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Abstract

This thesis develops new methods for estimating the size and distribution of hard-

to-reach populations when employing an adaptive sampling design. Hard-to-reach

populations, like those comprised of injection drug-users, are usually not covered by

a sampling frame. Hence, the sampler may desire to exploit the social links between

its members to adaptively sample individuals for the study. We have developed

three novel procedures based on various adaptive sampling designs for estimating

the population unknowns.

The first project introduces a complex graph model that accounts for the erratic

clustering behaviour commonly seen in hard-to-reach populations through observed

covariate information. Our novel approach bases inference for the population size

and model parameters on a Bayesian data augmentation routine.

The second project explores a new design-based approach that is based on a

multi-sample study. Preliminary estimates of population unknowns are based on the

initial random selections made for each sample. The adaptively selected members of

the sample are included in the inference procedure through Rao-Blackwellization of

the preliminary estimator based on sample reorderings which are consistent with a

sufficient statistic.

The third project extends the design-based approach to inference that was intro-

duced by Frank and Snijders (1994) where inference is based on the links originating

from members selected for a Bernoulli sample. We propose new estimators of the

population size that are based on one wave selected after the initial sample is ob-

tained. We also introduce a Rao-Blackwellization procedure that is similar to that

found in the second project for obtaining improved estimates.

iii



The fourth project offers new methods for approximating the Rao-Blackwellized

estimates obtained with a design-based approach to inference. We introduce a

method termed improved importance sampling, based on a single-stage cluster sam-

pling procedure, to obtain improved estimates over the preliminary importance sam-

pling estimates.

For our thesis study population we use a networked population that was simulated

from the complex graph model. We conduct a series of simulation studies based

on several different adaptive sampling designs to evaluate the performance of the

estimators from each of the projects.

Keywords : Adaptive sampling, Bayesian inference, Capture-recapture, Markov chain

Monte Carlo, Network sampling, Rao-Blackwellization
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Chapter 1

Introduction

Adaptive sampling methods are typically used to recruit individuals from hard-to-

reach populations or to increase sampling effort where observed units are revealed to

be members that are of high interest to the researcher. For the purpose of estimating

the size of a target population there is an abundance of literature based on the use of

capture-recapture methods. Most of these methods rely on the use of conventional

sampling designs like random or stratified sampling because of the tractable likeli-

hood functions they induce for the population size. This thesis presents methods

for estimating the size and distribution of populations when an initial sample(s) is

selected from the target population completely at random and members are then

adaptively recruited, via following social links from the current sample, to be in the

final sample. The adaptive sampling and inference procedures outlined in this thesis

can assist in the recruitment from, and estimation of the size and characteristics

of, hard-to-reach populations like those comprised of injection drug-users, men who

have sex with men, illegal sex workers and the homeless, to name a few.

1.1 Background

For study purposes, a typical social network can be conceived of as a graph where

the nodes correspond with the members of the population and the links (commonly

1



CHAPTER 1. INTRODUCTION 2

referred to as arks, nominations, or mentions) correspond with the presence of some

predefined relationship between all pairs of the individuals. For example, in a popu-

lation of injection drug-users a link may occur between two individuals if there is a

mutual nomination between them. These nominations may come in the form of the

sharing of drug-using paraphernalia and/or coming into sexual contact. As the indi-

viduals of such hard-to-reach populations may not be covered by a sampling frame

and/or may be difficult to locate or identify, a researcher may benefit from the use of

an adaptive sampling strategy to recruit individuals for study purposes. With a typ-

ical adaptive sampling design, a subset of the graph/population is initially recruited,

ideally or conceivably through a probability sampling design, and members of the

population are then adaptively recruited by tracing some of the social network links

out of the nodes in the current sample.

There are two common inferential methods for estimating unknown population

quantities in sampling. In a model-based approach the population graph is assumed

to have arisen from an underlying model. With a model-based approach estimates of

a population quantity, y0 say, are said to be model unbiased if the expectation of the

estimator ŷ0 given any sample S equals the expectation of y0. To clarify, suppose that

the realization of a population quantity is y0 where y0 is a function of the realization

of the responses of interest y = (y1, y2, ..., yN) according to some joint distribution F

where N is the population size. We then refer to ŷ0 as being model-unbiased if for any

sample S, E[ŷ0|S] = E[y0]. Model-based approaches may be preferred for obtaining

estimates of unknown population quantities like the population mean or average node

degree (that is, the average number of neighbours a member possesses) as the model

assumptions may facilitate obtaining estimates of the population unknowns.

With a design-based approach to inference in sampling there is an absence of

an assumed underlying model from which the population graph has arisen. Instead,

all responses are regarded as fixed and only known for those which are observed in

the sample. As probability only enters the inferential procedure through the sam-

pling design, an estimator for a population quantity is said to be design-unbiased if

E[ŷ0|y] = y0. Notice that a design-unbiased estimator holds the attractive feature of

being unbiased for the population quantity that is taken on at the time of the survey.
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However, with a design-based approach it is likely to be a more complicated task to

obtain estimators with desirable features like unbiasedness as the absence of an un-

derlying model will not permit exploiting accompanying mathematical assumptions

which may facilitate obtaining such estimators. For more information, Thompson

(2002) provides a discussion of the use of model-based and design-based approaches

for inference in sampling.

There is a growing body of literature on both model-based and design-based ap-

proaches to making inference for population unknowns with the use of adaptive sam-

pling strategies when the population size is known. Thompson and Frank (2000) de-

scribed an approach to likelihood-based inference for adaptive sampling (also known

as link-tracing) designs. This approach was used in further development in Thompson

and Chow (2003), and Handcock and Gile (2010) developed a theoretical framework

for basing inference of population unknowns on exponential random graph models

when using an adaptive sampling design. Thompson (2006b) developed a design-

based method for estimating population proportions when using a targeted random

walk sampling design that is based on the use of Markov chain theory. Thompson

(2006a) generalized the design-based method for estimating population proportions

based on an adaptive sampling strategy termed adaptive web sampling that allows

for fixed sample sizes as well as the flexibility to allocate as much random or adap-

tive effort as desired at each step in the sample selection procedure. For additional

information, Fienberg (2010a,b) provides a summary and discussion of some of the

work on the modeling and analysis of networked populations, as well as a general

introduction to papers with applications towards sampling and analyzing hidden

populations. Spreen (1992) also provides some review of link-tracing designs and

their applicability to sampling hard-to-reach populations.

Heckathorn (1997, 2002) developed a procedure termed respondent-driven sam-

pling which bases estimates of population proportions on Markov chain theory.

Abdul-Quader et al. (2006) describes empirical findings based on a respondent-driven

sampling design to collect data on an HIV-related population in the New York City

area. Recent work by Gile and Handcock (2011) proposes a modified estimator of
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population means when employing respondent-driven sampling that utilizes a model-

assisted approach to help overcome the bias introduced with the selection of an ini-

tial sample that is not a probability sample. Since their inference procedure requires

knowing the population size, they show that this is a robust estimator when the in-

ference procedure substitutes a relatively large or small estimated value for the true

population size.

There are many methods for estimating population sizes through a capture-

recapture style of study (see Schwarz and Seber (1999) and Chao et al. (2001) for

a summary of the existing methods), and some of these classic methods have been

implemented for estimating the size of hidden drug-using populations (see Frischer

et al. (1993), Mastro et al. (1994) and Hook and Regal (1995)). Several model-based

approaches for estimating population sizes with the use of an adaptive sampling de-

sign have been developed for when a subset of the target population is accessible from

a sampling frame. Felix-Medina and Thompson (2004) developed an approach that

combines model-based and design-based inference. It assumes that links from the

partial sampling frame are made in a homogenous pattern that facilitates a capture-

recapture likelihood style of inference. Felix-Medina and Monjardin (2006) extend

this work by proposing a Bayesian-assisted approach to overcome some of the bias

that the maximum likelihood estimators possess, and Felix-Medina and Monjardin

(2009) further extend the aforementioned work by allowing for a method based on

an initial sequential sample that gives control over the final sample sizes. Frank and

Snijders (1994) were able to develop a design-based approach that formulates con-

sistent moment-based estimates of the population size based on the links originating

from the members of a Bernoulli sample.

The model-based methods outlined in the existing literature for estimating the

size of a population with adaptive sampling strategies make relaxed/generic mathe-

matical assumptions for which the nomination probabilities are based upon (for ex-

ample, see Frank and Snijders (1994) for an approach based on assuming a Bernoulli

graph model and Thompson and Frank (2000) for an approach based on assuming a

simple graph model known as the stochastic block model). Also, none of the exist-

ing model-based and design-based methods permit inference based on members who
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are sampled beyond those linked to the initial sample. Furthermore, most of the

existing methods have not harnessed or adopted some of the well-known capture-

recapture methods, such as those used in the well-known eight closed population

models (see Schwarz and Seber (1999) for a description), for estimating population

sizes. These issues serve as the primary motivation for the work found in this thesis

and are addressed throughout chapters 2, 3, and 4. Chapters 2, 3, and 4 are each

written in a stand-alone fashion, and chapter 5 is written as an extension of chapter

4. All simulation experiments that were performed in this thesis were done in the R

programming language. A copy of the code can be provided upon request.

1.2 Organization of the Thesis

Chapter 2 introduces a complex graph model, termed the stochastic cluster model,

that is developed to account for the erratic clustering behaviour commonly seen

in hard-to-reach populations. Kwanisai (2004) explored the use of the two-group

stochastic block model for modeling a networked population, and the stochastic

cluster model extends on this model by permitting additional covariate information

to be incorporated into the model. The additional covariate information is utilized

to help capture and explain the clustering behaviour in the population via a logistic

regression model that governs the presence of links between members. We base our

analysis on a Bayesian data augmentation routine that is applied to the data observed

from a complete one-wave snowball sampling design. We compare the performance of

the Bayes estimates of the population size and model parameters corresponding with

the stochastic block model (which is now generalized for inference on as many groups

as is desired) and the stochastic cluster model based on our strategy that is applied

to a networked population that was simulated from the stochastic cluster model (for

which we deem the thesis study population). Estimates of the population size and

model parameters perform reasonably well in both cases with estimates based on the

stochastic cluster model outperforming those based on the stochastic block model.

Chapter 3 explores a design-based approach for estimating the size and average

node degree of a population based on a multi-sample study. Preliminary estimates
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of the population unknowns are based on the initial random selections for each sam-

ple and the estimates of the population size are of a classic/conventional capture-

recapture type. The adaptively selected members of the sample are included in

the analysis through a Rao-Blackwellization procedure based on sample reorderings

which are consistent with a sufficient statistic. As the number of sample reorderings

may become prohibitively large for computational tabulation of their contributions

to the Rao-Blackwellized estimator, a Markov chain resampling process is utilized to

make computation of the improved estimates feasible. A simulation study demon-

strates that gains in efficiency over the existing classic capture-recapture estimators

are certain.

Chapter 4 extends the design-based approach introduced by Frank and Snijders

(1994) for estimating population sizes with moment-based estimators based on the

observations made from the selection of a Bernoulli sample. We propose new esti-

mators of the population size that are based on one wave that is selected after the

initial wave. We also show that Rao-Blackwellized estimators can be obtained in

a manner similar to those which were obtained in the multi-sample study that was

explored in chapter 3. A simulation study shows that the new estimators perform

well and that gains in efficiency with the improved estimators are certain.

Chapter 5 presents a new method for approximating the Rao-Blackwellized es-

timates that are obtained with a design-based approach to inference in sampling.

We view the sample space, that is all of the sample reorderings from a sample, as a

sampling frame and use an importance sampling method to obtain preliminary ap-

proximations of the Rao-Blackwellized estimates. We introduce a method based on a

single-stage cluster sampling design, which we term improved importance sampling,

that entails defining neighbourhoods over the sample reorderings. The approach in

this strategy rests on being able to observe the necessary responses from the units in

the neighbourhoods of those members sampled under the importance sampler with

relative ease once the corresponding responses from one of the units in the neigh-

bourhood is observed. We can then improve on the preliminary approximations

using the additional observations to obtain improved approximations. This method
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is tried on the Rao-Blackwellized estimates based on one of the one-sample stud-

ies that is explored in the third project. The simulation study demonstrates that

the improved importance sampling method will outperform the existing importance

sampling method.

Chapter 6 is reserved for a discussion and general conclusions based on the thesis

work. We also provide some direction for future research.



Chapter 2

The Stochastic Cluster

Model-Based Approach

2.1 Introduction

Kwanisai (2004) developed a Bayesian data augmentation routine to make inference

for model parameters based on a sample selected via a one-wave snowball subsam-

pling design, that is obtained from a population with known size, when working

under the basic two-group stochastic block model. In this chapter, a new and more

elaborate graph model, termed the stochastic cluster model, is proposed to make in-

ference for model parameters. It incorporates into the model the clustering behaviour

commonly seen in networked populations through the use of observed covariate infor-

mation. An extended data augmentation routine is developed for making inference

on the unknown population size and the model parameters corresponding with both

the stochastic block model and the stochastic cluster model.

In Section 2.2, we introduce the stochastic block model and the stochastic cluster

model as well as the complete one-wave snowball sampling design used in our study.

In Section 2.3, we introduce the extended data augmentation routine which entails

developing the necessary posterior distributions for the unknown population size and

model parameters as well as the probability distributions for the missing data values

8
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for both graph models. Section 2.4 presents the results from a simulation study

based on samples obtained from a population that is generated from the stochastic

cluster model. Section 2.5 provides a general discussion of the results presented in

this chapter.

2.2 The Graph Models and Sampling Design

This section introduces the stochastic block model and the stochastic cluster model.

The likelihood functions based on each model for a full graph realization are also

presented in this section. We conclude with an introduction to the complete one-

wave snowball sampling design.

2.2.1 The stochastic block model

We define a population U to consist of the set of units/individuals U = {1, 2, ..., N}
where N is the population size. All units i = 1, 2, ..., N are assigned to a group

Ci ε {1, 2, ..., G} according to a multinomial distribution based on the vector of

parameters λ = (λ1, λ2, ..., λG) where G is the number of groups and λk is the prob-

ability of a unit being assigned to group k.

We shall define Y to be the symmetric adjacency matrix of the population

where for all i, j = 1, 2, ..., N, Yij = 1 if a link is present between units i and

j and 0 otherwise. Conditional on the population vector of group memberships

C = (C1, C2, ..., CN), links occur independently between all pairs of units in the

population where for any two units i, j = 1, 2, ..., N , if i 6= j we assume

P (Yij = 1|C) = P (Yij = 1|Ci, Cj) = βCi,Cj , (2.1)

and if i = j then
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P (Yii = 1) = 0. (2.2)

It shall be understood that for all k, ` = 1, 2, ..., G, βk,` = β`,k.

Under the stochastic block model, the likelihood function for the population

parameters based on an entire graph realization is

L(λ, β|C, Y ) ∝
G∏
k=1

λNkk

N∏
i,j=1:
i<j

β
Yij
Ci,Cj

(1− βCi,Cj)1−Yij

=
G∏
k=1

λNkk

G∏
k,`=1:
k<`

β
Mk,`

k,`

G∏
k,`=1:
k<`

(1− βk,`)NkN`−Mk,`

G∏
k=1

β
Mk,k

k,k

G∏
k=1

(1− βk,k)(
Nk
2 )−Mk,k (2.3)

where Nk is the size of group k, and Mk,` is the number of links from group k to group

`, k, ` = 1, 2, ..., G. C and Y are the full graph realizations of the group memberships

and adjacency matrix, respectively. The first component of the likelihood describes

the group memberships, the second and third components of the likelihood describe

the links between groups, and the fourth and fifth components describe the links

within the groups.

2.2.2 The stochastic cluster model

Again we define a population U to consist of the units/individuals U = {1, 2, ..., N}
where N is the population size. All units i = 1, 2, ..., N are assigned to a group

Ci ε {1, 2, ..., G} according to a multinomial distribution based on the vector of

parameters λ = (λ1, λ2, ..., λG) where G is the number of groups and λk is the prob-

ability of a unit being assigned to group k.

Conditional on the population vector of group memberships C, each unit i =

1, 2, ..., N independently realizes a K-dimensional vector of covariate information Zi

via
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Zi|C = Zi|Ci ∼MVN(µCi ,
∑
Ci

), (2.4)

where Zi = (Z1,i, Z2,i, ..., ZK,i), µCi = (µ1,Ci , µ2,Ci , ..., µK,i) is the centre of group Ci’s

covariate information and
∑
Ci

is the K ×K variance-covariance matrix of group Ci’s

covariate information. In our study, we took the variance-covariance matrix to be∑
Ci

= σ2
Ci

Id where σ2
Ci

is the dispersion parameter associated with group Ci and Id

is the identity matrix of size K ×K. We also took K = 2, primarily for illustrative

purposes. The covariate information is then based on the realization

Zi|C = Zi|Ci ∼MVN(µCi , σ
2
Ci

Id). (2.5)

Similar to the approach that Hoff et al. (2002) took in modeling links among

members of the population, we will posit that conditional on C and the population

vector of covariate information Z, links between units occur independently and in a

logistic fashion depending on parameters (α, β) as follows. First, if Ci = Cj then we

shall let βCi,Cj = β0 and αCi,Cj = α0, and if Ci 6= Cj we shall let βCi,Cj = β1 and

αCi,Cj = α1. Also, ‖Zi − Zj‖ is taken to be the Euclidean norm that measures the

distance, in terms of covariate (location) values, between units i and j. Now for any

i, j = 1, 2, ..., N, if i 6= j we assume

P (Yij = 1|C,Z) = P (Yij = 1 | Ci, Cj, Zi, Zj) =
exp(βCi,Cj + αCi,Cj‖Zi − Zj‖)

1 + exp(βCi,Cj + αCi,Cj‖Zi − Zj‖)
,

(2.6)

and if i = j then
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P (Yii = 1) = 0. (2.7)

Under the stochastic cluster model, the likelihood function for the population

parameters based on a full graph realization is

L(λ, µ, σ2, β, α|C,Z, Y ) ∝
G∏
k=1

λNkk ·
N∏
i=1

[
1

2πσ2
Ci

· exp

{
−1

2

(
(Z1,i − µ1,Ci)

2

σ2
Ci

+
(Z2,i − µ2,Ci)

2

σ2
Ci

)}]

·
N∏
i=1

 ∏
Yij=1:
j>i

(
exp(βCi,Cj + αCi,Cj ||Zi − Zj||)

1 + exp(βCi,Cj + αCi,Cj ||Zi − Zj||)

)

·
N∏
i=1

 ∏
Yij 6=1:
j>i

(
1−

exp(βCi,Cj + αCi,Cj ||Zi − Zj||)
1 + exp(βCi,Cj + αCi,Cj ||Zi − Zj||)

) . (2.8)

The first component of the likelihood describes the group memberships, the sec-

ond component of the likelihood describes the covariate information of the units, and

the third and fourth components describe the links between the units.

2.2.3 The complete one-wave snowball sampling design

The complete one-wave snowball sampling design consists of selecting an initial

sample, which we shall denote S0, through a random sampling design where all

units of the population have equal probability of being selected. From the initial

sample, all links are traced out to the first wave, denoted as S1. Working under

the stochastic block model, the data from the sample S = S0 ∪ S1 we observe is

d′0 = {S,CS, YS0,S, YS0,S̄} where YS0,S̄ ≡ 0. Here CS is the vector of the observed

group memberships of the sampled members, YS0,S is the recorded observations of
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the presence or absence of links from the initial sample to the final sample, and

YS0,S̄ ≡ 0 is understood to be the absence of links from the initial sample to the

unknown number of unobserved members. Similarly, working under the stochastic

cluster model the data we observe is d′0 = {S,CS, ZS, YS0,S, YS0,S̄} where ZS is the

vector of the observed covariate information of the sampled members.

We shall reorder the units in the population so that the first |S0| = n0 units are

those selected for the initial sample and the next |S1| = n1 units are those linked to

at least one unit in the initial sample. Also, we shall let |S| = n0 + n1 = n.

2.3 Data Augmentation

This section presents an outline of the general data augmentation procedure that

was developed by Kwanisai (2004). We then outline the extended data augmentation

procedure that is used in this chapter for incorporating the unknown population size

with both the stochastic block model and the stochastic cluster model.

2.3.1 The data augmentation routine

Suppose we base a population model on a set of parameters θ. Through some sam-

pling design let Xobs be the subset of the population data that we observe from the

sample (for example, Xobs = d′0). Also, let Xmis be the missing subset of the popu-

lation values that are not observed. If we intend to make inference upon θ then, in

a Bayesian context, we would like to obtain π(θ|Xobs), the posterior distribution of

θ|Xobs. This may be challenging if the design is unconventional and instead we can

consider π(θ|Xobs, Xmis) and P(Xmis|Xobs, θ), the posterior distribution of θ based

on a (hypothetical) full graph realization and the probability distribution of the

missing values given the observed data and the (estimated) model parameter values,

respectively. Using a Gibbs sampling approach, we can iteratively “sample/update”

the θ and Xmis values as outlined below. By the results presented in Tanner and

Wong (1987), the sampled θ’s will converge to π(θ|Xobs) and the sampled Xmis’s will

converge to P(Xmis|Xobs). The procedure, working over a known population size, is
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summarized as follows:

Step 1: Assign initial values θ(0) to the parameters.

For t = 1, 2, ..., T , T sufficiently large, do the following:

Step 2: Generate a value of Xmis from the distribution P(Xmis|Xobs, θ
(t−1)),

call this X
(t)
mis.

Step 3: Sample θ from the posterior distribution π(θ|Xobs, X
(t)
mis), call this θ(t).

Revert to step 2 until t = T .

Step 4: Make inference on the model parameters and unknown population

values with θ(0), θ(1), ..., θ(T ) and X
(1)
mis, X

(2)
mis, ..., X

(T )
mis, respectively.

2.3.2 The extended data augmentation procedure based on

the stochastic block model

This subsection outlines the extended data augmentation procedure used with the

stochastic block model. Kwanisai (2004) developed proofs of the results presented

in the following subsections for the two-group stochastic block model. We have now

extended these results to cover the general case but have omitted the proofs since

they are a straightforward extension of those based on the two-group stochastic

block model. We shall retain the notation of the true population size N , the model

parameters θ, and the missing subset of data Xmis for each of the iteratively sampled

and augmented values.

Augmenting the missing values

With the stochastic block model, we can append an additional step to the aforemen-

tioned data augmentation routine to sample over a suitable posterior distribution of

the population size as follows. Recall that the sampling design used in our study is

the complete one-wave snowball sampling design and for the purposes of formulating
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a likelihood for the population size N , consider the data d∗0 = {S0, CS0
}. We shall

consider a binomial experiment in the following manner. If a unit in S̄0 (that is,

those units outside of S0) is linked to at least one individual in S0 then this shall

be deemed as a success (which occurs with probability p). For any unit located in

S̄0 we can determine the probability of this unit not being to any unit in the initial

sample, conditional on d∗0, as

1− p =
G∑
k=1

[λk

n0∏
i=1

(1− βCi,k)] (2.9)

since, by definition of the model and given d∗0, all group memberships of units in S̄0

arise independently and according to the multinomial distribution. As well, links

from S0 to S̄0 occur independently between all pairs of units, given the group mem-

berships. Note that expression (2.9) averages over the probability that a unit in S̄0 is

not linked to any units in S0, where averages are taken over the weighted probability

of being in each group (since we only condition on d∗0).

Now, since all of the Bernoulli outcomes can be regarded as independent and, by

symmetry, identically distributed, a likelihood function for N conditional on d′0 =

{d∗0, S1, YS0,S0∪S1 , YS0,S̄ ≡ 0} is

L(N |d′0) =

(
N − n0

n1

)
pn1(1− p)N−n0−n1 . (2.10)

In this study we shall take the prior distribution of N to be π(N) ∝ 1 when N ≥
n0+n1 and π(N) ∝ 0 whenN < n0+n1, and hence the resulting posterior distribution

of N is

π(N |d′0) ∝
(
N − n0

n1

)
(1− p)N−n0−n1I[N ≥ n0 + n1] (2.11)

where I is the indicator function that takes on a value of one if the condition within the
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brackets holds and zero otherwise. The new data augmentation routine now appends

an additional Step 1.5 that samples a N from the updated posterior distribution

presented in expression (2.11).

Upon sampling a N from the resulting posterior distribution, we shall consider the

updated information to be d0 = {S,CS, YS0,U}, where U is a hypothetical population

of size equal to the most recent N that was sampled from its probability distribution.

As shown by Kwanisai (2004), for any i ε S̄ and k = 1, 2, ..., G,

P (Ci = k|d0) =

λk
n0∏
j=1

(1− βCj ,k)

G∑̀
=1

λl
n0∏
j=1

(1− βCj ,`)
. (2.12)

Values of the missing group memberships C S̄ are then assigned according to the

distribution outlined in expression (2.12).

After generating C S̄, the graph data is updated from d0 to d1 where d1 =

{S,C, YS0,U} and C represents the full hypothetical graph realization of group mem-

berships. Again, as shown by Kwanisai (2004), for any i, j ε S̄0 where i 6= j,

P (Yij = 1|d1) = βCi,Cj , (2.13)

and hence links between each pair of units i, j ε S̄0 for i 6= j are assigned according

to the probability distribution found in expression (2.13) to generate a hypothetical

full graph realization of Y .

The posterior distributions of the stochastic block model parameters based

on a hypothetical realization of the full population graph

As shown by Kwanisai (2004), the factorization theorem asserts that, with the use of

independent prior distributions on the model parameters, the posterior distributions

of the parameters are all independent under the (hypothetical) full graph realization
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d = {C, Y } (see subsection 2.2.1 for the likelihood based on a full graph realization).

In our study, we shall place independent conjugate Dirichlet and Beta priors on λ

and β, respectively. That is,

π(λ) ∝
G∏
k=1

λαk−1
k (2.14)

and

π(β) ∝
G∏
k≤`:
k,`=1

βγ1−1
k,` (1− βk,`)γ2−1. (2.15)

We shall take the prior distributions to be noninformative by setting αk = 1 for

k = 1, 2, ..., G and γj = 1 for j = 1, 2. The resulting posterior distribution of λ is

then

π(λ|d) ∼ Dirichlet(N1 + 1, ..., NG + 1). (2.16)

The resulting posterior distribution of βk,` for k, ` = 1, 2, ..., G, k 6= `, is

π(βk,`|d) ∼ Beta(Mk,` + 1, NkN` −Mk,` + 1), (2.17)

and for k = 1, 2, ..., G,

π(βk,k|d) ∼ Beta(Mk,k + 1,

(
Nk

2

)
−Mk,k + 1). (2.18)
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2.3.3 The extended data augmentation procedure based on

the stochastic cluster model

This subsection outlines the data augmentation procedure that corresponds with

the stochastic cluster model. Mathematical proofs and derivations of the probability

mass/density functions of the missing values and posterior distributions of the model

parameters are shown in Appendix A of the thesis.

Augmenting the missing values

We shall follow the same approach that was used to develop a posterior distribution

for the population size N under the stochastic block model. Under the stochastic

cluster model with d∗0 = {S0, CS0
, ZS0

} we have that for any unit in S̄0 the probability

of observing no links to the initial sample, conditional on d∗0, is

1− p =
G∑
k=1

λk

∞∫
−∞

n0∏
i=1

(
1− exp(βCi,k + αCi,k||Zi − Z||)

1 + exp(βCi,k + αCi,k||Zi − Z||)

)
BVN(Z;µk, σ

2
kId)dZ

(2.19)

where Z is a specific realization of covariate information. This holds as, by definition

of the model and given d∗0, all group memberships, and then covariate information,

of units in S̄0 arise independently and according to the multinomial distribution,

and then the corresponding bivariate normal distribution. As well, links from S0

to S̄0 occur independently between all pairs of units given the corresponding group

memberships and covariate information. We will take the prior distribution of N

to be π(N) ∝ 1 when N ≥ n0 + n1 and π(N) ∝ 0 when N < n0 + n1. Now, with

d′0 = {d∗0, S1, YS0,S0∪S1 , YS0,S̄ ≡ 0} we have that

π(N |d′0) ∝
(
N − n0

n1

)
(1− p)N−n0−n1I[N ≥ n0 + n1] (2.20)
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is a binomial type of posterior distribution for N .

After sampling a value of N from the (updated) posterior distribution found in ex-

pression (2.20), we can consider the updated information to be d0 = {S,CS, ZS, YS0,U}
where U is a hypothetical population of size equal to the sampled N from the pos-

terior distribution. Now, for any i ∈ S̄, and for any group k = 1, 2, ...G, it can be

shown (by subsection A.1.1 of Appendix A) that

P(Ci = k|S, CS, ZS, YS0,i) =

λk ·
∞∫
−∞

n0∏
j=1

(
1−

exp(βCj,k+αCj,k||Zj−Z||)
1+exp(βCj,k+αCj,k||Zj−Z||)

)
BVN(Z;µk, σ

2
kId) dZ

G∑̀
=1

[
λ` ·

∞∫
−∞

n0∏
j=1

(
1−

exp(βCj,`+αCj,`||Zj−Z||)
1+exp(βCj,`+αCj,`||Zj−Z||)

)
BVN(Z;µ`, σ2

` Id) dZ

] . (2.21)

Values of the missing group memberships C S̄ are then assigned according to the

distribution outlined in expression (2.21).

After generating C S̄, the graph data is updated from d0 to d1, where d1 =

{S, C, ZS, YS0,U} and C represents the hypothetical full graph realization of group

memberships. For any i ∈ S̄ and for any z∗ ∈ R2, it can be shown (by subsection

A.1.2 of Appendix A) that the density of Zi at this point is evaluated as

P(Zi = z∗|d1) =

n0∏
j=1

(
1− exp(βCj,Ci+αCj,Ci ||Zj−z

∗||
1+exp(βCj,Ci+αCj,Ci ||Zj−z

∗||

)
BVN(z∗;µCi , σ

2
Ci

Id)

∞∫
−∞

n0∏
j=1

(
1− exp(βCj,Ci+αCj,Ci ||Zj−Z||

1+exp(βCj,Ci+αCj,Ci ||Zj−Z||

)
BVN(Z;µCi , σ

2
Ci

Id) dZ

.

(2.22)

Values of the missing covariate information Z S̄ are then assigned according to the

distribution outlined above.

After generating Z S̄, the graph data is updated to d2 = {S,C, Z, YS0,U}, where

Z is the hypothetical full graph realization of covariate information. It now remains

to assign links between all pairs of nodes (i, j) in (S̄0, S̄0). Recall that by definition
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of the model, we have that conditional on C,Z, for any (i, j), (i∗, j∗) ε (S̄0, S̄0), Yij

is independent of Yi∗j∗ . Hence, for any (i, j) ε (S̄0, S̄0), i 6= j, we have that

P(Yij = 1|Ci, Cj, Zi, Zj) =

(
exp(βCi,Cj + αCi,Cj ||Zi − Zj||)

1 + exp(βCi,Cj + αCi,Cj ||Zi − Zj||)

)
, (2.23)

and links between each pair of units (i, j) ε (S̄0, S̄0) for i 6= j are assigned according

to the probability distribution found in expression (2.23) to generate a hypothetical

full graph realization of Y .

The posterior distributions of the stochastic cluster model parameters

based on a hypothetical realization of the full population graph

With the use of independent prior distributions for the model parameters the fac-

torization theorem asserts that the set of parameters λ, (µ, σ2), (β0, α0), and (β1, α1)

are all independent (see subsection 2.2.2 for the likelihood based on a full graph

realization). Furthermore, for all k, ` = 1, 2, ..., G, k 6= `, (µk, σ
2
k) is independent of

(µ`, σ
2
` ). We now outline the prior distributions and resulting posterior distributions

for each set of parameters.

For λ we shall use a conjugate Dirichlet prior where

π(λ) ∝
G∏
k=1

λαk−1
k . (2.24)

We shall use a noninformative prior by setting αk = 1 for k = 1, 2, ..., G. The

resulting posterior distribution is

π(λ |d) ∼ Dirichlet(N1 + 1, . . . , NG + 1) . (2.25)

For the choice of a conjugate prior distribution for each σ2
k, k = 1, 2, ..., G, we
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shall let π(σ2
k) ∼ Γ−1(α, β) which gives

π(σ2
k) =

βα

Γ(α)
(σ2

k)
−α−1 exp

{
−β
σ2
k

}
. (2.26)

For each group’s center of covariate information µk = (µ1,k, µ2,k) and dispersion

parameter σ2
k, k = 1, 2, ..., G, we shall take the conditional conjugate prior distribu-

tion of π(µj,k|σ2
k) ∼ N(γj,

σ2
k

νj
), where j = 1, 2. Since, µ1,k and µ2,k are independent

(by the factorization theorem), it can be shown (by subsection A.2.1 of Appendix

A) that

π(σ2
k, µ1,k, µ2,k|Zk) ∝

(σ2
k)
−α−1 · exp

{
− β

σ2
k

}

· 1
σk√
ν1

exp

−1

2

(µ1,k − γ1)2

σ2
k

ν1

 · 1
σk√
ν2

exp

−1

2

(µ2,k − γ2)2

σ2
k

ν2


· 1

(σ2
k)
Nk

exp

{
− 1

2σ2
k

Nk∑
i=1

(Z1,i − µ1,k)
2

}
· exp

{
− 1

2σ2
k

Nk∑
i=1

(Z2,i − µ2,k)
2

}
, (2.27)

where it shall be understood that, for notational convenience, the units in group k

are temporarily indexed to be the first Nk units of the population.

We shall first work over the posterior distribution of σ2
k. It can be shown (by

subsection A.2.2 of Appendix A) that

π(σ2
k|Zk) ∝ (σ2

k)
−α−1−1−Nk−1

· exp

{
− 1

σ2
k

·
[
β +

1

2

[
ν1γ

2
1 +

Nk∑
i=1

Z2
1,i −

(ν1γ1 +
∑Nk

i=1 Z1,i)
2

ν1 +Nk

+ ν2γ
2
2 +

Nk∑
i=1

Z2
2,i −

(ν2γ2 +
∑Nk

i=1 Z2,i)
2

ν2 +Nk

]]}
. (2.28)
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Therefore, we have π(σ2
k|Zk) ∼ Γ−1(A,B), where

A = α +Nk, and

B = β +
1

2

[
ν1γ

2
1 +

Nk∑
i=1

Z2
1,i −

(ν1γ1 +
∑Nk

i=1 Z1,i)
2

ν1 +Nk

+ ν2γ
2
2 +

Nk∑
i=1

Z2
2,i −

(ν2γ2 +
∑Nk

i=1 Z2,i)
2

ν2 +Nk

]
. (2.29)

To obtain the posterior distribution of µ1,k, we shall condition on the σ2
k sampled

from the the distribution in (2.29). It can then be shown (by subsection A.2.3 of

Appendix A) that

µ1,k|σ2
k, Zk ∼ N

(
γ1ν1 +

∑Nk
i=1 Z1,i

ν1 +Nk

,
σ2
k

ν1 +Nk

)
, (2.30)

and similarly

µ2,k|σ2
k, Zk ∼ N

(
γ2ν2 +

∑Nk
i=1 Z2,i

ν2 +Nk

,
σ2
k

ν2 +Nk

)
. (2.31)

In this study we shall set α = β = 1, γj = 0, and νj = 1 for j = 1, 2, which result in

noninformative prior distributions.

Finally, we shall place independent prior distributions on (β0, α0) and (β1, α1)

that contribute as one success and one failure in observing links within and between

groups, respectively, assuming these units are located one unit distance from each

other. Recall that for any γ ε R, 1− eγ

1+eγ
= 1

1+eγ
, and hence the resulting posterior

distribution can be shown to be
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π(β0, α0, β1, α1|d) =
eβ0+α0

1 + eβ0+α0
·
(

1

1 + eβ0+α0

)
·
G∏
k=1

∏
i,j∈Gk:
i<j

[(
exp(β0 + α0||Zi − Zj||)

1 + exp(β0 + α0||Zi − Zj||)

)Yij ( 1

1 + exp(β0 + α0||Zi − Zj||)

)1−Yij
]

· eβ1+α1

1 + eβ1+α1

(
1

1 + eβ1+α1

)
·

G∏
k,`=1:
k<`

∏
i∈Gk,
j∈G`

[(
exp(β1 + α1||Zi − Zj||)

1 + exp(β1 + α1||Zi − Zj||)

)Yij ( 1

1 + exp(β1 + α1||Zi − Zj||)

)1−Yij
]

.

(2.32)

Note that this prior is used in order to ensure that the resulting posterior distribution

integrates to a value of 1, since, in the event that we observe and augment all successes

or failures of links between nodes within and/or between a group(s), we will have a

posterior distribution with infinite area.

2.4 Simulation Study

We will use the thesis study population to evaluate the new inference procedures

outlined in this chapter. The population was generated according to the stochastic

cluster model with a choice of three groups whose centers of covariate information

form an approximate equilateral triangle in R2. We set the parameter values to be

N = 300, λ = (0.5, 0.3, 0.2), µ1 = (−6,−9), µ2 = (6,−9), µ3 = (0, 5), σ2
1 = σ2

2 =

σ2
3 = 16, β0 = −1.5, β1 = −2.5, and α0 = −0.5, α1 = −0.5. An illustration of the

population can be found in Figure 2.1.
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Figure 2.1: The simulated thesis study population. The values on the x-axis refer

to the first dimension of covariate information and the values on the y-axis refer to

the second dimension of covariate information. The axes are provided to compare

the dispersion between groups as well as the relative occurrence of links between

members within and between groups.

Figure 2.2 presents two plots that show a typical complete one-wave snowball

sample. The initial sample size was 60 and the final sample size was 152. The

data presented in the illustrations reflect the sample data (namely the group colour,

covariate information, and links) that is required to be observed for the inferential

procedures outlined in this chapter.
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Figure 2.2: A complete one-wave snowball sample where the initial sample size is 60

and the final sample size is 152. The figure on the left displays the initial sample

and links within the initial sample. The figure on the right displays the full sample

and links from the initial sample to the first wave.

We conducted a simulation study based on each of the stochastic block model and

the stochastic cluster model as follows. In each study we selected 500 samples each

with an initial sample size of 60. Figure 2.3 shows a histogram of the final sample

sizes of the 500 samples. The solid triangle on the x-axis indicates the average of the

final sample sizes.
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Figure 2.3: Histogram of the final sample sizes based on 500 simulations. In each

case the initial sample size was 60. The dark triangle on the x-axis represents the

average final sample size.

Bayes estimates of the population size and model parameters based on both the

stochastic block model and the stochastic cluster model are presented in the following

subsections. For each simulation, Markov chains of length 1000 were run with a

10% burn-in to obtain approximate Bayes estimates. Although the estimates are

developed under a Bayesian framework, we employ a frequentist style of evaluation

to measure the efficiency of the estimates under the two models.

2.4.1 Simulation study based on the use of the stochastic

block model

This subsection contains a presentation and discussion of the Bayes estimates of

the population size and model parameters based on the use of the stochastic block

model. We commence with the Markov chain Monte Carlo (MCMC) trace plots of
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the population size and model parameters based on the sample shown in Figure 2.2.

This is appropriate as the behaviour of the MCMC trace plots based on the data

from several other samples were found to be similar. The MCMC trace plots of the

population size and model parameters can be found in Figures 2.4, 2.5, 2.6, and

2.7. As our study is based on a model-based approach to inference and since we are

exploring our sampling and inference strategy applied to only one simulated network

graph, we will use the maximum likelihood estimates (MLEs) of the population

parameters based on the full graph realization as the target values for our Bayes

estimates. Note that the MLEs of the model parameters will likely change between

simulated networked graphs and hence our choice of using the MLEs based on this

network graph is justified.

The solid lines in the figures indicate the maximum likelihood estimate(s) (MLE)

based on a full graph realization. Note that the full graph realization permits ob-

serving N to be the true value of 300. Also, note that in the following figures shown

the trace plots are for only one sample and hence the trace plots may not average to

the corresponding MLEs.
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Figure 2.4: The sample dependent MCMC trace plot of the N values under the

stochastic block model based on the sample presented in Figure 2.2. The solid line

represents the MLE of the population size based on a full graph realization.
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Figure 2.5: The sample dependent MCMC trace plots of λ1, λ2, and λ3 under the

stochastic block model based on the sample presented in Figure 2.2. The solid lines

represent the MLEs of the population parameters based on a full graph realization.
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Figure 2.6: The sample dependent MCMC trace plots of β11, β22, and β33 under the

stochastic block model based on the sample presented in Figure 2.2. The solid lines

represent the MLEs of the population parameters based on a full graph realization.
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Figure 2.7: The sample dependent MCMC trace plots of β12, β13, and β23 under the

stochastic block model based on the sample presented in Figure 2.2. The solid lines

represent the MLEs of the population parameters based on a full graph realization.

The MCMC trace plots of the population size and model parameters, given the

data found in the sample presented in Figure 2.2, appear to have sufficiently explored

the posterior space indicating that a chain of length 1000 is sufficient. Notice how

quickly the MCMC chains break away from the (noninformative) seeds for each of

the model parameters where the seeds are chosen to reflect the noninformative prior
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distributions (that is, we set λ(0) = (1/3), and β(0) = (0.10) to generate a relatively

dense graph on the first augmentation iteration).

Histograms of the Bayes estimates of the population size and model parameters

can be found in Figures 2.8, 2.9, 2.10, and 2.11. The solid triangle on the x-axis

represents the MLE of the population parameter based on a full graph realization,

and the transparent triangle represents the average of the Bayes estimates of the

population size and model parameters.

Figure 2.8: Histogram of the Bayes estimates of the N values under the stochastic

block model based on 500 simulations. The solid triangle represents the MLE of the

population size based on a full graph realization (which is the true population size

of 300), and the transparent triangle represents the average of the Bayes estimates

of the population size.
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Figure 2.9: Histograms of the Bayes estimates of λ1, λ2, and λ3 under the stochastic

block model based on 500 samples. The solid triangles represent the MLEs of the

model parameters based on a full graph realization, and the transparent triangles

represent the average of the Bayes estimates of the model parameters.
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Figure 2.10: Histograms of the Bayes estimates of β11, β22, and β33 under the stochas-

tic block model based on 500 samples. The solid triangles represent the MLEs of the

model parameters based on a full graph realization, and the transparent triangles

represent the average of the Bayes estimates of the model parameters.
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Figure 2.11: Histograms of the Bayes estimates of β12, β13, and β23 under the stochas-

tic block model based on 500 samples. The solid triangles represent the MLEs of the

model parameters based on a full graph realization, and the transparent triangles

represent the average of the Bayes estimates of the model parameters.

It appears that the Bayes estimates come out with little to no bias for the true

population size and MLEs of the model parameters. For populations that exhibit a

similar behaviour to realizations based on the stochastic cluster model, these results
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suggest that using the stochastic block model in conjunction with a complete one-

wave snowball sampling design may be a robust choice for inferring on the population

size and parameters. One reason for this is to notice that the stochastic block

model can be regarded as a special case of the stochastic cluster model. There

is an exception in that we allow for links within and between groups under the

stochastic block model to be governed by their own parameter βk,l, k, l = 1, 2, ..., G.

Note that for the stochastic cluster model the corresponding parameters are (β0, α0)

and (β1, α1), however notice that the parameters µ and σ2 indirectly contribute to

the modeling of the links. That is, we indirectly account for the locations of the

covariate information in the modeling of the presence of links.

2.4.2 Simulation study based on the use of the stochastic

cluster model

This subsection contains a presentation and discussion of the Bayes estimates of the

population size and parameters based on the use of the stochastic cluster model.

Again, we commence with the MCMC trace plots for the population size and model

parameters based on the sample presented in Figure 2.2 as the behaviour of the

MCMC trace plots based on the data from several other samples were found to be

similar. The MCMC trace plots of the population size and model parameters can be

found in Figures 2.12, 2.13, 2.14, 2.15, and 2.16. We shall also reiterate here that our

study is based on a model-based approach to inference and since we are exploring

our sampling and inference strategy applied to only one simulated network graph,

we will use the maximum likelihood estimates (MLEs) of the population parameters

based on the full graph realization as the target values for our Bayes estimates. As

the MLEs of the model parameters will likely change between simulated networked

graphs our choice of using the MLEs based on this network graph is justified.

The solid lines in the figures indicate the maximum likelihood estimate(s) (MLE)

of the population parameters based on a full graph realization. Note that the full

graph realization permits observing N to be the true value of 300 (since we have

observed all units and their information relevant to the model). Also, note that in
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the following figures the trace plots are for only one sample and hence the trace plots

may not average to the corresponding MLEs.

Figure 2.12: The sample dependent MCMC trace plot of the N values under the

stochastic cluster model based on the sample presented in Figure 2.2. The solid line

represents the MLE of the population size based on a full graph realization.
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Figure 2.13: The sample dependent MCMC trace plots of λ1, λ2, and λ3 under the

stochastic cluster model based on the sample presented in Figure 2.2. The solid lines

represent the MLEs of the model parameters based on a full graph realization.
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Figure 2.14: The sample dependent MCMC trace plots of (µ1, µ2), (µ3, µ4), and

(µ5, µ6) under the stochastic cluster model based on the sample presented in Fig-

ure 2.2. The solid lines represent the MLEs of the model parameters based on a full

graph realization.
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Figure 2.15: The sample dependent MCMC trace plots of σ2
1, σ

2
2, and σ2

3 under the

stochastic cluster model based on the sample presented in Figure 2.2. The solid lines

represent the MLEs of the model parameters based on a full graph realization.
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Figure 2.16: The sample dependent MCMC trace plots of (β0, α0), and (β1, α1) under

the stochastic cluster model based on the sample presented in Figure 2.2. The solid

lines represent the MLEs of the model parameters based on a full graph realization.

The MCMC trace plots for the population size and model parameters for the

stochastic cluster model exhibit a behaviour similar to the MCMC trace plots for the

population size and model parameters corresponding with the stochastic block model,

namely fast convergence and insensitivity to the initial seeds which are reflective of

the noninformative prior distributions (we set λ(0) = (1/3), µ(0) = (0) and σ2 (0) =

(36)). Again, it appears that the posterior space has been adequately explored and

that a chain of length 1000 is sufficient.

The MCMC trace plots based on (β0, α0) and (β1, α1) appear to exhibit a diagonal

trend. This is to be anticipated as the logistic probability function that we base

links between units on is linear in the parameters and hence this is a result of the

sampling correlation between the estimates. Notice that the trace plots show that the

posterior space has been explored well and that a chain of length 1000 is sufficient.

Also notice that the chain has exhibited insensitivity to the noninformative seeds of

(α
(0)
0 , β

(0)
0 ) = (α

(0)
1 , β

(0)
1 ) = (0,−1), which give rise to a relatively dense population on

the first augmentation iteration. A summary of the convergence of the MCMC chains
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can be found in Figure 2.17. This figure presents the four hypothetical realizations

of the population graph at augmentation iterations 1, 5, 50, and 1000. Notice how

quickly the augmented graphs resemble the shape of the true population graph.
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Figure 2.17: The augmented missing data for the population graph for augmentation

iterations 1, 5, 50, and 1000 under the stochastic cluster model based on the sample

presented in Figure 2.2.
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Histograms/scatterplots of the Bayes estimates of the population size and model

parameters can be found in Figures 2.18, 2.19, 2.20, 2.21, and 2.22. The solid triangle

for the histograms in Figures 2.18, 2.19 and 2.21 and dark lines for the scatterplots

in Figures 2.20 and 2.22 represent the corresponding MLEs of the population param-

eters based on a full graph realization. The transparent triangle for the histograms

and shaded lines for the scatterplots represent the average of the Bayes estimates for

the population size and model parameters.

Figure 2.18: Histogram of the Bayes estimates of the N values under the stochastic

cluster model based on 500 samples. The solid triangle represents the MLE of the

population size based on a full graph realization (which is the true population size

of 300), and the transparent triangle represents the average of the Bayes estimate of

the population size.
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Figure 2.19: Histograms of the Bayes estimates of λ1, λ2, and λ3 under the stochastic

cluster model based on 500 samples. The solid triangles represent the MLEs of the

model parameters based on a full graph realization, and the transparent triangles

represent the average of the Bayes estimates of the model parameters.
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Figure 2.20: Scatterplot of the Bayes estimates of (µ1, µ2), (µ3, µ4), and (µ5, µ6)

under the stochastic cluster model based on 500 samples. The solid lines represent

the MLEs of the model parameters based on a full graph realization, and the shaded

lines represent the average of the Bayes estimates of the model parameters.
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Figure 2.21: Histograms of the Bayes estimates of σ2
1, σ

2
2, and σ2

3 under the stochastic

cluster model based on 500 samples. The solid triangles represent the MLEs of the

model parameters based on a full graph realization, and the transparent triangles

represent the average of the Bayes estimates of the model parameters.
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Figure 2.22: Scatterplot of the Bayes estimates of (β0, α0), and (β1, α1) under the

stochastic cluster model based on 500 samples. The solid lines represent the MLEs

of the model parameters based on a full graph realization, and the shaded lines

represent the average of the Bayes estimates of the model parameters.

As expected, the Bayes estimates of the population size and λ appear to come

out approximately unbiased and with a significantly smaller deviation than the cor-

responding Bayes estimates obtained with the stochastic block model. The Bayes

estimates of the parameters governing the behaviour of the covariate information

also come out approximately unbiased. However, the estimates for the parameters

which govern the links within groups (that is (α0, β0)) appear to come out with some

bias. The diagonal trend illustrates the sampling correlation between these param-

eters, and therefore the behaviour of the estimates, is not to be of concern as a less

than expected influence of one parameter is likely to be compensated by its counter-

part (notice that as the estimates of α0 increase the corresponding estimates of β0

decrease, and vice-versa).



CHAPTER 2. THE STOCHASTIC CLUSTER MODEL-BASED APPROACH 49

2.5 Discussion

The results presented in this chapter show that the Bayes estimates of the population

size and model parameters for both the stochastic block model and the stochastic

cluster model have performed well and are approximately unbiased for the MLEs

based on the full graph realization of the simulated population. A reasonable amount

of variability is found for Bayes estimates of the population size and model parameters

corresponding to the stochastic block model, whereas the Bayes estimates for the

population size and λ parameters corresponding to the stochastic cluster model came

out superior. Hence, incorporating the covariate information into the model has

proven to be very beneficial as it appears to provide better estimates of the population

size and parameters.

The methods presented in this chapter can be extended to a more general case

where the covariate information of the members that comprise the first wave is not

observed. Kwanisai (2004) outlined a strategy for making inference for the two-group

stochastic block model parameters for such a case. Extending this method to work

over the stochastic cluster model when the population size is unknown should be

considered.

As an adaptive sampling procedure may result in a reduction in the effort re-

quired to recruit additional units from the target population once an initial sample

is obtained, new work based on sampling over additional waves is deserving of atten-

tion. For example, extending these methods to work over an adaptive web sampling

design (Thompson, 2006a) may prove to be highly useful when studying empirical

populations. The immediate challenge is presented where we may not be able to

exploit the conceptually straightforward use of the binomial distribution, as outlined

in expressions (2.11) and (2.20), that accompanies the complete one-wave snowball

sampling design in the inference procedure.

In contrast, further recruitment from the initial sample may prove to be a cumber-

some task for the sampler in some empirical settings and hence extending the methods

presented in this chapter to work over a snowball subsampling design, where a subset

of the nominated members from the initial sample cannot be identified, should be
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considered.



Chapter 3

The Multi-Sample Design-Based

Approach

3.1 Introduction

In this chapter we introduce a new design-based method for estimating the size of

networked hard-to-reach populations based on independent samples selected through

a link-tracing design. Our method permits adaptively selected members of the target

population to be included in the inference procedure through a Rao-Blackwellization

method based on a sufficient statistic given the observed data. Moreover, our method

possesses an additional advantage over the existing inferential methods based on esti-

mating population sizes with link-tracing designs; our method permits the possibility

of obtaining members not within arms reach of the initial sample (that is, those not

immediately linked to the initial sample).

In Section 3.2, we introduce the notation that is used in this chapter. In Section

3.3, we outline the link-tracing sampling designs that are explored, namely one which

is analogous to the original adaptive web sampling design that was introduced by

Thompson (2006a) as well as a nearest neighbours adaptive web sampling design

that has the potential for more practical use for sampling from a hidden popula-

tion. Section 3.4 develops estimators of the population size and average node degree

51



CHAPTER 3. THE MULTI-SAMPLE DESIGN-BASED APPROACH 52

of the population as well as the estimates of the variances of these estimators. As

tabulating the preliminary estimates from all reorderings of the final samples is com-

putationally cumbersome for the samples selected in this study, in Section 3.5 we

outline a Markov chain resampling procedure to obtain approximations of the Rao-

Blackwellized estimates. In Section 3.6, we perform a two-sample simulation study

for the two sampling designs on a simulated networked population, and then draw

conclusions and provide a general discussion of the novel methods developed in this

chapter in Section 3.7.

3.2 Sampling Setup

We define a population U to consist of the set of units/individuals U = {1, 2, ..., N}
where N is the population size. Each pair of units (i, j), i, j = 1, 2, ..., N, is associated

with a weight wij. We set wij = 1 if there is a link (or predetermined relationship)

from unit i to unit j, and zero otherwise. We define wii = 0 for all i = 1, 2, ..., N .

We shall refer the reader to Section B.1 of Appendix B for an illustration to help

clarify the notation and designs that are outlined in the following sections. Now, an

adaptive web sampling design that is selected without replacement consists of two

stages. Suppose a study is based on K samples. For each sample k = 1, 2, ..., K,

the sample selection procedure commences with the selection of n0k members com-

pletely at random and then nk − n0k members are added adaptively without re-

placement. The adaptively selected members are added as follows. For each step

tk, tk = 1, 2, ..., nk − n0k, any member i not yet chosen is selected with probability

qtk,i = d
watk ,i

watk ,+
+ (1 − d) 1

N−(n0k+tk−1)
where watk ,i is the number of links from the

current active set atk ⊆ stk (where stk the current sample at time tk) out to unit i

at step tk and watk ,+ is the number of links out of the current active set to members

not yet selected at step tk. Hence, with probability 0 ≤ d ≤ 1 a unit is added via

tracing a link from the active set and with probability 1 − d a unit is added com-

pletely at random (a random jump is taken), given that watk ,+ > 0. In the event

that watk ,+ = 0, a member is selected completely at random (that is, a random jump

is taken) amongst those not yet selected with probability 1
N−(n0k+tk−1)

.
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The observed data is d0 = {(i, wij, w+
i , ti,k), Jk : i, j ε sk, k = 1, 2, ..., K} where

sk refers to sample k for k = 1, 2, ..., K; w+
i is the out-degree of individual i (that is,

the number of members acknowledged by individual i); ti,k is the time (or step) in

the sampling sequence that unit i is selected for sample k; Jk is an indicator vector

of length L = max
j=1,2,...,K

{nj} that records the sequence of jumps after the initial

sample is selected for sample k, k = 1, 2, ..., K. It shall be understood that for all

k = 1, 2, ..., K, J1,k, ..., Jn0k,k = 0 and if nk < max{nj}
j=1,2,...,K

then Jnk+1,k, ..., JL,k = 0. As

demonstrated in web appendix B, a sufficient statistic for the population size and

unobserved adjacency data can be shown to be dr = {(i, wij, wi+),J : i, j ε sk, k =

1, 2, ..., K} where J = (
K∑
k=1

J1,k,
K∑
k=1

J2,k, ...,
K∑
k=1

JL,k) = (J1,J2, ...,JL). In summary,

the sufficient statistic removes the time element that is assigned to each unit that is

selected for each sample and reduces the records of when random jumps are taken

to a sum of the number of random jumps that are taken at each step in the sample

selection procedure. We shall note here that Thompson (2006) showed that, when

the population size is known, the observed data for a set of adaptive web samples

selected independently is d0 = {(i, wij, w+
i , ti,k) : i, j ε sk, k = 1, 2, ..., K} and hence

a sufficient statistic is dr = {(i, wij, wi+) : i, j ε sk, k = 1, 2, ..., K}. Notice that in

our study, since the population size is unknown we require additional information

in the observed data to utilize a sufficient statistic for the purposes of formulating

Rao-Blackwellized estimates.

In our study we consider the special case where each sample is selected based on

a design that does not allow for random jumps after the initial samples are selected

(that is, d = 1). As our study does not permit for random jumps, the observed

data is reduced to d0 = {(i, wij, w+
i , ti,k) : i, j ε sk, k = 1, 2, ..., K} and hence a

sufficient statistic based on the full data set can be shown to be dr = {(i, wij, w+
i ) :

i, j ε sk, k = 1, 2, ..., K} (notice that this corresponds with the reduced case from

the preceding sufficiency result where d = 1 and J ≡ 0).
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3.3 The Sampling Designs

In this chapter, we explore the use of two different adaptive web sampling designs,

the first being the original design outlined by Thompson (2006a) and the second

being a nearest neighbours adaptive web sampling design. In this section, we will

outline the selection process we use in our study for the two adaptive web sampling

designs for the special case of when d = 1.

The first sampling design selects independently K adaptive web samples as fol-

lows. The sampling procedure commences with the selection of an initial sample s0

of size n0 of members from the population completely at random. A predetermined

maximum number of individuals, n−n0 say, are further selected sequentially to bring

the sample size up to n′ ≤ n by tracing links, when available, out of the current ac-

tive set as follows (notice that we place d = 1 in our study design). For any step

t, t = 1, 2, ..., n − n0, any member i that has not yet been selected is selected for

inclusion with probability qt,i =
wat,i
wat,+

, where wat,i is the number of links from the

current active set at to unit i, and wat,+ is the number of links out of the current

active set to members not yet selected. Hence, if the number of links to trace out of

the current active set is exhausted at any intermediate step in the sampling process

then sampling stops at the most recent step t − 1 so that the final sample size is

n′ = n0 + t− 1. In the original adaptive web sampling design, the active set consists

of all members that have been selected for the current sample so that recruitment at

any intermediate step is based on all links stemming out of the current sample. That

is, for any step t, t = 1, 2, ..., n − n0, any member i not yet chosen is selected with

probability qt,i =
wst,i
wst,+

where st represents the current sample. Notice that with the

original adaptive web sampling design it is possible to select members that are not

directly linked to the initial sample.

The nearest neighbours adaptive web sampling design restricts the active set to

consist only of those members who are selected for the initial sample so that only the

units that are linked to the initial sample have a positive probability of being selected

for the final sample. To clarify, for any step t, t = 1, 2, ..., n− n0, any member i not

yet chosen is selected with probability qt,i =
ws0,t,i

ws0,t,+
where ws0,t,i is the number of



CHAPTER 3. THE MULTI-SAMPLE DESIGN-BASED APPROACH 55

links from the initial sample out to unit i at step t and ws0,t,+ is the number of links

out of the initial sample to members not yet selected at step t.

For each sample k = 1, 2, ..., K we shall let s0k represent the initial random sample

corresponding with sample k where |s0k| = n0k. We shall also let sk represent the

final sample k in the order it was selected, where |sk| = n′k = n01, n01 + 1, ..., nk.

For inferential purposes we shall define s(01,02,...,0K) to be the full ordered sample of

the samples in the respective original order they were selected. The probability of

selecting the sample s(01,02,...,0K) can then be expressed as

p(s(01,02,...,0K)) =
K∏
k=1

(
1(
N
n0k

) n′k−n0k∏
tk=0

qsktk

)
.

The first terms in the expression correspond with the random selection of the initial

samples and qsktk is the probability of adaptively selecting the unit that was selected at

step tk for sample k. It shall be understood that for tk = 0, qsktk = 1 for k = 1, 2, ..., K.

3.4 Estimation

3.4.1 Population size estimators

Suppose that N̂0 is a preliminary estimate of the population size based on the K ini-

tial random samples. For example, in a two sample study a preliminary estimate of

the population size based on the initial random samples is the Lincoln-Petersen esti-

mator (Petersen, 1896), or its more practical counterpart, the bias-adjusted Lincoln-

Petersen (LP) estimator proposed by Chapman (1951). This estimator is of the

form

N̂0 =
(n01 + 1)(n02 + 1)

m+ 1
− 1, (3.1)

where m denotes the number of individuals that are selected for both initial samples

s01 and s02. An improved estimator based on the sufficient statistic dr is
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E[N̂0|dr] = N̂RB =

n′1!∑
r1=1

n′2!∑
r2=1

· · ·
n′K !∑
rK=1

N̂
(r1,r2,...,rK)
0 p(s(r1,r2,...,rK)|dr) (3.2)

where N̂
(r1,r2,...,rK)
0 is the preliminary population size estimate based on the hypotheti-

cal initial samples corresponding with reorderings (r1, r2, ..., rK) of samples 1, 2, ..., K,

respectively, and p(s(r1,r2,...,rK)|dr) is the conditional probability of obtaining the sam-

ple reorderings r1, r2, ..., rK given the data observed for dr. Notice that for any specific

sample reordering s(x1,x2,...,xK) (that is, (x1, x2, ..., xK) are specific indices of the cor-

responding reorderings of the samples (s1, s2, ..., sK), respectively), the conditional

probability of obtaining these sample reorderings can be expressed as

p(s(x1,x2,...,xK)|dr) = p(s(x1,x2,...,xK))/

n′1!∑
r1=1

n′2!∑
r2=1

· · ·
n′K !∑
rK=1

p(s(r1,r2,...,rK))

=
1(
N
n01

) n′1−n01∏
t1=0

q
sx1
t1 ×

1(
N
n02

) n′2−n02∏
t2=0

q
sx2
t2 × · · · ×

1(
N
n0K

) n′K−n0K∏
tK=0

q
sxK
tK

/

n′1!∑
r1=1

n′2!∑
r2=1

· · ·
n′K !∑
rK=1

(
1(
N
n01

) n′1−n01∏
t1=0

q
sr1
t1 ×

1(
N
n02

) n′2−n02∏
t2=0

q
sr2
t2 × · · · ×

1(
N
n0K

) n′K−n0K∏
tK=0

q
srK
tK

)

=

n′1−n01∏
t1=0

q
sx1
t1 ×

n′2−n02∏
t2=0

q
sx2
t2 × · · · ×

n′K−n0K∏
tK=0

q
sxK
tK

/

n′1!∑
r1=1

n′2!∑
r2=1

· · ·
n′K !∑
rK=1

( n′1−n01∏
t1=0

q
sr1
t1 ×

n′2−n02∏
t2=0

q
sr2
t2 × · · · ×

n′K−n0K∏
tK=0

q
srK
tK

)
. (3.3)

The essence of using the sufficient statistic is highlighted by bringing to the reader’s

attention that all terms involving the unknown population size N are factored out of

the expression and can be canceled to make computation of the Rao-Blackwellized

estimates possible. Notice that we have proved that the statistic dr is sufficient for

N since the ratio of the probability of selecting any two data points from the same
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partition that the statistic induces (that is, the data points are simply reorderings

of the respective samples) does not depend on the unknown population size N .

3.4.2 Alternative population size estimator for the two-sample

study

An estimator of the population size can be obtained by taking the analogue of the

Lincoln-Petersen estimator based on the initial random selection for the first sample

and the full sample for the second sample (Seber, 1982). This estimator can be

expressed as

N̂0,1 =
(n01 + 1)(n′2 + 1)

m1 + 1
− 1, (3.4)

where n01 is the initial sample size of the first sample, n′2 is the size of the second

sample, and m1 is the number of individuals selected for both initial sample 1 and

final sample 2. The Rao-Blackwellized version of this estimator is expressed as

E[N̂0,1|dr] = N̂RB,1 =

n′1!∑
r1=1

N̂
(r1,r2)
0,1 p(s(r1,r2)|dr), (3.5)

where N̂
(r1,r2)
0,1 is the estimate of N obtained with the hypothetical initial sample of

reordering r1 of sample 1 and all of (reordered) sample 2 (notice that this estimate

does not actually depend on the order in which sample 2 was selected).

Another estimator is formulated by taking the average of the two corresponding

estimators, that being

N̂0,1,2 =
N̂0,1 + N̂0,2

2
. (3.6)

The corresponding Rao-Blackwellized version of this estimator is expressed as
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E[N̂0,1,2|dr] = N̂RB,1,2 =

n′1!∑
r1=1

N̂
(r1,r2)
0,1 p(s(r1,r2)|dr) +

n′2!∑
r2=1

N̂
(r1,r2)
0,2 p(s(r1,r2)|dr)

2
. (3.7)

We shall note here that in the event that a fixed list of n′2 individuals from the

target population has previously been obtained, whether it be through a probability

sampling design or not, one can still utilize N̂1 and N̂RB,1 to estimate the population

size. The reason for this is that the Lincoln-Petersen estimator only requires one of

the two samples to be obtained completely at random (Seber, 1982).

3.4.3 Average node degree estimators

Estimates of the distribution of individual responses like the out-degree of the pop-

ulation members can be useful to the researcher when inferring on hard-to-reach

populations. We can obtain estimates of such characteristics like the average out-

degree of the population members as follows. For notational convenience, we shall

let M =
K⋃
k=1

s0k. We can then estimate the average out-degree of the population,

wµ =

N∑
i=1

w+
i

N
, (3.8)

with the estimator based on the unique members selected for the initial samples,

namely

ŵ0 =

∑
iεM

w+
i

|M |
. (3.9)

Conditional on |M | this estimator can be viewed as being based on a random sam-

ple of |M | individuals selected without replacement. Therefore, conditional on |M |,
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ŵ0 can be shown to be an unbiased estimator for wµ. The Rao-Blackwellized ver-

sion of the preliminary estimator of the average out-degree is made possible through

the same procedure as obtaining the Rao-Blackwellized version of a preliminary es-

timator of the population size. The corresponding formula used for obtaining the

Rao-Blackwellized version of ŵ0 is

E[ŵ0|dr] = ŵRB =

n′1!∑
r1=1

n′2!∑
r2=1

· · ·
n′K !∑
rK=1

ŵ
(r1,r2,...,rK)
0 p(s(r1,r2,...,rK)|dr). (3.10)

We shall note here that estimates of the average node degree which are based on the

two-sample study and that are analogous to N̂0,1 will introduce some bias into the

estimator and therefore are not explored in this chapter.

3.4.4 Variance estimators

Schwarz and Seber (1999) outlined several methods for obtaining estimates of the

variance of the population size estimates based on a K sample capture-recapture

study. In our two-sample study we shall take, as an estimator of the variance of

the preliminary estimators N̂0 and N̂0,1, the estimator that was proposed by Seber

(1970). These estimators are of the form

V̂ar(N̂0) =
(n01 + 1)(n02 + 1)(n01 −m)(n02 −m)

(m+ 1)2(m+ 2)
(3.11)

and

V̂ar(N̂0,1) =
(n01 + 1)(n′2 + 1)(n01 −m1)(n′2 −m1)

(m1 + 1)2(m1 + 2)
. (3.12)

As Var(N̂0,1,2) = Var( N̂0,1+N̂0,2

2
) = 1

4
Var(N̂0,1) + 1

4
Var(N̂0,2) + 1

2
Cov(N̂0,1, N̂0,2), we

will take a conservative estimate of this value to be
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V̂ar(N̂0,1,2) =
1

4
V̂ar(N̂0,1) +

1

4
V̂ar(N̂0,2) +

1

2
V̂ar(N̂0,1). (3.13)

An estimate of the variance of ŵ0 is the conditionally unbiased estimate

V̂ar(ŵ0|M) =

(
N − |M |

N

)
s2

|M |
, (3.14)

where N−|M |
N

corresponds with the finite population correction factor and s2 =
1

|M |−1

∑
iεM

(w+
i − ŵ0)2. As the population size is not known in advance we shall sub-

stitute N with N̂0 in the finite population correction factor.

To estimate the variance of the Rao-Blackwellized estimators, Thompson (2006a)

proposed the following unbiased estimator. For any estimator θ̂RB = E[θ̂0|dr] for

some population unknown θ, where θ̂0 is the preliminary estimate, the conditional

decomposition of variances gives

Var(θ̂RB) = Var(θ̂0)− E[Var(θ̂0|dr)]. (3.15)

An unbiased estimator of Var(θ̂RB) is

V̂ar(θ̂RB) = E[V̂ar(θ̂0)|dr]− Var(θ̂0|dr). (3.16)

This estimator is the difference of the expectation of the estimated variance of the

preliminary estimator over all reorderings of the data and the variance of the pre-

liminary estimator over all the reorderings of the data. As this estimator can result

in negative estimates of the variance, a conservative approach is take the estimate of

Var(θ̂RB) to be E[V̂ar(θ̂0)|dr] when such a scenario arises.
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3.5 Markov Chain Resampling Estimators

Due to the large number of sample permutations that are obtained with the sample

sizes used in this study, a Markov chain resampling procedure similar to the one

found in Thompson (2006a) is implemented to obtain approximations of the Rao-

Blackwellized estimates. As the sampling strategy presented in this paper selects

multiple independent adaptive web samples, the Markov chain resampling strategy

needs to be modified. We outline the modified Markov chain accept/reject (Hastings,

1970) resampling procedure below.

Suppose θ is an unknown population quantity we wish to estimate with the improved

estimator θ̂RB = E[θ̂0|dr] where dr is a sufficient statistic.

Step 0: Let θ̂
(0)
0 be the estimated value of θ and V̂ar(θ̂

(0)
0 ) be the estimated value

of Var(θ̂0) that is obtained from selecting K adaptive samples in the original order

they were selected. Also, let t(0) = s(01,02,...,0K) be the ordered original samples in the

order they were selected.

For step l = 1, 2, ..., R, where R is sufficiently large:

Draw a candidate sample reordering, t(l) say, from a candidate distribution (that

is, t(l) is an ordered set of reorderings of each sample). Suppose the most recently

accepted candidate reordering is t(y) for some ordered set of reorderings of the samples

where y = 0, 1, 2, ..., l − 1. Let p(t(l)) be the probability of obtaining t(l) under the

true population and q(t(l)) be the probability of obtaining reordering t(l) under the

candidate distribution. Generate a uniform random number between 0 and 1, and if

this value is less than

min

{
p(t(l))

p(t(y))

q(t(y))

q(t(l))
, 1

}
, (3.17)

let θ̂
(l)
0 and V̂ar(θ̂

(l)
0 ) be the estimates of θ and Var(θ̂0), respectively, obtained with the

ordered set of sample reorderings t(l). Otherwise, take θ̂
(l)
0 = θ̂

(l−1)
0 and V̂ar(θ̂

(l)
0 ) =
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V̂ar(θ̂
(l−1)
0 ). Recall that p(t(l)) needs only be known for the (hypothetical) adaptive

recruitment probabilities found in the corresponding ordered set of sample reorder-

ings as all terms involving the unknown population size N can be factored out of the

ratio of the true probabilities of obtaining sample reorderings and cancelled from the

expression.

Final step: Take estimates of θ̂RB to be

θ̃RB =
1

R + 1

R∑
l=0

θ̂
(l)
0 , (3.18)

and similarly take the estimate of V̂ar(θ̂RB) to be

Ṽar(θ̂RB) = Ẽ[V̂ar(θ̂0)|dr]− Ṽar(θ̂0|dr)

=
1

R + 1

R∑
l=0

V̂ar(θ
(l)
0 )− 1

R + 1

R∑
l=0

(θ̂
(l)
0 − θ̃RB)2. (3.19)

With the adaptive web sampling designs restricted to only recruiting members

that are linked to the current active set, and not allowing for random jumps (that is

d = 1), a large number of the sample reorderings will likely have zero probability of

being selected in the full population setting. One primary reason for this is that the

sample reorderings that consist of at least one member added after the hypothetical

current sample, with whom do not share a link to any previously selected members

that are in the active set, result in a sample that is not sequentially obtainable under

an adaptive web sampling design that does not permit for random jumps.

We used a candidate distribution which works over each sample individually and

first places all their sampled units that are not nominated by any other sampled units

into their hypothetical initial sample with probability one (notice that these members

must be in the corresponding original initial sample). The candidate distribution

then selects the remaining members for each individual sample based on the original
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adaptive web sampling design, with a small probability of jumps allowed, applied to

the reduced population that consists only of those sampled members.

3.6 Simulation Study

We will use the thesis study population to evaluate the new inference procedures

outlined in this chapter. The population was generated according to the stochas-

tic cluster model that was outlined in chapter 2. An illustration of the simulated

population can be found in Figure 3.1.

Figure 3.1: The simulated thesis study population.

Figure 3.2 shows two samples where the graph nodes are enlarged for ease of

visualization. These members were selected under the original adaptive web sampling

design and nearest neighbours adaptive web sampling design where 40 members are

selected for the initial samples with (up to) 10 members added adaptively to each

sample. The first sample is represented by light coloured nodes and the second
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sample is represented by dark coloured nodes. Nodes that are selected for both

samples are highlighted as shaded nodes. Notice the disproportionate increase in

the overlap between the adaptively recruited members from the samples for both

designs illustrating the additional information that may be harnessed for inferential

purposes.
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Figure 3.2: Two initial samples selected at random on the top. Two original adaptive

web samples on the bottom left and two nearest neighbours adaptive web samples

on the bottom right where both samples start with the two initial samples selected

at random on the top. The size of each of the initial samples was 40 and (up

to) 10 members are added adaptively. The first sample is represented by the light

colored nodes, the second sample is represented by the dark colored nodes, and the

intersection between the two samples is represented by the shaded nodes.



CHAPTER 3. THE MULTI-SAMPLE DESIGN-BASED APPROACH 66

A simulation study was conducted as follows. A total of 1000 pairs of samples

with 5000 resamples from each pair of samples for the Markov chain resampling pro-

cedure were obtained with each sampling design. Initial samples of size 40 with (up

to) 10 members recruited adaptively were selected for each sample. Histograms of

the estimates of the population size and average node degree are shown in Figures

3.3 and 3.4, respectively. The true population size of 300 and average node degree

of 2.8 are indicated by the solid triangles on the x-axis of the corresponding graphs.

All estimates came out approximately unbiased. Table 3.1 provides the standard-

ized mean squared error (MSE) scores for each of the estimates. The scores are

standardized by the MSE score obtained with the preliminary estimates.
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Figure 3.3: Histograms of the population size estimates with N̂0 on top and N̂RB

based on the original adaptive web sampling design and the nearest neighbours adap-

tive web sampling design, respectively, in the middle. Histograms of N̂RB,1 based on

the original web adaptive sampling design and the nearest neighbours adaptive web

sampling design, respectively, on the bottom. The dark triangles on the x-axis indi-

cate the true population size of 300. All estimates came out approximately unbiased.
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Figure 3.4: Histograms of the average node degree estimates with ŵ0 on top and ŵRB

on the bottom based on the original adaptive web sampling design and the nearest

neighbours adaptive web sampling design, respectively. The dark triangles on the

x-axis indicate the true population average node degree of 2.8. All estimates came

out approximately unbiased.
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Table 3.1: Standardized MSE scores for the estimates of the population size and

average node degree where OR refers to the original adaptive web sampling design

and NN refers to the nearest neighbours adaptive web sampling design.

Estimator
N̂0 N̂RB, ŵRB OR N̂RB, ŵRB, NN N̂RB,1, OR N̂RB,1, NN

Parameter

N 1 0.566 0.637 0.518 0.594

wµ 1 0.857 0.947

As illustrated in the histograms and table of scores, gains in precision are made

over the preliminary estimates for the population size when using the improved

estimates. It also appears that the improved estimates for the average out-degree of

the population made significant gains in precision over their preliminary estimator

counterparts. N̂RB,1 exhibited the best performance, offering some improvement over

N̂RB. Another estimator of the population size can be obtained by taking the average

of N̂RB,1 and N̂RB,2 (where N̂RB,2 is the Rao-Blackwellized estimator based on the

preliminary estimator
(n′1+1)(n02+1)

m2+1
). In this study, these estimates came out highly

correlated and offered minimal improvement over N̂RB,1.

Tables 3.2 and 3.3 give the coverage rates of the population size using nominal

95% confidence intervals based on the Central Limit Theorem (CLT) and the log

transformation strategy outlined in Chao (1987), respectively. As can be seen, the

coverage rates for the population size based on the central limit theorem are smaller

than 95%, possibly due to the skewed shape of the distribution of the estimates which

in turn may be influenced by the small sample sizes used in the study. However, it

is apparent that the log transformation strategy has helped to improve the coverage

rates of the population size.
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Table 3.2: Coverage rates of the population size using nominal 95% confidence inter-

vals based on the CLT where OR refers to the original adaptive web sampling design

and NN refers to the nearest neighbours adaptive web sampling design.

Estimator
N̂0 N̂RB OR N̂RB, NN N̂RB,1, OR N̂RB,1, NN

Parameter

N 0.850 0.854 0.851 0.884 0.887

Table 3.3: Coverage rates of the population size using confidence intervals based on

a log transformation where OR refers to the original adaptive web sampling design

and NN refers to the nearest neighbours adaptive web sampling design.

Estimator
N̂0,1 OR N̂0,1, NN N̂RB,1, OR N̂RB,1, NN

Parameter

N 0.902 0.903 0.901 0.913 0.911

Table 3.4 gives the nominal 95% coverage rates for the average out-degree based

on the Central Limit Theorem. The coverage rates came out close to 95%, indicating

that substituting the estimate of the population size into the corresponding variance

expression found in expression (3.14) is a suitable choice.
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Table 3.4: Coverage rates of the average node degree using the nominal 95% con-

fidence intervals based on the CLT where OR refers to the original adaptive web

sampling design and NN refers to the nearest neighbours adaptive web sampling

design.

Estimator
ŵ0 ŵRB OR ŵRB, NN

Parameter

wµ 0.938 0.931 0.922

We shall note here that in our study we did not encounter any negative estimates

of the variance of the Rao-Blackwellized estimates. Therefore, we did not have to

resort to using the conservative approach that was suggested in subsection 3.4.4.

3.7 Discussion

In this chapter we have outlined a new inferential method that uses link-tracing

strategies and a sufficient statistic to estimate the size of hard-to-reach populations.

The new method possesses the ability to adaptively recruit hard-to-reach members

for the study, through an adaptive sampling probability mechanism that can be

tailored to meet the sampler’s needs, without introducing additional bias into the

improved estimates while allowing for control over sample sizes. As the theoretical

results and simulation studies showed, the new methods outlined in this chapter will

give rise to more precise estimators relative to those based on the Lincoln-Petersen

estimator which is based on the initial samples.

One additional advantage the new methods presented in this chapter possess

over some of the existing capture-recapture methods is outlined as follows. In some

empirical settings when sampling from a large population with relatively small sample

sizes, the selection of two random samples may give rise to little or no overlap in the

samples, hence rendering an undesirable estimate of the population size when using

a capture-recapture type of estimator. With the methods outlined in this chapter,
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overlap between the adaptive recruitment stages of the samples is more certain and

hence the use of the new inferential procedure should result in a much more reliable

estimate of the population size.

Extending the methods outlined in this chapter to be compatible with the eight

closed population models commonly used in capture-recapture studies, namely the

M0,Mt,Mb,Mh,Mtb,Mth,Mbh,Mtbh models (see Schwarz and Seber (1999) for a de-

scription of these models), is certainly deserving of future attention. The methods

presented in this chapter may serve as a foundation for the theory required to achieve

these goals.



Chapter 4

The Single-Sample Design-Based

Approach

4.1 Introduction

Frank and Snijders (1994) developed a design-based approach for estimating the

size of a networked population based on the links (commonly referred to as arks or

nominations) originating from the members selected from a Bernoulli sample. In this

chapter we extend this method by allowing sampling to continue beyond the Bernoulli

sample (also known as the initial wave) and base new estimates for the population

size on the corresponding observations made from a succeeding wave. Estimates

of the variance of the new estimators are based on a jackknife approach similar to

that developed by Frank and Snijders (1994). A Rao-Blackwellization method for

improving the preliminary estimators is also developed in this chapter. A simulation

study is conducted on the thesis study population to evaluate the extended sampling

and inferential methods outlined in this chapter.

In Section 4.2, we introduce the notation that is used in this chapter and we

outline the link-tracing sampling designs that are explored as well as the statistics

that are observed. Section 4.3 is reserved for developing moment-based estimators

of the population size as well as the estimates of the variance of the population size

73
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estimators. As tabulating the preliminary estimates from all reorderings of the final

samples is computationally cumbersome due to the sample sizes used in this study,

we outline a Markov chain resampling method in Section 4.4 to approximate the

improved estimators. Section 4.5 provides a simulation study based on the thesis

study population, and Section 4.6 provides a discussion of the novel methods that

are introduced in this chapter.

4.2 Sampling Setup and Design

We define a population U to consist of the units/individuals U = {1, 2, ..., N} where

N is the population size. Following the approach developed by Frank and Snijders

(1994), for all i, j = 1, 2, ..., N we will let wij = 1 if there is a link from member i to

member j and wij = 0 otherwise, and we will let wii = 1 for all i = 1, 2, ..., N . The

adjacency neighbourhood of unit i, Ai, is defined as the set of all individuals with

links to unit i. We can express Ai as Ai = {j : wji = 1} and we will let |Ai| = ai.

A diagram summarizing the statistics introduced in this section is provided be-

low to aid understanding of the sampling procedure that is based on selecting one

additional wave after the initial wave is selected. Estimates of the population size

are based on two types of statistics which we will refer to as class A and class B

statistics.
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Figure 4.1: The class A statistics. The circles represent those members who are

selected for the sample, the square represents those members nominated from the

initial sample and who are outside the initial sample. The lines indicate nominations

made from/between those members selected for the sample.



CHAPTER 4. THE SINGLE-SAMPLE DESIGN-BASED APPROACH 76

Figure 4.2: The class B statistics. The circles represent those members who are

selected for the sample, the square represents those members nominated from the

initial sample and who are outside the initial sample. The lines indicate nominations

made from/between those members selected for the sample.

4.2.1 Statistics based on the initial wave

The sampling procedure starts with the selection of an initial sample/wave S0 of

size n0 completely at random (that is, all units have the same probability of being

selected for the initial sample) from the population.

The class A statistics based on the initial wave

We will let X
(0)
i = 1 if unit i is selected for the initial sample and 0 otherwise, and

L =
∑
i 6=j

wij will be the total number of non-loop arcs (that is, non-self nominations)

in the population. We will let r0 be the number of non-loop arcs within S0, that

is, the number of nominations within S0. We will also let l0 be the number of links

leading out of S0. We can conveniently express the class A statistics r0 and l0 as
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r0 =
∑
i 6=j

X
(0)
i X

(0)
j wij (4.1)

and

l0 =
∑
i,j

X
(0)
i (1−X(0)

j )wij. (4.2)

The class B statistics based on the initial wave

We will define k0 to be the number of members selected for the initial sample that

are mentioned by at least one other individual selected for the initial sample, and t0

to be the number of members not selected for the initial sample that are mentioned

by at least one member selected for the initial sample. The class B statistics can be

expressed as

k0 =
∑
j

X
(0)
j max

iεAj\{j}
{X(0)

i } (4.3)

and

t0 =
∑
j

(max
iεAj
{X(0)

i } −X
(0)
j ). (4.4)

Notice that in a two sample capture-recapture study, the first sample corresponds

with the set of members in the initial wave, the second sample corresponds with

all members mentioned from the initial wave (not including self-nominations), and

the recaptured members in the second sample correspond with the set of members

mentioned by at least one other member in the initial wave and whom are also in

the initial wave.
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4.2.2 Statistics based on wave one

When sampling is permitted to continue beyond the selection of the initial wave, we

can formulate parallel statistics based on those members selected for the succeeding

wave with the following design. After selecting the initial wave, we will let M1 be

the set of individuals that are mentioned/nominated by those individuals in S0 and

that are not selected for S0 (note that |M1| = t0). Now, each of the M1 members

are selected for wave one independently and with probability β1 (that is, we select

a Bernoulli sample from M1) and those whom are selected comprise the set S1,m.

Also, an additional m̄1 members are selected completely at random for wave one

from U \ (S0 ∪M1) and these members comprise the set S1,m̄. Finally, we will define

wave one to be S1 = S1,m ∪ S1,m̄.

The class A statistics based on wave one

We will let X
(1,m)
i = 1 if unit i in M1 is selected for S1,m and 0 otherwise. Similarly,

we will let X
(1,m̄)
i = 1 if unit i in U \ (S0 ∪M1) is selected for S1,m̄ and 0 otherwise.

We will let r1,m̄ be the number of non-loop arks within S1,m̄ and r1,m,m̄ be the number

of links from S1,m to S1,m̄. We will also let l1,m̄ be the number of links from S1,m̄ to

U \(S0∪M1∪S1,m̄) and l1,m be the number of links from S1,m to U \(S0∪M1∪S1,m̄).

We can express the aforementioned class A statistics as

r1,m̄ =
∑
i 6=j:

i,jεS0∪M1

X
(1,m̄)
i X

(1,m̄)
j wij, (4.5)

r1,m,m̄ =
∑
iεM1,

jεS0∪M1

X
(1,m)
i X

(1,m̄)
j wij, (4.6)
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l1,m̄ =
∑

i,jεS0∪M1

X
(1,m̄)
i (1−X(1,m̄)

j )wij, (4.7)

and

l1,m =
∑
iεM1,

jεS0∪M1

X
(1,m)
i (1−X(1,m̄)

j )wij. (4.8)

The class B statistics based on wave one

We will now define k1,m̄ to be the number of individuals in S1,m̄ mentioned by at least

one other individual in S1,m̄ and k1,m,m̄ to be the number of individuals in S1,m̄ that

are mentioned by at least one individual in S1,m. We will also let t1,m̄ be the number

of individuals in U \ (S0∪M1∪S1,m̄) that are mentioned by at least one individual in

S1,m̄ and t1,m to be the number of individuals in U\(S0∪M1∪S1,m̄) that are mentioned

by at least one individual in S1,m. We will now let A
(1,m̄)
j = {i : i ε S0 ∪M1, wij = 1}

and A
(1,m)
j = {i : i ε M1, wij = 1}. The aforementioned class B statistics can be

expressed as

k1,m̄ =
∑

jεS0∪M1

X
(1,m̄)
j max

iεA
(1,m̄)
j \{j}

{X(1,m̄)
i }, (4.9)

k1,m,m̄ =
∑

jεS0∪M1,
iεM1

X
(1,m̄)
j max

iεA
(1,m)
j

{X(1,m)
i }, (4.10)

t1,m̄ =
∑

jεS0∪M1

(
max
iεA

(1,m̄)
j

{X(1,m̄)
i } −X(1,m̄)

j

)
, (4.11)
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and

t1,m =
∑

jεS0∪M1,
iεM1

(1−X(1,m̄)
j ) max

iεA
(1,m)
j

{X(1,m)
i }. (4.12)

We note here that additional observational effort is required by the sampler to identify

nominations outside of the sample for the purpose of obtaining the class B statistics.

To clarify, notice that for the class B statistics we require that individuals nominated

outside of the sample be identifiable.

The probability of selecting a sample s with this sampling design can be expressed

as

p(s) =
1(
N
n0

)βm1
1 (1− β1)|M1|−m1

1(
N−n0−|M1|

m̄1

) . (4.13)

The first term corresponds with the random selection of the initial wave and the

second and third terms correspond with the Bernoulli sample selected from those

members mentioned from the initial wave. The fourth term corresponds with the

random selection of those members not selected for the initial wave and that are not

linked to any individuals in the initial wave.

Notice that in a two sample capture-recapture study, the first sample corresponds

with the set of members in the completely random component of the first wave,

the second sample corresponds with all members mentioned from the first wave

(not including self-nominations), and the recaptured members in the second sample

correspond with the set of members mentioned by at least one other member in the

first wave and whom are also in the random component of the first wave.
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4.3 Estimation

This section outlines the preliminary and Rao-Blackwellized estimators for the pop-

ulation size based on the initial wave and wave one as well as the jackknife procedure

that Frank and Snijders (1994) used to estimate the variance of the estimates based

on the initial wave. Note that the estimators defined in this section are moment-

based estimators of the population size. We will make the definition of the moment

expectation EM to be EM [g1(X1)g2(X2)] = g1(E[X1])g2(E[X2]) for functions g1 and

g2 of the random variables X1 and X2, respectively.

We shall note here that Frank and Snijders (1994) developed an inference proce-

dure based on an initial wave selected via a Bernoulli sampling design. In our study

the design selects a predetermined number of individuals for the initial wave.

4.3.1 Population size estimators based on the initial wave

Frank and Snijders (1994) showed that a moment-based consistent estimator of the

population size N based on the selection of a Bernoulli sample and the class A

statistics is

N̂A,0 = n0

(
r0 + l0
r0

)
(4.14)

since

EM [r0] =
∑
i 6=j

E[X
(0)
i ]E[X

(0)
j ]wij

=

(
n0

N

)2∑
i 6=j

wij

=

(
n0

N

)2

L, (4.15)
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and

EM [l0] =
∑
i 6=j

E[X
(0)
i ]E[1−X(0)

j ]wij

=

(
n0

N

)(
N − n0

N

)∑
i 6=j

wij

=

(
n0

N

)(
N − n0

N

)
L. (4.16)

Frank and Snijders (1994) also showed that a second moment-based consistent

estimator of the population size N based on the class B statistics is

N̂B,0 = n0

(
k0 + t0
k0

)
(4.17)

since

EM [k0] =
∑
j

E[X
(0)
j ]E[ max

iεAj\{j}
{X(0)

i }]

=
∑
j

E[X
(0)
j ]E[1− min

iεAj\{j}
{1−X(0)

i }]

= n0 −
n0

N

∑
j

(
1− n0

N

)(aj−1)

, (4.18)

and
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EM [t0] =
∑
j

(E[max
iεAj
{X(0)

i }]− E[X
(0)
j ])

=
∑
j

(E[1−min
iεAj
{1−X(0)

i }]− E[X
(0)
j ])

= N − n0 −
∑
j

(
1− n0

N

)aj
. (4.19)

4.3.2 Population size estimators based on wave one

To obtain a moment-based estimator of the population size N based on wave one,

we first condition on the sizes of the sets S1,m and S1,m̄ to be |S1,m| = m1 and

|S1,m̄| = m̄1. For notational convenience, we will also let N1 = N − n0 − |M1|, and

LU1 and LU1,U2 will denote the number of non-loop arks within U1 and the number

of links from U1 to U2 for U1, U2 ⊆ U = {1, 2, ..., N}, respectively. We will also let

|A(1,m)
j | = a

(1,m)
j and |A(1,m̄)

j | = a
(1,m̄)
j .

A conditional moment-based estimator of the population size N based on the

class A statistics can now be shown to be

N̂A,1 = n0 + |M1|+ m̄1

(
r1,m̄ + r1,m,m̄ + l1,m̄ + l1,m

r1,m̄ + r1,m,m̄

)
(4.20)

since
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EM [r1,m̄] =
∑
i 6=j,

i,jεS0∪M1

E[X
(1,m̄)
i ]E[X

(1,m̄)
j ]wij

=

(
m̄1

N1

)2 ∑
i 6=j,

i,jεS0∪M1

wij

=

(
m̄1

N1

)2

LS0∪M1
, (4.21)

EM [r1,m,m̄] =
∑
iεM1,

jεS0∪M1

E[X
(1,m)
i ]E[X

(1,m̄)
j ]wij

=

(
m1

|M1|

)(
m̄1

N1

)
LM1,S0∪M1

, (4.22)

EM [l1,m̄] =
∑
i 6=j,

i,jεS0∪M1

E[X
(1,m̄)
i ]E[(1−X(1,m̄)

j )]wij

=

(
m̄1

N1

)(
1− m̄1

N1

)
LS0∪M1

, (4.23)

and

EM [l1,m] =
∑
iεM1,

jεS0∪M1

E[X
(1,m)
i ]E[(1−X(1,m̄)

j )]wij

=

(
m1

|M1|

)(
1− m̄1

N1

)
LM1,S0∪M1

. (4.24)

Another conditional moment-based estimator of the population size N based on the
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class B statistics can also be shown to be

N̂B,1 = n0 + |M1|+ m̄1

(
k1,m̄ + k1,m,m̄ + t1,m̄ + t1,m,m̄

k1,m̄ + k1,m,m̄

)
(4.25)

since

EM [k1,m̄] =
∑

jεS0∪M1

E[X
(1,m̄)
j ]E[ max

iεA
(1,m̄)
j \{j}

{X(1,m̄)
i }]

=
∑

jεS0∪M1

E[X
(1,m̄)
j ]E[1− min

iεA
(1,m̄)
j \{j}

{1−X(1,m̄)
i }]

= m̄1 −
m̄1

N1

∑
jεS0∪M1

(
1− m̄1

N1

)a(1,m̄)
j −1

, (4.26)

EM [k1,m,m̄] =
∑

jεS0∪M1,
iεM1

E[X
(1,m̄)
j ]E[ max

iεA
(1,m)
j

{X(1,m)
i }]

=
∑

jεS0∪M1,
iεM1

E[X
(1,m̄)
j ]E[1− min

iεA
(1,m)
j

{1−X(1,m)
i }]

= |M1|
m1

N1

(
N1 −

∑
jεS0∪M1

(
1− m1

|M1|

)aj(1,m))
, (4.27)
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EM [t1,m̄] =
∑

jεS0∪M1

(E[ max
iεA

(1,m̄)
j

{X(1,m̄)
i }]− E[X

(1,m̄)
j ])

=
∑

jεS0∪M1

(E[1− min
iεA

(1,m̄)
j

{1−X(1,m̄)
i }]− E[X

(1,m̄)
j ])

= N1 − m̄1 −
∑

jεS0∪M1

(
1− m̄1

N1

)a(1,m̄)
j

, (4.28)

and

EM [t1,m,m̄] =
∑

jεS0∪M1,
iεM1

E[(1−X(1,m̄)
j )]E[ max

iεA
(1,m)
j

{X(1,m)
i }]

=
∑

jεS0∪M1,
iεM1

E[(1−X(1,m̄)
j )]E[1− min

iεA
(1,m)
j

{1−X(1,m)
i }]

= |M1|
(
N1 − m̄1 −

(
1− m̄1

N1

) ∑
jεS0∪M1

(
1− m1

|M1|

)aj(1,m))
. (4.29)

Note that the population size estimators based on wave one require knowing the size

of the set M1. This will likely entail the use of the class B statistics at the initial

wave (that is, members outside of S0 must be identifiable).

For all estimators presented in this chapter, we will add a value of 1 to each

statistic and subtract a value of 1 from the final estimator in the same manner

as Chapman (1951) had proposed for the Lincoln-Petersen estimator. This bias-

adjusted estimator will ensure that, in the event that a set of statistics based on

the internal nominations (namely those statistics of type r and k) of a wave all take

a value of zero, a value of zero will not show up in the denominator of any of the

estimators and hence will not result in an unstable estimate of the population size.
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4.3.3 The Rao-Blackwellized estimators

Two different Rao-Blackwellized estimators based on the initial wave are explored.

In the first case sampling stops after the initial sample S0 and the subset S1,m of

M1 are selected (that is, S1,m̄ is not selected). We shall refer to this sample as the

restricted sample so that only estimators based on the initial wave are determined.

In this case the data observed is d0 = {(i, Ai, ti) : i ε S} where ti is the time or step

that unit i is selected for the sample. We shall assign values of ti = 0 if unit i is

selected for S0 and ti = 1 if unit i is selected for S1,m. A sufficient statistic for the

population size N is then dr = {(i, Ai) : i ε S}.
Rao-Blackwellized versions of the preliminary estimators N̂A,0 and N̂B,0 based

on the restricted sample can be obtained as follows. Suppose that N̂0 represents

either of these two preliminary estimators. Then based on a final sample of size

n = |S0|+ |S1,m| = n0 +m1 the Rao-Blackwellized estimator is

E[N̂0|dr] = N̂RB =
n!∑
k=1

N̂
(k)
0 p(s(k)|dr)

=
n!∑
k=1

N̂
(k)
0 p(s(k))/

n!∑
k=1

p(s(k))

=
n!∑
k=1

(
N̂

(k)
0

1(
N
n0

)βm1
1 (1− β1)|M

(k)
1 |−m1I[S

(k)
1,m ⊆M

(k)
1 , |M (k)

1 | ≥ m1]

)
/

n!∑
k=1

(
1(
N
n0

)βm1
1 (1− β1)|M

(k)
1 |−m1I[S

(k)
1,m ⊆M

(k)
1 , |M (k)

1 | ≥ m1]

)

=
n!∑
k=1

(
N̂

(k)
0 βm1

1 (1− β1)|M
(k)
1 |−m1I[S

(k)
1,m ⊆M

(k)
1 , |M (k)

1 | ≥ m1]

)
/

n!∑
k=1

(
βm1

1 (1− β1)|M
(k)
1 |−m1I[S

(k)
1,m ⊆M

(k)
1 , |M (k)

1 | ≥ m1]

)
(4.30)

where k represents the corresponding sample reordering, N̂
(k)
0 is the corresponding
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estimate of the population size, M
(k)
1 is the corresponding set of members that are

mentioned from the hypothetical initial wave S
(k)
0 , and S

(k)
1,m is the corresponding

set of members that are hypothetically adaptively recruited from M
(k)
1 . Note that

only the size of M
(k)
1 is permitted to vary over the reorderings. The number of

members selected at random for the initial wave (that is, n0) as well as the number

of members who are adaptively recruited for the sample reordering (that is, m1) must

remain fixed in order for the sample reordering to be consistent with the sufficient

statistic (that is the reduced data must coincide with dr).

In the second case, if sampling continues so that we also obtain S1,m̄ (that is, we

are considering the full sample), the data assumed to be observed is d0 = {(i, Ai, ti) :

i ε S}. We shall assign values of ti = 0 if unit i is selected for S0, ti = 1 if unit i is

selected for S1,m, and ti = 2 if unit i is selected S1,m̄. A sufficient statistic for the

population size N is then dr = {(i, Ai), |M1| : i ε S} (notice that M1 is a function

of {Ai : i ε S}). The Rao-Blackwellized version of the preliminary estimators of the

population size based on the full sample can be obtained as follows. Suppose that N̂0

represents any of the preliminary estimators N̂A,0, N̂B,0, N̂A,1, N̂B,1 based on a final

sample of size n = |S0|+ |S1,m|+ |S1,m̄| = n0 +m1 + m̄1. Then the Rao-Blackwellized

estimator is
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E[N̂0|dr] = N̂RB =
n!∑
k=1

N̂
(k)
0 p(s(k)|dr)

=
n!∑
k=1

N̂
(k)
0 p(s(k))/

n!∑
k=1

p(s(k))

=
n!∑
k=1

(
N̂

(k)
0

1(
N
n0

)βm1
1 (1− β1)|M

(k)
1 |−m1

1(
N−n0−|M(k)

1 |
m̄1

)×
I[S

(k)
1,m ⊆M

(k)
1 , S

(k)
1,m̄ ∩M

(k)
1 = φ, |M (k)

1 | = |M1|]
)
/

n!∑
k=1

(
1(
N
n0

)βm1
1 (1− β1)|M

(k)
1 |−m1

1(
N−n0−|M(k)

1 |
m̄1

)×
I[S

(k)
1,m ⊆M

(k)
1 , S

(k)
1,m̄ ∩M

(k)
1 = φ, |M (k)

1 | = |M1|]
)

=
n!∑
k=1

N̂
(k)
0

(
βm1

1 (1− β1)|M
(k)
1 |−m1I[S

(k)
1,m ⊆M1, S

(k)
1,m̄ ∩M

(k)
1 = φ, |M (k)

1 | = |M1|]
)
/

n!∑
k=1

(
βm1

1 (1− β1)|M
(k)
1 |−m1I[S

(k)
1,m ⊆M

(k)
1 , S

(k)
1,m̄ ∩M

(k)
1 = φ, |M (k)

1 | = |M1|]
)

(4.31)

where k represents the corresponding sample reordering, N̂
(k)
0 is the corresponding

estimate of the population size, M
(k)
1 is the corresponding set of members that are

mentioned from the hypothetical initial wave S
(k)
0 , S

(k)
1,m is the corresponding members

that are hypothetically adaptively recruited from M
(k)
1 , S

(k)
1,m̄ is the corresponding set

of members that are recruited at random for wave one, and φ is the empty set.

Notice that it is required that |M (k)
1 | = |M1| for reordering k to be consistent with

the reduced data, which in turn will guarantee that all terms involving the unknown

population size N can be factored out and canceled from the expression. Hence,

the size of M
(k)
1 is not permitted to vary over the reorderings. Also, the number of

members selected at random for the initial wave (that is, n0), the number of members

who are adaptively recruited (that is, m1), and the number of members selected at
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random from U \ (S
(k)
0 ∪M

(k)
1 ) (that is, m̄1) must remain fixed in order for a sample

reordering to be consistent with the sufficient statistic.

When using the full sample a large number of the reorderings may have zero

probability of being selected. The reason for this is found in the stringent requirement

that for reorderings to be consistent with the original data they must have exactly

|M1| members nominated from the hypothetical initial sample. Instead, we have

adopted an alternative sampling design that selects members for S1,m̄ from U \ (S0∪
S1,m) (as opposed to U \ (S0 ∪M1)). The probability of selecting a sample s with

this sampling design can be expressed as

p(s) =
1(
N
n0

)βm1
1 (1− β1)|M1|−m1

1(
N−n0−m1

m̄1

) . (4.32)

A sufficient statistic for the population size N is then dr = {(i, Ai) : i ε s}.
With this approach it is more likely that reorderings will be consistent with the

original data as |M (k)
1 | is now permitted to vary over values greater than or equal to

m1 (compare this approach and sufficient statistic with the corresponding approach

and sufficient statistic used in the restricted sample case). However, it is not as

straightforward to develop estimators of the population size based on the first wave

as some members from M1 (which is a random variable) may now be selected for

S1,m̄. Hence, accounting for this additional component may prove a cumbersome task

when constructing estimators of the population size. Nevertheless, in our simulation

study we have kept with the estimators based on the statistics defined in Section 4.2

while implementing the alternative sampling strategy.

With the alternative approach, suppose N̂0 is an estimator of the population size.

Then the Rao-Blackwellized estimator is
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E[N̂0|dr] = N̂RB =
n!∑
k=1

N̂
(k)
0 p(s(k)|dr)

=
n!∑
k=1

N̂
(k)
0 p(s(k))/

n!∑
k=1

p(s(k))

=
n!∑
k=1

(
N̂

(k)
0

1(
N
n0

)βm1
1 (1− β1)|M

(k)
1 |−m1

1(
N−n0−m1

m̄1

)I[S
(k)
1,m ⊆M

(k)
1 , |M (k)

1 | ≥ m1]

)
/

n!∑
k=1

(
1(
N
n0

)βm1
1 (1− β1)|M

(k)
1 |−m1

1(
N−n0−m1

m̄1

)I[S
(k)
1,m ⊆M

(k)
1 , |M (k)

1 | ≥ m1]

)

=
n!∑
k=1

(
N̂

(k)
0 βm1

1 (1− β1)|M
(k)
1 |−m1I[S

(k)
1,m ⊆M

(k)
1 , |M (k)

1 | ≥ m1]

)
/

n!∑
k=1

(
βm1

1 (1− β1)|M
(k)
1 |−m1I[S

(k)
1,m ⊆M

(k)
1 , |M (k)

1 | ≥ m1]

)
. (4.33)

The essence of using the sufficient statistic is highlighted by bringing to the

reader’s attention that in each of the three cases all terms involving the unknown

population size N factor out of the expression and cancel therefore making compu-

tation of the Rao-Blackwellized estimates possible. Notice that we have proved that

the aforementioned statistics are sufficient for N since the ratio of the probability

of selecting any two data points from the same partition that the respective statis-

tic induces (that is, the data points are simply reorderings of each other) does not

depend on the unknown population size N .

We mention here that, in order to obtain the Rao-Blackwellized version of the

estimators outlined in this chapter, all nominations within the final sample S =

S0∪S1,m∪S1,m̄, as well as those nominations outside of S, must be identifiable. The

justification for this can be reasoned by observing that, for any two members in S

that are reordered to hypothetically be selected for the initial sample, we require the

ability to observe if either member nominates the other. Furthermore, nominations

outside of the sample must be known due to the need to identify the number of
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individuals who comprise the set of M
(k)
1 for all reorderings k = 1, 2, ..., n!.

4.3.4 Variance estimators

Frank and Snijders (1994) proposed using a variant of the jackknife method for esti-

mating the variances of the estimators based on the initial wave that they developed.

This same method is used for the new estimators based on wave one that is developed

in this chapter. We will outline the procedure in this subsection.

Consider the current wave upon which an estimator N̂ for the population size N

is based on. We calculate N̂ for each individual i deleted from the corresponding

wave. If we denote this estimate as N̂(i), then the estimate of the variance of the

estimator is taken to be

V̂arJ(N̂) =
n− 2

2n

n∑
i=1

(N̂(i) − N̂(.))
2, (4.34)

where N̂(.) =
∑n

i=1 N̂(i) and n is the size of the corresponding wave.

With respect to the variance estimates of the Rao-Blackwellized estimators, Thomp-

son (2006a) proposed the following unbiased estimator. For any estimator N̂RB =

E[N̂0|dr], the conditional decomposition of variances gives

Var(N̂RB) = Var(N̂0)− E[Var(N̂0|dr)]. (4.35)

An unbiased estimator of Var(N̂RB) is

V̂ar(N̂RB) = E[V̂ar(N̂0)|dr]− Var(N̂0|dr). (4.36)

This estimator is the difference of the expectation of the estimated variance of the

preliminary estimator over all reorderings of the data and the variance of the prelim-

inary estimator over all the reorderings of the data. As this estimator can result in
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negative estimates of the variance, a conservative approach would take the estimate

of Var(N̂RB) to be E[V̂ar(N̂0)|dr] when such a scenario arises.

4.4 Markov Chain Resampling Estimators

Due to the large number of sample permutations that are obtained with the sample

sizes used in this study, a Markov chain resampling procedure similar to the one

found in Thompson (2006a) is implemented to obtain estimates of the improved es-

timates. As the sampling strategy presented in this chapter selects a sample through

a snowball sampling type of design, the Markov chain resampling strategy needs to

be modified. We outline the modified Markov chain accept/reject Hastings (1970)

resampling procedure below.

Suppose θ is a population unknown we wish to estimate with the improved estimator

θ̂RB = E[θ̂0|dr] where dr is a sufficient statistic.

Step 0: Let θ̂
(0)
0 be the estimated value of θ and V̂ar(θ̂

(0)
0 ) be the estimated value

of Var(θ̂0) that is obtained from selecting the sample in the original order it was

selected. Also, let t(0) = s be the original sample in the order it was selected.

For step l = 1, 2, ..., R, where R is sufficiently large:

Draw a candidate sample reordering, t(l) say, from a candidate distribution. Suppose

the most recently accepted candidate reordering is t(y) for some reordering of the

sample where y = 0, 1, 2, ..., l − 1. Let p(t(l)) be the probability of obtaining t(l)

under the true population and q(t(l)) be the probability of obtaining reordering t(l)

under the candidate distribution. Generate a uniform random number between 0

and 1, and if this value is less than

min

{
p(t(l))

p(t(y))

q(t(y))

q(t(l))
, 1

}
, (4.37)
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let θ̂
(l)
0 and V̂ar(θ̂

(l)
0 ) be the estimates of θ and Var(θ̂0), respectively, obtained with

sample reordering t(l). Otherwise, take θ̂
(l)
0 = θ̂

(l−1)
0 and V̂ar(θ̂

(l)
0 ) = V̂ar(θ̂

(l−1)
0 ).

Recall that p(t(l)) needs only to be known for the (hypothetical) adaptive recruitment

probabilities found in the sample reorderings as all terms involving the unknown

population sizeN can be factored out of the ratio of the true probabilities of obtaining

sample reorderings and cancelled from the expression.

Final step: Take estimates of θ̂RB to be

θ̃RB =
1

R + 1

R∑
l=0

θ̂
(l)
0 , (4.38)

and similarly take the estimate of V̂ar(θ̂RB) to be

Ṽar(θ̂RB) = Ẽ[V̂ar(θ̂0)|dr]− Ṽar(θ̂0|dr)

=
1

R + 1

R∑
l=0

V̂ar(θ
(l)
0 )− 1

R + 1

R∑
l=0

(θ̂
(l)
0 − θ̃RB)2. (4.39)

Several candidate distributions were explored for the purpose of obtaining the

Markov chain resampling estimators. These ranged from selecting a permutation

of the sample completely at random to strategies that first placed varying amounts

of homogenous weight to the elements from each wave (and therefore heterogenous

weights between waves) to be selected for the candidate reordering’s initial wave.

These methods all resulted in chains that promoted very little mixing and hence we

explored the use of a more adaptive technique for selecting candidate reorderings. We

decided on a method that interchanges one unit from the initial wave and one unit

from wave one based on the most recently accepted sample permutation. This style

of candidate distribution mimics those adaptive proposal distributions discussed in

Atchadé and Rosenthal (2005) where a posterior distribution is sampled from with

the use of a random walk type of sampler.
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4.5 Simulation Study

We will use the thesis study population to evaluate the new inference procedures

outlined in this chapter. The population was generated according to the stochas-

tic cluster model that was outlined in chapter 2. An illustration of the simulated

population can be found in Figure 4.3.

Figure 4.3: The simulated thesis study population.

Figures 4.4 and 4.5 show a sample that is selected under the adaptive sampling

design that is outlined in this chapter. Figure 4.4 shows the 50 members that are

selected for the initial sample with the nominations originating from the initial wave

that are required to be observed for the estimators of the population size based on

the initial wave.
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Figure 4.4: A sample selected from the thesis study population showing the initial

wave with the internal and external nominations. The size of the initial wave is 50.

The illustration on the left shows the nominations made within the initial wave and

the second illustration highlights, as white nodes, those members not selected for the

initial wave and that are linked to at least one member in the initial wave.

Figure 4.5 depicts those 10 members that are selected at random for wave one as

well as those members that were adaptively recruited for wave one (where the proba-

bility for these members being recruited for wave one was 50%) and the nominations

originating from wave one that are required to be observed for the estimators of the

population size based on wave one.
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Figure 4.5: A sample selected from the thesis study population showing wave one

with the internal and external nominations. Members mentioned from the initial

wave are traced with probability 50% and the number of randomly selected members

for wave one is 10. The illustration on the left shows the internal nominations

required for the wave one statistics and the second illustration highlights, as white

nodes, those members outside of wave one (and the initial wave) and that are linked

to at least one member in wave one.

We conducted a simulation study as follows. A total of 500 samples with 5000 re-

samples from each sample for the Markov chain resampling procedure were obtained.

We used the alternative sampling strategy outlined in subsection 4.3.3. Initial sam-

ples S0 of size 50 were obtained, and those members in M1 were recruited for S1,m

with a probability of β1 = 50%. An additional 10 members were selected at random

for S1,m̄ (recall that these may now include members from M1 \ S1,m).

Histograms of the estimates of the population size are presented in the following

subsections. The true population size of 300 is indicated by the solid triangles on

the x-axis of the histograms and the approximate expectation of the estimators is

indicated by the transparent triangle. Tables are also provided to display the bias
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and mean squared error (MSE) scores for each estimator as well as the average semi-

lengths of the nominal 95% confidence intervals based on the Central Limit Theorem

of the estimates.

4.5.1 Simulation study of the estimators of the population

size based on the restricted sample

Figure 4.6 presents the preliminary and improved estimates based on the initial wave

when sampling stops after recruiting a Bernoulli subset of the members nominated

from the initial wave to outside of the initial wave. Recall that for these improved

estimators, the sampling design requires that a subset of the nominations outside of

the initial wave be recruited, that is, requires observing S1,m.
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Figure 4.6: Histograms of the population size estimates N̂A,0, N̂B,0, N̂A,RB,0, and

N̂B,RB,0 based on the initial wave from the restricted sample. The dark triangle

indicates the true population size of 300 and the transparent triangle indicates the

approximate expectation of the distribution of the estimates.

Table 4.1 displays the bias and MSE scores with the coverage rates and average

semi-lengths of the nominal 95% confidence intervals based on the Central Limit

Theorem for the estimators based on the initial wave. The simulation study did not

report any negative estimates for the variance of the Rao-Blackwellized estimates

based on the initial wave when only considering the reduced sample.
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Table 4.1: Bias and MSE scores of the population size (N = 300) with the coverage

rates and average semi-lengths in parentheses of the nominal 95% confidence intervals

based on the CLT for the estimators based on the initial wave from the restricted

sample.

Estimator Bias MSE Coverage rates (semi-length)

N̂A,0 21.0 11295 0.950 (232)

N̂A,RB,0 8372 0.986 (222)

N̂B,0 9.2 7586 0.932 (187)

N̂B,RB,0 5663 0.982 (183)

As shown in the histograms and table of scores, Rao-Blackwellization of the pre-

liminary estimators has resulted in significantly improved estimates of the population

size, while the reported coverage rates appear to be slightly higher for the improved

estimates.

4.5.2 Simulation study of the estimators of the population

size based on the full sample

Figure 4.7 presents the histograms of the preliminary and improved estimates based

on the initial wave from the full sample when implementing the alternative sam-

pling strategy (as outlined in subsection 4.3.3). Notice that the behaviour of the

preliminary estimators based on the initial wave do not change from those based on

the restricted sample. However, the improved estimators may change as there are

an additional m̄1 = 10 members in the final sample thereby increasing the num-

ber of sample reorderings and corresponding population size estimates and sample

reordering probabilities that contribute to the improved estimates.
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Figure 4.7: Histograms of the population size estimates N̂A,0, N̂B,0, N̂A,RB,0, and

N̂B,RB,0 based on the initial wave from the full sample. The dark triangle indicates

the true population size of 300 and the transparent triangle indicates the approximate

expectation of the distribution of the estimates.

Table 4.2 displays the bias and MSE scores with the coverage rates and average

semi-lengths of the nominal 95% confidence intervals based on the Central Limit

Theorem for the estimates based on the initial wave from the full sample. The

simulation study did not report any negative estimates for the variance of the Rao-

Blackwellized estimates based on the initial wave when considering the full sample.
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Table 4.2: Bias and MSE scores of the population size (N = 300) with the coverage

rates and average semi-lengths in parentheses of the nominal 95% confidence intervals

based on the CLT for the estimators based on the initial wave from the full sample.

Estimator Bias MSE Coverage rates (semi-lengths)

N̂A,0 21.0 11295 0.950 (232)

N̂A,RB,0 7125 0.991 (218)

N̂B,0 9.2 7586 0.932 (187)

N̂B,RB,0 4508 0.991 (178)

Once again, it appears that Rao-Blackwellization of the preliminary estimators

has significantly improved the estimates of the population size with efficiency gains

greater than those corresponding estimates obtained with the restricted sample. As

in the restricted sample case, the reported coverage rates appear to be slightly higher

for the improved estimators.

Figure 4.8 presents the histograms of the preliminary and improved estimates

based on wave one from the full sample.
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Figure 4.8: Histograms of the population size estimates N̂A,1, N̂B,1, N̂A,RB,1, and

N̂B,RB,1 based on wave one from the full sample. The dark triangle indicates the

true population size of 300 and the transparent triangle indicates the approximate

expectation of the distribution of the estimates.

Table 4.3 displays the bias and MSE scores with the coverage rates and average

semi-lengths of the confidence intervals for the estimators based on wave one. A large

number of negative estimates for the variance of the Rao-Blackwellized estimates

based on wave one were encountered. However, the conservative approach that was

suggested in subsection 4.3.4 was used and appears to have compensated enough to
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give reasonable estimates for the variances of the estimates and their corresponding

coverage rates.

Table 4.3: Bias and MSE scores of the population size (N = 300) with the coverage

rates and average semi-lengths in parentheses of the nominal 95% confidence intervals

for the estimators based on wave one from the full sample.

Estimator Bias MSE Coverage rates

N̂A,1 24.0 14262 0.900 (275)

N̂A,1,RB 4801 0.955 (190)

N̂B,1 3.0 8279 0.877 (199)

N̂B,1,RB 2045 0.932 (134)

As expected the Rao-Blackwellized estimators have significantly improved on the

preliminary estimators, even with a small number of recruits selected completely at

random for wave one (recall that we set |S1,m̄| = 10). It appears that with these

sample sizes a reasonable amount of bias for both cases is present. It also appears

that the alternative sampling design has worked well with the estimators based on

the original sampling design.

4.6 Discussion

The new methods developed in this chapter allow for formulating estimates based

on a succeeding wave that is obtained after the initial sample is selected. We have

also developed a method to Rao-Blackwellize the preliminary estimators, and as

demonstrated in the simulation study, improved estimates of the population size

are guaranteed. Extending this method over more waves deserves attention and

the methods presented in this chapter could serve as a foundation for determining

estimators based on further sampling effort that is similar to that which is found in

the sampling designs outlined in this chapter.
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The coverage rates of the Rao-Blackwellized estimators appear to have come out

higher than their preliminary estimator counterparts. However, the reported esti-

mates of the variance of the Rao-Blackwellized estimators were significantly smaller

than those based on the preliminary estimators, indicating that this may not be too

much of a concern to the analyst. With respect to the preliminary estimators, it

appears that using the method outlined in Frank and Snijders (1994) for obtaining

estimates of the variance of the estimators based on wave one will give reasonable

approximations of the variance of the estimators. There were a large number of neg-

ative estimates of the variance of the Rao-Blackwellized estimates based on wave one

from the full sample, and we resorted to using the conservative approach outlined

in subsection 4.3.4. Future work on obtaining practical estimates of the variance

of Rao-Blackwellized estimators in such scenarios is required, and one strategy that

should be attempted is with the use of a bootstrap-based strategy.

Frank and Snijders (1994) showed that the population size estimators based on the

initial wave are consistent estimators. Future work on determining if the population

size estimators based on wave one also possess such desirable features is deserving of

attention.

For practical purposes, it may only be possible to utilize the class A statistics.

Notice that in order to determine the class A statistics, only the subset of the data

dA,0 ⊆ d0 needs to be observed where

dA,0 = {(i, wij, w+
i , ti) : i, j ε S}, (4.40)

and w+
i is the degree of unit i (that is, the number of nominations unit i makes).

However, for the purposes of Rao-Blackwellization of the estimators N̂A,0 and N̂A,1,

the class B statistics must be observed, as described in subsection 4.3.3.

Future work on determining an estimate based on a weighting of the estimates of

the population size from the initial wave and wave one is deserving of attention. We

shall note that the estimates came out approximately uncorrelated (primarily due to

the random selections made at each wave) and hence determining an optimal choice
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of weights, perhaps based on the number of random recruits and adaptive recruits

for each wave, should be explored.



Chapter 5

Improved Importance Sampling

5.1 Introduction

In this chapter we introduce a method for obtaining improved versions of the ap-

proximations of the Rao-Blackwellized estimates of a population unknown when em-

ploying an importance sampling strategy. Recall that with a design-based approach

to inference in sampling, we can obtain Rao-Blackwellized estimates of the prelimi-

nary estimates of a population unknown by tabulating the preliminary estimates of

the population unknown from and weighting against the probability of each sample

reordering (see expression (5.1) below). However, when selecting a large sample size

this will result in a large number of sample reorderings. This may be computationally

cumbersome and will likely require a method like importance sampling or Markov

chain Monte Carlo (MCMC) for approximating the Rao-Blackwellized estimates.

We have developed a strategy, termed improved importance sampling, based on

a single cluster sampling type of sampling design to increase the efficiency of the

approximations of the Rao-Blackwellized estimates of a population unknown when

using importance sampling. The method entails defining neighbourhoods of the

sample space (that is, all of the sample reorderings) at the analyst’s discretion and

observing the responses associated with all of the units in the neighbourhoods of

sampled units to increase the efficiency of the importance sampling estimators. This
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method may prove to be highly useful if each of the relevant responses of the neigh-

bours of those units selected under the importance sampler can be evaluated with a

reduced amount of computational effort once the corresponding information of one

of the units from the neighbourhood is evaluated.

In Section 5.2, we introduce the estimation procedure that is used in this chapter.

In Section 5.3 we provide a simulation study based on the study that was presented

in subsection 4.5.1. In Section 5.4, we provide a discussion of the results presented

in this chapter.

5.2 Estimation

Recall that with a sample s that is selected with an adaptive sampling design, a

Rao-Blackwellized estimate of a population unknown, θ say, based on a preliminary

estimator θ̂0 is

θ̂RB =
n!∑
k=1

θ̂
(k)
0 p(s(k)|dr)

=
n!∑
k=1

θ̂
(k)
0 p(s(k))/

n!∑
k=1

p(s(k)) (5.1)

where dr is a sufficient statistic, n is the sample size, θ̂
(k)
0 is the preliminary estimate

of θ obtained with sample reordering k, and p(s(k)) is the probability of obtaining

sample reordering k for k = 1, 2, ..., n!. One can obtain an estimate of the population

unknown using an importance sampling approach (Gelman et al., 2004), as outlined

below.

Suppose that for some function g we wish to estimate E[g(x)] = µg(x) =
n!∑
k=1

g(xk)pk

where xk is a response of interest of unit k, pk is the probability of observing unit k

under the target distribution, and n! is the number of sample reorderings (that is,

the size of the target population). Suppose we take m draws of the sample space

with replacement where the probability of selecting unit k on any draw is qk. Then,
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an unbiased estimate of µg(x) (Gelman et al., 2004) is

µ̂g(x) =
1

m

m∑
k=1

g(xk)pk
qk

(5.2)

(where it is understood that the elements of the population are reordered so that

the first m units of the population coincide with those units in the sample, with the

possibility of replacement).

Now, suppose we define neighbourhoods of the sample space (that is, the n!

elements/reorderings) to be N = {Nk : k = 1, 2, ..., T} where there are a total of T

neighbourhoods. For all k = 1, 2, ..., T we will define

yk =
∑
iεNk

g(xi)pi, (5.3)

and

q′k =
∑
iεNk

qi. (5.4)

Suppose we take m draws of the original sample space and for each observation

k = 1, 2, ...,m we completely observe Nk. That is, for each i ε Nk we observe g(xi), pi,

and qi. We shall let N s = (N1,N2, ...,Nm) (that is the ordered set of neighbourhoods

that correspond with the sample s in the order the sample was selected in). Another

estimate of µg(x) is of the Hansen-Hurwitz type of estimator (Thompson, 2002) and

is

µ̂y =
1

m

m∑
k=1

yk
q′k
. (5.5)
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This estimator is also unbiased since

µ̂y =
1

m

m∑
k=1

yk
q′k

=
1

m

m∑
k=1

∑
iεNk

g(xi)pi∑
iεNk

qi

=
1

m

m∑
k=1

∑
iεNk

g(xi)pi
qi

qi∑
iεNk

qi

=
1

m

m∑
k=1

E

[
g(xk)pk
qk

∣∣∣∣Nk]
= E

[
1

m

m∑
k=1

g(xk)pk
qk

∣∣∣∣N s

]
= E[µ̂g(x)|N s] (5.6)

(where it is understood that the expectation is taken with respect to the importance

sampling distribution q). Therefore, as E[µ̂y] = E[E[µ̂g(x)|N s]] = E[µ̂g(x)] = µg(x)

this gives unbiasedness. Furthermore, as N s is a sufficient statistic, µ̂y will result in

an improved estimator over µ̂g(x).

Recall that the Rao-Blackwellized version of the improved estimator N̂0 of the

population size N can be expressed as

N̂RB =
n!∑
k=1

N̂
(k)
0 p(s(k)|dr)

=
n!∑
k=1

N̂
(k)
0 p(s(k))/

n!∑
k=1

p(s(k)). (5.7)

Now, for all sample reorderings k = 1, 2, ..., n! we can replace g(xk) with N̂
(k)
0 ,
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pk with p(s(k)), and qk with q(s(k)) to obtain a preliminary unbiased estimate of
n!∑
k=1

N̂
(k)
0 p(s(k)). We can also replace g(xk) with 1, pk with p(s(k)), and qk with q(s(k))

to obtain a preliminary unbiased estimate of
n!∑
k=1

p(s(k)). A preliminary consistent es-

timate of N̂RB can then be found by taking the ratio of these preliminary estimates.

The final preliminary importance sampling estimate of the Rao-Blackwellized esti-

mator is then

Ñ0
RB =

m∑
k=1

N̂
(k)
0 p(s(k))

q(s(k))
/

m∑
k=1

p(s(k))

q(s(k))
. (5.8)

Similarly, for all k = 1, 2, ..., T we can replace yk with
∑
iεNk

N̂
(i)
0 p(s(i)) and q′k with

∑
iεNk

q(s(i)) to obtain an improved unbiased estimate of
n!∑
k=1

N̂
(k)
0 p(s(k)). Also, we can

replace yk with
∑
iεNk

p(s(i)) and q′k with
∑
iεNk

q(s(i)) to obtain an improved unbiased

estimate of
n!∑
k=1

p(s(k)). An improved consistent estimate of N̂RB can then be found

by taking the ratio of these improved estimates. The final improved importance

sampling estimate of the Rao-Blackwellized estimator is then

ÑRB =
m∑
k=1

∑
iεNk

N̂
(i)
0 p(s(i))∑

iεNk
q(s(i))

/
m∑
k=1

∑
iεNk

p(s(i))∑
iεNk

q(s(i))
. (5.9)

5.3 Simulation Study

We explore the improved importance sampling method outlined in this chapter for

making inference for the population size based on the Rao-Blackwellized estimators

introduced in subsection 4.5.1. We look at two different cases of how the neighbour-

hoods of the sample space are defined. In the first case we take any pair of sample
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reorderings to be in the same neighbourhood if they share at least n0 − 1 units in

the initial wave. To clarify, for any sample reordering, this reordering is in the same

neighbourhood as those for which we interchange one unit from the initial wave and

one unit from wave one. In the second case we shall take any pair of sample reorder-

ings to be in the same neighbourhood if they share at least n0− 2 units in the initial

wave. To clarify, for any sample reordering this reordering is in the same neighbour-

hood as those for which we interchange either one unit from the initial wave and one

unit from wave one, or, two units from the initial wave and two units from wave one.

With the above definitions of the neighbourhoods, once a sample reordering is

selected under the importance sampler and its true probability of being selected and

corresponding estimate of the population size is evaluated, the relevant information

of any neighbour of this sample reordering can be evaluated readily. Recall that the

members that are recruited for wave one are selected independently and with prob-

ability β1, and hence all that is required is the corresponding observations obtained

from replacing all internal and external nominations of the units interchanged from

the initial wave with the units selected for wave one.

To evaluate the performance of the improved importance sampling method, we

conducted a simulation study as follows. We selected 500 samples and m = 500

importance sampling draws of reorderings from each sample to make inference for the

Rao-Blackwellized estimators. We explored using two different importance samplers

where the first sampler gives a relative weight of 10 to 1 for each unit in the original

sample’s initial wave to be selected for the sampled reordering’s initial wave relative

to each unit in wave one. The second sampler is identical to the first except that a

relative weight is chosen to be 25 to 1 for each unit in the original sample’s initial

wave to be selected for the sampled reordering’s initial wave relative to each unit in

wave one.

With the two definitions of neighbourhoods, each neighbourhood will be com-

prised of
(
n0

1

)(
m1

1

)
sample reorderings in the first case and

(
n0

1

)(
m1

1

)
+
(
n0

2

)(
m1

2

)
sam-

ple reorderings in the second case where n0 is the size of the initial wave and m1

is the number of members added adaptively to the sample. Instead of evaluating

the necessary observations from all reorderings within a sampled neighbourhood, we
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took a random sample rk of size 100 in the first case and 250 in the second case to

estimate the corresponding observations required from each neighbourhood k that

was sampled. With this approach, the final improved consistent estimator can be

shown to be

Ñ r
RB =

m∑
k=1

∑
iεNk:
iεrk

N̂
(i)
0 p(s(i))

∑
iεNk:
iεrk

q(s(i))
/

m∑
k=1

∑
iεNk:
iεrk

p(s(i))

∑
iεNk:
iεrk

q(s(i))
. (5.10)

We used the following measure to evaluate the performance of the improved

importance sampling estimators. We considered the reported values of

500∑
k=1

(Ñ0
RB,k − N̂

(k)
RB)2 (5.11)

and

500∑
k=1

(Ñ r
RB,k − N̂

(k)
RB)2 (5.12)

where Ñ0
RB,k and Ñ r

RB,k are the corresponding preliminary and (estimated) improved

importance sampling approximations of the Rao-Blackwellized estimator N̂
(k)
RB, re-

spectively, that corresponds with sample k for k = 1, 2, ..., 500 (that is, those 500

samples selected for the simulation study in subsection 4.5.1). Our rationale is as

follows: each of the values (Ñ0
RB,k−N̂

(k)
RB)2 and (Ñ r

RB,k−N̂
(k)
RB)2 is an (approximately)

unbiased estimate for the variance of Ñ0
RB,k and Ñ r

RB,k, respectively (since these are

both unbiased estimators for N̂
(k)
RB when m is large enough), and hence this will pro-

vide us with a global measure of the performance of the preliminary and improved

importance sampling inference methods.
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Tables 5.1 and 5.2 give the output of the values corresponding with expressions

(5.11) and (5.12) where the values are standardized by

500∑
k=1

(N̂
(k)
0 − N̂ (k)

RB)2 (5.13)

to aid in comparing the performance of the estimators (notice that N̂
(k)
0 can also be

considered an unbiased estimator for N̂
(k)
RB where N̂

(k)
0 is the preliminary estimate

obtained with sample reordering k). We have replaced the values of N̂
(k)
RB with the

estimated values that are obtained with an MCMC chain of length 5000 where the

proposal distribution interchanged one unit from those hypothetical members that

are selected for the initial wave with one unit from those that are selected for wave

one while working over the most recently accepted reordering, as outlined in Section

4.4. With a chain of length 5000 we can consider these values to be very good

approximations to the true values and hence are suitable substitutes for N̂
(k)
RB. Also

recall that each neighbourhood defined in case one is a subset of a neighbourhood

defined in case two. We shall note here that with m = 500 all of the estimates came

out with very little to no bias. That is,
500∑
k=1

Ñ0
RB,k ≈

500∑
k=1

Ñ r
RB,k ≈

500∑
k=1

N̂
(k)
RB where

N = 300 is the population size.
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Table 5.1: The observed standardized output that corresponds to the 10-1 impor-

tance sampler for approximating the Rao-Blackwellized estimates. Case 1 corre-

sponds with the finer definition of the neighbourhoods and Case 2 corresponds with

the coarser definition of the neighbourhoods. The preliminary scores correspond with

the estimator presented in expression (5.11) and the improved scores correspond with

the estimator presented in expression (5.12) where both scores are standardized by

expression (5.13).

Estimator Preliminary Improved - Case 1 Improved - Case 2

N̂A,RB,0 0.995 0.970 0.951

N̂B,RB,0 1.011 0.981 0.968

Table 5.2: The observed standardized output that corresponds to the 25-1 impor-

tance sampler for approximating the Rao-Blackwellized estimates. Case 1 corre-

sponds with the finer definition of the neighbourhoods and Case 2 corresponds with

the coarser definition of the neighbourhoods. The preliminary scores correspond with

the estimator presented in expression (5.11) and the improved scores correspond with

the estimator presented in expression (5.12) where both scores are standardized by

expression (5.13).

Estimator Preliminary Improved - Case 1 Improved - Case 2

N̂A,RB,0 0.878 0.837 0.635

N̂B,RB,0 0.900 0.833 0.709

Notice that under the 10-1 importance sampler, the reported values of the prelim-

inary importance sampler are close to 1. It was determined that the 10-1 importance

sampler selected very few sample reorderings that had positive probability of being

selected under the target distribution and hence a large majority of the contribu-

tions to the estimator came from sample reorderings that registered a value of zero.
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Even though there was a relatively small difference in the scores, the improved ap-

proach gave rise to estimators that reported corresponding values smaller than 1, as

expected.

With respect to the 25-1 importance sampler, it is apparent that this impor-

tance sampler approximates the true target distribution better than the 10-1 impor-

tance sampler as the reported values from the preliminary estimator are significantly

smaller than 1. Using the improved importance sampling procedure has resulted in

significantly more efficient estimates. Notice the additional improvement in Case 2

where we defined neighbourhoods which are coarser than those defined in Case 1.

In summary, we could expect a value of zero in the standardized output if

ÑRB ≡ N̂RB, which would typically require m → ∞ (since we are sampling with

replacement). Notice that the output provided in the simulation study has exempli-

fied that using the improved method will result in more efficient estimates, relative

to the preliminary method, as these values are closer to zero.

5.4 Discussion

The improved importance sampling inference procedure outlined in this chapter

demonstrated that improvements over the well-known preliminary importance sam-

pling inference procedure are certain. One of the most attractive features about this

inferential method is that the neighbourhoods can be defined in any manner desired

by the analyst.

The methods that are outlined in this chapter can be extended, if necessary, to

approximate any of the Rao-Blackwellized estimators that are outlined in this thesis.

All that may be required is a redefining of the neighbourhoods. For example, for the

Rao-Blackwellized estimators that are based on the adaptive web sampling designs

outlined in chapter 3, one may define the neighbourhoods of the sample reorderings

to be based on interchanging one of the units selected at random for the initial wave

and one unit that is selected after the initial wave.

Significant improvements using the improved method, perhaps in cases where

the choice of an ideal importance sampler is not readily available, can always be
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obtained via defining coarser neighbourhoods. For example, in our study we could

expect more efficient improved approximations of the Rao-Blackwellized estimates

of the population size if we chose neighbourhoods to consist of reorderings that have

at least n0 − 3 units in the initial wave in common with the importance sample

reordering that is selected on each draw, given that we observe all of the units in the

neighbourhoods corresponding with the sampled units.

In our study we took a simple random sample of the units in each neighbourhood

to estimate the desired response value from each neighbourhood (that is, yk and

q′k as outlined in expressions (5.3) and (5.4), respectively), and with a coarser set

of neighbourhoods it is likely that a larger simple random sample of elements from

the sampled neighbourhoods will be required to obtain reliable approximations of

the response values from these neighbourhoods. Hence, there is a trade-off between

using coarser neighbourhoods and a greater amount of computational effort that may

be required to obtain truly reliable estimates of the Rao-Blackwellized estimates of

population unknowns.

The improved importance sampling method can be extended to work over a

continuous target distribution of infinite range where neighbourhoods are defined

over the domain of the sample space. The methods outlined in this chapter should

facilitate in serving as a foundation for making this possible. Furthermore, extending

the improved importance sampling procedure to work with an MCMC inference

procedure is a topic that is deserving of future attention.



Chapter 6

Discussion

The goal of this thesis was to develop new methods for estimating the size and dis-

tribution of networked populations through the use of adaptive sampling methods.

Three novel methods were introduced with one method utilizing a model-based ap-

proach to inference and two methods utilizing a design-based approach to inference.

We have considered cases that cover both a single-sample and a multi-sample study.

In the first project, we introduced an elaborate graph model and developed an

extended Bayesian data augmentation routine to make inference for the population

size and model parameters. The Bayesian approach facilitated developing estimators

as we were able to take advantage of working with the complete data likelihood, as

opposed to the observed likelihood, based on a hypothetical full graph realization,

which gave rise to suitable posterior distributions that were fairly straightforward

to sample from. The inference procedure is somewhat restricted to the one-wave

snowball sampling design. However, if sampling were to continue beyond the first

wave then a combination of a model-based and design-based approach to inference

via obtaining Rao-Blackwellized estimates of the population size and model parame-

ters, perhaps by incorporating the inferential method outlined in Chapter 4 into the

Bayesian analysis, can be achieved. We checked this method via a simulation study

that consisted of an analysis based on the stochastic block model that was applied

to the data from samples obtained from a small simulated networked population

and found that the results came out as anticipated; the Rao-Blackwellized estimates
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retained the same expectation as their preliminary estimator counterparts and had

smaller variance. We should note that one immediate drawback when using this

strategy for inference is presented in the computational effort that may be required

to obtain the Rao-Blackwellized versions of the preliminary estimates as obtaining

the preliminary estimate from each sample reordering may require the computation

of an MCMC chain.

The second project introduced a design-based approach to inference of a pop-

ulation size with the use of a multi-sample study. Rao-Blackwellized versions of

the preliminary estimates were shown to be obtainable as the unknown population

size factors out of the Rao-Blackwellization expression. Obtaining design-based es-

timates of population unknowns, like the population size and average node degree

directly based on the full adaptive samples, is likely to be a complicated task if the

the ability to identify the sampled units’ neighbours is unavailable and/or if the true

population size is not known. The reason for this is that these two restrictions will

not permit for the inclusion probabilities of the sampled units to be observed and

therefore can not be incorporated into the inferential procedure. Hence the method

outlined in this project may prove to be highly useful in an empirical setting. In

future work, amalgamating the methods outlined in this project with some of the

common capture-recapture models would be highly useful.

The third project extended the methods developed by Frank and Snijders (1994)

for estimating population sizes with a design-based approach to inference based on

selecting one sample. We proposed new estimates of the population size based on

one wave that is selected after the initial wave is obtained. We also developed a Rao-

Blackwellized version of these preliminary estimates based on a sufficient statistic in

sampling in a manner similar to that which was introduced in the second project.

In future work, developing similar inferential methods for samples obtained from a

respondent-driven sampling design (Heckathorn, 1997, 2002), where identification of

nominated members of the hard-to-reach populations is a challenge and will likely

be aided by a model-assisted approach (for example, see Gile and Handcock (2011)),

would be extremely beneficial as this sampling method is currently being employed

in some empirical studies (Abdul-Quader et al., 2006).
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The fourth project introduced a new method for estimating a distribution based

on a strategy termed improved importance sampling. We showed that, with a single-

stage cluster sampling style of design, this method will produce more reliable approx-

imations of the characteristics of a distribution relative to the existing preliminary

procedure. Typically, with importance sampling there will be a trade-off between

computational effort and the efficiency of the estimates. With our approach we

demonstrated that in the event that incorporating the neighbourhood responses into

the inference procedure does not result in a significant increase in computational

effort, either significantly more efficient estimates can be obtained or significantly

less computational effort will be required to obtain approximations comparable in

efficiency relative to those obtained with the preliminary procedure. Extending this

method to work with adaptive MCMC strategies will be an interesting future chal-

lenge.
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Appendix A

Development of Stochastic Cluster

Model

This appendix provides the derivations of the probability mass/density functions

of the missing data and the development of posterior distributions for the model

parameters that were outlined in the data augmentation procedure corresponding

with the use of the stochastic cluster model, as described in subsection 2.3.3.

A.1 Probability Mass/Density Functions of the Miss-

ing Values

A.1.1 The probability mass function of group memberships

After sampling an N from the binomial style posterior distribution (as presented

in expression (2.20)), we continue the data augmentation process with the observed

graph data

d0 = {S, CS, ZS, YS0,U} (A.1)
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where U is a hypothetical population of size N .

Now, the probability of obtaining a realization of C s̄ given d0 is obtained as

P(C S̄|d0) = P(C S̄|S, CS, ZS, YS0,U)

=
P(S, CS, ZS, YS0,U |C S̄) · P(C S̄)

P(d0)

=
P(S|CS, ZS, YS0,U , C S̄) · P(CS, ZS, YS0,U |C S̄) · P(C S̄)

P(d0)

=
P(S|CS, ZS, YS0,U)

P(d0)
· P(YS0,U |CS, ZS, C S̄) · P(CS, ZS, |C S̄) · P(C S̄)

=
P(S|CS, ZS, YS0,U)

P(d0)
· P(YS0,U |C,ZS) · P(ZS|CS, C S̄) · P(CS, |C S̄) · P(C S̄)

=
P(S|CS, ZS, YS0,U)

P(d0)
· P(YS0,U |C,ZS) · P(ZS|C) · P(C). (A.2)

Note that C S̄ is dropped from the first term since the adaptive sampling design only

depends on the information collected in the sample (as outlined in Thompson and

Seber (1996)). We now have,

P(C S̄|d0) =
P(S|CS, ZS, YS0,U)

P(d0)
· P(YS0,U |C,ZS) · P(ZS|C) · P(C)

=
P(S|CS, ZS, YS0,U)

P(d0)
· P(YS0,U |C,ZS) · P(ZS|C) ·

N∏
i=1

P(Ci)

=
P(S|CS, ZS, YS0,U)

P(d0)
· P(YS0,U |C,ZS) ·

n∏
i=1

BVN(Zi;µCi , σ
2
Ci

Id) ·
N∏
i=1

P(Ci) ,

(A.3)

where
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P (YS0,U |C,ZS) =

n0∏
i=1

n∏
i,j=1:
i<j

P(Yij|Ci, Cj, Zi, Zj) ·
N∏

k=n+1

∫
Zk

n0∏
i=1

P(Yij|Ci, Ck, Zi, Zk)BVN(Zk;µk, σ
2
kId) dZk .

(A.4)

Therefore, by the factorization theorem we have that

P (C S̄|d0) =
∏
i∈S̄

P(Ci|d0)

=
∏
i∈S̄

P(Ci|S, CS, ZS, YS0,U)

=
∏
i∈S̄

P(Ci|S, CS0
, ZS0

, YS0,i) . (A.5)

Again, we note that the last equality comes from the use of the adaptive sampling

design (Thompson and Seber, 1996).

Now, take any i ∈ S̄. Then for any group k = 1, 2, ... G,
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P (Ci = k|S, CS0
, ZS0

, YS0,i)

=
P(Ci = k, S, CS0

, ZS0
, YS0,i)

G∑̀
=1

P(Ci = `, S, CS0
, ZS0

, YS0,i)

=
P(Ci = k) · P(YS0,i|S, CS0

, ZS0
, Ci = k)

G∑̀
=1

[
P(Ci = `) · P(YS0,i|S, CS0

, ZS0
, Ci = `)

]

=

P(Ci = k) ·
n0∏
j=1

P(Yij = 0|S, Cj, Zj, Ci = k)

G∑̀
=1

[
P(Cj = `) ·

n0∏
j=1

P(Yij = 0|S, Cj, Zj, Ci = `)

]

=

λk ·
∞∫
−∞

n0∏
j=1

(
1−

exp(βCj,k+αCj,k||Zj−Z||)
1+exp(βCj,k+αCj,k||Zj−Z||)

)
BVN(Z;µk, σ

2
kId) dZ

G∑̀
=1

[
λ` ·

∞∫
−∞

n0∏
j=1

(
1−

exp(βCj,`+αCj,`||Zj−Z||)
1+exp(βCj,`+αCj,`||Zj−Z||)

)
BVN(Z;µ`, σ2

` Id) dZ

] . (A.6)

A.1.2 The probability density function of the parameters

corresponding to the covariate information

For a specific realization Z S̄, the density given d1 = {S,C, ZS, YS0,U} is evaluated as



APPENDIX A. DEVELOPMENT OF STOCHASTIC CLUSTER MODEL 129

P (Z S̄|d1) = P (Z S̄|S, C, ZS, YS0,U)

=
P(S, C, ZS, YS0,U |Z S̄) · P(Z S̄)

P(d1)

=
P(S|C,ZS, YS0,U , Z S̄) · P(C,ZS, YS0,U |Z S̄) · P(Z S̄)

P(d1)

=
P(S|CS, ZS, YS0,U)

P(d1)
· P(YS0,U |C,ZS, Z S̄) · P(C,ZS|Z S̄) · P(Z S̄)

=
P(S|CS, ZS, YS0,U)

P(d1)
· P(YS0,U |C,Z) · P(C|ZS, Z S̄) · P(ZS|Z S̄) · P(Z S̄)

=
P(S|CS, ZS, YS0,U)

P(d1)
· P(YS0,U |C,Z) · P(C|Z) · P(Z)

=
P(S|CS, ZS, YS0,U)

P(d1)
· P(YS0,U |C,Z) · P(Z|C) · P(C)

=
P(S|CS, ZS, YS0,U)

P(d1)
· P(YS0,U |C,Z) ·

N∏
i=1

BVN(Zi;µCi , σ
2
Ci

Id) ·
N∏
i=1

P(Ci)

=
P(S|CS, ZS, YS0,U)

P(d1)
·
N∏
j=1

n0∏
i=1

P(Yij|Ci, Cj, Zi, Zj) ·
N∏
i=1

BVN(Zi;µCi , σ
2
Ci

Id) ·
N∏
i=1

P(Ci).

(A.7)

Note that Z S̄ is dropped in the first term by use of the adaptive sampling design

(Thompson and Seber, 1996). Once again, by the factorization theorem, we have

that

P (Z S̄|d1) =
∏
i∈S̄

P(Zi|d1)

=
∏
i∈S̄

P(Zi|S, C, ZS, YS0,U) . (A.8)

Now, take any i ∈ S̄ and z∗ ∈ R2. The density at this point is evaluated as
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P(Zi = z∗|d1) = P(Zi = z∗|S, C, ZS, YS0,i)

=
P(Zi = z∗, S, C, ZS, YS0,i)

∞∫
−∞

P(Zi = Z, S, C, ZS, YS0,i) dZ

=
P(Zi = z∗|C) · P(YS0,i|S, C, ZS0

, Zi = z∗)
∞∫
−∞

(
P(Zi = Z|C) · P(YS0,i|S, C, ZS0

, Zi = Z)
)

dZ

=

n0∏
j=1

P(Yij|Cj, Ci, Zj, Zi = z∗)BVN(z∗;µCi , σ
2
Ci

)Id

∞∫
−∞

n0∏
j=1

P(Yij|Cj, Ci, Zj, Zi = Z)BVN(Z;µCi , σ
2
Ci

Id) dZ

=

n0∏
j=1

(
1− exp(βCj,Ci+αCj,Ci ||Zj−z

∗||
1+exp(βCj,Ci+αCj,Ci ||Zj−z

∗||

)
BVN(z∗;µCi , σ

2
Ci

Id)

∞∫
−∞

n0∏
j=1

(
1− exp(βCj,Ci+αCj,Ci ||Zj−Z||

1+exp(βCj,Ci+αCj,Ci ||Zj−Z||

)
BVN(Z;µCi , σ

2
Ci

Id) dZ

.

(A.9)

A.2 The Posterior Distributions of the Model Pa-

rameters

A.2.1 The joint posterior distribution of (σ2k, µk)

Take any k = 1, 2, . . . , G and let (Z1,i, Z2,i) represent the position in R2 of the ith

unit in group k (it shall be understood that, for notational convenience, the units in

group k are temporarily indexed to be the first Nk units of the population where Nk

is the size of group k). We shall determine the posterior distributions of π(σ2
k|Zk)

and π(µk|σ2
k, Zk). Recall that we have that

Z1,1, Z1,2, . . . , Z1,Nk

iid∼ N(µ1,k, σ
2
k),

Z2,1, Z2,2, . . . , Z2,Nk

iid∼ N(µ2,k, σ
2
k), (A.10)
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all of which arise independently given the group memberships.

In order to evaluate the posterior distributions we will need

f(Zk|µ1,k, µ2,k, σ
2
k)

=

Nk∏
i=1

[
1√

2πσ2
k

exp

{
− 1

2σ2
k

(Z1,i − µ1,k)
2

}]
·
Nk∏
i=1

[
1√

2πσ2
k

exp

{
− 1

2σ2
k

(Z2,i − µ2,k)
2

}]

=
1

(2πσ2
k)
Nk
· exp

{
− 1

2σ2
k

·
Nk∑
i=1

(Z1,i − µ1,k)
2

}
· exp

{
− 1

2σ2
k

·
Nk∑
i=1

(Z2,i − µ2,k)
2

}
.

(A.11)

For a choice of conjugate prior on σ2
k, we will let π(σ2

k) ∼ Γ−1(α, β), so that

π(σ2
k) =

βα

Γ(α)
(σ2

k)
−α−1 exp

{
−β
σ2
k

}
. (A.12)

For µj,k, j = 1, 2, we shall take the independent conjugate priors of π(µj,k|σ2
k) ∼

N(γj,
σ2
k

νj
). We then have,

π(µ1,k, µ2,k|σ2
k) = π(µ1,k|σ2

k)π(µ2,k|σ2
k)

=
1√

2π
σ2
k

ν1

exp

−1

2

(µ1,k − γ1)2

σ2
k

ν1

 · 1√
2π

σ2
k

ν2

exp

−1

2

(µ2,k − γ2)2

σ2
k

ν2

 . (A.13)

Therefore we have the following posterior distribution,
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π(σ2
k, µ1,k, µ2,k|Zk) ∝ π(σ2

k) · π(µ1,k, µ2,k|σ2
k) · f(Zk|µ1,k, µ2,k, σ

2
k)

=
βα

Γ(α)
(σ2

k)
−α−1 exp

{
− β

σ2
k

}

· 1√
2π σk√

ν1

exp

−1

2

(µ1,k − γ1)2

σ2
k

ν1

 · 1√
2π σk√

ν2

exp

−1

2

(µ2,k − γ2)2

σ2
k

ν2


· 1

(2πσ2
k)
Nk

exp

{
− 1

2σ2
k

[
Nk∑
i=1

(Z1,i − µ1,k)
2 +

Nk∑
i=1

(Z2,i − µ2,k)
2

]}

∝ (σ2
k)
−α−1 · exp

{
− β

σ2
k

}

· 1
σk√
ν1

exp

−1

2

(µ1,k − γ1)2

σ2
k

ν1

 · 1
σk√
ν2

exp

−1

2

(µ2,k − γ2)2

σ2
k

ν2


· 1

(σ2
k)
Nk

exp

{
− 1

2σ2
k

Nk∑
i=1

(Z1,i − µ1,k)
2

}
· exp

{
− 1

2σ2
k

Nk∑
i=1

(Z2,i − µ2,k)
2

}
.

(A.14)

Notice that, by the factorization theorem, µ1,k|σ2
k, Zk is independent of µ2,k|σ2

k, Zk.

A.2.2 The posterior distribution of σ2k

We wish to determine π(σ2
k|Zk) =

∫∞
−∞

∫∞
−∞ π(σ2

k, µ1,k, µ2,k|Zk) dµ1,k dµ2,k. Integrat-

ing over expression (A.14), we have
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∫ ∞
−∞

∫ ∞
−∞

π(σ2
k, µ1,k, µ2,k|Zk) dµ1,k dµ2,k

= (σ2
k)
−α−1 exp

{
− β

σ2
k

}
· 1

σk√
ν1

· 1
σk√
ν2

· 1

(σ2
k)
Nk

·
∞∫

−∞

exp

−1

2

(µ1,k − γ1)2

σ2
k

ν1

− 1

2σ2
k

Nk∑
i=1

(Z1,i − µ1,k)
2

 dµ1,k

·
∞∫

−∞

exp

−1

2

(µ2,k − γ2)2

σ2
k

ν2

− 1

2σ2
k

Nk∑
i=1

(Z2,i − µ2,k)
2

 dµ2,k . (A.15)

By completing the square over µ1,k and µ2,k, it can be shown that

π(σ2
k|Zk) ∝ (σ2

k)
−α−1 exp

{
− β

σ2
k

}
· 1

σk
· 1

σk
· 1

(σ2
k)
Nk/2

· 1

(σ2
k)
Nk/2

· exp

{
− 1

2σ2
k

[
ν1γ

2
1 +

Nk∑
i=1

Z2
1,i −

(ν1γ1 +
∑Nk

i=1 Z1,i)
2

ν1 +Nk

]}
· 1

σk

· exp

{
− 1

2σ2
k

[
ν2γ

2
2 +

Nk∑
i=1

Z2
2,i −

(ν2γ2 +
∑Nk

i=1 Z2,i)
2

ν2 +Nk

]}
· 1

σk

= (σ2
k)
−α−1−1−Nk−1 · exp

{
− 1

σ2
k

·
[
β +

1

2

[
ν1γ

2
1 +

Nk∑
i=1

Z2
1,i −

(ν1γ1 +
∑Nk

i=1 Z1,i)
2

ν1 +Nk

+ ν2γ
2
2 +

Nk∑
i=1

Z2
2,i −

(ν2γ2 +
∑Nk

i=1 Z2,i)
2

ν2 +Nk

]]}
. (A.16)

Therefore, we have π(σ2
k|Zk) ∼ Γ−1(A,B) where
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A = α +Nk, and (A.17)

B = β +
1

2

[
ν1γ

2
1 +

Nk∑
i=1

Z2
1,i −

(ν1γ1 +
∑Nk

i=1 Z1,i)
2

ν1 +Nk

+ ν2γ
2
2 +

Nk∑
i=1

Z2
2,i −

(ν2γ2 +
∑Nk

i=1 Z2,i)
2

ν2 +Nk

]
. (A.18)

A.2.3 The posterior distribution of µk|σ2k
To find the posterior distribution of µ1,k, we condition on the σ2

k sampled from the

distribution found in (A.16), and hence

π(µ1,k|Zk, σ
2
k) ∝ exp

−1

2

(µ1,k − γ1)2

σ2
k

ν1

 exp

{
−1

2

∑Nk
i=1(Z1,i − µ1,k)

2

σ2
k

}

= exp

{
− 1

2σ2
k

[
ν1 · (µ2

1,k − 2γ1µ1,k + γ2
1) +

Nk∑
i=1

(µ2
1,k − 2Z1,iµ1,k + Z2

1,i)

]}

∝ exp

{
− 1

2σ2
k

[
ν1µ

2
1,k − 2γ1ν1µ1,k +Nkµ

2
1,k − µ1,k

Nk∑
i=1

2Z1,i

]}

= exp

{
− 1

2σ2
k

[
(Nk + ν1)µ2

1,k + µ1,k · (−2γ1ν1 −
Nk∑
i=1

2Z1,k)

]}

∝ exp

− 1

2σ2
k

[
(Nk + ν1)

(
µ1,k −

γ1ν1 +
∑Nk

i=1 Z1,i

ν1 +Nk

)2 ]
= exp

− 1

2
σ2
k

Nk+ν1

·

(
µ1,k −

γ1ν1 +
∑Nk

i=1 Z1,i

ν1 +Nk

)2
 (A.19)

Therefore,
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µ1,k|σ2
k, Zk ∼ N

(
γ1ν1 +

∑Nk
i=1 Z1,i

ν1 +Nk

,
σ2
k

ν1 +Nk

)
, (A.20)

and similarly,

µ2,k|σ2
k, Zk ∼ N

(
γ2ν2 +

∑Nk
i=1 Z2,i

ν2 +Nk

,
σ2
k

ν2 +Nk

)
. (A.21)



Appendix B

Sufficient Statistic when N is

Unknown

This appendix provides an illustration to help clarify the use of the notation and

adaptive web sampling designs that are outlined in chapter 3. We also prove that

dr = {(i, wij, wi+),J : i, j ε sk, k = 1, 2, ..., K} is a sufficient statistic (as mentioned

in Section 3.2) when the population size is unknown and an adaptive web sampling

strategy is employed.

B.1 An Illustration to Clarify the use of the No-

tation and Adaptive Web Sampling Designs

To help clarify the notation used in chapter 3, Figure B.1 provides an example of

two samples that are selected under the original adaptive web sampling design where

atk = stk for each step tk = 1, 2 and for each sample k = 1, 2 in the sample selection

procedure. The size of the initial random samples are n01 = n02 = 1 and the number

of members added after the initial samples is two to bring the final sample sizes up

to n1 = n2 = 3. The original order the samples are selected in shall be assumed to

be s(01,02) = ((A,B,C), (A,D,E)).

136
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Figure B.1: Two adaptive web samples selected via the original adaptive web sam-

pling design where the initial sample sizes are one and the final sample sizes are

three.

In the event that 0 < d < 1 and both members in s1 are added via taking a

random jump and both members in s2 are added via tracing a link out of the active

set then J1 = (0, 0, 0) and J2 = (0, 1, 1) are the original jump vectors (and hence J =

(0, 1, 1)). One probable pair of sample reorderings is s(x1,x2) = ((C,A,B), (D,A,E))

if we allow for a random jump to be taken when unit A is added to the corresponding

reordering for sample 1, for some pair of reorderings (x1, x2) where x1, x2 = 1, 2, .., 3!.

Notice that this requires unit A to be added via tracing a link out of sample 2 since

there is a jump that is taken at this point in the sample selection procedure. In this

case, J
(x1)
1 = (0, 1, 0) and J

(x2)
2 = (0, 0, 1) so that J (x1,x2) = (0, 1, 1) is consistent

with J . In the event that d = 1, then no random jumps are taken and hence

s(x1,x2) = ((C,A,B), (D,A,E) is not a pair of probable sample reorderings as there

is no link to trace from unit C to unit A in the first sample (recall that this requires

J ≡ 0).
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We shall also clarify here that under the nearest neighbours adaptive web sam-

pling design, unless random jumps are permitted (that is 0 < d < 1) neither of the

samples s01 = (A,B,C) and s02 = (A,D,E) can be selected since the active set is

restricted to the initial sample. That is, if d = 1 only members linked to unit A can

be added for the samples.

B.2 Sufficient Statistic in Adaptive Web Sampling

when the Population Size is Unknown

We shall commence with a review of the adaptive web sampling selection procedure.

The selection of an adaptive web sampling design consists of two stages. For

each sample k = 1, 2, ..., K, the sample selection procedure commences with the

selection of n0k members completely at random and then nk − n0k members are

added adaptively. The adaptively selected members are added as follows. For each

step tk, tk = 1, 2, ..., nk−n0k, any member i not yet chosen is selected with probability

qtk,i = d
watk ,i

watk ,+
+(1−d) 1

N−(n0k+tk−1)
where watk ,i is the number of links from the current

active set atk ⊆ stk (where stk is the current sample at time tk) out to unit i at step

tk and watk ,+ is the number of links out of the current active set to members not yet

selected at step tk. Hence, with probability 0 ≤ d ≤ 1 a unit is added via tracing

a link from the active set and with probability 1 − d a unit is added completely at

random (that is, a random jump is taken), given that watk ,+ > 0. In the event that

watk ,+ = 0, a member is selected completely at random (a random jump is taken)

amongst those not yet selected with probability 1
N−(n0k+tk−1)

.

The observed data is d0 = {(i, wij, w+
i , ti,k), Jk : i, j ε sk, k = 1, 2, ..., K} where

sk refers to sample k for k = 1, 2, ..., K; w+
i is the out-degree of individual i (that is,

the number of members acknowledged by individual i); ti,k is the time (or step) in

the sampling sequence that unit i is selected for sample k; Jk is an indicator vector

of length L = max
j=1,2,...,K

{nj} that records the sequence of jumps after the initial

sample is selected for sample k, k = 1, 2, ..., K. It shall be understood that for all

k = 1, 2, ..., K, J1,k, ..., Jn0k,k = 0 and if nk < max{nj}
j=1,2,...,K

then Jnk+1,k, ..., JL,k = 0. We
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shall let the reduced data be dr = {(i, wij, wi+),J : i, j ε sk, k = 1, 2, ..., K} where

J = (
K∑
k=1

J1,k,
K∑
k=1

J2,k, ...,
K∑
k=1

JL,k) = (J1,J2, ...,JL).

We shall define θ = (N,wN , w
+
N) to be the parameter of interest where wN is the

adjacency matrix (of size N ×N) of the population graph, w+
N is a vector (of length

N) which displays the out-degree of the members of the population, and N is the

population size. We will make the definition that θ is consistent with the reduced

data dr if there exists a subset d′ ⊆ N such that wd′ ≡ wdr and w+
d′ ≡ w+

dr
. The set

of all θ that are consistent with the reduced data dr shall be labeled as Θdr . Notice

that since the population size is unknown, N (and hence the corresponding values

wN and w+
N) is permitted to range over all values in the natural number set N.

Claim: dr is a sufficient statistic.

Proof:

First we will show sufficiency.

For k = 1, 2, ..., K and step tk = 1, 2, ..., nk − n0k, let Htk+n0k
= 1 if w+

atk
= 0 and

0 otherwise (that is, a random jump is forced at this step in the sample selection

procedure as there are no links to trace at selection step tk in sample k out of the

current active set atk). We will also let qtk be the probability of adaptively adding

that unit which was selected at time tk to sample k.

Now, let d0 be any data point where P (D0 = d0) > 0. Then,
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Pθ(D0 = d0) = P (D0 = d0|N,wN , w+
N)I[θεΘdr ]

= P (D0 = d0|N,wdr , w
+
dr

)I[θεΘdr ]

=
K∏
k=1

[
1(
N
n0k

) nk−n0k∏
tk=1:

Jtk+n0k,k
=0

dqsktk

nk−n0k∏
tk=1:

Jtk+n0k,k
=1,

Htk+n0k,k
=0

(1− d)
1

N − (n0k + tk − 1)
×

nk−n0k∏
tk=1:

Jtk+n0k,k
=1,

Htk+n0k,k
=1

1

N − (n0k + tk − 1)

]
I[θεΘdr ]

=
K∏
k=1

[( nk−n0k∏
tk=1:

Jtk+n0k,k
=0

dqsktk

)
(1− d)

nk−n0k∑
tk=1

Jtk+n0k,k
(1−Htk+n0k,k

)
]
×

K∏
k=1

1(
N
n0k

) L∏
i=1

(
1

N − (i− 1)

)Ji
I[θεΘdr ]

= h(d0) · g(dr, θ) (B.1)

Therefore, by the Fisher-Neyman Factorization Theorem, dr is a sufficient statistic.
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