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Abstract

Graphene has been actively researched because its low energy electronic Hamiltonian is

the relativistic Dirac equation with vanishing rest mass. Graphene was first fabricated in

2004 by Geim and Novoselov. Although graphene is a semi-metal, electronic applications

require knowledge of how to change its phase from a semi-metal to an insulator. For spinless

fermions on graphene, fermion density imbalance, coupling between its Dirac points, and

directed next nearest neighbor hopping can lead to charge density wave, Kekule bond density

wave, and quantum Hall insulating phases. Furthermore, topological defects such as line

defects and vortices allow bound state solutions within the gap giving rise to fractional

charge. The results are not only applicable to graphene, but can also be applied in general

to fermions on a hexagonal lattice.

Another example where a Dirac linear dispersion is found is for spinless fermions at one-

third filling on the Lieb lattice. Fermion density imbalance, staggered nearest neighbour

hopping, and directed next nearest neighbor hopping can change this lattice from a semi-

metal to an insulating phase characterized by a charge density wave, staggered hopping,

broken pi/2 rotation symmetry, or broken time reversal symmetry. By adding and adjusting

the strengths of nearest and next nearest neighbour interactions, many of these interesting

phases can be energetically favourable in mean-field theory.

Keywords: Graphene; Lieb lattice; topological defects; interactions; phases; Dirac
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“When nothing seems to help, I go look at a stonecutter hammering away at his rock

perhaps a hundred times without as much as a crack showing in it. Yet at the hundred

and first blow it will split in two, and I know it was not that blow that did it, but all that

had gone before.”

— Jacob Riis
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Preface

The work in this thesis was first inspired by Hou, Chamon, and Mudry [25]. Their paper

revealed that a Kekulé hopping pattern in graphene with a vortex in its order parameter

not only created an insulating state, but also produced zero energy states that could lead to

fractional charge. Seradjeh [50] then analytically examined a vortex with vorticity one and

found some of the bound state solutions where the order parameter goes as r or is constant.

This thesis explores all of the bound state solutions that occur for any vorticity and provides

a method to solve any radial profile in the vortex order parameter. Furthermore, other

topological defects that can lead to bound state solutions in graphene are explored. The

Lieb lattice, which has a similar energy dispersion to graphene but with an additional flat

band, is also examined. To consider the possibility of interesting phases on graphene and

the Lieb lattice, nearest neighbour and next nearest neighbour interactions are added to the

Hamiltonian and solved in mean-field theory. Phase diagrams are found from minimizing

the free energy with respect to the order parameters.

In the first chapter, a brief history of graphene, its properties, and possible applications

are explored. The second chapter discusses the mass matrices that change graphene from a

semi-metal to an insulator. Moreover, bound state solutions are found for particular choices

of the order parameters. In the third chapter, the possible phases of spinless fermions at

one-third filling on the Lieb lattice are discussed. The strengths of nearest neighbour and

next nearest neighbour interactions lead to energetically favourable insulating phases.

xii



Chapter 1

Graphene

1.1 Interesting Properties of Graphene

Graphene, a flat two dimensional layer of carbon atoms in a hexagonal lattice, is fascinating

because its low energy quasiparticles are described by the Dirac equation rather than the

Schrodinger equation. Specifically, the quasiparticles are governed by a (2+1) dimensional

Dirac equation with an effective speed of light of vF ≈ 106 m/s (300 times less than the speed

of light). The energy dispersion in graphene was first discovered to be linear in momentum

by Wallace [54] in 1947 when he examined the band structure of graphite. He ignored the

interactions between planes in the tight-binding model since the spacing between the layers

of graphite (3.37 Å) is much larger than the spacing between carbon atoms in the same

layer (1.42 Å). In 2004, Geim and Novoselov [41] were the first to fabricate, identify, and

characterize graphene. For their efforts, they received the Nobel Prize in Physics in 2010.

The mechanical and electrical properties of graphene are unique, and they can be ex-

ploited for many applications, most notably in electronics. Mobility (defined as the ratio

of conductivity to the electronic charge multiplied by charge carrier density) in graphene is

comparable to undoped Indium Antimonide (InSb), which has the largest room tempera-

ture mobility of any presently known semiconductor: 77, 000 cm2V−1s−1 at room temper-

ature [44]. In graphene, mobility is experimentally found to be between 55, 000 − 125, 000

cm2V−1s−1 for charge carrier densities of 4.3×1010 cm−2 at room temperature and 80, 000−
260, 000 cm2V−1s−1 at 5 K for densities of 0.8×1010 cm−2 [64]. Moreover, its mobility stays

high (18, 000−46, 000 cm2V−1s−1) even for high carrier concentrations (1012 cm−2) at room

temperature.

1
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In addition, graphene exhibits an anomalous quantum Hall effect. Two dimensional

electron systems exhibit the Hall effect (first discovered in 1879) where the combination of

an in-plane current and transverse magnetic field, B, causes a potential drop perpendicular

to the current and magnetic field [20]. The ratio of the current flowing to the potential

drop (Hall conductivity) is directly proportional to the magnetic field. In particular, the

energy levels for electrons in a magnetic field are quantized in (Landau) levels EN = (N +

1/2)~eB/mc where N is a non-negative integer. The Hall conductivity was found by von

Klitzing [53] to be quantized: σxy = Ne2/h where e is the electric charge and h is the Planck

constant. This is also known as the interger quantum Hall effect (QHE). For these results,

he was awarded the Nobel Prize in Physics in 1985. The energy levels of quasiparticles

in graphene are at ±vF
√

2e~BN/c, and the Hall conductivity is ±(N + 1/2)4e2/h [62].

Comparing the conductivities, the multiple of 4 difference is due to both the spin degeneracy

and the inversion symmetry of the graphene lattice, while the shift by 1/2 in graphene is

caused by a Berry’s phase of π (wavefunction changes sign when rotated by 360 degrees).

1.2 Fabricating Graphene

In 2004, Geim and Novoselov were able to create graphene by mechanical exfoliation: using

adhesive tape to repeatedly split graphite crystals into increasingly thinner pieces. Acetone

was then used to dissolve the tape leaving only graphite flakes. After, the flakes were put on

a silicon wafer coated with a 300 nm thick silicon oxide film, and an optical microscope was

used to search for graphene. A single layer of graphene has a different optical contrast when

compared to graphitic crystals with two or more layers. Since then, various techniques have

been used in an attempt to more efficiently create larger sheets of graphene.

One method involves graphene growth on silicon carbide. The surface of silicon carbide

is first prepared by oxidation or hydrogen gas etching. After, the oxide is removed by heating

the sample by electron bombardment to ≈ 1000 ◦C. Then, silicon is removed by increasing

the temperature to 1250-1450 ◦C. This leaves thin graphite layers with the thickness de-

termined by the temperature [5]. Recently, Emtsev et al. [13] have shown that graphene

mobility can be increased by annealing the samples in argon gas at higher temperatures

leading to surface restructuring before graphene is formed.

Another technique is to grow graphene epitaxially on transition metal substrates. The

metal substrate is heated to temperatures higher than 1000 ◦C while being exposed to a
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carbon-rich gas. The carbon atoms then diffuse into the metal crystal. When the metal

is cooled, the carbon atoms move to the surface of the metal forming layers of graphene

depending on the amount of carbon atoms absorbed. Examples are graphene on iridium in

ethylene gas [11], on nickel in methane gas [42], and on copper in methane gas [36].

Most recently, diffusion-assisted synthesis has been used to create graphene at lower

temperatures [32]. In this method, nickel film is deposited onto a substrate such as glass.

A paste of graphite powder is then pressed against the nickel surface forcing the carbon

into the nickel. After being heated at temperatures between 25-260 ◦C in air or argon gas,

graphene is left on the substrate after etching away the nickel-carbon surface.

1.3 Graphene Applications

Due to graphene’s unique properties, graphene is envisioned to improve many devices.

Graphene can lead to fast transistors due to its high mobility. Even though graphene

is atomically thin, the behaviour of resistivity, Hall coefficient, surface charge density, and

Fermi energy in graphene transistors are similar to the ambipolar field effect in semicon-

ductors without a zero conductance region [41]. Recently, IBM has created a graphene

transistor with a cut-off frequency of 155 GHz [58]. They formed graphene through epitax-

ial growth on copper foil exposed to ethylene gas at 975 ◦C. It was then transferred onto a

diamond-like carbon film that was grown on silicon oxide using cyclohexane (C6H12).

Another application for graphene is touch screens. Currently, indium tin oxide is being

used for touch screens because it is transparent and conductive. Unfortunately, indium is

hard-to-find, expensive, and brittle. Graphene with its high electrical conductivity, high

optical transparency (absorbs 2.3 percent of white light) [39], high breaking strength (42

N/m) [34], and flexibility (maintains performance after being stretched by 5 %) [35] is being

examined as a replacement for indium tin oxide. In these applications, graphene is placed

on top of a metal grid such as aluminum on a flexible substrate such as glass [63]. Also,

graphene is being researched to replace indium tin oxide in organic light emitting diodes

(OLED) [57] and in solar cells [55].

Graphene is also used in chemical vapour sensors. The adsorption of individual gas

molecules on the surface of graphene leads to a detectable change in its electrical resistance.

A recent set-up involves creation of a free-standing graphene foam which allows gases to

easily adsorb onto its huge surface area [10]. Nickel foam is heated in methane gas to
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create graphene. A layer of PMMA (polymethyl methacrylate) is deposited on the surface

of graphene as the nickel is dissolved with hydrochloric acid or ferric chloride. The PMMA

is then removed with acetone. This sensor is able to measure ammonia and nitrogen dioxide

at concentrations as small as 20 parts per million which is ten times more sensitive than

commercially available conducting polymer sensors [60].

1.4 Graphene Hamiltonian

Carbon has six electrons; the two 1s electrons are inert and do not participate in bonding. In

graphene, three of the electrons (2s, 2px, 2py) hybridize and form three planar sp2 orbitals.

Each of these orbitals have one electron. The overlap of these new orbitals with nearby

carbon atoms create three strong covalent (σ) bonds resulting in the hexagonal lattice. The

other 2pz electron forms weaker covalent (π) bonds with neighbouring atoms, and these

electrons, one per lattice site, are responsible for the electronic properties of graphene.

Graphene can be viewed as a triangular Bravais lattice with a 2-point basis as shown

in Fig. 1.1. The primitive lattice vectors are a⃗1 = (
√
3, 3)(a/2) and a⃗2 = (

√
3,−3)(a/2)

where
√
3a is the lattice spacing. There are three vectors that connect sites 1 to site 2:

s⃗1 = (0,−a), s⃗2 = (
√
3, 1)(a/2), and s⃗3 = (−

√
3, 1)(a/2). The reciprocal primitive lattice

vectors are b⃗1 = (
√
3/2, 1/2)(4π/3a) and b⃗2 = (

√
3/2,−1/2)(4π/3a) with the Wigner-Seitz

cell shown in Fig. 1.2.

The Schrödinger equation for an electron in an atomic potential U localized at r⃗a is

H(a) = − ~2

2m
∇⃗2 + Ura (1.1)

with atomic wavefunctions ⟨r|n, ra⟩ with quantum numbers n. For an electron in a periodic

array of atomic potentials,

H(pp) = H(a) +
∑
a ̸=b

Urb . (1.2)

Therefore,

⟨n, ra|H(pp)|m, ra⟩ = ⟨n, ra|H(a)|m, ra⟩+
∑
a̸=b

⟨n, ra|Urb |m, ra⟩

= Enδn,m +
∑
a ̸=b

⟨n, ra|Urb |m, ra⟩

= Enδn,m + 0 , (1.3)
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a2

a1

1

2

s1

s2

s

Figure 1.1: Graphene is a monolayer of carbon atoms in a hexagonal lattice: a triangular
Bravais lattice with a 2 point basis: 1 (light), 2 (dark). The primitive lattice vectors are
a⃗1 = (

√
3, 3)(a/2) and a⃗2 = (

√
3,−3)(a/2) where

√
3a is the lattice spacing. Sites 1 and 2

are connected by three vectors: s⃗1 = (0,−a), s⃗2 = (
√
3, 1)(a/2), and s⃗3 = (−

√
3, 1)(a/2).

Figure 1.2: The reciprocal lattice of graphene has reciprocal primitive lattice vectors b⃗1
and b⃗2; the light dots are reciprocal lattice points. The Wigner-Seitz cell (first Brillouin
zone), showing the points closer to a single lattice point than any other point, is the shaded
hexagon. There are 6 Dirac points (dark) but only two are inequivalent (not related by a
reciprocal lattice vector). They are labelled k+ and k−.
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where En is the energy of the atomic state, and δ is the Dirac delta function. The second

term on the right hand side is taken to be zero because the overlap of atomic wavefunctions

with a potential from a different atom is small.

For wavefunctions localized at different atoms a ̸= b,

⟨n, ra|H(pp)|m, rb⟩ = ⟨n, ra|H(a)|m, rb⟩+
∑
a ̸=c

⟨n, ra|Urc |m, rb⟩

= 0− tra,rbδn,m , (1.4)

where the hopping parameter −tra,rb is taken to be non-zero only if atoms on sites r⃗a and

r⃗b are nearest neighbours since atomic wavefunctions are localized near their potentials. In

addition, hopping between different orbitals is taken to be negligibly small due to different

symmetries. The first term on the right can only be non-zero for a = b.

Hence, the Hamiltonian can be rewritten in second quantized form as:

H(pp) =
∑
i

Eic
†
ricri −

∑
i̸=j

tri,rjc
†
ricrj (1.5)

where c†rj (crj ) are the fermionic creation (annihilation) operators at r⃗j satisfying {cri , c
†
rj} =

δi,j . Shifting the energy by −
∑

iEi, the tight-binding Hamiltonian for spinless fermions on

the hexagonal lattice is:

H0 = −
∑
r∈Λ1

3∑
i=1

tr,r+sic
†
1,rc2,r+si + h.c. (1.6)

where Λ1 contains all points
∑2

j=1 nj a⃗j where {nj ∈ N1 : nj ≤ Nj} with Nj specifying the

size of the lattice, and c†z,rj (cz,rj ) are the fermionic creation (annihilation) operators for site

z at r⃗j .

In graphene, t = tr,r+si ≈ 3 eV [47]. The Hamiltonian is invariant under Taj , the set of

translations by a primitive lattice vector a⃗i, since the hopping parameter is independent of
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position:

TajH0T
†
aj = Taj (−

∑
r∈Λ1

3∑
i=1

t c†1,rc2,r+si + h.c.)T †
aj

= −
∑
r∈Λ1

3∑
i=1

t c†1,r+aj
c2,r+si+aj + h.c.

= −
∑
r′∈Λ1

3∑
i=1

t c†1,r′c2,r′+si + h.c.

= H0 , (1.7)

where r⃗′ = r⃗ − a⃗j . Similarly, the Hamiltonian is invariant under time reversal T since the

hopping parameter is a real number.

TH0T
† = T (−

∑
r∈Λ1

3∑
i=1

t c†1,rc2,r+si + h.c.)T †

= −
∑
r∈Λ1

3∑
i=1

t c†1,rc2,r+si + h.c.

= H0 , (1.8)

since Tcj,rjT
† = cj,rj .

The Fourier transform of the operators is defined using the Brillouin zone shown in Fig.

1.3:

c†j,r =
1√
|Λ1|

∑
k⃗′

e−ik⃗′·r⃗c†j,k′ , (1.9)

where k⃗′ =
∑2

i=1
n′
i

Ni
b⃗i with {n′i ∈ N1 : n

′
i ≤ Ni}, and the number of site 1 is |Λ1| = Π2

i=1Ni.

The Hamiltonian becomes H0 =
∑

k Ψ
†
kH

(0)
k Ψk where

H
(0)
k = −t

(
0 Φk

Φ∗
k 0

)

= −t (σ1
3∑

i=1

cos(k⃗ · s⃗i)− σ2

3∑
i=1

sin(k⃗ · s⃗i)) , (1.10)

where Φk =
∑3

i=1 e
ik⃗·s⃗i , Ψ†

k = (c†1,k, c
†
2,k), σ0 is the 2×2 identity matrix, and σ⃗ are the Pauli

matrices defined by {σµ, σν} = 2δµ,ν σ0 with {·, ·} being the anticommutator:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.11)
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Figure 1.3: Another choice of the Brillouin zone is a parallelogram (shaded) with its sides
determined by b⃗1 and b⃗2. The light dots are reciprocal lattice points, and the dark dots are
the two Dirac points.

The energy spectrum must be symmetric about zero energy because σ3 anticommutes

with the Hamiltonian. For Ψk that solves the Hamiltonian with energy eigenvalue E, σ3Ψk

solves the Hamiltonian with energy -E:

H
(0)
k (σ3Ψk) = −σ3H(0)

k Ψk

= −σ3EΨk

= −E (σ3Ψk) . (1.12)

Solving for the energy eigenvalues, the energy bands for H
(0)
k are:

E = ±t|Φk| = ±t
√

3 + 2 cos(
√
3kxa) + 4 cos(

√
3kxa/2) cos(3kya/2) , (1.13)

and are shown in Fig. 1.4. Considering spin, each site can be filled with two electrons.

Since graphene has one electron for each site, half of the states are filled. Therefore at zero

temperature, only the bottom band is filled. The two bands touch at two Dirac points:

k+ = (1/
√
3, 0)(4π/3a) and k− = (2/

√
3, 0)(4π/3a) where the energy is zero, and therefore,

the Fermi surface consists only of these two points.

For low energy excitations in graphene, the behaviour is governed by momenta near k+
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Figure 1.4: The energy dispersion of graphene consists of two bands which touch at two
Dirac points: k+ = (1/

√
3, 0)(4π/3a) and k− = (2/

√
3, 0)(4π/3a).

and k−. Therefore, in the continuum limit (a→ ∞), the Hamiltonian can be written as:

H0 ≈
∑
|p⃗|<P

Ψ†
k−+p

H
(0)
k−+p

Ψk−+p +Ψ†
k++p

H
(0)
k++p

Ψk++p , (1.14)

where P is a cutoff. Expanding in the first two orders of p⃗ near k±,

Φk±+p = (3a/2)(∓px − ipy) + (3a2/8)(p2x − p2y) + (3a2/4)(∓ipxpy)) . (1.15)

The second order terms are the same order or larger than the first order when |p⃗| ≥ 2/a

which determines the cutoff P . To first order, the Hamiltonian becomesH0 =
∑

pΨ
†
pH

(0)
p Ψp

where

H(0)
p = ~vF


0 −px − ipy 0 0

−px + ipy 0 0 0

0 0 0 px − ipy

0 0 px + ipy 0


= −σ3 ⊗ σ1 px + σ0 ⊗ σ2 py , (1.16)

with Ψ†
p = (c†2p−, c

†
1p−, c

†
2p+, c

†
1p+) where cjp± = cj,k±+p is the annihilation operator at r⃗j

with momentum k⃗± + p⃗, and vF = 3at/2~. Setting both vF = 1 and ~ = 1 for convenience

and rewriting the Hamiltonian in the position basis using p⃗ = −i∇⃗, H0 =
∫
d2x⃗Ψ†H(0)Ψ



CHAPTER 1. GRAPHENE 10

with

H(0) =


0 i∂x − ∂y 0 0

i∂x + ∂y 0 0 0

0 0 0 −i∂x − ∂y

0 0 −i∂x + ∂y 0


= iσ3 ⊗ σ1 ∂x − iσ0 ⊗ σ2 ∂y

= −γ0γ1∂x − γ0γ2∂y , (1.17)

where the four component spinor is defined as Ψ† = (c†2−, c
†
1−, c

†
2+, c

†
1+), Ij is the j × j

identity matrix, and the gamma matrices are defined by {γµ, γν} = 2δµ,ν I4.

γ0 = σ0 ⊗ σ3 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , γ1 = σ3 ⊗ σ2 =


0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

 ,

γ2 = σ0 ⊗ σ1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , γ3 = σ1 ⊗ σ2 =


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 ,

γ5 = γ0γ1γ2γ3 = σ2 ⊗ σ2 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 . (1.18)

Of particular interest are the four matricesM1,M2,M3,M4 that anticommute with H(0).

M1,M2,M3 also anticommute with each other, but not M4.

M1 = σ0 ⊗ σ3 = γ0 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 ,
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M2 = σ1 ⊗ σ1 = iγ0γ3 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 ,

M3 = σ2 ⊗ σ1 = iγ0γ5 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 ,

M4 = σ3 ⊗ σ3 = iγ1γ2 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 . (1.19)

By rewriting H(0),M1,M2,M3,M4 in terms of Xµν = σµ ⊗ σν , the anticommuting

relationships can be clearly seen. H(0) is a linear combination of X31 and X02, while

(M1,M2,M3,M4) are (X03, X11, X21, X33). For Xµν to anticommute with Xµ′ν′ , either

σµ must commute with σµ′ and σν must anticommute with σν′ or vice versa. For example,

M1 = X03 anticommutes with the Hamiltonian since σ0 commutes with σ3 and σ0, while σ3

anticommutes with σ1 and σ2. Going through this process reveals the four possible matrices

Mj .

Since there are matrices that anticommute with the Hamiltonian, the energy spectrum

is symmetric about zero energy. The Hamiltonian H(0) is the relativistic Dirac Hamiltonian

with vanishing rest mass. In momentum space, the linear energy dispersion is most easily

found by examining the square of the Hamiltonian H
(0)
p :

(H(0)
p )2 = (−σ3 ⊗ σ1 px + σ0 ⊗ σ2 py)

2

= I4 |p⃗|2 , (1.20)

since σ2j = σ0, and X31 and X02 anticommute. Therefore, Ep = ±|p⃗|, and for low energies,
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the density of states of each Dirac point g(E) is linear in energy:

g(Ep) =

∫
d2p⃗

4π2
δ(|p⃗| − Ep)

=

∫
p dp

2π
δ(p−Ep)

=
Ep

2π
. (1.21)

The time reversal operator, T = σx ⊗ I2K where K is complex conjugation, switches the

Dirac points:

T = σx ⊗ I2K = iγ1γ5K =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

K . (1.22)

Because T 2 = 1 and T commutes with H(0), for Ψ that solves the Hamiltonian with energy

eigenvalue E, TΨ also solves it with the same energy:

H(0) (TΨ) = TH(0)Ψ

= TEΨ

= E (TΨ) . (1.23)

Decoupling H(0)Ψ = EΨ gives second-order differential equations because the Dirac

points are not coupled at low energies:

(−∂2x − ∂2y) c2± = E2 c2± . (1.24)

Hence, for a given E with the allowed values of p⃗ determined by the boundary conditions,

the solutions for the four component spinor Ψ are combinations of the following forms:

Ψ1− =


eipxx eipyy

(−px+ipy)
E eipxx eipyy

0

0

 , Ψ1+ =


0

0

e−ipxx e−ipyy

(−px−ipy)
E e−ipxx e−ipyy

 ,

Ψ2− =


eipxx e−ipyy

(−px−ipy)
E eipxx e−ipyy

0

0

 , Ψ2+ =


0

0

e−ipxx eipyy

(−px+ipy)
E e−ipxx eipyy

 ,
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Ψ3− =


e−ipxx eipyy

(px+ipy)
E e−ipxx eipyy

0

0

 , Ψ3+ =


0

0

eipxx e−ipyy

(px−ipy)
E eipxx e−ipyy

 ,

Ψ4− =


e−ipxx e−ipyy

(−px−ipy)
E e−ipxx e−ipyy

0

0

 , Ψ4+ =


0

0

eipxx eipyy

(−px+ipy)
E eipxx eipyy

 . (1.25)

The solutions are related by the time reversal operator:

Ψj± = TΨj∓ . (1.26)

1.5 Summary

Graphene is interesting due to its electronic Hamiltonian being linear in momentum near

the two Dirac points. There are two bands due to having two sites per unit cell, and

the bands touch at the two Dirac points. Since there is one electron per spin per lattice

site, only the lower band is filled resulting in a semi-metallic state. This can lead to many

favourable properties such as high carrier mobility for electronic applications. For low energy

excitations in the continuum limit, spinless fermions are represented by a four component

spinor due to the two lattice sites and the two Dirac points. There are matrices that

anticommute with the Hamiltonian, and as a result, the spectrum must be symmetric. Also,

the time reversal operator commutes with the Hamiltonian relating spinor solutions with

the same energy. Lastly, in this limit, there is no coupling between the two Dirac points, and

the solutions can be found analytically from solving two second-order differential equations.



Chapter 2

Topological Defects in Graphene

2.1 Fractional Charge due to Topological Defects

Laughlin, Störmer, and Tsui [33] won a Nobel Prize in Physics in 1998 for discovering and

explaining the fractional quantum Hall effect. This was done in a two dimensional system

of electrons using strong magnetic fields breaking time-reversal symmetry. Since then, ex-

amples of fractional charge without breaking time-reversal are actively being researched. In

particular, topological defects such as domain walls and vortices generated by spontaneous

symmetry breaking or by placing graphene on certain substrates are being examined. Hou,

Chamon, and Mudry [25] found that vortices on a Kekulé hopping texture in graphene lead

to fractional charge while preserving time-reversal symmetry. Firstly, they used the fact

that electronic charge is conserved in graphene. Moreover, a vortex with vorticity one on

a Kekulé texture not only opens a gap at the Dirac points, but also keeps the spectrum

symmetric with a single zero energy state. Due to the spectrum being half filled in graphene,

the total charge Q when the zero energy state is not filled is −1/2 compared to the situation

without the defect.

Q =

∫ ∞

−∞
d2r⃗ ρr

= −1

2
, (2.1)

14
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where ρr is the charge density relative to the topologically trivial background:

ρr =

∫ 0

−∞
dE (Ψ†

E,rΨE,r − ψ†
E,rψE,r)

=
1

2

∫ ∞

−∞
dE (Ψ†

E,rΨE,r − ψ†
E,rψE,r)

= −1

2
Ψ†

0,rΨ0,r , (2.2)

with ΨE,r (ψE,r) the eigenstates of the spectrum with energy E at position r⃗ when there

is (is not) a defect, and
∫∞
−∞ dE excludes the zero energy state. In the last two steps, the

completeness of the eigenstates is used:

δr−r′ =

∫ ∞

−∞
dE(ψ†

E,rψE,r′)

=

∫ ∞

−∞
dE(Ψ†

E,rΨE,r′) + Ψ†
0,rΨ0,r′ . (2.3)

In general, to create a gap in graphene, terms mj Mj are added to the Hamiltonian H0

where mj are masses andMj are the mass matrices which anticommute with H0. IfM
2
j = I

and Mj anticommute with each other such as H012 = H0 +m1M1 +m2M2, the square of

the Hamiltonian has a simple form.

H2
012 = H2

0 +m2
1M

2
1 +m2

2M
2
2 . (2.4)

Since H2
0 = |p⃗|2, the energy dispersion is E = ±

√
|p⃗|2 +m2

1 +m2
2. Hence, there is a gap of

size 2
√
m2

1 +m2
2 at the Dirac points.

2.2 Staggered Chemical Potential

If the on-site energy of electrons on site 2 is 2m1 larger than on site 1 wherem1 is a constant,

the Hamiltonian becomes:

H01 =
∑
r∈Λ1

[
−m1c

†
1,rc1,r +m1c

†
2,r+s1

c2,r+s1 −
3∑

i=1

t (c†1,rc2,r+si + h.c.)

]
. (2.5)

Taking the Fourier transform of the Hamiltonian, H01 =
∑

k Ψ
†
kH

(01)
k Ψk where

H
(01)
k =

(
−m1 −tΦk

−tΦ∗
k m1

)
. (2.6)
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2

1

Figure 2.1: Graphene with a staggered chemical potential represented by adding m1M1 to
the Hamiltonian where m1 is a constant. If m1 > 0 is a positive constant, site 1 (light) is
favoured, while site 2 (dark) is preferred for m1 < 0.

Expanding around the Dirac points, H01 =
∫
d2x⃗Ψ†H(01)Ψ where

H(01) =


m1 i∂x − ∂y 0 0

i∂x + ∂y −m1 0 0

0 0 m1 −i∂x − ∂y

0 0 −i∂x + ∂y −m1


= −γ0γ1∂x − γ0γ2∂y +m1M1 . (2.7)

A staggered chemical potential creates a density difference between the two sublattices,

and m1 is an order parameter for this charge density wave (CDW) [49]. Since M2 and M3

anticommute with the Hamiltonian, the energy spectrum must be symmetric about zero

energy, and Ep = ±
√

|p⃗|2 +m2
1. Therefore, at each Dirac point, a gap of 2m1 has been

introduced. In addition, the time reversal operator T commutes with H(01).

Since H(01)Ψ = EΨ does not couple the two Dirac points, two second-order differential

equations arise:

(−∂2x − ∂2y) c2± = (E2 −m2
1) c2± . (2.8)
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For a given E, the solutions are:

Ψ1− =


eipxx eipyy

(−px+ipy)
E+m1

eipxx eipyy

0

0

 , Ψ1+ =


0

0

e−ipxx e−ipyy

(−px−ipy)
E+m1

e−ipxx e−ipyy

 ,

Ψ2− =


eipxx e−ipyy

(−px−ipy)
E+m1

eipxx e−ipyy

0

0

 , Ψ2+ =


0

0

e−ipxx eipyy

(−px+ipy)
E+m1

e−ipxx eipyy

 ,

Ψ3− =


e−ipxx eipyy

(px+ipy)
E+m1

e−ipxx eipyy

0

0

 , Ψ3+ =


0

0

eipxx e−ipyy

(px−ipy)
E+m1

eipxx e−ipyy

 ,

Ψ4− =


e−ipxx e−ipyy

(−px−ipy)
E+m1

e−ipxx e−ipyy

0

0

 , Ψ4+ =


0

0

eipxx eipyy

(−px+ipy)
E+m1

eipxx eipyy

 . (2.9)

It is not surprising that the solutions are the same as those for H0 except E is replaced with

E +m1. Hence, the solutions can still be related by the time reversal operator:

Ψj± = TΨj∓ . (2.10)

2.3 Domain Wall

A domain wall has a line defect which allows one site to be favoured to the left of the line,

while the other site is preferred to the right of the line. For example, m1 = tanh(y) has a line

defect at y = 0 as illustrated in Fig. 2.2. A domain wall in a one dimensional Dirac system

was first solved by Jackiw and Rebbi [27] showing charge fractionalization. In graphene,

the Hamiltonian with a domain wall is similar to the case of a staggered chemical potential

(2.7) with the exception that m1 is now position dependent. Therefore, the Hamiltonian

still anticommutes with M2 and M3 and commutes with T .
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Figure 2.2: Line defect in graphene at y = 0. For m1 = tanh(y), light sites have lower
energy than the dark sites. To the left of the line (y < 0), site 2 has lower energy, while site
1 has lower energy to the right of the line (y > 0).
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For a position dependent m1, the second-order differential equations are:

E(−)c2± =
1

E(+)

(
−∂2x − ∂2y

)
c2±

+

[
∓i∂x

(
1

E(+)

)
− ∂y

(
1

E(+)

)]
(∓i∂xc2± + ∂yc2±) , (2.11)

where E(±) = E ±m1. In general, the equation with any analytic position dependent m1

can be solved. For example, when m1 = tanh(y), separation of variables is used where

Ψ± = XY± with X being a linear combination of eipxx and e−ipxx. Y± then satisfies:

E(+)∂2yY± =
(
±px sech2(y)− E(+)

) [
E2 − p2x − tanh2(y)

]
Y±

+sech2(y) ∂yY± . (2.12)

To solve the differential equations in this thesis, the following method is used. Y± is

expanded in polynomials around y = 0. In other words, Y± =
∑∞

n=0 an± y
n with coefficients

an±. Values are then calculated from the polynomials near y = 0 and used as initial

conditions for finite difference methods such as Runge-Kutta to get Y± for larger y. Second-

order differential equations in one variable have two linearly independent solutions. Near

y = 0,

Y0± = 1 +
−E3 ± px + Ep2x

2E
y2 +

−E2 + p2x
6E

y3 +O(y4) , (2.13)

Y1± = y +
1

2E
y2 +

−E3 ± px + Ep2x
6E

y3 +O(y4) . (2.14)

An example of the typical behaviour of Y± for |px| <
√
E2 −m2

1 is shown in Fig. 2.3.

As y → ±∞, Y± approaches the linearly independent solutions for a staggered chemical

potential: eipyy and e−ipyy. Since m2
1 → 1 in this limit, the wavelength in y, 2π/py, can be

found analytically since py = ±
√
E2 −m2

1 − p2x.

Examining the amplitude at y = 0, for E > 1, Y± changes from low amplitude to high

amplitude, and for E < 1, Y± goes from high amplitude to low. This cannot be explained

by the limits at infinity since Y± with a constant amplitude would be a possible solution.

Hence, the amplitude change is linked to the function chosen to represent the line defect.

Finding c1± from c2±, the opposite behaviour is seen where the y-component changes from

low amplitude to high amplitude for E < 1 and high to low for E > 1. For |px| ≥
√
E2 −m2

1,

Y± decays exponentially as y → ±∞. In particular, for a given E, when ±px = E, it can be

seen that Y± = sech(y). The spinors are time reversal pairs: on one Dirac point, px = E,



CHAPTER 2. TOPOLOGICAL DEFECTS IN GRAPHENE 20

-20 -10 10 20
y

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2.3: An example of Y± form1 = tanh(y) with |px| <
√
E2 −m2

1. Far from the defect,
the wavelength in y is the same as the case of a staggered chemical potential: 2π/py where
py = ±

√
E2 −m2

1 − p2x. Near the defect, the amplitude changes. In this figure, E = 2,
px = 1.5 with X = eipxx. Therefore, the wavelength in y far from the origin is 7.25.
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Figure 2.4: For the line defect with m1 = tanh(y), Y± = sech(y) when ±px = E.

while on the other, −px = E:

Ψ− =


sech(y) eiEx

− sech(y) eiEx

0

0

 , Ψ+ =


0

0

sech(y) e−iEx

− sech(y) e−iEx

 . (2.15)

Therefore, there are E = 0 solutions bound in y.
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A
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C

Figure 2.5: Kekulé Pattern with δtr,r+si = ∆eik⃗
+·s⃗ieiG⃗·r⃗/3 + c.c.. The solid dark (dashed

light) lines indicate hopping is increased (decreased) by 2∆/3 (∆/3). A, B, C indicate a
possible choice of the unit cell.

2.4 Kekulé Pattern

Kekulé patterns can be created by modifying the hopping on the graphene lattice by adding

a perturbation δtr,r+si to t:

H023 = −
∑
r∈Λ1

[
3∑

i=1

(t+ δtr,r+si) c
†
1,rc2,r+si + h.c.

]
. (2.16)

For δtr,r+si = ∆eik⃗
+·s⃗ieiG⃗·r⃗/3 + c.c. where G⃗ = (k⃗+ − k⃗−) and ∆ is a constant, the Fourier

transform of this perturbed Hamiltonian results in coupling between the Dirac points

on different lattice sites. The Hamiltonian is no longer invariant under translations by

primitive lattice vectors. The bonds between
∑

j nj a⃗j and
∑

j nj a⃗j+s⃗i are modified by

2∆cos[−2π(
∑

j nj)/3 + k⃗+ · s⃗i]/3 where k⃗+ · s⃗j = (0, 2π/3,−2π/3). The unit cell is now

three times larger, and the resulting Kekulé hopping pattern showing is shown in Fig. 2.5.

Therefore, in the position basis after taking the Fourier transform and linearizing around
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the Dirac points, the Hamiltonian is H023 =
∫
d2x⃗Ψ†H(023)Ψ where

H(023) =


0 i∂x − ∂y 0 ∆∗

i∂x + ∂y 0 ∆∗ 0

0 ∆ 0 −i∂x − ∂y

∆ 0 −i∂x + ∂y 0


= −γ0γ1∂x − γ0γ2∂y +∆M2 +∆M3 . (2.17)

Since M1 anticommutes with H(023), the spectrum is symmetric about zero energy, and

energy spectrum has a gap of 2∆ at each Dirac point: E(023) = ±
√
|p⃗|2 +∆2. Also, the

time reversal operator commutes with H(023).

2.5 Kekulé Pattern: r-independent Vortices

Hou, Chamon, and Mudry [25] realized that a vortex in the Kekulé bond density wave

(KBDW) order can lead to charge fractionalization. In this situation, the electric charge is

conserved. Furthermore, the spectrum is symmetric about zero energy, is gapped, and has

zero energy states. The vortex is represented by setting ∆ = ∆0e
ip θ/2 where eip θ represents

a vortex with integer vorticity p and ∆0 is a positive real number. The Hamiltonian H(023)

can be rewritten in terms of r and θ:

H(023) =


0 i∂z 0 ∆∗

i∂z∗ 0 ∆∗ 0

0 ∆ 0 −i∂z∗
∆ 0 −i∂z 0

 , (2.18)

where ∂z = ∂x + i∂y = eiθ(∂r +
i
r∂θ) and ∂z∗ = ∂x − i∂y. The components of the spinor are

expanded in terms of complex exponentials:
c2−

c1−

c2+

c1+

 =

∞∑
n=−∞


an e

inθ eiπ/4

bn−1 e
i(n−1) θ e−iπ/4

−cn+p−1 e
i(n+p−1) θ e−iπ/4

dn+p e
i(n+p) θ eiπ/4

 , (2.19)
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and (an, bn−1, cn+p−1, dn+p) are real and depend only on r. The subscripts match the phase

they multiply. There are now four coupled differential equations:

−E an + [∂r − (n− 1)/r] bn−1 +∆0 dn+p = 0 ,

(∂r + n/r) an + E bn−1 +∆0 cn+p−1 = 0 ,

∆0 bn−1 + E cn+p−1 + [∂r + (n+ p)/r] dn+p = 0 ,

∆0 an + [∂r − (n+ p− 1)/r] cn+p−1 − E dn+p = 0 .

(2.20)

In the definition of the spinor components, the ±π/4 phase factors are chosen such that

the number of equations is reduced to four from eight since the real and imaginary parts of

(an, bn−1, cn+p−1, dn+p) satisfy the same differential equations. Equally important, at most

four radial components (an, bn−1, cn+p−1, dn+p) are coupled for a given n. The differential

equations are examined for bound state solutions. For zero energy, there are two pairs

of coupled first-order differential equations which can be decoupled into two second-order

differential equations:

−r2∂2rd− (1 + p) r∂rd+ (n2 + np+ r2∆2
0) d = 0 , (2.21)

−r2∂2r c+ (−1 + p) r∂rc+ [(1− n)(1− n− p) + r2∆2
0] c = 0 , (2.22)

where c = cn+p−1 and d = dn+p. The coefficients a = an and b = bn−1 can then be deter-

mined from c and d. The solutions of the differential equations are expanded in polynomials.

Near r = 0, c goes as r1−n and r−1+n+p. For c to be normalizable at r = 0, the smallest

integer power must be greater than or equal to zero. Values near r = 0 are calculated from

the polynomials and used as initial conditions for finite difference methods for larger r. The

superposition of the two linearly independent solutions which is normalizable as r → ∞ is

then found. Since a, which goes as (n+p−1) c/r near r = 0, must also be normalizable, the

smallest power of c must actually be greater than or equal to 1, or n = −p+ 1. Therefore,

the solutions are 0 ≥ n ≥ 2− p or n = −p+ 1. For example, for p = 1, n = 0, and the zero

energy solution can be found analytically as well:

Ψ =


e−∆0r

0

e−∆0r

0

 . (2.23)

For p = 2, n can be 0 or −1. So for a given p > 0, there are p zero energy bound state

solutions on site 2 for 0 ≥ n ≥ 1 − p. Comparing the equations for (a, c) and (b, d), they
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|p| Ep,1 Ep,3 Ep,5 Ep,7 Ep,9

1 0 0.943 0.980 0.990 0.994
2 0 0.867 0.943 0.968 0.980
3 0 0.800 0.904 0.943 0.962
4 0 0.745 0.866 0.917 0.943
5 0 0.700 0.831 0.891 0.923
6 0 0.661 0.800 0.866 0.904

Table 2.1: Ep,l = sgn(l)
√

1− [p/(|l|+ |p| − 1)]2 with degeneracy |l|+ |p| − 1 are the bound
state energies for ∆0 = 1. Higher vorticity leads to bound state energies closer to zero.

are identical after mapping p → −p and n → 1 − n. Hence, for p < 0, there are p bound

state zero energy solutions on site 1 for 1 ≤ n ≤ −p. For example, for p = −1, n = 1, and

for p = 2, n can be 1 or 2. As a result, when |p| = 1, there is a single zero energy state,

and fractional charge is found. When the zero energy state is not filled, the charge is −1/2,

and when the zero energy state is filled, the charge is 1/2. The single zero energy solution

is protected since the spectrum must be symmetric. This does not hold when there is an

even number of zero modes.

To solve for the non-zero bound state energies, the four coupled first-order differential

equations are decoupled into a single fourth-order differential equation:

−r4∂4ra = 4r3∂3ra− r2[−1 + 2j2 + 2j(−1 + p)− 2p+ p2]∂2ra

+r4(−2∆2 + 2E2)∂2ra− r[1 + 2j(−1 + p)− 2p+ p2]∂ra

+r3(−4 + 4E2)∂ra+ j2[−6p+ p2 − 2(−1 + E2)r2] a

+r2[2(−1 + E2)p− E2p2 + (−1 + E2)2r2)] a

+[j4 + 2j3(−1 + p)− 2(−1 + E2)j(−1 + p)r2] a . (2.24)

The fourth-order differential equation can be solved in the same manner as the second-order

differential equations. For any p, an infinite number of bound states is numerically found

at:

Ep,l = sgn(l)∆0

√
1− [p/(|l|+ |p| − 1)]2 , (2.25)

with degeneracy |l| + |p| − 1 where l is an odd integer. Table 2.1 shows the bound state

energies get closer to zero with increasing p. An example of energies with their degeneracies

for p = 1, 2 is shown in Tables 2.2 and 2.3.
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HHHHHl
n −2 −1 0 1 2

−5 −0.980 −0.980 −0.980 −0.980 −0.980
−3 −0.943 −0.943 −0.943
∓1 0
3 0.943 0.943 0.943
5 0.980 0.980 0.980 0.980 0.980

Table 2.2: E1,l = sgn(l)
√

1− 1/l2 with degeneracy |l| for odd integers l are the bound state
energies for ∆0 = 1 for p = 1.

HHHHHl
n −3 −2 −1 0 1 2

−5 −0.943 −0.943 −0.943 −0.943 −0.943 −0.943
−3 −0.867 −0.867 −0.867 −0.867
∓1 0 0
3 0.867 0.867 0.867 0.867
5 0.943 0.943 0.943 0.943 0.943 0.943

Table 2.3: E2,l = sgn(l)
√

1− [2/(|l|+ 1)]2 with degeneracy |l| + 1 are the bound state
energies for ∆0 = 1 for p = 2.
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To differentiate between degenerate energies, Ψp,l,n is written with three indices. In this

notation, the zero energy solution for p = 1 is:

Ψ1,1,0 =


e−∆0r eiπ/4

0

e−∆0r e−iπ/4

0

 , (2.26)

and the radial components for Ψp,l,n with different p and l are shown in Fig. 2.6 and 2.7. For

a given n, when |l| is increased, both the number of nodes for each of the radial components

and their spread in r increase as seen in Fig. 2.8. Ψp,l,n with larger n oscillate more in θ.

For odd p, there are time reversal pairs such that Ψp,l,−n = TΨp,l,n, and therefore, for n = 0,

Ψp,l,0 = TΨp,l,0, the time reversal operator transforms this spinor into itself. For even p,

spinors Ψp,l,n1 and Ψp,l,n2 are time reversal pairs if −n1 + 1/2 = n2 − 1/2 for n1 < n2. The

positive and negative energy solutions are related: Ψp,−l,b =M1Ψp,l,n. Also, solutions for p

can be mapped to −p : Ψ−p,l,1−n = −iγ1KΨp,l,n.

2.6 Kekulé Pattern: r-dependent Vortices

The Hamiltonian for r-dependent vortices is the same as the r-independent situation with

the exception that ∆0 now depends on r. Therefore, the matrices that anticommute and

commute with the Hamiltonian are already known. Fractional charge is found when the

spectrum is half filled with the zero-energy state unoccupied (−1/2) or occupied (1/2) [25].

The case ∆0 = r is closely examined. The zero energy solutions are found by restating the

coupled first-order differential equations into two second-order differential equations:

−r2∂2r c+ pr∂rc+ [2 + n2 + n(−3 + p)− 2p+ r4] c = 0 , (2.27)

−r2∂2rd− pr∂rd+ (n+ n2 + p+ np+ r4) d = 0 . (2.28)

Near r = 0, c goes as r2−n and r−1+n+p. Since a goes as (n+p−1) c/r2, the smallest power

needs to be greater than or equal to 1 or n = −p+1. Therefore, the number of zero energy

solutions are identical to the r-independent case: 0 ≥ n ≥ 1 − p. For a given p > 0, there

are p zero energy solutions on site 2. Also, the mapping from (b, d) to (a, c) where p→ −p
and n → 1 − n still holds. Hence, for p < 0, there are p zero energy solutions on site 1 for
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Figure 2.6: Radial components of Ψ1,l,n for a single vortex (p = 1) with ∆0 = 1. There is
one zero energy state (a). The next higher energy state is a triplet: 0.943 (b,d,f); the lower
energy state is also a triplet: -0.943 (c,e,g). Ψ1,l,0 (a,b,c) transform into themselves through
time reversal. The time reversal pairs are Ψ1,l,n and Ψ1,l,−n: (d,f) and (e,g).
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Figure 2.7: Radial components of Ψ2,l,n for p = 2 with ∆0 = 1. There are two zero energy
solutions: (a,b). The next higher state, 0.867, has four solutions: (c,d,e,f). The time reversal
pairs for the above states are Ψ2,l,n1 and Ψ2,l,n2 where −n1 + 1/2 = n2 − 1/2 for n1 < n2:
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Figure 2.8: Radial components of Ψ1,l,0 for a single vortex (p = 1) with ∆0 = 1 and n = 0.
For a given n, each time |l| is increased by j, the number of nodes for each of the radial
components also increase by j. Also, their spread in r increases with |l|.
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1 ≤ n ≤ −p. For all p, the differential equations for zero energy have the following form

that can be solved exactly with Bessel functions:

r2∂2rf + C1r∂rf + (C2r
n + C3)f = 0 , (2.29)

with constants Cj .

The four coupled first-order differential equations are decoupled into a single fourth-order

differential equation to solve for the non-zero bound state energies.

r4∂4ra = −2r3∂3ra+ 2r4∂2ra− 2E2r2∂2ra

+(2− 2j + 2j2 − 2p+ 2jp+ p2)∂2ra+ 6r5∂ra− 2E2r3∂ra

+(2j − 2j2 − 2p+ 2jp+ p2) r∂ra− r8a+ 2E2r6a

+(4− E4 + 2j − 2j2 + 4p− 2jp) r4a

+(E2 − 2E2j + 2E2j2 − 2E2p+ 2E2jp+ E2p2) r2a

+(3j2 + 2j3 − j4 + 2j2p− 2j3p− j2p2) a . (2.30)

For |p| = 1 with ∆0 = r, an infinite number of bound states are numerically found at

El = sgn(l)
√

2|l| where l is an integer. For zero energy, l = 0, the degeneracy is p which is

the same as the r-independent case, but for l ̸= 0, the degeneracy is 2|l| as seen in Table

2.4. Unlike the case of r-independent vortex, there can be double degeneracy for certain l

and p. Therefore, p, l, n do not uniquely define a spinor. This degeneracy can be broken

by defining two patterns: one without the extra degeneracy (Table 2.5) and one with only

the extra degeneracy (Table 2.6). The first pattern has El = sgn(l)
√

2|l| with degeneracy

|l| + 1 for integer l, while the second pattern has El = sgn(l)
√

2|l| with degeneracy |l| − 1

for integer |l| ≥ 2. The solutions to the second pattern have the same θ dependence as a

solution in the first pattern, but the number of nodes in the radial components are different.

For higher p, the energy spectrum is a perturbation of the spectrum of the |p| = 1 case but

with more copies of the n = 0 solutions. Unlike the |p| = 1 case, the highest degeneracy is

two, but the energies are near those for |p| = 1 as shown in Tables 2.7 and 2.8.

Herbut and Lu [24] solved the |p| = 1 case analytically by rewriting the Hamiltonian in

terms of fictitious bosonic and fermionic creation and annihilation operators:

H(h)
p = α⃗ · p⃗+ β⃗ · r⃗ , (2.31)

where αj and βj are Dirac matrices satisfying:

{αi, αj} = {βi, βj} = 2δi,j , (2.32)



CHAPTER 2. TOPOLOGICAL DEFECTS IN GRAPHENE 31

HHHHHl
n −3 −2 −1 0 1 2 3

−3 −2.449 −2.449 (2) −2.449 (2) −2.449
−2 −2 −2 (2) −2
−1 −1.414 −1.414
0 0
1 1.414 1.414
2 2 2 (2) 2
3 2.449 2.449 (2) 2.449 (2) −2.449

Table 2.4: The bound state energies for ∆0 = r and p = 1 are El = sgn(l)
√

2|l|. The
degeneracy of the zero-energy state is 1, while all other levels have degeneracy 2|l|. The
parenthesis after the number indicates whether there is an extra degeneracy for a given n.
Two patterns can be created: Tables 2.5 and 2.6.

HHHHHl
n −3 −2 −1 0 1 2 3

−3 −2.449 −2.449 −2.449 −2.449
−2 −2 −2 −2
−1 −1.414 −1.414
0 0
1 1.414 1.414
2 2 2 2
3 2.449 2.449 2.449 −2.449

Table 2.5: The first pattern of bound state energies for ∆0 = r and p = 1 are El =
sgn(l)

√
2|l| for integer l. The degeneracy of the levels in the first pattern are |l|+ 1.

HHHHHl
n −2 −1 0 1 2

−4 −2.828 −2.828 −2.828
−3 −2.449 −2.449
−2 −2
−1
0
1
2 2
3 2.449 2.449
4 2.828 2.828 2.828

Table 2.6: The second pattern of bound state energies for ∆0 = r and p = 1 are El =
sgn(l)

√
2|l| for integer |l| ≥ 2. The degeneracy of the levels in the second pattern are |l|−1.
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HHHHHl
n −4 −3 −2 −1 0 1 2 3

−3 −2.424 −2.389 −2.389 −2.424
−2 −1.972 −1.901 −1.901 −1.972
−1 −1.384 −1.384
0 0 0
1 1.384 1.384
2 1.972 1.901 1.901 1.972
3 2.424 2.389 2.389 2.424

Table 2.7: The first pattern of bound state energies for ∆0 = r and p = 2. The p = 2 energies
are small perturbations from the p = 1 solutions with the n = 0 becoming n = 0,−1 (Table
2.5).

HHHHHl
n −3 −2 −1 0 1 2

−4 −3.208 −3.198 −3.198 −3.208
−3 −2.882 −2.882
−2 −2.509 −2.509
−1
0
1
2 2.509 2.509
3 2.882 2.882
4 3.208 3.198 3.198 3.208

Table 2.8: The second pattern of bound state energies for ∆0 = r and p = 2. The p = 2
energies are small perturbations from the p = 1 solutions with the n = 0 becoming n = 0,−1
(Table 2.6).
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Figure 2.9: Radial components of Ψ1,l,n for a single vortex (p = 1) with ∆0 = r. There
is one zero energy state (a). The next higher energy state is a time reversal pair: 1.414
(b,c). The next higher energy state has a degeneracy of four. Two are time reversal pairs
(f,g), while the other two map to themselves with time reversal (d,e). The lowest energy
state in magnitude for the second pattern is (e). It has the same θ dependence as (a), but
orthogonal to it due to more nodes in r.
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Figure 2.10: Radial components of Ψ2,l,n with ∆0 = r and p = 2. The energy states are
perturbations of the states of the p = 1 case. There are two zero energy states which are
time reversal pairs (a,b). The next higher energy state is also a time reversal pair: 1.384
(c,d). The next higher energy which was four-fold degeneracy in p = 1 has been split into
two time reversal pairs: 1.901 (e,f) and 1.972 (g,h).
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and {αi, βj} = 0.

(H(h)
p )2 = p⃗ 2 + r2 + iβ⃗ · α⃗

= 2

2∑
j=1

(b†jbj + a†jaj) , (2.33)

where bj are bosonic operators defined by bj = rj + ipj and aj are fermionic operators

defined by aj = (βj + iαj)/2. Hence, the energy spectrum is E = ±
√
2N for an integer N

for N ≥ 2.

The number of states for each energy can be explained due to an accidental, or non-

geometrical, degeneracy. Angular momentum-like vectors that commute with (H
(h)
p )2 can

be defined:

Li =

 2∑
µ,ν=1

b†µσ
µν
i bν

 /2 , (2.34)

Si =

 2∑
µ,ν=1

a†µσ
µν
i aν

 /2 . (2.35)

By examining L⃗2 and S⃗2 with eigenvalues l(l + 1) and s(s+ 1) respectively, the values of l

and s are found:

l = N b/2 , (2.36)

s = Nf (2−Nf )/2 , (2.37)

where N b(Nf ) is the number of bosons (fermions). Therefore, from J⃗ = S⃗ + L⃗ for N ≥ 2,

j± = l ± s = (N −Nf ±Nf (2−Nf ))/2 , (2.38)

has two values: {N/2, N/2− 1} since Nf can only be {0, 1}. As a result, there are:

2(j+) + 1 + 2(j−) + 1 = 2N , (2.39)

degenerate energy eigenvalues.

In general, ∆0 with any analytic r-dependence can be solved because the equations

always decouple into a fourth-order differential equation. If ∆0 goes as r near r = 0 and



CHAPTER 2. TOPOLOGICAL DEFECTS IN GRAPHENE 36

HHHHHl
n −2 −1 0 1 2

−5 −0.980 −0.980 −0.981 −0.980 −0.980
−3 −0.940 −0.945 −0.940
∓1 0
3 0.940 0.945 0.940
5 0.980 0.980 0.981 0.980 0.980

Table 2.9: The bound state energies for {∆0 = r for r < 1} and {∆0 = 1 for r ≥ 1}
with p = 1 are shown. The bound state energies are perturbations of the energies from the
∆0 = 1 case (Table 2.2).

HHHHHl
n −3 −2 −1 0 1 2 3

−3 −2.448 −2.448 (2) −2.448 (2) −2.448
−2 −2.000 −2.000 (2) −2.000
−1 −1.415 −1.415
0 0
1 1.415 1.415
2 2.000 2.000 (2) 2.000
3 2.448 2.448 (2) 2.448 (2) −2.448

Table 2.10: The bound state energies for {∆0 = r for r < 3} and {∆0 = 3 for r ≥ 3} with
p = 1 are shown. The bound state energies are perturbations of the energies of the ∆0 = r
case (Table 2.4).

is constant as r → ∞, {∆0 = r for r < ∆c} and {∆0 = ∆c for r ≥ ∆c}, the bound state

energies is a mixture of the two cases. For small ∆c with any p, the bound state energies are

perturbations of the bound state energies for constant ∆0 as seen in Table 2.9. On the other

hand, for larger ∆c with any p, the bound state energies are perturbations of the bound

state energies for ∆0 = r as seen in Table 2.10.

2.7 Non-zero CDW and KBDW Order Parameters

The case where both CDW and KBDW order parameters are non-zero is now examined.

Chamon et al. [7] found that the value of the charge is dependent on the ratio of m1/m123

wherem123 =
√
m2

1 + |∆|2. From the Lagrangian, they computed the current, jµ = ⟨ψγµψ⟩,
with respect to the order parameters n⃗ = (m1,∆0 cos θ,∆0 sin θ) where m1 and ∆0 are
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constant. The Lagrangian is:

L = ψ†(iγ0γµ∂u −mjMj)ψ , (2.40)

and the current operator is:

jµ =
1

8π
ϵµνρ n⃗ · (∂ν n⃗ ∧ ∂ρn⃗) , (2.41)

where ϵ is the Levi-Civita symbol. The charge Q is then found to be:

Q = ±1

2

(
1− |m1/∆0|√

1 +m2
1/∆

2
0

)
, (2.42)

where ± depends on whether the zero energy state is unoccupied or occupied. When m1 =

∆0, Q = 1/4. As expected, when |m1| ≫ |∆0|, the charge is zero, and when |m1| ≪ |∆0|,
the charge is ±1/2. Repeating this process for r-dependent m1 and ∆0, Chamon et al.

found that the value of the order parameters as r goes ∞ determines the charge.

The resulting Hamiltonian is H0123 =
∫
d2x⃗Ψ†H(0123)Ψ where

H(0123) =


m1 i∂x − ∂y 0 ∆∗

i∂x + ∂y −m1 ∆∗ 0

0 ∆ m1 −i∂x − ∂y

∆ 0 −i∂x + ∂y −m1


= −iγ0γ1∂x − iγ0γ2∂y +m1M1 +∆M2 +∆M3 . (2.43)

The following coupled first-order differential equations appear:

(m1 − E) an + [∂r − (n− 1)/r] bn−1 +∆0 dn+p = 0 ,

(∂r + n/r) an + (m1 + E) bn−1 +∆0 cn+p−1 = 0 ,

∆0 bn−1 − (m1 − E) cn+p−1 + [∂r + (n+ p)/r] dn+p = 0 ,

∆0 an + [∂r − (n+ p− 1)/r] cn+p−1 − (m1 + E) dn+p = 0 ,

(2.44)

when the spinor is expanded in θ as previously:
c2−

c1−

c2+

c1+

 =

∞∑
n=−∞


an e

inθ eiπ/4

bn−1 e
i(n−1)θ e−iπ/4

−cn+p−1 e
i(n+p−1)θ e−iπ/4

dn+p e
i(n+p)θ eiπ/4

 . (2.45)
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Figure 2.11: A meron changes m1 from 1 to 0 while keeping m2
1 +∆2

0 constant. The bound
state energies for {m1 = cos(πr/2) for r < 1} and {0 for r ≥ 1} are solved.

For any r-dependent order parameters: m1 and ∆0, the equations decouple into a fourth-

order differential equation. Therefore, the bound state energies can be solved for any analytic

order parameters. The bound state energies for a meron where {m1 = cos(πr/2) for r < 1}
and {0 for r ≥ 1} while keeping m2

1 + ∆2
0 constant as shown in Fig. 2.11 is solved. The

bound state energy spectrum is no longer symmetric about zero energy and is a perturbation

of the bound state energy spectrum of m1 = 0 and ∆0 = 1 as shown in Table 2.11. This

is not surprising since this configuration is similar to the case where m1 = 0 with {∆0 = r

for r < 1} and {∆0 = 1 for r ≥ 1} (which is a perturbation of spectrum from the m1 = 0

and ∆0 = 1 case). Another situation where both CDW and KBDW order parameters are

non-zero is the Skyrmion. For a Skyrmion, m1 changes from 1 to -1 while keeping m2
1 +∆2

0

constant. An example is {m1 = cos(πr) for r < 1} and {−1 for r ≥ 1} as shown in Fig.

2.12.

2.8 Quantum Hall State

Haldane [19] revealed that m4M4 represents directed next nearest neighbour hopping in

the presence of fluxes with no net magnetic field. Furthermore, at half-filling, the state

exhibits the quantum Hall effect (QHE). The quantized Hall conductivity is proportional to

the Chern number n, which is the sum of the Chern numbers for each band nm where for

band m:

nm =
1

2π

∫
d2p⃗ Fm , (2.46)
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(a)

HHHHHl
n −1 0 1

−3 −0.948 −0.940 −0.948
∓1 0.301
3 0.930 0.950 0.930

(b)

HHHHHl
n −2 −1 0 1

−3 −0.876 −0.859 −0.859 −0.876
∓1 0.175 0.175
3 0.848 0.877 0.877 0.848

Table 2.11: The bound state energies for a meron: {m1 = cos(πr/2) for r < 1} and {0 for
r ≥ 1} with (a) p = 1 and (b) p = 2. The bound state energies are perturbations of the
energies from the m1 = 0 and ∆0 = 1 case (Table 2.2 and Table 2.3).

0.5 1.0 1.5 2.0
r

-1.0

-0.5

0.5

1.0

D0

m1

Figure 2.12: A Skyrmion changes m1 from 1 to -1 while keeping m2
1 + ∆2

0 constant. An
example is {m1 = cos(πr) for r < 1} and {−1 for r ≥ 1}.
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1

2

Figure 2.13: Graphene with directed NNN hopping exhibits the QHE. The energy spectrum
has a gap in the bulk with topologically protected edge states. There are two currents: one
between sites 1 (solid) and the other between sites 2 (dotted).

with the Berry flux defined by Fm = ∇⃗×Am, Am = i⟨ψm|∇⃗k|ψm⟩, and ψm is the wavefunc-

tion of a particular band. Even though this QHE state is insulating, there is a topologically

protected edge state due to the different topological Chern numbers at the surface.

Expanding around the Dirac points, H04 =
∫
d2x⃗Ψ†H(04)Ψ in the position basis where

H(04) =


m4 i∂x − ∂y 0 0

i∂x + ∂y −m4 0 0

0 0 −m4 −i∂x − ∂y

0 0 −i∂x + ∂y m4


= −γ0γ1∂x − γ0γ2∂y +m4M4 . (2.47)

As expected, the energy dispersion is gapped: E = ±
√

|p⃗|2 +m2
4, and there is no matrix

that anticommutes with this Hamiltonian. Also, M4 no longer commutes with the time

reversal operator.
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2.9 Non-zero CDW, KBDW, QHE Order Parameters

Considering the situation where all four order parameters are now non-zero, the resulting

Hamiltonian is H01234 =
∫
d2x⃗Ψ†H(01234)Ψ where

H(01234) =


m1 +m4 i∂x − ∂y 0 ∆∗

i∂x + ∂y −m1 −m4 ∆∗ 0

0 ∆ m1 −m4 −i∂x − ∂y

∆ 0 −i∂x + ∂y −m1 +m4


= −iγ0γ1∂x − iγ0γ2∂y +m1M1 +∆M2 +∆M3 +m4M4 . (2.48)

SinceM4 does not anticommute withM1,M2, andM3, different behaviour is seen depending

on the magnitudes of m4 compared to m123. Chamon et al. [7] examined how the charge is

dependent on the ratio of |m4|/m123 for m123 = 1 with constant m1. When |m4| = m123,

the competition closes the gap. On the other hand, if |m4| < m123, the state has fractional

charge with the same value as if there was no m4. If |m4| > m123, Q = 0.

2.10 NN and NNN Interactions

The addition of nearest neighbour (NN) and next nearest neighbour (NNN) interactions to

the tight-binding Hamiltonian H0 in graphene can lead to a phase transition in graphene

from a SM to one of the other insulating states (CDW, KBDW, QHE). Therefore, the

following Hamiltonian is considered:

H = H0 +Hnn +Hnnn , (2.49)

where the NN interaction is:

Hnn = V1
∑
⟨i,j⟩

(ni − 1) (nj − 1) , (2.50)

and the NNN interaction is:

Hnnn = V2
∑
⟨⟨i,j⟩⟩

(ni − 1) (nj − 1) , (2.51)

with (V1, V2) being the strength of the (NN, NNN) interaction, (⟨i, j⟩, ⟨⟨i, j⟩⟩) are the (NN,

NNN) links between sites r⃗i and r⃗j , and ni = c†ici is the number operator at r⃗i.
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The term ninj can be decomposed by mean-field theory into Hartree (on-site) and Fock

(bond) channels. In the Hartree channel,

ninj ≈ ni⟨nj⟩+ ⟨ni⟩nj − ⟨ni⟩⟨nj⟩ , (2.52)

where ⟨ni⟩ is the mean occupation at r⃗i, and the fluctuations (ni − ⟨ni⟩)(nj − ⟨nj⟩) are

neglected. Similarly, in the Fock channel,

ninj = −⟨c†icj⟩ c
†
jci − ⟨c†jci⟩ c

†
icj + ⟨c†icj⟩⟨c

†
jci⟩ . (2.53)

The NN and NNN interaction in the Hartree channel modifies the Hamiltonian by:

H(h)
p = 3ρ(V1 − 2V2)

∑
j

nj(−1)j + 3Nρ2(V1 − 2V2)/2 (2.54)

where ρ = m1 is the order parameter for the CDW, and N is the total number of sites. The

NN interaction in the Fock channel with a Kekulé pattern changes the hopping:

t′a = t+ V1∆a , (2.55)

with ∑
ij

V1⟨c†icj⟩⟨c
†
jcj⟩ = V1(∆

2
1 +∆2

2 +∆3
3)N/2 , (2.56)

where ∆a = ∆cos(φ+2π/3) is the order parameter for the KBDW. If the hopping pattern is

not staggered, the NN interaction in the Fock channel simply adds to the NN hopping term

leaving graphene gapless. The NNN interaction in the Fock channel with directed hopping

adds the following term to the Hamiltonian:

H(fnnn)
p = V2

∑
⟨⟨i,j⟩⟩

(χijc
†
icj + h.c.) + 3NV2(χ

2
A + χ2

B) , (2.57)

where for next nearest neighbours i and j, ⟨c†icj⟩ = χij = ±iχα with α being site A or B

and the sign chosen by the direction of hopping.

Weeks and Franz [56] found that the strength of the interactions leads to different phases.

Small interactions strengths favour the SM. For V1/t ≥ 0.93 with V2/t = 0, the CDW state

is energetically preferred, while for V2/t ≥ 1.20 with V1/t = 0, the QHE phase has the

lowest energy. In between these two regions at higher interaction strengths, graphene is in

the KBDW state.
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2.11 Spinful Hamiltonian

The spinor can be enlarged from four components to eight by introducing spin up-down

components. There are now 16 possible matrices that anticommute with the spinful Hamil-

tonian. The matrices are rewritten in terms of Xµµ′µ′′ = σµ⊗σµ′⊗σµ′′ , where the first index

is the Pauli matrix that represents spin. The Hamiltonian is a linear combination ofX031 and

X002, and the four matrices representing the previously discussed insulating phases are X003

(CDW),X011 (Real KBDW) ,X021 (Imaginary KBDW), andX033 (QHE). The new matrices

that anticommute with the Hamiltonian are similar to the above four cases but with an added

direction associated with the spin. X103, X203, X303 are Néel ordering, or on-site spin den-

sity waves (SDW), in the x, y, z directions respectively. X111, X211, X311 (X121, X221, X321)

are real (imaginary) KBDW in the x, y, z directions respectively. X133, X233, X333 lead to

Quantum Spin Hall effect (QSHE) in the x, y, z directions respectively where there are chiral

edge currents which do not break time-reversal. In the QSHE state, although the Chern

number is zero, there is a non-zero Z2 topological invariant ν which is the number of times

the bands cross the Fermi energy mod 2. Kane and Mele [30] found that large spin-orbit

coupling between next nearest neighbours can give rise to the QSHE. Unfortunately, this

effect is not seen in graphene as the spin-orbit coupling is too small, but gapless edge states

are seen in 2D HgTe/CdTe wells [31]. In 3D, there are topologically protected surface states

and are seen in materials such as Bi2Se3 [59].

When including spin in the Hamiltonian, an on-site Hubbard interaction between the

spins is added to the Hamiltonian H = H0s +HU :

H0s = −
∑
s=↑,↓

∑
r∈Λ1

3∑
i=1

[
t c†r,s cr+si,s + h.c.

]
, (2.58)

and

HU = U
∑
r∈Λ1

(nr↑ nr↓ + nr+s1↑ nr+s1↓) , (2.59)

where c†r,s(cr,s) is the creation (annhilation) operator at r⃗, and nrs = c†r,s cr,s is the number

operator at r⃗. The Hubbard term can be rewritten as follows:

HU =
U

16

∑
r∈Λ1

∑
s

(nrs + nr+s1s)
2 + (nrs − nr+s1s)

2 −

[∑
s′

(f⃗r + f⃗r+s1)
2 + (f⃗r − f⃗r+s1)

2

]
,

(2.60)
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where f⃗r = c†r,s σ⃗ss
′
cr,s′ . For the case with uniform average density, zero average magne-

tization, and finite Néel order, Herbut [22] found that it can be mapped to the case of

non-zero CDW and KBDW order parameters in mean-field theory where the magnetization

is M⃗ = ⟨f⃗r + f⃗r+s1⟩, and the Néel order parameter is N⃗ = ⟨f⃗r − f⃗r+s1⟩.

2.12 Superconductivity

Based on the work by Nambu [40], Bogoliubov [6], and Bardeen, Cooper, and Schrieffer

[3], the Hamiltonian can be modified to take into account graphene in close proximity to

a superconductor by enlarging the spinor to 16 components. In the Bogoliubov-deGennes

(BdG) Hamiltonian, Hbdg = 1
2

∫
d2rΨ†H(bdg)Ψ where

H
(bdg)
k =

(
Hpp Hph

H†
ph −HT

pp

)
, (2.61)

where Ψ = (ψ↑, ψ↓, ψ
†
↑, ψ

†
↓)

T and ψs = (ψ 2−s, ψ 1−s, ψ 2+s, ψ 1+s)
T is the four component

spinor with spin s. The fermionic annihilation operator, ψabc, acts on site a at Dirac point

b with spin c. Writing out the possible matrices that anticommute with the Hamiltonian,

there are 64 possibilities. Only 36 of those matrices satisfy the particle-hole constraint that

a particle of energy E is linked to a hole of energy −E [9]. The possible insulating states

include those from the spinful Hamiltonian along with different classifications of singlet and

triplet superconductivity [46].

2.13 Summary

Graphene can be changed from a semi-metal to an insulator by adding matrices that an-

ticommute with the tight-binding Hamiltonian. These matrices correspond to a staggered

chemical potential, Kekulé hopping, and directed NNN hopping. Furthermore, introducing

topological defects such as domain walls, vortices, merons, and Skyrmions in the order pa-

rameters lead to bound-state solutions within the gap permitting fractional charge. To solve

for the bound-state energies and their spinors, fourth-order differential equations are solved.

The was done using a combination of polynomial expansion near r = 0 and finite difference

methods. In particular, for a r-independent vortex with vorticity p, the bound-state energies
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are numerically found at:

Ep,l = sgn(l)∆0

√
1− [p/(|l|+ |p| − 1)]2 , (2.62)

with degeneracy |l| + |p| − 1 where l is an odd integer. For a vortex which goes as r for

|p| = 1, the bound state energies are at El = sgn(l)
√
2|l| where l is an integer. For zero

energy, l = 0, the degeneracy is p which is the same as the r-independent case, but for l ̸= 0,

the degeneracy is 2|l|.
In future work, analytical solutions for the r-independent vortex with vorticity p need to

be explored. Also, the method presented can be used to solve more complicated configura-

tions involving larger matrices due to the inclusion of spin and superconductivity. In some

cases, the differential equations will decouple into known second or fourth-order differential

equations.



Chapter 3

Phases on the Lieb Lattice

3.1 Lieb Lattice

Other lattices, such as the Lieb lattice as shown in Fig. 3.1, can also have a linear disper-

sion with phases different from graphene. The CuO2 planes of high Tc cuprates such as

La1−xSrxCuO4 and YBa2Cu3O7 are Lieb lattices. They consist of a 2D square lattice with

a 3-point basis (1,2,3). The primitive lattice vectors are a⃗1 = (2a, 0) and a⃗2 = (0, 2a) where

a is half the lattice spacing. Sites 1 and 2 are connected by the s⃗12 = (a, 0), and sites 1

and 3 are connected by s⃗13 = (0,−a). Therefore, site 1 has 4 nearest neighbours whereas

sites 2 and 3 only have 2 nearest neighbours. The Bravais lattice is therefore square, and

the reciprocal primitive lattice vectors are b⃗1 = (π/a, 0), b⃗2 = (0, π/a). For convenience, the

Brillouin zone is chosen to be the square defined by b⃗1 and b⃗2.

Using the tight-binding model for spinless fermions, the Hamiltonian without any inter-

actions is:

H0 = −t

 ∑
<1,2>

(c†1c2 + h.c.) +
∑

<1,3>

(c†1c3 + h.c.)

 , (3.1)

where c†i and ci are the creation and annihilation operators at r⃗i, ⟨i, j⟩ is the nearest neigh-

bour (NN) link, and t is the NN hopping parameter.

46
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a2

a1

1 2

3

Figure 3.1: The Lieb lattice has three sites: light (1), medium (2), and dark (3). The
primitive lattice vectors are a⃗1 = (2a, 0) and a⃗2 = (0, 2a) where a is half the lattice spacing.

Setting a = 1 and taking the Fourier transform, H0 =
∑

k Ψ
†
kH

(0)
k Ψk where

H
(0)
k =


0 −2t cos(kx) −2t cos(ky)

−2t cos(kx) 0 0

−2t cos(ky) 0 0


= −2t [λ1 cos(kx) + λ4 cos(ky)] , (3.2)

with Ψ†
k = (c†1k, c

†
2k, c

†
3k) and λj are the Gell-Mann matrices:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 ,

λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 ,

λ5 =


0 0 −i
0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,
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Figure 3.2: The energy dispersion for the tight-binding Lieb lattice without interactions
consists of a single Dirac cone with a flat band.

λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 , (3.3)

such that [gi, gj ] = ifijkgk with gj = λj/2, f123 = 1, f147 = f165 = f246 = f257 = f345 =

f376 = 1/2, and f458 = f678 =
√
3/2.

The energy dispersion has a Dirac cone and a flat band.

Ek =

(
±2t

√
cos2(kx) + cos2(ky)

0

)
. (3.4)

For the Brillouin zone defined by 0 ≤ kx ≤ π and 0 ≤ ky ≤ π, all three bands touch at

kx = ky = π/2 as shown in Fig. 3.2. If the Brillouin zone is chosen such that −π/2 ≤ kx ≤
π/2 and −π/2 ≤ ky ≤ π/2, all three bands touch at the four corner points. Only one is

inequivalent since all the points are related by reciprocal lattice vectors. Near kx = ky = π/2,

Ep = {±2t|p⃗|, 0} where pj = (kj −π/2). For one-third filling at T = 0, only the lowest band

is filled, and the system is a semi-metal (SM). Defining the number operator ni = c†ici and

diagonalizing the matrix, the occupation at sites (1, 2, 3) are (12 ,
1
4 ,

1
4).

3.2 Nearest Neighbour (NN) Interaction

The NN interaction term on the Lieb lattice is:

Hnn = V1

 ∑
<1,2>

(
n1 −

1

2

)(
n2 −

1

4

)
+
∑

<1,3>

(
n1 −

1

2

)(
n3 −

1

4

) . (3.5)
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In the Hartree channel, there are two possible order parameters to define the occupation on

the three sites: charge density wave (CDW) and broken π/2 rotation symmetry (BR). The

CDW order parameter, δ = (n1−n2−n3)/4, is proportional to the difference in occupation

between site 1 and the sum of sites 2 and 3. The BR order parameter, η = (n2 − n3)/2, is

proportional to the difference in occupation between sites 2 and 3. Therefore, at one-third

filling, n1 = 1/2 + 2δ, n2 = 1/4− δ + η, and n3 = 1/4− δ − η where δ = η = 0 for the SM.

Since the filling does not change with the interaction, there is a one-third filling constraint:

n1 + n2 + n3 = 1. As a result, Hhnn =
∑

k Ψ
†
kH

(hnn)
k Ψk + 8N1V1δ

2 where

H
(hnn)
k =


−4V1δ 0 0

0 4V1δ 0

0 0 4V1δ

 , (3.6)

and N1 is the number of site 1.

The NN interaction in the Hartree channel does not break the rotation symmetry and

anticommutes with H0. Therefore, the tight-binding Hamiltonian with the Hartree NN

interaction (H0 +Hhnn) is gapped and has the following dispersion:

Ek =

(
±2
√

4V 2
1 δ

2 + t2 cos2(kx) + t2 cos2(ky)

4V1δ

)
. (3.7)

For δ > 0, the flat band touches the upper band, while for δ < 0, the flat band touches the

lower band as shown in Fig. 3.3. For one-third filling, the free energy is:

F =
∑
k

−2
√

4V 2
1 δ

2 + t2 cos2(kx) + t2 cos2(ky) + 8N1V1δ
2 , (3.8)

Minimizing the free energy with respect to δ gives a self-consistent equation for δ given V1:

dF

dδ
= 0 =

∑
k

−8V 2
1 δ√

4V 2
1 δ

2 + t2 cos2(kx) + t2 cos2(ky)
+ 16N1V1δ . (3.9)

As the interaction strength increases, comparing the free energy of the SM and CDW

states shows that CDW is favoured for V1 > V
(hnn)
1c /t = 1.555. For V1 near and just larger

than V
(hnn)
1c , δ changes linearly with (V1−V (hnn)

1c )/t. As V1 increases, δ approaches ±1
4 . For

δ = 1
4 , (n1, n2, n3) = (1, 0, 0), and for δ = −1

4 , (n1, n2, n3) = (0, 12 ,
1
2). Because the Hartree

interaction is classical, the occupation can only be non-negative integers, and therefore, a

gap opens since δ must approach 1
4 as shown in Fig. 3.5. Occupation of one of the three

sites in this limit is expected since the interaction is repulsive.
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Figure 3.3: Energy dispersion for the tight-binding Lieb lattice with only the NN interaction
in the Hartree channel(V1/t = 2, δ = 0.1129).
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Figure 3.4: In the tight-binding Lieb lattice with only the NN interaction in the Hartree

channel, near the transition from SM-CDW, δ = 0.392(V1 − V
(hnn)
1c )/t. As V1/t → ∞, δ

approaches 1
4 .
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1 2

3

Figure 3.5: For the tight-binding Lieb lattice with only the NN interaction in the Hartree
channel, as V1 increases, occupation on site 1 is favoured (dark) over sites 2 and 3 (light);
δ → 1

4 .

In the Fock channel, if the hopping is dimerized (NN hopping from sites 1 larger in

positive direction than negative direction) as shown in Fig. 3.6, a gap is also opened.

Defining the dimer order parameter ϵ = ⟨c†1cj⟩(rjx + rjy − r1x − r1y) = ⟨c†jc1⟩(rjx + rjy −
r1x − r1y) where (rjx, rjy) is the position of site j, and sites 1 and j are NN, the resulting

NN interaction in the Fock channel with staggered hopping is Hfnn =
∑

k Ψ
†
kH

(fnn)
k Ψk +

4N1V1ϵ
2 with

H
(fnn)
k =


0 −2iV1ϵ sin(kx) −2iV1ϵ sin(ky)

2iV1ϵ sin(kx) 0 0

2iV1ϵ sin(ky) 0 0

 . (3.10)

The energy dispersion for the tight-binding model with NN interaction in the Fock channel

with staggered hopping (H0 +Hfnn) is:

Ek =

 ±2
√
V 2
1 ϵ

2[sin2(kx) + sin2(ky)] + t2 cos2(kx) + t2 cos2(ky)

0

 . (3.11)

For ϵ ̸= 0, the spectrum is symmetrically gapped. Minimizing the free energy with respect to

ϵ reveals the transition from SM to a dimer state for V
(fnn)
1c /t > 2.479. Near the transition,

the dimer order parameter varies linearly with (V1 − V
(fnn)
1c )/t. As the interaction strength
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Figure 3.6: The tight-binding Lieb lattice with only NN interaction in the Fock channel
with staggered hopping. NN hopping from sites 1 is larger in the positive direction (solid
dark lines) than in the negative direction (dashed light lines).

increases, the order parameter can be solved analytically. It is found to analytically approach

≈ 0.2395 as shown in Fig. 3.8. If the Fock channel is not staggered, the interaction would

simply add to the hopping parameter (and therefore not create a gap).

When NN interactions with both Hartree and Fock channels with staggered hopping in

the tight-binding model, H0+Hhnn+Hfnn, are considered, the resulting dispersion relation

is:

Ek =

 ±2
√
V 2
1 [4δ

2 + ϵ2 sin2(kx) + ϵ2 sin2(ky)] + t2[cos2(kx) + cos2(ky)]

4V1δ

 . (3.12)

There are two self-consistent equations that arise from minimizing the free energy with

respect to δ and by minimizing the free energy with respect to ϵ:∑
k

V1δ√
V 2
1 [4δ

2 + ϵ2 sin2(kx) + ϵ2 sin2(ky)] + t2[cos2(kx) + cos2(ky)]
= 2N1δ . (3.13)

∑
k

V1ϵ[sin
2(kx) + sin2(ky)]√

V 2
1 [4δ

2 + ϵ2 sin2(kx) + ϵ2 sin2(ky)] + t2[cos2(kx) + cos2(ky)]
= 4N1ϵ . (3.14)

The solution to these equations is the same as if there is no Fock channel. For V1 < V
(hnn)
1c ,

δ = ϵ = 0, while for V1 > V
(hnn)
1c , δ ̸= 0 and ϵ = 0.
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Figure 3.7: Energy dispersion for the tight-binding Lieb lattice with only the NN interaction
in the Fock channel with staggered hopping (V1/t = 3, ϵ = 0.0611).
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Figure 3.8: In the tight-binding Lieb lattice with only the NN interaction in the Fock channel

with staggered hopping, near the transition from SM-dimer, ϵ = 0.140(V1 − V
(fnn)
1c )/t. As

V1 → ∞, ϵ analytically approaches ≈ 0.2395.
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3.3 Next Nearest Neighbour (NNN) Interaction

The NNN interaction in mean-field theory adds the following term to the Hamiltonian:

Hnnn = V2

 ∑
<2,3>

(
n2 −

1

4

)(
n3 −

1

4

) . (3.15)

For the NNN interaction in the Fock channel, a gap is created when time reversal symmetry

is broken (BTR). This state breaks the time reversal symmetry through directed NNN

hopping as illustrated in Fig. 3.9. The BTR order parameter χ is defined such that ⟨c†acb⟩ =
iχ(a−b)[2(rax−rbx)(ray−rby)−1] where (rax, ray) is the position of site a, χ is a nonnegative

real number and a and b are next nearest neighbours. The NNN interaction in the Fock

channel with directed hopping is Hfnnn =
∑

k Ψ
†
kH

(fnnn)
k Ψk + 4N2V2χ

2 where

H
(fnnn)
k =


0 0 0

0 0 4iV2χ sin(kx) sin(ky)

0 −4iV2χ sin(kx) sin(ky) 0

 . (3.16)

Unlike the NN interaction, the NNN interaction in the Hartree and Fock channels must

be considered together because the CDW order parameter changes with the BTR or-

der parameter. The NNN interaction in the Hartree and Fock channels is Hhfnnn =∑
k Ψ

†
kH

(hfnnn)
k Ψk +N2V2(4η

2 − 4δ2 + 2δ + 4χ2) where

H
(hfnnn)
k =


0 0 0

0 −4V2δ − 4V2η 4iV2χ sin(kx) sin(ky)

0 −4iV2χ sin(kx) sin(ky) −4V2δ + 4V2η

 . (3.17)

Solving the three self-consistent equations from minimizing the free energy from H0 +

Hhfnnn at one-third filling, there is a transition from SM to a BR phase at V2c/t = 1.133.

The BR phase has η ̸= 0, δ ̸= 0, and χ = 0. Near the critical point, the order parameters do

not vary linearly with (V2−V2c)/t as more than one order parameter changes simultaneously.

As V2 becomes large, δ and η approach −1
4 and ±1

2 respectively. Therefore, the occupation

of the sites (1, 2, 3) is either (0, 1, 0) or (0, 0, 1). An example of the energy dispersion of the

BR phase is shown in Fig. 3.10. There exists a BTR solution that satisfies the three self-

consistent equations with χ ̸= 0, δ ̸= 0, and η = 0. The free energy for this phase is always

higher than the BR, but lower than the SM for V2/t > 1.859. As a result, the solution to

the tight-binding model with the NNN interaction in the Hartree and Fock channels with
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Figure 3.9: Directed NNN links as shown above lead to the BTR state in the Lieb lattice.

directed NNN hopping is the same as with only the NNN interaction in the Hartree channel

since the BTR phase is never favoured.

3.4 NN and NNN Interactions

Combining both NN and NNN interactions in the spinless tight-binding Lieb Lattice (H0 +

Hhnn +Hfnn +Hhfnnn) opens up the possibility of six different phases: SM, dimer, CDW,

BR, BTR, or a combination of the states. Since the latter three all change the CDW order

parameter, it is not intuitive how the phase diagram will look. From solving for the lowest

band, constructing the free energy, and minimizing the free energy for the lowest energy

states, the resulting phase diagram is shown in Fig. 3.12. As expected, when V2/t = 0, the

CDW state is favoured for V1 > V
(hnn)
1c , and when V1/t = 0, the BR state has the lowest

energy after V2c/t. Going from SM to CDW is a second order transition, and the critical

values of V1/t and V2/t follow V1/t = 1.555 + 0.5V2/t. There are regions where the BTR

phase is favoured (χ ̸= 0, δ ̸= 0, and η = 0) and χ is quite small, being between 0 and

0.0140. In addition, there is a large region where the BR phase is preferred (η ̸= 0, δ ̸= 0,

and χ = 0). Between these regions is a combined BTR and BR phase (η ̸= 0, δ ̸= 0, and

χ ̸= 0). The transitions between these three phases are second order. In the CDW phase,

δ > 0, while δ < 0 in the current phase, and therefore, the transition from CDW to the
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Figure 3.10: Energy dispersion for the tight-binding Lieb lattice with only Hartree NNN
interaction (V1/t = 1.7, δ = 0.1262, η = 0.3612). In the tight-binding Lieb lattice with only
Hartree NNN interaction, the phase changes from SM to BR at V2/t = 1.133 as δ and η
become nonzero.
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Figure 3.11: For strong V2/t, there are two degenerate solutions: occupation only on site 2
(δ = −1

4 , η = 1
2) or only on site 3 (δ = −1

4 , η = −1
2).
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Figure 3.12: Phase diagram for the Lieb lattice. Solid lines indicate second order phase
transitions, while dashed lines indicate first order phase transitions. The dots represent the
line along which the ratio V2/V1 would be expected to fall based on a crude estimate of the
bare Coloumb repulsion.

BTR state is first order. When the phase changes from SM to BR, the transition can be

first or second order depending on V1/t. For V1/t < 0.6, the transition is second order as

both δ and η change continuously. On the other hand, V1/t > 0.6, the transition is first

order as both δ and η are discontinuous across the transition. Within the BR phase, there

is a discontinuity in the δ and η order parameters as shown in Fig. 3.12. Notice that there

is no dimer state in the phase diagram.

3.5 Summary

Spinless fermions on the Lieb lattice exhibit different behaviour than on a hexagonal lattice,

like graphene. On the Lieb lattice, there are three sites per unit cell resulting in three

bands: a Dirac cone with a flat band. The different phases that occur due to nearest and

next nearest neighbour interactions where only the lowest band is filled was solved in mean-

field theory. When only the nearest neighbour interaction is considered, there is a transition

from a semi-metallic phase to a charge density wave where site 1 is favoured over sites 2

and 3. On the other hand, when examining only the next nearest neighbour interaction, the
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Figure 3.13: How the order parameters change as a function of V1/t with V2/t = 0.4. (a)
The phase changes from SM-CDW at V2/t = 1.756 to BTR at V2/t = 1.875 to (BTR+BR)
at V2/t = 2.098 to BR at V2/t = 2.174 to another BR discontinuously at V2/t = 2.385. The
CDW order parameter δ changes discontinuously from positive to negative at V2/t = 1.875
since the CDW favours δ > 0, while BTR wants δ < 0. (b) The region 1.7 < V1/t < 2.2 is
enlarged clearly showing the nonzero values of χ and η.
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phase changes from a semi-metal to a broken π/2 rotation state where site 2 or 3 is preferred

over site 1. When both interactions are added to the Hamiltonian, there are regions where

broken time reversal is energetically favourable.

In future work, the phase diagram for spinless fermions on the Lieb lattice at two-thirds

filling can be examined in mean-field theory. Also, the Hamiltonian can be expanded to

include spin by introducing the Hubbard term. The new phase diagram will possibly have

spin density waves (SDW), spin dimers, spin broken π/2 rotation, directed next nearest

neighbour hopping without breaking time reversal, or combinations of these states. Lastly,

to calculate the higher order corrections to the mean-field results, fluctuations can be taken

into account by using random phase approximation or renormalization group theory.
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