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Abstract

Identifying biological pathways affecting cancer susceptibility can provide insight into pre-

vention. In tumour cells of non-Hodgkin lymphoma (NHL), histone-pathway genes are fre-

quent targets of somatic mutation. We analyze data from a population-based case-control

study to test whether NHL is associated with SNPs in histone-pathway genes. When indi-

vidual SNP associations are minor, the standard approach of testing SNPs one-at-a-time and

then correcting for multiple testing has low power. Our global testing approach avoids the

multiple-testing penalty by modelling random SNP effects and testing variance. We show

how an approximate score statistic may be derived by writing the likelihood as an expected

conditional likelihood given latent genetic values for each individual and then applying a

Taylor-series approximation. The resulting statistic is applied to the NHL data and its

statistical significance is evaluated using a permutation-based procedure. Our results add

to growing evidence that the histone pathway plays a role in NHL.

Keywords: global test; joint effect; score statistic; Taylor-series approximation; permu-

tation
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Chapter 1

Introduction and Background

1.1 Introduction to non-Hodgkin lymphoma (NHL)

Non-Hodgkin lymphoma (NHL) is a type of cancer that occurs from lymphocytes, special

blood cells that form part of the immune system. NHL happens when the white blood cells

divide out of control or can not undergo normal cell death. The cause of the phenomenon

can be found in the nuclei of the cancer cells, where the genome malfunctions. Therefore,

NHL, the same as other cancers, is a complex disease which is caused by genetic changes

within cells. Single Nucleotide Polymorphisms (SNPs) are the most common genetic change

that can occur within a person’s DNA sequence. SNPs account for 90% of DNA sequence

variation, making them useful genetic markers for disease association studies.

NHL can occur in both B and T lymphocytes that mature in the bone marrow and

thymus respectively. NHL develops when one of the lymphocytes, either a B-cell or T-cell,

becomes abnormal. B-cell lymphomas are more common than T-cell lymphomas. The two

most common types of B-cell lymphomas are diffuse large B-cell lymphoma and follicular

lymphoma. There are many other forms of NHL. We will not consider NHL subtypes in

this analysis.

While the incidence of most cancers are constant, that of NHL is steadily increasing

with an annual rate of 1 − 2% worldwide. NHL is the fifth most common cancer and the

sixth leading cause of all cancer deaths in Canada according to Canadian Cancer Statistics

2011 published by Canadian Cancer Society. Estimated new cases and deaths from NHL in

the United States in 2012 are 70, 130 and 18, 940 (National Cancer Institute). The statistics

show that the highest incidence for non-Hodgkin lymphoma in the US occurs in whites and

1



CHAPTER 1. INTRODUCTION AND BACKGROUND 2

men have higher incidence rates than women (Centers for Disease Control and Prevention).

Similar to other types of cancer, incidence rates increase with age (Fisher & Fisher, 2004).

1.2 Research question

The causes of NHL have been studied in the past twenty years. Varied environmental and

genetic factors have been considered.

Some environment agents have been suspected as possible risk factors for NHL. One of

the examples is organochlorine pesticides. Spinelli et al. (2007) investigated polychlorinated

biphenyls (PCBs) and organochlorine pesticides and risk of NHL in a population-based case-

control study in British Columbia, Canada. Congeners of PCBs and pesticides or pesticide

metabolites were measured in plasma of 422 pretreatment cases and 460 control subjects.

Several PCB congeners were associated with increased risk of NHL. Six pesticide analytes

also showed a significant association with NHL. The study results provide evidence that

organochlorines may contribute to NHL risk.

Some genes have been found to be associated with NHL. From the same study, Novik

et al. (2007) showed association with a SNP (rs2509049) in gene H2AFX, which encodes a

histone involved in signalling the presence of double stranded breaks. Morin et al. (2011)

discussed the frequent mutation of histone-modifying genes in NHL and linked somatic

mutations in the MLL2 gene to B-cell NHL. Somatic mutations in genes with roles in

histone modification were found in the two most common NHLs, Follicular lymphoma (FL)

and diffuse large B-cell lymphoma (DLBCL). For example, 32% of DLBCL and 89% of FL

cases had somatic mutations in MLL2, which encodes a histone transferase enzyme. Somatic

mutation is defined as a change in the genetic structure that is neither inherited nor passed

to offspring; however, it may provide leads to where to look for germline differences.

The histone pathway is our interest based on the previous studies which show that genes

in the histone pathway have been associated with NHL. The histone pathway involves genes

regulating the histones, which are proteins in the cell nucleus that package and order the

DNA into structural units, playing a role in gene regulation. We are interested in whether

the histone pathway as a whole is associated with risk of NHL.

In our study, SNPs in 6 candidate genes from the histone pathway have been genotyped.

We test whether the SNPs jointly exert an effect on NHL risk. A standard analysis which

tests the SNPs individually rather than jointly is expected to lack power when each SNP
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in the pathway has a small effect on NHL. As we are interested in the joint effect of the

histone SNPs on the risk of NHL, a global test of association is appropriate for our study.

1.3 Comparison of data

The Novik et al manuscript used data from a case-control study of NHL conducted in British

Columbia, Canada. All NHL cases aged 20 to 79 diagnosed in British Columbia during

the period March 2000 to February 2004 and residing in the greater Vancouver (Greater

Vancouver Regional District) and greater Victoria (Capital Regional District) metropoli-

tan areas were invited to participate. HIV-positive cases and cases with prior transplant

were excluded. Population controls were identified from the Client Registry of the British

Columbia Ministry of Health, a list virtually including all British Columbia residents. The

controls were frequency matched to cases by age (within 5-year age group), gender, and

residence within the Greater Vancouver Regional District or Capital Regional District. All

participants gave written informed consent and provided the information on the ethnicity

of his or her four grandparents, demographic information, and medical history.

We used data from the same study; however, our data differs in the following aspects.

– When the Novik et al analysis was conducted, the case-control survey was still in

process. Therefore, Novik et al manuscript didn’t used the full data set. After the

survey completed, the raw data were cleaned. Some SNPs and samples of substandard

quality were removed (Schuetz et al., 2012). We used the cleaned data for our study.

– Novik et al investigated 3 SNPs in the gene H2AFX, while we investigated 38 SNPs

in the histone pathway, including 15 SNPs in the H2AFX gene. Novik et al selected

7 SNPs in H2AFX based on the variation found in 95 NHL cases after complete

resequencing of the gene. Four of the SNPs were discarded for quality reasons. The

remaining three SNPs were genotyped for all the cases and controls available at the

time. In our data, we have 38 SNPs in the histone pathway among which there are 15

SNPs in the H2AFX gene. Only one SNP included in Novik et al. (2007) was included

in our cleaned data set. Table 1.1 provides a summary of the SNPs available for our

analysis. In our data, there are 6 genes in the histone pathway: H2AFZ (chromosome

4), H2AFX (chromosome 11), PRMT5 (chromosome 14), YY1 (chromosome 14),

RPA1 (chromosome 17), ZFX (X chromosome).



CHAPTER 1. INTRODUCTION AND BACKGROUND 4

– In addition, Novik et al. analyzed all ethnicities dividing the subjects into 4 groups:

White Caucasian, Asian, south Asian, and mixed/other/unknown. By contrast, we

focus on white subjects only because white is the biggest ethnic group in our data

set (about 80% of the samples collected) and no other ethnic group composed more

than 10% of the samples. Although we study whites only, we have more subjects than

Novik et al. We have 1116 whites, while Novik et al. have 1018 subjects from all

ethnic groups.

Both the analysis in Novik et al and ours adjusted for gender and age, as is standard

for potential confounding variables. Though controls are frequency-matched to cases

on gender and age, we only used about 80% of the samples collected and so gender

and age are not perfectly balanced.

Table 1.1: Summary of histone-pathway SNPs in the cleaned data
Number of SNPs considered

Gene Chromosome In current analysis In Novik et al analysis
H2AFZ 4 3 0
H2AFX 11 15 1
PRMT5 14 1 0

YY1 14 2 0
RPA1 17 11 0
ZFX X 6 0
Total 38 1



Chapter 2

Methods

2.1 Motivation

The purpose of our study that is to test whether the group of SNPs in the histone pathway as

a whole are associated with NHL. Novik et al. (2007) found a SNP in the histone pathway is

significantly associated with NHL. Another study, Morin et al. (2011) discussed the linkage

between the mutations in the histone modifying gene and NHL. We wish to test the genetic

effects of the SNPs in the histone pathway simultaneously, rather than testing individual

SNPs one at a time.

The global test (Goeman et al., 2004) may be applied to test whether a group of SNPs is

associated with a clinical outcome. A p-value for the group is obtained instead of a p-value

for a single SNP. If the test is significant, the conclusion is that the SNPs in the group are

jointly associated with the clinical outcome.

The global test is preferred over multiple testing of marginal SNP effects for several

reasons. First, power is improved by avoiding the multiple testing adjustments that are

necessary when working with marginal associations of one SNP at a time. Second, the global

test has been shown to have optimal power in a local neighborhood of the null hypothesis

(Goeman et al., 2006). Third, as a score test, the global test does not require estimation of

model parameters that pertain to the alternative hypothesis.

We use an empirical Bayes model for the effects of the m SNPs in the histone pathway

(Goeman et al., 2006). An empirical Bayes model is a two-stage hierarchical model. In the

model, the observed data are assumed to be generated from a distribution defined by a set

of parameters. This set of parameters is considered to be a sample from a prior distribution

5
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defined by parameters called hyperparameters. Hyperparameters may be estimated using

the observed data or set to certain values based on prior knowledge.

The empirical Bayes model is useful for modelling SNP effects. Under the alternative

hypothesis of a pathway associated with NHL, we believe that most SNP effects will be

small or negligible (i.e. around zero). Our belief is expressed in a prior distribution for the

SNPs with mean 0 and some variance τ2. Let β be an m-vector of SNPs effects. Then the

prior distribution under the alternative hypothesis can be written as,

E(β) = 0

cov(β) = E(ββ
′
) = τ2Σ,

where 0 is a vector of zeroes, and Σ is the m×m variance-covariance matrix of the random

SNP effects. In general, realistic restriction of the possibilities for the alternative hypothesis

leads to gains in power. Imposing this restriction and considering the SNP effects as random

with mean 0 leads to

H0 : τ2 = 0

H1 : τ2 > 0.

The score test of the variance has one degree of freedom while the simultaneous testing of m

fixed SNP effects has m degrees of freedom. The reduction in the degrees of freedom should

lead to an increase in power, so long as our prior beliefs about the alternative hypothesis

are realistic.

2.2 Hypothesis and model

2.2.1 Notation

Since there are n samples and m SNPs in the data set, the variables and coefficients in the

model are:

– Y , an n−vector of responses (NHL case or control status).

– X, an n×m design matrix for the SNPs, with xij being the dosage (number of copies)

of the index allele of SNP j for sample i (values 0, 1, 2).
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– Z, an n×p design matrix for the intercept and the adjustment covariates, Gender and

Age, where p is the number of columns of the design matrix for the intercept, Gender,

and Age.

– α, the vector of fixed but unknown regression coefficients for the intercept, Gender,

and Age.

– β, the vector of random regression coefficients for the m SNPs, which have mean 0

and variance covariance τ2Σ.

2.2.2 Logistic regression model

Two potential confounding variables, Gender and Age, are adjusted for in the model. Let

E (Y | α, β) = logit−1 (Zα+Xβ) ,

where Age is grouped into four categories (20–49, 50–59, 60–69 and 70+ years), which are

approximate quartiles of age following Novik et al. (2007). The 20–49 year age group is

taken as the baseline group.

For sample i (i = 1, ..., n),

E (Yi|α, β) = logit−1

 p∑
l=1

zilαl +
m∑
j=1

xijβj

 .

The intercept is denoted by α1. Since Gender and Age are adjustment covariates, their

coefficients, α2 for Gender Female and α3, α4, α5 for Age group 2, Age group 3, and Age

group 4, are assumed to be non-random, fixed parameters. In the model, the elements of

the vector β are assumed to be random effects with mean 0 and variance τ2. The elements

of Y , Yi, are conditionally independent given the random effects β.

2.2.3 Random linear predictor

Let ri =
∑

jxijβj , i = 1, . . . , n j = 1, . . . ,m where β1, . . . , βm are SNP effects that are

assumed to be generated from a prior distribution with unknown shape. In classical quan-

titative genetics, this linear predictor ri is known as the genetic value (Falconer & Mackay,

1996). In an additive quantitative-genetics model of a trait, subject i’s trait value is

Yi = µ + gi + εi, where µ is the population mean trait value, gi =
∑

j xijβj , the βj ’s are
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random effects, and the εi’s are independent normal errors. The random gi is the genetic

value of subject i. A key idea of the classical model is that, under the alternative hypothesis

of a genetic association, subjects with similar values of X should have trait values that are

more correlated.

With the random linear predictors ri, the model can be rephrased as:

E (Yi|ri, α) = logit−1 (Ziα+ ri) . (2.1)

Let r be the vector of ri’s. Since E(β) = 0 under H1 and ri =
∑

jxijβj , we get E (ri) = 0;

that is, E (r) = 0. Under H1, we also have cov(β) = E(ββ
′
) = τ2Σ. Thus

cov(r) = cov (Xβ)

= E
[
Xβ (Xβ)′

]
− E (Xβ)E (Xβ)′

= E
(
Xββ′X ′

)
− 0

= XE
(
ββ′
)
X ′

= Xτ2ΣX ′. (2.2)

In what follows, we assume that Σ = I where I is an m × m identity matrix; i.e.,

the random effects for the SNPs are uncorrelated with common variance. In fact, linkage

disequilirium (LD) amongst the SNPs could call this assumption into question. LD refers to

correlation between SNPs. However, the LD is small since tag SNPs are selected. Moreover,

we use the assumption only to motivate the form of the test statistic. A permutation test

based on the test statistic will be valid, regardless of the form of the alternative hypothesis

(or the sample size).

2.2.4 Likelihood

In our modeling, Y is an observed random variable, but the linear predictor r is not observed.

The observed-data likelihood is obtained by integrating out the random ri values:

L
(
τ2, α

)
= f

(
y|τ2, α

)
=

∫
f
(
y, r|τ2, α

)
dr

=

∫
f
(
y|r, τ2, α

)
g
(
r|τ2

)
dr

=

∫
f (y|r, α) g

(
r|τ2

)
dr
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where g
(
r|τ2

)
is an unspecified distribution for the random ri’s such that

E
(
r|τ2 = 0

)
= 0.

Since the Yi’s are conditionally independent given the ri’s, we obtain

L
(
τ2, α

)
=

∫
r
f (Y |r, α) g

(
r|τ2

)
dr

=

∫
r

∏
i

f (Yi | ri, α) g
(
r | τ2

)
dr

= Er

[∏
i

f (Yi | ri, α)

]
,

where f (Yi | ri, α) is the conditional probability mass function (pmf) of Yi given ri, g
(
r | τ2

)
is the density function of r and Er is the expectation with respect to the marginal density

of r.

Let f (Yi | ri, α) = fi (ri) . The second order Taylor expansion for L
(
τ2, α

)
with respect

to the vector r at r = 0 yields

L
(
τ2, α

)
= Er

[∏
i

fi (ri)

]

≈ Er

∏
i

fi (0) +
∑
i

ri
∂fi (0)

∂ri

∏
j 6=i
fj (0)

+
1

2

∑
i

r2i
∂2fi (0)

∂r2i

∏
j 6=i
fj (0) +

∑
i

∑
j 6=i

rirj
∂fi (0)

∂ri

∂fj (0)

∂rj

∏
k 6=i,j

fk (0)

 .(2.3)

Taking the expectation of equation (2.3), and then substituting several expressions such as

the first and second derivatives, ∂fi(ri)
∂ri

and ∂2fi(ri)
∂r2i

, of the likelihood function, yields the

final expression for L
(
τ2, α

)
at the end of the section, derived as follows.

Let R = 1
mXX

′, an n× n matrix that is proportional to the variance-covariance matrix

of r when the βi’s are uncorrelated with common variance because

R =
1

m
XX

′

=
1

m

1

τ2
τ2XX

′

=
1

mτ2
cov (r) .
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The following expressions are used for the derivation of the final expression for L
(
τ2, α

)
.

Since E (r) = 0 and cov (r) = τ2XX ′ = τ2mR, we have Er (ri) = 0, Er
(
r2i
)

= V ar (ri) =

τ2mRii, and Er (rirj) = cov(ri, rj) = τ2mRij . Let li (ri) = log [fi (ri)]. The approximation

to L
(
τ2, α

)
can be simplified by substituting expressions for the first and second derivatives

of the function, fi (ri), in terms of the derivatives of the log-likelihood function, li (ri). Since

the derivative of the log-likelihood function is

∂li (ri)

∂ri
=

1

fi (ri)

∂fi (ri)

∂ri
,

we get that

∂fi (ri)

∂ri
= fi (ri)

∂li (ri)

∂ri
, (2.4)

and

∂2fi (ri)

∂r2i
=

∂fi (ri)

∂ri

∂li (ri)

∂ri
+ fi (ri)

∂2li (ri)

∂r2i

= fi (ri)

[(
∂li (ri)

∂ri

)2

+
∂2li (ri)

∂r2i

]
. (2.5)

The derivatives of the log-likelihood function, ∂li(ri)
∂ri

and ∂2li(ri)
∂r2i

, are derived in Appendix

A.

Taking the expectation of equation (2.3), and then substituting expressions (2.4) and
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(2.5), yields

L
(
τ2, α

)
≈

∏
i

fi (0) +
∑
i

Er (ri)
∂fi (0)

∂ri

∏
j 6=i
fi (0)

+
1

2

∑
i

Er(r
2
i )
∂2fi (0)

∂r2i

∏
j 6=i
fj (0) +

∑
i

∑
j 6=i

Er(rirj)
∂fi (0)

∂ri

∂fj (0)

∂rj

∏
k 6=i,j

fk (0)


=

∏
i

fi (0) + 0

+
1

2

∑
i

τ2mRii
∂2fi (0)

∂r2i

∏
j 6=i
fj (0) +

∑
i

∑
j 6=i

τ2mRij
∂fi (0)

∂ri

∂fj (0)

∂rj

∏
k 6=i,j

fk (0)


=

∏
i

fi (0) +
1

2

∑
i

τ2mRii

{
fi (0)

[(
∂li (0)

∂ri

)2

+
∂2li (0)

∂r2i

]}∏
j 6=i
fj (0)

+
∑
i

∑
j 6=i

τ2mRijfi (0)
∂li (0)

∂ri
fj (0)

∂lj (0)

∂rj

∏
k 6=i,j

fk (0)


=

∏
i

fi (0) +
1

2

∑
i

τ2mRii

[(
∂li (0)

∂ri

)2

+
∂2li (0)

∂r2i

]∏
j

fj (0)

+
∑
i

∑
j 6=i

τ2mRij
∂li (0)

∂ri

∂lj (0)

∂rj

∏
k

fk (0)


=

∏
i

fi (0)

(
1 +

1

2
τ2
∑
i

mRii

[
∂2li (0)

∂r2i
+

(
∂li (0)

∂ri

)2
]

+
1

2
τ2
∑
i

∑
j 6=i

mRij
∂li (0)

∂ri

∂lj (0)

∂rj

 . (2.6)

This is the final expression for L(τ2, α) which will be used for derivation of global test

statistics in the next section.

2.3 Test statistics and derivation

2.3.1 Notation

Notations for the expectation and higher moments of Yi are defined as follows.



CHAPTER 2. METHODS 12

– Let the first conditional moment of Yi be

µ1i (ri) = E (Yi|ri, α)

= logit−1 (Ziα+ ri)

where α is fixed, Zi is observed, and ri is random. Under H0, we have ri = 0, then

µ1i (ri = 0) = logit−1 (Ziα+ 0)

= logit−1 (Ziα)

= Pr (Yi = 1|H0)

=
eZiα

1 + eZiα
.

– Let µ1i = µ1i (ri = 0) and µ1 be the n−vector of µ1i’s.

– Let the second, conditional, centred moment of Yi be

µ2i (ri) = E
[
(Yi − µ1i (ri))

2 |ri
]
.

– Under H0, we have ri = 0, so that

µ2i (ri = 0) = E
[
(Yi − µ1i (ri))

2 |ri = 0
]

= µ1i (1− µ1i) .

– Let µ2i = µ2i (ri = 0).

– Similarly, let µji be the jth centred moment of Yi under H0, for j = 2, 3, . . ..

A score test statistic T was derived for H0 and then an equivalent test statistic Q was found

(Goeman et al., 2004). Since Q is simple in expression, the global test package in R uses it

as the test statistic.

2.3.2 The original test statistic

Assuming that the random effects of the SNPs are uncorrelated with equal variances, the

score test statistics T turns out to be,

T =
(Y − µ1)′R (Y − µ1)− trace (RV )[

2
∑

i

∑
jR

2
ijµ2iµ2j +

∑
iR

2
ii

(
µ4i − 3µ22i

)] 1
2

, (2.7)
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where V is the diagonal matrix with Vii = µ2i. When the SNP effects are uncorrelated with

equal variances, the last equality follows from Equation (2.2) with Σ = I. Under H0, T

is asymptotically normally distributed (Goeman et al., 2004), although we do not rely on

these asymptotic results in this project.

2.3.3 Derivation of original test statistic

The derivation follows that given in Le Cessie & Van Houwelingen (1995) and Houwing-

Duistermaat et al. (1995). Throughout, we treat the approximation to L
(
τ2, α

)
in equation

(2.6) as an equality. We assume α is known for the moment and write the likelihood as

L
(
τ2
)
. We come back to this point when discussing the equivalent test statistic in Section

2.3.5.

For a regular score test of the hypothesis

H0 : τ2 = 0

H1 : τ2 > 0

in the empirical Bayes model (2.1), the test statistic is in the form

T =

[
∂logL (0)

∂τ2

]
/

{
E

([
∂logL(0)

∂τ2

]2)} 1
2

,

where L (0) is the likelihood function when τ2 = 0; i.e. L(0) = L
(
τ2
)
|τ2=0. An overview of

the derivation is:

(i) get the numerator, ∂logL(0)
∂τ2

, of T , using the expression (2.6) for L
(
τ2
)
.

(ii) get the denominator,

{
E

([
∂logL(0)
∂τ2

]2)} 1
2

, of T , using the expression for the numer-

ator.

Numerator of test statistic

We will show that the numerator of T is:

∂logL(0)

∂τ2
=

m

2

[
(Y − µ1)

′
R (Y − µ1)− trace (RV )

]
. (2.8)

As shown in Appendix A, the first and second partial derivatives of the log-likelihood

for a Bernoulli distribution are
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∂li(ri)

∂ri
= Yi − µ1i (ri) (2.9)

∂2li(ri)

∂r2i
= −µ2i (ri) (2.10)

When ri = 0, we obtain

∂li(0)

∂ri
= Yi − µ1i and

∂2li(0)

∂r2i
= −µ2i,

since we defined µ1i = µ1i (ri = 0) and µ2i = µ2i (ri = 0).

Returning to equation (2.6) for L(τ2) and taking the first partial derivatives of logL
(
τ2
)

with respect to τ2 at τ2 = 0, and then plugging in the derivatives above, yields:

∂logL(0)

∂τ2
=

1

L(τ2)

∂L(τ2)

∂τ2
| τ2=0

=
1∏
ifi(0)

∏
i

fi(0)

(
1

2

∑
i

mRii

[
∂2li (0)

∂r2i
+

(
∂li (0)

∂ri

)2
]

+
1

2

∑
i

∑
j 6=i

mRij
∂li (0)

∂ri

∂lj (0)

∂rj


=

1

2

∑
i

mRii
∂2li(0)

∂r2i
+
∑
i

∑
j

mRij
∂li (0)

∂ri

∂lj (0)

∂rj


=

m

2

∑
i

Rii (−µ2i) +
∑
i

∑
j

Rij (Yi − µ1i) (Yj − µ1j)


=

m

2

∑
i

∑
j

Rij (Yi − µ1i) (Yj − µ1j)−
∑
i

Riiµ2i


=

m

2

[
(Y − µ1)

′
R (Y − µ1)− trace (RV )

]
,

the numerator of T , the same as expressed in equation (2.8).
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Denominator of test statistic

In the numerator of the test statistic given in equation (2.8), the only random quantity is

Y . Taking the expectation of the squared numerator of T yields the denominator of T :

E

{[
∂logL(0)

∂τ2

]2} 1
2

=
m

2

2
∑
i

∑
j

R2
ijµ2iµ2j +

∑
i

R2
ii

(
µ4i − 3µ22i

) 1
2

. (2.11)

The derivation of the expression (2.11) is as follows. Let Q = (Y − µ1)
′
R (Y − µ1). Since

E
(

[Q− E (Q)]2
)

= E
(
Q2
)
− [E (Q)]2 and E (Q) = trace (RV ), shown later, we have

E

[(
∂logL(0)

∂τ2

)2
]

= E

((m
2

)2
[Q− trace (RV )]2

)
=

(m
2

)2 (
E
(
Q2
)
− [trace (RV )]2

)
=

(m
2

)2E

∑

i

∑
j

Rij(Yi − µ1i)(Yj − µ1j)

2
−

(∑
i

Riiµ2i

)2


=
(m

2

)2 E{(W ′
RW

)2}
−

(∑
i

Riiµ2i

)2
 , (2.12)

where W = (Y1 − µ11, Y2 − µ12, ..., Yn − µ1n)
′

and Wi = Yi − µ1i.
Under H0 : τ2 = 0, we have E (Yi) = µ1i so that E(Wi) = 0. Also,

E
(

(W k
i

)
= E

(
(Yi − µ1i)k

)
= µki

where k = 2, 3, . . . . The Wi’s are independent since Yi’s are independent. Since E (Wi) = 0

and the Wi’s are independent, we have

E (WiWjWkWl) =


µ4i, if i = j = k = l

µ2iµ2k, if i = j, k = l, i 6= k

µ2iµ2j , if i = k, j = l or i = l, j = k, i 6= j

0, otherwise.
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Therefore, in equation (2.12),

E
[(
W ′RW

)2]
= E

∑
i

∑
j

∑
k

∑
l

RijRklWiWjWkWl


=

∑
i

R2
iiµ4i +

∑
i

∑
k 6=i

RiiRkkµ2iµ2k + 2
∑
i

∑
j 6=i

R2
ijµ2iµ2j

=
∑
i

R2
iiµ4i +

∑
i

∑
k

RiiRkkµ2iµ2k + 2
∑
i

∑
j

R2
ijµ2iµ2j − 3

∑
i

R2
iiµ

2
2i

=
∑
i

R2
ii

(
µ4i − 3µ22i

)
+

(∑
i

Riiµ2i

)2

+ 2
∑
i

∑
j

R2
ijµ2iµ2j (2.13)

Substituting equation (2.13) into equation (2.12) yields

E

{[
∂logL(0)

∂τ2

]2} 1
2

=
m

2

∑
i

R2
ii

(
µ4i − 3µ22i

)
+ 2
∑
i

∑
j

R2
ijµ2iµ2j

 1
2

.

This is the denominator of statistic T as shown in expression (2.11).

Based on expressions (2.8) and (2.11),

T =
(Y − µ1)′R (Y − µ1)− trace (RV )[

2
∑

i

∑
jR

2
ijµ2iµ2j +

∑
iR

2
ii

(
µ4i − 3µ22i

)] 1
2

,

as claimed in equation (2.7).

2.3.4 An equivalent test statistic

The expression for T is complex, making it difficult to calculate. An equivalent test statistic

Q in simple form is desirable. The equivalent test statistic is

Q = (Y − µ1)
′
R (Y − µ1) .

We will show that

T =
Q− E (Q)

sd (Q)

by establishing that,

E (Q) = trace (RV )
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and

sd (Q) =

2
∑
i

∑
j

R2
ijµ2iµ2j +

∑
i

R2
ii

(
µ4i − 3µ22i

) 1
2

(the denominator of T ).

As a score statistic, T is asymptotically normally distributed if H0 is true and hence so is

Q. However, we don’t use the asymptotic distribution in our study.

To show that E (Q) = trace (RV ), we use the fact that, under regularity conditions,

scores have mean zero. Hence, under H0,

0 = E

[
∂logL(τ2)

∂τ2
|τ2=0

]
= E

(m
2

[Q− trace (RV )]
)

or E (Q) = trace (RV )

The proof for sd (Q) = the denominator of T is based on the definition of T . From the

derivation of T , we know that

T =
score

sd (score)

=

[
∂logL (0)

∂τ2

]
/

{
E

([
∂logL(0)

∂τ2

]2)} 1
2

=

m
2

[
(Y − µ1)

′
R(Y − µ1)− trace(RV )

]
m
2

[
2
∑

i

∑
jR

2
ijµ2iµ2j +

∑
iR

2
ii

(
µ4i − 3µ22i

)] 1
2

,

where

sd (score) =
m

2

2
∑
i

∑
j

R2
ijµ2iµ2j +

∑
i

R2
ii

(
µ4i − 3µ22i

) 1
2

and

score =
m

2

[
(Y − µ1)

′
R (Y − µ1)− trace (RV )

]
=

m

2
[Q− E (Q)] .
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Taking the standard deviation of the score, we get

sd (score) = sd
(m

2
[Q− E (Q)]

)
=

m

2
sd [Q− E (Q)]

=
m

2
sd (Q)

=
m

2

2
∑
i

∑
j

R2
ijµ2iµ2j +

∑
i

R2
ii

(
µ4i − 3µ22i

) 1
2

.

Therefore,

sd (Q) =

2
∑
i

∑
j

R2
ijµ2iµ2j +

∑
i

R2
ii

(
µ4i − 3µ22i

) 1
2

.

2.3.5 Calculation of test statistic

The derivation of T and hence Q assumes that the regression coefficient α is known, and

therefore the mean µ1 = logit−1 (Zα) under H0 is known. In practice, α is estimated from

the observed data.

Let α̂ be the maximum likelihood estimate for the model under H0 : τ2 = 0. Then the

estimate of the expectation of Y under H0 is:

µ̂1 = logit−1 (Zα̂) .

With the insertion of the estimate, µ̂1, the test statistic is

Qobs = (Y − µ̂1)
′
R (Y − µ̂1)

=

(
Y − logit−1 (Zα̂)

)′
XX

′ (
Y − logit−1 (Zα̂)

)
m

2.4 Permutation null distribution

Goeman et al. (2004) used Q as the test statistic and evaluated the empirical Bayes model

null hypothesis using asymptotic distribution of Q. However, we prefer the permutation test

over the asymptotic test because the finite sample properties of the asymptotic test have

not been established (Goeman et al., 2006).

Permuting outcomes is consistent with the null hypothesis that none of the SNPs are

associated with NHL. Under the null hypothesis, the probability of NHL only depends on



CHAPTER 2. METHODS 19

the adjustment covariates, Age and Gender. Therefore, within strata, the outcomes are

exchangeable under the null hypothesis. By randomly shuffling the outcomes we can make

up as many permuted data sets as we like. Thus, the accuracy of the p-value is only restricted

by the computing time. In our context, we stratify on the adjustment covariates, Age and

Gender. There are eight combinations of these two covariates as summarized in Table 2.1.

The random shuffling of outcome values is conducted within each combination. Permuting

outcome within a stratum of age and gender preserves the dependence amongst the SNPs

(i.e. the LD). Within strata, the outcomes are exchangeable under the null hypothesis of

no association with any of the SNPs.

After repeating this algorithm many times, the resulting Q’s will form a reference dis-

tribution close to the true permutation distribution of the test statistic. The p-value is

obtained from this distribution. Specifically, the p-value of the test is calculated as the

proportion of Q’s based on the permutation data that are greater than or equal to the Q

based on the original data.

Before we conduct the permutation test, we need to impute the missing genotypes which

is discussed in the next chapter.

Table 2.1: Frequency of samples by age and gender
Age Group (years)

(20-49) (50-59) (60-69) (70+) Total
Males 120 129 183 175 607
Females 86 131 134 158 509
Total 206 260 317 333 1116



Chapter 3

Genotype Imputation

3.1 Data

As stated in chapter one, in our cleaned data there are 1116 whites and 1286 SNPs including

38 SNPs in the histone pathway. The study samples in the cleaned data are summarized

in Table 3.1. From the table, we see that the data are well balanced between cases and

controls for different gender and age groups. As some of the genotypes are missing for the

38 SNPs in the histone pathway, we impute the genotype data, as described next.

Table 3.1: Summary of the case-control samples
Cases (%) Controls (%) Total

Gender
Female 241(47%) 268(53%) 509
Male 328(54%) 279(46%) 607

Age group (years)
20-49 87(42%) 119(58%) 206
50-59 138(53%) 122(47%) 260
60-69 165(52%) 152(48%) 317
70+ 179(54%) 154(46%) 333

Total 569(51%) 547(49%) 1116

20
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3.2 Motivation

The global test is a joint analysis requiring complete data for all SNPs. The global test

R package can process an incomplete data set by removing all the samples with missing

genotypes. If the cleaned data with 1116 whites and the 38 SNPs are tested directly by the

R package, 203 samples will be lost, including the one found by Novik et al. (2007).

To preserve power, we used Beagle V3.3 (Browning & Browning, 2009) to impute spo-

radically missing genotypes. The approach incorporates the information from surrounding

markers to increase the quality of the imputation by making use of the concept of a hap-

lotype. A haplotype is a set of SNPs on a single chromosome of a chromosome pair. The

alleles of the SNPs are statistically associated in the population. These associations and the

identification of a few alleles of a haplotype block can help identify other unknown alleles in

the genomic region. The Beagle imputation process jointly models the observed genotype

data to infer missing genotypes. Very briefly, a hidden Markov model (HMM) is applied, in

which the haplotype phase is the hidden state and the observed genotypes are the observed

data. The expectation-maximization (EM) algorithm is used to fit the HMM parameters

by maximizing the likelihood (Browning & Browning, 2009).

We chose Beagle because it is among the most accurate programs for genotype imputa-

tion. Marchini & Howie (2010) compared the computational performance and error rate of

the most popular imputation methods including IMPUTE, MACH, fastPHASE, and Beagle,

and found Beagle to be comparable to the others.

3.3 Illustration of basic idea

In this section, we show how SNPs in low to moderate LD can provide information about a

missing genotype.

In our cleaned data set, we randomly selected a SNP with one missing genotype and

examined the relationship between the imputed posterior probability of its missing geno-

type and the estimated population haplotype frequencies for surrounding SNPs. A SNP

rs1845558 in gene UGT2B4 on chromosome 4 was selected. The genotype of this SNP was

missing for sample 04-1981.

The SNP and 4 neighbor SNPs are on chromosome 4 in genes UGT2B7 and UGT2B4

as shown in Table 3.2. These SNPs are in low LD (R2 < 0.5). That means these SNPs
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are slightly correlated. For sample 04-1981, the genotypes of these 5 SNPs were complete

except the SNP rs1845558 in the middle (See Table 3.3). This person must have haplotypes

GA AG and GA CG.

Based on the cleaned data, we found that other than the SNP rs1845558 missing for

sample 04-1981, the SNP rs1826690 has 3 samples missing (sample 03-1295, sample 03-

1333, sample 03-1359W). In total, there are 4 incomplete samples for the 5 SNPs. The

Beagle output provides phased haplotypes for all 1116 samples based on the haplotype

pair with maximum posterior probability for the individual. To obtain the population

haplotype frequencies shown in Table 3.4, I used the haplotype phasing with maximum

posterior probability in the 1112 complete samples. Specifically, I treated these maximum a

posteriori haplotypes as known and estimated their relative frequencies by the appropriate

proportions.

In Table 3.4, there are two possible haplotypes for GA AG, which are GACAG and

GAGAG, and they account for an estimated 16.1% and 5.3% of population haplotypes

respectively. There is only one possible haplotype for GA CG, which is GACCG. Therefore,

it is highly likely (with chance 16.1%
16.1%+5.3% = 75.2%) that the missing genotype for rs1845558

would be CC. Table 3.5 shows the Beagle output on the posterior probability of genotypes

for the SNP. The posterior probability of being CC is high (75.89%), which is consistent

with the above analysis. Thus, even though these 5 SNPs are in low LD, taken together

as a haplotype, they can still provide good information about imputing a missing genotype

(i.e. reasonable imputation certainty).

Table 3.2: Tag SNPs selected in low LD (allelic R2 < 0.5)
SNP Chromosome Position Assignment Gene

rs4356975 4 70007052 A/G UGT2B7
rs1826690 4 70386855 A/G UGT2B4
rs1845558 4 70388122 C/G UGT2B4
rs17671289 4 70393434 A/C UGT2B4
rs13145834 4 70393657 A/G UGT2B4

In summary, the basic idea of imputation using Beagle is that the genotypes of missing

SNPs are inferred based on the correlation pattern (LD) of the surrounding markers in the

population. Even tag SNPs in relatively low LD, when taken together as a haplotype, can

provide sufficient information to impute a missing genotype with reasonable certainty.
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Table 3.3: Genotypes for the 5 SNPs of Table 3.2 in sample 04-1981
rs4356975 rs1826690 rs1845558* rs17671289 rs13145834

G A NA A G
G A NA C G

* This sample was missing a genotype at rs1845558.

Table 3.4: Estimated distribution of haplotypes
Haplotype Number Frequency (%)

GGGAG 471 21.2
GACAG 359 16.1
AAGAA 341 15.3
GACCG 321 14.4
GAGAA 231 10.4
AACCG 188 8.5
GAGAG 117 5.3
AGGAG 84 3.8
AACAG 76 3.4
AAGAG 19 0.9
AGGCG 15 0.7
AGCAG 1 0.0
GGGCG 1 0.0
Total 2224 100

3.4 Implementation

Although we need the complete data for the 38 SNPs in the histone pathway, we impute the

cleaned data set with all 1288 SNPs first and then select the SNPs in the histone pathway

from the imputation output. The cleaned data set with all SNPs provides a better reference

for the missing genotypes of the 38 SNPs than a data set consisting of only the 38 SNPs,

resulting in better imputation quality. Therefore, the imputation is based on 1116 whites

and 1288 SNPs. Imputation was conducted for each chromosome separately. In total, 23

chromosomes were considered including the X chromosome. Imputation for SNPs on the X

chromosome is a special case and we will return to this point later. The Beagle output files

from different chromosomes were combined to obtain the complete data set for downstream

analysis of SNPs in the histone pathway.

Our single imputation data were based on “expectation-substitution”(Jiao et al., 2011)

wherein the missing genotype value is filled in with the estimated posterior mean value
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Table 3.5: Posterior probabilities for the missing genotype at rs1845558 in sample 04-1981
Genotype CC CG GG

Probability (%) 75.89 24.11 0.01

of the dosage at the SNP, given the data at other SNPs. For example, let the estimated

posterior genotype probabilities for an individual with a missing genotype be P(AA), P(AB)

and P(BB) where B is the index allele. Then their estimated posterior mean genotype value

of the dosage at the SNP is 0 × P (AA) + 1 × P (AB) + 2 × P (BB) = P (AB) + 2P (BB).

For our example with sample 04-1981, the imputed genotype dosage value by expectation

substitution is P (AB) + 2P (BB) = 2× 0.2411 + 0.01 = 0.4911.

We also generate 5 multiple imputation data sets. In a multiple imputation, a missing

genotype value is filled in by sampling from possible genotypes based on the estimated

posterior probabilities. For example, using an individual’s estimated posterior genotype

probabilities P(AA), P(AB) and P(BB) for a missing genotype, we would sample the value 0

with probability P(AA), the value 1 with probability P(AB), and the value 2 with probability

P(BB).

The imputation quality of a SNP is measured by allelic R2. The allelic R2 value of

a SNP is the estimated squared correlation between the allele dosage with the highest

posterior probability and the true allele dosage for the marker. The true allele dosage is

not observed but Beagle gives the estimated posterior probabilities for the true genotype.

For one particular SNP, let X be the unobserved true genotypes for all samples, coded as 0

for AA, 1 for AB, and 2 for BB, and Z be the genotypes with highest posterior probability,

coded as for X. The expression for the allelic R2 is

R2 =
Cov (X,Z)2

V ar (X)V ar (Z)
. (3.1)

Larger values indicate more accurate genotype imputation (Browning & Browning, 2009).

The high correlation between the most likely genotype and the expected genotype suggests

that the maximum posterior probability is very large (i.e. close to 1), making the most

likely genotype to be the true genotype with high certainty. To minimize the variability in

our results due to imputation, we only retained SNPs with allelic R2 value of 90% or higher.

The X chromosome is different from autosomal chromosomes. Males carry only one

copy of the X chromosome (that is, they are hemizygous), in contrast to the two copies

carried by females. Beagle 3.3 does not automatically impute sporadic missing genotypes
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Figure 3.1: Histogram of 1, 568 maximum posterior probabilities

on the X chromosome due to the special condition on males. We discuss our method of X

chromosome imputation in Appendix B.

Table 3.6: Summary of the distribution of 1, 568 maximum posterior probabilities
Min. 1st.Qu. Median Mean 3rd.Qu. Max.

0.4609 0.9325 0.9930 0.9362 0.9994 1.0000

3.5 Imputation results

We retained 35 of the 38 SNPs in the histone pathway, and all 1116 subjects. Table 3.8

summarizes the results.

Two autosomal SNPs (rs28990980 and rs1042897) with low imputation certainty (allelic

R2 < 90%) were discarded. A third X-chromosome SNP (rs5949211) with allelic R2 value

of 96.4% was also discarded because it had males with high posterior probability of being

heterozygous. The X chromosome SNP rs5949211 had 98 males with missing genotypes. As

shown in Figure 3.2, five of these 98 males has a high posterior probability (0.4997) of being
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Figure 3.2: Distribution of the estimated posterior probabilities of being heterozygous at
rs5949211 in males

a heterozygote. As summarized in Table 3.7, no other X chromosome SNP had males with

such high posterior probabilities for being a heterozygote. We therefore decided to remove

rs5949211 from the analysis. Thus, the imputation based on Beagle not only kept all the

subjects in our dataset but also kept the loss of SNPs to a minimum. This helps to improve

the power of our association analysis.

To verify that Beagle provides a reasonable imputation of our data, we check the pro-

portion of missing data and the histogram of the maximum posterior probabilities. There

are only 3.7% of genotypes missing. Figure 3.1 and Table 3.6 for 38 SNPs show that most

of the posterior genotype probabilities are larger than 80%. The high proportion of im-

puted genotypes with high certainty and the low proportion of missing data suggest that

single-imputation is reasonable for our analysis.

However, we investigate the variability in results due to imputation in the next chapter.



CHAPTER 3. GENOTYPE IMPUTATION 27

Table 3.7: Estimated posterior probabilities of being heterozygous for X-chromosome SNPs
in males with missing genotypes

Marker Min. 1st.Qu. Median Mean 3rd.Qu. Max. n

1 rs6526373 0.0908 0.0908 0.0908 0.0908 0.0908 0.0908 2
2 rs2704849 NA NA NA NA NA NA 0
3 rs17312136 0.0369 0.03705 0.0372 0.0372 0.03735 0.0375 2
4 rs5949211 0 0.0018 0.03885 0.06175 0.0664 0.4997 98
5 rs5990013 NA NA NA NA NA NA 0
6 rs6629824 NA NA NA NA NA NA 0
7 rs17324671 0.1826 0.1826 0.1826 0.1826 0.1826 0.1826 2
8 rs6634993 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 1
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Table 3.8: Summary of SNPs in the histone pathway
No. SNP Chr. Position Gene Missing.Rate Allelic.R2 Kept

1 rs3756087 4 101090954 H2AFZ 0.0054 0.994 TRUE

2 H2AZ-IVS4(-74)-AG 4 101093998 H2AFZ 0.0000 1.000 TRUE

3 H2AZ-DWN(+4)-CT 4 101094509 H2AFZ 0.0009 0.999 TRUE

4 rs673768 11 118425663 H2AFX 0.0036 0.995 TRUE

5 rs1804690 11 118427410 H2AFX 0.0000 1.000 TRUE

6 rs3825061 11 118449885 H2AFX 0.0009 0.999 TRUE

7 rs494048 11 118466441 H2AFX 0.1496 0.979 TRUE

8 rs28990986 11 118468501 H2AFX 0.0018 0.997 TRUE

9 rs640603 11 118469540 H2AFX 0.1496 0.976 TRUE

10 rs28990980 11 118471332 H2AFX 0.1487 0.842 FALSE

11 rs2509049 11 118471731 H2AFX 0.1487 0.998 TRUE

12 rs7759 11 118472501 H2AFX 0.1487 1.000 TRUE

13 rs8551 11 118472734 H2AFX 0.0036 1.000 TRUE

14 rs643788 11 118472968 H2AFX 0.0009 1.000 TRUE

15 rs604714 11 118475906 H2AFX 0.0009 1.000 TRUE

16 rs603826 11 118476088 H2AFX 0.0108 0.998 TRUE

17 rs649870 11 118476461 H2AFX 0.0000 1.000 TRUE

18 rs571445 11 118493181 H2AFX 0.0009 1.000 TRUE

19 rs8007089 14 22461753 PRMT5 0.0000 1.000 TRUE

20 rs4905941 14 99795191 YY1 0.0000 1.000 TRUE

21 rs1042897 14 99818376 YY1 0.1487 0.810 FALSE

22 rs2287321 17 1703101 RPA1 0.0018 1.000 TRUE

23 rs2287320 17 1703387 RPA1 0.0009 0.997 TRUE

24 rs36088524 17 1716950 RPA1 0.0009 1.000 TRUE

25 rs2277694 17 1730562 RPA1 0.0000 1.000 TRUE

26 rs17338990 17 1733770 RPA1 0.0000 1.000 TRUE

27 rs2270412 17 1738924 RPA1 0.0018 0.998 TRUE

28 rs2230931 17 1741930 RPA1 0.1505 0.967 TRUE

29 rs7406062 17 1746967 RPA1 0.0018 1.000 TRUE

30 rs1131636 17 1747939 RPA1 0.0036 0.999 TRUE

31 rs17339382 17 1748622 RPA1 0.0000 1.000 TRUE

32 rs17339395 17 1749251 RPA1 0.1523 0.999 TRUE

33 rs6526373 X 24076118 ZFX 0.0072 0.998 TRUE

34 rs2704849 X 24085448 ZFX 0.0000 1.000 TRUE

35 rs17312136 X 24100898 ZFX 0.0018 1.000 TRUE

36 rs5949211 X 24143025 ZFX 0.1550 0.964 FALSE

37 rs5990013 X 24144295 ZFX 0.0018 0.999 TRUE

38 rs6629824 X 24146559 ZFX 0.0018 0.999 TRUE



Chapter 4

Results and Conclusion

4.1 Permutation test

We permuted the imputed data as described in section 4 of chapter 2. Then we applied the

permutation test to find the p-value using the global test statistic Q. We also examined the

variability of test results due to imputation.

The p-value for a global test of the association between NHL and SNPs in histone-

pathway genes is 0.0154. Hence, the group of SNPs in the histone pathway genes is signifi-

cantly associated with NHL. Figure 4.1 shows the approximate permutation distribution of

the test statistic Q based on 10, 000 permutation replicates, with the value of Q observed

for our data set imputed by expectation substitution marked on the horizontal axis.

We then looked at test statistic values and p-values across 5 multiply-imputed data sets.

Table 4.1 shows that the test statistics are very similar across the multiple imputations.

Therefore, single imputation by expectation substitution appears to be reliable in our study,

as the test statistics and p-values do not vary greatly across the imputed data sets.

Table 4.1: Test statistics and p-values for permutation test
ES* Rep1 Rep2 Rep3 Rep4 Rep5

Test statistic 283.46 295.29 298.21 296.86 294.19 292.40
P-value 0.0154 0.0171 0.0162 0.0165 0.0176 0.0178

* ES: expectation substitution
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Figure 4.1: Permutation distribution for the test statistic Q
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4.2 Conclusions and future work

Single SNPs or genes in the histone pathway have been found to be associated with NHL. In

this project, our interest was in whether the SNPs in histone-pathway genes are, as a group,

associated with NHL. Because we were interested in a group association, we used a global

test. We modelled the effects of SNPs from genes in the histone pathway as random and

then tested their variance with a score test. As a score test, the global test is the locally most

powerful test. When the SNP effects are close to zero, we therefore expect the global test to

have improved power. In particular, we expect improved power over the standard approach

which tests SNP associations one-at-a-time. The standard approach requires larger effect

sizes to overcome the multiple-testing penalty.

We derive the score statistic from the likelihood, by writing the likelihood as an expected

value of a conditional likelihood given latent random genetic values for each individual.

Calculation of the score statistic is enabled by approximating the conditional likelihood

with a Taylor series expansion in a neighborhood of the null hypothesis. This score statistic

is then re-expressed in a simpler form that is more practical to compute. A permutation-

based procedure is applied to assess the statistical significance of the association between

NHL and SNPs in genes of the histone pathway. To preserve power, sporadically missing

genotypes are imputed once by substituting their posterior expected value (expectation

substitution) then five times by randomly sampling from their posterior distributions.

Our permutation test applied to the data set imputed with posterior expected values

was significant (p-value= 0.0154). Moreover, test results were similar across five multiply-

imputed data sets. The similarity of test results across the multiple-imputation data sets

indicates low imputation uncertainty. Hence, our results based on the data imputed by

expectation substitution are reliable.

Novik et al. (2007) found an association between NHL and a SNP in the gene H2AFX

of the histone pathway. In future work, it would be of interest to see if any of the SNPs in

H2AFX contribute to the histone pathway association we have found with NHL. There are

software tools within the global test R package that would enable such an investigation. The

global test has the flexibility to test groups of SNPs of different sizes. This flexibility allows

the R package to decompose the data set to investigate the contribution to association of

different subsets of SNPs, including single SNPs.

The global test R package also offers a function to find the subjects that have an overly
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large influence on the test result. The test result can be displayed in a plot that illustrates

the relative contributions of the subjects. In future work, it would be of interest to apply

these tools to obtain a better idea of how much each SNP contributes to the pathway

association with NHL, and also which subjects (e.g. from a particular subtype of NHL)

contribute.



Appendix A

Derivatives of log-likelihood

function

This Appendix is to derive the derivatives of log-likelihood function with respect to ri. These

derivatives are used in Section 2.2.4.

We have E (Yi|ri) = µ1i (ri) = logit−1 (Ziα+ ri) = eziα+ri
1+eziα+ri

. Since Yi|ri has a Bernoulli

distribution with mean µ1i (ri), we obtain

li (ri) = logf
(
Yi|ri, τ2

)
= log

(
[µ1i (ri)]

Yi [1− µ1i (ri)]
1−Yi

)
= Yilog

(
µ1i (ri)

1− µ1i (ri)

)
+ log (1− µ1i (ri))

= Yi (Ziα+ ri)− log
(
1 + eziα+ri

)
.

Hence

∂li (ri)

∂ri
= Yi −

1

1 + eZiα+ri
eZiα+ri

= Yi − µ1i (ri)
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and

∂2li (ri)

∂ri2
= − ∂

∂ri
µ1i (ri)

= −
[

1

1 + eZiα+ri
∂

∂ri
eZiα+ri + eZiα+ri

∂

∂ri

(
1

1 + eZiα+ri

)]
= −

[
1

1 + eZiα+ri
eZiα+ri + eZiα+ri (−1)

(
1

1 + eZiα+ri

)2

eZiα+ri

]
= −

[
µ1i (ri)− (µ1i (ri))

2
]

= −µ1i (ri) [1− µ1i (ri)]

= −var (yi|ri)

= −µ2i (ri)



Appendix B

X chromosome imputation

Beagle 3.3 does not automatically impute sporadic missing genotypes on the X chromosome.

Since females have two X chromosomes while males have only one X chromosome (i.e. are

hemizygous), we have to impute males and females separately. Beagle can process two files

for each gender in a single run.

The output of Beagle for autosomal chromosomes includes a log file, a phased file, a

genotype probabilities file, a genotype dosage file, and an allelic R2 file. The phased file gives

the haplotype pair with the highest posterior probability for each sample conditional upon

the genotypes for the sample and the haplotype frequency model. The genotype probabilities

file gives three columns for each sample indicating the estimated posterior probabilities,

P(AA), P(AB), and P(BB), that the true genotype is AA, AB, or BB, respectively, where

B is the index allele. The genotype dosage file provides the estimated B-allele dosage

(0×P (AA) + 1×P (AB) + 2×P (BB)) for each SNP for all samples. The genotype dosage

is used in our logistic regression model for the association study.

When running Beagle, we can either specify the males as haploid or as diploid. If we

specify males as haploid, the dosage file is the only Beagle output file for males. However, to

evaluate the imputation quality of the SNPs, we need the posterior probability file to obtain

Z in equation (3.1) for the allelic R2. Females have all the output files as for imputation on

autosomal chromosomes when males are specified as haploid. In the contrast, if we specify

the males as diploid, both females and males have all the files, such as dosage file, posterior

probability file, allelic R2 file, etc. However, some males with missing genotype data may

be imputed as heterozygous which is impossible.

As recommended (Brian Browning, personal communication), we used the output files
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for females when males are specified as haploid and the output files for males when males

are specified as diploid. When males are treated as haploid, the imputation results should

be more reliable than when they are treated as diploid. Unfortunately, at this time it is not

possible to get the necessary output files for males when they are treated as haploid. Hence

we are forced to treat the males as diploid to get the imputation results for males.

Next, we show how to find the combined allelic R2 for each X-chromosome SNP across

all samples as in equation (3.1).

Let Y be the vector of estimated posterior genotype probabilities for a random sample,

i.e.

Y = (P (AA), P (AB), P (BB)).

We approximate the variance of Z and X in formula (3.1) by using the sample mean, i.e.

V ar (Z) = E
[
Z2
]
−
(
E [Z]2

)
≈ 1

n

∑
i

Z2
i −

1

n2

(∑
i

Zi

)2

and

V ar (X) = E
[
X2
]
−
(
E [X]2

)
= E

[
E
[
X2|Y

]]
− (E [E [X|Y ]])2

≈ 1

n

∑
i

E
[
X2
i |Yi

]
− 1

n2

(∑
i

E [Xi|Yi]

)2

,

where i = 1, ..., n for sample i. Similarly, we can estimate covariance of X and Z as

Cov (X,Z) = E [XZ]− E [X]E [Z]

= E [E [XZ|Y ]]− E [E [X|Y ]]E [Z]

≈ 1

n

∑
i

(E [Xi|Yi]Zi)−
1

n2

(∑
i

E [Xi|Yi]

)∑
i

Zi.

In females, the first and second moments of X conditional on Y are estimated as follows:

E [X|Y ] = 0× P (AA) + 1× P (AB) + 2× P (BB) = P (AB) + 2P (BB) ,

E
[
X2|Y

]
= 0× P (AA) + 12 × P (AB) + 22 × P (BB) = P (AB) + 4P (BB) .
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Moreover,

Z =


0, if max (Y ) = P (AA)

1, if max (Y ) = P (AB)

2, if max (Y ) = P (BB) .

In males, the calculation is not as straight forward, because males must have either an

A only or a B only “genotype”for any SNPs on the X chromosome. We approximate the

posterior probabilities for males as

P (A) = P (AA) +
P (AB)

2

P (B) = P (BB) +
P (AB)

2

and obtain

E [X|Y ] = 0× P (A) + 1× P (B) = P (B)

E
[
X2|Y

]
= 0× P (A) + 12 × P (B) = P (B) .

We set

Z =

{
0, if P (A) > P (B)

1, if P (A) < P (B) .

Substituting these approximate conditional moments and the values of Z into the ex-

pressions above for V ar(Z), V ar(X), and cov(X,Z), and then applying equation (3.1), we

obtain an approximation to the allelic R2 for each SNP across all samples.

The dosage of X-chromosome SNPs in males is different from the autosomal SNPs be-

cauese it ranges from 0 to 1, rather than 0 to 2. We chose to double the allele dosages of

SNPs on the X chromosome for males in order to keep them in the range from 0 to 2. Then

we merged the final dosage file for SNPs on the X chromosome with the dosage files for the

other SNPs. The dosage data are used for later analysis.
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