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Abstract

Eulerian models based on integro-differential equations may be used to model collective behaviour,

by treating the group of individuals as a population density. In comparison with Lagrangian models,

where one tracks distinct individuals, Eulerian models are formulated as evolution equations for the

density field, and hence permit rigorous analysis to be performed. The population densities are

influenced by the social interactions of attraction, repulsion and alignment. We introduce a new

model for predator-prey dynamics that generalizes a previous integro-differential equation model

by introducing the predator dynamics and a blind zone for the prey. Extensive simulations were

performed to showcase the realism of the model, and these simulations are presented in four stages.

First, the prey reacts solely due to interactions with itself. Second, a stationary predator distribution

is introduced. Third, the predator’s distribution remains fixed but moves in a predetermined fashion.

Finally, the predator dynamics are governed by equations analogous to those of the prey. Variations

in the size of the blind zone for the prey are explored that can determine whether a prey cluster

stays together or splits apart. The prey and predator demonstrate realistic behaviours that are seen

in nature.
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Chapter 1

Introduction

In recent years many mathematical models have been introduced in an attempt to describe collective

behaviour in animal groups. Seeing a biological aggregation, such as a flock of birds, one can easily

become transfixed by the complexity of the movement of the group. Other forms of biological

aggregations are a school of fish, a swarm of insects, or a herd of quadrupeds, as seen in Figure

1.1. Specific examples that are well known are: swarms of mosquitoes, bees or locusts; herds of

caribou or zebra; a pod of orcas or a crowd of humans. A more complex system would be that of

multiple types of groups such as a predator-prey relationship or two species competing for food.

Some examples of multiple group behaviours are dolphins confining fish into a bait ball to make

capture easier [33], wolves chasing white-tailed deer [34] and Eleonora’s falcons’ high diving speed

technique to capture a bird in a flock[18].

The grouping behaviour of animals has advantages and disadvantages. One advantage is pro-

tection of which there are many forms. An animal in a group when in the presence of a predator

will have a higher chance of survival than a solitary individual because there are more potential

prey for the predator to catch. Also, if animals stay in groups, the chance that a roaming predator

will find the group is less than that of finding scattered prey within a given space because the group

occupies a smaller space than scattered individuals. Additionally, a school of fish can confuse a

predator by appearing large and making it difficult for the predator to focus on only one fish [33].

Another example of protection is that the larger a school of fish is, the more predators are required

to constrict the fish into a bait ball for easier capture [33]. One disadvantage of being in a group is

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Animal groups: Some examples of collective behaviour. The top left image

shows a school of fish. The top right image shows a flock of birds. The bottom left im-

age shows a swarm of insects. The bottom right image shows a herd of ungulates. All im-

ages are from http://www.inspiremonkey.com/2010/08/20-magnificent-photographs-of-swarming-

and-group-animals.
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there may not be enough food for everyone when the group is foraging. Another disadvantage is

an increase of predation because a large group is hard to hide. Despite the fact that finding a group

takes a predator more time, a large group is still more conspicuous than an individual.

When models are created for biological aggregations they are commonly based on three social

behavioural assumptions. These three assumptions are attraction, repulsion and alignment with

neighbours. An individual in a group will be attracted to neighbours that are far away, repelled by

neighbours that are too close, and align with neighbours that are neither too close nor too far away.

Three concentric circles depict the zone of influence for each social interaction. The repulsion zone

is centred in the middle with the alignment zone surrounding it. The attraction zone surrounds both

repulsion and alignment zones. These three assumptions provide the foundation for most model

types created to depict animal grouping.

There are two common types of models that are used to describe animal groups. The first is

Lagrangian models which are particle based models that consist of discrete animals interacting with

a finite number of neighbours. The second is Eulerian models which are partial differential equations

or integro differential equations that describe the evolution of the population density field. The

Lagrangian approach is a simple formulation of how each group member interacts with other nearby

members [9]. This formulation shows, to reasonable precision, many real biological aggregations.

However, it does not allow for rigorous analysis and becomes computationally expensive for a large

number of individuals. The Eulerian approach, which can be classified as a continuum or kinetic

version, commonly consists of a continuous population density that is convoluted with different

social interaction kernels.

The approach in our research is to use a two dimensional, nonlocal kinetic partial differential

equation model. The nonlocal nature of the model allows for both neighbours nearby and further

away to also have an influence [12, 21, 31]. The kinetic aspect of the model allows for parallels

to be made between biological aggregations and the more understood kinetic theory of gases [7].

Our research is a continuation of the work done by Fetecau in [13]. Fetecau extended the one

dimensional model from [11] to a two dimensional model, which incorporated a formulation of

angular orientation similar to [10,14] to add the alignment interaction for the second dimension. Our

research builds on the model in [13] by adding a blind zone and a predator. The blind zone produces

a more realistic reaction behaviour of individuals since they cannot see behind themselves. Blind

zones are commonly included in models of biological aggregations, such as in [9]. The addition of
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a predator gives another layer of complexity because biological aggregates do not live in isolation

from other species and are subject to predation.

There are many predator-prey models that are coupled difference or differential equations such

as in [4, 19, 22]. These are popular because they give an overall idea of what the population size is

and how the predator-prey relationship affects the population sizes. These models, however, do not

address the local, small time scale behaviour of the predator-prey relationship such as predators’

hunting strategies or prey avoidance strategies. In [2], a system of hyperbolic reaction-diffusion

equations is used to describe the spatial-temporal dynamics of the predator-prey interactions. Since

birth and death are incorporated, it emphasizes population fluctuations over a life cycle time scale.

In [32], a cellular automata method is used to describe and predict the schooling behaviour of fish.

In [16], Handegard et al. used sonar imaging to capture the behaviour of predator-prey dynamics.

These last two predator-prey models are individual based models and our research uses the Eulerian

approach to discover small time scale kinematics in predator-prey relationships, on which very little

work has been done. Our model generates realistic qualitative results that can be related to specific

examples of animal behaviour in nature.

Understanding animal group behaviour has important applications for various industries. For

example the fishing industry would be able to apply more efficient capture techniques from knowing

more about fish behaviour [24]. By applying similar animal movement models in robotics, robots

are able to maintain a formation and perform navigational tasks and avoid hazards [1]. Similarly,

this work has connections with military scouting of landscapes where a formation of autonomous

vehicles direct their sensors to optimally scan a location[1, 8].

Chapter 2 discusses the model, which follows from the model in [13] and adds a blind zone

and a predator. In Chapter 3 the numerical method is described. Chapter 4 shows many different

animal behaviours that are captured with our model. These animal behaviours are split into four

sections depending on the sophistication of the predator: no predator, stationary predator, a moving

predator that does not respond to its surroundings, and a predator that turns and chases the prey

depending on its surroundings.



Chapter 2

Model

The model is governed by the following integro-differential equation

∂tu+ γ~eφ · ∇~xu = −λ(~x, φ)u+

∫ π

−π
T (~x, φ′, φ)u(~x, φ′, t)dφ′, (2.1)

where u(~x, φ, t) is the population density of individuals at spatial location ~x = (x, y), at time t and

orientated in direction φ ∈ (−π, π], measured from the positive x-axis. The individuals are moving

in the direction ~eφ = (cosφ, sinφ) with speed γ, which is a constant. The turning of individuals

is modeled by λ(~x, φ) and T (~x, φ′, φ). These two functions model the turning rates of individuals

and are dependent on the individuals’ attraction, repulsion and alignment with each other. They

will come together if the attraction factor is strong enough. The repulsion effect will cause two

individuals to separate from each other, provided they are close enough. The alignment factor will

cause individuals to change direction to align with their neighbours. The implementation of these

three factors will be discussed in Section 2.1. The turning rate λ(~x, φ) is the rate at which the

individuals in the state (~x, φ) will want to turn. The larger the λ, the more likely the individual

will turn. T (~x, φ′, φ) describes how individuals located at ~x will reorient themselves from φ′ to φ.

The model depicts an individual’s decision to continue in its current direction or to turn based on

its neighbours. We assume that the only two factors that influence turning are the distance from

neighbours and the neighbours’ orientation. The three rules of attraction, repulsion and alignment

are contained in these two factors.

5
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Figure 2.1: Zones of repulsion, alignment and attraction: The decision making individual is located

at ~x and can turn away from neighbours in the repulsion zone, turn to align with neighbours in the

alignment zone or turn to approach neighbours in the attraction zone. The radius and width of each

zone is determined by dj and mj , respectively, where j = a, r, al.

2.1 Factors of Influence

Every individual is influenced by every other individual’s position and direction. The position, but

not the direction, of the other individuals is embedded into three distance kernels. However, the

position and the direction of the other individuals are embedded in three orientation kernels. In each

case the three types are attraction, repulsion and alignment, which makes for six kernels.

• 19 Distance Kernels:

Each distance kernel, Kd
j , is represented by a zone which is centred on the decision making

individual, ~x; with variations of the radius, dj , of the zones; and variations of the width, mj ,

of the zones (see Figure 2.1); and is defined by

Kd
j (~x) =

1

Aj
e
−
(√

x2+y2−dj
)2
/m2

j , j = a, r, al. (2.2)

There are three kernels, which may overlap, one for each j (j = a for attraction, j = r for

repulsion, and j = al for alignment). The Aj’s are renormalizing constants that force the
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spatial integral of the kernel to equal 1. It can be shown that these constants are

Aj = πmj

(
mje

−d2j/m2
j +
√
πdj (1 + erf (dj/mj))

)
. (2.3)

• Orientation Kernels:

The attraction kernel, Ko
a , is

Ko
a (~s; ~x, φ) =

1

2π
(− cos (φ− ψ) + 1) . (2.4)

The direction the decision making individual is heading is φ, while ψ is the direction to

another individual from the decision making individual, as seen in Figure 2.2. Ko
a is smallest

when φ and ψ are the same. This will happen when the decision making individual is directed

towards its neighbour. Ko
a is largest when φ and ψ are an angle of π away from each other.

If the neighbouring individual is directly behind the decision making individual, there is a

higher likelihood of the decision making individual turning to approach its neighbour. This

means that the decision making individual at ~x in Figure 2.2 is more likely to turn because

of the attractive influences of ~s′ compared to ~s. The 1
2π factor renormalizes the kernel so it

integrates to 1. Equation (2.4) suggests that Ko
a is a function of ~s, ~x and φ. To show this we

take the right hand side and expand the cosine with the trigonometric identity

cos(φ− ψ) = cosφ cosψ + sinφ sinψ, (2.5)

and we use

cosψ =
sx√
s2x + s2y

, sinψ =
sy√
s2x + s2y

, (2.6)

where sx is the difference of the x coordinates of ~x and ~s, and sy is the difference of the y

coordinates of ~x and ~s. Putting this together gives

Ko
a (~s; ~x, φ) =

1

2π

− cosφ
sx√
s2x + s2y

− sinφ
sy√
s2x + s2y

+ 1

 . (2.7)

We do not know the ψ variable in Equation (2.4), the angle between individuals, ψ, however

we know the variables in Equation (2.7), the location and direction of individuals, ~x and φ,

respectively.
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Figure 2.2: Orientation for attraction and repulsion: The decision making individual is located at

~x and is moving in direction φ. It is influenced to turn or not by the position of all its neighbours.

Two such neighbours are located at ~s and ~s′. The neighbour at ~s′ influences the decision making

individual to turn from attraction more than ~s, while ~s influences the decision making individual to

turn from repulsion more than ~s′.

The repulsion kernel, Ko
r , is

Ko
r (~s; ~x, φ) =

1

2π
(cos (φ− ψ) + 1) . (2.8)

This kernel is similar to the attraction kernel except there is no negative sign in front of the

cosine term. The absence of the negative sign changes the behaviour of the decision making

individual to be opposite from that of the attraction kernel. If the neighbour is in front of

the individual, then the individual is more inclined to turn. If the neighbour is behind the

individual, then the individual is more likely going to continue on its path. The decision

making individual is more likely to turn in Figure 2.2 from influences from ~s compared to

influences from ~s′. Following a similar approach to Equations (2.5) - (2.7) we can write

Equation (2.8) as

Ko
r (~s; ~x, φ) =

1

2π

cosφ
sx√
s2x + s2y

+ sinφ
sy√
s2x + s2y

+ 1

 . (2.9)

Equation (2.9) is just a change of variable from Equation (2.8), which makes the kernel di-

rectly related to the known variables from each individual, its location,~x and its direction,

φ.
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Figure 2.3: Orientation for alignment: The decision making individual located at ~x is influenced to

turn to align with its neighbours. Two possible neighbours are ~s and ~s′. The neighbour located at ~s

moving in direction θ will influence the decision making individual more than ~s′ because |θ − φ| is
larger than |θ′ − φ|.

The alignment kernel, Ko
al, is different from the other two because it depends on the direction

of the neighbours, not on their position, and is defined by

Ko
al (θ, φ) =

1

2π
(− cos (φ− θ) + 1) . (2.10)

The direction the neighbour is moving is given by θ and is shown in Figure 2.3. Ko
al is

smallest when the decision making individual is moving with the same angle as its neighbour

(φ = θ). Ko
al is largest when they are orientated in opposite directions. The decision making

individual will be influenced more by neighbour ~s in Figure 2.3 than neighbour ~s′ because

the direction the neighbour ~s is traveling is less aligned to the decision making individual’s

direction.

The six kernels from Equations (2.2), (2.7), (2.9) and (2.10) are the building blocks for both turning

rate functions, λ and T . The development of these two functions is discussed in Sections 2.2 and

2.3.
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2.2 Modeling the turning rate

The λ(~x, φ) in Equation (2.1) is be split into three terms according to the contributions from attrac-

tion, repulsion and alignment.

λ(~x, φ) = λa(~x, φ) + λr(~x, φ) + λal(~x, φ). (2.11)

The attraction turning rate, λa, uses the two attraction kernels discussed in Section 2.1 and is de-

scribed by the function

λa(~x, φ) = qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Ko

a(~s; ~x, φ)u(~s, θ, t)dθd~s. (2.12)

The attraction kernels, Kd
a and Ko

a , are dependent on ~x − ~s, which is the distance between two

individuals located at ~x, the decision making individual, and ~s, the neighbour. The integral is

over ~s and θ, which accounts for all neighbours’ positions and directions, respectively. Since the

kernels are both normalized, the size of λa is determined by a constant qa, which is called the

strength of attraction. Equation (2.12) can be visualized by taking all individuals separately in a two

dimensional domain, and then weighting them according to both of the kernels, Kd
a and Ko

a . Areas

that have a large weight in both the distance and orientation kernels as well as high population,

u, will be the areas with large λa and hence a high likelihood of the decision making individual

turning, as visualized in Figure 2.4. The two kernels shown in the first row of Figure 2.4 have

the decision making individual centred at ~x = (0,0), with direction φ = 0 facing the right. The

population density u, shown in the bottom left of Figure 2.4 is integrated over all θ’s. The figure

for λa can be imagined by centering the two kernels at every spatial location on the plot of u, by

calculating the rate of turning at every location with weight from the kernels and then by setting λa

to the value at each location. Since λa is three dimensional the plot shown for λa is only for the

individuals who are moving with angle φ = 0. If a different direction is chosen for the decision

making individual, the plots will be the same except it will be rotated to that particular direction.

The repulsion turning rate, λr, uses its two associated kernels, Kd
r and Ko

r , from Section 2.1

and is defined by

λr(~x, φ) = qr

∫
R2

∫ π

−π
Kd
r (~x− ~s)Ko

r (~s; ~x.φ)u(~s, θ, t)dθd~s. (2.13)

The repulsion kernels, Kd
r and Ko

r , depend on ~x − ~s. The size of λr is dependent on the strength
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Figure 2.4: Building of λa: By picking a point in the population density plot (bottom left), and using

the distance kernel plot (top left) and the orientation kernel plot (top right) centred at this point, the

likelihood of the individual turning at this point can be calculated. This process can be repeated for

all points in u. Since λa is three dimensional, all that can be shown here is the individuals moving

to the right. The individuals in the high density regions of the λa plot (bottom right) are moving to

the right and now will turn to approach individuals in the centre of the population density.
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Figure 2.5: Orientation for T: The decision making individual at ~x moving with direction φ′ has a

probability of turning to direction φ based on all surrounding neighbours. One such neighbour is

shown at location ~s.

of repulsion, qr. Areas with high density in Kd
r , Ko

r and u will cause a higher likelihood of the

decision making individual to turn to avoid collision with its neighbours.

The alignment turning rate, λal, is different than the previous two and is defined by

λal(~x, φ) = qal

∫
R2

∫ π

−π
Kd
al(~x− ~s)Ko

al(θ;φ)u(~s, θ, t)dθd~s. (2.14)

The alignment distance kernel, Kd
al, is still dependent on ~x − ~s, but now the orientation kernel,

Ko
al, is dependent on θ. The direction the neighbours are moving, θ, influences the turning of the

decision making individual. Areas with high density in Kd
al, K

o
al and u causes the decision making

individual to turn to align with its neighbours.

2.3 Modeling the reorientation terms

The reorientation function T (~x, φ′, φ) describes the rate at which an individual located at ~x will re-

orient itself from φ′ to φ because of the influences of its neighbours (see Figure 2.5). The T (~x, φ′, φ),

in Equation (2.1), can be split into three terms according to the contributions from attraction, repul-

sion and alignment.

T (~x, φ′, φ) = Ta(~x, φ
′, φ) + Tr(~x, φ

′, φ) + Tal(~x, φ
′, φ). (2.15)
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Looking at the contribution from attraction we have

Ta(~x, φ
′, φ) = qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Ko

a(~s; ~x, φ′)wa(φ
′ − φ, φ′ − ψ)u(~s, θ, t)dθd~s. (2.16)

The same kernels for λa are also used here, as well as the constant qa. Notice the variable in the

Ko
a term describing the direction of the decision making individual has changed φ′, instead of φ

from Equation (2.12). This is done to eliminate the φ′ variable in Equation (2.1) and to make the

variables consistent after taking the integral. The major difference between the definitions of Ta and

λa is the probability function wa. The wa gives the probability of turning from φ′ to φ because of

the interactions with neighbours located at ~s. Each Tj has its respective wj(j = a, ral). Since wa

is a probability density function, we have∫ π

−π
wa
(
φ′ − φ, φ′ − ψ

)
dφ = 1. (2.17)

The probability density function wa is described by

wa
(
φ′ − φ, φ′ − ψ

)
= gσa

(
φ′ − φ− va

(
φ′ − ψ

))
, (2.18)

where gσa is an approximation of the delta function. In order to minimize confusion, the attraction

subscript was chosen instead of a more general subscript. The decision making individual can turn

toward any direction within a specific range. This range is centred around direction

φ = φ′ − va
(
φ′ − ψ

)
,

which is found by setting the argument of the function gσa to zero. The parameter σ > 0 measures

the width of the turning range the decision making individual will move into. The smaller the σ, the

more accurate the turning. If σ is large, then the range is wide and the decision making individual

can move anywhere within the range (See Figure 2.6).

The function to describe gσa is

gσa (η1) =
1√
πσ

∑
z∈Z

e
−
(
η1+2πz

σ

)2

. (2.19)

The function gσa is a periodic Gaussian which obtains extra contributions from full rotations (see

Figure 2.7). The rotations occur due to the integer nature of z, which is needed because the argument

of gσa could be as large as 2π + 1. This amount is larger than 2π and we do not want individuals

trying to rotate more than a full rotation. Therefore the integer nature of gσa takes the contribution
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Figure 2.6: Visual aide for function gσ: The decision making individual at ~x moving in direction

φ′ has a probability to turn to a direction near φ, with maximum turning possibility of ka and with

uncertainty related to σ.
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Figure 2.7: Function gσa: The red dashed curve shows the periodic Gaussian nature of the total gσa

function. The contributions from z = 1, 0, and −1 are shown by the green dash-dots, blue hash

marks, and black solid curve, respectively. There are contributions from z as every integer, though

not shown. To clearly illustrate the summation nature of gσa, a very large value of σ was chosen

(σ = 2).
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from the modulus of 2π of the argument. One can see from Equation (2.19) that if −π < η1 < π

then the Gaussian giving the largest contribution is when z = 0. If π < η1 < 3π then the Gaussian

giving the largest contribution is when z = −1. In fact, the contributions from a full rotation away

are practically zero in comparison to the one giving the largest contribution.

The turning function, va, is defined as

va (η2) = ka sin η2. (2.20)

ka is a constant between 0 and 1, which gives the strength of attraction. Though this seems similar

to qa, they are different. While qa describes the general strength of influence the neighbours have

on the decision making individual, ka describes how much the decision making individual will turn

in certain directions. The decision making individual will turn at an angle relative to the size of ka

(see Figure 2.6).

Having a sine factor in the va function is not ideal. An alternative is va (η2) = kaη2, which is

more biologically realistic. If the decision making individual has another individual behind it then

it should be influenced to turn more than if the neighbour was beside it. The va in Equation (2.20)

has the maximum when the neighbours are beside, however this va is chosen because it is periodic

and works well with the fast Fourier transform, which this model is based on and will be discussed

further in Chapter 3.

Tr and Tal from Equation (2.15) are define by

Tr(~x, φ
′, φ) = qr

∫
R2

∫ π

−π
Kd
r (~x− ~s)Ko

r (~s; ~x, φ′)wr(φ
′ − φ, φ′ − ψ)u(~s, θ, t)dθd~s, (2.21)

Tal(~x, φ
′, φ) = qal

∫
R2

∫ π

−π
Kd
al(~x− ~s)Ko

al(θ;φ
′)wal(φ

′ − φ, φ′ − θ)u(~s, θ, t)dθd~s. (2.22)

Similarly to Ta, both Tr and Tal have two kernels and one strength constant, qj , each, which are

identical to the ones defined in Equations (2.13) and (2.14). The wr and wal functions are defined

through the same steps as Equations (2.18) - (2.20), with functions gσr, gσal, vr and val, and with

parameters kr and kal. There is, however, one major difference between Tr and Ta, and another ma-

jor difference between Tal and Ta. The difference between Tr and Ta is that within the definition of

wr, the kr must be between−1 and 0 instead of between 0 and 1. This is the only place the negative

factor comes in to enforce the negative behaviour of the repulsion interaction. The attraction and

alignment interactions are positive because they respond positively to the surrounding individuals.
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The difference between Tal and Ta is ψ is replaced by θ in the definition of wal. The alignment

contribution to turning does not depend on the location of the neighbours, ψ, but rather on their

direction, θ.

The reorientation rate T is more specific than λ because it accounts for every direction sepa-

rately, while λ(x, φ) accounts for every direction at once. T and λ are actually related quite simply

by

λ (~x, φ) =

∫ π

−π
T (~x, φ, φ′)dφ′. (2.23)

Notice φ and φ′ have switched roles in T . Taking the integral over every turning rate in every

possible direction, φ′, gives the rate of turning in any direction. These are the definitions of T and

λ respectively.

2.4 Model with a blind zone

In order to increase the biological realism of the model from Equation (2.1), proposed in [13], we

introduce a blind zone. The model discussed in Sections 2.1 - 2.3 suggests that the neighbours

behind an individual, when φ − ψ is close to ±π, have the strongest influence on it. However,

most animals cannot see behind themselves and are not susceptible to sudden changes occurring

behind them, especially when animals depend primarily on sight. We require a blind zone that is

in a consistent format to the model as it has been defined in Sections 2.1 - 2.3. Firstly, the blind

zone is a kernel type that coincides with other kernels in how the integrals are computed. Secondly,

the kernel has the ability to be fast Fourier transformed (FFT) without any complications. In other

words, the kernel is periodic. Lastly, the kernel has convolution like qualities so as not to cause an

increase in computational time. Discussion of these computational factors are discussed in Chapter

3. A blind zone kernel that meets all these requirements, shown in Figure 2.8, is

Kbz
j (φ− ψ) =

1

Bj

(
1

2
tanh

{
c

[
cos(φ− ψ) +

(
1− b

π

)]}
+

1

2

)
, (2.24)

where φ and ψ are the same as defined in Section 2.1, b determines the width of the blind zone, c the

steepness of the blind zone, j = a, r or al, and Bj is a constant that normalizes the kernel. Figure

2.8 shows how changing b and c can alter the blind zone.
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Figure 2.8: Blind zone: Four different blind zones for different values of c and b. Individuals in

front are weighted more than individuals behind. This corresponds to a small φ − ψ. The width of

the blind zone is controlled by b, which can range from 0 to 2π. The steepness of the blind zone is

controlled by c, which can range from 1 to∞.
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Blind zone kernel
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Figure 2.9: Blind zone kernel: This is the blind zone kernel from Equation (2.25). The individual is

moving to the right and is influenced by the neighbours in front and to the sides, but is not influenced

by neighbours behind. The blind zone kernel shown has parameter values of b = π/2 and c = 5,

which are equivalent to those in Figure 2.8.

The kernel from Equation (2.24) can be transformed into

Kbz
j (~s; ~x, φ) =

1

Bj

(
1

2
tanh

{
c

[
− cosφ

x1 − s1
|~x− ~s|

− sinφ
x2 − s2
|~x− ~s|

+

(
1− b

π

)]}
+

1

2

)
, (2.25)

by using the cosine addition identity and simple trigonometry. Figure 2.9 shows the blind zone

kernel with φ = 0, which is when the individuals move to the right. The kernel from Equation

(2.25) is added to the integral definitions of the λ’s and the T ’s from Equations (2.12), (2.13),

(2.14), (2.16), (2.21) and (2.22). They are now

λa(~x, φ) = qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Kbz

a (~s; ~x, φ)Ko
a(~s; ~x, φ)u(~s, θ, t)dθd~s, (2.26)

λr(~x, φ) = qr

∫
R2

∫ π

−π
Kd
r (~x− ~s)Kbz

r (~s; ~x, φ)Ko
r (~s; ~x, φ)u(~s, θ, t)dθd~s, (2.27)

λal(~x, φ) = qal

∫
R2

∫ π

−π
Kd
al(~x− ~s)Kbz

al (~s; ~x, φ)Ko
al(θ;φ)u(~s, θ, t)dθd~s, (2.28)

Ta(~x, φ
′, φ) = qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Kbz

a (~s; ~x, φ′)Ko
a(~s; ~x, φ′)wa(φ

′ − φ, φ′ − ψ)u(~s, θ, t)dθd~s,

(2.29)
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Tr(~x, φ
′, φ) = qr

∫
R2

∫ π

−π
Kd
r (~x− ~s)Kbz

r (~s; ~x, φ′)Ko
r (~s; ~x, φ′)wr(φ

′ − φ, φ′ − ψ)u(~s, θ, t)dθd~s,

(2.30)

Tal(~x, φ
′, φ) = qal

∫
R2

∫ π

−π
Kd
al(~x− ~s)Kbz

al (~s; ~x, φ
′)Ko

al(θ;φ
′)wal(φ

′ − φ, φ′ − θ)u(~s, θ, t)dθd~s.

(2.31)

With the addition of the blind zone, the individuals do not react to neighbours behind them and this

makes the model more realistic.

2.5 Conservation of Mass

In Section 3 of [13] properties of the model from Equation (2.1) are discussed. These properties are

conservation of mass, boundedness of the solution and its gradient, positivity of the solution and

global existence. These properties are taken to be true and will not be expanded on further, with the

exception of conservation of mass which is discussed below.

When introducing the blind zone we want to ensure that mass is still conserved. To show this

we must integrate both sides of Equation (2.1) over space and angle∫
R2

∫ π

−π
(∂tu+ γ~eφ · ∇~xu)dφd~s =

∫
R2

∫ π

−π
−λ(~x, φ)u+

∫ π

−π
T (~x, φ′, φ)u(~x, φ′, t)dφ′dφd~s.

(2.32)

The second term of the integrand, on the left hand side, goes to zero because the integral of ∇~xu
with respect to ~s is zero by the divergence theorem, since u vanishes at infinity. The first term of the

integrand, on the left hand side, becomes

∂t

∫
R2

∫ π

−π
u(~s, θ, t)dθd~s, (2.33)

by bringing the derivative outside of the integral. Conservation of mass is true if integral (2.33)

equals zero because the total density u does not change over time. To confirm that this is true, we

need to verify that the right hand side of Equation (2.32) is zero, which is the same as showing∫
R2

∫ π

−π
λ(~x, φ)u(~x, φ, t)dφd~s =

∫
R2

∫ π

−π

∫ π

−π
T (~x, φ′, φ)u(~x, φ′, t)dφ′dφd~s. (2.34)

Since neither integrand depends on ~s, the integrals over ~s can be ignored. The u term on the right

hand side does not depend on φ, therefore we can bring the u out of the φ integral. Also, by changing

the dummy variable on the left hand side from φ to φ′ we have∫ π

−π
λ(~x, φ′)u(~x, φ′, t)dφ′ =

∫ π

−π
u(~x, φ′, t)

∫ π

−π
T (~x, φ′, φ)dφdφ′. (2.35)
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Since the integrands are equal, after eliminating the u factors, we have

λ(~x, φ′) =

∫ π

−π
T (~x, φ′, φ)dφ. (2.36)

Expanding λ with Equation (2.11) and expanding T with Equation (2.15), Equation (2.36) becomes

λa(~x, φ
′) + λr(~x, φ

′) + λal(~x, φ
′) =

∫ π

−π
[Ta(~x, φ

′, φ) + Tr(~x, φ
′, φ) + Tal(~x, φ

′, φ)]dφ. (2.37)

First, looking at attraction only, we have

λa(~x, φ
′) =

∫ π

−π
Ta(~x, φ

′, φ)dφ. (2.38)

Using the definitions of λa and Ta, which are Equations (2.12) and (2.16), respectively, this becomes

qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Kbz

a (~s; ~x, φ′)Ko
a(θ;φ′)u(~s, θ, t)dθd~s

=

∫ π

−π
qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Kbz

a (~s; ~x, φ′)Ko
a(θ;φ′)wa(φ

′ − φ, φ′ − θ)u(~s, θ, t)dθd~sdφ. (2.39)

The only term which is dependent on φ is wa. Bringing in the φ integral, all we are left to prove is

that ∫ π

−π
wa(φ

′ − φ, φ′ − θ)dφ = 1. (2.40)

This is the definition of thew terms from Equation (2.17). The same procedure from Equation (2.37)

to (2.40) is repeatable for repulsion and alignment. Since the attraction, repulsion and alignment

versions of Equation (2.40) hold, we know Equation (2.34) is true. This implies

∂t

∫
R2

∫ π

−π
u(~s, θ, t)dθd~s = 0, (2.41)

and therefore mass is still conserved with the addition of the blind zone.

2.6 Predator

Though biological aggregates have interesting behaviours on their own, by introducing a predator,

more dynamic behaviours are observable. Predators can influence prey movement by constricting

prey into tighter groups, such as with dolphins [33] or minke whales [27] condensing fish into bait

balls. Similarly predators can dive through a group and split the prey, such as an Eleonora’s falcon
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that dive bombs into a group of prey [18]. We are interested in observing the behaviour of the

predator-prey relationship.

The predator’s density, denoted uh (h for hunter), is governed by similar equations to that of

the prey, now denoted up. Akin to Equation (2.1), the two integro-differential equations for the prey

and the predator are

∂tu
p + γp~eφ · ∇~xup = −λp(~x, φ)up +

∫ π

−π
T p(~x, φ′, φ)up(~x, φ′, t)dφ′, (2.42)

∂tu
h + γh~eφ · ∇~xuh = −λh(~x, φ)uh +

∫ π

−π
T h(~x, φ′, φ)uh(~x, φ′, t)dφ′, (2.43)

where the speed that the predator travels is γh. Equations (2.42) and (2.43) are primary equations

governing the movement of the predator and prey. The constants and functions with a p superscript

in Equation (2.42) express the connection with the prey, while an h expresses the connection with

the predator. Since there is now a predator in the model, the prey must respond by being repelled

by the predator. Conversely, the predator is attracted to the prey.

Prey responds to predator

The constants and functions with a p superscript are the same as the ones in Equation (2.1), with the

exception of the λ and the T functions. The difference between λ and λp is the extra contribution

from the prey being repelled by the predator. Therefore we add λprh to the definition of λ and T prh to

the definition of T . Equations (2.11) and (2.15) become

λp(~x, φ) = λpa(~x, φ) + λpr(~x, φ) + λpal(~x, φ) + λprh(~x, φ), (2.44)

T p(~x, φ′, φ) = T pa (~x, φ′, φ) + T pr (~x, φ′, φ) + T pal(~x, φ
′, φ) + T prh(~x, φ′, φ). (2.45)

The superscripts indicate what type of population the function is connected to. The lack of a p or

h in the subscripts indicates that the population interacts with itself, while a p or h in the subscript

specifies that the superscript’s population is being influenced by the subscript’s population. For

example, the functions λprh and T prh are identical to λpr and T pr , respectively, except instead of being

repelled by up, the density of the prey on themselves, they are repelled by uh, the density of the

predators. The definitions of these functions are

λprh(~x, φ) = qrh

∫
R2

∫ π

−π
Kd
rh(~x− ~s)Kbz

rh(~s; ~x, φ)Ko
rh(~s; ~x, φ)uh(~s, θ, t)dθd~s, (2.46)
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T prh(~x, φ′, φ) = qrh

∫
R2

∫ π

−π
Kd
rh(~x−~s)Kbz

rh(~s; ~x, φ′)Ko
rh(~s; ~x, φ′)wrh(φ′−φ, φ′−ψ)uh(~s, θ, t)dθd~s.

(2.47)

The Kd
rh,K

bz
rh,K

o
rh and wrh are analogous to the repulsion versions except that the constants are

different values. These constants are Arh, drh, mrh, qrh and krh. The definitions of the other six

functions from Equations (2.44) and (2.45) are the same as the functions without the p superscripts

from Equations (2.12), (2.13), (2.14), (2.16), (2.21) and (2.22).

Predator responds to itself and to the prey

The predator is attracted to and repelled from itself, however it does not align with itself. The

absence of alignment for the predator decreases the computation time of the code, which is discussed

further in Chapter 3. The predator is attracted to the prey, and this behaviour is captured by λhap and

T hap. Therefore the λh and the T h for the predator is

λh(~x, φ) = λha(~x, φ) + λhr (~x, φ) + λhap(~x, φ), (2.48)

T h(~x, φ′, φ) = T ha (~x, φ′, φ) + T hr (~x, φ′, φ) + T hap(~x, φ
′, φ). (2.49)

The λha and T ha denote the attraction the predator has with itself. The λhr and T hr denote the repulsion

the predator has with itself. The λhap and T hap denote the attraction the predator has towards the prey.

These six functions are defined by

λha(~x, φ) = q̄a

∫
R2

∫ π

−π
K̄d
a(~x− ~s)K̄bz

a (~s; ~x, φ)K̄o
a(~s; ~x, φ)uh(~s, θ, t)dθd~s, (2.50)

λhr (~x, φ) = q̄r

∫
R2

∫ π

−π
K̄d
r (~x− ~s)K̄bz

r (~s; ~x, φ)K̄o
r (~s; ~x, φ)uh(~s, θ, t)dθd~s, (2.51)

λhap(~x, φ) = q̄ap

∫
R2

∫ π

−π
K̄d
ap(~x− ~s)K̄bz

ap(~s; ~x, φ)K̄o
ap(~s; ~x, φ)up(~s, θ, t)dθd~s, (2.52)

T ha (~x, φ′, φ) = q̄a

∫
R2

∫ π

−π
K̄d
a(~x− ~s)K̄bz

a (~s; ~x, φ)K̄o
a(~s; ~x, φ)w̄a(φ

′ − φ, φ′ − ψ)uh(~s, θ, t)dθd~s,

(2.53)

T hr (~x, φ′, φ) = q̄r

∫
R2

∫ π

−π
K̄d
r (~x− ~s)K̄bz

r (~s; ~x, φ)K̄o
r (~s; ~x, φ)w̄r(φ

′ − φ, φ′ − ψ)uh(~s, θ, t)dθd~s,

(2.54)

T hap(~x, φ
′, φ) = q̄ap

∫
R2

∫ π

−π
K̄d
ap(~x−~s)K̄bz

ap(~s; ~x, φ)K̄o
ap(~s; ~x, φ)w̄ap(φ

′−φ, φ′−ψ)up(~s, θ, t)dθd~s,

(2.55)



CHAPTER 2. MODEL 23

where the bars denote that they correspond to the predator. With the formulation of the preda-

tor’s equations, the K̄’s, w̄’s, λh’s and T h’s have constants Āa, Ār, Āap, d̄a, d̄r, d̄ap, m̄a, m̄r, m̄ap,

q̄a, q̄r, q̄ap, k̄a, k̄r and k̄ap analogous to the constants for the prey.

With any addition to this model one needs to check conservation of mass. It will be conserved

provided all of

λprh(~x, φ′) =

∫ π

−π
T prh(~x, φ′, φ)dφ. (2.56)

λha(~x, φ′) =

∫ π

−π
T ha (~x, φ′, φ)dφ. (2.57)

λhr (~x, φ′) =

∫ π

−π
T hr (~x, φ′, φ)dφ. (2.58)

λhap(~x, φ
′) =

∫ π

−π
T hap(~x, φ

′, φ)dφ. (2.59)

hold. This follows the same procedure of Equations (2.38) - (2.40) except using different subscripts.

The above description adds a predator to create a predator-prey relationship. This model,

using very similar ideas, can be altered to describe different types of relationships. Two-species

interacting may not be necessarily of a predator-prey type. They could, for instance, compete for

the same resources, but at the same time avoid each other. Alternatively, another stationary predator

could be added that might act as an obstacle. In theory, this model could extend to any number of

species that have a variety of relationships with other species. However, our research only focuses

on the single predator and single prey relationship.
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Numerical Method

We use the fourth order Runge-Kutta spectral method to progress the population density in time.

The spatial dimension has N2 points with a square domain of a side length of L, which goes from

[−L
2 ,

L
2 ) on both the x and y axes. The spatial grid spacing is ∆x = ∆y = L

N . The angle dimension

hasM points with a domain of 2π radians, which goes from [−π, π), with grid spacing of ∆φ = 2π
M .

To avoid aliasing the spatial grid is extended from N2 to (32N)2 and the angular grid is ex-

tended from M to 3
2M . The 3

2 is the smallest possible factor to guarantee that dealiasing is success-

ful and to minimize the computational time. Some functions with this spatial and angular extension

are fast Fourier transformed into the Fourier space, and then have the highest third of the frequency

Fourier coefficients set to zero. The calculations are carried out in the extended real and frequency

domains, and then it is reduced back to the original size. This dealiasing process is standard as

discussed in [5].

The left hand side of the integro-differential equations (Equations (2.42) and (2.43)) can be

updated by first taking the 2D Fourier transform of the linear convective term, which becomes

γ (cosφ l1 + sinφ l2) û, (3.1)

where l1 is the horizontal component of the wave number and l2 is the vertical. This new algebraic

form for the left hand side of Equations (2.42) and (2.43) can now be computed using the integrating

factor technique.

The right hand side of the integro-differential equations (Equations (2.42) and (2.43)) requires

24
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much more work than the left hand side. The right hand side requires the computations of inte-

grals to calculate λ and T . The calculation of these integrals are done via convolutions in Fourier

space, which are calculated significantly faster in comparison to other methods, such as quadrature

methods. Convolutions in Fourier space are calculated by multiplication as opposed to an integral

calculation in real space. Both spatial and angle components of some λ’s and T ’s can be convolved

but some cannot. The ones that cannot will be calculated using a quadrature method. For example,

the λal function,

λal(~x, φ) = qal

∫
R2

Kd
al(~x− ~s)Kbz

al (~s; ~x, φ)

∫ π

−π
Ko
al(θ;φ)u(~s, θ, t)dθd~s, (3.2)

has the integral over θ as a convolution in angle (see Equation (2.10)). Therefore, the Ko
al and the

u terms can be Fourier transformed and then multiplied together. This product must then be inverse

Fourier transformed. The remaining space integral can be calculated via convolution in ~s, where

Kbz
al is a function of ~x− ~s. The design of the blind zone allows it to be multiplied with Kd

al before

the spatial convolution with u. This addition of the blind zone increases the computational time by

a very slight amount. The Tal function,

Tal(~x, φ
′, φ) = qal

∫
R2

Kd
al(~x− ~s)Kbz

al (~s; ~x, φ
′)

∫ π

−π
Ko
al(θ;φ

′)wal(φ
′ − φ, φ′ − θ)u(~s, θ, t)dθd~s,

(3.3)

does not have the luxury of using a convolution to compute the integral over θ because both Ko
al

and wal are dependent on φ′− θ (see Equations (2.10) and (2.18)). The integral over θ is calculated

using the trapezoidal rule with a double for loop, which is computationally taxing. The integral over

~s can still be easily calculated in the same manner as the λal case. However, the integral over θ for

the Tal function takes up so much time computationally that we have excluded the alignment terms

in the derivation of the evolution of the predator to help increase the computational speed. This has

lowered the computational cost by slightly less than a factor of two.

From Equations (2.44) and (2.48), the attraction and repulsion components of all six other λ’s

are

λij(~x, φ) = qj

∫
R2

Kd
j (~x− ~s)Kbz

j (~s; ~x, φ)Ko
j (~s; ~x, φ)

∫ π

−π
ui(~s, θ, t)dθd~s, (3.4)

where i = p or h, and where j = a, r, rh or ap. Note that the alignment has been excluded. In each

case theKd,Ko andKbz kernels are multiplied together and are then convolved with the u function.

Before this happens, the integral over θ must be calculated. This integral is equal to the zero-mode

of u with respect to angle. Therefore, we Fourier transformed u, took the zeroth coefficient of u and
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convolved this coefficient with the kernels in the integral over ~s. Equations (2.7), (2.9) and (2.25)

remind us how the Ko and Kbz kernels are functions of ~x− ~s.

From Equations (2.45) and (2.49), the attraction and repulsion components for all six other

T ’s are

T ij (~x, φ
′, φ) = qj

∫
R2

Kd
j (~x− ~s)Kbz

j (~s; ~x, φ′)Ko
j (~s; ~x, φ′)wj(φ

′ − φ, φ′ − ψ)

∫ π

−π
ui(~s, θ, t)dθd~s,

(3.5)

where i = p or h, and where j = a, r, rh or ap. Note that, again, the alignment has been excluded.

The calculation of the different T ’s in Equation (3.5) is similar to the λ’s in Equation (3.4) except

there is an extra wj term. The wj can also be thought of as a function of ~x− ~s after fixing φ and φ′

and after the following steps

wj
(
φ′ − φ, φ′ − ψ

)
= gσj

(
φ′ − φ− κj sin

(
φ′ − ψ

))
= gσj

(
φ′ − φ− κj

(
sinφ′cosψ − cosφ′sinψ

))
= gσj

(
φ′ − φ− κj

(
sinφ′

sx
s2x + s2y

− cosφ′
sy

s2x + s2y

))
.

Since the wj’s are functions of ~x − ~s, they can be multiplied with the kernels before the

convolution over ~s, making for a much quicker calculation compared to Tal. With all the λ’s and

T ’s calculated, the right hand side of Equations (2.42) and (2.43) can be calculated by some simple

matrix calculations.



Chapter 4

Numerical Experiments

The following chapter showcases the versatility of the model and how it captures both interactions

among a solitary group of prey and interactions between predator and prey. For all experiments we

take the size of the domain, L = 4, the speed of the prey, γ = 1, and σ = 0.2 from Equation (2.19).

The parameters defining the size and location of the kernels are also set for all experiments: dr = 0,

dal = 0.4, da = 0.8, mr = mal = ma = 0.2. The parameters controlling the blind zone are also

fixed, with c = 10 and b = π
2 , except for the blind zone experiments, which show the effect of

changing the blind zone. Once the predator is introduced, there are some other fixed parameters.

These are drh = 0,mrh = 0.8, d̄r = 0, m̄r = 0.2, d̄a = 0.4, m̄a = 0.2, d̄ap = 0.4 and m̄ap = 0.4.

The bar represents that these constants refer to the predator. For example, the mr shows the width

of the zone of influence for the prey being repelled by itself, the mrh shows this width for the prey

being repelled by the predator, and m̄r shows this width for the predator being repelled by itself. In

Section 4.1, a model without a predator is showcased. In Section 4.2, simulations for the stationary

predator model is shown. The moving predator model will be implemented in Section 4.3 and the

turning predator model will be implemented in Section 4.4.

4.1 Prey

In this section, behaviour of prey without predators is studied. Modeling the behaviour of prey in

the absence of a predator produces interesting and complex patterns. Additionally, it allows for

27
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the model with a predator to be validated by insuring that the model without the predator accu-

rately depicts normal behaviour of aggregations. We first show some expected behaviours of the

prey in the absence of a predator. In [13] there were three basic behaviours showcased: stationary

aggregation, translating uniform aggregation, and moving aggregation with alignment. Adding to

these experiments, we have experiments called oval swarm, collision of two groups, cluster size and

milling.

4.1.1 Oval swarm

The initial condition for the population density is a random distribution in space and angle. The

parameters describing the strength of interactions are qr = 3.4410, qal = 0.4986 and qa = 2.9311.

The proportionality constants that depict the amount of turning are kr = −0.0519, kal = 0.9957 and

ka = 0.8779. During the simulation, the prey congregate at one location (see Figure 4.1). With qr

being the highest, one would expect the individuals never to form a group. However, since kr is low,

the individuals cannot turn quickly and the group is more influenced by attraction. Subsequently,

the combination of qa and ka is stronger than the combination of qr and kr, therefore the individuals

form a group. The slight difference between qr and qa will eventually be enough to make the group

split. Figure 4.1 has small white arrows which show the average direction an individual located at

a given grid point is moving in, and the size of the arrows shows the relative amount of motion of

the individuals. Looking at the directions, one can notice that there is a complicated way in which

the individuals move around. They move into the group from the left and right, and they move out

of the group from the top and bottom. This model has also captured a four-in-four-out system, seen

in Figure 4.7. After some time the group slowly becomes a flattened oval shaped.

4.1.2 Collision of two groups

In this experiment two small groups of individuals collide and travel in a direction that is half way

between the original directions of the two groups. One group travels horizontally to the right, while

the other moves vertically upward. They collide at (0,0) and move equally upward and to the right

(see Figure 4.2). This is a classic case of conservation of momentum. The parameters used in this

experiment are qr = 1, qal = 90, qa = 90, kr = −0.25, kal = 0.75 and ka = 0.25. The decision

to make qa and qal large allows for a successful merger. If these parameters were smaller, the two
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Figure 4.1: Oval swarm: The combination of qa = 2.9311 and ka = 0.8779 is stronger than the

combination of qr = 3.4410 and kr = −0.051, therefore the individuals form a circular group and

it slowly turns into an oval because of the internal flow of individuals, shown by the white arrows.
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original groups would be more inclined to travel through each other, with only slight interaction.

There is a middle range as well, with the two original groups travelling through each other but

having some individuals fan out in an arc connecting the two groups after collision, which is not

shown here.

4.1.3 Cluster size

In this experiment, two identical simulations are done except one has twice the amount of individuals

(see Figure 4.3). The initial conditions are a random distribution in space and angle. The parameters

used in this experiment are qr = 1, qal = 5, qa = 5, kr = −0.1, kal = 0.75 and ka = 0.75. These

are the same parameters for "Run 3", a moving aggregation with alignment, in [13], which depicts

a group of individuals moving in a particular direction with a tail. The plot on the left in Figure 4.3

shows the moving group with a tail. This group is more oval shaped compared to the one in [13]

likely because our version has a blind zone, which is the only difference between the two models.

Some fish, such as cod, can school in a ratio of length:width:depth ratio ranging from 10:4:1 to

2:4:1 (see [3]). Figure 4.3 shows a 2:3 length to width ratio (depth would be the third dimension,

not done in this model).

One advantage of grouping in a more oval shape is the distance of the common blind zone

away from the group. For a solitary individual, the blind zone is directly behind it. For a group,

however, the peripheral sight lines of each individual overlap with the blind zones of their side

neighbours. This creates a common blind zone that is located at a distance from the group instead

of directly behind it, as discussed in [28] (see Figure 4.4). An oval shape helps to increase the

distance of the common blind zone away from the group.

The plot on the right of Figure 4.3 has twice the initial population than the plot on the left.

Notice, however, that the spatial size of the groups is the same, meaning that the density of the

group on the right is double that of the group on the left. This makes sense mathematically, though

not biological because the group usually plateaus at a maximum density. As discussed in [25, 30],

sharp boundaries and relatively constant internal population densities are hard to capture in models.

More work is required to capture these biologically realistic behaviours.
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Figure 4.2: Collision of two groups: Two masses of equal size run into each other perpendicularly.

They merge and travel in a 45 degree angle.
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Figure 4.3: Cluster size: The group on the right has twice as many individuals as the group on the

left. Doubling the amount of individuals creates a group that has double the density.

Figure 4.4: Common blind zone: The peripheral sight lines of three individuals are shown. The

common blind zone of all three individuals in shown by the triangle, which is further from a given

individual compared to its own blind zone.
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Figure 4.5: Milling: Milling behaviour of bluefin tuna. The image is from

http://www.nationalgeographic.com.

4.1.4 Milling

In this experiment the individuals attempt to maintain a milling formation that was initiated from

the initial conditions (see Figures 4.5 and 4.6). The individuals move around in a annular shape, and

are influenced to turn to maintain this shape because of individuals in front and on the opposite side

of the annulus. Unfortunately, a true milling pattern was not achieved because the individuals would

either spread out or converge in. Figure 4.6 shows a spreading out over time. The centripetal force

required to keep the individuals in a stable mill needs to come from the attraction parameters. If the

individuals move away from the centre, the attraction force decreases and the individuals continue

to move away. Conversely, if the individuals move towards the centre, the attraction force becomes

larger and the individuals will collapse into a ball. We believe a more extensive parameter search

would uncover this pattern.

The parameters used in this experiment are qr = 4, qal = 6, qa = 5, kr = −0.25, kal = 0.75

and ka = 0.25. Some other parameters that are usually fixed were changed: dal = 0.2, ma = 0.5,

mr = 0.1 and mal = 0.1. These changes make the width of the repulsion zone smaller, the width

and radius of the alignment zone smaller and the width of the attraction zone larger. The parameters

were changed because of an idea from [9]. The idea is that the individuals align themselves with

neighbours in front of them, while the individuals will be attracted to others on the opposite side
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of the milling annulus. What is important here is that the alignment zone is small enough so the

individuals do not align themselves with individuals on the other side of the annulus.

In [9], a particle-based model was used to show a milling formation in an aggregation. In [20],

a Lagrangian model based on Newton’s equations of motion was used to study milling formations

and their existence, while keeping track of the group radius and the individuals’ angular velocity.

Milling in a torus is a common phenomenon in fish, such as tuna, jack and barracuda [9].

4.2 Stationary predator

In this section, we introduce a stationary predator, which the prey are repelled by. Since the preda-

tor is stationary, the equations governing the movement of the predator are not included in the

simulation. Therefore the equation for λp (Equation (2.44)) will now have the λprh component, but

Equations (2.43), (2.48) and (2.49) are not needed.

4.2.1 Prey near a predator and food

All animals behave in such a way as to avoid predation. In order to avoid the predator, prey rely on

interactions with their neighbours as well as interactions with the predator. The left plot in Figure

4.7 shows the prey’s behaviour with the predator centred at (0.5, 0), with the predator’s spatial

density

uh = 5e
−
(

(x−0.5)2+y2

0.05

)
. (4.1)

The parameters used in this experiment are qr = 4, qal = 3, qa = 3, qrh = 50, kr = −0.65,

kal = 0.85, ka = 0.85 and krh = −0.99. The repulsion magnitude is slightly larger than the

alignment and attraction ones. In the absence of the predator, this would cause the prey to disperse

to a uniform state, but with the predator the prey congregate to the area which is the furthest away

from the predator. The white arrows in the left plot of Figure 4.7 show a four-in-four-out system of

movement. This is probably caused by the square shaped domain. Also, the arrow size is relative to

the magnitude of motion of individuals in a particular simulation. Though they may appear similar

in size by arrows in other simulations the actual magnitude is not the same. In the case Figure 4.7,
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Figure 4.6: Milling: Milling like behaviour is maintained for a small amount of time.
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Figure 4.7: Prey near a predator and food: The prey are repelled by the predator, centered at (0.5,0),

and attracted to the food centered at (-1.5,0), each simulated separately. All parameters are kept the

same except the amplitudes of each of the predator, left, and the food, right.

the arrows are large even though there is very little movement of the individuals.

The model can easily be switched to prey moving towards a stationary food source. The right

plot in Figure 4.7 shows the prey’s behaviour with food centred at (−1.5, 0), with the food’s spatial

density

uF = 5e
−
(

(x+1.5)2+y2

0.05

)
, (4.2)

where the F stand for food. Prey in this case congregate quickly around the food. The prey in

the right plot of Figure 4.7 show a four-in-four-out system similar to the one discussed above. The

parameters are qr = 4, qal = 3, qa = 3, qrF = 50, kr = −0.65, kal = 0.85, ka = 0.85 and

krF = 0.99 and the population of the predator is now zero and the population of the food is now

non-zero. This is the only time food is considered and will not be discussed further.

These experiments depict behaviour of prey in the natural world. In order to survive, individ-

uals must make it their priority to find food and avoid predators.
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4.2.2 Prey avoiding a predator

An aggregation of prey avoiding a predator remains as a group. The group of prey are deflected by

the predator, as seen in Figure 4.8. The predator is stationary as shown in the top left of Figure 4.8.

The other five plots show the prey coming towards the predator and turning to avoid it.

The parameters used in this experiment are qr = 1, qal = 3, qa = 3, qrh = 50, kr = −0.25,

kal = 0.85, ka = 0.85 and krh = −0.99. The strength of qr is significantly reduced in comparison

to Section 4.2.1, which causes the prey to congregate instead of disperse. The qrh is high making

the predator affect the prey significantly. With krh being very close to −1, the prey respond to the

predator rapidly.

In this experiment the prey will not only move away from the predator, they will also stay

together as a group while doing so. The stationary predator can be viewed as an obstacle, provided

the repulsion parameters are large enough to ensure that the prey cannot move through the obstacle.

For example, migratory animals, such as caribou, are diverted around lakes. Since caribou will walk

around a lake migrating, it can be thought of as the caribou being repelled by the lake.

4.2.3 Predator ring

Predators sometimes cannot rely on speed and agility to catch their prey. Therefore, predators must

come up with clever ways to catch their prey which take less effort and are more efficient. One such

method is the predator ring. The predators surround the prey, forcing it into a ball, which condenses

the group. This increases the probability of the predator catching its prey. Figure 4.10 shows the

predator ring in the top left figure, and five plots of the prey moving around in the ring.

The parameters for this experiment are qr = 4, qal = 5, qa = 1, qrh = 20, kr = −0.65,

kal = 0.85, ka = 0.85 and krh = −0.7. The mrh parameter was changed from 0.8 to 0.6 in this

experiment to allow the prey to get closer to the predators, which does not confine it too much to

the centre of the ring. The prey’s initial condition is a small counter-clockwise rotating ball which

eventually spreads apart. Because of this initial condition, the prey deflects off of the predator ring

and continues in a counter-clockwise rotation.

The behaviour of a predator ring is found in nature in a variety of forms. Two such forms

are that of dolphins [33] and minke whales [27] condensing fish into bait balls (see Figure 4.9).
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Figure 4.8: Prey avoiding a predator: The prey turn to avoid the predator. The stationary predator is

shown in the top left plot. The other five plots show the prey moving towards the predator and the

subsequent turning of the prey to avoid the predator. The intensity of the turning is easier to notice

when focusing on the change in direction of the white arrows.
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Figure 4.9: Bait ball: Dolphins accompanied by a shark force the school of fish into a bait ball. The

image is from http://www.nationalgeographic.com.

Dolphins execute herding passes to confine the prey into bait balls [33]. Confining fish in this way

makes it more efficient for the dolphins to capture them. The minke whales use either traditional,

active entrapment methods or they take advantage of work done by bird rafts, to condense sandeels

into a bait ball [27]. A bird raft is a congregation of birds on the surface of the water that has fish

underneath on which the birds are feasting. The increase of pressure on the fish allows the minke

whales to capture these fish with a minimal amount of effort.

4.3 Moving predator

Even though it is important that the prey behaves realistically around a stationary predator, much

more happens when the predator is in motion. A moving predator can cause the prey to turn as a

group, to split or to disperse. Since the predator can now come up behind the prey, the prey’s blind

zone plays a large role in how the group behaves. Also, this section is used as a building block for

when the predator is also allowed to turn (see Section 4.4).
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Figure 4.10: Predator ring: A sequence showing the prey enclosed by a predator ring. The top left

plot is the predator and the other five are the prey. The prey moves in a circle, continually trying to

avoid the predator, but the prey are trapped.
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4.3.1 Prey moving towards the predator

In this experiment the initial condition is setup for the prey and predator to collide head on. To

simplify the experiment, the predator is a Gaussian bump that moves to the left as time progresses.

This means the predator will not change its direction or shape. As the predator moves towards

a group of prey, which is also moving towards the predator, the prey behave differently based on

the two parameters qa and qal. The other parameters for this experiment are qr = 1, qrh = 40,

kr = −0.34 to −0.14, kal = 0.8, ka = 0.8 and krh = −0.95. Figure 4.11 shows this experiment,

with the plots occurring sequentially from left to right. The top row is the predator. The second row

has qa = 1 and qal = 1 and shows a splitting of the group. The third row is a different simulation

and has qa = 1 and qal = 5 and shows a more biased splitting of the group. Since alignment is

larger the prey will decide to turn the same way as the majority even if that puts them in harms reach

of the predator. The last row is also a different simulation having qa = 5 and qal = 1 and shows the

group turning around and staying together. Since the attraction is large the prey tries resists splitting

and completely turns around to avoid the predator. Eventually the prey will fan out slowly from the

constant pursuit of the predator, which is shown in Figure 4.12. This experiment shows a variety of

behaviours the model can produce for slight changes in parameters.

This experiment mimics a lunging predator from which the prey must escape by performing

an evasive tactic. One tactic is to spread radially outwards from the predator as soon as possible, as

seen in [3].

4.3.2 Away from predator - blind zone - alignment

This experiment is designed to see how the blind zone factor affects the behaviour of the prey.

Depending on how large the blind zone is, the prey will have more or less information to make a

decision to turn to avoid the chasing predator. In Figure 4.13, the top row is the predator and all

other plots are the prey. The plots occur sequentially from left to right. The parameters for this

experiment are qr = 1, qal = 5, qa = 1, qrh = 40, kr = −0.4 to −0.3, kal = 0.8, ka = 0.8 and

krh = −0.95. The second row has b = −2π and shows a biased splitting of the group. The value

of b being a negative was needed to insure there was no contribution from the blind zone factor. For

example, if b = 0, there would be a very small blind zone behind the individual. This is a problem

from the design of the blind zone kernel, however setting b = −2π does not cause any side effects.
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Spatial density of predator at time = 0.9
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Figure 4.11: Prey moving towards the predator part 1: The plots occur from left to right. The top

row is the predator. The second row has qa = 1 and qal = 1 and shows the group splitting. A more

biased splitting of the group occurs in the third row which has qa = 1 and qal = 5. The last row has

qa = 5 and qal = 1 and shows the group turning completely around, but the group will split as seen

in Figure 4.12.
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Spatial density of predator at time = 2.5
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Figure 4.12: Prey moving towards the predator part 2: This is a continuation of the simulation

shown in the last row in Figure 4.11. The plots occur sequentially from left to right. The top row is

the predator. The bottom row has qa = 5 and qal = 1 and shows the group splitting.
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The third row has b = π/2 and shows a less biased splitting of the group. There are slightly more

individuals moving down compared to the b = −2π case. The last row has b = π and shows an

even less biased splitting of the group. The only reason this case did not split perfectly into two even

groups is because the initial conditions are not symmetric. Since there is no exact solution to our

model, it is more appropriate to set the initial conditions from other simulations. Doing this causes

inaccuracies. In this experiment, the initial conditions are taken from the end of another experiment

which did not have the prey moving directly to the left. The predator, however, does move directly to

the left. This slight difference in direction is enough to split the group unevenly. Also, the alignment

factor will exaggerate the splitting by bringing more individuals from the smaller group to the larger

group.

The increase of the blind zone causes behaviour that can be interpreted as disorientation and

confusion among the prey. Another test of the effects of the blind zone was done in [23], where a

milling group turned into a carousel group and then into a freely moving group by increasing the

blind zone. A carousel group has moving aligned individuals in the outer regions, while the inner

regions are unaligned. In a freely moving group, the individuals are not aligned.

4.3.3 Away from predator - blind zone - attraction

This experiment is another example of how the blind zone plays a role in the behaviour of the prey.

The parameters and initial conditions are identical to the ones in Section 4.3.2 with the exception of

qa and qal. In Section 4.3.2, qa = 1 and qal = 5, while in this experiment qa = 5 and qal = 1.

The plots in Figure 4.14 occur sequentially from left to right. The top row is the predator. The

second row has b = −2π and shows a high density group turning together to avoid the predator. As

discussed earlier, b = −2π is equivalent to no blind zone. The third row has b = π/2 and shows a

greater amount of turning. The last row has b = π, and shows less density and a slight separation of

individuals from the group. When the prey have a blind zone of π, there is not a lot of information

transferred between the individuals, which can cause confusion. Since qa = 5 one would think the

group would stay together, but because of the blind zone this does not happen.

More interesting than the b = π case is the b = π
2 case. Looking at the small arrows inside

the spatial density of the prey at time 0.48 for the b = π
2 case, one can see that the individuals are

moving up to the right. In the other two cases, the individuals are moving up and slightly to the
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Spatial density of predator at time = 1.5
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Figure 4.13: Away from predator - blind zone - alignment: The predator is set to chase the prey

from inside the prey’s blind zone. The plots occur sequentially from left to right. The top row is

the predator, while the next three rows are the prey with the blind zone width b equal to −2π (zero

blind zone), π2 and π, respectively. The prey’s main concerns are to avoid the predator and to align

with the group due to the large value of qal.
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left. Some fish will swim in a circle and arrive back at their starting point when a lunging predator

comes by [3,29]. This behaviour was not captured, due to complications with the periodic boundary

conditions, but the case with b = π
2 shows some promise that this behaviour can be captured. One

can imagine that if the predator is to continue moving to the left, if the boundary conditions are

nonexistent and if there are two groups that avoided the predator, then these two groups would then

be attracted together and eventually reform the original group.

The tight turning behaviour shown in Figure 4.14 is seen in the prey species of the Eleonora’s

falcon [18]. One tactic prey can use to avoid a predator is to initiate tight turns at high speed. Since

the Eleonora’s falcon is larger than its prey, the prey have a higher chance of escape when using this

tactic.

4.4 Turning predator

While a predetermined behaviour of a predator can capture small moments of believable reactions

in prey, a turning predator is much more realistic. The predator can now react to its surroundings.

Equations (2.43), (2.48) and (2.49) are now implemented for all remaining experiments to describe

the predator. Since the predator is no longer a fixed shape, it is better to think of the predator as a

group of predators.

4.4.1 Splitting of the prey

In this experiment the predators chase the prey and successfully splits them apart (see Figure 4.15).

The initial condition for this simulation is a random distribution in space and angle. The parameters

for this experiment are qr = 1.1725, qal = 3.8003, qa = 3.8983, qrh = 49.8711, q̄r = 7.3279,

q̄a = 10.6207, q̄ap = 24.0813, kr = −0.0954, kal = 0.6036, ka = 0.6490, krh = −0.99,

k̄r = −0.5, k̄a = 0.8 and k̄ap = 0.95. The parameters favour the attraction and alignment effects of

the prey, but when the predators get too close the repulsion from the predators on the prey are too

great for the group to stay together. As this happens some of the prey will want to move away from

the group, ignoring any group cohesiveness. This can cause confusion in the prey and the group

could fan out or split into two separate groups, which will make it easier for the predators to catch

the prey. This is a classic case of predators running into a group of prey.
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Spatial density of predator at time = 1.5
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Figure 4.14: Away from predator - blind zone - attraction: The predator is set to chase the prey

from inside the prey’s blind zone. The plots occur sequentially from left to right. The top row is

the predator, while the next three rows are the prey with the blind zone width b equal to −2π (zero

blind zone), π2 and π, respectively. The prey’s main concerns are to avoid the predator and to stay

together due to the large value of qa.



CHAPTER 4. NUMERICAL EXPERIMENTS 48

Spatial density of prey at time = 13
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Figure 4.15: Splitting of the prey: The prey are shown in the left column while the predators are

shown in the right. As the predators pursue the prey, the prey splits apart.



CHAPTER 4. NUMERICAL EXPERIMENTS 49

4.4.2 Dispersal of the prey

In this experiment the prey disperse from the group in order to save themselves (see Figure 4.16).

This is a common dispersing behaviour called "flash expansion", discussed in [3, 26], where the

prey only focus on making the distance between themselves and the predators larger. Because the

predators follow the largest density, the individuals that break off from the group have a higher

likelihood of escaping. In order to notice the dispersal of the prey in Figure 4.16, it is important to

pay attention to the change in the magnitude of the population densities. The initial condition for this

experiment is at time step 2.9 of the simulation from Section 4.4.1, which has been shifted for better

visualization. The parameters that are used in this experiment are qr = 2, qal = 5, qa = 5, qrh = 8,

q̄r = 8, q̄a = 16, q̄ap = 6, kr = −0.6, kal = 0.6,ka = 0.6, krh = −0.95, k̄r = −0.6, k̄a = 0.6 and

k̄ap = 0.95. Also, the blind zone width is not the same as other experiments (b 6= π
2 , b = 3.6652).

The change of the blind zone width can cause more confusion among the prey. Once the prey scatter,

they travel away from the group and cannot get any information from behind them, therefore they

have no impetus to regroup.

4.4.3 Slow predators

In this experiment the predators’ speed has been reduced from γh = 1 to γh = 0.25. At this speed

the predators have a difficult time catching prey. The group that depicts the predators stays in a

similar spot throughout the simulation with only subtle movements when the prey get close, as seen

in Figure 4.17. Once the prey are out of range, the predators have no incentive to move, therefore

they stay in one spot. Since the predators have no alignment, they will not move in unison and each

individual will turn into the centre of the group. Figure 4.17 shows three progressive steps in time

for the prey in the left column and the predators in the right column. The prey move up to the left

towards the predators and then is deflected to the left. The predators try to reach for the prey but the

prey are gone too quickly. The parameters for this experiment are qr = 2, qal = 5, qa = 5, qrh = 8,

q̄r = 8, q̄a = 16, q̄ap = 6, kr = −0.6, kal = 0.6, ka = 0.6, krh = −0.95, k̄r = −0.6, k̄a = 0.6 and

k̄ap = 0.95. The reason qrh is lower for this experiment compared to other experiments is because

we wanted the prey to get close to the predator before it turns away.

A slow predator is at a huge disadvantage when trying to capture prey. In nature, predators

are not usually 75% slower than the prey, as in Figure 4.17. A predator with this sort of speed must
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Figure 4.16: Dispersal of the prey: The prey are shown in the left column, while the predators are

shown in the right column. The plots show a sequence of the predators dispersing the prey. Note

the decrease in magnitude of the population densities, particularly of the prey.
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evolve quickly or think of another method to capture its prey otherwise it will not survive. Frogfish,

which are slow predators, have a very fast capture technique. They wait for their prey to get close

and they use an enormous suction pressure to engulf their prey [15].

4.4.4 Fast predators

In this experiment the predators’ speed is increased from γh = 1.0 to γh = 1.5. The predator

can now move faster than the prey. A steady state is reached where the predators occupy the same

location as the prey and they both move in the same direction with the same speed. The predators are

exploiting the slowness of the prey and this it can be thought of as the predators feasting on the prey

(see Figure 4.18). The initial condition for this experiment is the time step 2.9 of the simulation from

Section 4.4.1. The parameters for this experiment are the same as the slow predators experiment in

Section 4.4.3, with the exception of γh. The plots on the left of Figure 4.18 show the prey, while the

right plots show the predators. This shows how the prey and predators move up to the left and do

not change form. A translational steady state is thereby achieved.

In nature, predators are often not 50% faster than the prey. In this case the predator would

eat all of the prey and the prey would not have a chance to evolve to be faster. However, this speed

discrepancy is common when fish are in their juvenile stages. Often slow individuals will find places

to hide or use other defences. Moving quickly for a predator is a huge advantage for a predator to

capture prey. The tuna and the lamnid shark have evolved to have counter-current heat-exchange

mechanisms for conserving metabolic heat and raising their body temperatures [6]. Warmer muscles

give extra power and create faster swimming.

4.4.5 Double predator split

This experiment shows how the predators can be clever about how they catch prey. The initial

condition is a random distribution is space and angle. The parameters for this experiment are qr =

1.8676, qal = 4.3989, qa = 5.9724, qrh = 50, q̄r = 8, q̄a = 10, q̄ap = 24, kr = −0.6, kal = 0.6,

ka = 0.6, krh = −0.95, k̄r = −0.5, k̄a = 0.8, k̄ap = 0.95 and γh = 2. These parameters are in

perfect balance, making both the predator and prey stay in groups but also allowing them to split

quickly if they need to. Figure 4.19 shows a sequence of two groups of predators working together

to split the prey. The left column is the prey while the right column are the predators. The top
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Figure 4.17: Slow predators: The prey are shown in the left column, while the predators are shown

in the right column. Slow predators, γh = 0.25, cannot catch their prey. The predators make an

attempt when the prey come close but are unsuccessful.
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Figure 4.18: Fast predators: The prey are shown in the left column, while the predators are shown

in the right column. Fast predators, γh = 1.5, can catch up and keep up with their prey. This

translational steady state shows the predators feasting.
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row shows the predators splitting to follow the two separate groups of prey. The middle two plots

show the two predator groups trapping the prey. The bottom row shows the prey escaping from

both predator groups by moving up or down as the predators collide. After the prey split up and

down, they merge again and then split left and right, which brings them back to the first plot again

in Figure 4.19. This is a recurring pattern and there are likely many more to find with this model.

Wild dogs show elaborate hunting techniques (see Figure 4.20). They have one of the highest

capture rates of any predator on the savanna [17]. Their techniques favour stamina instead of speed,

and their ability to work as a group. In order to tire out and capture the prey, the group members

take turns chasing the prey while trailing dogs conserve their stamina. Eventually the slow prey,

such as young, old or sick individuals, will get tired and be caught [17]. The ability of predators to

split and work as a team is showcased in Figure 4.19. Though all of the complexities of the wild

dog’s hunting techniques are not captured here, this model has captured a team effort by predators.
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Spatial density of prey at time = 57
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Figure 4.19: Double predator split: The prey are shown in the left column, while the predators are

shown in the right column. The predators work as a team when chasing the prey. The predators

come towards the group of prey from two angles and force the prey to split.
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Figure 4.20: Wild dogs: A Wildebeest is being chased by a pack of wild dogs. The image is from

http://www.arkive.org



Chapter 5

Conclusion

We have extended the two dimensional nonlocal kinetic model proposed in [13] to include a blind

zone and a predator. The predator’s sophistication was increased in stages: no predator, stationary

predator, a moving predator that does not sense its surroundings and a moving predator that reacts

to its surroundings. For each progression of the predator, simulations were done to showcase the

accuracy of the model. The behaviours obtained for the no predator are: oval swarm, collision of

two groups, cluster size and milling. The behaviours obtained for the stationary predator are: prey

near a predator and food, prey avoiding a predator, and predator ring. The behaviours obtained for

the moving predator that does not sense its surroundings are: prey moving towards the predator,

away from predator - blind zone - alignment, and away from predator - blind zone - attraction. The

behaviours obtained for the moving predator that reacts to its surroundings are: splitting of the prey,

dispersal of the prey, slow predators, fast predators, and double predator split.

The predator, in its final version, is formulated with the same equations as the prey, making the

model cohesive. Both prey and predator are influenced by repulsion and attraction with themselves.

The prey is repelled by the predator, while the predator is attracted to the prey. The prey can align

with other members inside its group, however the predator does not have this ability. This model

in the future should incorporate the alignment of the predator. This will allow the predator to be

thought of as a group instead of a solitary predator.

One can replicate the process of incorporating a predator to any desired number of predators or

prey. For example, we could add a second predator that competes with the first predator for the prey.
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Therefore the model can be extended to include any combination of species. With an addition of a

predator, we could incorporate predator intelligence into future work. This could have the predators

using group techniques to capture the prey even though the predator may not be able to catch the

prey by themselves.

With the addition of the blind zone and the predator, the number of parameters in the model has

roughly doubled. With a very large parameter space, it is difficult to know what parameters produce

certain interesting behaviours. A large parameter search could be run on multiple computers for

many months to get a better understanding of how the parameters affect the aggregate behaviour of

animals in the model.
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