LIST HOMOMORPHISMS
AND BIPARTITE CO-CIRCULAR ARC GRAPHS

by

Ali Ershadi

B.Sc. (Computing Science), Sharif University of Technology, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in the
School of Computing Science

Faculty of Applied Sciences

© Ali Ershadi 2012
SIMON FRASER UNIVERSITY
Fall 2012

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”
Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Ali Ershadi
Degree: Master of Science
Title of Thesis: List Homomorphisms and Bipartite Co-Circular Arc Graphs

Examining Committee: Dr. Ramesh Krishnamurti
Chair

Dr. Pavol Hell

Senior Supervisor

Professor

Dr. Arthur L. Liestman

Supervisor

Professor

Dr. Luisa Gargano

Examiner
Professor

University of Salerno

Date Approved: July 31, 2012

ii

SF SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Last revision: Spring 09

Abstract

In the study of the list homomorphisms, the class of bipartite co-circular arc graphs plays
an important role in delineating easy (polynomial) cases and hard (NP-complete) cases of
the list homomorphism problem. This class of graphs has many equivalent characteriza-
tions, and we present (at the beginning of Chapter 4) a new short proof of some of these
equivalences. We then discuss possible approaches to the recognition problem for this class
of graphs. First we discuss the linear time recognition algorithms of circular arc graphs by
Eschen-Spinrad, McConnell and Nussbaum-Kaplan. These may be applied to the comple-
mentary graph, but the algorithm is no longer linear. The main new contributions contained
in this thesis are efficient algorithms for the recognition of co-circular arc graphs in the spe-
cial cases of trees, k-trees and bounded degree graphs (see Chapter 3). We also present
new efficient algorithms for colouring, matching, and other similar problems on this class of

graphs (see Chapter 4).

v

Acknowledgments

It is a pleasure to thank the people who made this thesis possible. Foremost, I would like to
express my gratitude to my supervisor Dr. Pavol Hell, who has supported me throughout
this thesis with his guidance, patience and knowledge.

I would also like to thank my committee Dr. Arthur Liestman, Dr. Louisa Gorgano and
Dr. Ramesh Krishnamurti for their insightful comments and questions.

I am grateful to my friends for their constant support and encouragement throughout
my work, specially Chakaveh Ahmadizadeh, Mojtaba Arvin and Aida Miri.

Finally, I wish to thank my parents, for their unconditional moral and financial support.

Contents

Approval

Partial Copyright Licence
Abstract
Acknowledgments
Contents

List of Figures

1 List Homomorphisms

1.1 Introduction
1.2 The Role of Min Ordering
1.3 Undirected Graphs
1.3.1 Reflexive Case e
1.3.2 TIrreflexive Case e
1.3.3 General Case
1.4 Digraphs. e
1.4.1 Reflexive Case e
1.4.2 General Case

2 Interval Graphs and Circular Arc Graphs

2.1 Introduction e
2.2 Interval Graphs
2.3 Recognition of Interval Graphs 0.
2.4 Circular Arc Graphs

vi

ii

iii

iv

vi

viii

10
14
15
15
16

2.5 Recognizition of Circular Arc Graphs

2.5.1 Linear-time Recognition of Circular arc Graphs

3 Co-Circular Arc Graphs

3.1 Recognition of Co-CA Trees
3.2 Recognition of Co-CA k-Trees
3.3 Recognition of Co-CA Graphs with Bounded Degree

4 Bipartite Co-Circular Arc Graphs

4.1 Characterization e
4.1.1 Orthogonal Ray Graphs
4.2 Algorithms L
4.2.1 Colouring, Matching, and Covering
4.2.2 Oriented Chromatic Number

Bibliography

vii

36
36
39
45

48
48
o1
93
53
o6

61

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

Minordering: The existence of uv and w/v' entails wo’. 6
An edge-asteroid 13
Examples of forbidden structures for interval graphs 20
Examples of forbidden structures for circular arc graphs [2] 23
Two different circular arc model for K3 24
Different types of intersection between two arcs A and A" 27
Graph G1 e 37
The forbidden structures of co-CA 2-trees 40
Graph Aand B e 40
Circular arc representations of Aand B 42
Graph C e 43
Circular arc representations of C' 43
3-trees obstruction graphs L Lo oL 44
The graphs T, Grand G o 46
Forbidden structures of bipartite co-circular arc graphs. 50

The correspondence between bipartite co-CA graphs and orthogonal ray graphs 51

Different orientations of C4 with a min ordering (from left to right) 59

viii

Chapter 1
List Homomorphisms

In this chapter, we introduce the list homomorphism problem and discuss various aspects
of it.

1.1 Introduction

We first present the essential definitions for the list homomorphism problem, and present
some theorems and techniques which are useful for treating the problem.

A graph is one of the richest abstract data types that may be used as a model for a
relational property between a set of objects. Let G denote a graph. The graph G is defined
by V(G) as the set of vertices, also called nodes, and F(G) as the set of edges between
vertices. We denote by n the number of vertices and the number of edges by m. An edge
e € E(G) is denoted by uv when u and v are the two vertices of e. By a graph we mean an
undirected graph. We call a directed graph, a digraph. In a digraph, the edge uv is directed
from u to v. Thus the edges uv and vu are distinct in digraphs. For any vertex v in a graph
G, the neighbourhood of v, denoted N (v), is a set of vertices in V' (G) to which v is adjacent.
Let N[v] denote the closed neighbourhood of v, equivalently N[v] = N(v)U {v}. The size of
the neighbourhood of v is called degree of v and denoted deg(v). The graph G is called a
complete graph if all possible edges are in E(G). We denote by K, a complete graph on n
vertices . An edge wu is called a loop, regardless of whether graph is directed or not. Each
vertex may have a loop. The graph G is a irreflexive graph if it contains no loop. If each
vertex of a graph G has a loop then G is a reflexive graph. A graph H is called a subgraph
of Gif V(H) C V(G) and E(H) C E(G). If all possible edges of G appear in H then H is
an induced subgraph of G. An induced subgraph H of G is called a clique if H is complete.

CHAPTER 1. LIST HOMOMORPHISMS 2

Similarly, if H does not contain any edge the H is called an independent set. We denote
by G the complement of a graph G. The graph G has the same vertex set as G and two
vertices are adjacent in G if and only if they are not adjacent in G. A clique in a graph G

is an independent set in the GG, and vice versa.

Definition 1.1.1. A vertex is called a universal vertex if it is adjacent to all other vertices

of the graph.

A module M in a graph G is a set of vertices of G, i.e., M C V(G), such that any vertex
v € M is adjacent to the same set of vertices in V(G) \ M (outside of M). A module is also

called a homogeneous set.

Definition 1.1.2. A module S is called a clique module, also called a complete homogeneous

set, if S is a clique.

In other words, any pair of vertices v and « in a clique module S have the same closed
neighbourhood, i.e., N[v] = N[u]. Any pair of vertices in a clique module is called a twin
pair.

In a graph G, a path of length k is a sequence of vertices vy, v, .., Vg, such that v; and
v;41 are adjacent, for 1 <14 < k. A path is an induced path if v; is not adjacent to v; with
j#i1+1. Welet P, denote a graph that is a path of length k. Note that Py has k vertices
and k — 1 edges. In a graph G, a cycle of length k is a path of length k£ in which vy is
adjacent to v;. We let C) denote a cycle of length k. For any cycle Cj of length greater
than or equal to four, an edge e € E(G) is called a chord if e incident to two non-consecutive
vertices in Ck. Similarly, in a digraph H we denote by F/Z an induced directed path, and
denote by 5{; an induced directed cycle of length k.

Definition 1.1.3. A chordless cycle in a graph H is an induced cycle of length at least 4.

Definition 1.1.4. A graph G is chordal if G has no chordless cycle. Similarly, G is weakly
chordal if it has no chordless cycle of length greater than 4.

A bipartite graph G is a graph in which V(G) can be partitioned into two parts X and
Y such that X and Y are independent sets in G. Equivalently, a graph is bipartite if and
only if it has no odd cycle [65]. We denote by K, », the complete bipartite graph with

parts of size n; and ny. (See definition 1.1.4.)
Definition 1.1.5. A chordal bipartite graph G is a bipartite graph which is weakly chordal.

The following is the formal definition of an interval graph.

CHAPTER 1. LIST HOMOMORPHISMS 3

Definition 1.1.6. A graph H is an interval graph if there exists a family I of intervals
on the real line and a one-to-one correspondence of V(H) with the intervals in I so that
two vertices are adjacent if and only if their corresponding intervals intersect. The family
I of intervals is called an interval representation of H. Without loss of generality, we may

assume no two intervals share any endpoints.

Equivalently, a graph H is an interval graph, if and only if it admits an interval repre-
sentation /. Each interval I; € I is represented by its right endpoint r; and left endpoint £;,
ie., I; = (¢;,r;). Any interval representation can be presented by its ordering of the right

and left endpoints. We will discuss interval graphs in Chapter 2.

Definition 1.1.7. A graph H is a circular arc graph if there exists a family R of circular
arcs around a fixed circle and a one-to-one correspondence of V(H) with the circular arcs in
R so that two vertices are adjacent if and only if their corresponding circular arcs intersect.

Without loss of generality, we may assume no two circular arcs share any endpoints.

It is clear that a circular arc representation in which no arc goes through a region on the
circle is equivalent to an interval representation. Thus every interval graph is a circular arc
graph, and the class of circular arc graphs is a generalization of the class of interval graphs.
Let A; denote a circular arc in R. If we traverse the circle in the clockwise direction then
the left endpoint of A;, denoted by ¢;, precedes the right endpoint of A;, denoted by r;. Any
circular arc representation R corresponds to a circular ordering of the endpoints in R. We
will discuss circular arc graphs in Chapter 2.

The following is a basic definition for our purposes.

Definition 1.1.8. [30] A homomorphism of a graph G to a graph H, written as G — H,
is a vertex mapping f, f : V(G) — V(H), such that if v and u are two vertices of G with
wv € E(G), then f(u)f(v) € E(H).

A homomorphism between two graphs preserves adjacency. The term came from abstract
algebraic point of view, where homomorphism is a structure-preserving function. Note that
we do mot restrict the homomorphism to be a surjective mapping, an injective mapping or
representing G as a subgraph or induced subgraph of H. We will discuss different examples
of graph homomorphism later on.

A more general case of graph homomorphism is defined below.

Definition 1.1.9. Let G and H be two graphs. Suppose L is a family of lists, L(v) for each
v € V(G). A list homomorphism of G to H with respect to the lists L, is a homomorphism
f: G — H such that f(v) € L(v) for each v € V(G).

CHAPTER 1. LIST HOMOMORPHISMS 4

Thus list homomorphisms may be viewed as homomorphisms with additional constraints
which limit the choice of each vertex assignment to a specific list.
Now that we have defined our basic concepts, we can describe the problem we are

considering in the following.

Definition 1.1.10. Suppose H is a fixed graph. The H-homomorphism problem, HOM H,
asks whether or not there exists a homomorphism f : G — H, of a given graph G to H.

e Given: A Graph G

e Question : Is there a homomorphism G — H ?

The homomorphism problem asks for the existence of a homomorphism G — H between
two given graphs G and H, both parts of the input. This homomorphism problem is
NP-complete [27]. The reason is that there are many NP-complete problems that can be
viewed as a restriction of the homomorphism problem, for example the so-called k-colouring

problem.

Definition 1.1.11. Given a graph G, the k-colouring problem asks whether or not there
exists a colouring of the vertices of G with k colours such that two vertices with the same

colour are not adjacent.

The k-colouring problem is equivalent to the homomorphism problem where H is the
complete graph on k vertices, Kj. Thus, homomorphisms are a generalization of graph
colourings. In fact, a graph homomorphism G — H is also called an H-colouring. The

following result classifies the complexity of the HOM H problem in general.

Theorem 1.1.1. [27] HOM H is NP-complete, if H is not a bipartite graph and does not

contain a loop, and is polynomial time solvable otherwise.
We also define the list homomorphism problem.

Definition 1.1.12. Suppose H is a fixed graph. Given a graph G and lists L(v) C V(H)
for all v € V(G), the list H-homomorphism problem, L-HOM H, asks whether or not there
exists a homomorphism f of G to H such that f(v) € L(v), for each v € V(G).

e Given: A Graph G with a family of lists L

e Question : Is there a list homomorphism G — H with respect to L7

CHAPTER 1. LIST HOMOMORPHISMS 5

By fixing the graph H, also called the host graph, we view the graph G, also called the
guest graph, with lists L as the input. It is natural to restrict the host graphs to a class
of graphs C. There are different ways to describe C' - a structural definition, a geometrical
definition, etc.- but anyhow, C' rather has two important properties. First, the class of
graph C' can be recognized efficiently, i.e., in polynomial time, and second, the L-HOM H
problem where the host graph is a graph from C, has a polynomial time algorithm for any
guest graph, or it is NP-complete. In this context, we define easy cases (polynomial time
solvable) and hard cases (NP-complete) of the L-HOM problem.

The homomorphism problem, HOMH, can be viewed as a restriction (with lists) of the
list homomorphism problem L-HOMH. The following theorem shows the relation between

two problems.

Theorem 1.1.2. The homomorphism problem is polynomial time reducible to the list ho-
momorphism problem. In other words, HOM H <p L-HOM H.

Proof. Given an instance of HOMH problem with an input graph G. Suppose we create
an instance of L-HOMH such that for every vertex v in G, the list L(v) is set to V(H).
In other words, v can be assigned to any vertex in V(H). It is clear that if there exists a
homomorphism f : G — H then f respects the lists L. O

Every instance of HOMH can be viewed as an instance of L-HOMAH. This motivates us
to focus on the list homomorphism problem.

The list homomorphism problem naturally models many real-life problems. Here we
introduce an example application of list homomorphism problem in the job assignment

problem.

Example. Suppose we have a set of jobs J and a set of machines M. We want to assign each
job j € J to a specific machine m € M so that certain conditions hold. Each machine m has
a list of jobs L(m) C J such that m is capable of performing a job j € L(m) and a list of
machines N (m) which are adjacent to it. Also we have some communication requirements
for the jobs. If a job j € J is assigned to a machine m € M then m should be capable of
performing j. Also every pair of jobs that need communication, must be assigned to two
machines with communication. If we define a graph G with J as V(G) such that any pair
of jobs that needs communication are adjacent in G, and a graph H with M as vertices and
for each vertex m, N(m) is the adjacency list of m. It is easy to see the desired assignment
of jobs to machines is exactly a solution for an instance of the list homomorphism problem
from G to H.

CHAPTER 1. LIST HOMOMORPHISMS 6

1.2 The Role of Min Ordering

In this section, we want to introduce a property of digraphs which turns out to be useful

for solving the list homomorphism problem.

Definition 1.2.1. A min ordering of a digraph H is an ordering < of the vertices of H,
such that if wv € E(H) and w'v' € E(H) are two edges such that u < «/, v" < v, then there
also is an edge uwv’ € E(H).

Equivalently, < is a min ordering of H if and only if the existence of uv € E(H) and
uw'v' € E(H) implies the existence of min(u,u')min(v,v") € E(H). This explains the reason
for the name. The min ordering, also called X-underbar enumeration property in [47] [27].

It was named X, by implication of the underbar if we had two crossed edges as in Figure 1.1.

v

Figure 1.1: Minordering: The existence of uv and u/v’ entails uv’.

If H is a graph then the definition of min ordering can be applied ignoring the direction
of edges in the definition 1.2.1.

For later purposes, we also specifically describe the min ordering property for reflexive
and bipartite graphs. A reflexive graph H admits a min ordering < if and only if for each
edge uv € E(H) such that u < v, if a vertex w is placed between u and v in the min ordering
(i.e., u < w < v), then the edge uw € E(H) also exists [20]. In other words, any vertex
that appears between two adjacent vertices in the min ordering is adjacent to the minimum
of the two. This turns out to mean that reflexive graphs with min ordering are exactly the
interval graphs. We will talk about this in Section 1.3.1.

Let H be a fixed bipartite graph with parts X and Y. We shall call vertices in X white
vertices, and vertices in Y black vertices. To validate the conditions of min ordering for
a bipartite graph, we assume an imaginary direction for each edge, from white vertices to
black vertices. A min ordering of H can be viewed as two orderings, one for each part of

H: we order vertices in X and vertices in Y separately. If the edges x1y1 and xsys are in

CHAPTER 1. LIST HOMOMORPHISMS 7

E(H) and x1 < x9 and y < y; then the edge x1y2 is in E(H). Note that since we ordered
black and white vertices separately, we ignore the comparisons between two vertices with
different colours.

Now we can explain the role of min ordering concerning the list homomorphism problem

with the following theorem.

Theorem 1.2.1. [2/] If a digraph H admits a min ordering then L-HOMH is polynomial

time solvable.

Here we describe a polynomial time algorithm to solve L-HOMAH using the min ordering.

Proof. Suppose H is a fixed digraph with min ordering <, and a digraph G together with
the lists L is given. The objective is to find a mapping from G to H which preserves
the adjacency and respects the lists L. In each step of the algorithm we choose an edge,
uwv € E(G), and we update L(u) and L(v). Let # € L(u) be the minimum vertex in the min
ordering < which admits a vertex y € L(v) with zy € E(H). Then let z be the minimum
vertex of L(v) in the min ordering < such that z is adjacent to z. Now we remove the
vertices of L(u) that precede x and the vertices of L(v) that precede z. There is no vertex
less than x adjacent to a vertex in L(v). Now suppose a vertex x’ > x is adjacent to a vertex
2! < z, the min ordering of H implies z is adjacent to z’. Since z is the minimum vertex
in the min ordering, such a 2’ does not exists. Thus the min ordering of H guarantees that
the removed vertices can be ignored for the list homomorphism. In each step, if we remove
a vertex from L(u) then the edges adjacent to w must be checked again. In this process, we
refine our lists step by step.

If eventually a list became empty, or there is no edge from L(u) to L(v) for two adjacent
vertices u,v € V(G), then there is no list homomorphism from G to H. Otherwise, the
updated L, for each vertex v € V(G) is not empty. Also there is at least one edge from a
vertex in L(u) to a vertex in L(v) for every uwv € E(G). We map each vertex v € V(G) to
the minimum vertex of L(v) in the min ordering. The min ordering implies the minimum
vertex of L(v) and the minimum vertex of L(u) are adjacent in H, if the edge wv is in E(G).
Thus this mapping is a homomorphism of G to H with respect to lists L.

Since H is fixed, each edge in E(G) may rechecked at most O(|V(H)|) = O(1) times.
Also the minimum vertex can be found in constant time given the min ordering. Thus, the
time complexity of the algorithm is linear time to size of G, O(|E(G) + V(G)|.

O

In the algorithm above, we enforced some conditions using the min ordering to reduce

the size of the lists, thus reducing the search space. Such a technique is known as the

CHAPTER 1. LIST HOMOMORPHISMS 8

constraint propagation technique. It is used to solve many problems such as the constraint

satisfaction problem, the network propagation problems, etc.

1.3 Undirected Graphs

1.3.1 Reflexive Case

Note that HOMH is trivial in the case of reflexive graphs. Even a single loop vv in E(H)
is sufficient to make HOMAH trivial, since every graph G admits a homomorphism to H, by
mapping all vertices of G to v. In the jobs assignment example in Section 1.1, it is natural
to assume a machine is well connected to itself so we also obtain an instance of reflexive list
homomorphism problem.

Here are some structures of H that play an important role in finding the line between

hard and easy cases of the list homomorphism problem for reflexive graphs.

Theorem 1.3.1. [17] If a reflexive graph H contains a chordless cycle then L-HOM H s
NP-complete.

This was proved independently by M. MacGillivray, as mentioned in [17]. Another

interesting structure to explore is defined below.

Definition 1.3.1. An asteroidal triple of a graph H is a set of three non-adjacent vertices
of H such that there is a path between each pair of vertices, not containing any neighbour
of the third one.

Theorem 1.3.2. [17] If a reflexive graph H contains an asteroidal triple then L-HOM H
is NP-complete.

This was proved in [17] using a reduction from not-all-equal 3-SAT without negated

variable. Moreover, the following result was proved by Lekkerkerker and Boland.

Theorem 1.3.3. [45] A graph H is an interval graph if and only if it is chordal and

contains no asteroidal triple.

This means the forbidden structures for interval graphs are precisely the NP-complete
cases of the reflexive case of L-HOM, and it follows for reflexive graphs L-HOM H is NP-
complete when H is not an interval graph. The following result proves that interval graphs
yield polynomial time problems L-HOMH. This is called a dichotomy (for reflexive graphs)

of the list homomorphism problem.

CHAPTER 1. LIST HOMOMORPHISMS 9

Theorem 1.3.4. [17] For any reflexive graph H, L-HOM H 1is polynomial time solvable if

H is an interval graph and NP-complete otherwise.

We shall first present a proof using the min ordering property. We prove that reflexive
interval graphs have a min ordering, thus using Theorem 1.2.1 we see that L-HOMH is

polynomial time solvable, for a reflexive interval graph H.
Theorem 1.3.5. A reflexive interval graph H has a min ordering.

Proof. Suppose H is a reflexive interval graph with an interval representation I. We show
that if we define the ordering < of the vertices of H by the left endpoints of their corre-
sponding intervals in I, we obtain a min ordering.

Assume u and v are two vertices in V(H) with corresponding intervals I,, and I, in I.
Suppose we have an edge wv in H such that u < v; then the left endpoint of I,, precedes
the left endpoint of I,,. Also, the adjacency of u and v implies that the left endpoint of
I, precedes the right endpoint of I,,. Suppose w appears between u and v in the the left
endpoint ordering, i.e., £, < £y, < £,. Then the edge uw is in E(H), since the left endpoint
of I, precedes the left endpoint of I,,, hence it precedes the right endpoint of I,,. Thus, the

left endpoint ordering is a min ordering. O

Second, we present an alternate geometric proof from [17] by using a polynomial time

reduction to the 2-satisfiability problem.

Proof. Suppose H is an interval graph with n vertices, and given G is a graph with lists L(v)
for every v € V(G). We assume H is given with its interval representation I. There are 2n
endpoints in I. We define a set of 2n + 1 points, P = {pg, p1, ..., p2n } such that py precedes
the leftmost endpoint of the intervals in I, and the rightmost endpoint of the intervals in
I precedes pa,. We assume each p; for i = 1,2,...,2n — 1 is placed in the gap between two
consecutive endpoints in /. We introduce variables l,,,, and 7, for every v € V(G) and
every p € P. These variables bound the interval image of every vertex v in V(G) such
that [, , = 1 means the left endpoint of the interval corresponding to the vertex to which
v is mapped precedes p and r,, = 1 means p precedes the right endpoint of the interval
corresponding to the vertex to which v is mapped.

Now we introduce the clauses as below. To assure the adjacency of the adjacent vertices
of H, there are clauses lyp V 1y, for every edge uv € E(H) where the left endpoint of u is
less than the left endpoint of v in I. There are clauses [, V ry ;, for every vertex v € V(G)
and every p € P so that the left endpoint of each interval image of v precedes its right

endpoint. To insert lists conditions, we add clauses l,, V 7, , for each v € V(G) and for

CHAPTER 1. LIST HOMOMORPHISMS 10

each p,q € P where (p,q) is not contained in any interval corresponding to a vertex from
L(v). The pairs of clauses {(lyp,.) A (Tvpo) }, for every vertex v € V(G), guarantee that the
intervals lay inside (po, pak)-

It is clear that if there exists a list homomorphism, the clauses are satisfiable. Now,
we show a satisfying truth assignment defines a list homomorphism as follows. For every
v € V(G), there exists the leftmost point (the smallest index) p € P such that [,, = 1,
and the rightmost point (the largest index) ¢ € P such that r, , = 1. Thus, there exists an
interval image of a vertex u € L(v) that contains (p,q). We map v to u. The clauses assure
that the adjacent vertices in G are mapped to vertices corresponding intersecting intervals,
and the reduction is polynomial time since H with its interval representation [is fixed.

O

1.3.2 Irreflexive Case

To continue the discussion, let us take a look at irreflexive graphs. The following result can

be concluded directly.
Theorem 1.3.6. [30] L-HOM H is NP-complete when H is not bipartite.

Proof. We mentioned that HOM H is NP-complete when H is not bipartite (Theorem 1.1.1).
If we apply Theorem 1.1.2 then L-HOM H is also NP-complete. O

Considering this, we focus on bipartite graphs and our purpose is to formulate the
algorithm for L-HOM H.

Theorem 1.3.7. [18] Let H be a bipartite graph. If the complement of H is a circular arc
graph, then L-HOM H is polynomial time solvable.

The following theorem characterizes the class of bipartite graphs whose complement is
a circular arc graph. We call this graphs bipartite co-circular arc graphs and sometimes

abbreviate this as bipartite co-CA graphs.

Theorem 1.3.8. [29] A graph H is a bipartite co-circular arc graph if and only if it admits

a min ordering.

Proof. Suppose H is a bipartite co-circular arc graph with bipartition (X,Y’). Let H denote
the complement of H. The graph H has a circular arc representation R which contains two
points called the north pole and the south pole, such that every circular arc corresponding

to a vertex v € X covers the north pole but not the south pole, and vice versa [64] [28].

CHAPTER 1. LIST HOMOMORPHISMS 11

We now construct a min ordering < for the vertices in X according to the right endpoint
ordering of the corresponding circular arcs in the clockwise direction from the north pole
to the south pole, and for the vertices in Y according to the right endpoint ordering of the
corresponding arcs in the clockwise direction from the south pole to the north pole.

Let wv and u'v’ be two different edges in E(H) such that u,u € X and v,v" € Y satisfy
u < o' and v < v. Consider the corresponding circular arcs A,, A,, A, and A,. Since u
precedes u’ and A, and A do not intersect, the right endpoint of A, also precedes the right
endpoint of A,/ in the clockwise direction from the north pole to the south pole. Similarly,
since v’ precedes v, and A, and A, do not intersect, the right endpoint of A, precedes
the right endpoint of A, in the clockwise direction from the south pole to the north pole.
Therefore A, and A, do not intersect, so u and v’ are adjacent in H, i.e., wv’' € E(H).

Thus the right endpoint ordering of H is a min ordering. O

By applying Theorem 1.2.1 and 1.3.8, we can conclude L-HOMH is polynomial time
solvable for bipartite co-circular arc graph.

We also present an alternate proof from [18], similar to the proof of Theorem 1.3.4. We
describe a polynomial time reduction from L-HOMH to the 2-satisfiability problem. This

time we use the circular arc representation of H to bound the variables.

Proof. Let H be a bipartite graph with parts X and Y, and H a circular arc graph. For
every circular arc representation of H if A, and A, denote two circular arcs corresponding
to v,u € V(H) then there is an edge wv in E(H) if and only if 4, and A, do not intersect.
We assume R is a circular arc representation of H such that there is a point N (respectively
S) on the circle which is contained in all circular arcs corresponding to the vertices in X
(respectively Y') but is not contained in any circular arc corresponding to vertices in Y
(respectively X) [64][28]. Thus N and S play the role of the north and south poles. The
circle is partitioned into two parts, the east side and the west side, with respect to the north
pole and the south pole. We may also assume G is a bipartite graph with parts A and B
such that for each vertex v in A (respectively B), L(v) C X (respectively L(v) C Y).

We define two sets of points on the circle, P and Py. The set Pg contains N, S
and the endpoints of the circular arcs in the east side, and the set Py contains N, S and
the endpoints of the circular arcs in the west side. We define the variables w,) for every
p € Py and every v € V(G), and e,), for every p € Pg and every v € V(G). These variables
bound the circular arc image of a vertex in G. We intend for e,, =1 (w,, = 1) to mean
the circular arc in R corresponding the vertex to which v is mapped, does not contain the

point p. We ensure that adjacent vertices of G are mapped to vertices with non-intersecting

CHAPTER 1. LIST HOMOMORPHISMS 12

corresponding circular arcs in R, by the clauses e, V e, p, for each edge uv in E(G) and
each p in Pg, and the clauses w,,, V 7y, for each edge uv in E(G) and each p in Py. The
clauses €, , VW, 4 for each v € A, and for each p € Pg and each ¢ € Py are imposed with the
following constraint: the portion of the circle from the next point of p to the previous point
g in the clockwise direction does not contain any circular arc corresponding to a vertex in
L(v). Also, we add similar clauses for each v € B. With imposing these clause, we ensure
that there exists at least one vertex in L(v) to which v can be mapped. Finally, we add
clauses {e,, A Wy} for every v € A, and the clauses {e, s A w, s} for every u € B, so that
at least one e,) and at least one w,), is true.

It is clear that a list homomorphism from G — H implies a truth assignment for the
above clauses, by setting e,, = 1 and w,, = 1 for each point p not contained in the
circular arc corresponding to the vertex to which v is mapped. Now suppose we have a
truth assignment, we define the list homomorphism as follows. Suppose v € A, let p € Py
be the nearest point to p such that w,. = 1, and let d € Pg be the nearest point to p
such that e, 4 = 1. Now in the clockwise portion of the circle between c to d should be at
least one circular arc A, from L(v), we map v to u. We use the similar mapping for the
vertices in B. It is clear that adjacent vertices are assigned to the vertices corresponding to
non-intersecting circular arcs with respect to the lists.

O

Moreover, L-HOM H is NP-complete if H contains certain structures. An odd cycle is
one such structure mentioned earlier. Equivalently, L-HOM H is NP-complete if H is not

a bipartite graph. The following result considers L-HOM H for the bipartite graphs.

Theorem 1.3.9. [18] If a bipartite graph H contains a chordless cycle of length greater
than four, then L-HOM H is NP-complete.

The proof consists of a polynomial time reduction from the k-colouring problem to L-
HOM H.

Definition 1.3.2. An edge asteroid is a structure consisting 2k + 1 disjoint edges ugvg,u1v1,

..y UgkU2k, and 2k + 1 paths Py 1, P12, ..., Par, with the following constraints.
e Fach P ;41 joins u; and w1, for i =0,1,..., 2k.

e There is no edge between {u;, v;} and {vj1, Vitr1+1}UV (Pigk,itkt1), fori =0,1,...,2k

and subscripts are modulo 2k + 1.

CHAPTER 1. LIST HOMOMORPHISMS 13

e There is no edge between {ug,vo} and {vi, ve, ..., vor} U V(P12) U V(P23)U
UV (Par—12k)-

See Figure 1.2.

Vo

V2

\jf“%/

YZ u] ;J
Figure 1.2: An edge-asteroid

The following theorem shows how an edge asteroid affect the list homomorphism prob-

lem.

Theorem 1.3.10. [18] Let H be a bipartite graph. If H contains an edge-asteroid then
L-HOM H is NP-complete.

Hell and Huang proved the NP-completeness using a polynomial time reduction from
the 3-colouring problem. For more details see [18].
Remark. L-HOM H is NP-complete when H contains the structures which are precisely the

forbidden structures for co-bipartite circular arc graphs.

Theorem 1.3.11. [18]/ A graph H is a bipartite co-circular arc graph if and only if H is

chordal bipartite and contains no edge-asteroids.

CHAPTER 1. LIST HOMOMORPHISMS 14

We can observe that this characterization of bipartite co-CA graphs is similar to Lekkerk-
erker and Boland’s characterization of interval graphs in Theorem 1.3.3. This analogy

extends to the dichotomy of the list homomorphism problems.

Theorem 1.3.12. [18] For a irreflexive graph H, the problem L-HOM H is polynomial

time solvable if H is a bipartite co-circular arc graph, and is NP-complete otherwise.

1.3.3 General Case

A general graph is a graph where each vertex may or may not have a loop. In this section, we
will show how to extend the complexity classifications from the previous sections (reflexive,
irreflexive) to general graphs.

The distinction between hard and easy case of the list homomorphism problem for general

graphs turns out to depend on the following definition.

Definition 1.3.3. Let C be a circle with two specified points N and S on C. A bi-arc is an
ordered pair of circular arcs (A, B) on C such that A contains N but not S, and B contains S
but not N. A graph H is a bi-arc graph if there is a family of bi-arcs {(A,, B;) : x € V(H)}
such that for any x,y € V(H), not necessarily distinct, the following conditions hold:

e if x and y are adjacent then neither A, intersects B, nor A, intersects By;
o if x and y are non-adjacent then both A, intersects B, and A, intersects B,.
We define an auxiliary graph as follows, for better understanding of the bi-arc graphs.

Definition 1.3.4. Given a graph H, the auxiliary bipartite graph H* is defined with parts
Xpy={2":2€V(H)}and Yg = {2" : 2 € V(H)}. The edge set of H* consists of all edges
z'y” such that zy is an edge of H.

The following simple, yet useful observations describe how the auxiliary graph aids in

the proofs.
Observation. The graph H* has no loops.
The edges of H* only join the vertices of Xz to the vertices of Yy.

Observation. A bi-arc representation of the graph H is precisely a circular arc represen-

tation of the auxiliary graph H*.

The following results from [19] show that the two graph classes we discussed earlier are

bi-arc graphs: interval graphs from Section 1.3.1 and bipartite co-CA graphs in Section 1.3.2.

CHAPTER 1. LIST HOMOMORPHISMS 15

Theorem 1.3.13. [19] Let H be a reflexive graph, Then H is a bi-arc graph if and only if

H is an interval graph.

Theorem 1.3.14. [19] Let H be an irreflexive graph, Then H is a bi-arc graph if and only

if H is a bipartite co-circular arc graph.

Now, we wrap up the discussion of the list homomorphism problem for graphs with the
following result which shows the dichotomy of list homomorphism problem for the general

graphs and the importance of bi-arc graphs.

Theorem 1.3.15. [19] Let H be a graph. The problem L-HOM H is polynomial time

solvable if H is a bi-arc graph, and is NP-complete otherwise.

1.4 Digraphs

In this section, we discuss a more general case of the problem, the list homomorphism
problem for digraphs. Digraphs are more interesting from the point of view of homomor-
phisms and list homomorphisms, since the mappings must preserve both adjacency and the
direction of the edges. Bulatov’s theorem [5] classifies the tractable cases of the list homo-
morphism problems on very general structures including digraphs. For digraphs, there are

more precise classification results discussed below which give a combinatorial classification.

1.4.1 Reflexive Case

We already discussed reflexive graphs, here we describe approaches to solve the list homo-
morphism problem of reflexive digraphs by examining different structures. The list homo-
morphism problem restricted to interval graphs is polynomial time solvable. For reflexive

digraphs, we shall introduce a similar definition of interval digraphs.

Definition 1.4.1. An interval digraph is a digraph H which admits an interval pair rep-
resentation, which is a family of pairs of intervals (I, J,) for every v € V(H) such that
wv € E(H) if and only if I,, intersects J,,.

Recall that due to the definition of interval graphs, they must be reflexive, but unlike
interval graphs, interval digraphs may lack loops. Hell and Rafiei [31] introduced the so-

called adjusted interval graphs which are reflexive.

Definition 1.4.2. [20] Let H be a interval digraph. If H admits a representation by
intervals I,,, J,, v € V(H), such that for each v, the intervals I,, and J, share the same left
endpoint, we call H an adjusted interval digraph (in a short form, AID).

CHAPTER 1. LIST HOMOMORPHISMS 16

It is clear that an adjusted interval digraph must be reflexive. Now we describe how this
subclass of interval digraphs helped solving the list homomorphism problem for the reflexive

digraphs.

Theorem 1.4.1. [20] A reflexive digraph H is an adjusted interval digraph if and only if

it admits a min ordering.

We will show one direction of the proof, namely that an adjusted interval digraph has a
min ordering. The complete proof is in [20].

Suppose H is an adjusted interval graph with a representation I. We show that if we
define the ordering < of the vertices of H by the ordering of the common left endpoints of
their corresponding pairs of intervals in I, we obtain a min ordering.

Assume u and v are two vertices in V (H) with the corresponding pairs of intervals I,,, J,
and I, J, in I. Suppose we have an edge wv in H such that u < v; then the common left
endpoint of I,, and J, precedes the common left endpoint of I, and J,. Also, the adjacency
of u and v implies that the left endpoint of .J, precedes the right endpoint of I,,. Suppose
w appears between u and w in the the common left endpoint ordering. Then the edge uw
is in F(H), since the left endpoint of J,, precedes the left endpoint of I, hence it precedes

the right endpoint of J,. Thus, the common left endpoint ordering is a min ordering.

Corollary. If a reflexive digraph H is an adjusted interval digraph, then LHOMH 1is poly-

nomial time solvable.

Interval graphs define the dichotomy of the list homomorphism problem for reflexive
graphs. The following conjecture attempts to classify the dichotomy of list homomorphism

for reflexive digraphs, in a similar way.

Conjecture 1.4.2. [20] If a digraph H is not an adjusted interval digraph then L-HOMH
is NP-complete.

We note that, a polynomial time algorithm for recognition of an AID is described in
[20].
1.4.2 General Case

In this section, we discuss the list homomorphism problem on digraphs in the general case.
We defined an asteroidal triple as a forbidden structure for interval graphs according to [45].

That structure makes L-HOM H NP-complete on reflexive graphs. Here, we introduce a

CHAPTER 1. LIST HOMOMORPHISMS 17

similar variation of an asteroidal triple for digraphs, called a digraph asteroidal triple (in a
short form, DAT).

Before we define a DAT, we should define some preliminaries concepts. Let H be a
digraph. We call wv € E(H) a forward edge of H and vu is a backward edge of H. We say
two walks P = xg, x1, ..., z, and Q = yo, Y1, ---, Yym in H are congruent, if z;x;,1 is a forward
(respectively backward) edge if and only if y;y;+1 is a forward (respectively backward) edge.
If P and @ are two congruent walks in H, P avoids Q, if there is no edge z;y;+1 with the

same direction as z;x;41.

Definition 1.4.3. An invertible pair in H is a pair of vertices u, v, such that

e there exist congruent walks P from v to v and @) from v to u such that P avoids)

e and there exist congruent walks P’ from v to u and @’ from u to v such that P’ avoids

Q/

Definition 1.4.4. A permutable triple in H is a triple of vertices u, v, w together with six
vertices s(u), b(u), s(v),b(v), s(w), b(w), which satisfy the following condition.

For any vertex x from {u,v,w}, there exists a walk P(z,s(z)) from z to s(x), and two
walks P(y,b(y)) from y to b(y) and P(z,b(z)) from z to b(z), congruent to P(zx, s(x)), such
that P(z,s(z)) avoids both P(y,b(y)) and P(z,b(z)).

Now we can give the following essential definition.

Definition 1.4.5. A digraph asteroidal triple (DAT) is a permutable triple u,v,w with
s(u),b(u), s(v),b(v), s(w), b(w) such that for any vertex x from {u, v, w}, the pair of vertices

(s(x),b(x)) is an invertible pair.

The presence of a DAT defines the dichotomy of the list homomorphisms problem for
digraphs.

Theorem 1.4.3. [31] If H contains a DAT, L-HOM H is NP-complete. If H is DAT-free,
L-HOM H is polynomial time solvable.

Although Bulatov [5] proved the existence of a dichotomy for all Constraint Satisfaction
Problems, this is the first structural classification of the dichotomy. The structure DAT

delineates the dichotomy of list homomorphisms for digraphs.

Chapter 2

Interval Graphs and Circular Arc

Graphs

In this chapter, we discuss different geometric representations of graphs. Specifically, we

investigate interval graphs and circular arc graphs.

2.1 Introduction

We have discussed what a graph is and how it is an abstraction of a relation amongst a set
of objects. We start with answering a question, ”What is a representation of a graph ?” or
”"How can we represent a graph?”. Every graph can be represented by an adjacency matrix
or by adjacency lists.

We focus on the types of representations of a graph which also describe a property of the
graph. The graphs which can be represented in a certain way, make a graph class. There
are many graph classes defined by limiting their representations.

Here we discuss a specific graph representation which is defined as follows.

Definition 2.1.1. Given a family of sets S = {51, S, ..}, we define the intersection graph
of S, H as follows. Each set S; corresponds to a vertex v; in V(H), and v;v; € E(H) if and
only if $;NS; # ©.

We say a graph H is an intersection graph, if there is a family of S such that H is the
intersection graph of S.
It is clear that the subfamily of a family S that is represented by an intersection graph

H, represents an induced subgraph of H. Thus we have the following remark.

18

CHAPTER 2. INTERVAL GRAPHS AND CIRCULAR ARC GRAPHS 19

Remark. Every induced subgraph of an intersection graph is an intersection graph.

The class of intersection graphs includes a wide range of graphs. There are different
types of intersection graphs based on types of sets. Here are a few examples of intersection
graphs created from a geometric representation of sets.

A graph H is planar if H has an embedding of vertices to the points on the plane
such that two vertices are adjacent if and only if there is a continuous curve on the plane
connecting these two points and no pair of curves crosses each other in any points other than
their endpoints. Equivalently it can be shown [8], a planar graph H is the intersection graph
of a family of line segments. It was Scheinerman’s conjecture [56], proved by J. Chalopin
and D. Gonalves [8]. Moreover, by the circle packing theorem of [42], planar graphs are also
exactly the intersection graphs of families of non-crossing circles on the plane. The circles
can only be tangent to one another and only two circle can be tangent in one point.

The two geometric intersection graphs which we mainly focus on are interval graphs and
circular arc graphs. We discuss certain characterizations of interval graphs and circular arc
graphs in the rest of the chapter. We discuss interval graphs in Section 2.2 and circular arc

graphs with more details in Section 2.4.

2.2 Interval Graphs

In this section, we will discuss a class of intersection graphs which has a rich combinatorial
structure, namely interval graphs. Recall the definition of interval graphs in Section 1.1.
(See Definition 1.1.6)

It is easy to see that the definition given in Section 1.1 mean that, interval graphs are
the intersection graph of families of intervals on the real line. As for intersection graphs, any
induced subgraph of an interval graph is also an interval graph. This property leads to the
fact that interval graphs are characterized by forbidden structures. Recall Theorem 1.3.3, by
which Lekkerkerker and Boland introduced the earliest characterization of interval graphs
using forbidden structures, namely a chordless cycle of length greater than 3 and a asteroidal
triple.

For example, the graphs in Figure 2.1 are two minimal forbidden structures for interval
graphs. Consider a chordless cycle of length four in Figure 2.1(a). Any three vertices induce
a path of length 2, which can only represented by 3 consecutive intervals. It is clear that
there is no place for an interval intersecting the two interval at the end but avoiding the
middle interval. The same argument applies to any induced cycle of length greater than

4. Now consider the graph 2-net which is an asteroidal triple, depicted in Figure 2.1(b).

CHAPTER 2. INTERVAL GRAPHS AND CIRCULAR ARC GRAPHS 20

The three pairwise adjacent vertices in the center can only represented by three intervals
sharing the same point. Each of these vertices has a neighbour non-adjacent to the other
two. Intervals can only extend in two directions from the shared point, thus there is no

place for the third interval.

(a) an induced (b) 2-net
Ciy

Figure 2.1: Examples of forbidden structures for interval graphs

There are different variations of interval graphs. For example, proper interval graphs
are graphs that have an interval representation in which no interval is contained in another
interval, and wunit interval graphs are graphs with an interval representation such that all
intervals have an equal length. These two definitions turn out to define the same class of
graphs [55].

Interval graphs have interesting applications in many different research areas such as
biology, archaeology and so on. Here are a few problems related to interval graphs.

One of the early applications interval graphs is the archaeological problem of finding
"chronological seriation’ of antique objects. Suppose we have a number of graves. The
objects found in a grave co-existed in a same specific time period. The problem is finding
the timeline of these antique objects. Each object’s timeline may be considered as an interval
on a historical timeline. Assume a graph H is the intersection graph of family of historical
timelines of objects. Each grave corresponds to a clique in H. The interval representation
of H is the chronological ordering of objects in time. More details on the problem can be
found in [39].

Also Benzer [1], in molecular biology, proposed a linear arrangement of genes in the
chromosome. In mutated versions of a chromosome, part of the genes may have changed.
Two mutated version of the original chromosome may have similar properties if they both

share a mutated gene. There are many questions that can be answered when the intersection

CHAPTER 2. INTERVAL GRAPHS AND CIRCULAR ARC GRAPHS 21

graph of mutated chromosomes is represented as an interval graph. For instance, finding
the largest clique in the interval graph is equivalent to finding a mutated gene shared by
the most mutations.

The job scheduling problem is another interesting application of interval graphs. Given a
set of jobs with interval time periods of processing times, the problem asks for partitioning
the jobs into a minimum number of sets such that each set of jobs can be done consecutively.
In other words, no two jobs in each set conflict with each other. The intersection graph of
the time periods is an interval graph. The job scheduling problem is exactly the colouring
problem for the interval graph.

The memory allocation problem is defined as follows. A compiler is running different
programs that may interfere with each other. Two programs may conflict when both needed
a same memory unit at the same time. The problem is to find the total size of memory
needed for the programs, given time intervals of each program. Let G be a graph with
program units as vertices. Two program units are adjacent if they conflict. Each clique
represents a set of running program units, accessing the memory units simultaneously. The
problem is exactly finding the maximum clique size of GG, given the time intervals and the
memory requests of each program.

Since interval graphs have a natural representation by intervals, restricting to interval
input graphs makes specific problems easier to solve. One of the interesting properties of

interval graphs is the following.

Definition 2.2.1. An intersection graph G has the Helly property if for every clique H in

G, all the sets in H share an element.

Interval graphs have the Helly property. The Helly property of an interval graph G
implies that the intervals corresponding to a clique in G contain the same point. Using
this fact, we can find the largest clique in an interval graph G. Suppose G was given by
its interval representation. We traverse the interval representation of G. We set a variable
x to zero and for each appearance of left endpoint increase x, and for each appearance of
right endpoint decrease x. The maximum value of z is the maximum clique size of the
graph. Thus problem of finding the maximum clique in an interval graph has a linear time
algorithm, provided a representation by intervals is given.

This shows the importance of finding an interval representation for an interval graph.
We discuss this in Section 2.3.

CHAPTER 2. INTERVAL GRAPHS AND CIRCULAR ARC GRAPHS 22

2.3 Recognition of Interval Graphs

In the previous section, we discussed how interval graphs allow efficient algorithms for certain
problems. This is useful especially when we can recognize an interval graph and describe
an interval representation for it in a reasonable time, especially linear time. Here, we define

the interval graph recognition problem as follows.

INPUT: A graph H.
QUERY: Is the graph H an interval graph 7

If yes, describe the interval representation

This is slightly different from the decision problem of interval graphs recognition. In
this version of the problem, not only we recognize the interval graphs, but also an interval
representation is required.

Different approaches to the problem have been made. The earliest polynomial time
recognition belongs to Gilmore and Hoffman [22]. They reduce the problem to an ordering
of maximal cliques such that the maximal cliques containing a same vertex are consecutive
in the ordering. Based on this, some 10 years later the first linear time recognition algorithm
was introduced by Booth and Leuker [4]. The algorithm is very efficient but uses complex
data structures (PQ-trees). Korte and Mohring [43] developed modified PQ-trees with a
simpler update process, for recognizing interval graphs.

Later on, Hsu and Ma [34] gave a simpler linear time for the task using modular decom-
position, not PQ-trees. Also Habib et.al. [25] introduced a partition refinement technique
for ordering the vertices of a graph. It is much easier to implement than the previous al-
gorithms. The most recent efficient algorithm to recognize interval graphs is based on the
lexicographical breadth first search (in a short form, Lex-BFS or LBFS) [11].

Kratsch et. al. [44] modified Korte’s and Mohring’s algorithm [43] into the first certifying
algorithm for the recognition of interval graphs. A certifying algorithm is an algorithm which
not only solves the problem, but also provides a certification to prove its solution is correct.
In this case, if the algorithm recognized an input graph G is not an interval graph then it
provides an evidence, namely an asteroidal triple or a chordless cycle (cf. Theorem 1.3.3).
With a certification, one be sure of the correctness of the result of the algorithm. The
concept of certification algorithms was emphasized by McConnell cf. [48]. We will discuss
a linear time algorithm for recognition of circular arc graphs in Section 2.5.1, which can be
made certifying [49].

Note that the complements of interval graphs can also be recognized in linear time [50].

This fact motivates us to investigate the recognition of the complements of circular arc

CHAPTER 2. INTERVAL GRAPHS AND CIRCULAR ARC GRAPHS 23
graphs in Chapter 3.

2.4 Circular Arc Graphs

The class of circular arc graphs was introduced by Hadwiger, Debrunner and Klee in
1964 [40], cf. also Klee [26], and studied more specifically by Tucker [64]. Recall the
definition of circular arc graphs from Chapter 1.1. (See Definition 1.1.7.)

We discuss the recognition of circular arc graphs in Section 2.5.1. As mentioned earlier,
every interval graph is a circular arc graph. Thus, the class of circular arc graphs is a
superclass of the class of interval graphs. The forbidden structures of circular arc graphs are
a subset of the forbidden structures of interval graphs. For example, the graphs in Figure 2.2
are a few minimal forbidden structures of circular arc graphs [2]. For instance, consider the
graph Ky 3 in Figure 2.2(a). The central vertices must correspond to three disjoint circular
arcs around the circle. If a circular arc a intersects all three circular arcs then ¢ must contain
one. Because of this containment, any other circular arc b can not intersect the contained
arc while avoiding a. The argument for the bipartite claw in Figure 2.2(c) is similar. For
the graph Cf , if there is a circular arc representation for the graph C} in Figure 2.2(b)
then the portion of the circle not intersecting the circular arc corresponding to the single
vertex in the center, is an interval representation for the graph Cy. Recall that the graph

()} is not an interval graph, thus the graph C} is not a circular graph.

(a) K23 (c) bipartite claw

Figure 2.2: Examples of forbidden structures for circular arc graphs [2]

A circular arc representation R of a graph H is a set of arcs A on a circle. Each arc

a; € A is denoted by a; = (¢;,r;) where ¢; and r; are the endpoints of a;. Thus we can

CHAPTER 2. INTERVAL GRAPHS AND CIRCULAR ARC GRAPHS 24

represent R by the clockwise circular ordering of the endpoints of arcs. We may assume no
two arcs share an endpoint, otherwise we slightly perturb the endpoints [49].

Unlike interval graphs, circular arc graphs do not have the Helly property. On the
real line, a K3 can only be represented by three intervals intersecting in a region, as in
Figure 2.3(a). On a circle, a K3 can also be represented by three pairwise intersecting arcs

covering the circle, as in Figure 2.3(b).

(a) (b)

Figure 2.3: Two different circular arc model for K3

Circular arc graphs model many situations and have many applications in different
areas. Circular arc representation helps the analysis of these problems, just as interval
representations of interval graphs do. Basically, every periodically repeated intervals have
natural representation by circular arc graphs. Here we describe a few examples.

Example. [9] The Periodic Allocation Problem is a generalized version of the dynamic
storage allocation problem, where items appear repeatedly. Assume a loop in a computer
program, and the flow control of the loop, is described by a circle. The compiler controls the
memory allocation of variables associated with the loop. In the register allocation problem
exactly one of a set of memory registers has to be allocated to a variable within the loop for its
lifetime. The objective is to minimize the size of the total allocated memory. The lifetimes of
variables within a loop can be regarded as circular arcs, and the periodic allocation problem
is precisely the k-colouring problem on circular arc graphs. An approximation algorithm for
colouring a weighted circular arc graph representing an instance of the periodic allocation
problem is given in [9)].

Example. [63] The Routing and Wavelength Problem is defined as follows. Consider
an optical ring network with a single ring. Assume there is a set of requests along the
ring network. There are two possible routes for each request - each route can chose either

the clockwise direction or the counter-clockwise direction on the ring. Every route can be

CHAPTER 2. INTERVAL GRAPHS AND CIRCULAR ARC GRAPHS 25

regarded as a circular arc on the ring. The intersection graph of the routes on the ring is
a circular arc graph G. The routing problem is to find a routing with minimum size of the
maximum clique in G. For a fixed routing, the sub-problem of finding maximum number
of conflicting routes is exactly the maximum clique problem for circular arc graphs. An

approximation algorithms for the routing problem can be found in [63].

2.5 Recognizition of Circular Arc Graphs

The recognition of circular arc graphs was at first conjectured to be NP-complete by
Booth [3]. The earliest polynomial time circular arc graphs recognition algorithm belongs
to Tucker [64]. Tucker solved the problem in time O(n?®). Here we quote Spinrad’s comment

on Tucker’s algorithm from Spinrad’s book [27]:

This algorithm has a reputation for being difficult to understand. In part, this
is because the algorithm is complex, but the reputation of the algorithm has
been exaggerated by a number of issues. Most importantly, Tucker himself talks
about the need for simplification in the paper. [Tucker’s statements from the
paper include 'The real difficulty in our algorithm is not with speed but its
length’ and ’As mentioned earlier, simplification rather than greater speed is
what really needed, since the constant in O(n?) is likely to be horrendous’. The
author [Spinrad] disagrees slightly with the latter statement; I do not believe
the constant in the running time is such a problem, but it is very difficult for
someone who has not studied the paper very carefully to produce a correct

implementation of the algorithm.]

Eschen and Spinrad [15] used the same approach as Tucker. However, studies of chordal
bipartite graphs helped them to refine Tucker’s algorithm, and reduce its complexity to
O(n?). One of the important tasks in their approach is so-called neighbourhood contain-
ment. The neighbourhood containment problem is to determine for every pair of adjacent
vertices u and v whether or not N[v] C NJu|. Eschen and Spinrad mentioned in [15] that
neighbourhood containment was the bottleneck in Tucker’s algorithm. Meanwhile, Hsu [35]
introduced an O(nm) algorithm for the task. Later on, McConnell [49] refined the neigh-
bourhood containment technique and developed the first linear time algorithm to recognize
a circular arc graph. McConnell’s algorithm creates a matrix to characterize relations be-
tween the arcs, then constructs a so-called interval realizer from the matrix using modular
decomposition and builds the circular arc model based on it. The most difficult part of Mc-

Connell’s algorithm was to create an interval realizer with certain relations between arcs.

CHAPTER 2. INTERVAL GRAPHS AND CIRCULAR ARC GRAPHS 26

Recently, Kaplan and Nussbaum [38] introduced a simpler linear time algorithm mainly
based on Eschen-Spinrad’s algorithm with a tighter analysis.
In the next section, we explain how circular arc graphs can be recognized in linear time,

based mostly on [38].

2.5.1 Linear-time Recognition of Circular arc Graphs

In this section, we provide some details of the Kaplan-Nussbaum’s algorithm to solve the
recognition problem for circular arc graphs in linear time. This algorithm carefully imple-
ments a compilation of Tucker’s, Eschen-Spinrad’s and McConnell’s algorithm.

Given a graph G, we will recognize whether or not G is a circular arc graph. If the
answer is positive, we will construct a circular arc representation R for G. The algorithm
works from the assumption that G is a circular arc graph, and it tries to create a circular
arc model for G. We develop a representation R step-by-step and when the algorithm halts
with the circular arc representation R, the graph G is a circular arc graph if R realizes
G, otherwise somewhere along the way we declare failure. We suppose G is given by its
adjacency lists, so the size of the input is O(n + m). We will show that every step of the
algorithm runs in linear time, i.e., time O(n 4+ m).

The basis of this approach is a classification of the intersection types of pairs of arcs. The
different possible types of intersection between arcs A and A’ in a circular arc representation

R are listed below and illustrated in Figure 2.4.
e A and A’ are disjoint, i.e., ANA = (.

e A contains A’ |i.e., A’ C A. The arc A covers both endpoints of the other arc A" and
A’ is laid inside of A.

e Aand A’ cover the circle ,i.e., AUA" = C. The two arcs will cover the circle together,

so bot