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Abstract

In the study of the list homomorphisms, the class of bipartite co-circular arc graphs plays

an important role in delineating easy (polynomial) cases and hard (NP-complete) cases of

the list homomorphism problem. This class of graphs has many equivalent characteriza-

tions, and we present (at the beginning of Chapter 4) a new short proof of some of these

equivalences. We then discuss possible approaches to the recognition problem for this class

of graphs. First we discuss the linear time recognition algorithms of circular arc graphs by

Eschen-Spinrad, McConnell and Nussbaum-Kaplan. These may be applied to the comple-

mentary graph, but the algorithm is no longer linear. The main new contributions contained

in this thesis are efficient algorithms for the recognition of co-circular arc graphs in the spe-

cial cases of trees, k-trees and bounded degree graphs (see Chapter 3). We also present

new efficient algorithms for colouring, matching, and other similar problems on this class of

graphs (see Chapter 4).
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Chapter 1

List Homomorphisms

In this chapter, we introduce the list homomorphism problem and discuss various aspects

of it.

1.1 Introduction

We first present the essential definitions for the list homomorphism problem, and present

some theorems and techniques which are useful for treating the problem.

A graph is one of the richest abstract data types that may be used as a model for a

relational property between a set of objects. Let G denote a graph. The graph G is defined

by V (G) as the set of vertices, also called nodes, and E(G) as the set of edges between

vertices. We denote by n the number of vertices and the number of edges by m. An edge

e ∈ E(G) is denoted by uv when u and v are the two vertices of e. By a graph we mean an

undirected graph. We call a directed graph, a digraph. In a digraph, the edge uv is directed

from u to v. Thus the edges uv and vu are distinct in digraphs. For any vertex v in a graph

G, the neighbourhood of v, denoted N(v), is a set of vertices in V (G) to which v is adjacent.

Let N [v] denote the closed neighbourhood of v, equivalently N [v] = N(v)∪ {v}. The size of

the neighbourhood of v is called degree of v and denoted deg(v). The graph G is called a

complete graph if all possible edges are in E(G). We denote by Kn a complete graph on n

vertices . An edge uu is called a loop, regardless of whether graph is directed or not. Each

vertex may have a loop. The graph G is a irreflexive graph if it contains no loop. If each

vertex of a graph G has a loop then G is a reflexive graph. A graph H is called a subgraph

of G if V (H) ⊂ V (G) and E(H) ⊂ E(G). If all possible edges of G appear in H then H is

an induced subgraph of G. An induced subgraph H of G is called a clique if H is complete.

1



CHAPTER 1. LIST HOMOMORPHISMS 2

Similarly, if H does not contain any edge the H is called an independent set. We denote

by G the complement of a graph G. The graph G has the same vertex set as G and two

vertices are adjacent in G if and only if they are not adjacent in G. A clique in a graph G

is an independent set in the G, and vice versa.

Definition 1.1.1. A vertex is called a universal vertex if it is adjacent to all other vertices

of the graph.

A module M in a graph G is a set of vertices of G, i.e., M ⊂ V (G), such that any vertex

v ∈M is adjacent to the same set of vertices in V (G) \M (outside of M). A module is also

called a homogeneous set.

Definition 1.1.2. A module S is called a clique module, also called a complete homogeneous

set, if S is a clique.

In other words, any pair of vertices v and u in a clique module S have the same closed

neighbourhood, i.e., N [v] = N [u]. Any pair of vertices in a clique module is called a twin

pair.

In a graph G, a path of length k is a sequence of vertices v1, v2, .., vk, such that vi and

vi+1 are adjacent, for 1 ≤ i < k. A path is an induced path if vi is not adjacent to vj with

j 6= i± 1. We let Pk denote a graph that is a path of length k. Note that Pk has k vertices

and k − 1 edges. In a graph G, a cycle of length k is a path of length k in which vk is

adjacent to v1. We let Ck denote a cycle of length k. For any cycle Ck of length greater

than or equal to four, an edge e ∈ E(G) is called a chord if e incident to two non-consecutive

vertices in Ck. Similarly, in a digraph H we denote by
−→
Pk an induced directed path, and

denote by
−→
Ck an induced directed cycle of length k.

Definition 1.1.3. A chordless cycle in a graph H is an induced cycle of length at least 4.

Definition 1.1.4. A graph G is chordal if G has no chordless cycle. Similarly, G is weakly

chordal if it has no chordless cycle of length greater than 4.

A bipartite graph G is a graph in which V (G) can be partitioned into two parts X and

Y such that X and Y are independent sets in G. Equivalently, a graph is bipartite if and

only if it has no odd cycle [65]. We denote by Kn1,n2 the complete bipartite graph with

parts of size n1 and n2. (See definition 1.1.4.)

Definition 1.1.5. A chordal bipartite graph G is a bipartite graph which is weakly chordal.

The following is the formal definition of an interval graph.
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Definition 1.1.6. A graph H is an interval graph if there exists a family I of intervals

on the real line and a one-to-one correspondence of V (H) with the intervals in I so that

two vertices are adjacent if and only if their corresponding intervals intersect. The family

I of intervals is called an interval representation of H. Without loss of generality, we may

assume no two intervals share any endpoints.

Equivalently, a graph H is an interval graph, if and only if it admits an interval repre-

sentation I. Each interval Ii ∈ I is represented by its right endpoint ri and left endpoint `i,

i.e., Ii = (`i, ri). Any interval representation can be presented by its ordering of the right

and left endpoints. We will discuss interval graphs in Chapter 2.

Definition 1.1.7. A graph H is a circular arc graph if there exists a family R of circular

arcs around a fixed circle and a one-to-one correspondence of V (H) with the circular arcs in

R so that two vertices are adjacent if and only if their corresponding circular arcs intersect.

Without loss of generality, we may assume no two circular arcs share any endpoints.

It is clear that a circular arc representation in which no arc goes through a region on the

circle is equivalent to an interval representation. Thus every interval graph is a circular arc

graph, and the class of circular arc graphs is a generalization of the class of interval graphs.

Let Ai denote a circular arc in R. If we traverse the circle in the clockwise direction then

the left endpoint of Ai, denoted by `i, precedes the right endpoint of Ai, denoted by ri. Any

circular arc representation R corresponds to a circular ordering of the endpoints in R. We

will discuss circular arc graphs in Chapter 2.

The following is a basic definition for our purposes.

Definition 1.1.8. [30] A homomorphism of a graph G to a graph H, written as G→ H,

is a vertex mapping f , f : V (G) → V (H), such that if v and u are two vertices of G with

uv ∈ E(G), then f(u)f(v) ∈ E(H).

A homomorphism between two graphs preserves adjacency. The term came from abstract

algebraic point of view, where homomorphism is a structure-preserving function. Note that

we do not restrict the homomorphism to be a surjective mapping, an injective mapping or

representing G as a subgraph or induced subgraph of H. We will discuss different examples

of graph homomorphism later on.

A more general case of graph homomorphism is defined below.

Definition 1.1.9. Let G and H be two graphs. Suppose L is a family of lists, L(v) for each

v ∈ V (G). A list homomorphism of G to H with respect to the lists L, is a homomorphism

f : G→ H such that f(v) ∈ L(v) for each v ∈ V (G).
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Thus list homomorphisms may be viewed as homomorphisms with additional constraints

which limit the choice of each vertex assignment to a specific list.

Now that we have defined our basic concepts, we can describe the problem we are

considering in the following.

Definition 1.1.10. Suppose H is a fixed graph. The H-homomorphism problem, HOM H,

asks whether or not there exists a homomorphism f : G→ H, of a given graph G to H.

• Given: A Graph G

• Question : Is there a homomorphism G→ H ?

The homomorphism problem asks for the existence of a homomorphism G→ H between

two given graphs G and H, both parts of the input. This homomorphism problem is

NP-complete [27]. The reason is that there are many NP-complete problems that can be

viewed as a restriction of the homomorphism problem, for example the so-called k-colouring

problem.

Definition 1.1.11. Given a graph G, the k-colouring problem asks whether or not there

exists a colouring of the vertices of G with k colours such that two vertices with the same

colour are not adjacent.

The k-colouring problem is equivalent to the homomorphism problem where H is the

complete graph on k vertices, Kk. Thus, homomorphisms are a generalization of graph

colourings. In fact, a graph homomorphism G → H is also called an H-colouring. The

following result classifies the complexity of the HOM H problem in general.

Theorem 1.1.1. [27] HOM H is NP-complete, if H is not a bipartite graph and does not

contain a loop, and is polynomial time solvable otherwise.

We also define the list homomorphism problem.

Definition 1.1.12. Suppose H is a fixed graph. Given a graph G and lists L(v) ⊆ V (H)

for all v ∈ V (G), the list H-homomorphism problem, L-HOM H, asks whether or not there

exists a homomorphism f of G to H such that f(v) ∈ L(v), for each v ∈ V (G).

• Given: A Graph G with a family of lists L

• Question : Is there a list homomorphism G→ H with respect to L?
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By fixing the graph H, also called the host graph, we view the graph G, also called the

guest graph, with lists L as the input. It is natural to restrict the host graphs to a class

of graphs C. There are different ways to describe C - a structural definition, a geometrical

definition, etc.- but anyhow, C rather has two important properties. First, the class of

graph C can be recognized efficiently, i.e., in polynomial time, and second, the L-HOM H

problem where the host graph is a graph from C, has a polynomial time algorithm for any

guest graph, or it is NP-complete. In this context, we define easy cases (polynomial time

solvable) and hard cases (NP-complete) of the L-HOM problem.

The homomorphism problem, HOMH, can be viewed as a restriction (with lists) of the

list homomorphism problem L-HOMH. The following theorem shows the relation between

two problems.

Theorem 1.1.2. The homomorphism problem is polynomial time reducible to the list ho-

momorphism problem. In other words, HOM H �P L-HOM H.

Proof. Given an instance of HOMH problem with an input graph G. Suppose we create

an instance of L-HOMH such that for every vertex v in G, the list L(v) is set to V (H).

In other words, v can be assigned to any vertex in V (H). It is clear that if there exists a

homomorphism f : G→ H then f respects the lists L.

Every instance of HOMH can be viewed as an instance of L-HOMH. This motivates us

to focus on the list homomorphism problem.

The list homomorphism problem naturally models many real-life problems. Here we

introduce an example application of list homomorphism problem in the job assignment

problem.

Example. Suppose we have a set of jobs J and a set of machines M . We want to assign each

job j ∈ J to a specific machine m ∈M so that certain conditions hold. Each machine m has

a list of jobs L(m) ⊂ J such that m is capable of performing a job j ∈ L(m) and a list of

machines N(m) which are adjacent to it. Also we have some communication requirements

for the jobs. If a job j ∈ J is assigned to a machine m ∈ M then m should be capable of

performing j. Also every pair of jobs that need communication, must be assigned to two

machines with communication. If we define a graph G with J as V (G) such that any pair

of jobs that needs communication are adjacent in G, and a graph H with M as vertices and

for each vertex m, N(m) is the adjacency list of m. It is easy to see the desired assignment

of jobs to machines is exactly a solution for an instance of the list homomorphism problem

from G to H.
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1.2 The Role of Min Ordering

In this section, we want to introduce a property of digraphs which turns out to be useful

for solving the list homomorphism problem.

Definition 1.2.1. A min ordering of a digraph H is an ordering < of the vertices of H,

such that if uv ∈ E(H) and u′v′ ∈ E(H) are two edges such that u < u′, v′ < v, then there

also is an edge uv′ ∈ E(H).

Equivalently, < is a min ordering of H if and only if the existence of uv ∈ E(H) and

u′v′ ∈ E(H) implies the existence of min(u, u′)min(v, v′) ∈ E(H). This explains the reason

for the name. The min ordering, also called X-underbar enumeration property in [47] [27].

It was named X, by implication of the underbar if we had two crossed edges as in Figure 1.1.

u

u′

v′

v

Figure 1.1: Minordering: The existence of uv and u′v′ entails uv′.

If H is a graph then the definition of min ordering can be applied ignoring the direction

of edges in the definition 1.2.1.

For later purposes, we also specifically describe the min ordering property for reflexive

and bipartite graphs. A reflexive graph H admits a min ordering < if and only if for each

edge uv ∈ E(H) such that u < v, if a vertex w is placed between u and v in the min ordering

(i.e., u < w < v), then the edge uw ∈ E(H) also exists [20]. In other words, any vertex

that appears between two adjacent vertices in the min ordering is adjacent to the minimum

of the two. This turns out to mean that reflexive graphs with min ordering are exactly the

interval graphs. We will talk about this in Section 1.3.1.

Let H be a fixed bipartite graph with parts X and Y . We shall call vertices in X white

vertices, and vertices in Y black vertices. To validate the conditions of min ordering for

a bipartite graph, we assume an imaginary direction for each edge, from white vertices to

black vertices. A min ordering of H can be viewed as two orderings, one for each part of

H: we order vertices in X and vertices in Y separately. If the edges x1y1 and x2y2 are in
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E(H) and x1 < x2 and y2 < y1 then the edge x1y2 is in E(H). Note that since we ordered

black and white vertices separately, we ignore the comparisons between two vertices with

different colours.

Now we can explain the role of min ordering concerning the list homomorphism problem

with the following theorem.

Theorem 1.2.1. [24] If a digraph H admits a min ordering then L-HOMH is polynomial

time solvable.

Here we describe a polynomial time algorithm to solve L-HOMH using the min ordering.

Proof. Suppose H is a fixed digraph with min ordering <, and a digraph G together with

the lists L is given. The objective is to find a mapping from G to H which preserves

the adjacency and respects the lists L. In each step of the algorithm we choose an edge,

uv ∈ E(G), and we update L(u) and L(v). Let x ∈ L(u) be the minimum vertex in the min

ordering < which admits a vertex y ∈ L(v) with xy ∈ E(H). Then let z be the minimum

vertex of L(v) in the min ordering < such that x is adjacent to z. Now we remove the

vertices of L(u) that precede x and the vertices of L(v) that precede z. There is no vertex

less than x adjacent to a vertex in L(v). Now suppose a vertex x′ > x is adjacent to a vertex

z′ < z, the min ordering of H implies x is adjacent to z′. Since z is the minimum vertex

in the min ordering, such a z′ does not exists. Thus the min ordering of H guarantees that

the removed vertices can be ignored for the list homomorphism. In each step, if we remove

a vertex from L(u) then the edges adjacent to u must be checked again. In this process, we

refine our lists step by step.

If eventually a list became empty, or there is no edge from L(u) to L(v) for two adjacent

vertices u, v ∈ V (G), then there is no list homomorphism from G to H. Otherwise, the

updated Lv for each vertex v ∈ V (G) is not empty. Also there is at least one edge from a

vertex in L(u) to a vertex in L(v) for every uv ∈ E(G). We map each vertex v ∈ V (G) to

the minimum vertex of L(v) in the min ordering. The min ordering implies the minimum

vertex of L(v) and the minimum vertex of L(u) are adjacent in H, if the edge uv is in E(G).

Thus this mapping is a homomorphism of G to H with respect to lists L.

Since H is fixed, each edge in E(G) may rechecked at most O(|V (H)|) = O(1) times.

Also the minimum vertex can be found in constant time given the min ordering. Thus, the

time complexity of the algorithm is linear time to size of G, O(|E(G) + V (G)|.

In the algorithm above, we enforced some conditions using the min ordering to reduce

the size of the lists, thus reducing the search space. Such a technique is known as the
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constraint propagation technique. It is used to solve many problems such as the constraint

satisfaction problem, the network propagation problems, etc.

1.3 Undirected Graphs

1.3.1 Reflexive Case

Note that HOMH is trivial in the case of reflexive graphs. Even a single loop vv in E(H)

is sufficient to make HOMH trivial, since every graph G admits a homomorphism to H, by

mapping all vertices of G to v. In the jobs assignment example in Section 1.1, it is natural

to assume a machine is well connected to itself so we also obtain an instance of reflexive list

homomorphism problem.

Here are some structures of H that play an important role in finding the line between

hard and easy cases of the list homomorphism problem for reflexive graphs.

Theorem 1.3.1. [17] If a reflexive graph H contains a chordless cycle then L-HOM H is

NP-complete.

This was proved independently by M. MacGillivray, as mentioned in [17]. Another

interesting structure to explore is defined below.

Definition 1.3.1. An asteroidal triple of a graph H is a set of three non-adjacent vertices

of H such that there is a path between each pair of vertices, not containing any neighbour

of the third one.

Theorem 1.3.2. [17] If a reflexive graph H contains an asteroidal triple then L-HOM H

is NP-complete.

This was proved in [17] using a reduction from not-all-equal 3-SAT without negated

variable. Moreover, the following result was proved by Lekkerkerker and Boland.

Theorem 1.3.3. [45] A graph H is an interval graph if and only if it is chordal and

contains no asteroidal triple.

This means the forbidden structures for interval graphs are precisely the NP-complete

cases of the reflexive case of L-HOM, and it follows for reflexive graphs L-HOM H is NP-

complete when H is not an interval graph. The following result proves that interval graphs

yield polynomial time problems L-HOMH. This is called a dichotomy (for reflexive graphs)

of the list homomorphism problem.
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Theorem 1.3.4. [17] For any reflexive graph H, L-HOM H is polynomial time solvable if

H is an interval graph and NP-complete otherwise.

We shall first present a proof using the min ordering property. We prove that reflexive

interval graphs have a min ordering, thus using Theorem 1.2.1 we see that L-HOMH is

polynomial time solvable, for a reflexive interval graph H.

Theorem 1.3.5. A reflexive interval graph H has a min ordering.

Proof. Suppose H is a reflexive interval graph with an interval representation I. We show

that if we define the ordering < of the vertices of H by the left endpoints of their corre-

sponding intervals in I, we obtain a min ordering.

Assume u and v are two vertices in V (H) with corresponding intervals Iu and Iv in I.

Suppose we have an edge uv in H such that u < v; then the left endpoint of Iu precedes

the left endpoint of Iv. Also, the adjacency of u and v implies that the left endpoint of

Iv precedes the right endpoint of Iu. Suppose w appears between u and v in the the left

endpoint ordering, i.e., `u < `w < `v. Then the edge uw is in E(H), since the left endpoint

of Iw precedes the left endpoint of Iv, hence it precedes the right endpoint of Iu. Thus, the

left endpoint ordering is a min ordering.

Second, we present an alternate geometric proof from [17] by using a polynomial time

reduction to the 2-satisfiability problem.

Proof. Suppose H is an interval graph with n vertices, and given G is a graph with lists L(v)

for every v ∈ V (G). We assume H is given with its interval representation I. There are 2n

endpoints in I. We define a set of 2n+ 1 points, P = {p0, p1, ..., p2n} such that p0 precedes

the leftmost endpoint of the intervals in I, and the rightmost endpoint of the intervals in

I precedes p2n. We assume each pi for i = 1, 2, ..., 2n− 1 is placed in the gap between two

consecutive endpoints in I. We introduce variables lv,p and rv,p for every v ∈ V (G) and

every p ∈ P . These variables bound the interval image of every vertex v in V (G) such

that lv,p = 1 means the left endpoint of the interval corresponding to the vertex to which

v is mapped precedes p and rv,p = 1 means p precedes the right endpoint of the interval

corresponding to the vertex to which v is mapped.

Now we introduce the clauses as below. To assure the adjacency of the adjacent vertices

of H, there are clauses lu,p ∨ rv,p for every edge uv ∈ E(H) where the left endpoint of u is

less than the left endpoint of v in I. There are clauses lv,p ∨ rv,p for every vertex v ∈ V (G)

and every p ∈ P so that the left endpoint of each interval image of v precedes its right

endpoint. To insert lists conditions, we add clauses lv,p ∨ rv,q for each v ∈ V (G) and for
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each p, q ∈ P where (p, q) is not contained in any interval corresponding to a vertex from

L(v). The pairs of clauses {(lv,p2k)∧ (rv,p0)}, for every vertex v ∈ V (G), guarantee that the

intervals lay inside (p0, p2k).

It is clear that if there exists a list homomorphism, the clauses are satisfiable. Now,

we show a satisfying truth assignment defines a list homomorphism as follows. For every

v ∈ V (G), there exists the leftmost point (the smallest index) p ∈ P such that lv,p = 1,

and the rightmost point (the largest index) q ∈ P such that rv,q = 1. Thus, there exists an

interval image of a vertex u ∈ L(v) that contains (p, q). We map v to u. The clauses assure

that the adjacent vertices in G are mapped to vertices corresponding intersecting intervals,

and the reduction is polynomial time since H with its interval representation I is fixed.

1.3.2 Irreflexive Case

To continue the discussion, let us take a look at irreflexive graphs. The following result can

be concluded directly.

Theorem 1.3.6. [30] L-HOM H is NP-complete when H is not bipartite.

Proof. We mentioned that HOM H is NP-complete when H is not bipartite (Theorem 1.1.1).

If we apply Theorem 1.1.2 then L-HOM H is also NP-complete.

Considering this, we focus on bipartite graphs and our purpose is to formulate the

algorithm for L-HOM H.

Theorem 1.3.7. [18] Let H be a bipartite graph. If the complement of H is a circular arc

graph, then L-HOM H is polynomial time solvable.

The following theorem characterizes the class of bipartite graphs whose complement is

a circular arc graph. We call this graphs bipartite co-circular arc graphs and sometimes

abbreviate this as bipartite co-CA graphs.

Theorem 1.3.8. [29] A graph H is a bipartite co-circular arc graph if and only if it admits

a min ordering.

Proof. Suppose H is a bipartite co-circular arc graph with bipartition (X,Y ). Let H denote

the complement of H. The graph H has a circular arc representation R which contains two

points called the north pole and the south pole, such that every circular arc corresponding

to a vertex v ∈ X covers the north pole but not the south pole, and vice versa [64] [28].
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We now construct a min ordering < for the vertices in X according to the right endpoint

ordering of the corresponding circular arcs in the clockwise direction from the north pole

to the south pole, and for the vertices in Y according to the right endpoint ordering of the

corresponding arcs in the clockwise direction from the south pole to the north pole.

Let uv and u′v′ be two different edges in E(H) such that u, u′ ∈ X and v, v′ ∈ Y satisfy

u < u′ and v′ < v. Consider the corresponding circular arcs Au, Av, Au′ and Av′ . Since u

precedes u′ and Au′ and A′v do not intersect, the right endpoint of Au also precedes the right

endpoint of Av′ in the clockwise direction from the north pole to the south pole. Similarly,

since v′ precedes v, and Av and Au do not intersect, the right endpoint of Av′ precedes

the right endpoint of Av in the clockwise direction from the south pole to the north pole.

Therefore Au and Av′ do not intersect, so u and v′ are adjacent in H, i.e., uv′ ∈ E(H).

Thus the right endpoint ordering of H is a min ordering.

By applying Theorem 1.2.1 and 1.3.8, we can conclude L-HOMH is polynomial time

solvable for bipartite co-circular arc graph.

We also present an alternate proof from [18], similar to the proof of Theorem 1.3.4. We

describe a polynomial time reduction from L-HOMH to the 2-satisfiability problem. This

time we use the circular arc representation of H to bound the variables.

Proof. Let H be a bipartite graph with parts X and Y , and H a circular arc graph. For

every circular arc representation of H if Av and Au denote two circular arcs corresponding

to v, u ∈ V (H) then there is an edge uv in E(H) if and only if Av and Au do not intersect.

We assume R is a circular arc representation of H such that there is a point N (respectively

S) on the circle which is contained in all circular arcs corresponding to the vertices in X

(respectively Y ) but is not contained in any circular arc corresponding to vertices in Y

(respectively X) [64][28]. Thus N and S play the role of the north and south poles. The

circle is partitioned into two parts, the east side and the west side, with respect to the north

pole and the south pole. We may also assume G is a bipartite graph with parts A and B

such that for each vertex v in A (respectively B), L(v) ⊂ X (respectively L(v) ⊂ Y ).

We define two sets of points on the circle, PE and PW . The set PE contains N , S

and the endpoints of the circular arcs in the east side, and the set PW contains N , S and

the endpoints of the circular arcs in the west side. We define the variables wv,p for every

p ∈ PW and every v ∈ V (G), and ev,p for every p ∈ PE and every v ∈ V (G). These variables

bound the circular arc image of a vertex in G. We intend for ev,p = 1 (wv,p = 1) to mean

the circular arc in R corresponding the vertex to which v is mapped, does not contain the

point p. We ensure that adjacent vertices of G are mapped to vertices with non-intersecting
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corresponding circular arcs in R, by the clauses eu,p ∨ ev,p, for each edge uv in E(G) and

each p in PE , and the clauses wu,p ∨ rv,p, for each edge uv in E(G) and each p in PW . The

clauses ev,p∨wv,q for each v ∈ A, and for each p ∈ PE and each q ∈ PW are imposed with the

following constraint: the portion of the circle from the next point of p to the previous point

q in the clockwise direction does not contain any circular arc corresponding to a vertex in

L(v). Also, we add similar clauses for each v ∈ B. With imposing these clause, we ensure

that there exists at least one vertex in L(v) to which v can be mapped. Finally, we add

clauses {ev,n ∧ wv,n} for every v ∈ A, and the clauses {eu,s ∧ wu,s} for every u ∈ B, so that

at least one ev,p and at least one wv,p is true.

It is clear that a list homomorphism from G → H implies a truth assignment for the

above clauses, by setting ev,p = 1 and wv,p = 1 for each point p not contained in the

circular arc corresponding to the vertex to which v is mapped. Now suppose we have a

truth assignment, we define the list homomorphism as follows. Suppose v ∈ A, let p ∈ PW

be the nearest point to p such that wv,c = 1, and let d ∈ PE be the nearest point to p

such that ev,d = 1. Now in the clockwise portion of the circle between c to d should be at

least one circular arc Au from L(v), we map v to u. We use the similar mapping for the

vertices in B. It is clear that adjacent vertices are assigned to the vertices corresponding to

non-intersecting circular arcs with respect to the lists.

Moreover, L-HOM H is NP-complete if H contains certain structures. An odd cycle is

one such structure mentioned earlier. Equivalently, L-HOM H is NP-complete if H is not

a bipartite graph. The following result considers L-HOM H for the bipartite graphs.

Theorem 1.3.9. [18] If a bipartite graph H contains a chordless cycle of length greater

than four, then L-HOM H is NP-complete.

The proof consists of a polynomial time reduction from the k-colouring problem to L-

HOM H.

Definition 1.3.2. An edge asteroid is a structure consisting 2k+1 disjoint edges u0v0,u1v1,

..., u2kv2k, and 2k + 1 paths P0,1, P1,2, ..., P2k,0, with the following constraints.

• Each Pi,i+1 joins ui and ui+1, for i = 0, 1, ..., 2k.

• There is no edge between {ui, vi} and {vi+k, vi+k+1}∪V (Pi+k,i+k+1), for i = 0, 1, ..., 2k

and subscripts are modulo 2k + 1.



CHAPTER 1. LIST HOMOMORPHISMS 13

• There is no edge between {u0, v0} and {v1, v2, ..., v2k} ∪ V (P1,2) ∪ V (P2,3)∪ ...

∪V (P2k−1,2k).

See Figure 1.2.

u0

u1

uiuj

u2k

v0

v1

vivj

v2k

Figure 1.2: An edge-asteroid

The following theorem shows how an edge asteroid affect the list homomorphism prob-

lem.

Theorem 1.3.10. [18] Let H be a bipartite graph. If H contains an edge-asteroid then

L-HOM H is NP-complete.

Hell and Huang proved the NP-completeness using a polynomial time reduction from

the 3-colouring problem. For more details see [18].

Remark. L-HOM H is NP-complete when H contains the structures which are precisely the

forbidden structures for co-bipartite circular arc graphs.

Theorem 1.3.11. [18] A graph H is a bipartite co-circular arc graph if and only if H is

chordal bipartite and contains no edge-asteroids.
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We can observe that this characterization of bipartite co-CA graphs is similar to Lekkerk-

erker and Boland’s characterization of interval graphs in Theorem 1.3.3. This analogy

extends to the dichotomy of the list homomorphism problems.

Theorem 1.3.12. [18] For a irreflexive graph H, the problem L-HOM H is polynomial

time solvable if H is a bipartite co-circular arc graph, and is NP-complete otherwise.

1.3.3 General Case

A general graph is a graph where each vertex may or may not have a loop. In this section, we

will show how to extend the complexity classifications from the previous sections (reflexive,

irreflexive) to general graphs.

The distinction between hard and easy case of the list homomorphism problem for general

graphs turns out to depend on the following definition.

Definition 1.3.3. Let C be a circle with two specified points N and S on C. A bi-arc is an

ordered pair of circular arcs (A,B) on C such that A contains N but not S, and B contains S

but not N . A graph H is a bi-arc graph if there is a family of bi-arcs {(Ax, Bx) : x ∈ V (H)}
such that for any x, y ∈ V (H), not necessarily distinct, the following conditions hold:

• if x and y are adjacent then neither Ax intersects By nor Ay intersects Bx;

• if x and y are non-adjacent then both Ax intersects By and Ay intersects Bx.

We define an auxiliary graph as follows, for better understanding of the bi-arc graphs.

Definition 1.3.4. Given a graph H, the auxiliary bipartite graph H∗ is defined with parts

XH = {x′ : x ∈ V (H)} and YH = {x′′ : x ∈ V (H)}. The edge set of H∗ consists of all edges

x′y′′ such that xy is an edge of H.

The following simple, yet useful observations describe how the auxiliary graph aids in

the proofs.

Observation. The graph H∗ has no loops.

The edges of H∗ only join the vertices of XH to the vertices of YH .

Observation. A bi-arc representation of the graph H is precisely a circular arc represen-

tation of the auxiliary graph H∗.

The following results from [19] show that the two graph classes we discussed earlier are

bi-arc graphs: interval graphs from Section 1.3.1 and bipartite co-CA graphs in Section 1.3.2.
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Theorem 1.3.13. [19] Let H be a reflexive graph, Then H is a bi-arc graph if and only if

H is an interval graph.

Theorem 1.3.14. [19] Let H be an irreflexive graph, Then H is a bi-arc graph if and only

if H is a bipartite co-circular arc graph.

Now, we wrap up the discussion of the list homomorphism problem for graphs with the

following result which shows the dichotomy of list homomorphism problem for the general

graphs and the importance of bi-arc graphs.

Theorem 1.3.15. [19] Let H be a graph. The problem L-HOM H is polynomial time

solvable if H is a bi-arc graph, and is NP-complete otherwise.

1.4 Digraphs

In this section, we discuss a more general case of the problem, the list homomorphism

problem for digraphs. Digraphs are more interesting from the point of view of homomor-

phisms and list homomorphisms, since the mappings must preserve both adjacency and the

direction of the edges. Bulatov’s theorem [5] classifies the tractable cases of the list homo-

morphism problems on very general structures including digraphs. For digraphs, there are

more precise classification results discussed below which give a combinatorial classification.

1.4.1 Reflexive Case

We already discussed reflexive graphs, here we describe approaches to solve the list homo-

morphism problem of reflexive digraphs by examining different structures. The list homo-

morphism problem restricted to interval graphs is polynomial time solvable. For reflexive

digraphs, we shall introduce a similar definition of interval digraphs.

Definition 1.4.1. An interval digraph is a digraph H which admits an interval pair rep-

resentation, which is a family of pairs of intervals (Iv, Jv) for every v ∈ V (H) such that

uv ∈ E(H) if and only if Iu intersects Jv.

Recall that due to the definition of interval graphs, they must be reflexive, but unlike

interval graphs, interval digraphs may lack loops. Hell and Rafiei [31] introduced the so-

called adjusted interval graphs which are reflexive.

Definition 1.4.2. [20] Let H be a interval digraph. If H admits a representation by

intervals Iv, Jv, v ∈ V (H), such that for each v, the intervals Iv and Jv share the same left

endpoint, we call H an adjusted interval digraph (in a short form, AID).
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It is clear that an adjusted interval digraph must be reflexive. Now we describe how this

subclass of interval digraphs helped solving the list homomorphism problem for the reflexive

digraphs.

Theorem 1.4.1. [20] A reflexive digraph H is an adjusted interval digraph if and only if

it admits a min ordering.

We will show one direction of the proof, namely that an adjusted interval digraph has a

min ordering. The complete proof is in [20].

Suppose H is an adjusted interval graph with a representation I. We show that if we

define the ordering < of the vertices of H by the ordering of the common left endpoints of

their corresponding pairs of intervals in I, we obtain a min ordering.

Assume u and v are two vertices in V (H) with the corresponding pairs of intervals Iu, Ju

and Iv, Jv in I. Suppose we have an edge uv in H such that u < v; then the common left

endpoint of Iu and Ju precedes the common left endpoint of Iv and Jv. Also, the adjacency

of u and v implies that the left endpoint of Jv precedes the right endpoint of Iu. Suppose

w appears between u and w in the the common left endpoint ordering. Then the edge uw

is in E(H), since the left endpoint of Jw precedes the left endpoint of Iv, hence it precedes

the right endpoint of Ju. Thus, the common left endpoint ordering is a min ordering.

Corollary. If a reflexive digraph H is an adjusted interval digraph, then LHOMH is poly-

nomial time solvable.

Interval graphs define the dichotomy of the list homomorphism problem for reflexive

graphs. The following conjecture attempts to classify the dichotomy of list homomorphism

for reflexive digraphs, in a similar way.

Conjecture 1.4.2. [20] If a digraph H is not an adjusted interval digraph then L-HOMH

is NP-complete.

We note that, a polynomial time algorithm for recognition of an AID is described in

[20].

1.4.2 General Case

In this section, we discuss the list homomorphism problem on digraphs in the general case.

We defined an asteroidal triple as a forbidden structure for interval graphs according to [45].

That structure makes L-HOM H NP-complete on reflexive graphs. Here, we introduce a
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similar variation of an asteroidal triple for digraphs, called a digraph asteroidal triple (in a

short form, DAT).

Before we define a DAT, we should define some preliminaries concepts. Let H be a

digraph. We call uv ∈ E(H) a forward edge of H and vu is a backward edge of H. We say

two walks P = x0, x1, ..., xn and Q = y0, y1, ..., ym in H are congruent, if xixi+1 is a forward

(respectively backward) edge if and only if yiyi+1 is a forward (respectively backward) edge.

If P and Q are two congruent walks in H, P avoids Q, if there is no edge xiyi+1 with the

same direction as xixi+1.

Definition 1.4.3. An invertible pair in H is a pair of vertices u, v, such that

• there exist congruent walks P from u to v and Q from v to u such that P avoids Q

• and there exist congruent walks P ′ from v to u and Q′ from u to v such that P ′ avoids

Q′

Definition 1.4.4. A permutable triple in H is a triple of vertices u, v, w together with six

vertices s(u), b(u), s(v), b(v), s(w), b(w), which satisfy the following condition.

For any vertex x from {u, v, w}, there exists a walk P (x, s(x)) from x to s(x), and two

walks P (y, b(y)) from y to b(y) and P (z, b(z)) from z to b(z), congruent to P (x, s(x)), such

that P (x, s(x)) avoids both P (y, b(y)) and P (z, b(z)).

Now we can give the following essential definition.

Definition 1.4.5. A digraph asteroidal triple (DAT) is a permutable triple u, v, w with

s(u), b(u), s(v), b(v), s(w), b(w) such that for any vertex x from {u, v, w}, the pair of vertices

(s(x), b(x)) is an invertible pair.

The presence of a DAT defines the dichotomy of the list homomorphisms problem for

digraphs.

Theorem 1.4.3. [31] If H contains a DAT, L-HOM H is NP-complete. If H is DAT-free,

L-HOM H is polynomial time solvable.

Although Bulatov [5] proved the existence of a dichotomy for all Constraint Satisfaction

Problems, this is the first structural classification of the dichotomy. The structure DAT

delineates the dichotomy of list homomorphisms for digraphs.



Chapter 2

Interval Graphs and Circular Arc

Graphs

In this chapter, we discuss different geometric representations of graphs. Specifically, we

investigate interval graphs and circular arc graphs.

2.1 Introduction

We have discussed what a graph is and how it is an abstraction of a relation amongst a set

of objects. We start with answering a question, ”What is a representation of a graph ?” or

”How can we represent a graph?”. Every graph can be represented by an adjacency matrix

or by adjacency lists.

We focus on the types of representations of a graph which also describe a property of the

graph. The graphs which can be represented in a certain way, make a graph class. There

are many graph classes defined by limiting their representations.

Here we discuss a specific graph representation which is defined as follows.

Definition 2.1.1. Given a family of sets S = {S1, S2, ..}, we define the intersection graph

of S, H as follows. Each set Si corresponds to a vertex vi in V (H), and vivj ∈ E(H) if and

only if Si ∩ Sj 6= �.

We say a graph H is an intersection graph, if there is a family of S such that H is the

intersection graph of S.

It is clear that the subfamily of a family S that is represented by an intersection graph

H, represents an induced subgraph of H. Thus we have the following remark.

18
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Remark. Every induced subgraph of an intersection graph is an intersection graph.

The class of intersection graphs includes a wide range of graphs. There are different

types of intersection graphs based on types of sets. Here are a few examples of intersection

graphs created from a geometric representation of sets.

A graph H is planar if H has an embedding of vertices to the points on the plane

such that two vertices are adjacent if and only if there is a continuous curve on the plane

connecting these two points and no pair of curves crosses each other in any points other than

their endpoints. Equivalently it can be shown [8], a planar graph H is the intersection graph

of a family of line segments. It was Scheinerman’s conjecture [56], proved by J. Chalopin

and D. Gonalves [8]. Moreover, by the circle packing theorem of [42], planar graphs are also

exactly the intersection graphs of families of non-crossing circles on the plane. The circles

can only be tangent to one another and only two circle can be tangent in one point.

The two geometric intersection graphs which we mainly focus on are interval graphs and

circular arc graphs. We discuss certain characterizations of interval graphs and circular arc

graphs in the rest of the chapter. We discuss interval graphs in Section 2.2 and circular arc

graphs with more details in Section 2.4.

2.2 Interval Graphs

In this section, we will discuss a class of intersection graphs which has a rich combinatorial

structure, namely interval graphs. Recall the definition of interval graphs in Section 1.1.

(See Definition 1.1.6)

It is easy to see that the definition given in Section 1.1 mean that, interval graphs are

the intersection graph of families of intervals on the real line. As for intersection graphs, any

induced subgraph of an interval graph is also an interval graph. This property leads to the

fact that interval graphs are characterized by forbidden structures. Recall Theorem 1.3.3, by

which Lekkerkerker and Boland introduced the earliest characterization of interval graphs

using forbidden structures, namely a chordless cycle of length greater than 3 and a asteroidal

triple.

For example, the graphs in Figure 2.1 are two minimal forbidden structures for interval

graphs. Consider a chordless cycle of length four in Figure 2.1(a). Any three vertices induce

a path of length 2, which can only represented by 3 consecutive intervals. It is clear that

there is no place for an interval intersecting the two interval at the end but avoiding the

middle interval. The same argument applies to any induced cycle of length greater than

4. Now consider the graph 2-net which is an asteroidal triple, depicted in Figure 2.1(b).
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The three pairwise adjacent vertices in the center can only represented by three intervals

sharing the same point. Each of these vertices has a neighbour non-adjacent to the other

two. Intervals can only extend in two directions from the shared point, thus there is no

place for the third interval.

(a) an induced
C4

(b) 2-net

Figure 2.1: Examples of forbidden structures for interval graphs

There are different variations of interval graphs. For example, proper interval graphs

are graphs that have an interval representation in which no interval is contained in another

interval, and unit interval graphs are graphs with an interval representation such that all

intervals have an equal length. These two definitions turn out to define the same class of

graphs [55].

Interval graphs have interesting applications in many different research areas such as

biology, archaeology and so on. Here are a few problems related to interval graphs.

One of the early applications interval graphs is the archaeological problem of finding

’chronological seriation’ of antique objects. Suppose we have a number of graves. The

objects found in a grave co-existed in a same specific time period. The problem is finding

the timeline of these antique objects. Each object’s timeline may be considered as an interval

on a historical timeline. Assume a graph H is the intersection graph of family of historical

timelines of objects. Each grave corresponds to a clique in H. The interval representation

of H is the chronological ordering of objects in time. More details on the problem can be

found in [39].

Also Benzer [1], in molecular biology, proposed a linear arrangement of genes in the

chromosome. In mutated versions of a chromosome, part of the genes may have changed.

Two mutated version of the original chromosome may have similar properties if they both

share a mutated gene. There are many questions that can be answered when the intersection
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graph of mutated chromosomes is represented as an interval graph. For instance, finding

the largest clique in the interval graph is equivalent to finding a mutated gene shared by

the most mutations.

The job scheduling problem is another interesting application of interval graphs. Given a

set of jobs with interval time periods of processing times, the problem asks for partitioning

the jobs into a minimum number of sets such that each set of jobs can be done consecutively.

In other words, no two jobs in each set conflict with each other. The intersection graph of

the time periods is an interval graph. The job scheduling problem is exactly the colouring

problem for the interval graph.

The memory allocation problem is defined as follows. A compiler is running different

programs that may interfere with each other. Two programs may conflict when both needed

a same memory unit at the same time. The problem is to find the total size of memory

needed for the programs, given time intervals of each program. Let G be a graph with

program units as vertices. Two program units are adjacent if they conflict. Each clique

represents a set of running program units, accessing the memory units simultaneously. The

problem is exactly finding the maximum clique size of G, given the time intervals and the

memory requests of each program.

Since interval graphs have a natural representation by intervals, restricting to interval

input graphs makes specific problems easier to solve. One of the interesting properties of

interval graphs is the following.

Definition 2.2.1. An intersection graph G has the Helly property if for every clique H in

G, all the sets in H share an element.

Interval graphs have the Helly property. The Helly property of an interval graph G

implies that the intervals corresponding to a clique in G contain the same point. Using

this fact, we can find the largest clique in an interval graph G. Suppose G was given by

its interval representation. We traverse the interval representation of G. We set a variable

x to zero and for each appearance of left endpoint increase x, and for each appearance of

right endpoint decrease x. The maximum value of x is the maximum clique size of the

graph. Thus problem of finding the maximum clique in an interval graph has a linear time

algorithm, provided a representation by intervals is given.

This shows the importance of finding an interval representation for an interval graph.

We discuss this in Section 2.3.
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2.3 Recognition of Interval Graphs

In the previous section, we discussed how interval graphs allow efficient algorithms for certain

problems. This is useful especially when we can recognize an interval graph and describe

an interval representation for it in a reasonable time, especially linear time. Here, we define

the interval graph recognition problem as follows.

INPUT: A graph H.

QUERY: Is the graph H an interval graph ?

If yes, describe the interval representation

This is slightly different from the decision problem of interval graphs recognition. In

this version of the problem, not only we recognize the interval graphs, but also an interval

representation is required.

Different approaches to the problem have been made. The earliest polynomial time

recognition belongs to Gilmore and Hoffman [22]. They reduce the problem to an ordering

of maximal cliques such that the maximal cliques containing a same vertex are consecutive

in the ordering. Based on this, some 10 years later the first linear time recognition algorithm

was introduced by Booth and Leuker [4]. The algorithm is very efficient but uses complex

data structures (PQ-trees). Korte and Möhring [43] developed modified PQ-trees with a

simpler update process, for recognizing interval graphs.

Later on, Hsu and Ma [34] gave a simpler linear time for the task using modular decom-

position, not PQ-trees. Also Habib et.al. [25] introduced a partition refinement technique

for ordering the vertices of a graph. It is much easier to implement than the previous al-

gorithms. The most recent efficient algorithm to recognize interval graphs is based on the

lexicographical breadth first search (in a short form, Lex-BFS or LBFS) [11].

Kratsch et. al. [44] modified Korte’s and Möhring’s algorithm [43] into the first certifying

algorithm for the recognition of interval graphs. A certifying algorithm is an algorithm which

not only solves the problem, but also provides a certification to prove its solution is correct.

In this case, if the algorithm recognized an input graph G is not an interval graph then it

provides an evidence, namely an asteroidal triple or a chordless cycle (cf. Theorem 1.3.3).

With a certification, one be sure of the correctness of the result of the algorithm. The

concept of certification algorithms was emphasized by McConnell cf. [48]. We will discuss

a linear time algorithm for recognition of circular arc graphs in Section 2.5.1, which can be

made certifying [49].

Note that the complements of interval graphs can also be recognized in linear time [50].

This fact motivates us to investigate the recognition of the complements of circular arc
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graphs in Chapter 3.

2.4 Circular Arc Graphs

The class of circular arc graphs was introduced by Hadwiger, Debrunner and Klee in

1964 [40], cf. also Klee [26], and studied more specifically by Tucker [64]. Recall the

definition of circular arc graphs from Chapter 1.1. (See Definition 1.1.7.)

We discuss the recognition of circular arc graphs in Section 2.5.1. As mentioned earlier,

every interval graph is a circular arc graph. Thus, the class of circular arc graphs is a

superclass of the class of interval graphs. The forbidden structures of circular arc graphs are

a subset of the forbidden structures of interval graphs. For example, the graphs in Figure 2.2

are a few minimal forbidden structures of circular arc graphs [2]. For instance, consider the

graph K2,3 in Figure 2.2(a). The central vertices must correspond to three disjoint circular

arcs around the circle. If a circular arc a intersects all three circular arcs then a must contain

one. Because of this containment, any other circular arc b can not intersect the contained

arc while avoiding a. The argument for the bipartite claw in Figure 2.2(c) is similar. For

the graph C∗4 , if there is a circular arc representation for the graph C∗4 in Figure 2.2(b)

then the portion of the circle not intersecting the circular arc corresponding to the single

vertex in the center, is an interval representation for the graph C4. Recall that the graph

C4 is not an interval graph, thus the graph C∗4 is not a circular graph.

(a) K2,3 (b) C∗4 (c) bipartite claw

Figure 2.2: Examples of forbidden structures for circular arc graphs [2]

A circular arc representation R of a graph H is a set of arcs A on a circle. Each arc

ai ∈ A is denoted by ai = (`i, ri) where `i and ri are the endpoints of ai. Thus we can
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represent R by the clockwise circular ordering of the endpoints of arcs. We may assume no

two arcs share an endpoint, otherwise we slightly perturb the endpoints [49].

Unlike interval graphs, circular arc graphs do not have the Helly property. On the

real line, a K3 can only be represented by three intervals intersecting in a region, as in

Figure 2.3(a). On a circle, a K3 can also be represented by three pairwise intersecting arcs

covering the circle, as in Figure 2.3(b).

(a) (b)

Figure 2.3: Two different circular arc model for K3

Circular arc graphs model many situations and have many applications in different

areas. Circular arc representation helps the analysis of these problems, just as interval

representations of interval graphs do. Basically, every periodically repeated intervals have

natural representation by circular arc graphs. Here we describe a few examples.

Example. [9] The Periodic Allocation Problem is a generalized version of the dynamic

storage allocation problem, where items appear repeatedly. Assume a loop in a computer

program, and the flow control of the loop, is described by a circle. The compiler controls the

memory allocation of variables associated with the loop. In the register allocation problem

exactly one of a set of memory registers has to be allocated to a variable within the loop for its

lifetime. The objective is to minimize the size of the total allocated memory. The lifetimes of

variables within a loop can be regarded as circular arcs, and the periodic allocation problem

is precisely the k-colouring problem on circular arc graphs. An approximation algorithm for

colouring a weighted circular arc graph representing an instance of the periodic allocation

problem is given in [9].

Example. [63] The Routing and Wavelength Problem is defined as follows. Consider

an optical ring network with a single ring. Assume there is a set of requests along the

ring network. There are two possible routes for each request - each route can chose either

the clockwise direction or the counter-clockwise direction on the ring. Every route can be
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regarded as a circular arc on the ring. The intersection graph of the routes on the ring is

a circular arc graph G. The routing problem is to find a routing with minimum size of the

maximum clique in G. For a fixed routing, the sub-problem of finding maximum number

of conflicting routes is exactly the maximum clique problem for circular arc graphs. An

approximation algorithms for the routing problem can be found in [63].

2.5 Recognizition of Circular Arc Graphs

The recognition of circular arc graphs was at first conjectured to be NP-complete by

Booth [3]. The earliest polynomial time circular arc graphs recognition algorithm belongs

to Tucker [64]. Tucker solved the problem in time O(n3). Here we quote Spinrad’s comment

on Tucker’s algorithm from Spinrad’s book [27]:

This algorithm has a reputation for being difficult to understand. In part, this

is because the algorithm is complex, but the reputation of the algorithm has

been exaggerated by a number of issues. Most importantly, Tucker himself talks

about the need for simplification in the paper. [Tucker’s statements from the

paper include ’The real difficulty in our algorithm is not with speed but its

length’ and ’As mentioned earlier, simplification rather than greater speed is

what really needed, since the constant in O(n3) is likely to be horrendous’. The

author [Spinrad] disagrees slightly with the latter statement; I do not believe

the constant in the running time is such a problem, but it is very difficult for

someone who has not studied the paper very carefully to produce a correct

implementation of the algorithm.]

Eschen and Spinrad [15] used the same approach as Tucker. However, studies of chordal

bipartite graphs helped them to refine Tucker’s algorithm, and reduce its complexity to

O(n2). One of the important tasks in their approach is so-called neighbourhood contain-

ment. The neighbourhood containment problem is to determine for every pair of adjacent

vertices u and v whether or not N [v] ⊂ N [u]. Eschen and Spinrad mentioned in [15] that

neighbourhood containment was the bottleneck in Tucker’s algorithm. Meanwhile, Hsu [35]

introduced an O(nm) algorithm for the task. Later on, McConnell [49] refined the neigh-

bourhood containment technique and developed the first linear time algorithm to recognize

a circular arc graph. McConnell’s algorithm creates a matrix to characterize relations be-

tween the arcs, then constructs a so-called interval realizer from the matrix using modular

decomposition and builds the circular arc model based on it. The most difficult part of Mc-

Connell’s algorithm was to create an interval realizer with certain relations between arcs.
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Recently, Kaplan and Nussbaum [38] introduced a simpler linear time algorithm mainly

based on Eschen-Spinrad’s algorithm with a tighter analysis.

In the next section, we explain how circular arc graphs can be recognized in linear time,

based mostly on [38].

2.5.1 Linear-time Recognition of Circular arc Graphs

In this section, we provide some details of the Kaplan-Nussbaum’s algorithm to solve the

recognition problem for circular arc graphs in linear time. This algorithm carefully imple-

ments a compilation of Tucker’s, Eschen-Spinrad’s and McConnell’s algorithm.

Given a graph G, we will recognize whether or not G is a circular arc graph. If the

answer is positive, we will construct a circular arc representation R for G. The algorithm

works from the assumption that G is a circular arc graph, and it tries to create a circular

arc model for G. We develop a representation R step-by-step and when the algorithm halts

with the circular arc representation R, the graph G is a circular arc graph if R realizes

G, otherwise somewhere along the way we declare failure. We suppose G is given by its

adjacency lists, so the size of the input is O(n + m). We will show that every step of the

algorithm runs in linear time, i.e., time O(n+m).

The basis of this approach is a classification of the intersection types of pairs of arcs. The

different possible types of intersection between arcs A and A′ in a circular arc representation

R are listed below and illustrated in Figure 2.4.

• A and A′ are disjoint, i.e., A ∩A′ = ∅.

• A contains A′ , i.e., A′ ⊂ A. The arc A covers both endpoints of the other arc A′ and

A′ is laid inside of A.

• A and A′ cover the circle , i.e., A∪A′ = C. The two arcs will cover the circle together,

so both endpoints of one arc are covered by the other one.

• A overlaps A′ , i.e., A ∩ A′ 6= ∅ , A − A′ 6= ∅ and A − A′ 6= ∅ . They cover only one

endpoint of each other.

For the purposes of constructing a circular arc representation of a graph G, it is not

difficult to see that the anticipated types of intersection between arcs are closely related to

the neighbourhood containment relationships between the corresponding vertices.

For example, let Ai, Aj , Ak be the corresponding circular arcs for vertices vi, vj , vk.

If Ai is contained in Aj , then every circular arc Ak that has a intersection with Ai also
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AA′

(a) disjoint

A′

A

(b) contain

A

A′

(c) cover the circle

AA′

(d) overlap

Figure 2.4: Different types of intersection between two arcs A and A′

intersects Aj . Thus every neighbour of vi is a neighbour of vj , i.e., N(vi) ⊂ N(vj). Now

suppose Ai and Aj cover the circle. Each circular arc Ak that intersects Aj but is disjoint

from Ai, must be contained in Aj and vice versa. Thus every neighbour of vk is also a

neighbour of vj , i.e., N(vk) ⊂ N(vj).

We pre-process the input graph to find two types of vertices that can be ignored in the

processing of the algorithm: clique modules and universal vertices. (See Definitions 1.1.2

and 1.1.1.)

A universal vertex in a graph G can be found in linear time and can be ignored, because

if R is a circular arc representation of G− v, by adding a circular arc for v that goes almost

all the way around the circle, we obtain a circular arc representation of G.

To find all clique modules in G, we start with the closed neighbourhood lists N [v] for

every vertex v ∈ V (G). Assume the vertices are 1, 2, .., n. We can sort each N [v] using

radix sort. Two vertices u and v are in a same clique module in G when N [v] = N [u], i.e.,

their sorted closed neighbourhood lists are identical. McConnell [49] introduced the radix

partitioning procedure which finds identical strings in a list of strings. The procedure is

similar to radix sort. In i-th phase buckets contain strings that are identical on the first i

characters. In each phase we keep track of non-empty buckets, thus we do not spend time on

every bucket in each phase. The procedure can recognize these identical strings in O(n+m)

where n is number of strings and m is the total summation of strings lengths.

Let M be a clique module in G with vertices {u0, u1, .., uk}. We keep one vertex from

M , say u0, and remove all other vertices of M from G, to obtain Gnew. If Gnew is a circular

arc graph with a circular arc representation Rnew, we construct a circular arc representation

R for G as follows. Let a0 denote the circular arc corresponding to u0. We repeat a0 for

each circular arc ai corresponding to ui, so that each ai intersects a0 and the same arcs that

a0 intersecting. Therefore, we can ignore clique modules.
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Now that the graph has been preprocessed, we continue with defining a specific type of

representation so-called a normalized circular arc representation of the preprocessed graph.

Definition 2.5.1. Suppose H is a circular arc graph without a universal vertex or clique

module. A circular arc representation R of H is a normalized circular arc representation of

H if the following conditions hold. Suppose v and v′ are two adjacent vertices in H, and A

and A′ are the corresponding arcs in R.

• A contains A′ if v and v′ are adjacent and N [v′] ⊂ N [v].

• A and A′ cover the circle if v and v′ are adjacent, N [v] ∪N [v′] = V (H), and for each

vertex u ∈ N [v], we have N [u] ⊂ N [v] if u is not adjacent to v′, and for each u′ ∈ N [v′]

we have N [w′] ⊂ N [u] if u′ is not adjacent to v′.

• otherwise A (singly) overlaps A′.

As we have already discussed, the conditions are based on the natural relations between

arcs. The existence of a normalized representation for any circular arc graph with no

universal vertex or clique modules was proved by Hsu [35].

Theorem 2.5.1. [35] Let G be a circular arc graph with no universal vertex or clique

module. Then there exists a normalized circular arc representation of G.

To prove the theorem, we show that every circular arc representation of G can be made

normalized. Our proof is simpler, since we only care about existence, not the time efficiency.

Proof. SinceG is a circular arc graph, we assume R is an arbitrary circular arc representation

of G. We will show how to adjust the ordering of endpoints in R with a two-step algorithm

such that the new R is normalized and still represents G. Consider a pair of adjacent vertices

v and v′ in V (G) and their corresponding arcs A and A′ in R. Suppose N [v′] ⊂ N [v] but

A does not contain A′. Since G has no clique modules, N [v′] 6= N [v], therefore A′ does

not contain A. Also G has no universal vertex, N [v] 6= V (G), therefore A and A′ do not

cover the circle. Thus A can only overlap A′. If A contains the right (left) endpoint of

A′, we extend the left (right) endpoint of A up to the left (right) endpoint of A′ so that

A contains A′. We repeat this step until the second condition of a normalized circular arc

representation is satisfied. It is clear during the changes, no new intersection was created

since N [v′] ⊂ N [v], thus the adjusted R is still represents G.

In the second step, suppose for a pair of vertices v and v′ in V (G), such thatN [v]∪N [v′] =

V (G), for each u ∈ N [v]\N [v′] we have N [u] ⊂ N [v], and for each for each u′ ∈ N [v′]\N [v]
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we have N [u′] ⊂ N [v′], but their corresponding arcs A and A′ do not cover the circle. Since

G has no universal vertices, A does not contain, or is contained in, A′. Therefore, A overlaps

A′. If A contains the right (left) endpoint of A′ then we extend the right (left) endpoint

of A′ next to the left (right) endpoint of A so that A and A′ cover the circle. Repeat this

step, until there are no pairs of such vertices. It is clear that the adjusted R still represents

G, since every arc corresponding to a non neighbour of v′ is contained in A′, so during the

extension of A′ no such arcs intersect A′.

We continue demonstrating how to find the neighbourhood containment and also check

the conditions of normalized circular arc representation in linear time. Tucker [64] gave an

O(n3) algorithm to do this. Later on Spinrad [15] gave another algorithm which runs in

O(n2) and McConnell [49] slightly tighten the analysis of Spinrad algorithm to get linear

time bound, O(n + m). The following theorem was the first linear time neighbourhood

containment recognition, introduced by McConnell.

Theorem 2.5.2. [49] If G is circular arc graph, we can distinguish the following two cases

of relations between neighbourhood of every two adjacent vertices v and u of G in time

O(n+m).

• N [v] ⊂ N [u].

• N [v] ∪N [u] = V (G)

To prove the first part of the theorem, we introduce two disjoint subset of V (G). Suppose

v0 is a vertex with minimum degree in G, let W = N [v0] and U = V (G) \ W . Instead

of looking for neighbourhood containment over G, we check the containments in these two

disjoint subsets of V (G). Specifically, N [v] ⊂ N [u] if and only if (N [v]∩W ) ⊂ (N [u]∩W ) and

(N [v]∩U) ⊂ (N [u]∩U). Also N [v]∪N [u] = V (G) if and only if (N [v]∩W )∪(N [u]∩W ) = W

and (N [v] ∩ U) ∪ (N [u] ∩ U) = U . We build an auxiliary bipartite graph D with parts W ′

and V (G) where W ′ is a disjoint copy of W . Two vertices x ∈ V (G) and y ∈ W ′ are

adjacent in D, if and only if they are non-adjacent in G. In particular, each x ∈W ⊂ V (G)

is non-adjacent to the corresponding x′ ∈W ′.
The following lemma was proved by Spinrad [15].(See Definition 1.1.5.)

Lemma 2.5.3. [49] D is chordal bipartite.

Proof. Suppose D has a chordless cycle C of length 2k ≥ 6, v1w1v2w2..vkwkv1 such that

vi ∈ V (G) and wi ∈ W ′. Consider the circular arc representation R of G, a pair of vertices
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wi and wj , and their corresponding circular arcs Ai and Aj in R. For any vi, Let Bi denote

the circular arc corresponding to vi in R including the vertex v0 with minimum degree. The

neighbourhood of wi in G is not contained in wj , thus Ai is not contained in Aj . Therefore,

the left endpoint ordering of circular arcs corresponding to any wi for i = 1, 2, .., k is the same

as their right endpoint ordering. We order every wi according to the left endpoint ordering

of their corresponding circular arcs in the clockwise direction from the right endpoint of B0.

Since vi is adjacent to wi−1 and wi in D, Bi avoids Ai−1 and Ai. Also, Bi avoids any circular

arc corresponding to a vertex wj between wi and wi−1 in the ordering, thus wi and wi−1

are consecutive in the ordering. Without loss of generality, assume w1 is the first vertex in

the ordering. Since wi and wi−1 are consecutive in the ordering, wk is the last vertex in the

ordering. We consider two cases for v1, either v1 is adjacent to v0 in G or not.

If v1 is adjacent to v0 in G then the circular arc B1 avoids A1 and Ak, but it intersects the

circular arc B0 corresponding to v0 and every Ai for 1 < i < k. Thus B1 must be contained

in B0, which contradicts the fact that v0 is a minimum degree vertex in G, because there

are no clique modules in G.

Now suppose v1 is non-adjacent to v0 in G. Since the circular arc B1 corresponding to

v1 avoids A1 ,Ak and B0, it is impossible for B1 to intersect any Aj for 1 < j < k, while

avoiding B0. Therefore, D is chordal bipartite.

Let v and u be two adjacent vertices in G. We now consider two cases with respect to

our partitioning of V (G) into U and W .

• (N [v] ∩ U) ⊂ (N [u] ∩ U).

To check this, we first test whether or not U is an interval graph. If U is not an

interval graph, then G is not a circular arc graph. Otherwise, we can find an interval

representation of U in linear time [44]. Let I be an interval representation of U . For

any vertex w in G, we denote by `mw the leftmost endpoint of the intervals of I

corresponding to the vertices in N [w]∩U . Similarly, we denote by rmw the rightmost

endpoint of such intervals. We can find neighbourhood containment of two vertices

u and v, in U by checking the order of `mu, `mv, rmu and rmv in I. Finding these

extreme endpoints for v ∈ V (G) only take time O(|N(v)|), by comparing the endpoints

of each interval, since each comparison of the left and right endpoints of intervals given

the interval representation of U will take constant time.

• (N [v] ∩W ) ⊂ (N [u] ∩W ).

Suppose G is a bipartite graph with parts X and Y . Spinrad [61] proved that either
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finding neighbourhood containment of all pairs of vertices of G or determining G is

not chordal bipartite, will take O(n1n2 + k) time where there are k pair of adjacent

vertices in G. We apply Spinrad’s technique to find neighbourhood containment in D.

This will solve the neighbourhood containment of two adjacent vertices in V (G) with

restriction to W . Since |W | = deg(v0) = O(m/n), it only takes O(m+ n) time.

We proved that if two vertices are adjacent in the graph, we can determine whether

or not the neighbourhood of one is contained in the other. McConnell also proved that

one can decide in linear time if two adjacent vertices corresponding arcs together cover the

circle. The process starts with acquiring the list of pairs of vertices such that the union of

their neighbourhoods cover the vertices of graph. Eschen [16] proved the time complexity

of finding the neighbourhood disjointness in chordal bipartite graphs is O(n1n2) where n1

and n2 are the sizes of each partitions. If two vertices neighbourhoods cover the graph, the

complement of each vertex’s neighbourhood should be disjoint. For every pair of adjacent

vertices x and y that their neighbourhood cover the graph, McConnell explained how to

find whether or not neighbourhood of every non neighbour of x is contained in y and vice

versa is linear using so-called probe interval graphs. The detailed algorithm can be found

in [49].

Now that we can recognize neighbourhood containments and cover the circle relations

in linear time, we can start constructing the circular arc representation of G.

Creating a Circular Arc Model

Tucker introduced three different cases of graphs and for each case he proposed a different

algorithm. Spinrad used the same classification of graphs. Case I are the co-bipartite

graphs. These graphs are covered by two cliques, in other words, their complements are

bipartite. Case IIa consists of graphs with a K3 in their complement , and Case IIb of

graphs with an induced C2k+1 in their complement with k > 1.

Here we present Eschen-Spinrad’s algorithm for Case I and discuss Kaplan’s and Nuss-

baum’s analysis of the other cases.

Case I: Co-Bipartite Graphs

Suppose G is co-bipartite graph. Thus G is covered by two cliques. Since the size of one of

them is at least n/2, G has Θ(n2) edges. The Eschen-Spinrad algorithm will run in O(n2)

time for graphs, but in this case, it will run in time linear with respect to the size of G,

O(m+ n) = O(n2).
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Spinrad [60] introduced an algorithm to recognize a co-bipartite circular arc graph by

reducing the problem to recognizing so-called two dimensional partial order. Here we discuss

the reduction.

Let G be a co-bipartite graph which covered by two cliques X and Y . Assume G is

a circular arc graph, the following theorem will be useful for discussing the circular arc

representation of G.

Theorem 2.5.4. [64] If G is co-bipartite circular arc graph with two cliques X and Y

then there exist a circular arc representation of G with two points N , S such that every arc

corresponding to a vertex in X cover S and not N and every arc corresponding to a vertex

in Y cover N and not S.

Recall that we usually call these two points on a circular arc representation of co-bipartite

G the north pole and the south pole (cf. the proof of Theorem 1.3.8). These two poles

partition the circle into two parts. We will again denote the clockwise portion of the circle

from N to S, the east side and the counter-clockwise portion from N to S the west side.

Each arc in the representation has exactly one endpoint in each side, more specifically every

arc corresponding a vertex in X (Y ) has a clockwise extreme endpoint in the east (west)

side and a counter-clockwise extreme endpoint in the west (east) side. The circular arc

representation of G will define two orderings of endpoints according to each side.

Definition 2.5.2. A two dimensional partial order is a combination of two linear orderings

< and <′ of the same objects. Let x and y be two objects then x precedes y in the two

dimensional partial order if and only if x < y and x <′ y.

A directed graph G′ with same vertex set of G will represent a two dimensional partial

order with the following edges. The edge xy is an edge in E(G) if and only if x precedes y

in the two dimensional partial order, i.e., x precedes y in both orderings. If x precedes y in

one ordering while y precede x in the other, x and y are non-adjacent.

Let R be a normalized circular arc representation of G. We define a two dimensional

partial order of vertices of G based on the two orderings of the endpoints from the north

pole to the south pole on the east side and the west side of R. Let v1 be a vertex in X with

the corresponding arc A1 in R. For each vertex v2 of G with the corresponding arc A2 in

R, the relation between A1 and A2 defines a two dimensional partial order of V (G).

1 If A1 and A2 are disjoint then v1v2 is an edge in G′.

2 If A1 contains A2 then v1v2 is an edge in G′.
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3 If A1 is contained in A2 then v2v1 is an edge in G′.

4 If A1 and A2 cover the circle then v2v1 is an edge in G′.

5 If A1 overlaps A2 then there is no edge between v1 and v2 in G′.

We create the directed graph G′ that represents the two dimensional partial order as

follows. The vertex set of G′ is same as G. For each pair of vertices x1 and x2 in X, the

edge x1x2 is in G′, if neighbourhood of x1 is contained in the neighbourhood of x2. For

each pair of y1 and y2 in Y , the edge y1y2 is in G′, if the neighbourhood of y2 is contained

in the neighbourhood of y1. For each x ∈ X and y ∈ Y , an edge xy is in G′, if x and y are

non-adjacent. The edge yx is in G′, if Ax and Ay, the arcs correspond to x and y, cover

the circle. It is easy to see that there is a one-to-one correspondence between a normalized

circular arc representation and G′.

Spinrad [62] showed that determining whether a directed graph is representing a two

dimensional partial order will take O(n2) time. Feeding G′ to Spinrad’s two dimensional

partial order recognizer, we can determine whether or not G is co-bipartite circular arc

graph in time O(n+m) = O(n2).

Case II

Here we suppose that the graph G is not co-bipartite. Suppose v0 is a minimum degree

vertex in G. If |N [v0]| ≥ n/2 then |E(G)| = Θ(n2) and the Eschen-Spinrad algorithm will

run in time linear in the size of the graph. Otherwise, let M denote the set of non-neighbours

of v0, i.e., M = V (G) \ N [v0]. Note that we assume |M | > n/2. Let v1 be a vertex of M

with the minimum degree in G. If deg(v1) ≥ n/2 then each vertex in M is adjacent to at

least n/2 vertices. Thus, |E(G)| = Θ(n2) and the Eschen-Spinrad algorithm will run in

linear time with respect to size of the graph, i.e. O(n + m). Otherwise, there is a vertex

v2 of M which is non-adjacent to both v0 and v1. We choose v2 ∈ M among the vertices

non-adjacent to v1 with the minimum degree in G.

Here we discuss how to recognize a circular arc graph by creating a circular arc repre-

sentation, if G has at least three independent vertices. We briefly overview the steps of the

recognition and more details can be found in [38] [16] [52].

We start by building a maximal independent set I based on the vertices v0, v1 and v2.

Since we chose these vertices with the minimum degree, their corresponding arcs are not

contained any other arc. We construct I by choosing the next independent vertex with

minimum degree in G. If no other vertex can be added to I then we verify the following
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condition. If two non-adjacent vertices u, v are adjacent to exactly one vertex w in I, we

replace w by u and v. Also if there are more than two non-adjacent vertices such that they

are only adjacent to w in I then we reject G as a circular arc graph. Because no arc is

contained in Aw, the vertex w has at most two non-adjacent neighbours such that the the

arc corresponding to each covers a different endpoint of Ai.

After the maximal independent set I is created, we arrange the arcs corresponding to

vertices in I around the circle. Let J = V (G) \ I and AI the set of the arcs corresponding

to vertices in I, i.e., AI = {Ii|Ii is the corresponding arc for vi}. To find a circular ordering

for AI , we may use the following.

Lemma 2.5.5. [64] If G is circular arc graph, there exists a circular arc representation R

for G in which the circular ordering of AI satisfies the following:

• For each vertex v ∈ J with the corresponding arc Av, the arcs corresponding to vertices

in N [v] ∩ I are ordered consecutively around the circle. More precisely, Av overlaps

at most two arcs A1 and A2 in AI . Then A1 and A2 are at the ends of consecutive

ordering of N [v] ∩ I and the arcs contained in Av are consecutive in the consecutive

ordering of N [v] ∩ I.

• For each pair of adjacent vertices u and v in J such that (N(v) ∩N(u)) ∩ I = ∅, the

arcs contained in either Av or Au are consecutive around the circle.

To determine a circular ordering of AI with the above conditions, Kaplan and Nussbaum

construct an auxiliary 0, 1-matrix M . The columns of M are corresponding to arcs in AI .

For the first condition, we add a row for every vertex v in J with entry ”1” for columns

corresponding to each Ai in AI such that the arc corresponding to v contains Ai. We also

add two extra rows with entry 1 in columns corresponding to the arcs in Ai ∪ {Ai|Ai is

contained in Av} for each i = 1, 2. If G is circular arc graph then there is a circular ordering

of the columns such that the entry 1s in each row are consecutive. This property of the

0, 1-matrix M is called circular ones property of M and can be verified in time linear in the

number of entries ”1” in M [36], i.e., O(m+ n).

Assume the ordering of the independent arcs found in the previous step. Let p = |I|. By

putting the arcs in AI around the circle, 2p sections are created on the circle. Specifically, S2i

for each arc Ai ∈ AI , and S2i+1 for the gap between two consecutive arcs Ai and Ai+1. We

denote by Si the ith section. The arc Ax corresponding to x ∈ J in a circular representation

of G has at most one endpoint in each section, since any arc in AI contains no other arc.

Using the types of relation between the arc Ax and the arcs in AI we can determine the

section for each of the endpoints. Consider the following cases.
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• Ax overlaps just an arc Ai in AI .

• Ax contains just an arc Ai in AI . In this case, we put `x in S2i−1, and rx in S2i+1.

• Ax overlaps two consecutive arcs Ai and Ai+1 in AI . In this case, we put `x in S2i

and rx in S2i+2.

• Ax does not intersect all arcs in AI . In this case, we can determine which arc in

AI it meets first or which arc it meets last using the ordering we acquired in the

previous step, and determine its endpoint’s sections depending on whether it contains

or overlaps these extreme arcs.

• Ax intersects all arcs in AI and only overlaps one arc Ai in AI .

This classification covers any possible relation between arcs in a circular arc representa-

tion of G. Except in the first and the last case, in all other cases the section of the endpoints

are clear. For the case where Ax is either contains all other arcs in AI and overlaps one or

just overlaps one, full details can be found in [16] [38].

Finally, the last step is to arrange the endpoints in each section Si with more than

one endpoint. Note that the arrangement of the endpoints in Si only affect the adjacency

between the vertices corresponding to the arcs with an endpoint in Si. The set of vertices

corresponding to any circular arc with the left endpoint in Si is a clique in G, since their

corresponding circular arcs cover an endpoint of the circular arc Ai/2. Similarly, the set

of vertices corresponding to any circular arc with the right endpoint in Si is a clique in

G. Let Di denote the subgraph on the set of vertices with any endpoints in Si, and ni =

|Di|. The graph Di is covered with two cliques, thus Di is co-bipartite, and it has at

least ni
2 (ni

2 − 1) edges. We split the endpoints in each Si into ordered disjoint subsections

Si,1, Si,2, .., Si,k, so that for each Si,j , there is a section Sl contains the other endpoints of

the arcs with an endpoint in Si,j . Nussbaum described how this can be done in O(n2i ) [52].

For each subsection Si,j containing more that one endpoint, we determine the circular arc

representation of an induced subgraph Di,j of Di on the vertices with an endpoint in Si,j .

The graph Di,j is also covered with two cliques, thus we can determine a normalized circular

arc representation for Di,j using the Case I of the algorithm. Since O(Σn2i ) = O(m), the

algorithm runs in time linear with respect to the size of G.



Chapter 3

Co-Circular Arc Graphs

In the previous chapter, we discussed the recognition of circular arc graphs in linear time.

An interesting question that arises is the following. Given a graph G, can we recognize

whether or not the complement of G is a circular arc graph. The question is particularly

interesting if G has very few edges. For example, consider a bipartite graph G. Since the

co-bipartite graph G is covered with two cliques, it contains Θ(n2) edges. The linear time

circular arc recognition algorithm from the previous chapter will take Θ(n2) steps. But can

we recognize if G is a co-circular arc graph in time linear with respect to the size of G (which

could have fewer than Θ(n2) edges)? We discuss co-bipartite graphs in Chapter 4.

In this chapter we study the following problem. Given a graph H, we want to find out

if H is a circular arc graph. Using a direct approach to find a circular arc representation

for H by the algorithm from the previous chapter will take Θ(n2) time.

The close relationship of the bipartite co-CA graphs and interval graphs (see Theo-

rems 1.3.4 and 1.3.12) and the fact that interval graphs can be recognized in linear time

suggests that the answer to the question could be ”yes”.

One of our early observations was when H has Θ(n2) edges, the basic algorithm will run

in linear time, O(n + m). This fact suggests we should look at graphs with small number

of edges, like trees, k-trees and bounded degree graphs.

The results in this chapter are new, unless stated otherwise.

3.1 Recognition of Co-CA Trees

Trees have a linear number of edges (in terms of n). In this section, we assume H is a tree.

We determine whether or not the complement of H is a circular arc graph. Since H is a tree,

36
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H is bipartite. Thus, we may use Trotter’s and Moore’s classification of forbidden structures

for bipartite co-CA graphs [37]. The following theorem will characterize the intersection of

two graph classes: trees and co-CA graphs. The graph G1 is described in Figure 3.1.

Theorem 3.1.1. Let H be a tree. Then the complement of H is a circular arc graph if and

only if G1 is not an induced subgraph of H.

Proof. Let H be a co-circular arc tree and R a circular arc representation of H̄. Suppose

H contains G1 as an induced subgraph. We use the labels from Figure 3.1. An arc ai

corresponds to the vertex vi. Consider the set, S = {a2, a5, a8}. The arcs in S pairwise

intersect, and each arc in S avoids a1. Thus, the arcs in S share a point on the circle. Each

arc ai in S avoids the arc ai+1 intersecting the other two ones from S, thus no two arcs in S

are contained in each other. We may assume the endpoints of the arcs in S are ordered and

some am ∈ S is contained in
⋃

ai∈S ai. The arc am+1 avoids am but intersects the arcs in

S\am, thus am+1 contains a1. The arc am+2 avoids am+1 but intersects a1. This contradicts

the containment relation between a1 and am+1. Thus, H does not contain G1 as an induced

subgraph.

In Trotter’s and Moore’s characterization of bipartite co-circular arc graphs, the graph

G1 is the only forbidden tree structure. Thus, if G1 is not an induced subgraph of H, the

complement of H is a circular arc graph.

v10

v9

v8

v1

v2

v3

v4

v5

v6

v7

Figure 3.1: Graph G1

Now that the only obstruction is described, we introduce a linear time algorithm to find

G1 in a given tree, if it is present.
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INPUT: A tree T.

QUERY: Does T contain an induced G1?

Algorithm

Let T be a tree. Our algorithm checks for every node, whether or not it can play the

role of the vertex v1 in a subgraph of T isomorphic to G1.

First, we root T from an arbitrary vertex rT in T . Throughout the algorithm, for each

node x in T , we define a three-dimensional vector v(x) = (v(x)1, v(x)2, v(x)3) such that

v(x)1 ≥ v(x)2 ≥ v(x)3 ≥ 0. Assume there is an orientation on edges from parents to

children. The vector v(x) encodes the lengths of the (up to) three longest directed paths

from x through its distinct children. Specifically, we define, and compute the vector v(x) as

follows:

1 If u is a leaf then v(u) = (0, 0, 0).

2 If u is a node with one child x then v(u) = (v(x)1 + 1, 0, 0).

3 If u is a node with two children x and y then v(u) = (v(x)1 +1, v(y)1 +1, 0) (assuming

v(x)1 ≥ v(y)1, and similarly if v(y)1 > v(x)1).

4 If u is a node with more than two children then v(u) = (v(x)1 + 1, v(y)1 + 1, v(z)1 + 1)

when x, y and z are children of u such that three longest paths among children of u

starts from x, y and z, and v(x)1 ≥ v(y)1 ≥ v(z)1.

The leaves of T do not have any children, thus we initialized them with (0, 0, 0). We

start with a queue Q of nodes initialized with the leaves of T . In each step, we dequeue a

node u from Q and update v(parent(v)). After the update, we enqueue parent(v) to S.

The tree T contains G1 as an induced subgraph, if one of the following conditions is

satisfied for some node u in T .

• v(u)1 ≥ 3 and v(u)2 ≥ 3 and v(u)3 ≥ 3.

• v(u)1 ≥ 3 and v(u)2 ≥ 3 and v(parent(u))2 ≥ 2

• v(u)1 ≥ 3 and v(u)2 ≥ 3 and v(parent(parent(u)))2 ≥ 1

• v(u)1 ≥ 3 and v(u)2 ≥ 3 and parent(parent(v)) has a parent.

The following theorem proves the correctness of the algorithm.
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Theorem 3.1.2. The class of co-CA trees can be recognized in linear time.

Proof. Let T be a given tree. We may apply the algorithm above to T . We show that

the algorithm is correct and runs in linear time. It is clear that for a node v if one of the

conditions was satisfied then T contains an induced G1. Thus due to Theorem 3.1.1, T is

not a co-CA tree.

Now suppose T is not a co-CA tree, we show that one of the conditions will be satisfied.

Due to Theorem 3.1.1, T must contains an induced G1. Consider v1 in G1, either v1 is the

parent of its three neighbours in G1 or v1 is the child of one and the parent of the other

two neighbours. The former case satisfies the first condition, and the latter case satisfies

one of the other conditions depending on parent-child relations of parent(v1) with its other

neighbour.

The algorithm runs for Θ(n) steps and each step takes constant time, also finding the

set of leaves for a tree takes linear time. Thus, the algorithm recognizes a co-CA tree in

linear time.

Note that the same forbidden structure will characterize co-CA forests. Let F be a

forest. We can apply the algorithm to each connected component of F .

Corollary. The class of co-CA forests can be recognized in linear time.

3.2 Recognition of Co-CA k-Trees

In the previous section, we discussed recognition of co-CA trees. Here, we expand our results

to another class of graphs, namely k-trees.

Definition 3.2.1. A graph G is a k-tree if either G is a Kk+1 or if the graph resulting from

eliminating a vertex whose neighbours induced a complete graph on k vertices, is a k-tree.

According to this recursive definition of k-tree, we may consider the construction process

of a k-tree, G. In the construction process, we start from a complete graph on k vertices.

By adding a vertex adjacent to a complete subgraph of size k in G, the resulting graph is

also a k-tree.

A 1-tree is a tree. We recognized the class of co-CA trees in the previous section. Here

we start by describing the recognition of co-CA 2-trees.

We define the following two graph classes of 2-trees which are useful for characterizing

2-tree co-circular arc graphs.

Definition 3.2.2. Consider the graphs A and B in Figure 3.3.
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(b) Graph Y

Figure 3.2: The forbidden structures of co-CA 2-trees

• A-class: all 2-trees obtained from the graph A (or an induced subgraph of A) by

adding any number of vertices adjacent to any of the marked edges.

• B-class: all 2-trees obtained from the graph B (or an induced subgraph of B) by

adding any number of vertices adjacent to any of the marked edges.
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v6

v3

v4
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(a) Graph A

v1
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v4

v5

v6

(b) Graph B

Figure 3.3: Graph A and B

Lemma 3.2.1. Let G be a 2-tree. If G does not contain X or Y from Figure 3.2 as an

induced subgraph, then G is a graph from the A-class or the B-class.

Proof. Let G be a 2-tree which does not contain an induced copy of X or Y . Consider the

construction process of G, where we construct a changing graph G′ along each step of the

construction process. We initialize G′ with K3. In each step of the process, an edge e is

chosen from G′ and a number of vertices adjacent to e are added to G′. Without loss of

generality, we assume vertices adjacent to the same edge are added consecutively. After two

steps, the resulting graph is isomorphic to a subgraph on vertices {v1, v2, v3, v4, v5} from
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A (or B), with marked edges v2v3 and v3v4 in Figure 3.3. Now, the construction process

continues. For the next step, a vertex u′ is added to H ′ such that u′ is adjacent to an edge

e′ from H ′. If e′ = v2v4 then G′ is from the A-class, if e′ = v4v5 or e′ = v1v2 then G′ is

from the B-class. If e′ = v1v3 or e′ = v3v5 then it is clear that G′ would contain an induced

subgraph X.

If G′ is from the A-class then adding a vertex adjacent to an unmarked edge induces a

subgraph X in G′. If G′ is from the B-class then adding a vertex adjacent to v1v2 or v4v5

induces a subgraph Y in G′. Also adding a vertex adjacent to v1v3, v3v5, or v2v4 induces

a subgraph X in G′. It is clear that adding vertices adjacent to a marked edge does not

create an induced copy of X or Y in G′. (See Figure 3.3). The construction process of G

may continue with vertices adjacent to the marked edges. Thus G is an induced subgraph

of a graph from the A-class or the B-class, if G does not contain an induced subgraph of X

or Y .

The following result gives several equivalent characterizations of 2-tree co-CA graphs.

It also implies a linear time recognition algorithm, by considering the sequence of vertex

additions for constructing the 2-tree.

Theorem 3.2.2. The following are equivalent for a 2-tree G.

1 G is a co-CA graph.

2 There is no induced K2,3 or C∗4 in G.

3 There is no induced X or Y in G.

4 G is from the A-class or B-class.

5 There is no induced P5 in G.

Proof. 1 ⇒ 2. See Figure 2.2 in Section 2.4.

2 ⇒ 3. See the marked vertices in Figure 3.2, X contains C∗4 and Y contains K2,3.

3 ⇒ 4. Lemma 3.2.1.

4 ⇒ 5. It is easy to check that a graph from A-class or B-class does not contain an

induced P5.

5 ⇒ 3. Suppose G contains X or Y . Since both X and Y contain an induced P5, there

is an induced P5 in G.
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4 ⇒ 1. We show the complements of A and B are circular arc graphs by describing

the circular arc representation of A and B; this is done in Figure 3.4. A graph G from

the A-class or the B-class, has sets of independent vertices only adjacent to a marked edge.

There are three marked edges in each class. For each marked edge e, there already is a

vertex v adjacent to e. Each independent set Sv of vertices only adjacent to e will be

treated as a clique module with v in the complement of G. We describe how to arrange

these sets according to the circular arc representation in Figure 3.4 to obtain a circular

arc representation for G. For each arc as corresponding to a vertex s in Sv, we arrange

the endpoints of as next to endpoints of av so that as contains av. Thus au intersects av

and the arcs intersecting av, and avoids the arcs avoiding av. Therefore, the circular arc

corresponding to u is the same as the corresponding arc for v.

v4v2

v3

v1
v6

v5

(a) A

v6

v1

v5
v2

v3

v4

(b) B

Figure 3.4: Circular arc representations of A and B

The general case of k-trees is more difficult; we at least consider 3-trees. Suppose C is a

graph in Figure 3.5, and let the C-class consist of graphs obtained by adding any number of

vertices adjacent to any of the marked copies of K3 in graph C, or in an induced subgraph

of C (see Figure 3.5). The following two lemmas will describe the class of 3-tree co-circular

arc graphs.

Lemma 3.2.3. If G is a 3-tree from the C-class then G is co-CA 3-tree.

Proof. We show that C is a co-circular arc graph by describing a circular arc representation

of C; we do this in Figure 3.6. Let G be any graph from the C-class, it may contain a vertex

u adjacent to one of the copies of K3, v1v2v3 or v1v2v5. In the former case, the vertex u has
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Figure 3.5: Graph C

the same neighbourhood as v4, and in the latter case, u has the same neighbourhood as v6.

Thus, the corresponding arc for u is either the same as the corresponding arc for v4, or the

same as the corresponding arc for v6.

v4

v6

v3

v2

v1

v5

Figure 3.6: Circular arc representations of C

Lemma 3.2.4. Let G be any graph obtained by adding a vertex adjacent to any unmarked

K3 in the graph C. Then G is not a co-circular arc graph.

Proof. Suppose we want to add a new vertex u to C. Let A, B, .. ,G, H denote the possible

copies of K3 for u to be adjacent to as in Figure3.5. Due to the symmetry of C, we only

discuss A, C, E and G. In cases of A, E and G, an induced subgraph isomorphic to C∗4 is
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marked in Figure 3.7(a) 3.7(c) 3.7(d), implying G is not a co-CA graph. In case of C, the

marked edges in Figure 3.7(b) form an induced subgraph isomorphic to 2− net. The graph

2−net is a well known non-interval graph (See Figure 2.1(b)). The vertex v1 is adjacent to

every vertex of 2− net. Therefore, 2− net∗ is not a co-circular arc graph.
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u

(b) Adding a vertex adjacent to C
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(c) Adding a vertex adjacent to E

v1 v2

v3

v4

v5

v6

u

(d) Adding a vertex adjacent to G

Figure 3.7: 3-trees obstruction graphs

We conclude with the following characterization of co-circular arc 3-trees.

Theorem 3.2.5. If G is a 3-tree, then G is a co-CA 3-tree if and only if G is a graph from

the C-class.

Proof. Let G be a 3-tree. Consider the construction process of G. We apply each step

of the construction process to a graph G′ to obtain G. We initialize G′ with K4. After
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the first step, G′ is consists of at least two independent vertices adjacent to a K3. The

construction may continue with adding a vertex adjacent to a new K3. The new K3 has

exactly one vertex from the independent set and two vertices from the first K3. Thus, the

resulting graph after 2 steps is from the C-class. Due to Lemma 3.2.4, if the construction

process continues with adding vertices to an unmarked K3, then H ′, and hence H, is not a

co-CA graph. It is also easy to see that every graph from the C-class is co-CA graph, by

duplicating suitable arcs from Figure 3.6.

It follows that 3-tree co-CA graphs can be recognized in linear time from their construc-

tion sequence.

3.3 Recognition of Co-CA Graphs with Bounded Degree

Trotter and Moore described forbidden structures of bipartite co-circular arc graphs. In this

section we use their description to obtain an algorithm to recognize bipartite co-circular arc

graphs with maximum degree 3.

Among the forbidden structures of bipartite co-circular arc graphs, the chordless cycles

of length greater than 4 and the graphs T1, G1 and G3 from Figure 3.8 are the only forbidden

structures with degree bounded by 3.

To guarantee that the given graph does not contain any induced cycle of length greater

than 4, we use the recognition algorithm for chordal bipartite graphs. An elegant recog-

nition algorithm for chordal bipartite graphs (see Definition 1.1.5) due to Lubiw [46] runs

in O(m log n2), and the time was improved by Paige and Tarjan [54] to O(m log n). In our

case, m ≤ 3n
2 thus the Paige and Tarjan recognition will take O(n log n).

Next, we decide if a given graph G with maximum degree 3 contains an induced copy of

T1, G1 or G3.

INPUT: A bipartite graph G with degree bounded by 3.

QUERY: Is G a co-CA graph?

Algorithm

Suppose given G is a bipartite graph with degree bounded by 3. We test whether any

vertex in G can play the role of the marked vertex (the center vertex) in Figure 3.8 for these

forbidden structures.
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Figure 3.8: The graphs T1, G1 and G3

The maximum distance from the center vertex in all of these three obstruction graphs

is 3. Since the degrees are bounded, there are bounded number of neighbours that we have

to explore, and for this reason the rest of the algorithm will run in linear time.

Let v be a vertex in G with 3 neighbours. (Note that the center has 3 neighbours.) Each

of the neighbours has at most 2 other neighbours. Let L1(v) denote the set of neighbours

of v. Since G is bipartite no two vertices of L1(v) are adjacent. Let L2(v) denote the set of

neighbours of the vertices in L1(v) different from v. Let L3(v) denote the set of neighbours

of of vertices of L2 not in L1. No two vertices of L2(v) or L3(v) can be adjacent. Let

L1(v) be {u1, u2, u3}. For a vertex w in L2(v), we label w with the subset of L1(v) that w

is adjacent to. For a vertex w in L3(v), we label w with the union of the labels from its

neighbours in L2(v).

Now we check for graphs G1, G3 and T1 as follows.

G1 : G has G1 as an induced subgraph, if and only if for a vertex v ∈ V (G), L2(v) and

L3(v) has 3 singly labelled vertices.
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G3 : G has G3 as an induced subgraph, if and only if for a vertex v ∈ V (G), L2(v) has

3 singly labelled vertices and a doubly labelled vertex with label, say {u1, u2}, and

L3(v) has a doubly labelled vertex with label {u1, u2}, and a singly labelled vertex

with label either {u1} or {u2}.

T1 : G has T1 as an induced subgraph, if and only if for a vertex v ∈ V (G), L2(v) has

3 singly labelled vertices and a doubly labelled vertex with label, say {u1, u2}, and

L3(v) has two singly labelled vertices with labels {u1} and {u2}.

It is easy to see that each singly labelled vertex in Li(v) is equivalent to a disjoint path

of length i starting from v in G, thus G has G1 as an induced subgraph with the center

vertex v if and only if L3(v) has 3 singly labelled vertices.

If G has T1 as induced subgraph then there are two paths of length 3 and a path of

length 2 starting from the center vertex v. This is the reason L2(v) has 3 singly labelled

vertices, and L3(v) has two singly labelled vertices with labels {u1} and {u2}. Also L2(v)

has a doubly labelled vertex with label {u1, u2} which plays the role of v5 in Figure 3.8(b).

If G contains G3 then L2(v) has 3 singly labelled vertices, playing the roles of v4, v6

and v7. Also L2(v) has a doubly labelled vertex w with label {u1, u2} which plays the role

of v5 in Figure 3.8(c), and L3(v) has a doubly labelled vertex w′ with the same label as w,

so w′ plays the role of v8 in Figure 3.8(c). Note that if v8 was non-adjacent to v4 but was

adjacent to v2 then the resulting graph is still an induced G3. Therefore, G has an induced

G3 if and only if the conditions above satisfied.

In conclusion, the recognition of bipartite co-circular arc graphs with degree bounded by

three will take time O(n log n), with the bottleneck being finding induced cycles of length

greater than four. If we know the input graph is chordal bipartite, then we have a linear

time algorithm for determining whether the input graph is a co-CA graph.



Chapter 4

Bipartite Co-Circular Arc Graphs

In the study of list homomorphism problems for bipartite graphs, the class of bipartite

complements of circular-arc graphs turned out to delineate the dichotomy (polynomial -

NP-complete) for the problem (see Theorem 1.3.12). Furthermore, the complement of this

class was singled out by Trotter and Moore as the central case for the recognition of circular

arc graphs [37]. For this reason, we focus on the characterization of bipartite co-circular

arc graphs. We also discuss solving various problems on this class of graphs. We call these

graphs bipartite co-CA graphs.

In the previous chapter, we discussed the recognition of co-CA graphs in linear time

for some classes of bipartite graphs namely, for trees, forests and bounded degree bipartite

graphs. Now we investigate this class of graphs in general. We will also discuss some

polynomial time algorithms on this class, for problems that are NP-complete in general, or

problems that are polynomial time solvable in general, but can be solved more efficiently

for this class. These results are new, unless stated otherwise. In some cases, we give a new

proof to an existing result (cf. Theorem 4.1.3).

4.1 Characterization

We call G a bipartite co-CA graph, if G is bipartite graph with parts X and Y , and G has a

circular arc representation, say R. Since G is bipartite, G is covered with two cliques on X

and Y . The circular arc representation, R is representing G, thus in R two arcs are disjoint

if and only if their corresponding vertices in G are adjacent.

This class has various characterizations. The earliest characterization of the class belongs

to Trotter and Moore [37]: they proved that a graph G is a bipartite co-CA graph if and

48
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only if G does not contain an induced cycle of length greater than 4 or an induced subgraph

from the list in Figure 4.1.

The following definitions are useful.

Definition 4.1.1. The line graph L(G) of G is a graph on E(G) such that e1 and e2 in

E(G) are adjacent in L(G) if and only if e1 and e2 share a common vertex in G.

Definition 4.1.2. Let G be a graph. The square of G denoted by G2 is the graph on V (G)

such that two vertices are adjacent if and only if their distance is at most two in G.

We may use the following results in future discussions. (See Definitions 1.1.5 and 1.1.4)

Lemma 4.1.1. A bipartite co-CA graph G is chordal bipartite.

Proof. A bipartite co-CA G can not contain any induced cycles of length greater than four,

according to [37]. Thus, G is chordal bipartite.

Lemma 4.1.2. Let G be a bipartite co-CA graph. Then L2(G) is weakly chordal.

This follows directly from Lemma 4.1.1 in view of the fact that L2(G) of a chordal

bipartite graph G is weakly chordal [7].

We first state the following theorem which summarizes different equivalent characteri-

zations of the class. (See Definitions 1.2.1, 1.3.2 and 1.4.3.)

Theorem 4.1.3. ( [29] [37] [18] [57]) Let H be any graph. The following are equivalent:

1 H is a bipartite co-circular arc graph.

2 H admits a min ordering.

3 H has no induced cycles of length greater than four and no edge asteroid.

4 H has no invertible pairs.

5 H has no induced subgraph from Figure 4.1 and no induced cycles of length greater than 4.

6 H has a 2-directional orthogonal ray representation.

The concept of 2-directional orthogonal ray representation is explained below. We con-

tribute a direct proof of the equivalence of the 6th statement and the 1st statement.
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(a) T1 (b) T2

...

(c) W1 (d) W2

...

(e) D1 (f) D2

...

(g) M1 (h) M2

...

(i) N1 (j) N2

...

(k) G1 (l) G2 (m) G3

Figure 4.1: Forbidden structures of bipartite co-circular arc graphs.
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4.1.1 Orthogonal Ray Graphs

Here, we introduce another geometric characterization of bipartite co-CA graphs from [57].

Definition 4.1.3. A bipartite graph G with bipartition (X,Y ) is called a two directional

orthogonal ray graph if there exists a family of non-intersecting horizontal half-lines (rays)

for every vertex in X and a family of non-intersecting vertical half-lines for every vertex in

Y , such that for any x ∈ X and y ∈ Y , xy ∈ E(G) if and only if the horizontal ray of x and

the vertical ray of y intersect.

This class of intersection graphs is also called the class of 2-directional orthogonal ray

graphs [57]. The rays are illustrated on xy-plane in Figure 4.2. The following result clarifies

the importance of this graph class.

Theorem 4.1.4. [57] A bipartite graph G is a 2-directional orthogonal ray graph if and

only if G is a circular arc graph.

In [57], this correspondence is proved indirectly by the inability of representing edge-

asteroids and even cycles of greater than four with 2-directional orthogonal rays (thus show-

ing 6 is equivalent to 3 in Theorem 4.1.3). In this thesis, we present a direct proof of the

equivalence of 6 and 1 of Theorem 4.1.3.

v1v2

v4v3

v5v6

v7

(a) Graph G

v4

v2

v3
v1

v6

v5

v7
N

S

(b) Rc of G

1

2

3

4

5

6

7

(c) Ro of G

Figure 4.2: The correspondence between bipartite co-CA graphs and orthogonal ray graphs

Proof. Let G be a 2-directional orthogonal ray graph. We show there is a one-to-one corre-

spondence between 2-directional orthogonal ray models of G and circular arc graph repre-

sentations of G. Let Ro be a 2-directional orthogonal ray model of G. We may assume no
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two rays start with same vertical or horizontal position. If there exists a pair of such rays,

we could slightly move one so that Ro still represent G.

We now describe the circular arc representation Rc for G. Since G is bipartite with

parts X and Y , G is covered with two cliques. Let N and S denote two arbitrary points

on the circle in Rc. According to Theorem 2.5.4, there is a circular arc representation of

G in which the northern arcs denote the arcs corresponding to the vertices in X cover N

but not S and the southern arcs denote the arcs corresponding to vertices in Y cover S but

not N . (These two points represent the north pole and the south pole respectively in Rc.)

Each ray has an initial point (x, y). Horizontal rays keep the y fixed, and vertical ray keep

x fixed. We sort all the initial points of the rays (regardless of type) according to the x

coordinates. We call this the horizontal ordering of the rays. Also we sort all the initial

points of the rays (regardless of type) according to the y coordinates and call this the vertical

ordering of the rays. (Note that each ordering involves both horizontal and vertical rays.)

We arrange the left endpoints of the northern arcs and the right endpoints of the southern

arcs in the clockwise direction from N to S according to the horizontal ordering of the rays.

For example, in Figure 4.2, the horizontal ordering of the rays is {3, 5, 7, 6, 1, 2, 4} which

yields the ordering {r3, r5, r7, `6, r1, `2, `4} of the endpoints in the clockwise direction from

N to S. Similarly, in the clockwise direction from S to N , we arrange the right endpoints

of northern arcs and the left endpoints of southern arcs according to the vertical ordering of

rays. In the same example in Figure 4.2, the vertical ordering of the rays is {3, 1, 2, 5, 4, 7, 6}
which yields the ordering {`3, `1, r2, `5, r4, `7, r6} in the clockwise direction from N to S.

Let ray1 be a horizontal ray in Ro corresponding to v1 ∈ X and ray2 a vertical ray in Ro

corresponding to v2 ∈ Y . Then v1 and v2 are adjacent if and only if ray1 precedes ray2 in

the horizontal ordering and ray2 precedes ray1 in the vertical ordering. The arc a1 = (`1, r1)

corresponds to v1 and the arc a2 = (`2, r2) corresponds v2, in the circular arc representation

Rc. Then r1 precedes `2 in the clockwise direction from N to S, and r2 precedes `1 in the

clockwise direction from S to N if and only if a1 and a2 are disjoint.

Conversely, let G be a bipartite co-circular arc graph with parts X and Y . Suppose

Rc is a circular arc representation of G with the north and south poles N and S such that

the northern arcs corresponding vertices in X cover N but not S, and the southern arcs

corresponding to vertices in Y cover S but not N . These poles divide the circle into two

parts. We now describe a 2-directional ray representation Ro for G.

Consider an n× n grid in the xy-plane. The circular arc representation Rc involves 2n

points (two endpoints for each circular arc). There are exactly n endpoints in each part

of the circle, since each arc is either a northern arc or a southern arc. We order the x
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coordinates of the initial points of rays according to the ordering of the endpoints of the

arcs in the clockwise direction from N to S. Similarly, we order the y coordinates of the

initial points of rays according to the ordering of the endpoints of the arcs in clockwise

direction from S to N . Note that no two rays (regardless of type) share a column or a row.

Every vertex in X (respectively Y ) corresponding to a horizontal ray (respectively vertical

ray).

Two vertices v1 ∈ X and v2 ∈ Y are adjacent in G if and only if the arcs a1 = (`1, r1)

corresponding to v1 and a2 = (`2, r2) corresponding to v2 are disjoint. Since a1 is a northern

arc, and a2 is a southern arc, r1 precedes `2 in the clockwise direction from N to S, and

r2 precedes `1 in the clockwise direction from S to N . Let ray1 with initial point (x1, y1)

denote the horizontal ray corresponding to v1 and ray2 with initial point (x2, y2) denote the

vertical ray corresponding to v2. Thus according to the ordering of the rays x1 precedes x2,

and y1 precedes y2 if and only if ray1 and ray2 intersect.

It is an interesting fact that both the class of bipartite co-CA graphs and the class of their

complements are intersection graphs, with different kinds of intersection representations.

Moreover, here we proved every 2-directional orthogonal ray model for a graph G exactly

corresponds to a circular arc model for the complement of G. We observed that the hori-

zontal ordering and the vertical ordering of the starting points of the rays define two partial

order on vertices of G. Note that G represents a two dimensional partial order created from

these two orderings. We mentioned how Spinrad used this fact to recognize bipartite co-CA

graphs in Section 2.5.1.

4.2 Algorithms

In the previous sections, we studied the recognition of circular arc and co-circular arc graphs.

Here we contribute polynomial time algorithms (and even linear time algorithms in some

cases) on bipartite co-CA graphs and their complements, for a few well-known problems.

4.2.1 Colouring, Matching, and Covering

We discussed the graph k-colouring problem in Section 1.1 and showed how it can be in-

terpreted as a list homomorphism problem. When k > 2, the graph k-colouring problem is

NP-complete even when restricted to circular arc graphs [21].

The k-colouring problem is trivial for bipartite co-CA graphs, and we focus on the k-

colouring problem for co-bipartite CA graphs. The graph k-colouring problem is equivalent
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to the clique covering problem on the complement of the graph. In other words, we consider

covering a bipartite co-CA graph with minimum number of cliques. Note that in a bipartite

co-CA graph each clique is either K1 or K2.

Definition 4.2.1. A matching M for graph G is a set of edges in G such that no pair

of edges in M share a vertex. A vertex does not belong to an edge of M is said to be

unmatched.

The clique covering problem is exactly the maximum matching problem in bipartite

graphs. Specifically, a bipartite graph G has a matching with k edges if and only if it has a

covering with n − k cliques. The maximum matching problem for bipartite graphs can be

solved in time O(n
5
2 ) or O(m

√
n) [33].

We give a more efficient algorithm using the fact that co-CA graphs admit a min ordering.

The problem we consider is this:

INPUT : A bipartite co-CA graph G with a given min ordering <.

QUERY : Find the maximum matching of G.

Algorithm

Suppose G is a bipartite co-circular arc graph with parts X and Y , and a given min

ordering <. We construct a set of edges Malg which is a matching on G. Initially Malg = ∅.
Let m1 denote the last unmatched vertex from X in the min ordering. Let m2 be the last

unmatched neighbour of m1 in the min ordering. We add the edge m1m2 to Malg, if such a

m2 exists. Otherwise, we skip m1. We stop when all the vertices in X is either matched or

skipped.

Lemma 4.2.1. The set Malg is a maximum matching in G.

Proof. Suppose M1 is a maximum matching in G. Assume m1m2 is not in M1. The edge

m1m2 cannot be added to M1. Thus at least one of m1, m2 is matched in M1. If just one

of m1 or m2 is matched in M1, say miv ∈M1, then we replace miv by m1m2 and obtain a

new maximum matching M2 for G which includes m1m2. If both m1 and m2 are matched

in M1, then there are in M1 edges m1v2 and m2v1 for some v1 ∈ X and v2 ∈ Y . The vertex

m2 is the last neighbour of m1 thus v2 < m2 and v1 < m1. Because of the min ordering and

the existence of the edges m2v1 and m1v2 in G, the edge v1v2 is in G. Now, if we replace

m2v1 and m1v2 by v1v2 and m1m2, we obtain a new maximum matching M2 for G which

includes m1m2.
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Suppose that Malg and Mi share i edges in i-th step of the algorithm. Now let m′1m
′
2

be the edge added to Malg in the i-th step of the algorithm. Assume m′1m
′
2 is not in Mi.

The edge m′1m
′
2 cannot be added to Mi. Thus again at least one of m′1, m

′
2 is matched in

Mi. If just one of m′1 or m′2 is matched in Mi, say m′iv ∈Mi, then we replace m′iv by m1m2

in Mi and obtain a new maximum matching Mi+1 for G which includes m′1m
′
2. If both m′1

and m′2 are matched in Mi, then there are in Mi edges m′1v2 and v1m
′
2 for some v1 ∈ X

and v2 ∈ Y . Since m′1 is the last unmatched vertex in the min ordering with at least one

unmatched neighbour, every vertex v′1 > m′1 is either matched in Mi or does not have an

unmatched neighbour in Mi. Thus, v1 < m′1. Also m′2 is the last unmatched neighbour of

m′1 in the min ordering, thus v2 < m′2. Since edges m′1v2 and v1m
′
2 exist, the min ordering

entails the existence of v1v2. Now, if we replace v1m
′
2 and m′1v2 by v1v2 and m′1m

′
2 in Mi,

we get a new maximum matching Mi+1 for G which includes m′1m
′
2. The Malg has exactly

|M1| edges and is therefore a maximum matching.

Theorem 4.2.2. The maximum matching problem for a bipartite co-CA graph can be solved

in linear time.

Proof. Suppose a bipartite co-CA graph G with a min ordering on its vertices was given

by its adjacency lists. We sort each adjacency list, using bucket sort, in linear time. Thus

the algorithm above finds the last vertex in a min ordering, and finds the last neighbour of

a vertex in constant time. Since each step of the algorithm match two vertices in G, the

algorithm runs for O(n) time. The bucket sort will take O(n + m) where n is the number

of vertices and m is the number of edges [10]. This shows that the algorithm above runs in

O(n+m).

Moreover, the Vertex Cover problem asks for a minimum number of vertices in G such

that every edge in G is incident to at least one of them. In bipartite graphs, due to König’s

Theorem [65], the size of the maximum matching is equal to size of the minimum vertex

cover.

Corollary. The Vertex Cover, Minimum Clique Cover and Maximum Matching for a bi-

partite co-CA graph G can be solved in linear time, provided a min ordering < of G is

given.

Corollary. The k-colouring problem for a co-bipartite CA graph G can be solved in linear

time, provided a min ordering < of G is given.
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Definition 4.2.2. An induced matching (IM) for graph G is a matching in G such that

any two of its edges induce a copy of 2K2.

The Maximum Induced Matching (MIM) problem is defined as follows.

INPUT: A graph G.

QUERRY: Find the largest induced matching on G.

The MIM problem is NP-complete for general graphs [21], even for bipartite graphs

with bounded degree 4, and for planar graphs [14]. Golumbic and Laskar showed that the

MIM problem is polynomial time solvable for circular arc graphs and linear time solvable

for interval graphs [23].

The MIM problem for co-bipartite CA graphs follows from the above known results,

thus we focus on bipartite co-CA graphs.

Theorem 4.2.3. [6] The size of the maximum induced matching for a graph G is exactly

the size of the maximum independent set in L2(G).

Since bipartite co-circular arc graph is chordal bipartite, by Theorem 4.1.1, the square

of its line graph is weakly chordal. A polynomial time algorithm for finding a maximum

independent set on weakly chordal graphs can be found in [7].

4.2.2 Oriented Chromatic Number

We discussed the k-colouring problem earlier. The minimum k such that a graph G has

k-colouring is called the chromatic number χ(G). The chromatic number of a graph G is

equivalently regarded as the minimum k such that G → Kk. In other words, Kk has the

minimum size vertex set among graphs to which G is homomorphic.

To extend the concept of k-colouring to digraphs, let us consider an irreflexive digraph

H without opposite arcs (uv and vu are opposite arcs for u and v in V (H)). Such a

digraph is called an oriented graph. The oriented colouring of H is a homomorphism of H

to another oriented graph H ′. An oriented k-colouring of H is a homomorphism to any

H ′ with |V (H ′)| = k. Equivalently, an oriented k-colouring of H is a partition of V (H)

into k disjoint sets such that all edges between two sets are in a same direction and no

two adjacent vertices belong to the same set. The oriented chromatic number χo(H) is

the minimum number k such that H has an oriented k-colouring. Unlike k-colouring, H ′

does not need to contain all possible edges. Note that opposite edges in H violate the first

condition, and loops in H violate the second condition, for an oriented colouring of H.
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The concept of an oriented colouring was first introduced by B. Courcelle [12]. The

oriented chromatic number was formally introduced by Sopena in [58]. One of the important

applications of oriented colouring arose in link scheduling for a wireless sensor network [32].

Most of the results on oriented chromatic numbers construct bounds for different classes

of graphs (see [53] [51]). Klostermeyer and MacGillivray studied the complexity of the

oriented colouring in [41]. They showed the decision problem of whether H has an oriented

k-colouring for k ≥ 4 is NP-complete, and for k ≤ 3 is polynomial time solvable. Culus and

Demange in [13] showed this result is also true for bipartite digraphs. For more details, see

a survey on oriented colouring [59].

In this thesis, we find the oriented chromatic number for bipartite co-CA oriented graphs

with a given min ordering, and present a linear time algorithm for the task. Here we assume

H is a digraph with a min ordering < such that the underlying graph is bipartite co-CA.

However we do not assume all edges go from one part of the bipartition to the other part,

i.e., we do not just have two orderings on each part.

A directed edge uv in E(H) is called an increasing edge (a decreasing edge), if u < v

(v < u) according to our fixed min ordering. Each edge in E(H) is either an increasing edge

or a decreasing edge. The following lemmas are useful for characterizing the structure of a

bipartite oriented graph H with min ordering.

Lemma 4.2.4. Let H be a bipartite digraph with a given min ordering <. If uv and vw

are two edges of H then either both uv and vw are increasing edges or both are decreasing

edges.

Proof. Suppose two edges uv and vw are in E(H). If uv is an increasing edge and vw is a

decreasing edge then u < v and w < v. Thus, the min ordering of H implies uw in H. The

underlying K3 on u,v and w violates the bipartiteness of H. Otherwise, if uv is a decreasing

edge and vw is a decreasing edge then v < u and v < w. Again, the min ordering of H

implies v has a loop which contradicts our assumption.

In an oriented graph H, an oriented walk is a sequence of vertices v0, v1, ..., vk such that

vi−1 and vi are adjacent in H for each i = 1, 2, ..k, i.e., either vi−1vi or vivi−1 is in E(H).

An oriented walk is closed if v0 and vk are adjacent. An edge vi−1vi in E(H) is called a

forward edge of the walk, and an edge vivi−1 in E(H) is called a backward edge of the walk.

The net length of a walk is the difference between the number of forward and backward

edges in the walk.

Lemma 4.2.5. Let H be an oriented bipartite graph which admits a min ordering. Then

the net length of any closed walk of length 4 in H is zero.
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Proof. Let H be an oriented bipartite graph with a min ordering <, and W a closed walk

of length four with the sequence of vertices w1w2w3w4 in H. Since W is a closed walk, we

may assume w1 is the first vertex in <. We assume w2 < w4 in the min ordering, otherwise

consider the reversal oriented closed walk of W . It is easy to see that the net length of a

closed walk and its reversal are opposite of each other. Equivalently, the net length of W is

0 if and only if the net length of the reversal of W is 0. By Lemma 4.2.4, either the edges

w1w2 and w1w4 or the edges w2w1 and w4w1 are in E(H). Assume the first case, then there

are three possible cases for w3.

1. w3 < w2 < w4 : By Lemma 4.2.4, w3w2 and w3w4 are in E(H). So the net length of

W is zero. (See Figure 4.3(a).)

2. w2 < w3 < w4 : By Lemma 4.2.4, w3w4 is in E(H). If w2w3 is in E(H) then the min

ordering and the edges w2w3 and w1w2k imply the edge w1w3. Thus w1, w3 and w2k

induce a K3 in the underlying graph of H, which contradicts the bipartiteness of H.

So w3w2 is in E(H) and the net length of W is zero. (See Figure 4.3(b).)

3. w2 < w4 < w3 : By Lemma 4.2.4, either w3w2 and w3w4 are in E(H), or w2w3 and

w4w3 are in E(H). So the net length of W is zero. (See Figure 4.3(c).)

Now assume edges w2w1 and w4w1 are in E(H). The proof is similar.

Lemma 4.2.6. Let H be an oriented bipartite co-CA graph which admits a min ordering.

Then the net length of every closed walk in H is zero.

Proof. Since the underlying graph of H is a bipartite graph, it does not contain any odd

cycle. Thus, every oriented closed walk of H is an even-length oriented closed walk. Assume

W is the shortest oriented closed walk with vertices w1, w2, ..., w2k in H, such that the net

length of W is not zero. If wi = wj for some i < j then the subsequence wi, wi+1, .., wj−1

is an oriented closed walk Ws in H. Note that both Ws and W −Ws are oriented closed

walks in H. It is clear that the net length of W is the summation of the net lengths of

Ws and W −Ws. Since the net length of W is not zero, so the net length of either Ws or

W −Ws is not zero. This contradicts our assumption that W is the shortest oriented walk

with net length zero. Thus, wi 6= wj for any i and j. This shows that an oriented walk W

with length 2k has an underlying graph C2k in H with possible chords.

The underlying graph of W is a C2k. Since the underlying graph of H is a bipartite co-CA

graph, every cycle of length greater than 4 has a chord. Thus, there is a subsequence of W
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w1 w3 w2 w4

(a)

w1 w3w2 w4

(b)

w1 w3w2 w4

w1 w3w2 w4

(c)

Figure 4.3: Different orientations of C4 with a min ordering (from left to right)

with vertices wiwi+1wi+2wi+3 with a chord wiwi+3. We proved that the oriented closed walk

C4 with vertices wiwi+1wi+2wi+3 has the net length zero. Thus, the net length of the walk

wiwi+1wi+2wi+3 is equal to the net length of the walk wiwi+3. Now in the shortest closed

walk W with the net length zero, we may replace wiwi+1wi+2wi+3 by wiwi+3 producing a

closed walk W ′. The oriented closed walks W ′ and W have the same net length. But W ′

has a smaller length, which contradicts the fact that W is the shortest oriented closed walk

with non-zero net length.

Definition 4.2.3. An oriented graph G is balanced, if every closed walk in G has net length

zero.

Lemma 4.2.7. [27] A balanced oriented graph G has a homomorphism to a directed path
−→
Pk for some k ≥ 1.

Lemma 4.2.8. A directed path of length k is homomorphic to the directed cycle
−→
C3.

Proof. Let
−→
Pk be a directed path of length k with the vertices v1v2..vk such that vi is adjacent

to vi+1 for i = 1, 2, .., k−1, and
−→
C3 a directed cycle with the vertices u0u1u2 such that u0u1,

u1u2 and u2u0 are in
−→
C3. We map vi to uimod3. It is easy to see that the images of two
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vertices vi and vi+1, namely ui mod 3 and u(i+1) mod 3, are adjacent. The mapping preserves

the adjacency, thus
−→
Pk is homomorphic to

−→
C3.

Corollary. Let H be an oriented bipartite co-CA graph with a min ordering < then H is

homomorphic to
−→
C3 and χo(H) ≤ 3.

We showed that χo(H) ≤ 3 for every oriented bipartite co-CA graph H with a min

ordering <. Here we describe an algorithm for oriented colouring of H.

Algorithm

If H has no edge then χo(H) = 1. Also, if H has no induced P2 then χo(H) = 2,

since the start vertex of each edge of H can be coloured 1 and its end vertex is coloured

2. Otherwise, if H contains an induced P2 then χo(H) = 3. We describe the algorithm for

oriented colouring of H with
−→
C3. We pick a vertex v of H. We can choose any arbitrary

colour for v. If a vertex is coloured by i then we will colour the vertex u by i+ 1 (modulo

3) if u is adjacent to v with an edge vu, and we colour u by i− 1 (modulo 3) if u is adjacent

to v with an edge vu. It is easy to see that no vertex coloured with two different colours,

since H is balanced.

Remark. The above algorithm is the same algorithm used for oriented colouring of trees [27].

Remark. Oriented chordal bipartite graphs with min ordering < has an oriented 3-colouring.
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