗)]| ≤ Eσ[|g − u∗|]ε′ with Eσ[|g − u∗|] ∈ [ε, 1].

Theorem 3.3.2. Assuming Trevisan et al’s Weak Hardcore Lemma, Theorem 2.2.1 is equiva-

lent to Proposition 3.3.1

Proof. To see 3.3.1 implies 2.2.1 fix ε′ = ε and choose λ′ as needed by Trevisan et al Weak

Hardcore Lemma with hardness parameter ε and hardcore parameter ε′ and set λ = λ′ + 1. If

(a) holds then ∀f ∈ F , ε ≥ Eσ[|g − u∗|] ≥ Eσ[|f(g − u∗)|] ≥ |Eσ[f(g − u∗)]|, thus, u∗ is the

approximation as needed by Theorem 2.2.1.

And if (b) holds then g is (ε,Fλ)-hard and, therefore, (ε,Th1[Fλ′ ])-hard and by choice of λ′

and Theorem 3.1.8 there exists a ε-dense (ε′,F) hardcore measure µ = |g − u∗| with u∗ ∈ Fλ.

And as in proof of Theorem 3.1.8 this implies u∗ is an (O(ε′),F)-approximation to g.

The other direction (Theorem 2.2.1 implies Proposition 3.3.1) is very clean: simply consider

the two mutually exclusive possibilities that either g is well approximated by a low complexity

function which gives us (a), or g is (ε,Fλ)-hard which by 3.1.8 (note we already have Theorem

2.2.1 so we have 3.1.8) gives (b) where λ − 1 is chosen to ensure the existence of ε′-hardcore,

ε-dense measure of form |g − u∗| (all needed properties follow exactly as in section 3.1).

3.3.2 Low Complexity Rational Approximation Theorem

Since Theorem 3.3.2 relies almost entirely on section 3.1, it serves mostly a didactic purpose. It

illustrates the either a function has small complexity w.r.t. a class, or it can be “approximated”

by a function which has small complexity w.r.t. the class structure that we exploit next:

Theorem 3.3.3 (Low Complexity Rational Approximation Theorem). In any probability space

(U, σ), given ε > 0, ε′ ∈ (0, 1/5], [0, 1]-bounded class F , a {0, 1} − boolean g, there exists

λ = poly(1/ε, 1/ε′) such that one of the two conditions must hold:

1. ∃u ∈ Thλ[F ] satisfying Eσ[|g − u|] ≤ ε (equivalently Eσ[|g† − u†|] ≤ 2ε).
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2. ∃u∗1, u∗2 ∈ FO(λ) satisfying ∀f ∈ F , |Eσ[f †(u∗1g
†+u∗2)]| ≤ 2εε′ with Eσ[u∗1 +u∗2g

†] = 2ε and

(u∗1 + u∗2g
†) is [0, 1]-bounded.

Remark 3.3.4. 3.3.3.1 implies ∀f ∈ F , |Eσ[f †(g† + u†)]| ≤ 2εε′ with u ∈ Thλ[F ] (so u† ∈
FO(λ)). As such 3.3.3.1 is a special case of 3.3.3.2 where u∗1 can be fixed to be 1 and ε′ is a small

constant. Note that if u∗1 can be fixed to 1 then 3.3.3.2 is simply 2.2.1 (even though 3.3.3.2 is

in range [−1, 1], Lemma 3.1.5 renders this inconsequential). However, note that the result only

holds for Boolean g.

Theorem 3.3.5. Strong Hardcore Lemma (2.2.3) is equivalent to Theorem 3.3.3

Proof. To see 2.2.3 implies 3.3.3, given F , ε, g, choose λ as needed by the Strong Hardcore Lemma

for (ε′,F)-hardcore measure to exists if g is (ε,Thλ[F ])-hard. Once λ is fixed there are two

possibilities: either g is (ε,Thλ[F ])-hard or it isn’t. If g is not (ε,Thλ[F ])-hard then there

exists u ∈ Thλ[F ] such that E[|g − u|] ≤ ε and this is 3.3.3.1.

Otherwise g is (ε,Thλ[F ])-hard, so by Strong Hardcore Lemma there exists a 2ε-dense

(ε′,F)-hardcore measure µ (guaranteed by choice of λ and Strong Hardcore Lemma). This

gives

∀f † ∈ F†, |Eσ[µf †g†]| ≤ ε′d(µ).

Now µ ∈ [g ⊕F ]∗λ, so by Shannon expansion µ = gv2 + (1− g)v1 with v1, v2 ∈ F∗λ yielding

µ = v2

(
g† + 1

2

)
+ v1

(
1− g† + 1

2

)
=

(v2 − v1)

2
g† +

(v1 + v2)

2
≡ u∗2g† + u∗1.

Note u∗1, u
∗
2 ∈ F∗3λ and that µ being a measure is [0, 1]-bounded. Without loss of generality

µ can be scaled (by multiplying u∗1, u
∗
2 by a constant) so that dσ[µ] = Eσ[u∗1 + u∗2g

†] = 2ε.

Remark 3.3.6. Since we have ability to make the measure the exact density we want, therefore,

unlike the results Theorem 3.3.2 and results from section 3.1 there’s no loss in parameter ε since

ε′ can be fixed to be a small constant (say 1/10) as remarked in 3.1.9.

Because µ is (ε′,F)-hardcore with dσ(µ) = 2ε, so it follows that for every f † ∈ F , Eσ[f †g†(u∗1+

u∗2ĝ)] = Eσ[f †(u∗1g
† + u∗2)] ≤ 2ε′ε and this is 3.3.3.2.

For the other direction, 3.3.3 implies 2.2.3, we want to show that there is a good λ such that

g being (ε,Thλ[F ])-hard implies there exists a 2ε-dense (ε′,F)-hardcore measure. Choose this

λ to be as needed by 3.3.3.2. So if we have the requisite hardness then 3.3.3.2 comes into play

and it follows from properties of µ = u∗1 + u∗2ĝ that µ is 2ε-dense (ε′,F)-hardcore measure.



Chapter 4

Hardcore Measures and Dense

Models

4.1 Dense Models and Weak Hardcore Lemma

Recall from Trevisan et al. [TTV09] that if g : U → {0, 1} is (δ,Th1[Fλ])-hard with λ =

O(ε−2δ−2) then h (which is an (εδ,F)-approximation to g) given by Lcat has the property that

the measure µ = |g − h| is δ-dense (ε,F)-hardcore. Putting this together with Theorems 3.2.1

and 3.2.3 allows us to get HCLweak from various formulations of Dmt.

We note that the reduction of [TTV09] has two weak points (besides the issue with density

being δ and not 2δ):

1. To get (O(εδ),F)-approximation to g, one needs λ = O(ε−2δ−2) instead of the tight

O(ε−2 log(δ−1)).

2. g must be (δ,Th1[Fλ])-hard versus (δ,Thλ[F ])-hard as in Theorem 2.2.3 .

On the other hand the reduction of Trevisan et al. [TTV09] raises the question: does every

(ε,F)-hardcore measure µ looks like |g − h| for some h ∈ Fλ? We show that the answer

is no in case Th1[Fλ] is closed under complementation. Since we need the closure under

complementation to enforce the very reasonable condition that g and ḡ are both (δ,Th1[Fλ])-

hard, the answer is likely no in general. This is captured by the following lemma:

Lemma 4.1.1. Suppose g : U → {0, 1} and ḡ are both (δ,Fλ+1)-hard for some Boolean class

F over the probability space (U, σ), and some parameter λ ≥ 1. Then for any h ∈ Fλ, we have

δ ≤ dσ(|g − h|) ≤ 1− δ.

Proof. It’s easy to show that Eθ∈[0,1][Eσ[|g − thθ[h]|]] = Eσ[|g − h|] = dσ(|g − h|), where θ is

chosen uniformly at random from the interval [0, 1] (see Lemma A.2.2.4).

30
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Let h′ = thθ[h]|. Since both g and h′ are Boolean functions, we have Eσ[|g − h′|] =

Px∈σ[g(x) 6= h′(x)] = 1 − Eσ[|ḡ − h′|] = 1 − Px∈σ[ḡ(x) 6= h′(x)] and by hardness assump-

tion for g, ḡ, 1 − δ ≥ Eσ[|g − h′|] ≥ δ. As this holds for all θ ∈ [0, 1], therefore, it holds on

averaging over θ uniformly chosen from [0, 1].

By Lemma 4.1.1, for a function g that is δ-hard for δ > 1/3, a hardcore measure µ = |g−h|
for some low complexity h can only be of density at most 2/3. On the other hand, by the

Strong Hardcore Lemma we know that g must have a hardcore measure of density 2δ > 2/3.

So, in general, the form |g−h|, with a low-complexity h, is insufficient for describing a arbitrary

hardcore measure for a function g.

An explicit example of this insufficiency is as given below:

Example 4.1.2. Suppose U = (U, u) with U = {xi : i ∈ N, i ≤ 10} (i.e. |U | = 10) and

F = {0,1}. Note that Fλ = F for every λ ∈ N. Choose H = {xi : i ∈ N, i ≤ 8}. In H set

g(xi) = 1 if i is odd, 0 otherwise. Outside of H set g = 0 identically. For any ε > 0, H is (ε,F)-

hardcore for g, and as Th1[Fλ] ⊂ Fλ+1 = F for every λ, therefore, g is (2/5,Th1[Fλ])-hard,

and by Strong Hardcore Lemma has a 4/5-dense, (ε,F)-hardcore measure which is obviously H.

But maxh∈Fλ [du(|g−h|)] = max[du(|g−1|), du(|g−0|)] = 3/5. So there’s no hardcore measure

of tight density of form |g − h| with h of low complexity for small ε.

4.1.1 Hardcore measures and Pseudodensity

A natural approach to get HCLstrong from HCLweak is to argue that any hardcore measure µ is

indistinguishable from a hardcore measure of optimal density, by showing first that µ has large

pseudodensity against an appropriate class and then appealing to the Dense Model Theorem.

And this with some work can be made to go the distance as even a small hardcore measure for

a Boolean function g (relative to the class F of tests) induces a distribution that has optimal

pseudodensity for the collection g ⊕ F which characterizes the fraction of the domain where g

does not agree with a given function.

Lemma 4.1.3. For U = (U, σ) and a Boolean class F on U , if a measure µ is (ε,F)-hardcore

for a Boolean function g which is (δ,F ′)-hard with F ⊂ F ′, then, within U , the distribution µσ

has (O(εδ), CH[g ⊕F ])-pseudodensity 2δ.

Proof. Consider any f ∈ F , and let φ = f ⊕ g. By (δ,F ′)-hardness of g, we get φ[σ] =

Eσ[g ⊕ f ] ≥ δ. Since µ is (ε,F)-hardcore, we get φ[µσ] = Eµσ [g ⊕ f ] ∈ [1
2 − ε,

1
2 + ε]. It follows

that 2δφ[µσ] − 2δε ≤ δ ≤ φ[σ]. Since f was arbitrary and using linearity of expectation, it

follows that µσ is 2δ-(O(εδ), CH[g ⊕F ])-pseudodense.
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However, the result does not directly follow since to make direct use of Dmtpseuodensity to

get at HCLstrong, the induced distribution µσ must have pseudodensity 2δ against the class,

Thλ[g ⊕ F ] ∪ {0,1} (and not just g ⊕ F) and this class is not quite easy to handle because

to be able to use the hardness condition we need to factor g out of the threshold: suppose

thθ[
∑

[λ′] |g − fi|/λ′] ∈ Thλ[g ⊕F ] then factoring out g yields

thθ

∑
[λ′]

|g − fi|
λ′

 = gthθ

∑
[λ′]

f̄i
λ′

+ ḡthθ

∑
[λ′]

fi
λ′

 ≡ gthθ[φ̄] + ḡthθ[φ] 6= |g − thθ[φ]|

with thθ[φ] ∈ Thλ[F ], so it is not clear how to bound the expectation of thθ[
∑

[λ′] |g− fi|] over

σ to establish the needed lower bound on pseudodensity against a rich enough class to get a

2δ-dense model.

Still by same argument as 4.1.3 it’s possible to argue that any (ε,Thλ[F ])-hardcore measure

for g (with g (δ,Thλ[F ])-hard) is 2δ-(O(εδ), g ⊕ Thλ[F ] ∪ {0,1})-pseudodense. Using Holen-

stein’s Derandomization (see section 6.3.3.2) it turns out that this modified pseudodensity con-

dition is sufficient to get the 2δ-dense (O(ε), g ⊕ F)-model for any hardcore measure and this

model will be the (O(ε),F)-hardcore measure as needed by the Strong Hardcore Lemma. But

since for HCLstrong the assumption is that g is (δ,Thλ[F ])-hard, so even small (ε,Thλ[F ])-

hardcore measures may not exist. To side step this such a source hardcore measure will be

artificially seeded in the domain.

With this we will be able to produce 2δ-dense hardcore measures by using an algorithmic

DMTmin-max (inspired by Zhang [Zha11]) as a black box.

4.2 Strong Hardcore Lemma implies Dense Model Theorem

Since the machinery to get at HCLstrong via DMTmin-max is a little heavy, we first give the

generalization of Impagliazzo’s reduction [Imp09] from HCLstrong to Dmtpseuodensity.

4.2.1 The key idea

To motivate the reduction we consider Impagliazzo’s original set up of sets under uniform

distributions. Suppose a set S has (ε,Thλ[F ])-pseudodensity δ (in (U, u)) meaning f [U ] ≥
δf [S] − ε for every f ∈ Thλ[F ] but the actual density of S is δ/2, i.e. S looks twice as big as

it is. In the extreme case that the indicator function of S was in Thλ[F ] it’s easy to see the

psedudensity condition fails badly as then for f = 1S , f [U ] = δ/2 while δf [S] = δ. This says is

that no function in Thλ[F ] can have a disproportionately higher expectation on S than U , so

the indicator function of S must be somewhat hard to guess. We’d want to utilize the hardness
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of 1S to build a hardcore measure and then argue that this measure is both a model for S and

sufficiently dense.

However, if the discrepancy between the actual density and the pseudodensity of the set S

is too large then the it may be that the hardness is insufficient to get a δ-dense model for S. To

this end Impagliazzo warps the original uniform distribution into a new distribution in which

S is actually δ-dense. With respect to this distribution 1S is sufficiently hard so as to yield a

hardcore measure which when considered in the original distribution is the needed model. This

transference from hardcore measure to model is not obvious. Impagliazzo [Imp09] achieves this

via a sequence of inequalities; here we show that the similar inequalities actually hold more

generally than Impagliazzo’s original setting.

4.2.2 Details

Assuming HCLstrong (Theorem 2.2.3) we’ll prove DmtPseudodensity (Theorem 2.2.7.1) in the

form given below. On taking Remark 2.2.4 into account Theorem 2.2.7.2 follows from Theorem

2.2.3 as well.

Theorem 4.2.1. Given ε, δ ∈ (0, 1) such that ε ≤ δ/3, there exists a λ = O(ε−2 log δ−1) such

that the following holds. Let U = (U, σ) be any finite probability space, and let F be any class

of functions over U . If a distribution ρ over U has (ε,Thλ[F ])-pseudodensity δ in σ, then there

exists a (12 · ε/δ,F)-model µ ∈ F∗λ for ρ of density δ − 3ε.1

Proof. Set δ̄ := δ/(1 + δ) (implying δ = δ̄/(1 − δ̄)) and ε̄ := ε/6. Define Û := {(0, x) | x ∈
U} ∪ {(1, x) | x ∈ Support[ρ]}, along with the following distribution σ̂ over Û : for (b, x) ∈ Û ,

where b ∈ {0, 1} and x ∈ U , define

σ̂(b, x) =

(1− δ̄) · σ(x) if b = 0

δ̄ · ρ(x) if b = 1.

Associate with each f ∈ F a function f̂ : Û → {0, 1} such that, for any (b, x) ∈ Û ,

f̂(b, x) := f(x). Define F̂ = {f̂ | f ∈ F}. Note that F̂ is a class of Boolean functions over Û .

Consider g : Û → {0, 1} where g(b, x) = b for every (b, x) ∈ Û . Our tests f̂ ∈ F̂ , on input

(b, x), ignore b and use x only. Such tests have difficulty in computing g, as we show next.

Claim 4.2.2. For δ̂ := δ̄ − ε+ εδ̄, the function g is (δ̂,Thλ[F̂ ])-hard in (Û , σ̂).

Proof. Suppose there is φ̂ ∈ Thλ[F̂ ], corresponding to φ ∈ Thλ[F ], such that Eσ̂[|g−φ̂|] < δ̂. By

considering separately inputs {1}×U and {0}×U , we have Eσ̂[|g−φ̂|] = δ̄·Eρ[1−φ]+(1−δ̄)·Eσ[φ],

1The 3ε slack in the density can be moved into the error term by averaging the measure µ with the constant
1 measure as in claim 6.3.14.
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and so δ̄ · (1 − φ[ρ]) + (1 − δ̄) · φ[σ] < δ̄ − ε(1 − δ̄). Dividing both sides of this inequality by

(1− δ̄) and using δ = δ̄/(1− δ̄), we get φ[σ] < δ · φ[ρ]− ε, contradicting the pseudodensity δ of

ρ.

By the Strong Hardcore Lemma, for λ = O(ε̄−2 log(δ̂−1)) = O(ε−2 log δ−1), there exists an

(ε̄, F̂)-hardcore measure η ∈ [|g−F̂|]∗λ of density at least 2δ̂ over (Û , σ̂). Define η1(x) := η(1, x)

and η0(x) := η(0, x) ∈ F∗λ. We get

dσ̂(η) = δ̄ · dρ(η1) + (1− δ̄) · dσ(η0) ≥ 2(δ̄ − ε+ εδ̄). (4.1)

We will argue that η0 is a dense model for ρ. First we lower-bound dσ(η0) and dρ(η1).

Claim 4.2.3. dσ(η0) ≥ δ − (7/3)ε, and dρ(η1) ≥ 1− (7/3)ε/δ.

Proof. Since 0,1 ∈ F̂ , by the definition of hardcore we get that both Pησ̂ [g = 1] and Pησ̂ [g =

0] are in the interval [1
2 − ε̄, 1

2 + ε̄], and so are within 2ε̄ of each other. We have Pησ̂ [g =

1] =
∑

x∈U ησ̂(1, x) = (1/dσ̂(η)) ·
∑

x∈U η1(x)σ̂(1, x) = (1/dσ̂(η)) · δ̄ · dρ(η1), and similarly,

Pησ̂ [g = 0] =
∑

x∈U ησ̂(0, x) = (1/dσ̂(η)) ·
∑

x∈U η0(x)σ̂(0, x) = (1/dσ̂(η)) · (1 − δ̄) · dσ(η0).

It follows that |δ̄ · dρ(η1) − (1 − δ̄) · dσ(η0)| ≤ 2ε̄ · dσ̂(η) ≤ 2ε̄. Together with Eq. (4.1), this

implies dσ(η0) ≥ (δ̂ − ε̄)/(1 − δ̄) = (δ̄ − ε + εδ̄ − ε̄) · (1 + δ) ≥ δ − 2(ε + ε̄) = δ − 7ε/3, and

dρ(η1) ≥ (δ̂ − ε̄)/δ̄ = (δ̂ − ε̄)(1 + δ)/δ ≥ (δ − (7/3)ε)/δ = 1− (7/3)ε/δ.

Next we show that η0 is a model for ρ in (U, σ) by first arguing that (η0)σ is indistinguishable

from (η1)ρ and (η1)ρ is indistinguishable from ρ by tests in F , then applying the triangle

inequality will then conclude the proof of the theorem.

Claim 4.2.4. The distributions (η0)σ and (η1)ρ are (ε,F)-indistinguishable.

Proof. Let f ∈ F be arbitrary. For the corresponding test f̂ ∈ F̂ , we get by the definition of

hardcore that Eησ̂ [|f̂ − g|] ∈ [1
2 − ε̄,

1
2 + ε̄]. Conditioning on g = 0 and g = 1, we get

Eησ̂ [|f̂ − g|] = Eησ̂ [f | g = 0] · Pησ̂ [g = 0] + Eησ̂ [1− f | g = 1] · Pησ̂ [g = 1]. (4.2)

We have

Eησ̂ [f | g = 0] =

∑
x∈U f(x)η0(x)σ(x)(1− δ̄)∑
x∈U η0(x)σ(x)(1− δ̄)

= E(η0)σ [f ] = f [(η0)σ], (4.3)

and, similarly,

Eησ̂ [1− f | g = 1] =

∑
x∈U (1− f(x))η1(x)ρ(x)δ̄∑

x∈U η1(x)ρ(x)δ̄
= E(η1)ρ [1− f ] = 1− f [(η1)ρ]. (4.4)
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Also, since 0,1 ∈ F̂ , we get by the definition of hardcore that both Pησ̂ [g = 0] and Pησ̂ [g = 1]

are in the interval [1
2 − ε̄,

1
2 + ε̄]. Combining this with Eqs. (4.2)–(4.4) yields

1− ε ≤ 1− 2ε̄

1 + 2ε̄
≤ 1− f [(η1)σ] + f [(η0)ρ] ≤

1 + 2ε̄

1− 2ε̄
≤ 1 + ε,

where we used that ε̄ = ε/6 ≤ 1/6. We conclude that |f [(η0)ρ]− f [(η1)σ]| ≤ ε, as required.

Claim 4.2.5. The distributions (η1)ρ and ρ are (11 · ε/δ,F)-indistinguishable.

Proof. Let f ∈ F be arbitrary. We have that f [(η1)ρ]− f [ρ] equals

Eρ[f · η1]

dρ(η1)
− Eρ[f ] =

1

dρ(η1)
· Eρ[f · (η1 − dρ(η1))] ≤ 1

dρ(η1)
· Eρ[1− dρ(η1)] =

1

dρ(η1)
− 1,

where for the inequality we first used f(x) ≥ 0 for all x ∈ U to get f(x) · (η1(x) − dρ(η1)) ≤
f(x) · (1− dρ(η1)), and then used 1− dρ(η1) ≥ 0 to get f(x) · (1− dρ(η1)) ≤ 1 · (1− dρ(η1)). By

Claim 4.2.3, dρ(η1) ≥ 1− (7/3)ε/δ, and so, 1/dρ(η1)−1 ≤ (ε/δ)/(3/7− ε/δ) ≤ (21/2)ε/δ, where

we used our assumption that ε ≤ δ/3 to get the lower bound 3/7− ε/δ ≥ 3/7− 1/3 = 2/21.

Thus, f [(η1)ρ]− f [ρ] ≤ (10.5)ε/δ, for every f ∈ F . Since F is closed under complement, we

also get for every f ∈ F that 1− f [(η1)ρ]− (1− f [ρ]) = f [ρ]− f [(η1)ρ] ≤ (10.5)ε/δ.

Finally, we argue that η0 is a model for ρ in σ. Let f ∈ F be arbitrary. By the triangle

inequality and Claims 4.2.4 and 4.2.5, we get |f [ρ] − f [(η0)σ]| ≤ |f [ρ] − f [(η1)ρ]| + |f [(η1)ρ] −
f [(η0)σ]| ≤ (10.5)ε/δ + ε ≤ 12ε/δ. Hence, η0 is a (12 · ε/δ,F)-model for ρ in (U, σ) of density at

least δ − 3ε.

4.3 Tightness of Model quality

From the above reduction we see that for a δ-(O(ε),Thλ[F ])-pseudodense distribution, it is

possible to construct a measure of small complexity which is a (O(ε/δ),F)-model. In [Imp09],

Impagliazzo gave a construction which demonstrates that this is tight up to a constant factor

in the sense that there exists a class F and a δ-(O(ε),Thλ[F ])-pseudodense distribution which

(for appropriate universal non-zero constant) cannot be (kε/δ,F)-indistinguishable from any

δ-dense distribution.

This question can be asked of DMTPseudorandom (Theorem 2.2.6) as the same relation

between the density of target distribution in the pseudorandom distribution and the model

parameter holds there. We show this is indeed true.

First we revisit Impagliazzo’s construction and then give the analogous construction for

pseudorandom DMTPseudorandom:
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Theorem 4.3.1 (Impagliazzo). In (U, u), there exists S ⊂ U , a class F , such that S has

(ε,Fλ)-pseudodensity δ (where λ is as needed by DMTPseudodensity) and there exists a function

f ∈ F which O(ε/δ) distinguishes S from every δ-dense distribution.

Proof. Let T ⊂ S ⊂ U with dU [S] = ε, dS [T ] = ε/δ. Choose F = {t .= 1T , t̄,1,0}, so Fλ = F
for every λ (permissible).

Note for f = 1,0, f [U ] ≥ δf [S] − ε is trivially true. Now t[U ] = dU [S̄]t[S̄] + dU [S]t[S] =

0 + ε · ε/δ = O(ε), while t[S] = ε/δ by construction. So t[U ] = O(ε) ≥ δε/δ − ε = δt[S]− ε.
Similarly for t̄, t̄[U ] = 1 − t[U ] = 1 − O(ε) and t̄[S] = 1 − t[S] = 1 − ε/δ, therefore, for

appropriate δ, t[U ] = 1− ε ≥ δ(1− ε/δ)− ε = δt[S]− ε holds.

Thus, S has (ε,Fλ)-pseudodensity δ, and by DMTPseudodensity has a δ-dense model (ig-

noring the ε slack in model density). But for every µ with density δ , t[µ] = du[µ] · Eµu [t] =

δ · (dµu [S̄]t[S̄] + dµu [S]t[S]) ∈ [0, ε].

While t[S] = ε/δ, giving |t[S]− t[µ]| = O(ε/δ) implying that t is the required distinguisher.

To give the analogous example demonstrating tightness of relation between density and

model parameters for DMTPseudorandom, we’ll finesse with the above construction to give a

(O(ε),Fλ)-pseudorandom R with S δ-dense in R, and the rest of the argument is identical.

Define R = S ∪ V where V ⊂ S̄ is such that dR[S] = δ, dR[V ] = δ̄ (any choice of V works).

We’ll show that R is (O(ε),Fλ)-pseudorandom.

Since F = Fλ, and for f = 1,0, f [U ]−f [R] = 0 obviously and while t̄[U ]− t̄[R] = t[R]−t[U ],

to show that R is (O(ε),Fλ)-pseudorandom, we just need to show |t[R]− t[U ]| ≤ O(ε).

Note that t[U ] = O(ε) as before. While t[R] = dR[V ]t[V ] + dR[S]t[S] = 0 + δε/δ = O(ε).

Therefore, as needed |t[R]− t[U ]| ≤ O(ε).

So we have the following corollary to Theorem 4.3.1:

Corollary 4.3.2. In (U, u), there exists S,R ⊂ U , a class F , such that S has density δ inside

R and R is (ε,Fλ)-pseudorandom(where λ is as needed by DMTPseudorandom) and there exists

a function f ∈ F which O(ε/δ) distinguishes S from every δ-dense distribution.

4.4 Pseudodensity to Pseudorandandomness

Lemma 2.2.9 shows that if a distribution ρ has density δ inside a distribution τ where τ is

(ε,F)-pseudorandom in U . Then ρ has (ε,F)-pseudodensity at least δ inside σ. We’ll prove

a relaxed version of the converse which says that if a distribution is ρ is δ-(ε,F ′)-pseudodense

then there must be some (O(ε),F)-pseudorandom distribution inside which it’s δ-dense is also

true (where F ′ = Th1[CH[F ]]). Note it’s easy to see that for every fixed choice of f there exists
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a distribution τf which looks pseudorandom to f and inside which ρ is δ − dense; the problem

is that such τf may look pseudorandom only to that function f .

Since F is a strictly smaller than F ′, the result is weak; however, this sort of loss is expected

as we need to come up with a universal distribution which looks pseudorandom to every per-

missible function (i.e. the quantifiers need to be changed from there exists to for all), where as

in Lemma 2.2.9 no such universal distribution is needed, which makes this pseudodensity con-

dition less demanding. This switching of quantifiers is exactly the reason that in Dense Model

Theorems and Hardcore Lemmas the hypothesis are against Thλ[F ] while the conclusion holds

for F . Given this it remains unclear is the result obtained here can be improved in general.

Theorem 4.4.1. Given ε > 0 and finite probability space (U, u), if S ⊂ U has (ε,Th1[CH[F ]])-

pseudodensity δ then there’s a measure µ with Su δ-dense in µu and µu (O(ε),F)-pseudorandom.

Proof. Assume there exists no measure γ with Su δ-dense in γu and γu (2ε,F)-pseudorandom,

i.e. for every γ with Su δ-dense in γu, there exists f such that f [γu] − f [u] > ε. Define

Rδ = {γ : U → [0, 1]|γu ≥ δSu}, i.e. γ ∈ R implies Su is δ-dense in γu.

Consider the two player zero-sum game: player A plays measures γ ∈ Rδ and player B

f ∈ F with Player B’s payoff f [γu] − f [u] which player B is trying to maximize. By the

Min-Max Theorem, there is a value α for this game such that there exists optimal strategies

γ∗ ∈ CH[Rδ], f∗ ∈ CH[F ] for players A, B satisfying:

∀γ ∈ Rδ, f∗[γu]− f∗[u] ≥ α and ∀f ∈ F , f [γ∗u]− f [u] ≤ α

Note that CH[Rδ] = Rδ, so by assumption for γ∗ there exists fγ∗ ∈ F such that α ≥
fγ∗ [γ

∗
u]− fγ∗ [u] > ε, therefore, f∗[γu]− f∗[u] > ε.

Remark 4.4.2. Ideally f∗ should be replaceable by an average of some poly(ε−1) functions from

F , f◦, with only ε/2 loss, however, sampling from the distribution governing f∗ to get f◦ fails

since the choice of samples is not independent of choice of γ.

Claim 4.4.3. There exists V ⊂ U such that f∗[u] ≥ δf∗[Su] + δ̄f∗[Vu]− ε.

Proof. Suppose not, so for every set V , f∗[u] < δf∗[Su] + δ̄f∗[Vu]− ε. Fix V = {argminU [f∗]}.
By averaging there is threshold θ such that f∗θ [u] < δf∗θ [Su] + δ̄f∗θ [Vu] − ε. Now f∗θ [u] < 1 − ε
so for some z ∈ U f∗θ (z) = 0 implying f∗θ [V ] = 0 (since x ∈ V yields f∗(x) ≤ f∗(z) giving

f∗θ (x) ≤ f∗θ (z) = 0), thus f∗θ [u] < δf∗θ [Su] − ε with f∗θ ∈ Thλ[F ] contradicting the (ε,Thλ[F ])-

pseudodensity condition.

So f∗[u] ≥ δf∗[Su] + δ̄f∗[Vu] − ε for some V . Define a measure µ = cS + c1V (with

c, c1 ∈ R≥0 such that Eu[cS]/Eu[µ] = δ). The existence of such µ is easy to see: µ′ = S + kV
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with k = (1/δ− 1)Eu[S]/Eu[V ] satisfies Eu[S]/Eu[µ′] = δ; if µ′ is a valid measure then µ′ is the

required µ, otherwise µ = µ′/maxU{µ′(x)} is as needed.

By lemma 2.1.2, µu = δSu + δ̄Vu and (cS)u = Su is δ-dense in µu implying µ ∈ Rδ and

f∗[µu] = Eµu [f∗] = δf∗[Su]+ δ̄f∗[Vu]. Therefore, by construction, f∗[u] ≥ δf∗[S]+ δ̄f∗[V ]−ε =

f∗[µu]− ε giving ε ≥ f∗[µu]− f∗[u] with µ ∈ Rδ : contradiction.



Chapter 5

The Bregman Projection Framework

5.1 Bregman Functions and Generalized Entropy

The reduction from HCLstrong to DMTpseudodensity given in 4.2.2 relies on HCLstrong for

the space Û with the distribution σ̂. Even when the base distribution is uniform, σ̂ can be

wild. The reduction that we’ll demonstrate from DMTmin-max to HCLstrong also uses a trick

of this sort; so we need DMT and HCL w.r.t. arbitrary probability distributions. Since the

online learning approach of Zhang and Barak et al. [Zha11, BHK09] achieves tight parameters

this is the direction we want to follow. However, Zhang’s work is based on results of Barak

et al. who in turn use that the entropy function is a Bregman function and generates the

Kullback-Leibler Divergence which satisfies Bregman’s Theorem (Theorem 5.2.1). To push this

approach through the setting of general finite probability spaces, we need analogues of entropy

and Kullback-Leibler Divergence in such spaces, and we need to show that Bregman projection

framework of Barak et al. holds. We start by introducing Bregman functions. The exposition

in 5.1.1 follows Censor and Zenios [CZ97].

5.1.1 Bregman Functions

For a sufficiently differentiable function, f : Λ ⊂ Rn → R, and a non-empty open convex set S
with its closure S̄ ⊂ Λ define Df : S̄ × S → R, Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 where

∇f is the gradient of f . Also, define the partial level sets of Df in the first and second variable:

1. Lf1(y, α) = {x ∈ S̄ : Df (x, y) ≤ α} with α ∈ R

2. Lf2(x, α) = {y ∈ S : Df (x, y) ≤ α} with α ∈ R

Definition 5.1.1 (Bregman function). A function f : Λ ⊂ Rn → R is a Bregman function, if

there exists a nonempty, open convex set S (the zone) with S̄ ⊂ Λ satisfying

39
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1. f is strictly convex and continuous on S̄.

2. ∀i ∈ [n], ∂f/∂xi is continuous over S.

3. ∀α ∈ R, y ∈ S, x ∈ S̄, the partial level sets Lf1(y, α), Lf2(x, α) are bounded.

4. If yv ∈ S for all v ≥ 0 and limv→∞ y
v = y∗ then limv→∞Df (y∗, yv) = 0.

5. If yv ∈ S, xv ∈ S̄ for all v ≥ 0, limv→∞Df (xv, yv) = 0, limv→∞ y
v = y∗ with {xv}

bounded then limv→∞ x
v = y∗.

Definition 5.1.2 (Generalized Distance). For f ∈ B(S) (the space of Bregman function with

zone S), define the generalized distance function (D-function) to be Df (x, y) : S̄×S ⊂ R2n → R
by

Df (x, y) ≡ f(x)− f(y)− 〈∇f(y), x− y〉 (5.1)

Definition 5.1.3 (Generalized projections). Given Ω ⊂ Rn, f ∈ B(S), y ∈ S, the generalized

projection of y onto Ω is defined to be x∗ ∈ Ω ∩ S̄ such that

min
z∈Ω∩S̄

Df (z, y) = Df (x∗, y) (5.2)

Definition 5.1.4. For a distribution σ on U with σi = σ(xi), define the generalized entropy

function ent(x) = −
∑

U σixi log(xi) (where log = ln).

Remark 5.1.5. Note that ent is simply Ent = −
∑

U xi log(xi) except with ith coordinate scaled

by σi. Also, from [CZ97], −Ent is known to be a Bregman Function with associated Bregman

Divergence
∑

U xi log
(
xiy
−1
i

)
−
∑

U xi +
∑

U yi which is the Kullback-Leibler Divergence.

Remark 5.1.6. Without loss of generality assume that supp[σ] = U since if σ(x) = 0, then we

may as well work with the space U − {x}.

5.1.2 Generalized Entropy/KL Divergence

With the definitions introduced we now give the analogues of Entropy and Kullback-Leibler

Divergence for a general (U, σ).

Theorem 5.1.7. Suppose σ is a distribution on U (|U | = n) with σi = σ(xi), then −ent(x) =∑
U σixi log(xi) is a Bregman Function with zone S = {x ∈ Rn : ∀j, xj > 0} and associated

Bregman Divergence D−ent =
∑

U σixi log
(
xiy
−1
i

)
−
∑

U σixi +
∑

U σiyi.
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Proof. [−∇ent(y)]i = σi log(yi) + σi, so

−〈∇[−ent(y)], x− y〉 = −
∑
U

σi(xi log(yi) + xi − yi log(yi)− yi) giving

D−ent(x, y) =
∑
U

σixi log(xi)−
∑
U

σiyi log(yi)−
∑
U

σi(xi log(yi) + xi − yi log(yi)− yi)

Thus, D−ent(x, y) =
∑
U

σixi log

(
xi
yi

)
−
∑
U

σixi +
∑
U

σiyi

Now we’ll show that f = −ent satisfies, all properties of definition 5.1.1.

Claim 5.1.8. −ent is strictly convex and continuous on S̄

Proof. Obviously −ent is continuous on S; furthermore, continuity holds on S̄ as well, since the

function g(y) = y log(y) is continuous at y = 0 as limy→0 g(y) = 0 = g(0) (since 0 log(0) = 0 by

convention) and so it follows that −ent(x) =
∑

U σixi log(xi) is continuous on S̄.

Now to show that −ent is strictly convex we need that for all t ∈ (0, 1), x,y ∈ S̄ with x 6= y,

−ent(tx + (1− t)y) < −tent(x)− (1− t)ent(y), that is,∑
U

σi(txi + (1− t)yi) log(txi + (1− t)yi) <
∑
U

σi (txi log(xi) + (1− t)yi log(yi))

So if g(y) = y log(y) is strictly convex on R≥0 then it follows that −ent is strictly convex as

well. Note that on R>0, d2g/dy2 = 1
y which never vanishes on R>0, so g is stricly convex [NP05].

To see that strict convexity extends to R≥0, we need that ∀t ∈ (0, 1), (tx + (1 − t)y) log(tx +

(1− t)y) < tx log(x) + (1− t)y log(y) with y = 0, x > 0. As 0 log(0) = 0, therefore, this becomes

∀t ∈ (0, 1), tx log(tx) < tx log(x) which is obviously true since tx log(tx) = tx log(x) + tx log(t)

and log(t) < 0 as t ∈ (0, 1).

Claim 5.1.9.
∂(−ent)

∂xi
is continuous on S

Proof.
∂(−ent)

∂xi
= σi(log(xi) + 1) which is continuous on S as for all x ∈ S, xi > 0.

Claim 5.1.10. ∀α ∈ R, y ∈ S, x ∈ S̄, the partial level sets L−ent1 (y, α), L−ent2 (x, α) are bounded.

Proof. The argument for boundedness of L−ent
1 , L−ent

2 both is by contrapositive: we’ll show that

if L−ent
1 (y, α) is unbounded, that is, for some y, α, there exists x ∈ L−ent

1 (y, α) such that for

some i the xi goes to infinity, then D−ent(x, y) ≤ α cannot hold. And similarly for L−ent
2 . Also,

throughout the argument, we’ll implicitly be using that σi ∈ (0, 1] for all i, and that U is finite.
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So assume x ∈ L−ent
1 (y, α) for some finite α, a fixed y ∈ S and xi goes to infinity for some

coordinates. By definition Df (x, y) =
∑

U σixi log(xiy
−1
i ) −

∑
U σixi +

∑
U σiyi. Obviously∑

U σiyi is bounded as y is fixed. So consider
∑

U σixi(log(xiy
−1
i ) − 1). For every coordinate

i such that xi goes to infinity, σixi(log(xiy
−1
i − 1) − 1) goes to positive infinity as well (using

σi > 0 for all i) otherwise it is finite, therefore D−ent(x, y) ≤ α cannot hold.

Now suppose y ∈ L−ent
2 (x, α) for some finite α, a fixed x ∈ S̄ and yi goes to infinity

for some coordinates. Considering D−ent(x, y) =
∑

U σixi log(xiy
−1
i ) −

∑
U σixi +

∑
U σiyi

=
∑

U σi[xi log(xi) − xi log(yi) − xi + yi] again, note that the term
∑

U σi[xi log(xi) − xi] is

bounded for fixed x, while the term σi[−xi log(yi) + yi] goes to positive infinity if yi goes to

positive infinity and is finite otherwise, so D−ent(x, y) ≤ α cannot hold.

Thus, it follows that L−ent
1 , L−ent

2 must both be bounded.

Claim 5.1.11. If yv ∈ S for all v ≥ 0 and limv→∞ y
v = y∗ then limv→∞D−ent(y

∗, yv) = 0.

Proof. D−ent(y
∗, yv) =

∑
U σi[y

∗
i log(y∗i ) − y∗i log(yvi ) − y∗i + yvi ], as limv→∞ y

v = y∗ we have

limv→∞ y
v
i = y∗i for each i, hence, obviously, limv→∞D−ent(y

∗, yv) = 0.

Claim 5.1.12. If yv ∈ S, xv ∈ S̄ for all v ≥ 0, limv→∞D−ent(x
v, yv) = 0,limv→∞ y

v = y∗ with

{xv} bounded then limv→∞ x
v = y∗.

Proof. Suppose yv ∈ S, xv ∈ S̄ for all v ≥ 0, limv→∞D−ent(x
v, yv) = 0,limv→∞ y

v = y∗

with {xv} bounded. We just need to show that any convergent subsequence {xvs} (with

lims→∞{xvs} = x̄) of {xv} converges to y∗; this is because {xv} being bounded implies that it

must have a convergent subsequence {xvs}; now either {xv}−{xvs} is also an infinite sequence,

in which case we can extract another convergent subsequence and iterate on this argument, or

it is finite in which case we can group it with any one of the convergent subsequences and still

have the convergence, so we partition {xv} into convergent subsequences, and if each one of

them has the same limit then so does {xv}.
Consider ti : R≥0×R>0 → R, ti(x, y) = σi(x(log(x/y)−1) +y) with x ≥ 0, y > 0. As σi > 0

we have that ti(x, y) = 0 iff x = y. Now lims→∞D−ent(x
vs , yvs) = 0 lims→∞

∑
U ti(x

vs
i , y

vs
i ) = 0

It follows that for each i, lims→∞ ti(x
vs
i , y

vs
i ) = 0. Notice that {xvsi } → x̄i and {yvsi } → y∗i .

If y∗i > 0 then as ti(x, y) = 0 iff x = y implies that x̄i = y∗i , otherwise if y∗i = 0 then

0 = t(x̄i, y
∗
i ) = t(x̄i, 0)σi(x̄i log(x̄i)− x̄i log(0)− x̄i) can hold only if x̄i = 0 as well, giving that

x̄i = y∗i so limv→∞ x
vs = y∗, which yields the claim.

So, it follows that f = −ent is a Bregman function.
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5.2 Bregman’s Theorem

For completeness we give the proof of Bregnan’s Theorem [CZ97, Bre67].

Theorem 5.2.1 (Bregman [Bre67]). Suppose f ∈ B(S), Ω ⊂ Rn be closed and convex with

Ω ∩ S 6= ∅. Assume that y ∈ S so PΩ(y) ∈ S. Let z ∈ Ω ∩ S̄ then ∀y ∈ S

Df (z, PΩ(y)) +Df (PΩ(y), y) ≤ Df (z, y) (5.3)

Proof. Define G(u) ≡ Df (u, y)−Df (u, PΩ(y)) which implies

G(u) = f(u)− f(y)− 〈∇f(y), u− y〉 − f(u) + f(PΩ(y)) + 〈∇f(PΩ(y)), u− PΩ(y)〉

So G(u) = f(PΩ(y))− f(y) + 〈∇f(PΩ(y)), u− PΩ(y)〉 − 〈∇f(y), u− y〉

=⇒ G(u) = f(PΩ(y))− f(y) + 〈∇f(PΩ(y)), u〉− 〈∇f(PΩ(y)), PΩ(y)〉− 〈∇f(y), u〉+ 〈∇f(y), y〉

This gives =⇒ G(u) = 〈u, a〉+ b with a, b ∈ Rn, therefore, G(u) is convex.

For uλ = λz + (1 − λ)PΩ(y) by convexity of G(u), G(uλ) = Df (uλ, y) − Df (uλ, PΩ(y)) ≤
λG(z) + (1− λ)G(PΩ(y)) implying

G(uλ) ≤ λ(Df (z, y)−Df (z, PΩ(y))) + (1− λ)(Df (PΩ(y), y)−Df (PΩ(y), PΩ(y)))

=⇒ Df (uλ, y)−Df (uλ, PΩ(y)) ≤ λ(Df (z, y)−Df (z, PΩ(y))) + (1− λ)Df (PΩ(y), y)

=⇒ Df (z, y)−Df (z, PΩ(y))−Df (PΩ(y), y) ≥ 1
λ (Df (uλ, y)−Df (PΩ(y), y))− 1

λDf (uλ, PΩ(y))

Note that Df (uλ, y)−Df (PΩ(y), y) ≥ 0 by definition of PΩ(y).

Consider

lim
λ→0

1
λDf (uλ, PΩ(y)) = lim

λ→0

1
λDf (λz + (1− λ)PΩ(y), PΩ(y))

= lim
λ→0

Df (λ(z − PΩ(y)) + PΩ(y), PΩ(y))−Df (PΩ(y), PΩ(y))

λ

=⇒ lim
λ→0

1
λDf (uλ, PΩ(y)) = ∇−−−−−−→

z−PΩ(y)
Df (x, PΩ(y))

∣∣
PΩ(y)

=⇒ lim
λ→0

1
λDf (uλ, PΩ(y)) = 〈∇xDf (x, PΩ(y))

∣∣
x=PΩ(y)

, z − PΩ(y)〉

Now [∇xDf (x, PΩ(y))]i is given by

lim
λ→0

f(x+ λei)− f(x)− 〈∇f(PΩ(y)), x+ λei − PΩ(y)〉+ 〈∇f(PΩ(y)), x− PΩ(y)〉
λ
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which implies

[∇xDf (x, PΩ(y))]i = lim
λ→0

f(x+ λei)− f(x)

λ
− lim
λ→0

〈∇f(PΩ(y)), λei〉
λ

So [∇xDf (x, PΩ(y))]i = [∇f(x)]i − lim
λ→0

λ〈∇f(PΩ(y)), ei〉
λ

= [∇f(x)]i − [∇f(PΩ(y))]i

Thus, ∇xDf (x, PΩ(y))
∣∣
x=PΩ(y)

= 0 which yields Df (z, y) − Df (z, PΩ(y)) − Df (PΩ(y), y) ≥ 0

and so

Df (z, y) ≥ Df (z, PΩ(y)) +Df (PΩ(y), y)

5.3 Extending Barak et al

Next we give the extensions of results of Barak et al. [BHK09] by modifying their proofs to

target (U, σ).

Theorem 5.3.1 (generalizing [BHK09]). Let γ 6∈ Γδ be a measure over the probability space

U = (U, σ) such that dσ(support[γ]) ≥ δ, for some δ ∈ [0, 1]. Let c ≥ 1 be the smallest constant

such that the measure µ = trunc1
0[c · γ] has dσ(µ) = δ. Then Pδγ = µ.

Remark 5.3.2. Since dσ(support[γ]) ≥ δ such c exists and c ≤ minxi∈support[γ]{γi}−1. In

case γ ∈ Γδ then trivially Pδγ = γ.

Proof. The proof follows the that of [BHK09] closely: we consider

f̃(M) := D(M||γ) =
∑
U

σiMi log(Mi/γi) +
∑
U

σiγi −
∑
U

σiMi

over the polytope Γδ. To show that µ is the projection we need to establish that µ minimizes f̃ .

Now if γi = 0 then [f̃(M)]i = 0 if Mi = 0 and [f̃(M)]i =∞ otherwise, therefore if γi vanishes

then for any candidate minimizer M∗,M∗i must vanish as well.

Using that γi = 0 implies µi = 0, to argue that µ minimizes f̃(M) over Γδ it is sufficient to

argue that µ minimizes

f(M) := D(M||γ) =
∑

support[γ]

σiMi log(Mi/γi) +
∑

support[γ]

σiγi −
∑

support[γ]

σiMi

over Γγδ = {M ∈ Γδ : support[M] ⊂ support[γ]}.
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Note that f is differentiable and convex in every variable. The convexity follows from

convexity of the constant functions and the function y log(y), while ∂f/∂xi = [∇f(M)]i =

σi log(Mi/γi) if xi ∈ support[γ] and 0 otherwise which shows differentiability of each coordi-

nate.

Now the tangent plane to f(M) atM = µ is given by f(µ)+∇f(µ)T (M−µ). By convexity

we must have f(M) ≥ f(µ) +∇f(µ)T (M− µ) for every M ∈ Γγδ . To show that Pδγ = µ, we

need that µ minimizes f which follows if ∇f(µ)T (M− µ) ≥ 0 for every M∈ Γγδ .

First consider xi such that µi = 1, since µ = trunc1
0[c · γ], therefore, γi ≥ 1

c . So [∇f(µ)]i =

σi log(1/γi) ≤ σi log(c). Note that Mi − µi =Mi − 1 ≤ 0 and σi log(c) ≥ 0, giving

[∇f(µ)]i(Mi − µi) ≥ σi log(c)(Mi − µi) (5.4)

And if µi < 1 then µi = cγi so [∇f(µ)]i = σi log(µi/γi) = σi log(c), yielding

[∇f(µ)]i(Mi − µi) = σi log(c)(Mi − µi) (5.5)

Using 5.4, 5.5, ∇f(µ)T (M− µ) ≥
∑

support[γ] σi log(c)(Mi − µi) = log(c)(dσ[M] − dσ[µ])

since support[µ] = support[γ] and we are considering M with support[M] ⊂ support[γ],

furthermore log(c)(dσ[M] − dσ[µ]) because log(c) ≥ 0 and dσ[M] ≥ dσ[µ] = δ as otherwise

dσ[M] < δ but M∈ Γδ, so ∇f(µ)T (M− µ) ≥ 0 as needed.

Lemma 5.3.3 (generalizing [BHK09]1). For δ ∈ [0, 1], let γ be a measure over the probability

space U = (U, σ) such that Pδγ = trunc1
0[c · ν] for c ∈ [1, 1 + ζ], where ζ > 0. Suppose we

have oracle access to ν, and that we can sample an element from U in time t. Then, for

any 0 < p < 1, we can compute an implicitly represented approximate projection εδ-Pδγ in time

O
(
tδ−1ε−2(log log ζε−1 + log p−1)

)
, with probability 1−p. Moreover, the computed approximate

projection has the form trunc1
0[c̃ · ν], for some c̃ ∈ [1, 1 + ζ].

Proof. As before, we follow [BHK09]: Suppose µ∗ = trunc1
0[c̃ · ν] for some c̃ ∈ [1, 1 + ζ] satisfies

dσ[µ∗] ∈ [δ, (1 + ε)δ], then we claim that µ∗ = εδ-Pδγ.

To see this, note that µ∗ satisfies that for every i µ∗i ≥ Pδγi because we know Pδγ =

trunc1
0[c · ν] and as µ∗ = trunc1

0[c̃ · ν] with dσ[µ∗] ≥ δ hence c̃ ≥ c, and dσ[µ∗] − dσ[Pδγ] ≤ εδ

which comes from 5.3.1: as dσ[Pδγ] = δ, and by definition of µ∗, dσ[µ∗] ∈ [δ, (1 + ε)δ].

1The approximation parameter in [BHK09] is εδN rather than εδ in our case; this difference is due to our
scaling of N -dimensional vectors by the distribution σ.
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Now to show that µ∗ is εδ-Pδγ, we need that µ∗ ∈ Γδ and D(M||µ∗) ≤ D(M||Pδγ) + εδ.

Obviously µ∗ ∈ Γδ because dσ[µ∗] ≥ δ, and to see the second note,

D(M||µ∗)−D(M||Pδγ) =
∑
U
σiMi log

(
Pδγi
µ∗i

)
−
∑
U
σiPδγi +

∑
U
σiµ
∗
i

Since ∀xi Pδγi/µ∗i ≤ 1 so log(Pδγi/µ
∗
i ) ≤ 0 giving D(M||µ∗) − D(M||Pδγ) ≤

∑
U σiµ

∗
i −∑

U σiPδγi = dσ[µ∗]− dσ[Pδγ] ≤ εδ.

The constructive part of 5.3.3 is identical to that of [BHK09]: c̃ as needed can be found by

binary search over [1, 1 + ζ] and the with high probability clause comes from using Hoeffding’s

bounds to estimate the density by sampling at each iteration.

5.3.1 Generalized Barak et al’s Total Loss Lemma

The extensions of Barak et al. results tie in to yield the following Lemma (as in Barak et al’s

original framework) which captures the game playing setup as introduced in section 2.1.5.2.

This lemma is fundamental to the analysis of our constructions.

Theorem 5.3.4 (Generalized Total Loss Lemma (Barak et al)). Suppose (U, σ) is a finite

probability space and let Γ be a closed convex set of measures on U . Let ε ∈ (0, 1
2), µ1 ∈ Γ

be arbitrary and mt(x) be arbitrary penalty. Define γt+1 = (1 − ε
4)m

t(x)µt(x) and µt+1 =

α− approx PΓγ
t+1. Then ∀µ ∈ Γ

λ∑
i=1

Eσ[µt,mt]− α
ε λ ≤ (1 + ε)

λ∑
i=1

Eσ[µ,mt] + 1
εD(µ||µ1)

where λ ∈ N and D(·||·), the generalized Bregman Divergence, D−ent w.r.t. distribution σ.

Proof. The proof follows by the same computations as Barak et al: by linearity of expectation

σ factors out at every step. To start we have:

D(µ||γt+1)−D(µ||µt) =
∑
U

σiµ(xi) log

(
µ(xi)

γt+1(xi)

)
−
∑
U

σiµ(xi) +
∑
U

σiγ
t+1(xi)

−

(∑
U

σiµ(xi) log

(
µ(xi)

µt(xi)

)
−
∑
U

σiµ(xi) +
∑
U

σiµ
t(xi)

)

This yields D(µ||γt+1)−D(µ||µt) =
∑

U σiµ(xi) log

(
µt(xi)

γt+1(xi)

)
−
∑

U σiµ
t(xi)+

∑
U σiγ

t+1(xi).

Using
µt(xi)

γt+1(xi)
= (1− ε)−mti gives:
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∑
U

σiµ(xi) log

(
µt(xi)

γt+1(xi)

)
=
∑
U

σiµ(xi) log
(

(1− ε)−mti
)

= −
∑
U

σiµ(xi)m
t
i log (1− ε) .

By − log(1− ε) ≤ ε(1 + ε) for ε ≤ 1
2 ,

∑
U

σiµ(xi) log

(
µt(xi)

γt+1(xi)

)
≤ ε(1 + ε)

∑
U

σiµ(xi)m
t
i = ε(1 + ε)Eσ[µ,mt]

Now
∑

U σiγ
t+1(x) =

∑
U (1− ε)mtiσiµt(x) ≤

∑
U (1−mt

iε)σiµ
t(x) meaning:∑

U

σiγ
t+1(x) ≤

∑
U

σiµ
t(x)−

∑
U

εσim
t
iµ
t(x) =

∑
U

σiµ
t(x)− εEσ[M t,mt].

Hence D(µ||γt+1)−D(µ||µt) ≤ ε(1+ ε)Eσ[µ,mt]− εEσ[M t,mt], and by definition of (α, σ)−
approx Pδγ

t+1 D(µ||γt+1) ≥ D(µ||Pδγt+1) so D(µ||γt+1) ≥ D(µ||µt+1) − α and, therefore,

D(µ||µt+1)−D(µ||µt) ≤ ε(1 + ε)Eσ[µ,mt]− εEσ[M t,mt] + α. This implies
∑λ

t=1 D(µ||µt+1)−
D(µ||µt) ≤

∑λ
t=1

(
ε(1 + ε)Eσ[µ,mt]− Eσ[M t,mt] + α

)
yielding:

D(µ||µλ+1)

ε
− D(µ||µ1)

ε
≤

λ∑
t=1

(
(1 + ε)Eσ[µ,mt]− Eσ[M t,mt]

)
+
λα

ε

So it follows that
∑λ

t=1 Eσ[M t,mt]− λα
ε
≤
∑λ

t=1(1 + ε)Eσ[µ,mt]− D(µ||µλ+1)

ε
+

D(µ||µ1)

ε
.

Thus,
λ∑
t=1

Eσ[M t,mt]− λα

ε
≤

λ∑
t=1

(1 + ε)Eσ[µ,mt] +
D(µ||µ1)

ε



Chapter 6

Uniform Constructions

6.1 Algorithmic DMTMIN-MAX

6.1.1 On-Line Learning Algorithm

Next we introduce the Online Learning Algorithm1 OLL (due to Zhang[Zha11] and Barak et

al.[BHK09]), generalized to arbitrary finite probability space U = (U, σ). A variant of OLL was

utilized by Zhang to give an analysis of query complexity of DMTpseudorandom while Barak et

al[BHK09] used OLL to get at hardcore measures.

The algorithm takes as input a distribution ρ over U , a class F of [0, 1]-bounded functions

over U along with parameters 0 < ε, δ < 1. Starting with the constant δ-dense measure µ1 = δ·1,

the algorithm iterates doing multiplicative updates and approximate Bregman projections on

to the space of δ-dense measures to get a new δ-dense measure µt+1 from the current measure

µt. The algorithm uses as “penalty” mt the function f which witness that µt is not a model

for ρ. In usual setup OLL has access to an oracle with produces such witnesses.

After at most T = O(ε−2 log δ−1) iterations, either we get, for some 1 ≤ t ≤ T , a measure

µt that is a δ-dense model for the distribution ρ, or we get that the average F of all penalty

functions mt is a “universal” distinguisher in the sense that the same function F is a witness

to failure of every δ-dense measure to be a model for ρ. More precisely, we have the following:

Theorem 6.1.1 (Analysis of OLL). For a finite probability space (U , σ), a class F , a distri-

bution ρ over U , and parameters ε, δ ∈ (0, 1), the algorithm OLL finds

1. Either a δ-dense (ε,F)-model µt for ρ, for some 1 ≤ t ≤ T with µt ∈ F∗O(T ),

2. Or a test F : U → [0, 1] such that F [µσ]−F [ρ] > ε/4 for every measure µ with dσ(µ) = δ

(thereby witnessing that ρ has no δ-dense (ε/4,F)-model) where F = 1
T

∑T
t=1m

t with

mt ∈ F .
1For more details on-line learning algorithms setup see Blum [Blu96]

48
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Algorithm 1 OLL[ρ,F , δ, ε] (Generalized DMTAlgorithmic[Zha11])

t = 1, define the measure µ1 by µ1(x) = δ, for each x ∈ U
T = 16

ε2
log(1

δ ), α = ε2δ
16

while t < T do
if ∃f ∈ F such that f [(µt)σ]− f [ρ] > ε then
mt = f for some f ∈ F satisfying f [(µt)σ]− f [ρ] > ε
νt+1(x) = (1− ε

4)m
t(x)µt(x)

µt+1 = α- Pδν
t+1

t = t+ 1
else

return MODEL, µt

end if
end while
return DISTINGUISHER, F = 1

T

∑T
t=1m

t

Proof. Observe that the algorithm OLL outputs “MODEL” only if, for some µt, it holds that

f [(µt)σ] − f [ρ] ≤ ε for every f ∈ F . Since the class F is closed under negation, the same

inequality holds also for f̄ , which implies that f [ρ] − f [(µt)σ] ≤ ε for every f ∈ F as well. So

we get that |f [(µt)σ − f [ρ]| ≤ ε for all f ∈ F , and hence, µt is a model for ρ. By construction,

all measures µj , 1 ≤ j ≤ T , are δ-dense, and so µt is a δ-dense (ε,F)-model for ρ.

Now suppose that the algorithm OLL outputs “DISTINGUISHER”. We will show that in

this case the function F constructed by the algorithm is such that, for every measure µ over U

with dσ(µ) = δ,

F [µσ]− F [ρ] > ε
4 . (6.1)

Observe that F has complexity T relative to F as F = 1
T

∑T
t=1m

t for mt ∈ F . Using

Eq. (6.1) and the fact that F is an average of tests mt from F , we get that some mt (with t

depending upon µ) is a witness to µ not being an (ε/4,F)-model for ρ. Hence, ρ has no δ-dense

(ε/4,F)-model.

Now we prove Eq. (6.1). First, by the construction of F , we have∑
T

E(µt)σ [mt] >
∑
T

Eρ[mt] + εT, (6.2)

where
∑

T denotes the summation
∑T

t=1. By the Total Loss Lemma, Lemma 5.3.4, we get∑
T

Eσ[µt ·mt] ≤ (1 + ε
4)
∑
T

Eσ[µ ·mt] + 4
εD(µ||µ1) + 4α

ε T. (6.3)
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We have Eσ[µt · mt] = dσ(µt) · E(µt)σ [mt], and hence, using the fact that dσ(µt) ≥ δ for all

1 ≤ t ≤ T and Eq. (6.2), we conclude that

∑
T

Eσ[µt ·mt] ≥ δ ·
∑
T

E(µt)σ [mt] > δ

(∑
T

Eρ[mt] + ε · T

)
= δ · T · (Eρ[F ] + ε) . (6.4)

Similarly, we have that Eσ[µ ·mt] = dσ(µ) · Eµσ [mt] = δ · Eµσ [mt], and so,∑
T

Eσ[µ ·mt] = δ · T · Eµσ [F ]. (6.5)

We also have

D(µ||µ1) = Eσ
[
µ · log

(
µ
µ1

)]
+ dσ(µ1)− dσ(µ) ≤ δ log δ−1, (6.6)

using the fact that µ1(x) = δ for all x ∈ U , and hence dσ(µ1) = δ = dσ(µ), as well as the

inequality µ(x) · log(µ(x)/δ) ≤ µ(x) · log(1/δ), which follows from 0 ≤ µ(x) ≤ 1 and 0 log 0 = 0.

Using Eqs. (6.4)–(6.6) inside Eq. (6.3), we get

δT · (Eρ[F ] + ε) <
(

1 +
ε

4

)
δT · Eµσ [F ] +

4

ε
δ log δ−1 +

4α

ε
· T. (6.7)

Dividing both sides of Eq. (6.7) by δT , and using the definition of T = 16ε−2 log δ−1 and

α = ε2δ/16, we get Eµσ [F ] − Eρ[F ] > ε − (ε/4) · Eµσ [F ] − (ε/4) − (ε/4). The latter is at least

ε/4, since Eµσ [F ] ≤ 1.

Remark 6.1.2. Consider a two-player zero-sum game where the first player chooses f ∈ F
and the second player chooses a δ-dense measure µ, with the payoff for the first player given

by f [µσ] − f [ρ]. Then OLL[ρ,F , δ, ε] returns either a mixed strategy for the second player

which does well against every strategy of first player, or vice versa for the first player. Thus

OLL finds approximately optimal mixed strategies for this class of zero-sum games between

δ-dense measures and algorithms F . (This topic has been explored by by Vadhan and Zheng

[VZ11] as well.) In fact, the algorithm OLL is the Multiplicative Weights Algorithm of Fre-

und and Schapire [FS99] for approximately solving two-player zero-sum games, combined with

taking Bregman projections (as in the Smooth Boosting Algorithm of Kale[Kal07] and Barak et

al. [BHK09]); the projections onto the set Γδ of δ-dense measures are taken to ensure that the

strategy of the second player at each stage is a δ-dense measure.

It’s easily evident that the function F computed in the “DISTINGUISHER” branch of the

algorithm OLL satisfies the requirements of the Constructive DMTMin-Max (Theorem 2.2.10)

with λ = 16ε−2 log δ−1. We just need to establish the complexity bounds on the model to show

OLL gives an explicit form of DMTMin-Max .
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Observe that the complexity of the measures µj , for 1 < j ≤ T , produced by the algorithm is

O(j). Indeed, µ1 has complexity 1. For j > 1, νj is obtained from µj−1 using one exponentiation

and multiplication. Finally, the approximate Bregman projection of νj requires two extra

operations: scalar multiplication and truncation, by Lemma 5.3.3. Overall, µj is obtained from

µj−1 using a constant number of operations. So the complexity of model µt returned by the

algorithm OLL in the “MODEL” branch is at most O(t) ≤ O(λ); more precisely:

Lemma 6.1.3. For all measures µt, 1 ≤ t ≤ T computed by OLL, if the witnesses ms (with

s ≤ t) produced by the oracle are {0, 1}-Boolean then µt ∈ F5t, otherwise µt ∈ F∗5t.

Proof. The proof as outlined above is by induction on t. For t = 1, compF [µ1] = 1 ≤ 5,

since µ1 = δ · 1. Assuming the claim holds for t, consider the complexity of updating mt:

νt+1(x) = (1− ε
4)m

t(x)µt(x). In case mt is Boolean (1− ε
4)m

t(x)µt(x) = (mt(x) · (1− ε
4) + (1−

mt(x))) ·µt(x) = (1− ε
4m

t(x)) ·µt giving compF [νt+1] ≤ compF [µt]+3 which is at most 5 · t+3

by the inductive assumption.

If mt is not Boolean then only a single exponentiation operation is needed so the above

complexity bound still holds but w.r.t to the to set of operations inclusive of exponentia-

tion. By Lemma 5.3.3, µt+1 = trunc1
0(ct · νt+1) for some constant ct, and so, compF [µt+1] ≤

compF [νt+1] + 2 ≤ 5 · t + 5 = 5 · (t + 1) where whether comp includes exponentiation (i.e.

comp∗) depends on the witnesses used.

With this it follows that 6.1.1 is an explicit form of Theorem 2.2.10 (DMTMin-Max):

Corollary 6.1.4. Algorithm OLL yields an algorithmic DMTMin-Max (Theorem 2.2.10) with

λ(ε, δ) = O(ε−2 log δ−1) and c = 4.

6.1.2 Avoiding Exponentiation

As observed earlier, if F is a Boolean class, the operation of limited exponentiation is not

needed. In general, when F is a class of [0, 1]-bounded functions, we can use thresholding to

get from f ∈ F satisfying the condition in the if -statement of the algorithm OLL a Boolean

function f ′ = thθ(f), for some θ ∈ [0, 1], such that f ′ satisfies the same condition.

To see this observe that for any function g : U → [0, 1] and every x ∈ U ,

g(x) = Eθ∈[0,1][thθ[g(x)]].

Hence, for any g and any distribution π over U , Eπ[g] = Eθ∈[0,1][Eπ[thθ[g]]] (refer to Lemma

A.2.2 for details). Finally, using this equality, the linearity of expectation, and averaging, we

conclude that if there is some f such that f [(µt)σ]− f [ρ] > ε, then there is also some θ ∈ [0, 1],

such that, for f ′ = thθ[f ], we have f ′[(µt)σ]− f ′[ρ] > ε.
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So we have that for an arbitrary class F , we either get a model µt of low complexity without

using exponentiation, or get a universal distinguisher F that is the average of few thresholded

functions from F (because now the updates must use the thresholded witnesses). Thus, we can

trade the simplicity of the model for the extra complexity of the universal distinguisher. As

we show next, this thresholding can be made discrete: the distinguisher can be made to be an

average of functions from FO(ε) i.e. the thresholds needed are not arbitrary. This is accounts

for use of classes FO(ε) in the hypothesis of Theorems 2.2.3, 2.2.6, 2.2.7.

6.2 Algorithmic DMTMIN-MAX without exponentiation

Since given access to an oracle which produces a function f ∈ F witnessing that a current

measure µt is not an (ε,F)-model for ρ, the algorithm OLL will efficiently construct either a

dense model µ for ρ or a universal distinguisher F . So we have an algorithmic DMTMin-Max.

The idea here’s to make the thresholding process algorithmic as well.

To avoid the exponentiation operation following the “thresholding” approach outlined above,

one needs to find appropriate thresholds θ efficiently (hence the need to discretized the thresh-

olds as pointed out). This can be done by random sampling, with some slight loss in parameters.

The details follow.

Consider the algorithm OLL′ which is slightly modded OLL:

Algorithm 2 OLL′[ρ,F , δ, ε] (Modified DMTAlgorithmic)

t = 1, define the measure µ1 by µ1(x) = δ, for each x ∈ U
T = 256

ε2
log(1

δ ), α = ε2δ
256

while t < T do
if ∃f ∈ F such that f [(µt)σ]− f [ρ] > ε then

let f ∈ F be any function such that f [(µt)σ]− f [ρ] > ε
for each 0 ≤ n ≤ d2ε−1e, set fn = thnε/2(f)
let 0 ≤ n∗ ≤ d2ε−1e be such that, with high probability, fn∗ [(µ

t)σ]− fn∗ [ρ] > ε/4
mt = fn∗

νt+1(x) = (1− ε
16)m

t(x)µt(x)
µt+1 = α- Pδν

t+1

t = t+ 1
else

return MODEL, µt

end if
end while
return DISTINGUISHER, F = 1

T

∑T
t=1m

t

The estimation of fn[ρ] and fn[(µt)σ] is done by random sampling; by Chernoff bounds, we

can achieve the additive error at most ε/8 for each, with high probability, in time poly(ε−1).
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Assuming that the required integer value n∗ exists (and hence can be efficiently found by random

sampling and the testing the d2ε−1e possible n∗ threshold values), the rest of the algorithm is the

same as before, and so the old analysis of Theorem 6.1.1 applies: we either get a δ-dense (ε,F)-

model µt for ρ, or a universal distinguisher F with the slightly worse distinguishing parameter

ε/16 (rather than ε/4). The model µt has complexity relative to F at most 10 · t = O(t) by

Lemma 6.1.3 (note that the complexity does not involve exponentiation i.e. µt ∈ FO(t)) as we

use the Boolean functions mt, obtained from some f by a single threshold operation for the

updates. The complexity of F is obviously at most 2T .

It remains to argue that n∗ always exists. To this end the following basic properties of the

threshold operation are required(the notation Eθ∈[0,1] means that the expectation is taken over

a uniformly random value θ from the interval [0, 1]):

Lemma 6.2.1. Let g : U → [0, 1] be any function, and let ρ and τ be any distributions over U .

Suppose Eρ[g] > Eτ [g] + ε for some ε ∈ [0, 1]. Then there exist κ, θ, n satisfying:

1. κ ∈ [0, 1] and Eρ[thκ[g]] > Eτ [thκ[g]] + ε.

2. θ ∈ [ε/2, 1] and Eρ[thθ[g]] > Eτ [thθ−ε/2[g]] + ε/2 [RTTV08a].

3. n ∈ N, n ≤ d2ε−1e such that Eρ[thnε/2[g]] > Eτ [thnε/2[g]] + ε/2.

Proof. From Lemma A.2.2 (item (5)), for θ ∼ uniform[0, 1], Eσ[Eθ[Thθ[f ]] = Eσ[f ], so by

averaging there must exists a threshold κ ∈ [0, 1] such that Eρ[thκ[g]] > Eτ [thκ[g]] + ε holds.

To see item (2), assume that it fails, i.e., for every θ ∈ [ε/2, 1], Eρ[thθ[g]] ≤ Eτ [thθ−ε/2[g]] +

ε/2. Using Lemma A.2.2 (item (5)) and the fact that tht[g(x)] as a function of t with x fixed

is piece-wise constant with only discontinuity at g(x) = t gives:

Eρ[g] = Eθ[Eρ[thθ[g]]] =

∫ ε/2

0
Eρ[thθ[g]]dt+

∫ 1

ε/2
Eρ[thθ[g]]dt ≤ ε/2 +

∫ 1

0
(Eτ [thθ[g]] + ε/2) dt

yielding Eρ[g] ≤ Eθ∈[0,1][Eτ [thθ[g]]] + ε = Eτ [g] + ε: contradiction.

Finally, θ in item (2) must satisfy θ ∈ [nε/2, (n+ 1)ε/2] for some n ∈ N with n ≤ 2dε−1e. It

follows that nε/2 ∈ [θ− ε/2, θ]. By item (2), we get Eρ[thnε/2[g]] ≥ Eρ[thθ[g]] > Eτ [thθ−ε/2[g]] +

ε/2 ≥ Eτ [thnε/2[g]] + ε/2, where we used the fact that thα[v] ≥ thβ[v] for any v, α, β ∈ [0, 1]

such that α ≤ β.

The existence of n∗ required by the modified algorithm OLL′ follows from item (3) of

Lemma 6.2.1. This, together with our arguments above, yields the following analysis of the

modified algorithm OLL′.
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Theorem 6.2.2 (Analysis of OLL′). For a finite probability space (U, σ), a class F , a distri-

bution ρ over U , and parameters ε, δ ∈ (0, 1), the algorithm OLL′ finds

1. Either a δ-dense (ε,F)-model µt for ρ, for some 1 ≤ t ≤ T with µt ∈ FO(T ),

2. Or F : U → [0, 1] such that F [µσ] − F [ρ] > ε/16 for every measure µ with dσ(µ) = δ,

where F = 1
T

∑T
t=1m

t with mt ∈ F ε/2.

6.3 Applications of the DMT Algorithm

6.3.1 Constructive Dense Model Theorems

We first prove Theorem 2.2.7.2, re-stated in the following contrapositive form.

Theorem 6.3.1 (DmtPseudodensity). Given ε, δ ∈ (0, 1), there is a λ = O(ε−2 log δ−1) such

that the following holds. Let U = (U, σ) be any finite probability space and let F be any class of

functions over U .

Suppose ρ is a probability distribution over U such that, for every δ-dense measure µ ∈ Fλ,

there is an f ∈ F such that |f [µσ]− f [ρ]| > ε (witnessing that µ is not an (ε,F)-model for ρ).

Then there is a [0, 1]-valued function Φ ∈ Thλ[F ε/2] such that Φ[σ] < δ ·Φ[ρ]−εδ/16 (witnessing

that ρ does not have (εδ/16,ThO(λ)[F ε/2])-pseudodensity δ).

Proof. We run Algorithm OLL′[ρ,F , δ, ε], with T = O(ε−2 log δ−1). By Theorem 6.2.2, the

algorithm OLL′ either finds a δ-dense (ε,F)-model µ for ρ with µ ∈ FO(T ), or finds a universal

distinguisher F . For λ = O(T ) sufficiently large, ρ does not have a δ-dense (ε,F)-model µ ∈ Fλ.

For such a λ, algorithm OLL′ will produce the distinguisher F ∈ FO(T ) such that, for every

measure γ with dσ(γ) = δ, F [ρ] + ε
16 < F [γσ]. This implies that F̄ [ρ] > F̄ [γσ] + ε

16 , where

F̄ = 1− F .

Next we argue similarly to [RTTV08a]. Order elements of U such that F̄ (xi) ≥ F̄ (xi+1).

Let n be the largest integer such that dσ[{xi : i ∈ [n]}] < δ, define measure γ by γ(xi) = 0 for

i ≥ n+ 2, γ(xi) = 1 for i ∈ [n] and γ(xn+1) = c where c ∈ (0, 1] is such that dσ[γ] = δ.

By Lemma 6.2.1 (item 1), there exists κ ∈ [0, 1] such that for Φ = thκ[F̄ ],

Φ[ρ] > Φ[γσ] + ε
16 . (6.8)

Since 1 ≥ Eρ[Φ] > Eγσ [Φ] + ε
16 , we get 1 > Eγσ [Φ]. Since Φ is Boolean, we conclude that

there is an x∗ ∈ support[γ] such that Φ(x∗) = 0, in particular Φ(xn+1) = 0 since F̄ (xn+1) =

minx∈∈support[γ][F̄ (x)]. So we have that for every x ∈ support[γ̄] ⊂ {xi : i ≥ n+ 1}, Φ(x) = 0

implying Eσ[Φ · γ̄] = 0.
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Using this, as well as the identity dσ(γ) ·Eγσ [Φ] = Eσ[Φ ·γ], we get Eσ[Φ] = Eσ[Φ ·γ]+Eσ[Φ ·
γ̄] = δ ·Eγσ [Φ]. By Eq. (6.12), we conclude that Φ[σ] < δ ·Φ[ρ]− εδ

16 and clearly, Φ ∈ Thλ[F ε/2]

since F = 1
T

∑T
t=1m

t with mt ∈ F ε/2, therefore F̄ = 1
T

∑T
t=1m

t and by definition mt ∈ F ε/2

implies mt ∈ F ε/2.

Next we prove Theorem 2.2.6.2, re-stated as below. However, we first note the following

remark:

Remark 6.3.2. Making the arguments of Theorems 6.3.1, 6.3.3 but using OLL instead of

OLL′ yields the Theorems 2.2.6.1, 2.2.6.1 in contrapositive.

Theorem 6.3.3 (DmtPseudorandom). Given ε, δ ∈ (0, 1), there is a λ = O(ε−2 log δ−1) such

that the following holds. Let U = (U, σ) be any finite probability space, and let F be any class

of functions over U .

Suppose ρ is a probability distribution over U such that, for every δ-dense measure µ ∈ Fλ,

there is an f ∈ F such that |f [µσ]− f [ρ]| > ε (witnessing that µ is not an (ε,F)-model for

ρ). Then there is a [0, 1]-valued function Φ ∈ Thλ[F ε/2] such that, for every distribution τ

over U , where ρ is δ-dense inside τ , we get that Φ[τ ]− Φ[σ] > εδ/16 (witnessing that τ is not

(εδ/16,ThO(λ)[F ε/2])-pseudorandom).

Proof. As in the proof of Theorem 6.3.1, we get Φ ∈ Fλ such that δ ·Φ[ρ]−Φ[σ] > εδ/16. By the

δ-density of ρ inside τ , we get Φ[τ ] ≥ δ ·Φ[ρ], and hence, Φ[τ ]−Φ[σ] > εδ/16, as required.

Remark 6.3.4. The proofs of Theorems 6.3.1 and 6.3.3 yield constructive versions. For ex-

ample, in the case of DmtPseudodensity: if ρ has ( εδ16 ,Fλ)-pseudodensity at least δ, then it must

be the case that, for some t ≤ T ∈ O(ε−2 log δ−1), the measure µt ∈ FO(T ) produced by the

algorithm OLL′ is a δ-dense (ε,F)-model for ρ. The case of DmtPseudorandom is similar.

Remark 6.3.5. Making the arguments of Theorems 6.3.1, 6.3.3 but using OLL instead of

OLL′ yields the Theorems 2.2.6.1, 2.2.6.1 in contrapositive.

Remark 6.3.6. Observe that OLL′ is used as a black box; any algorithm which can be used

to prove 6.2.2 (or 6.1.1) with the model of low complexity and the uniform distinguisher F the

an average of small number of functions from F would work. The same holds for the proofs of

Lcat and HCLStrong which follow.

6.3.2 Constructive Low Complexity Approximation Theorem

Inspired by our proof of Theorem 3.2.1 (our reduction from Dense Model Theorems to Lcat),

we also prove Lcat from Theorem 6.2.2. We re-state it below.
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Theorem 6.3.7 (Uniform Low Complexity Approximation Theorem). Given any ε > 0, there

exists a λ = O(ε−2) such that the following holds. Let U = (U, σ) be any finite probability

space, any let F be any class of functions over U . Then, for every g : U → [0, 1], there exists a

function h ∈ Fλ such that h is an (ε,F)-approximation of g in U .

Proof. Without loss of generality assume α = dσ(g) is known, and that α ≥ 1
2 (since otherwise

we can work with ḡ). Set ε′ = c · ε, for a sufficiently small constant c to be determined.

Imagine running the algorithm OLL′[gσ,F , α, ε′]. We claim that OLL′ must produce an

α-dense model µt for gσ, for some t ∈ O(ε−2 logα−1); note that 1 ≤ α−1 ≤ 2 implies that

t ∈ O(ε−2).

Indeed, suppose otherwise. Then, by Theorem 6.3.1, we have a Φ : U → [0, 1] such that

αEgσ [Φ] − αε
16 > Eσ[Φ]. This and the identity Eσ[g · Φ] = dσ(g) · Egσ [Φ] imply that Eσ[Φ] ≥

Eσ[gΦ] = α · Egσ [Φ] > δε
16 + Eσ[Φ]. A contradiction.

So OLL′[gσ,F , α, ε′] constructs a α-dense measure µt ∈ Fλ which is an (ε′,F)-model for gσ,

where λ ∈ O(ε2). By random sampling, we can estimate dσ(µt), and scale µt down, if necessary,

getting a model h for gσ such that α− ε′ ≤ dσ(h) ≤ α+ ε′ (with high probability). The rest of

the argument is exactly the same as in the proof of Theorem 3.2.1. We get that, for all f ∈ F ,

|Eσ[(g − h)f ]| ≤ O(ε′), which can be made less than ε by choosing c small enough.

Note that we could have used OLL instead of OLL to get a possibly qualitatively different

approximation.

Remark 6.3.8. The proof of Theorem 6.3.7 yields the constructive version of LCAT. As in

the proof, imagine running OLL′. For each α-dense measure µt produced by OLL′, form a

scaled-down measure µ̃t such that dσ(µ̃t) ∈ [α − ε, α + ε] with high probability. Propose this µ̃t

as a candidate for an approximation of g. If this is not an approximation yet, and we get a

function f ∈ F witnessing that µ̃t is not a (2ε,F)-approximation for g:

∣∣Eσ[f · (µ̃t − g)]
∣∣ > 2ε,

then we conclude (as in the proof of Theorem 3.2.1) that |f [(µ̃t)σ]−f [gσ]| > ε. Hence, |f [(µt)σ]−
f [gσ]| > ε, witnessing that µt is not an (ε,F)-model for gσ yet. Therefore, we can continue

running OLL′ with this witness f , to obtain a new measure µt+1. Since OLL′ cannot run for

more than T ∈ O(ε−2) steps (as argued in the proof of Theorem 6.3.7 above), we will obtain a

(2ε,F)-approximation h ∈ FO(T ) for g within T iterations.
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6.3.3 Constructive Strong Hardcore Lemma

Here using algorithmic DMTmin-max, we prove Theorem 2.2.3 by first showing that every hard-

core measure, however small, has the model of the optimal density. Recall that the motivation

for trying to push this through via DMTmin-max was discussed in section 4.1.1.

Lemma 6.3.9. For any ε, δ ∈ [0, 1], there is a λ ∈ O(ε−2 log δ−1) such that the following holds.

Let U = (U, σ) be any finite probability space, and let F be any Boolean class of functions

over U . Suppose a function g : U → {0, 1} is (δ,Thλ[F ])-hard in U . Let µ0 be an (ε/8,F)-

hardcore measure for g in U of arbitrary density. Then the algorithm OLL[(µ0)σ, g ⊕ F , 2δ, ε]
will produce, within λ iterations, a 2δ-dense ((9/8)ε,F)-hardcore measure µ∗ ∈ FO(λ) for g in

U .

Proof. Suppose OLL[(µ0)σ, g ⊕F , 2δ, ε] returns MODEL. Then there exists some t ≤ T = λ ∈
O(ε−2 log δ−1) such that µt is a 2δ-dense (ε,F)-model for (µ0)σ. That is, for µ∗ = µt, we have

that, for all f ∈ F , |E(µ∗)σ [g⊕f ]−E(µ0)σ [g⊕f ]| ≤ ε. By the definition of hardcore, we have that

|E(µ0)σ [g⊕f ]− 1
2 | ≤ ε/8. Plugging this into the above inequality yields |E(µ∗)σ [g⊕f ]− 1

2 | ≤ (9/8)ε,

implying that µ∗ is ((9/8)ε,F)-hardcore measure for g w.r.t σ. Also, by Lemma 6.1.3, we have

that µ∗ ∈ FO(λ), as required.

It remains to argue that the OLL algorithm cannot return DISTINGUISHER. Suppose

otherwise, then by Theorem 6.1.1, we get a test F = 1
T

∑T
t=1(g ⊕ ft), with ft ∈ F for all

1 ≤ t ≤ T , such that F [Sσ] − F [(µ0)σ] > ε/4 for every subset S ⊆ U with dσ(S) = 2δ. Since

µ0 is an ε/8-hardcore for g, we get that (g ⊕ ft)[(µ0)σ] ∈ [1
2 − ε/8,

1
2 + ε/8] for every 1 ≤ t ≤ T ,

and hence, F [Sσ] > 1
2 + ε/8. Using the identity F̄ [ρ] = 1− F [ρ], we get

ESσ [F̄ ] < 1
2 − ε/8. (6.9)

Using the fact that g and F are Boolean, it is also easy to see that

F̄ =
1

T

T∑
t=1

(g ⊕ f̄t) =

∣∣∣∣∣g − 1

T

T∑
t=1

f̄t

∣∣∣∣∣ . (6.10)

Denoting Φ = 1
T

∑T
t=1 f̄t, we get from Eqs. (6.9) and (6.10) that ESσ [|g − Φ|] < 1

2 . The con-

tradiction is now achieved by the following Lemma first given by Holenstein [Hol06, Hol05].

Holenstein’s original argument was sets not measures with base distribution as uniform; since

there are some subtleties with getting the extension we need, section 6.3.3.2 contains a detailed

exposition.

Lemma 6.3.10 (Holenstein). Suppose Φ : U → [0, 1] is such that, for all S ⊆ U of dσ(S) = 2δ,

ESσ [|g − Φ̄|] > 1
2 then there is a κ ∈ [0, 1] such that Eσ[|g − thκ[Φ]|] < δ.



CHAPTER 6. UNIFORM CONSTRUCTIONS 58

Note that thκ[Φ] ∈ Thλ[F ], but since g is (δ,Thλ[F ])-hard w.r.t σ this cannot hold true.

Remark 6.3.11. Again the proof of Lemma 6.3.9 is constructive. Suppose a measure µt con-

structed by the algorithm OLL is not a ((9/8)ε,F)-hardcore for g yet, and suppose we get a

function f ∈ F showing that. Then g⊕f witnesses that µt is not an (ε, g⊕F)-model for (µ0)σ,

and so we can continue with OLL to the next measure µt+1. Within O(ε−2 log δ−1) iterations,

the algorithm will produce a 2δ-dense ((9/8)ε,F)-hardcore measure µ ∈ (g ⊕ F)λ for g, where

λ ∈ O(ε−2 log δ−1).

So from lemma 6.3.9, it follows that weak HCL implies strong HCL. In fact, for the process

described in Remark 6.3.11 to run, we do not need to have any initial hardcore measure µ0. We

can simply run OLL with an imaginary µ0 (which we do not need to have explicitly in order to

get new measures µt+1 from current µt) by hardwiring E(µ∗)σ [g⊕f ] = 1
2 . Within O(ε−2 log δ−1)

iterations, we will obtain a hardcore measure of density 2δ. This latter algorithm is, in fact,

exactly the algorithm used by Barak et al. [BHK09] in their proof of the Strong Hardcore

Lemma. Since we want to use OLL as a black-box and OLL needs a source measure, an option

is to go through Trevisan et al’s reduction from Low Complexity Approximation Theorem but

this has problems as discussed before, so instead we seed the domain with an artificial hardcore

measure.

6.3.3.1 Using an artificial hardcore measure

Suppose g is (δ,Thλ[F ])-hard on (σ, U) and ε > 0 is given. Because of Lemma 2.1.14 we can

assume 2δ + 2ε < 1.

Set X = {x1, x2}. Fix x0 ∈ U and extend g, f ∈ F to U∗ = U ∪ X by defining g∗, f∗ ∈
F∗ : U∗ → [0, 1], g∗(x1) = ḡ∗(x2) = g(x0), f∗(x1) = f∗(x2) = f(x0) and f∗ ∈ Thλ[F∗] − F∗
extended to U∗ is whatever it needs to be based on the extension of F , however, note for all

f∗ ∈ Thλ[F∗], f∗(x1) = f∗(x2). Also, it follows that F∗ is a class as well (since if f extends to

f∗ then f̄ extends to f∗).

Define a distribution σ∗ on U∗ as σ on U with probability (1−εδ) and as uniform distribution

on X with probability εδ.

Claim 6.3.12. Given ε > 0, with respect to (σ∗, U∗), g∗ is (δ − εδ2 + 1
2εδ,Thλ[F∗])-hard and

the set X is (ε,F∗)− hardcore.

Proof. Since for all f ∈ Thλ[F∗], |g∗(x1)−f∗(x1)| = 1−|g∗(x2)−f∗(x2)|, EX [|g∗−f∗|] = 1
2 . Also,

for any f∗ ∈ Thλ[F∗], Eσ∗ [|g∗ − f∗|] = (1− εδ)Eσ[|g− f |] + εδEX [|g∗ − f∗|] ≥ δ− εδ2 + 1
2εδ.

So using Dmt − Algorithm with 1X yields a (2δ + εδ(1 − 2δ))-dense, (ε,F∗)-hardcore
measure µ∗ w.r.t. σ∗. Set µ = µ∗|U , the restriction of µ∗ to the original space.
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Claim 6.3.13. µ is 2δ − 2ε2δ3-dense, (3ε,F)-hardcore on (U, σ).

Proof. First we establish the density lower bound:

(1− εδ)dσ[µ] + εδ ≥ (1− εδ)Eσ[µ] + εδEX [µ∗] = dσ∗ [µ∗] ≥ 2δ + εδ − 2εδ2

=⇒ dσ[µ] ≥ 2δ + εδ − 2εδ2 − εδ
1− εδ

≥ (2δ − 2εδ2)(1 + εδ) = 2δ − 2ε2δ3

where we used lemma A.1.2 in the last inequality.

Now we show that µ is (3ε,F)-hardcore on (U, σ). Using µ∗ is (ε,F∗)− hardcore w.r.t. σ∗,

for all f∗ ∈ F∗ we have:

1
2 + ε ≥ E(µ∗)σ∗

[|g∗ − f∗|] =
(1− εδ)Eσ[|g − f |µ] + εδEX [|g∗ − f∗|µ∗]

(1− εδ)Eσ[µ] + εδEX [µ∗]
≥ (1− εδ)Eσ[|g − f |µ]

(1− εδ)Eσ[µ] + εδ

=⇒ 1
2 + ε ≥ Eσ[|g − f |µ]

Eσ[µ] + εδ/(1− εδ)
≥ Eσ[|g − f |µ]

Eσ[µ] + 2εδ
(6.11)

Using lemma A.1.4, and that dσ[µ] ≥ 2δ − 2ε2δ3 ≥ δ yields:

1
2 + 3ε ≥ Eσ[|g − f |µ]

Eσ[µ] + 2εδ
+ 2ε ≥ Eσ[|g − f |µ]

Eσ[µ] + 2εδ
+

2εδ

Eσ[µ] + 2εδ
≥ Eσ[|g − f |µ]

Eσ[µ]
= Eµσ [|g − f |]

Claim 6.3.14. γ = (1− εδ)µ+ 1εδ is 2δ-dense, (7
2ε,F)-hardcore on (σ, U)

Proof. Note that dσ[γ] ≥ dσ[µ]. Furthermore, dσ[γ] = (1− εδ)dσ[µ]+ εδdσ[1] = (2δ−2ε2δ3)(1−
εδ) + εδ = 2δ + εδ(1− 2εδ2 − 2δ) ≥ 2δ. Using 6.3.13, for all f ∈ F ,

Eγσ [|g − f |] =
(1− εδ)Eσ[|g − f |µ]

dσ[γ]
+
εδEσ[|g − f |]

dσ[γ]
≤ Eσ[|g − f |µ]

dσ[µ]
+
εδ

2δ
= Eµσ [|g − f |] +

ε

2

therefore, Eγσ [|g − f |] ≤ 1
2 + 7

2ε.

6.3.3.2 Holenstein’s Derandomizaton

The Φ obtained from equation 6.10 can be thought of as generating a randomized function Ψr

with Ψr(x) = 1 with probability Φ(x). If Φ was {0, 1}-Boolean then 6.3.10 follows trivially: if

Φ̄ is equal to g with probability more than 1/2 on every 2δ dense measure then it cannot be

incorrect with probability more than δ on the entire space since if it was then we could pick a

set of x’s where Φ̄ does not match g along with some more x’s to make the density of the set

2δ and as more than half the x’s in this set are where Φ̄ fails to match g, the probability of Φ̄
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matching g on this set must be less than a half which is a contradiction. This argument fails

if Φ is not Boolean, however, Holenstein in [Hol06, Hol05] showed that there’s way to fix the

randomization of Ψ so the probability of g matching Φ can still be bounded as above.

Lemma 6.3.15 (Holenstein). Suppose Φ : U → [0, 1] is such that, for all measures µ over U

with dσ(µ) = 2δ, Eµσ [|g − Φ|] > 1
2 . Then there is a θ ∈ [0, 1] such that Eσ[|g − thθ[Φ̄]|] < δ.

Proof. Define αc(x) := 2|g − Φ| − 1 and α1(x) := 2Φ̄(x) − 1. Order elements based on αc(x)

from smallest to largest, inducing the ordering on the elements x ∈ U : x1, x2, x3, . . . , x|U | and

fix n ∈ N to be largest value for which dσ[{x1, . . . , xj}] < 2δ. Define the measure µ over U as

follows: µ(xi) = 1 for 1 ≤ i ≤ n, µ(xj) = 0 for j > n+ 1, and µ(xn+1) = c for 0 < c ≤ 1 so that

dσ(µ) = 2δ. Note that Support[µσ] = {x1, . . . , xn+1} and Support[µ̄σ] ⊂ {xn+1, . . . , x|U |}.
Define κ := maxx∈Support[µσ ]{αc(x)} = αc(xn+1). Note Eµσ [αc(x)] > 0 as, by assumption,

Eµσ [|g − Φ|] > 1
2 . This also means that κ > 0.

Consider the probabilistic Boolean function Ψ (with internal randomness r) which on input

x ∈ U behaves as follows:

Pr[Ψ(x) = 1] = trunc1
0

[
1

2
+
α1(x)

2κ

]
= trunc1

0

[
1

2
− 1

2κ
+

Φ̄(x)

κ

]
≡ trunc1

0[a+ bΦ̄(x)] ≡ ψ(x)

Claim 6.3.16.

Pr[Ψ(x) = g(x)] = trunc1
0

[
1

2
+
αc(x)

2κ

]
.

Proof. For fixed x, Pr[Ψ(x) = g(x)] = Pr[Ψ = 1|g = 1]P[g = 1] + Pr[Ψ = 0|g = 0]P[g = 0] (the

probabilities are over the internal randomness r of Ψ).

Note αc := 2|g − Φ| − 1 = 2gΦ̄ + 2ḡΦ − 1 = g(2Φ̄ − 1) + ḡ(2Φ − 1). Using that 2Φ − 1 =

−(2Φ̄− 1) = −α1 gives αc = gα1 − ḡα1 and so if g(x) = 1 then α1(x) = αc(x) and if g(x) = 0,

α1(x) = −αc(x) which implies:

Pr[Ψ(x) = 1|g(x) = 1] = trunc1
0

[
1

2
+
αc(x)

2κ

]
Pr[Ψ(x) = 0|g(x) = 0] = 1− trunc1

0 [P[Ψ(x) = 1|g(x) = 0]] = 1− trunc1
0

[
1

2
+
−αc
2κ

]
= trunc1

0

[
1−

(
1

2
+
−αc
2κ

)]
= trunc1

0

[
1

2
+
αc
2κ

]
Therefore,

Pr[Ψ = g] = trunc1
0

[
1

2
+
αc
2κ

]
(P[g(x) = 0] + P[g(x) = 1]) = trunc1

0

[
1

2
+
αc
2κ

]
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.

Since αc(xi) ≥ κ for all i ≥ n + 1, we get Pr[Ψ(xi) = g(xi)] = 1 for all i > n. Hence, in

particular, for every x ∈ U
E(µ̄)σ [Pr[Ψ(x) = g(x)]] = 1. (6.12)

Next, for 1 ≤ i ≤ n+ 1, we have αc(xi) ≤ κ, and so
1

2
+
αc(xi)

2κ
≤ 1. Therefore, we get

Eµσ [Pr[Ψ(x) = g(x)]] ≥ Eµσ
[

1

2
+
αc(x)

2κ

]
=

1

2
+

Eµσ [αc(x)]

2κ
>

1

2
. (6.13)

Since Eσ[Pr[Ψ = g]] = Eσ[µ]Eµσ [Pr[Ψ = g]] + Eσ[µ̄]Eµ̄σ [Pr[Ψ = g]] = 2δEµσ [Pr[Ψ = g]] +

(1 − 2δ)Eµ̄σ [Pr[Ψ = g]] using Eqs. (6.12) and (6.13), yields Eσ[Pr[Ψ = g]] > 1 − δ and as g is

independent of r, Eσ[1− Pr[Ψ = g]] = Eσ[Er[|Ψ− g|]] = Eσ[gEr[Ψ̄] + ḡEr[Ψ]] < δ. This gives

δ > Eσ[|Er[Ψ]− g|] = Eσ[|ψ − g|] = Ek∼[0,1][Eσ[|thk[ψ]− g|]]

Thus, there exists k∗ ∈ [0, 1] such that Eσ[|thk∗ [ψ] − g|] < δ. By construction for any

k ∈ [0, 1], thk[ψ] = thk[trunc1
0[a + bΦ̄]] = thk[a + bΦ̄] = th(k−a)b−1 [Φ̄]. Fix θ = (k∗ − a)b−1, So

thk∗ [ψ] = thθ[Φ̄] giving Eσ[|g − thθ[Φ̄]|] < δ as needed.

And as κ ∈ [−1, 1], therefore,

θ =
(k∗ − a)

b
=

(
k∗ − 1

2

(
1− 1

κ

))
κ = k∗κ− κ− 1

2
= κk∗ − κ

2
+

1

2
∈ [0, 1]

.



Appendix A

Estimates and Manipulations

Technical calculations that were deferred originally in favor of focusing on the bigger scheme

are detailed here.

A.1 Estimates

Lemma A.1.1 (3.2.2). For any a, b, x, y, if |x − y| ≤ ε1 and |a/x − b/y| ≤ ε2, then |a − b| ≤
(b/y)ε1 + xε2.

Proof. Since b/y − ε2 ≤ a/x ≤ b/y + ε2, we get (x/y)b − xε2 ≤ a ≤ (x/y)b + xε2. Since

y − ε1 ≤ x ≤ y + ε1, we get 1− (ε1/y) ≤ x/y ≤ 1 + (ε1/y). Putting these bounds on x/y inside

the earlier bounds on a yields the claim.

Lemma A.1.2. For ε ∈ (0, 1
2), 1/(1− ε) ∈ (1 + ε, 1 + 2ε).

Proof. 1/(1− ε) = 1 + ε/(1− ε) and 1 + ε ≤ 1 + ε/(1− ε) ≤ 1 + 2ε for ε ∈ (0, 1
2)

Lemma A.1.3. For ε > 0, 1/(1 + ε) ≥ 1− ε.

Proof. 1/(1 + ε) = (1 + ε)/(1 + ε)− ε/(1 + ε) ≥ (1 + ε)/(1 + ε)− ε = 1− ε since ε > 0.

Lemma A.1.4. Suppose a, α ∈ [0, 1], b ∈ (0, 1] with a/b ≤ 1, then α/(b+ α) + a/(b+ α) ≥ a/b

Proof. Solving for k in k + a/(b + α) = a/b gives k = (a/b)α/(b + α). Using a/b ≤ 1 implies

k ≤ α/(b+ α), so α/(b+ α) + a/(b+ α) ≥ a/b.

A.2 Simple Algebraic and Averaging Manipulations

Lemma A.2.1. Given ε ∈ (0, 1
2) for a [0, 1]-bounded class F on (U, σ) and functions g, h : U →

[0, 1]:

62



APPENDIX A. ESTIMATES AND MANIPULATIONS 63

1. If g is {0, 1}-Boolean then 2|g − f | = (1− f †g†) and 2|g − f̄ | = (1 + f †g†).

Proof. (1 − f †g†) = 1 − (2f − 1)(2g − 1) = 1 − (4fg − 2f − 2g + 1) = 2(f + g − 2fg) =

2(f(1 − g) + g(1 − f)) = 2|g − f |. 2|g − f̄ | = (1 + f †g†) follows from the fact that

(f̄)† = −(f †).

2. If g is {0, 1}-Boolean then g†|g − h| = g − h.

Proof. Since g = 0 iff g† = −1 and g = 1 iff g† = 1 so g†|g − h| = −(1− g)h+ g(1− h) =

g − h.

3. 2|Eσ[f †(g − h)]| = |Eσ[f †(g† − h†)]|.

Proof. |Eσ[f †(g† − h†)] = Eσ[f †(2g − 1− 2h+ 1)]| = 2|Eσ[f †(g − h)]|.

4. For every f † in class F†, |Eσ[f †(g†− h†)]| = O(ε) iff |Eσ[f(g− h)]| = O(ε) for every f in

class F .

Proof. We only show the forward direction as the reverse is identical. By 3, |Eσ[f †(g† −
h†)]| = O(ε) implies |Eσ[f †(g − h)]| = O(ε). Now as this holds for every f † ∈ F† and

1 ∈ F†, therefore, |Eσ[g − h]| = O(ε). This yields O(ε) = |Eσ[f †(g − h)]| ≤ |Eσ[2f(g −
h)]|+ |Eσ[g − h]| = O(ε).

Lemma A.2.2. Suppose f : U → [0, 1], g : U → {0, 1} with U = (U, σ) a finite probability space

then:

1. For every x ∈ U , |g(x)− f(x)| = g(x)f̄(x) + ḡ(x)f(x)

Proof. By the Shannon decomposition of the Boolean g:

|g − f | = g(x)(1− f(x)) + (1− g(x))f(x) = g(x)f̄(x) + ḡ(x)f(x)

2. For every x ∈ U , |g(x)− f(x)| = |ḡ(x)− f(x)| = |g(x)− f̄(x)|.
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Proof. |g − f | = 1−|g−f | = 1−g(1−f)−(1−g)f = 1−g−f+2gf = (1−g)(1−f)+gf =

ḡf̄ + gf implying for every x,

|g(x)− f(x)| = |ḡ(x)− f(x)| = |1− g(x)− f(x)| = |f̄(x)− g(x)|

3. For θ ∼ uniform[0, 1] and every x ∈ U , g(x) = Eθ[thθ[g(x)]].

Proof. For every fixed x ∈ U , thθ[g(x)] is a piecewise constant function and this gives:

Eθ∈[0,1][thθ[g(x)]] =

∫ 1

0
thθ[g(x)]dt =

∫ g(x)

0
1dt+

∫ 1

g(x)
0dt = g(x)

4. For θ ∼ uniform[0, 1], Eσ[Eθ[|g − thθ[f ]|]] = Eθ[Eσ[|g − thθ[f ]|]] = Eσ[|g − f |].

Proof. By finiteness of U , Eθ[Eσ[|g− thθ[f ]|]] = Eσ[Eθ[|g− thθ[f ]|]]. Now for every x ∈ U ,

Eθ[|g(x)− thθ[f(x)]|] =

∫ 1

0
|g(x)− thθ[f(x)]|dθ

=

∫ f(x)

0
|g(x)− 1|dθ +

∫ 1

f(x)
g(x)dθ

= (1− g(x))f(x) + g(x)(1− f(x)) = |g(x)− f(x)|

Since it holds for all x ∈ U , so Eθ[Eσ[|g − thθ[f ]|]] = Eσ[|g − f |] as well.

5. For θ ∼ uniform[0, 1], Eσ[Eθ[thθ[f ]] = Eθ[Eσ[thθ[f ]]] = Eσ[f ].

Proof. This follows as a special case of 4 by setting g = 0 and using |0− f | = f . Equiva-

lently, it also follows from 3.
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