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Abstract 

Bayesian Model Averaging (BMA) has previously been proposed as a solution to the variable 

selection problem when there is uncertainty about the true model in regression. Some recent 

research discusses the drawbacks; specifically, BMA can (and does) give biased parameter 

estimates in the presence of confounding. This is because BMA is optimized for prediction 

rather than parameter estimation. Though some newer research attempts to fix the issue 

of bias under confounding, none of the current algorithms handle either large data sets 

or survival outcomes. The Approximate Two-phase Bayesian Adjustment for Confounding 

(ATBAC) algorithm proposed in this paper does both, and we use it on a large medical 

cohort study called THIN (The Health Improvement Network) to estimate the effect of 

statins on risk of stroke. We use simulation and some analytical techniques to discuss 

two main topics in this paper. Firstly, we demonstrate the ability of ATBAC to perform 

unbiased parameter estimation on survival data while accounting for model uncertainty. 

Secondly, we discuss when it is, and isn't, helpful to use variable selection techniques in the 

first place, and find that in some large data sets variable selection for parameter estimation 

is unnecessary. 
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Chapter 1 

Introduction 

A common goal in biomedical observational studies is to estimate the effect of an exposure 

on an outcome, while controlling for confounding factors. A standard procedure is to 

construct a model for the outcome (based on both the exposure and some subset of the 

confounding factors) and to estimate the regression parameters based on the model. This 

procedure does not account for the variability inherent in deciding which model is correct. 

The phrase "adjustment uncertainty" is used to describe the uncertainty arising from the 

decision regarding which variables should be included in the model. 

Bayesian Model Averaging (BMA) was proposed as a procedure to account for model 

uncertainty. The general idea behind BMA is that instead of considering a single model, 

where some predictors are included and some are excluded, we fit all possible models 

and average their parameter estimates based on a metric of predictive performance. This 

procedure performs competitively in out-of-sample prediction comparisons (Yeung et al. 

2005). 

Despite the apparent merits of the BMA routine, there is an inconvenient drawback to 

prediction-based metrics: there is no guarantee that BMA will give high weight to mod­

els with all the confounders. Instead, BMA chooses variables that maximizes predictive 

performance. This issue arises when covariates are correlated with the exposure, which is 

(by definition) present in studies that control for confounding factors. Crainiceanu et al. 

(2008) provide evidence that BMA does not necessarily provide sensible estimates of the 

exposure effect under confounding. They instead proposed a novel method called Struc­

tured Estimation under Adjustment Uncertainty (STEADy) that estimates the exposure 

effect without bias. 
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The STEADy routine is a frequentist approach that proceeds in two stages. First, it 
fits a model to identify the predictors of exposure. After identifying these confounders, 
a model that fits the outcome based on all the other variables is run. The second model 
is guaranteed to include the exposure and the confounders related to exposure (found in 
step 1), and variable selection is done on the remaining confounders. In the presence of 
confounding, regular BMA does not do as well as STEADy at estimating the exposure 
effect (Crainiceanu et al. 2008). 

A Bayesian version of the STEADy procedure is proposed in Wang et al. (2012). Wang 
et al. (2012) provide two methods, called Bayesian Adjustment for Confounding (BAC) 
and Two-phase Bayesian Adjustment for Confounding (TBAC). Both methods involve two 
models: one that uses confounders to predict exposure, and one that uses both exposure 
and confounders to predict outcome. Their methods are truly Bayesian in the sense that 
they use a Markov Chain to calculate the posterior distribution. 

This paper proposes a new Bayesian solution to the adjustment uncertainty problem 
that deals more readily with large samples than the approach used by Wang et al. (2012). 
The disadvantage of Wang et al.'s algorithms is that they are too slow to handle larger 
data sets. Instead, we use the same approximation as Raftery et al. (1997) to the pos­
terior, specifically that for large data sets the posterior is proportional to the Bayesian 
Information Criterion (BIC). This approximation makes it possible to handle data sets of 
greater size than the previous algorithms. We call our new method ATBAC, which stands 
for Approximate Two-phase Bayesian Adjustment for Confounding. 

We apply our new ATBAC algorithm to The Health Improvement Network (THIN) 
dataset, which contains information on statin users from Britain. We study the association 
between statin use and risk of stroke, adjusting for confounders. We observe, on a set of 
about 90,000 patients, several covariates including whether or not they took statins, their 
age, gender, alcohol usage, other drugs they take, and some additional information. It is 
unclear initially which variables are related to the exposure (statin usage), or the outcome 
(stroke), so it seems reasonable that this is a problem of model uncertainty. Since clinically 
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we are interested in the unconfounded effect of statin on stroke, we claim that this is a 

problem that fits into the adjustment uncertainty paradigm. 

In Chapter 2, we will look at a technical overview of several existing variable selection 

methods, and see how the new algorithm fits in. In Chapter 3, we discuss the THIN 

data, and see how the new algorithm performs on it. In Chapter 4, we present some 

simulations that discuss an underdeveloped area in variable selection. We also show via 

simulation that the novel Approximate Two-phase Bayesian Adjustment for Confounding 

(ATBAC) algorithm gives reasonable results when the distribution of the response is a 

survival outcome instead of a normal random variable. We finish with some discussion and 

concluding remarks in Chapter 5. 
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Chapter 2 

Method 

For the purposes of this paper, we will consider the variable selection problem on P covari­

ates and a single response. Without loss of generality, we exclude the interaction terms, 

so overall we consider 2P models for the response. Furthermore, we assume that there is a 

single covariate, denoted X, whose effect on the response Y we are interested in estimating. 

We call this X the exposure. 

One obvious method to consider is simply fitting every model to the data, and choosing 

whichever model provides the best predictive performance. Ignoring for the moment that 

this is infeasible for even moderate P, there is another potential issue: what if there are 

several models with very similar predictive performance, but different regression parameter 

estimates? Making inference on a single model alone, when the model is chosen from the 

data, has been argued to be risky (Draper 1995). 

Using the same notation as Wang et al. (2012), we begin by considering a model for 

estimating the effect of an exposure, X, on an outcome Y. We begin by discussing the same 

approach as Wang et. al (2012), using the context of simultaneous regression models with 

two equations: one equation relates the covariates, denoted by U, to the exposure X, and 

the second relates the covariates U and X to the outcome, denoted by Y. In each equation, 

the potential confounders U are included or excluded according to a vector of indicators 

aX E {O, I} and a Y E {O, I}. We let a~ = 1 (or a~ = 1) whenever Um is included in 

the exposure (or outcome) model. We have a set of P potential confounders, denoted by 

U = U1 , U2 ... Up , identified because they possibly affect Y. If these variables are related to 

both X and Y, it is important to the estimate of X that they are included in the model on 

Y. We write the true model as 
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p 

E(Xi/Ui) = Lam Xbm aX Uim 
m=l 

P 

E(Yi/Xi , Ui) = /3a
Y 

Xi + Lam Y bm a
Y uim . 

m=l 

We denote the true value of the interesting coefficient by /3, and the remaining coeffi­

cients by b. The relationship between the confounders and X is expressed in the bax 
8 and 

the relationship between the confounders and Y is expressed in the baY 8. The interpreta­

tion of the b8 changes depending on which variables are included in the model, but their 

estimates are not of interest. 

At this point, the treatment of the models diverges depending on the algorithm chosen. 

What follows is an overview of variable selection algorithms in chronological order. 

2.1 Review of Current Methodology for Variable Se-

lection in Regression 

2.1.1 No Model Averaging or Variable Selection Whatsoever 

This algorithm is remarkably straightforward: decide on a model for the outcome, and fit 

all the covariates to it, for example using OLS. When the number of sample points N is 

lower than the number of covariates P, the algorithm cannot be run. Supposing that the 

algorithm can be run, fitting irrelevant covariates to the outcome results in over-fitting, and 

the result is poor out-of-sample prediction when compared to variable selection algorithms. 

Essentially, if a covariate is unrelated to the response and it is given a non-zero parameter 

estimate, then as that covariate changes, the model's estimate of the truth will be even more 

variable than before. Furthermore, fitting additional covariates causes a loss of degrees of 

freedom, which in turn creates extra variability in the estimate of the parameter of interest. 

The extent of these issues will be discussed later. 
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There are two interesting advantages to not doing model selection. The first reason is 

that model selection needs to evaluate up to 2P models, which could be quite high even 

for moderate P. Conversely, ignoring variable selection in regression simply fits 1 model, 

which takes significantly less computational time. On large data sets with high Nand 

moderate P, it might be quite a bit faster to not do model selection. The other reason 

one might want to not use model selection is that standard regression, using maximum 

likelihood, gives consistent parameter estimates for each variable. These are very desirable 

properties for inference. A model selection technique does not provide a guarantee on which 

parameter estimates are interpretable. 

2.1.2 Stepwise Variable Selection 

Stepwise regression does not consider the model for exposure at all. Stepwise regression 

uses a heuristic (like the AIC) to evaluate the quality of a model, typically imposing a 

penalty for extra parameters that do not add to predictive performance. Usually no special 

treatment is given to the exposure variable, although it can be forced into the model. 

In one implementation of stepwise (known as "backward selection"), the algorithm starts 

with a~ = l'v'm. Then stepwise uses a greedy algorithm to maximize the AIC by removing 

parameters one by one from the model that do not add to predictive performance, until 

such a step is impossible. The algorithm then terminates. 

Backward selection, and other stepwise variants, are not desirable for several reasons. 

Firstly, stepwise tends to under-report model uncertainty, and subsequently under-reports 

the estimate of the variance in parameters. Inference is made assuming the chosen model is 

the true model. Secondly, stepwise gives no treatment at all to the exposure model, which 

is necessary to control for confounding. Since determining the effect of X on Y is the whole 

point of doing the study, stepwise regression is not a desirable solution to this problem. 

The key benefit to stepwise is that it does fairly fast model selection, and does a rea­

sonable job of eliminating completely useless covariates. It is also fully automated. Some 

variable selection techniques (e.g. Raftery's BMA) do backward stepwise to eliminate the 
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least likely candidate variables, and do model averaging once P is more moderate. 

2.1.3 Bayesian Model Averaging 

Traditional BMA does not consider the exposure model. In the truest form of BMA, all 2P 

models have their likelihoods evaluated; the posterior likelihood is found by multiplying the 

likelihood by the prior (although typically the prior is set to be uniform across the models, 

so that term drops out). The posterior likelihoods are then normalized into posterior 

probabilities. 

Let the posterior probability of any model j be denoted as P(ey~IY), and the data be 
J 

denoted by D. Then, for a given covariate Um 
2P 

E[,BmIDJ = L E(,BmI D, eyY)P(eyYID). 
i=l 

Essentially the posterior mean of a covariate is given as the weighted average of its 

estimate over all possible models, weighted by the posterior probability of the model, and 

multiplied by an indicator that is 0 if the covariate is excluded from the model. 

This approach is fine if interpreting the covariates is not of interest; that is, if high 

predictive performance is the only goal. However, if the actual covariate effects are of 

interest also, then BMA falls short. 

To illustrate conceptually the problem with BMA, consider the following scenario: Two 

variables, X and U, are related to the outcome Y. We are interested in the effect of X on Y. 

Suppose also the effect of X on Y is somewhat larger than the effect of U on Y, and finally 

suppose that X and U are fairly heavily correlated. BMA fits 4 models to the data: one has 

no covariates, one includes X but not U, one includes U but not X, and one includes both 

X and U. The models that do not include X have relatively poor predictive performance, 

so BMA does not place a lot of posterior probability on them. The two remaining models 

have nearly equal predictive performance. 

The issue with BMA lies in the model that includes X but not U. Since X and U are 

correlated fairly strongly, the posterior estimate of the mean of X will be biased in the 
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direction of the effect of U (e.g. if U was positively correlated with Y, then X would be 

biased upwards of the true value of X). This is an example of confounding. Clearly the 

model with both X and U included is unbiased for the effect of X, and averaging these two 

models (the one with X, and the one with both X and U) leaves us with a biased estimate 

of the effect of X on Y. 

Various simulations have been done in recent papers (Crainiceanu et al. 2008 , Wang 

et al. 2012) to show that this problem exists in reality. 

2.1.4 Structured Estimation under Adjustment Uncertainty 

(STEADy) 

Crainiceanu et al. (2008) observed the following: if the algorithm choses a model that 

includes all the variables related to X and the variables related to Y, the the effect of X on 

Y will be unbiased. This eliminates confounding. 

First, we define some notation: let CY E 0,1 be, as before, an indicator vector denoting 

whether the a particular variable is in the model. We also partition the 2P models into 

M+1 subclasses, called orbits by Crainiceanu et al. (2008), where each class has a fixed 

number of covariates (e.g. the oth orbit has the single model with no covariates, the 2nd 

orbit has (;') models, etc.). For each orbit, define the dominant model to be the model with 

the highest likelihood. The set of P+1 dominant models comprises the dominant model 

class. As before, we let X be the covariate of interest, U be potential confounders, and Y 

be the outcome. Again, we wish to estimate the effect of X on Y. Finally, we define the 

exposure model as the regression on X by the covariates U, and the outcome model to be 

the regression of X and U onto Y. 
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dominant models in two consecutive orbits) 

3. Let the number of covariates found be denoted as L. 

4. All the covariates found related to X (as well as X) are forcibly included into the 

future model on Y (e.g. in the notation of Wang et al., set a~ = 1). 

5. Using the outcome model, construct the dominant model class. X and any Urn related 

to X are automatically included; model selection is done on the remaining P - L 

covariates 

6. Find the final model in the same way as step 2. 

The STEADy algorithm was groundbreaking in the sense that it was the first asymptotically 

unbiased model selection algorithm in the presence of confounding. Nonetheless, we suggest 

there is still some room for improvement for two reasons. Firstly, the algorithm is not 

Bayesian; it does not incorporate any prior information. Secondly, finding the model with 

the highest likelihood in the ith orbit with 100% probability requires evaluation of all 

(~) models. The STEADy algorithm does not evaluate all the models, rather, it runs a 

randomized algorithm to evaluate a small subset of them and chooses the one among those 

that has the highest likelihood. While this improves the runtime drastically, the algorithm 

remains to be fairly slow even on mid-size datasets. 

2.2 New Contribution: Approximate Two-Phase Bayesian 

Adjustment for Confounding 

Having concluded a discussion of the methods that have been published to date, we move 

on to the new method proposed in this paper. Similar in spirit to Wang et al.'s Two-phase 

Bayesian Adjustment for Confounding, this algorithm (ATBAC) provides a significant in­

crease in speed to Wang's algorithm while maintaining similar results in simulation. 
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ATBAC proceeds by running BMA twice, and setting the prior probabilities on the 

second algorithm in accordance with the findings of the first. The first stage of ATBAC 

uses BMA to regress the confounders U onto the exposure X. Any confounders with non­

trivial probability of being related to X (> 5%) are included in the second model by setting 

their prior probability to 1.0. During the second stage of ATBAC, we run BMA again 

using both X and U to predict Y, but some of the U's (and X) are forcibly included in the 

models. Wang et al. (2012) mention this as a possible interpretation of TBAC; combining 

this idea with the BIC approximation of Raftery et al. (1997) gives a practical Bayesian 

solution for large data sets. 

BMA provides biased posterior parameter estimates when variables that are related 

to both X and Yare not included in the model. The goal of ATBAC is to eliminate 

this possibility. ATBAC's first model regresses the covariates U onto the exposure X using 

regular Bayesian Model Averaging. Recall that the posterior probability of a variable being 

included is the sum of the posterior probability of all the models that it is included in. From 

the first model of ATBAC, we get for each variable a posterior probability that it is related 

to the exposure. We use this to construct the prior for the second model. 

In the linear case, the model for X is given as above: 

P 

E(Xi) = Lam Xr5m aX Uim 
m=l 

The key difference between the method of Wang et al. (2012) and this method is imple-

mentation; Wang uses a full Bayesian approach, whereas ours uses the same approximation 

as Raftery et al (1997), using BIC weights to approximate the appropriate integral instead 

of a MCMC routine. This approximation improves the run-time to make it applicable to 

larger data sets. 
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2.3 The Need for Model Averaging 

We return to the problem of fitting a model to a data set with response Y, explanatory 
variable of interest X, and alternate covariates U. As the number of data points approaches 
infinity, and with a finite set of models, eventually one model will contain all the posterior 
mass. Certainly in this case averaging over the set of models weighted by posterior proba­
bility is a waste of time. It is not an unreasonable extension to claim that with very large 
N, the vast majority of the posterior mass might still be placed on one model, and again 
model averaging would be of little use. In other words, we don't need variable selection 
when N» P. 

One (computationally) inexpensive approach in this case is to assume that the true 
model is the full model. This obviously has some drawbacks, which will be discussed shortly. 
The advantage of fitting a full model (and ignoring variable selection) to the data is twofold 
- firstly, it produces the most unbiased estimate this data set can provide (obviously there 
is no accounting for unmeasured confounding), and secondly, it is computationally cheap. 
On large data sets, having answers in seconds instead of days is surely a desirable quality. 

Fitting a full model to a data set without thought to variable selection is not a popular 
idea, for several reasons. Fitting unnecessary variables causes overfit, and higher variability 
in prediction. This is true, of course - however, this paper does not consider prediction a 
goal. This paper is concerned with unbiased parameter estimation. In the THIN data that 
we will discuss in Chapter 3, we will see that the research question discusses estimation of 
the effect of statin on health, which is not a prediction based goal. 

A second complaint regarding fitting the full model is that the variance of the parameter 
estimates is higher than necessary, on account of fitting irrelevant covariates. This is correct, 
but what is not stated is the magnitude. For high N and a moderate number of covariates, 
adding a covariate with no relation to either Y or X does not actually have a particularly 
sizable effect. We will see a numerical assessment of this feature in the next section. 

A final issue with fitting models without variable selection is that if the covariate of 
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interest, X, is highly related to a confounder, U, then the variance of the estimate of the 

coefficient on X will significantly increase. For unbiased prediction, however, including this 

covariate in the outcome model is essential. Without this parameter in the outcome model, 

we have no way of knowing whether it was related to Y, and if it was, whether it was 

through its correlation to X or by its own accord. Consequently, algorithms that don't 

include a model for both exposure and outcome provide biased estimates of the effect of 

exposure on outcome. An algorithm that includes both models is forced to include such 

correlated covariates every time, and thus fitting a full model does not differ from any other 

unbiased estimation procedure in this respect. 
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Chapter 3 

Results 

3.1 THIN Data 

Statins are the most popular cholesterol lowering drug in the world (Rutisheiser, 2006). 

Several randomized experiments have confirmed their ability to prevent cardiovascular dis­

ease. In this data analysis, we study the relationship between statins and stroke risk while 

adjusting for confounders such as age, medical history, and prior drug use. 

The Health Improvement Network database (THIN) dataset is a collection of medical 

records from Great Britian. These records intend to amalgamate prescribing and diagnostic 

information for various drugs, including statins. Information attained is anonymous. Death 

rates and prescription rates are similar to other sources (Smeeth et al. 2008). The source 

population is the 5.5 million people registered at the participating general practices between 

January 1995 and December 2006. 

The target population in the THIN data is the same as in McCandless et al. (2010), who 

analyse UK patients age 65 and over who are registered at one of the 303 general practices 

that contributed data to THIN during the aforementioned timeframe. Following Smeeth 

et al. (2008), statin users are defined as anybody who starts taking statins after 1995 and 

is registered for at least the previous year at one of the participating general practices. 

McCandless et al. (2010) use a matched design where each statin user is matched up with 

up to 5 non-users; we use the same 90324 patients as McCandless et al (2010). 

One purpose of the study was to obtain an estimate of the effect of a statin on the 

expected time until a person has a stroke. Ideally the analysis would show an odds ratio 

for statins less than 1, indicating that statins decrease a human's risk of stroke. This would 
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corroborate previous research. 

A short table of summary statistics of the THIN data is presented in table 3.1 

Table 3.1: Summary statistics of the THIN data 

Sample Size 90324 

Number Exposed 19274 

People with Strokes 3713 

Censored Observations 86611 

N umber of Ties 86222 

Mean of Exposed Time to Stroke (days) 1646 

Mean of Non-Exposed Time to Stroke (days) 1964 

Some other characteristics of the study population are given in table 3.2 : 

Table 3.2: Other characteristics of the study population 

Unexposed Exposed 

(Statin Non-user) (Statin User) 

N umber of Patients 71050 19274 

Average Age 72.57 73.09 

Number of Males 30848 (43.4%) 8277 (42.9%) 

Number of Females 40202 (56.6%) 10997 (57.1%) 

Average BMI 26.29 26.95 

Diagnosed with Diabetes 8953 (12.6%) 4867 (25.3%) 

Diagnosed with Dementia 423 (0.6%) 69 (0.4%) 

Diagnosed with Cancer 5479 (7.7%) 1271 (6.6%) 

Prior use of Steriods 5826 (8.2%) 1492 (7.7%) 

Prior use of Aspirin 12650 (17.8%) 11296 (58.6%) 

Prior use of Diuretics 24287 (34.2%) 10048 (52.1%) 
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A plot of the unadjusted survival curves is found in Figure 3.1. We see the red line, 

denoting the statin users, with survival probabilities materially lower than the black line 

describing non-statin users. A log rank test for difference between the two curves gives p 

< 0.001. Interestingly, the results indicate that statins are associated with higher risk of 

stroke. 
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Figure 3.1: Unadjusted survival curves 
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If we fit a Cox proportional hazards model to the unadjusted data (regressing statin 

exposure onto survival time), we see a log-odds ratio of about 1.2. This is not a very sur­

prising result because doctors prescribe statins to only the sickest patients (e.g. those who 
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have already been diagnosed with diabetes, see Table 3.2). This hazard ratio is obviously 

biased from confounding - we expect the true hazard ratio to be less than 1.0. It is not 

much of a stretch to claim that additional covariates need to be included in order to give 

an unbiased estimate of the effect. The question now is: which variables? For reference, a 

complete list of the availiable variables can be found in Table 3.3. 

The classical approach to variable selection is to simply not bother-instead, add all 

the variables into the model. This approach can produce high variance estimates when 

there is high collinearity between the variables, and indeed, this data set has some strong 

correlations between the covariates. These correlations exist partly because a lot of the 

variables are measuring an idea of "overall health". For example, coronary heart disease, 

cardiovascular disease, peripheral vascular disease, atherosclerosis, atrial fibrilation and 

heart failure will all be highly correlated because they are all measures of the patient's 

heart. It is concerning that adding all these variables will cause an increase in variance 

estimates and subsequently it will be more difficult to detect a statin effect. How should 

we proceed with the analysis? (Raftery et al. 1997) proposed using Model Averaging to 

account for our uncertainty about which model is correct, and proceed using his Bayesian 

framework. The results of this solution (and our new, refined solution) appear below. 

If we ignore model uncertainty for the time being and simply add all the covariates 

into the model and use a regular Cox proportional hazards model, we attain the parameter 

estimates in Table 3.3. For each covariate, we see the estimated log-odds ratio, the odds 

ratio, and the estimated standard error of the log-odds ratio. 
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Table 3.3: Estimates obtained from a full Cox Regression of THIN data with all covariates in the model 
Covariate Coef Exp(Coef) SE Comorbidities Coef Exp(Coef) SE Drugs Coef Exp(Coef) SE 

Stat in Exposure -0.023 0.977 0.049 Diabetes* 0.256 1.292 0.044 Hormone Rep!. Therapy -0.097 0.908 0.118 

Age* 0.053 1.054 0.003 Coronary Heart Disease 0.151 1.163 0.087 Antipsychotics 0.046 1.047 0.144 

Gender* -0.299 0.741 0.037 Cardiovascular Disease* 0.607 1.835 0.075 Antidepressants* 0.19 1.21 0.058 

BMI -0.002 0.998 0.004 Peripheral Vasc. Disease* 0.32 1.376 0.078 Steroids 0.013 1.014 0.063 

Low SES* 0.137 1.147 0.041 Atherosclerosis -0.154 0.858 0.087 Fibrates -0.1 0.905 0.385 

Rate of statin* 0.081 1.084 0.015 Dementia* 0.924 2.518 0.163 Cytochromes -0.087 0.916 0.077 

Consult Physician 0.006 1.006 0.05 Cancer 0.035 1.035 0.063 Lipid Lowering Agents 0.129 1.138 0.37 
f-' 

Current Smoker* 0.156 1.169 0.042 Atrial Fibrilation* 0.266 1.305 0.085 Nitrates -0.088 0.916 0.055 -.:r 
Former Smoker* -0.089 0.915 0.042 Heart Failure -0.001 0.999 0.074 Aspirin* 0.14 1.15 0.043 

High Alcohol* 0.304 1.355 0.148 Hepatic Illness 0.109 1.115 0.278 Beta Blockers* 0.101 1.106 0.042 

Moderate Alcohol 0.062 1.064 0.056 Renal Disease 0.097 1.101 0.16 Calcium Channel Blockers 0.053 1.054 0.043 

Former Alcohol* 0.37 1.448 0.161 Thyroid Disease -0.1 0.905 0.074 Diuretics* 0.094 1.098 0.045 

Hyperlipidemia 0.009 1.009 0.061 Inotropes* 0.196 1.216 0.087 

Hypertension * 0.156 1.169 0.039 Anticoagulants* -0.167 0.846 0.081 

Antihypertensives* -0.115 0.891 0.044 

Cardiovascular Drugs 0.045 1.046 0.056 

* Indicates the Frequentist p-value < 0.05 
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Next we fit three methods to the THIN data: full Cox, BMA, and ATBAC. We provide 

the estimates of the statin exposure effect from the three algorithms that can be used to fit 

survival data in table 3.4. The STEADy algorithm was not used here because the algorithm 

given by the authors does not work under the survival context. 

Table 3.4: Estimates of Exposure(statin) effect on stroke from 3 different methods 

Algorithm Coef Exp(Coef) Estimated Standard Error 

BMA -0.020 

ATBAC -0.023 

Full COX -0.023 

0.980 

0.977 

0.977 

0.045 

0.049 

0.049 

It is worth mentioning that ATBAC gives the same estimate for exposure that a full 

Cox model does. BMA, however, gives a different estimate. Admittedly here the estimates 

are not particularly far apart, and neither is significantly different from zero. 

It is worth mentioning that a full table of regression parameter estimates from AT­

BAC is not presented. This is quite deliberate. ATBAC is designed to be unbiased and 

interpretable for exactly one parameter: the exposure effect. ATBAC does not provide un­

biased or interpretable estimates of the other parameters. It is for this reason that ATBAC 

is sometimes more efficient than fitting the true model, and yet more useful than BMA. 

BMA gives zero interpretable parameters (the price paid by having such good prediction), 

fitting the full model gives the worst prediction but each parameter estimate is unbiased. 

ATBAC (in addition to STEADy and Wang et al.'s algorithms) is interpretable for just 

exposure. 

Indeed, the conclusion of this analysis is twofold: a full Cox model appears to perform 

similarly to ATBAC when N » P, and (according to this analysis) statins do not have a 

statistically significant effect at a = 0.05. 
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3.2 The need for variable selection when N » P 

The similarity of the results for different methods in table 3.4 questions the need for variable 

selection when N > > P. Let us suppose the true model for a response Y is: 

Y = (3oX + (31U1 + (32U2 + E 

(30 = (31 = (32 = 0.1 

E rv N(O, 1). 

The covariates X, U1 , and U2 are all independently generated from N(O,I). Furthermore, 

suppose we add P "useless" covariates that have no contribution to the response at all and 

are also uncorrelated to X, for a total of P+3 columns of data. As before, the parameter 

estimate of X is of interest. 

The best model to use for unbiased parameter estimation is the true model; no variable 

selection method can attain a better estimate of the coefficient on X than this model. 

Obviously we don't know the true model, but it makes for a convenient "gold standard"­

algorithms that do nearly as well as the true model are better than ones that do not. 

Let us compare two models; the first is the true model, where 

and the second is a model with P unnecessary covariates U = (U3 , U2 .... Up +2): 

The unnecessary covariates are generated from N(O,l) with no correlation between them. 

We are interested in the ratio of the variances of the parameter estimates of X in these 

two models. When we fit both models to a set of data, their parameter estimates of (31 are 

unbiased, so the expected value of the ratio of variances reduces to a ratio of the MSEs. 

We are interested in seeing how bad it gets when we fit the full model instead of the true 

model. 
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We begin by constructing the expected value of the variance of the true model. Without 

loss of generality, assume the first covariate is the one of interest; then the variance of its 

parameter estimate (when using Ordinary Least Squares) is given by the top left entry of 

An alternative way to write this variance is using the Variance Inflation Factor, denoted 

as 1_lR2 : 

Where R2 is the correlation coefficient of the regression of the covariates (not including 

X) onto X. We denote the variance estimates of the two models by Var(;31) and Var(;32), 

where model 1 is the true model and model 2 contains unnecessary covariates. 

Var(;31) 

Var(;32) 

1- R22 

1- R12 
SSResidual2 

SSTotal2 
SSResiduah 

SSTotah 

Since the data set is the same, and therefore the vector of X is the same in both cases, 

the SSTotal will be identical, and we can cancel this term out. Observe that the SSResidual 

is based on a regression of 2+P covariates, in addition to an intercept term. 

Var(;3r) 

Var(;32) 

S S Residual2 

S S Residualr 

2 
X N-P-3 

X2
N_3 

For reasonably large N, this reduces to: 

Var(;3r) "-' N - P - 3 

Var(;32) "-' N - 3 
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Or more generally speaking: 

Var(;31) '" DFModel2 + 1 
Var(;32) '" DFModell + 1 

(3.1) 

This result also holds if the covariates U are correlated with each other. The result does 
not hold if the covariates are correlated with X. 

This calculation gives us an idea of the magnitude of the maximum possible effect of 
using variable selection. When discussing the precision of effect estimation, the result of 
removing K variables results in K additional degrees of freedom to estimate a parameter. 
In the case where N is significantly greater than P, a single additional degree of freedom 
provides a negligible benefit, and perhaps even P additional degrees of freedom does not 
provide a serious improvement in precision. If this is the case, then variable selection is not 
needed - fitting the full model is quite sufficient. 
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Chapter 4 

Simulations 

4.1 The need for variable selection when the number 

of data points (N) greatly exceeds the number of 

covariates (P) 

We have previously shown theoretically that variable selection might not be relevant for 

every choice of N (number of data points) and P (number of covariates). Specifically, we 

showed through (3.1) that in linear regression, when useless covariates are uncorrelated 

with the exposure, the number of covariates divided by the number of data points gives 

the expected percentage increase in MSE when adding P irrelevant covariates to the true 

model. Now, we turn to simulation to get an idea of the benefits of variable selection, and 

a better grasp on when it is, and isn't, effective. 

We begin with a simulation that should demonstrate whether (3.1). We choose a par­

ticular model for Y that is taken from (Crainiceanu et al. 2008). The true model for Y is 

a function of 3 variables: X, U1 , U2 , with no intercept. 

y = 130X + 131U1 + 132U2 + E 

E rv N(O, 1) 

130 = 131 = 132 = 0.1 

The correlation between X and U1 is 0.7. The variable of interest is X, as such, we are 

interested in the estimates of the parameter value 130. 
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In the first simulation, we will fit two models to each generated data set. The first model 

will regress these 3 covariates onto Y, and will be called the "true model". The second 

model that is fit, called the "full model" , is given an additional P covariates (denoted as U) 

that have no relation to X, Y, U1 , or U2 . This simulation should show how the MSE breaks 

down when we add numerous useless covariates to a regression model. 

This first simulation uses N = 100, with P varying from 5 to 90 in increments of 5. For 

each P, 10,000 runs are used. We fit both models during each run. We then compute the 

MSE of the parameter estimates of /30 for both the full and true model. We then take the 

MSE of the full model and divide by the MSE of the true model to create a summary table, 

shown below. Beside these values, we put the theoretical values we should obtain from the 

closed form of this ratio. 
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Table 4.1: Looking at the relationship between P, N, and the ratio of MSE : N = 
100 (10,000 reps) 

P DFTrueModel+1 Simulated MSE Ratio 
DFFullModel+l 

5 1.05 1.05 

10 1.12 1.11 

15 1.19 1.18 

20 1.26 1.27 

25 1.35 1.37 

30 1.45 1.47 

35 1.57 1.61 

40 1.71 1.73 

45 1.88 1.91 

50 2.09 2.11 

55 2.34 2.37 

60 2.67 2.72 

65 3.10 3.21 

70 3.69 3.67 

75 4.57 4.84 

80 6.00 5.98 

85 8.73 9.45 

90 16.00 18.95 
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The results given in Table 4.1 demonstrate the validity of equation 3.1. We expect 

these columns to be nearly identical (except for simulation error), and we indeed see that 

the columns are very close. This is a helpful justification that the formula is correct. It is 

interesting that the quantities are more similar when -J1 is small than when -J1 is large. 

Now that we have compared the full model to the true model, we are interested in seeing 

how well ATBAC performs as a variable selection technique. This time, for each simulation 

run we will compute a parameter estimate from the true model and from a model that uses 

the ATBAC procedure. As before, we will compute the ratio of the MSE of the parameter 

estimates of ATBAC divided by the MSE from the true model. We would expect that these 

ratios would be lower than the ratios attained when fitting the full model, because ATBAC 

should provide some reduction in variance. 

This table uses N = 100, and P from 10 to 40 in increments of 10. The theoretical 

values from the ratio of the full model to the true model are shown as well, for comparison. 

This small table was produced because the ATBAC algorithm, although fast relative to its 

counterparts, is still not very speedy, and 10,000 reps takes a long time. 

Table 4.2: ATBAC vs Full model: N = 100 (10,000 reps) 

P ATBAC DFTrueModel+l 
DFFullModel+ 1 

10 

20 

30 

40 

1.02 

1.12 

1.26 

1.52 

1.12 

1.26 

1.45 

1.71 

It is fairly apparent from this table that ATBAC provides a substantial decrease in the 

MSE ratio. We claim that ATBAC is worth using for N = 100 if we have a set of variables 

to consider that are uncorrelated with anything. 
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4.2 Simulations of various variable selection techniques 

under confounding 

We have seen in the previous section that when N is small and Y is a linear function of 

X, ATBAC seems to provide an improvement over the full model in terms of MSE when 

estimating a parameter of interest. We now look at a variety of simulations that more 

closely mimic the THIN data. We make two changes to the previous simulations: firstly, 

we use N = 1000 instead of N = 100, and secondly, we will use a few additional methods 

to fit the models to the data. These simulations are very similar to the simulations done 

by Crainiceanu et al. (2008). 

We present three sets of simulations in this section. First, we mimic the results of 

Crainiceanu et al. (2008) by constructing a simulation under a linear regression framework 

and estimating the parameter of interest, Bo. We find (as they did) that BMA gives a 

biased estimate of Bo, but STEADy and ATBAC appear unbiased. We then extend the 

simulation framework to more closely mimic the THIN data in the second simulation, with 

X as a binary variable and Y as a binary variable. Finally in the third simulation, we change 

Y again - this time Y is a survival time with moderate censoring, and X remains binary. 

We feel that the simulation framework resembles the THIN data, disregarding correlations 

among the U's and between the X's and U's. 

It is worth mentioning that neither STEADy nor Wang's BAC/TBAC algorithms can 

process survival data. ATBAC, on the other hand, handles it easily because BMA software 

already exists for survival outcomes. One of the chief purposes of this section is to show 

that the ATBAC algorithm is unbiased under a survival outcome. It is unclear whether 

the results from linear regression are fully analogous when X is not marginally normal, or 

when Y has a distribution other than normal. These simulations should demonstrate the 

ability of the ATBAC algorithm to provide unbiased results under various distributions of 

Y (even when Y is not normal). 

In the following sections, we will demonstrate the ability of 5 variable selection algo-
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rithms to estimate the parameter of interest: BMA (Bayesian Model Averaging, with the 

exposure effect forced into the model), ATBAC (Approximate Two-phase Bayesian Adjust­

ment for Confounding - the novel method proposed in this paper), STEADy (Crainiceanu 

et al., 2008), Stepwise Regression (Backwards stepwise), and finally, we also fit the full 

model (with every covariate) for comparison. 

4.2.1 Simulation 1: Normal Y, Normal X 

The first simulation gives Y a normal distribution as follows: 

and the true model for X is 

Y = fJoX + fJlUl + fJ2U2 + £ 

£ '" N(O, 1) 

fJo = fJl = fJ2 = 0.1 

x = 0.5Ul + 0.5£ 

£"'N(O,I). 

In keeping with Crainiceanu et al. (2008), there is about 70% correlation between X and 

Ul . In addition to these variables, there are an additional 49 variables that are unrelated to 

X or U (in other words, completely uncorrelated with everything). As mentioned previously, 

N = 1000. We use 500 trials to generate the following results: 

From left to right, the columns in Table 4.3 are the average simulated bias, the average 

reported standard error (from the algorithm used to fit the data), the simulated average 

standard error, the simulated mean squared error, and the percentage of the 95% confidence 

intervals that actually cover the true value. The CJ's were generated from each run using the 

parameter estimate + / - twice the standard error estimate. We draw the attention of the 

reader to a couple key points: firstly, neither BMA nor Stepwise regression have coverage 
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Table 4.3: Five different algorithms fitting linear models with correlation; N = 1000 

Bias SEE SSE MSE 95% coverage probability 

BMA 0.0387 0.0354 0.0447 0.0035 0.674 

ATBAC 0.0005 0.0446 0.0433 0.0019 0.940 

STEADy 0.0024 0.0445 0.0465 0.0022 0.948 

Stepwise 0.0499 0.0390 0.0530 0.0052 0.640 

Full -0.0003 0.0455 0.0470 0.0022 0.942 

probabilities anywhere close to 95%, and secondly, both BMA and stepwise regression 

appear to give biased prediction. These are unsurprising conclusions that corroborate 

Crainiceanu et al. (2008). ATBAC, STEADy, and the full model are all unbiased, and the 

difference in MSE between the 3 algorithms does not appear materially different for N = 

1000, P = 50 in the linear setting. 

4.2.2 Simulation 2: Binary Y, Binary X 

We now consider a model for a binomial outcome. The covariate of interest and the response 

are both binomial, to simulate an interpretation of the statin data (e.g. let Y = 1 denote 

a stroke within a given timeframe). The model for X is given by 

X B ernoull i (p) 

p exp(Ul) 
l+exp(UIl· 

The model for Y is given by 

Y '" B ernoull i (p) 

p exp(,6oX +,61 U1 +,62U2) 
1+exp(,6oX+,61U1 +,62 U2) 

(30 - (31 = (32 = 0.1 

As before we ran all 5 algorithms on the simulated data to estimate Bo. Because these 

models take longer to run than in the linear setting, we used only 100 simulations. Since 
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X B ernoull i (p) 

p exp(Ul) 
l+exp(UIl· 

The model for Y is given by 

Y '" B ernoull i (p) 

p exp(,6oX +,61 U1 +,62U2) 
1+exp(,6oX+,61U1 +,62 U2) 

(30 - (31 = (32 = 0.1 

As before we ran all 5 algorithms on the simulated data to estimate Bo. Because these 

models take longer to run than in the linear setting, we used only 100 simulations. Since 
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the correlation between X and U1 is somewhat lower than in the linear regression case, we 
would expect BMA and stepwise to perform slightly better than in simulation 1, but they 
should still give biased parameter estimates. These results are given in 4.4. 

Table 4.4: Five different algorithms fitting binomial models with correlation; N = 
1000, 100 simulations 

Bias SEE SSE MSE 95% coverage probability 
BMA 0.0395 0.1323 0.1647 0.0292 0.880 
ATBAC 0.0010 0.1426 0.1351 0.0179 0.940 
STEADy 0.0208 0.1418 0.1451 0.0213 0.970 
Stepwise 0.0881 0.0945 0.1152 0.0208 0.840 
Full -0.0110 0.1472 0.1504 0.0227 0.940 

It is pleasing to note that we see the same conclusions as in simulation 1. When Y and 
X are both binary variables, BMA and Backwards stepwise provide biased prediction with 
confidence intervals that are too narrow. ATBAC, STEADy, and fitting the full model do 
not appear to be very different in terms of overall performance. 

4.2.3 Simulation 3: Survival Y, Binary X 

This final simulation intends to convince the reader that the ATBAC algorithm is unbi­
ased for parameter estimation when Y is a survival time (perhaps with censoring). This 
simulation is of particular interest because it closely mimics the THIN data, as the THIN 
data also has binary X and survival Y. It is worth mentioning again that neither STEADy 
nor BAC/TBAC are able to handle survival data. Consequently, it is necessary to provide 
some simulated evidence that this style of algorithm is able to provide unbiased parameter 
estimation. We intend to show that ATBAC is the first algorithm to use both an expo­
sure model and an outcome model to accurately estimate paramters under the survival 
framework. 
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For this simulation we omit STEADy, as it cannot conveniently handle survival data. 

We fit the remaining algorithm to the survival outcome. 

The model for Y is given by 

Y rv Exponential(p,) 

p, O.lX + O.lUI + 0.lU2 . 

We have censoring times C according to a similar distribution: 

C Exponential(p,) 

/1, 2 + O.lX + O.lUI + 0.lU2 • 

The censoring is fairly moderate; about 12% of the data are censored. 

Table 4.5: Two different algorithms fitting survival models with correlation; N = 
1000, 250 simulations 

Bias SEE SSE MSE 95% coverage probability 

BMA 0.0124 0.0754 0.0884 0.0083 0.896 

ATBAC -0.0046 0.0752 0.0804 0.0064 0.944 

Full 0.0224 0.0783 0.0876 0.0077 0.924 

Stepwise -0.0212 0.0778 0.0933 0.0089 0.933 

STEADy 

- Indicates that this algorithm does not apply to the problem 

The results for this simulation are given in Table 4.5. Although we see that BMA ex­

hibits lower coverage probabilities than we would like, we observe that it is not nearly as 

bad as the linear regression simuation. It is worth mentioning, however, that this is mostly 

due to a poor model for X. Since the correlation between X and UI is not quite as strong 

under this setup as it was under linear regression, BMA gives comparable performance to 

the other algorithms. When the correlation between X and UI is increased, some infor­

mal simulations indicate that BMA performs much worse than its counterparts. The full 
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model is, as usual, not very different from ATBAC - we expect the difference in coverage 
probability between these two algorithms to be mostly due to chance. With that said, the 
simulation results suggest that the full model gives estimates that are somewhat too high. 
A further simulation of 100,000 runs was run to determine the magnitude of the bias of the 
full model; it turns out that a better estimate is 5% bias. 

It is worth noting that ATBAC, STEADy, and the full model display similar results 
in all 3 simulations. Even though we see that the full model can give biased parameter 
estimation under the non-linear scenario, the magnitude of the bias is not large (and it 
decreases with N, unlike error due to confounding). All three algorithms are consistent for 
the true parameter and provide the best coverage probabilities, and additionally have the 
lowest MSE. It certainly seems that in the linear case, when N > > P, N is of reasonable 
magnitude, and the correlations between covariates are not extreme, that variable selection 
is not worth using. These simulations do not present here a material difference in MSE, 
Coverage probability, or Bias between a full model and model that used variable selection 
in the linear case, and we see only slight bias in the non-linear case. Indeed, we have shown 
analytically that the full model in the linear regression case, with N = 1000 and P = 50, has 
only 5% lower precision than the true model. No variable selection technique that provides 
unbiased parameter estimation could hope to improve the MSE in parameter estimation 
by more than 5%. 
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Chapter 5 

Discussion 

We have demonstrated a Bayesian variable selection and model averaging technique that 

also gives unbiased parameter estimates. We will now discuss further where variable selec­

tion is worthwhile in the first place. 

First, it is worth recalling the purpose of variable selection and model averaging. Vari­

able selection is used to "free up" degrees of freedom from the data by eliminating variables 

that are worthless. While a more traditional method like BMA used predictive performance 

of the final model to judge a variable's "worthiness", and STEADy IBAC I ATBAC use two 

simultaneous models to determine this, the idea remains the same. Model averaging is 

used when it is unclear from the data as to whether a variable makes a positive impact; 

averaging over both possibilities weighted by posterior probability is an excellent choice. 

When N is large, and P is not terribly large compared to N, neither variable selection 

nor model averaging is necessary. Picking up K degrees of freedom improves the precision 

of the effect estimates by a multiplicative factor of KIN, which is not large (since P is not 

large relative to N, and K is surely no larger than P). Furthermore, model averaging is 

best used when it is unclear from the data whether a parameter has a material effect on 

the predictive performance of the final model. When N is nearly infinite, it is unlikely that 

there are any parameters that we are uncertain about - either they will have clear effects on 

the predictive performance, or the magnitude of their effects is sufficiently negligible that 

their additional impact on the predictive performance is marginal, and excluding them is 

not a problem. 

Crainiceanu et al. (2008) propose a simulation study that demonstrates why BMA does 

not give unbiased parameter estimation. What they neglect to discuss is that the STEADy 
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algorithm does not materially outperform a regular OL8 regression (that simply puts all the 
terms into the model) in terms of effect estimation in the same simulation. Our additional 
simulations in the non-linear case demonstrate the need to 

We have already seen that the maximum possible gain from a variable selection routine 
in the linear setting in terms of precision is roughly P / N. We conclude with the recom­
mendation that for large data sets with moderate P, say, N > 1000 and N >= 20P, that 
variable selection and model averaging is not worth using. There are, actually, two good 
reasons not to do variable selection or model averaging: firstly, using OL8 allows for inter­
pretation of ALL the covariates, instead of just one, and secondly, OL8 is a significantly 
faster algorithm. 

5.1 Clinical Variable Selection 

It may be uncomfortable for a researcher to simply put all the available variables into a 
model. It is generally considered poor practice to put a slew of variables that measure 
approximately the same thing into a model and assume that the results will work out well. 
We now discuss the context of this problem in terms of parameter estimation for N > > P. 

Firstly, we will make some assumptions and definitions to make the problem easier to 
discuss. As before, we consider the regression of an interesting variable X onto the response 
Y, in the presence of unknown confounding. We measure some alternative covariates D, 
which mayor may not be related to each other, X, and Y. We are concerned that adding 
a subset of the covariates D may be undesirable for the performance of the algorithm. 

One interpretation of this subset might be a set of factors that measure socio-economic 
status, such as the household income, maximum education level of either parent, or the cost 
of the family's most expensive car. We assume that these are correlated because they are 
all measures of the same thing, but we don't know how well they estimate socio-economic 
status. Furthermore, we make the assumption that socio-economic status is truly related 
to X and Y, and these auxiliary variables (such as household income) are related to X and 
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Y only through socio-economic status. In other words, the model that we fit to the data is 
incorrect. 

The important part of the argument, however, is from a practical standpoint. The 
researcher cannot measure socio-economic status directly, so he is never given the choice 
of including that variable into the model. His choice, instead, is to choose which, if any, of 
the covariates measuring socio-economic status should be included. 

Let us suppose that a covariate was supposed to measure socio-economic status, but 
instead it had no relationship to it whatsoever. The cost of including this variable into 
the model would be 1 degree of freedom. The claim is that when doing variable selection 
with N » P, this is very cheap. Since this is essentially the worst that can happen if we 
include a variable, we conclude that adding the variables is not expensive. The advantage 
of adding variables is that they will either reduce bias in the exposure effect estimate, or 
at worst keep it the same. The conclusion of adding every covariate when N > > P seems 
logical. 

5.2 A brief comment on N 

We have provided a proof that in the case where both X and Yare marginally normal 
random variables, N is not too small, and N is at least twenty times what P, then from 
equation 3.1 removing every covariate P gives at most a 5% increase in efficiency. However, 
if Y is not normal, then the number of rows in the dataset divided by P will not give similar 
results. 

The results generated from the analytical procedure do not strongly resemble simulated 
results when the response follows a distribution other than normal. If the response is, for 
example, a survival time, then even without censoring we would expect that the analytical 
formula would underestimate the" cost" of adding extra unnecessary covariates. Once we 
add in censoring, it is even more difficult to determine how much an extra covariate costs 
in terms of additional standard error. We can, however, provide a couple general comments 
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on the approximate cost under a response that follows a survival curve. Firstly, we would 

expect the cost to be higher than in the linear regression case, and secondly, censored 

points contribute less information than uncensored points. Data sets with large amounts 

of censoring but a large number of rows may give a misleading impression of data strength. 

As an example, the THIN dataset has 90344 observations, but 86611 are censored. 

Future work, via simulation study, could be done on this problem. It would be of 

practical use to be able to estimate the ability of a data set to absorb irrelevant parameters 

without too much additional standard error. Finding an approximate formula for the ratio 

of the M8E of the parameter estimates between the true model and the full model in the 

non-normal case would be helpful indeed. 

5.3 Concluding Remarks 

Traditional model averaging falls short when unbiased parameter estimation of regression 

coefficients is of interest. We have implemented a Bayesian routine that gives unbiased 

parameter estimates of a single covariate, and the routine is fast enough to handle the THIN 

dataset (8TEADy, BAC, and TBAC as given could not run it in a reasonable amount of 

time). We further observe that Model Averaging (or any variable selection technique) is 

only helpful towards the estimation of an interesting regression parameter when Nand Pare 

of about the same magnitude; when N is more than 20 times P, the model for the response 

is linear, and N is in any way large, model averaging provides no material advantage over 

OLS. 

When we apply both the improved BMA routine (ATBAC) and OL8 to the THIN 

dataset, the results are the same. Using this algorithm, the THIN dataset detects no 

significant impact of statin on stroke. It is reasonable that other unbiased methods (e.g. 

using Propensity scores) will estimate the exposure effect differently. Additionally, there 

are probably further unmeasured confounders that may still bias our estimate of exposure. 
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