
DISTRIBUTED KERNEL MATRIX APPROXIMATION

AND IMPLEMENTATION USING MPI

by

Taher A. Dameh

B.Sc., Jordan University of Science and Technology, Jordan 2008

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

Faculty of Applied Science

c© Taher A. Dameh 2012

SIMON FRASER UNIVERSITY

Summer 2012

All rights reserved. However, in accordance with the Copyright Act

of Canada, this work may be reproduced, without authorization, under

the conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law,

particularly if cited appropriately.

APPROVAL

Name: Taher A. Dameh

Degree: Master of Science

Title of Thesis: Distributed Kernel Matrix Approximation and Implementa-

tion Using MPI

Examining Committee: Dr. Tamara Smyth,

Assistant Professor, Computing Science

Simon Fraser University

Chair

Dr. Mohamed Hefeeda

Associate Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Wael Abd-Almageed

Adjunct Professor, Computing Science

Simon Fraser University

Supervisor

Dr. Jiangchuan Liu

Associate Professor, Computing Science

Simon Fraser University

Examiner

Date Approved:

ii

Lib M-Scan2
Typewritten Text

Lib M-Scan2
Typewritten Text
June 11th 2012

Lib M-Scan2
Typewritten Text

Partial Copyright Licence

Abstract

We propose a distributed method to compute similarity (also known as kernel and Gram)

matrices used in various kernel-based machine learning algorithms. Current methods for

computing similarity matrices have quadratic time and space complexities, which make

them not scalable to large-scale data sets. To reduce these quadratic complexities, the pro-

posed method first partitions the data into smaller subsets using various families of locality

sensitive hashing, including random project and spectral hashing. Then, the method com-

putes the similarity values among points in the smaller subsets to result in approximated

similarity matrices. We analytically show that the time and space complexities of the pro-

posed method are subquadratic. We implemented the proposed method using the Message

Passing Interface (MPI) framework and ran it on a cluster. Our results with real large-scale

data sets show that the proposed method does not significantly impact the accuracy of the

computed similarity matrices and it achieves substantial savings in running time and mem-

ory requirements.

Keywords: Large-scale data processing, kernel matrix approximation, big data, dis-

tributed clustering, kernel-based algorithms.

iii

To the Memory of My Father.

iv

Simplicity is the ultimate sophistication.

Leonardo da Vinci

v

Acknowledgments

I am deeply grateful to my senior supervisor, Dr. Mohamed Hefeeda, for his guidance

through my research. Mohamed provided valuable insights, a lot of help during my graduate

career. This thesis would not have been possible without him.

I would like to thank my supervisor Dr. Wael Abd-Almageed and my thesis examiner

Dr. Jiangchuan Liu for being on my committee and reviewing this thesis. I would like to

thank Dr. Tamara Smyth for taking the time to chair my thesis defense.

I would also like to extend my gratitude to the faculty and staff in the school of computing

science at SFU, particularly Dr. Joseph G. Peters, Dr. Alexandra Fedorova, Dr. Tamara

Smyth, Dr. Arrvindh Shriraman and Dr. Cameron Harvey for what I have learned in their

courses.

I would like to thank all the members at the Network Systems Lab at SFU, and my two

friends Samer Al-Kiswany and Mutasem AlShare’, for their help.

Last but certainly not least, I would like to thank my family for their care, love, and

support. This thesis is dedicated to them.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Kernel Methods . 1

1.2 Problem Statement and Thesis Contributions 3

1.2.1 Kernel Methods Challenges . 3

1.2.2 Thesis Contributions . 5

1.2.3 Thesis Organization . 5

2 Background and Related Work 7

2.1 Background . 7

2.1.1 Kernel-Based Application (Affinity Propagation Clustering) 7

2.1.2 Space Filling Curve . 9

vii

2.1.3 Locality Sensitive Hashing . 10

2.2 Related Work . 11

2.2.1 Low Rank Matrix Approximation Based on Nystrom Theorem 11

2.2.2 Efficient Implementation for Computing the Gram Matrix 12

2.3 Example of Approximating the Gram Matrix Using H-Curve and LSH 14

3 Distributed Kernel Matrix Approximation (DKMA) Algorithm 16

3.1 Locality Sensitive Hashing . 16

3.1.1 Definition . 16

3.1.2 Hamming Distance LSH . 18

3.1.3 Cosine Distance LSH . 19

3.1.4 l1 Distance LSH . 20

3.1.5 p-Stable Distributions LSH . 21

3.1.6 Spectral Hashing . 23

3.1.7 Summary and Discussion of LSH Families 26

3.2 Distributed Programming . 27

3.2.1 MPI Programming . 27

3.2.2 MapReduce Programming . 29

3.3 Proposed DKMA Algorithm using MPI . 30

3.3.1 Overview . 30

3.3.2 Distributed Implementation of LSH 30

3.3.3 Distributed Implementation of Clustering 31

3.4 Analysis and Complexity . 34

3.4.1 Time Complexity of Computing the Gram Matrix 34

3.4.2 Clustering Complexity . 35

3.5 Summary . 35

4 Experimental Evaluation 36

4.1 Performance Metrics . 36

4.1.1 Low Level - Gram Matrix Level Metrics 36

4.1.2 High Level - Application Level Metrics 38

4.2 Data set . 39

4.3 Setup . 42

4.4 Results . 42

viii

4.4.1 Results for Accuracy . 43

4.4.2 Results for Memory Consumption . 43

4.4.3 Results for FrobNorm.MemReduction Product 45

4.4.4 Results for Large-Scale Data . 45

5 Conclusions and Future Work 48

5.1 Conclusions . 48

5.2 Future Work . 49

ix

List of Tables

1.1 Symbols descriptions . 6

2.1 The full Gram matrix as values and as a gray image for the example in Figure

2.2(a). The points are sorted based on H-order. 14

2.2 The approximated Gram matrix for the points in Figure 2.2(a) using the

Hilbert curve (left one) with w = 2, and using LSH (right one) with k = 2. . . 15

4.1 Some of the selected 68 attributes in the USCensus1990 data set. 40

4.2 Mapping some attributes of USCensus1990 data set into new discrete variables. 41

x

List of Figures

1.1 Exponential kernel function with different values of parameter c=0.5,1 and 2. 2

2.1 Hilbert space filling curve with third and fourth orders respectively. 10

2.2 An example in 2D of constructing the Gram matrix using the Hilbert space

filling curve and using locality sensitive hashing. 15

3.1 Two circles with a radius r1 and r2 respectively, q is the center of both, v1

within r1 and v2 outside r2, then v1 collides with q with a probability at least

p1, and v2 collides with q with a probability at most p2, where p2 < p1. 17

3.2 The Hamming space for d = 3. 18

3.3 Probability of collision versus the Hamming distance for different values of k. 19

3.4 Cosine distance based LSH. 20

3.5 Thresholding (l1 distance) based LSH. 21

3.6 p-Stabel based LSH. 23

3.7 Random projection versus spectral hashing for d = 2 using k = 2. 26

3.8 Sequential I/O. 28

3.9 Parallel I/O. 29

3.10 The flow chart of the DKMA algorithm. 32

4.1 Performance Metrics . 38

4.2 Results for accuracy on DKMA Algorithm, it achieves high accuracy using

spectral hashing and Hilbert curve. 44

4.3 Results for memory consumption. 45

4.4 Results for FrobNorm.MemReduction product on DKMA algorithm, it gives

us the optimal value of k which is 6 in this case. 46

xi

4.5 Results for large-scale data set on DKMA algorithm, it scales well and it

achieves substantial memory saving and high accuracy. 47

xii

Chapter 1

Introduction

The current information explosion has resulted in an increasing number of applications that

need to deal with large volumes of data. While traditional algorithm analysis assumes that

the data fits in main memory, it is unreasonable to make such assumptions when dealing

with massive data sets such as multimedia contents and web page repositories. Kernel

methods are one of the techniques that deal with high volume of data. In this chapter, we

present an overview of kernel methods and their challenges. In this chapter, we also outline

the contributions of the thesis.

1.1 Kernel Methods

Kernel methods are a class of algorithms for pattern analysis. The general task of pat-

tern analysis is to find and study general types of relations; for example clusters, rankings,

principal components, correlations, and classifications; in general types of data, such as se-

quences, text documents, sets of points, vectors, images, etc. Muller et al. [44] give a good

introduction to kernel-based learning algorithms.

Kernel methods approach the problem by mapping the data into a high dimensional

feature space, where each coordinate corresponds to one feature of the data items, trans-

forming the data into a set of points in an Euclidean space. In that space, a variety of

methods are used to find relations in the data. Since the mapping can be quite general (not

necessarily linear, for example), the relations found in this way are accordingly very general.

This approach is called the kernel trick.

1

CHAPTER 1. INTRODUCTION 2

−10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

Euclidean distance -d(x,y)

S
im

il
a
ri

ty
va

lu
e

k
(x

,y
)

k=exp(-d(x,y))

k=exp(-d(x,y)/2)

k=exp(-d(x,y)/0.5)

Figure 1.1: Exponential kernel function with different values of parameter c=0.5,1 and 2.

Kernel methods owe their name to the use of kernel functions, which enable them to

operate in the feature space without ever computing the coordinates of the data in that

space, but rather by simply computing the inner products between the images of all pairs

of data in the feature space. The result of such is called the Gram or Kernel matrix, which

has a complexity of O(n2) in terms of space and time.

Gram Matrix: Given a set P of n vectors (points in ℜd), the Gram matrix is the matrix

of all possible inner products of P , i.e.,

kij = pTi pj, (1.1)

where AT denotes the transpose.

One of the most common kernel functions is the Gaussian Redial Basis function [44] or

the exponential function. For two points x, y in the space, the similarity value k between

them is:

k(x, y) = exp(
−‖x− y‖2

c
), (1.2)

where c is a real number and used to control the values of similarities, as shown in Figure

1.1; as c increases similarity value increases.

CHAPTER 1. INTRODUCTION 3

Algorithms capable of operating with kernels include support vector machines (SVMs)

[9], Gaussian processes [53], kernel Fisher discriminant (KFD) [42], kernel principal compo-

nent analysis KPCA [42] and many others. Kernel-based algorithms are used for applications

in many areas and fields, for example: web documents and web images clustering [3] [7] [39],

DNA and protein analysis [54], optical pattern and object recognition [13].

1.2 Problem Statement and Thesis Contributions

1.2.1 Kernel Methods Challenges

One of the main challenges encountered by kernel methods is the scalability problem; i.e.,

the massive amount of information they have to deal with. In particular, the large number

of feature dimensions, and the large number of data items.

High-Dimensional Data

In high-dimensional data, we may have thousands or even hundreds of thousands of dimen-

sions. Such high-dimensional data spaces are often encountered in areas such as medicine,

where DNA microarray technology [41] can produce a large number of measurements at

once. And the clustering of text documents [34], where, if a word-frequency vector is used,

the number of dimensions equals the size of the dictionary.

According to Kriegel et al. [37], some of the problems that need to be overcome when

dealing with high-dimensional data are:

1. Multiple dimensions are hard to think in, impossible to visualize, and due to the

exponential growth of the number of possible values with each dimension, impossible

to enumerate. This problem is known as the curse of dimensionality.

2. The concept of distance becomes less precise as the number of dimensions grows, since

the distance between any two points in a given dataset converges. The discrimination

of the nearest and farthest point in particular becomes meaningless:

lim
d→∞

distmax − distmin

distmin
→ 0 (1.3)

CHAPTER 1. INTRODUCTION 4

Large-Scale Data

The other main challenge is the large-scale data. The significant limitations of many such

algorithms is that the kernel function k(x, y) must be evaluated for all possible pairs x and

y, which is computationally expensive. To overcome such limitation, one should think about

distributed and approximation algorithms to process large-scale data sets.

The approximation algorithms are done by observing the eigen-spectrum of the kernel

function. It is a Radial Basis function, which is a real-valued function whose value depends

on the Euclidean distance. Thus, the kernel function is monotonically decreasing with the

Euclidean distance between the input points. Substantial memory requirements reductions

can be gained by computing the kernel function only between close points, i.e., preserving

the large similarities of the Gram matrix, and filtering out the small similarities. So the

problem is to find the close points in the space in a fast way, i.e., in a time complexity that

is less than the one of computing the Gram matrix itself. This can be done using spatial

indexing or spatial hashing that has locality preserving property. Previous work by Hussein

and Abd-Almageed [32] uses space filling curve, specifically, the Z-curve, to order the points

in the space, by computing the Z-index of each point, which takes O(n), and then sorting

the indeces in O(n log n). They use a sliding window of a specified length over the sorted

points, where they compute the kernel function between points that reside within this slid-

ing window.

In this work, we present a novel approach to scale kernel-based methods, using the local-

ity sensitive hashing (LSH) to hash points in the space so that the probability of collision is

high for close points. LSH is widely used in the k-nearest neighbor problem [1] [11] [24]. We

focus on low dimensional data (< 100 attributes), Gao [23] has studied high dimensional

data (> 1000 attributes), he uses random projection LSH to cluster wikipedia documents.

We compute the kernel function between points that reside in the same bucket of the hash

table. Kernel-based applications is distributable using our algorithm, we have sub-problems

to solve, which are the buckets that generate sub-Gram matrices.

CHAPTER 1. INTRODUCTION 5

1.2.2 Thesis Contributions

The contributions of the thesis are:

1. We propose an approximation algorithm for computing large scale Gram matrices.

Gram matrices are the core component of the kernel based machine learning algo-

rithms. The method achieves substantial memory and computation savings.

2. We present a distributed implementation of the proposed method using MPI frame-

work, our distributed implementation solves the scalability challenge of the kernel

methods.

3. We implement a recent kernel-based machine learning algorithm, which is the affinity

propagation clustering algorithm, on top of the proposed Gram matrix approximation

algorithm.

4. We conduct rigorous empirical evaluation study based on our implementation and de-

ployment on a multi node computer cluster. We use real data from the US census of

1990. Our results show an achievable accuracy of more than 90% comparing to the

full Gram matrix.

1.2.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides background information

and related work. In particular, more information about the kernel-based the affinity propa-

gation clustering algorithm [22], space filling curves, and locality sensitive hashing. Chapter

3 presents our proposed Distributed Kernel Matrix Approximation (DKMA) algorithm and

its distributed implementation using MPI. Experimental evaluation is presented in Chapter

4, with details on the performance metrics, experiments setup and data set used. Then we

conclude the thesis and describe potential future extensions in Chapter 5. Table 1.1 shows

the descriptions of the symbols we use in this thesis for an easy reference.

CHAPTER 1. INTRODUCTION 6

n Data set size in points
d Data set dimension
k Number of hash value bits
h Value of 1 bit of the hash value
g Hash value: k-bits
m Hash table size = 2k

M Metric space in d-dimension
S Metric space in k-dimension

d(x, y) Euclidean distance between two points x and y
p1 Low probability for two far points to collide
p2 High probability for two close points to collide
K Full Gram matrix of size n2

K̃ Approximated Gram matrix of less size

Table 1.1: Symbols descriptions

Chapter 2

Background and Related Work

This chapter provides background information on the affinity propagation clustering algo-

rithm, which is an example of a kernel-based application. In this chapter also the definition

of the spatial indexing or hashing using space filling curves and locality sensitive hashing .

We also provide previous works on approximating the Gram matrix.

2.1 Background

2.1.1 Kernel-Based Application (Affinity Propagation Clustering)

One usage of kernel matrix is clustering. Clustering or cluster analysis is the task of assign-

ing a set of objects into groups (called clusters) so that the objects in the same cluster are

more similar to each other than to those in other clusters.

Clustering can be achieved by various algorithms that differ significantly in their notion

of what constitutes a cluster and how to efficiently find clusters. Popular notions of clusters

include groups with 1) low distances among the cluster members, 2) dense areas of the data

space/intervals, or 3) particular statistical distributions. So, typical cluster models can be

categorized into:

• Connectivity models: for example hierarchical clustering [30] builds models based on

distance connectivity.

• Centroid models: for example the k-means algorithm [29] and affinity propagation [22]

represents each cluster by a single mean vector.

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

• Distribution models [16]: clusters are modeled using statistic distributions, such as

multivariate normal distributions used by the expectation-maximization algorithm.

• Density models [36]: for example DBSCAN [17] and OPTICS [4] define clusters as

connected dense regions in the data space.

• Subspace models [45]: also known as co-clustering or two-mode-clustering, clusters

are modeled with both cluster members and relevant attributes, this model is used for

high-dimensional data.

In this work, we use centroid-based clustering algorithms, where the notions of clusters

include groups with low distance among the cluster members. These types of algorithms can

get benefits of the LSH properties. LSH strives to collide close points with higher probabil-

ity. We choose affinity propagation [22] as an application case study. Affinity propagation

is a new algorithm that takes as input measures of similarity between pairs of data points

(Gram matrix). Affinity propagation does not need to have the number of exemplars defined

in advance as the case in k-means clustering, instead affinity propagation simultaneously

considers all data points as potential exemplars. Real-valued messages are exchanged be-

tween data points until a high-quality set of exemplars and corresponding clusters gradually

emerges.

In details, Affinity propagation takes as input the Gram matrix, where the kernel func-

tion is k(x, y) = −‖x− y‖2, k(x, y) indicates how well the data point with index y is suited

to be the exemplar for data point x. Rather than requiring that the number of clusters be

pre-specified, affinity propagation takes as input a real number k(i, i) for each data point i,

so that data points with larger values of k(i, i) are more likely to be chosen as exemplars.

These values are referred to as self similarities or preferences. The number of identified

exemplars (number of clusters) is influenced by the values of the input preferences, but

also emerges from the message-passing procedure. If all data points are equally suitable as

exemplars, the preferences should be set to a common value. This common value could be

the median of the input similarities (resulting in a moderate number of clusters) or their

minimum (resulting in a small number of clusters).

CHAPTER 2. BACKGROUND AND RELATED WORK 9

The two kinds of message exchanged between data points are the responsibility and the

availability. Messages can be combined at any stage to decide which points are exemplars

and, for every other point, which exemplar it belongs to. The responsibility r(i, j), sent

from data point i to candidate exemplar point j, reflects the accumulated evidence for how

well-suited point j is to serve as the exemplar for point i. The availability a(i, j), sent from

candidate exemplar point j to point i, reflects the accumulated evidence for how appropriate

it would be for point i to choose point j as its exemplar. To begin with, the availabilities

are initialized to zero: a(i, j) = 0. Then, the responsibilities are computed using the rule:

r(i, j) = k(i, j) −maxj′ s.t j′ 6=j(a(i, j
′) + k(i, j′)). (2.1)

Whereas the above responsibility update lets all candidate exemplars compete for ownership

of a data point, the following availability update gathers evidence from data points as to

whether each candidate exemplar would make a good exemplar:

a(i, j) = min(0, r(j, j) +
∑

i′ s.t i′ /∈i,j
max(0, r(i′, j))). (2.2)

The self-availability a(j,j) is updated differently:

a(j, j) =
∑

i′ s.t i′ 6=j

max(0, r(i′, j)). (2.3)

This message reflects accumulated evidence that point j is an exemplar, based on the posi-

tive responsibilities sent to candidate exemplar j from other points. The algorithm proceeds

by iterating over the responsibility and availability update steps until convergence or the

maximum number of iterations is reached.

2.1.2 Space Filling Curve

An N -dimensional space-filling curve is a continuous function from the unit interval [0, 1] to

the N -dimensional unit hypercube [0, 1]N . For example, a 2-dimensional space-filling curve

is a continuous curve that passes through every point of the unit square [0, 1]2. One example

is the Hilbert Curve, first described by the German mathematician David Hilbert in 1891.

We use the H-curve as a ground truth to compare our algorithm using the locality sensitive

hashing. Previous work [32] has been done using the Z-curve.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

Figure 2.1: Hilbert space filling curve with third and fourth orders respectively.

Both the true Hilbert curve and its discrete approximations are useful because they give

a mapping that preserves locality fairly well. For example in 2D, if (x, y) is the coordinates

of a point within the unit square, and d is the distance along the curve when it reaches

that point, then points that have nearby d values will also have nearby (x, y) values. The

converse cannot always be true. But the Hilbert curve does a good job of keeping those d

values close together much of the time. So the mappings in both direction do a fairly good

job of maintaining locality. Because of this locality property, the Hilbert curve is widely

used in computer science. Figure 2.1 shows the Hilbert curve in 2D, with third and forth

orders.

2.1.3 Locality Sensitive Hashing

Locality sensitive hashing [8] is defined with respect to a universe of items U that has a

similarity function sim : U × U → [0, 1]. An LSH scheme is a family of hash functions H,

coupled with a probability distribution D over the functions, such that, a function h ∈ H

chosen according to D satisfies the property that for any a, b ∈ U :

Prh∈H [h(a) = h(b)] = sim(a, b), (2.4)

i.e., the probability of collision between two points is proportional to the similarity between

them. It is often convenient to have a hash function family that maps objects to {0, 1}. In

CHAPTER 2. BACKGROUND AND RELATED WORK 11

that case, the output of t different hash functions can simply be concatenated to obtain a

t-bit hash value for an object.

LSH schemes are known to exist for many distance or similarity measures, for example:

lp norms [24] [11], Jaccard coefficient [6], cosine distance and the earth movers distance

(EMD) [8]. Moreover, there are other families that work on the eigen spectrum of the data,

such as the spectral hashing [51]. More details on different LSH families are presented in

section 3.1.

2.2 Related Work

2.2.1 Low Rank Matrix Approximation Based on Nystrom Theorem

In low rank matrix approximation, we need to solve the problem of approximating a matrix

K with another matrix K̃ which has a specific rank r. In the case that the approximation

is based on minimizing the Frobenius norm of the difference between K and K̃ under the

constraint that rank(K̃) = r. i.e.:

minimize
∥

∥

∥
K − K̃

∥

∥

∥

F
,

subject to rank(K̃) = r. (2.5)

(2.6)

It turns out that the solution is given by the Singular Value Decomposition (SVD) of

K:

Let K be a square n ∗ n matrix with n linearly independent eigenvectors, qi (i = 1, . . . , n).

Then K can be factorized as:

K = UΛUT , (2.7)

where U is the square n ∗n matrix whose ith column is the eigenvector qi of K and Λ is the

diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e., Λii = λi.

And hence the low rank matrix K̃ is constructed like:

K̃ = U Λ̃UT , (2.8)

CHAPTER 2. BACKGROUND AND RELATED WORK 12

where Λ̃ is the same matrix as Λ except that it contains only the r largest singular values

(the other singular values are replaced by zero), so that we say K̃ has the low rank r. This

is known as the EckartYoung theorem, as it was proved by those two authors in 1936 [48].

The Eigen decomposition is O(n3) computations, which is expensive. Nystrom theorem

is used to approximate the eigen decomposition, by the following:

For some m ≪ n build U ∈ Rn×m by choosing m rows/columns of U and let Λm×n =

diag(λ1, . . . , λm). where in this way we reduce the matrix computation complexity down to

O(mn).

For sampling the m rows or columns in Nystrom method, the most popular sampling

scheme is random sampling, which leads to fast versions of kernel machines [52] [38], and

spectral clustering [18]. In [46], several variants of multidimensional scaling are shown to

be related to Nystrom approximation. Other methods [15] use randomized algorithms by

sampling the columns of the Gram matrix based on a pre-computed distribution using the

norms of the columns. The reconstruction of the Gram matrix is also normalized by the

sampling distribution. The later randomized algorithms is more expensive in terms of com-

putation complexity.

In spite of low-rank approximation algorithms based on Nystrom theorem reduce the

computation down to O(mn) where m ≪ n, they fail to reduce the space complexity, still

we need O(n2) to store the Gram matrix. On the other hand, the following methods reduce

both computations and space by using efficient way to compute the Gram matrix.

2.2.2 Efficient Implementation for Computing the Gram Matrix

In these methods, the basic idea is to compute the kernel function only between close points

(points with high similarity), based on the fact that the kernel functions are radial basis

functions, i.e., their values depend on the Euclidean distance between the points. The ques-

tion that arises is how to find the close points in a fast way? This can be done either

by spatial indexing or spatial hashing where the preprocessing step (hashing or indexing)

should be smaller than quadratic, which is the complexity of computing the Gram matrix.

Hussein and Abd-Almageed in [32] use the Z-curve to order the points in the space, then by

CHAPTER 2. BACKGROUND AND RELATED WORK 13

using a sliding window of size w, the kernel function is computed only within this window,

i.e, we compute the kernel function only between each point and the points that are at most

w/2 far from it on the Z-order in both directions.

The drawbacks of such methods are:

1. their accuracy depends on the size w,

2. they fail for high dimensional space,

3. the sorting step is O(n log n),

4. and more importantly, they are hard to distribute, as we need to process the approx-

imated Gram matrix as one.

To overcome these drawbacks, we propose a new algorithm using the locality sensitive

hashing. We hash the points in space into m buckets. Then the kernel function is computed

only between the points that reside in the same bucket. We show that we choose m to be

O(log n) which reduces our computations and space down to sub quadratic. Our proposed

algorithm has the following advantages:

1. linear time of preprocessing,

2. and more importantly, it is distributable. We have sub-problems to solve, which are

the buckets of the hash table, where each is considered as a sub-Gram matrix. We

compute the kernel function on each bucket independently. Moreover, we run cluster-

ing algorithm on each bucket independently as well.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

2.3 Example of Approximating the Gram Matrix Using H-

Curve and LSH

Figure 2.2 shows an example of eight points in 2D, in Figure 2.2(b) an H-curve is used to

order the points in the space, and in 2.2(c) an LSH with hash bits k = 2 is used to hash the

points into four buckets. Table 2.1 shows the full Gram matrix as values and as a gray image

(white means 1 and black means 0). From the image, and given that the points are sorted

based on H-order, the large similarities are concentrated on and around the diagonal. Table

2.2 left side shows the approximated Gram matrix using H-curve with winWidth = 2, and

right side shows it using LSH with k = 2. Using H-curve, we compute the kernel function

between each point and up to ±(winWidth/2)th point on the curve, using LSH we compute

the kernel function between points in the same bucket. In this way, we preserve the large

similarities and filter out the small similarities. One of the metrics to measure the method

accuracy is the Frobenius norm; see section 4.1. The Frobenius norm for the full Gram ma-

trix in this example is 4.13, where it is 3.82 and 3.44 for the H-curve and LSH respectively.

1 0.9 0.3 0.3 0 0 0.3 0.3
0.9 1 0.4 0.4 0 0 0.2 0.1
0.3 0.4 1 0.8 0.1 0.1 0.1 0
0.3 0.4 0.8 1 0.4 0.3 0.2 0.1
0 0 0.1 0.4 1 0.9 0.3 0.2
0 0 0 0.3 0.9 1 0.3 0.1
0.2 0.1 0 0.2 0.3 0.3 1 0.9
0.2 0.1 0 0.1 0.2 0.1 0.9 1

Table 2.1: The full Gram matrix as values and as a gray image for the example in Figure
2.2(a). The points are sorted based on H-order.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

(c)

Figure 2.2: An example in 2D of constructing the Gram matrix using the Hilbert space
filling curve and using locality sensitive hashing.

1 0.9 0 0 0 0 0 0.3 1 0.9 0 0 0 0 0 0
0 1 0.4 0 0 0 0 0 0.9 1 0 0 0 0 0 0
0 0 1 0.8 0 0 0 0 0 0 1 0.8 0 0 0 0
0 0 0 1 0.4 0 0 0 0 0 0.8 1 0 0 0 0
0 0 0 0 1 0.9 0 0 0 0 0 0 1 0.9 0 0
0 0 0 0 0 1 0.3 0 0 0 0 0 0.9 1 0 0
0 0 0 0 0 0 1 0.9 0 0 0 0 0 0 1 0.9
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.9 1

Table 2.2: The approximated Gram matrix for the points in Figure 2.2(a) using the Hilbert
curve (left one) with w = 2, and using LSH (right one) with k = 2.

Chapter 3

Distributed Kernel Matrix

Approximation (DKMA)

Algorithm

In this chapter, we present our proposed distributed kernel matrix approximation algorithm,

we start with a background information on different locality sensitive hashing families, and

a background on the distributed programming. In section 3.3, we outline our proposed

algorithm in details, then we present the analysis of the algorithm in section 3.4, and then

we conclude the chapter in section 3.5.

3.1 Locality Sensitive Hashing

3.1.1 Definition

Locality sensitive hashing (LSH) is a method of performing probabilistic dimension reduc-

tion of high-dimensional data. The basic idea is to hash the input items so that similar

items are mapped to the same bucket with high probability.

As been defined in [24] and [33], an LSH family F is defined for a metric spaceM = (M,d),

as an F family of functions h :M→ S satisfying the following conditions for any two points

16

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM17

Figure 3.1: Two circles with a radius r1 and r2 respectively, q is the center of both, v1 within
r1 and v2 outside r2, then v1 collides with q with a probability at least p1, and v2 collides
with q with a probability at most p2, where p2 < p1.

v, q ∈ M, and a function h is chosen uniformly at random from F :

if d(v, q) ≤ r1, then Pr[h(v) = h(q)] ≥ p1

if d(v, q) ≥ r2, then Pr[h(v) = h(q)] ≤ p2

In other words, in a metric space (M,d), the d-sphere of a center q and a radius r1 > 0,

if there is a point v resides within this sphere, then v and q collide with high probability

at least p1. If there is a point p resides outside this sphere, then v and p collide with low

probability at most p2, see Figure 3.1. A family F is interesting when p1 > p2 and r1 < r2.

Such a family F is called (r1, r2, p1, p2)− sensitive. For k specified later, define a function

family G = g : S → Uk such that g(v) =< h1(v), ..., hk(v) >, where hi ∈ F .

LSH schemes are known to exist for the following distance or similarity measures: Ham-

ming norm [24], cosine distance [8], l1 distance [40], lp norms [24] and Jaccard coefficient [6].

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM18

Figure 3.2: The Hamming space for d = 3.

3.1.2 Hamming Distance LSH

Hamming Distance LSH [33] is the basic family. Consider points from {0, 1}d (Hamming

Space) with Hamming distance D(p, q) equals the number of positions by which p and q

differ. Define hash function g by choosing a set S of k random coordinates, and setting g(p)

= projection of p on S.

In such family, the probability of collision between points will be proportional to their

Hamming distance (as distance increases, probability of collision decreases).

Pr[g(p) = g(q)] = (1−
D(p, q)

d
)k. (3.1)

Example: Consider an example of dimension d = 3, see the cube in Figure 3.2, let number

of bits k = 2, and let the set S of randomly chosen coordinates as {1, 3}, this means we

have 22 = 4 different buckets, and they are:

00={000,010}

01={001,011}

10={100,110}

11={101,111}

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM19

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Distance

P
r

of
co

ll
is

io
n

k=1
k=2
k=3

(a) d = 3

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance

P
r

of
C

ol
li
si

on

k=1

k=2

k=4

k=8

k=16

k=32

k=64

(b) d = 100

Figure 3.3: Probability of collision versus the Hamming distance for different values of k.

Figure 3.3(a) shows the Hamming distance along with the probability of collision for dif-

ferent values of k, similarly Figure 3.3(b) shows this relation for the case of d = 100; as k

increases the gap between the high probability p1 and the low probability p2 increases.

3.1.3 Cosine Distance LSH

This LSH family [8] is designed to approximate the cosine distance between vectors. The

basic idea is to choose a random hyperplane (defined by a normal unit vector r) at the

outset and use the hyperplane to hash input vectors.

Given an input vector v and a hyperplane defined by r, we let hr(v) = sgn(v · r). That

is, h(v) = ±1 depending on which side of the hyperplane v lies.

bit =

1 if r.u ≥ 0

0 if r.u < 0

Each possible choice of r defines a single function. Let H be the set of all such functions

and let D be the uniform distribution once again. It is not difficult to prove that, for two

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM20

Figure 3.4: Cosine distance based LSH.

vectors u, v,

Pr[h(u) = h(v)] = 1−
θ(u, v)

π
, (3.2)

where θ(u, v) is the angle between u and v. 1− θ(u,v)
π is closely related to cos(θ(u, v)), [8].

In Figure 3.4, an example of points in 2D, we use two random vectors r1 and r2 to hash. By

projecting the points onto those two random vectors, we obtain the four buckets as shown.

3.1.4 l1 Distance LSH

This LSH family [40] [50] generates k-bit vectors from the d-dimensional vectors, such that

the expected Hamming distance between two bit vectors produced is proportional to the

l1 distance between the corresponding vectors. It generates each single bit from each d-

dimensional vector, such that, the probability that the bit produced is different for two

vectors is proportional to their l1 distance.

Let the ith coordinate of the d-dimensional vector be in the range [li, hi] and has weight wi.

Let T =
∑

iwi × (hi − li), and pi = wi × (hi − li)/T . Note that
∑

i pi = 1. To generate

a single bit, pick i ∈ [0, d − 1] with probability pi, and pick a uniform random number

t ∈ [li, hi]. For each vector v = (v1, ..., vd), we have:

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM21

Figure 3.5: Thresholding (l1 distance) based LSH.

bit =

0 if vi < t

1 if vi ≥ t

The authors of [40] [50] prove the following lemma regarding this LSH family:

Lemma 1 If the weighted l1 distance between two vectors u and v is x, then the probability

that the two vectors generate different bits given the same (i, t) pair is p = x/T .

In Figure 3.5, an example of points in 2D, the thresholding (l1 distance LSH) is used here,

with k = 2, to hash the points into four buckets. For the x-coordinate (i1 = 1), let t1 = 1.5,

and for the y-coordinate (i2 = 2), let t2 = 2.5.

3.1.5 p-Stable Distributions LSH

It is mentioned in [33] that it is possible to extend the algorithm for the Hamming space

to the l2 norm by embedding l2 space into l1 space, and then l1 space into Hamming space.

However, it increases the error by a large factor and complicates the algorithm.

In [11] where LSH scheme is proposed based on p-stable distribution, the algorithm works

directly on points in Euclidean space without embedding, it works for any lp norm, as long

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM22

as p ∈ (0, 2]. The algorithm inherits a convenient property of LSH schemes, which is it

works well on data that have high dimensions.

Stable distributions are defined as limits of normalized sums of independent and identi-

cally distributed variables. The most well-known example of a stable distribution is the

Gaussian (or normal) distribution.

Stable Distribution: A distribution D over R is called p-stable, if there exists p ≥ 0

such for any n real numbers v1...vn and i.i.d. variables X1...Xn with distribution D, the

random variable
∑

i viXi has the same distribution as the variable (
∑

i |vi|
p)1/pX, where X

is random variable with distribution D.

It is known that stable distribution exists for any p ∈ (0, 2]. In particular:

-Cauchy Distribution DC defined by the density function c(x) = 1
π

1
1+x2 , is 1-stable.

-Gaussian Distribution DG defined by the density function g(x) = 1√
2π
e−x2/2, is 2-

stable.

The idea is to generate a random vector a of dimension d whose each entry is chosen

independently from a p-stable distribution. Given a vector v of dimension d the dot prod-

uct a.v is a random variable which is distributed as ‖v‖pX, where X is a random variable

with p-stable distribution. Such a sketch is linear, i.e., for any p, q ∈ Rd, a.(p−q) = a.p−a.q .

Indyk and Motwani [11] use p-stable distribution in a slightly different manner. Instead

of using the dot product to estimate the lp norm, they use them to assign a hash value to

each vector v. The hash function family should be locality sensitive, so if the two vectors

(v1, v2) are close (small ‖v2 − v2‖p), then they should collide (hash to the same index) with

high probability, and if they are far away, they should collide with small probability.

Each hash function ha,b(v) : Rd → N maps a d-dimensional vector v onto a set of inte-

gers. Each hash function in the family is indexed by a choice of random a and b where

a is, as before, a d-dimensional vector with entries chosen independently from a p-stable

distribution, and b is a real number chosen uniformly from the range [0,W].

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM23

Figure 3.6: p-Stabel based LSH.

For a fixed a and b, the hash function ha,b is given by:

ha,b(v) =

⌊

a.v + b

W

⌋

. (3.3)

Figure 3.6 is an example of points in 2D, the points were hashed into buckets using two

random vectors r1 and r2, a window of width w and two random shifts b0 and b1, each

square obtained represents a bucket in the hash table.

3.1.6 Spectral Hashing

Random projection techniques mentioned in the previous sections have strong theoretical

guarantees. Unfortunately, they do not learn the hash values from the data set. For ex-

ample, in p-stable LSH family, every bit in the hash value is calculated by a random linear

projection followed by a random threshold. Then the Hamming distance between the hash

values will asymptotically approach the Euclidean distance between the items. But in prac-

tice this method can lead to inefficient hash values. Rather than using random projection

to define bits in a hash value, other families have been proposed to learn the hash values

from the data. One good example is the spectral hashing proposed by Weiss et al. [51].

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM24

Let {gi}
n
i=1 be the list of hash values or binary vectors of length k for n data points.

W (x, y) = exp(−‖x− y‖2 /ǫ2) is the affinity matrix which characterizes similarities be-

tween data points. We need the average Hamming distance between similar points to be

minimal, i.e:

minimize :
∑

ij

Wij ‖gi − gj‖
2 (3.4)

subject to : gi ∈ {0, 1}
k . (3.5)

We need also each bit to be 0 or 1 with equal probability of 50%, and the bits to be uncor-

related. i.e:

∑

i

gi = 0 (3.6)

1

n
gig

T
i = I (3.7)

For a single bit, solving the previous problem is equivalent to the balanced graph par-

titioning problem, which is NP hard [2]. But by introducing an n × k matrix G whose jth

raw is gTj and a diagonal n×n matrix D(i, i) =
∑

j W (i, j), we can rewrite the problem as:

minimize : trace(GT (D −W)G) (3.8)

subject to : G(i, j) ∈ {−1, 1} (3.9)

GT 1 = 0 (3.10)

GGY = I (3.11)

(3.12)

This is still a hard problem, but by removing the constraint that G(i, j) ∈ {−1, 1}, we obtain

an easy problem whose solutions are the k eigenvectors of D−W with minimal eigenvalue,

which is similar to spectral graph partition [47] that could be solved by computing general-

ized eigenvalue problem.

So, the problem is to compute the eigenvector and eigenvalue of the graph D − W ,

but the eigenproblem is computationally expensive, because it has a time complexity of

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM25

O(n3). Thus it can not handle large data sets. The solution is by using eigenfunctions of

the weighted Laplace-Beltrami Lp operators defined on manifolds [5].

In summary, given a training set of points xi and a desired number of bits k, the spec-

tral hashing algorithm works by [51]:

• Finding the principal components of the data using Principle Component Analysis

(PCA).

• Calculating the k smallest single-dimension analytical eigenfunctions of Lp using a

rectangular approximation along every PCA direction. This is done by evaluating the

k smallest eigenvalues for each direction, thus creating a list of dk eigenvalues, and

then sorting this list to find the k smallest eigenvalues.

• Thresholding the analytical eigenfunctions at zero, to obtain binary codes.

Spectral hashing is linear time, because the Principle Component Analysis step is done in

linear time, by first finding the covariance matrix of the data set, and then finding the eigen

solution of that matrix in linear time using the Lanczas algorithm [25]. Golub and van Loan

give very good description of the various forms of Lanczos algorithms in their book Matrix

Computations [25].

Spectral hashing has been shown to be effective in hashing large-scale, low-dimensional

data since the important PCA directions are selected multiple times to create hash val-

ues [49]. However, for high dimensional data sets (d ≫ n) where many directions contain

enough variance, usually each PCA direction is picked only once. This is because the top

few projections have similar range and thus a low spatial frequency (k = 1) is preferred.

In this case, spectral hashing approximately replicates a PCA projection followed by a

mean partition [49]. Moreover, in spectral hashing, the similarity matrix W is fixed as

exp(−‖x− y‖2 /ǫ2), and thus it does not apply for other kernel/similarity functions. The

authors in [31] propose a new hashing algorithm for large-scale data that is applicable for

any kernel function.

In Figure 3.7, we show an example of data points in 2D, where we use random projec-

tion to hash the points in 3.7(a) , and we use spectral hashing in 3.7(b), k = 2 for both.

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM26

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Random Projection LSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Spectral Hashing

Figure 3.7: Random projection versus spectral hashing for d = 2 using k = 2.

Each color represents a bucket. The figures show how the spectral hashing is more powerful,

because it takes in account the eigen spectrum of the data, and not just randomly projecting.

3.1.7 Summary and Discussion of LSH Families

In the previous sections, we reviewed different locality sensitive hashing families. In general

they can be categorized into two groups, random projection and spectral hashing.

In random projection technique, the basic idea behind these families is dimension reduction,

where the data points are projected on smaller dimension space. These families are built

on top of Johnson-Lindenstrauss lemma [35], which shows that any data in high dimension

space can be mapped into smaller dimension space of size related logarithmically to the data

size, such that distances between points are preserved within a small factor. These fam-

ilies are simple, work well on high-dimensional data, and have strong theoretical guarantees.

On the other hand, the spectral hashing [51] has been proposed to learn the hash values

from the data. In spectral hashing we compute PCA, calculate the smallest single-dimension

analytical eigen functions, and then threshold the analytical eigen function of zero to obtain

values’ bits. Spectral hashing has been shown to be effective for low-dimensional data, and

for the exponential kernel function [49].

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM27

3.2 Distributed Programming

One popular class of parallel architectures is clusters, which often use standard components

and often standard network technology, so as to leverage as much commodity technology

as possible. Cluster is called distributed-memory computing or shared-nothing computing,

which is in contrast to the shared-memory multiprocessors. Cluster programming can be

done using the message passing interface MPI [27], or a high level framework; the MapRe-

duce [12].

3.2.1 MPI Programming

MPI is a standardized and portable message-passing system designed by a group of re-

searchers from academia and industry [27] [28] to be used for parallel programs running on

distributed-memory systems. The standard defines the syntax and semantics of a core of

library routines useful to a wide range of users writing portable message-passing programs.

It is a language-independent communications protocol.

In MPI programming, user writes a single program, that has multiple instances execute

on (potentially) different data sets. The program is parameterized so that each process

works on its own subset of data. If the total number of processes is less than the number of

available nodes, each single node will handle one process. Number of processes is fixed at

start of program (load time), each process has a unique ID, and performs one of two things:

computation on local data or communication with other processes. In MPI programming,

we have a distributed file system or network file system (NFS), which is a file system that

allows access to files from the multiple nodes sharing the network. This makes it possible

for multiple nodes to share code and data.

The basic MPI library functions are:

1. MPI Init: to initialize MPI,

2. MPI Finalize: to shut down MPI,

3. MPI Get Rank: to get the current process ID,

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM28

Figure 3.8: Sequential I/O.

4. MPI Get Size: to get the total number of processes, and

5. MPI Barrier: to synchronize with everyone.

For example the following for loop:

for (i=0; i<MAX; i++)

do_somthing(i);

can be distributed on cluster using a total number of processes equals to p, and assuming

each loop is independent from the other, like:

id = MPI_get_rank();

p = MPI_get_size();

for (i=id; i<MAX; i+=p)

do_somthing(i);

Moreover, MPI programming supports parallel I/O [28]. In sequential I/O, all processes

send data to rank 0 process (master process), then master process writes the data to the file,

see Figure 3.8. Such lack of parallelism limits scalability and performance. One solution is

to make each process write/read to/from a separate file, but in this case, lots of small files

to manage, and difficult to read back data from different number of processes. On the other

hand, using parallel I/O, multiple processes of a parallel program accessing data, reading

or writing, from or to a common file at the same time, see Figure 3.9.

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM29

Figure 3.9: Parallel I/O.

3.2.2 MapReduce Programming

MapReduce is a high level framework introduced by Google in 2004 [12] to support dis-

tributed computing on clusters of computers. In the Map step: the master node takes the

input, partitions it into smaller sub-problems, and distributes them to worker nodes. A

worker node may do this again in turn, leading to a multi-level tree structure. The worker

node processes the smaller problem, and passes the answer back to its master node. On the

other hand, in the Reduce step: The master node collects the answers to all sub-problems

and combines them to form the output, i.e., the answer to the problem it was originally

trying to solve.

In MapReduce, communication management is effectively gone, i.e., I/O scheduling is done

for us. Fault tolerance and monitoring are implicitly handled. I.e., MapReduce is more

reliable. But on the other hand, MapReduce restricts solvable problems, that it might be

hard or more complicated to express some problems using it. Where in MPI, it is more flex-

ible, and can be used to solve most distributed problems. Our distributed problem can be

implemented using both MapReduce and MPI. In our thesis, we choose MPI to implement

our distributed algorithm. Comparing between the two implementation is a future work.

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM30

3.3 Proposed DKMA Algorithm using MPI

3.3.1 Overview

Our approximation algorithm depends on the observation that the kernel function is Radial

Basis, whose value depends only on the distance. We use the locality sensitive hashing to

hash the points that reside in the space. LSH preserves the locality by making the close

points in the space collide with high probability. We compute the kernel function between

points that collide in the same bucket. We cluster each bucket independently. Clustering is

distributable using our method.

In summery our distributed algorithm works by, see Figure 3.10:

• Initialize all processes with the same k vectors or eigenfunctions.

• Load each process with a segment from the data set.

• Each process hashes the segment to bucket files.

• Combine buckets that have the same index number.

• Load each process with a bucket.

• Each process clusters each bucket and stores results in a shared clusters file.

3.3.2 Distributed Implementation of LSH

Random Projection LSH

We initialize all processes with the same k vectors. Each vector has the same dimensionality

of the data set and is used to generate one bit of the hash value for each data item. The

data set is divided into small segments. Each single segment s will be handled by a process.

All processes use the same k vectors mentioned to hash the points into local buckets. Each

local bucket has a unique index number, then all local buckets from the different processes

that have same index are combined into one bucket.

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM31

Spectral Hashing

In spectral hashing instead of using random vectors, it needs to learn eigenfunctions from

the data set using principle component analysis (PCA). To do so, we need to scale the PCA

function. The step of PCA that has a problem when running on large-scale data set is

computing the covariance matrix of it.

We scale the covariance matrix computation by observing that: for a matrix K of size

n and dimension d, the covariance matrix C is of size d× d, where cii is the variance of the

column i in matrixK, and cij is the covariance between the two columns i and j in matrixK.

Different processes work independently on matrix K to generate each element of matrix

C, master process - slave processes paradigm is used. For example, to compute the variance

of column i in matrix K, that is the element cii in matrix C, the master process pings all

slave processes to start, each slave process reads a chunk from column i, aggregates it and

returns the sum to the master process. The master process receives all sums to compute

the mean of the column i. The master process will ping the slave processes again by passing

the mean to each one, each slave will subtract the mean from each element of its chunk,

aggregate and then return the result back to the master. The master process receives all

results to compute the variance and then update the element cii in C.

3.3.3 Distributed Implementation of Clustering

We mentioned that kernel-based applications are distributable using locality sensitive hash-

ing. We do not need to store and process the whole approximated Gram matrix, instead we

store and process sub-Gram matrices independently, where each sub-Gram matrix repre-

sents a different bucket from the hash table. Each bucket will be handled by an independent

process.

Algorithm 1 shows more details of the implementation using MPI.

The Algorithm has four steps:

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM32

Figure 3.10: The flow chart of the DKMA algorithm.

1. Pre-processing: The data set is divided into small segments, where each segment

can be handled by one process.

2. MPI PartitionData: We initialize the MPI program with number of processes

equals to the number of the segments. We initialize each process with same k hash

functions. Each process reads single segment and hashes it to local bucket files.

3. Mid-processing: We combine the local buckets from the different processes that

have the same index number into one bucket.

4. MPI Cluster: We initialize number of processes equals to the total number of buck-

ets generated after hashing. Each process reads one bucket and uses the affinity

propagation to cluster it. All processes write to a shared clusters file.

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM33

Algorithm 1 DKMA algorithm using MPI

1: Pre-processing divide the data set into numofSegments segments
2:

3: function MPI PartitionData(numofSegments, k)
4: Input dataSegments[numofSegments], hashFunctions[k]
5: output bucketFiles[numofSegments][totalBuckets]
6: MPI Initialize numofProcesses(numofSegments)
7: myRank←MPI Get Rank()
8: mySegment← read(dataSegments[myRank])
9: LSH Initialize(hashFunctions[k])

10: for i = 0→ segmentSize− 1 do
11: index← LSH Index(mySegment[i])
12: bucketF iles[myRank][index].add(mySegment[i])
13: end for
14: return totalBuckets
15: end function
16:

17: Mid-processing combine buckets that have same index
18:

19: function MPI Cluster(totalBuckets)
20: Input bucketFiles[totalBuckets]
21: output clustersFile
22: MPI Initialize numofProcesses(totalBuckets)
23: myRank←MPI Get Rank()
24: myBucket← read(bucketF iles[myRank])
25: myGramMatrix← computeGramMatrix(myBucket)
26: myClusters← cluster(myGramMatrix)
27: clustersF ile.write(myClusters)
28: end function

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM34

3.4 Analysis and Complexity

3.4.1 Time Complexity of Computing the Gram Matrix

We show that using the random projection locality sensitive hashing, the quadratic com-

plexity of the brute force approach for computing the gram matrix is reduced down to sub

quadratic.

Johnson-Lindenstrauss lemma [35] states that any n points subset of Euclidean space

can be embedded in k = O(log n/ǫ2) dimensions without distorting the distances between

any pair of points by more than a factor of (1±ǫ), for any 0 < ǫ < 1. In other words, any set

of n points in d-dimensional Euclidean space can be embedded into k-dimensional Euclidean

space - where k is logarithmic in n and independent of d - so that all pairwise distances

are maintained within an arbitrary small factor. All known constructions of such embed-

ding involve projecting the n points onto a random k-dimensional hyperplane. The proof

of Johnson-Lindenstrauss lemma was subsequently simplified by Frankl and Maehara [20].

The proof given by Dasgupta and Gupta [10] uses elementary probabilistic techniques to ob-

tain the result. Indyk and Motwani [33] have also given similar proofs of the theorem using

simple randomized algorithm for their p-stable LSH, they show that the value of hash bits

k is log1/p2 n, where p2 is the low probability for two far points to collide in the same bucket.

Given k = log1/p n and since the hash value is a k-bit value, our hash table size m is

2k = 2log1/p n. Assuming all buckets have the same size. Also assume that we have enough

nodes such that each node will handle one process at most. Thus, computing the Gram

matrix using random projection LSH will need:

n2

m2
=

n2

22 log1/p n
, (3.13)

=
n2

2
2 log2 n
log2 1/p

, (3.14)

Thus,
n2

m2
=

n2

n
2

log2 1/p

= O(n2−c). (3.15)

where c = 2/ log2(1/p), and assuming the low probability 0 < p < 0.25, then 0 < c < 1.

Hence, the complexity is sub-quadratic.

CHAPTER 3. DISTRIBUTEDKERNELMATRIX APPROXIMATION (DKMA) ALGORITHM35

In our implementation using MPI, we divide the data set into p segments to be processed

by p processes as a pre-processing step, which takes O(n). Also in a mid-processing step

before the clustering and after hashing, we combine all buckets of the same index number

into one bucket, this takes O(n) as well. Therefore, the total time complexity is O(n2−c).

3.4.2 Clustering Complexity

When using the full Gram matrix, the complexity of the affinity propagation clustering

algorithm is O(n2 log n) [22], where n is the data size. Using our algorithm, and given that

the bucket size is n/m, where m = 2k is the hash table size, and assuming each node will

handle one process at most, the complexity will be reduced down to:

(
n

m
)2 log

n

m
=

n2

22k
log

n

2k
=

n2

22 log1/p n
log

n

2log1/pn
(3.16)

=
n2

2
2 log2 n

log2(1/p)

log
n

2
log2 n

log2(1/p)

(3.17)

=
n2

n2/log2(1/p)
log

n

n2/2log2(1/p)
(3.18)

= O(n2−c log n1−c/2), (3.19)

where c = 2/ log2(1/p), and given the low probability 0 < p < 0.25, then 0 < c < 1.

3.5 Summary

In this chapter, we presented the DKMA algorithm. It partitions large data sets using local-

ity sensitive hashing (LSH). We analyzed different families of LSH. We found that spectral

hashing out performs other families, as it learns the hash values from the data set itself.

Then we presented the distributed implementation of DKMA using the MPI framework.

Our implementation is hardware independent, it means that it can run on any size of clus-

ter. If we have enough resources such that each node will handle one process at most, we

will achieve a maximum speedup on a cluster up to the total number of buckets which is 2k,

where k is the number of hash functions. As we will see in the results shortly, our method

accuracy is inversely proportional to k, but by using JohnsonLindenstrauss lemma, we can

achieve reasonable accuracy using k = log1/p n, where n is the data set size in points, and

p is the low probability for two far points to collide.

Chapter 4

Experimental Evaluation

In this chapter, we present the experimental evaluation of the DKAM algorithm. We start

with the performance metrics we use to evaluate our algorithm comparing to the full Gram

matrix and comparing to the method using Hilbert curve. Then we describe the data set we

use which is the US census of 1990, and the setup of our experiments. We show the results

in section 4.4 for the accuracy and the memory consumption, as well as the results of using

large-scale data set of size one million items.

4.1 Performance Metrics

4.1.1 Low Level - Gram Matrix Level Metrics

Frobenoius Norm

The Frobenius norm, sometimes also called the Euclidean norm, is a matrix norm of anm×n

matrix K defined as the square root of the sum of the absolute squares of its elements, i.e.,

for the matrix K, the Frobenoius norm is:

‖K‖F =
√

Σm
i=1Σ

n
j=1 |kij |

2 (4.1)

In the Gram matrix, the Frobenius norm reflects the large similarities; as a larger value of

an element has more effect on the Frobenoius norm value. If we have two approximated ma-

trices of the same size, in terms of number of elements, then the one with larger Frobenoius

norm value is the closer to the full Gram matrix.

36

CHAPTER 4. EXPERIMENTAL EVALUATION 37

The Frobenoius norm depends on the size of the matrix; as the size increases the Frobenoius

norm increases. Moreover, we need to compute the Frobenoius norm for the full Gram ma-

trix, to evaluate the Frobenoius norm ratio. This is infeasible for large-scale matrices.

To overcome those issues, we propose a new metric: the FrobNorm.MemReduction product,

which is defined in the following section. This metric is inspired from the Energy.Delay

product used in Energy-Efficient computing proposed first by Gonzalez and Horowitz [26].

Energy.Delay product considers both performance and energy consumption of processors.

Similarly, our metric considers both accuracy and memory usage simultaneously, which

makes better comparisons between different methods and different configurations in terms

of efficiency.

FrobNorm.MemReduction Product

FrobNorm.MemReduction product takes in account both the amount of information the

matrix has as well as its size. This metric is size independent and can be used to pick

up the optimal value of number of hash functions k. It is the result of multiplying the

Frobenius norm with the memory reduction achieved at some value of k. On the other

hand, FrobNorm2.MemReduction or even FrobNorm3.MemReduction can be used to assign

more weight to the Frobenius norm.

FrobNorm.MemReduction = FrobNorm× (1−
Approximated Gram matrix size

Full Gram matrix size
).

(4.2)

Figure 4.1 illustrates the different performance metrics for a synthesized data set of size

1000 points, and each point has 64 dimensions. The data set is hashed using random pro-

jection. Figure 4.1(a) is the Frobenius norm for the approximated Gram matrix obtained at

different values of k. In Figure 4.1(b), as k increases, the Gram matrix size decreases, and

thus the Frobenoius norm decreases. Figure 4.1(c) is the memory reduction achieved. From

the first raw of figures, there is no indication on the optimal value of k. On the other hand,

FrobNorm.MemReduction, FrobNorm2.MemReduction and FrobNorm3.MemReduction are

CHAPTER 4. EXPERIMENTAL EVALUATION 38

0 5 10 15 20
0

0.5

1

1.5

2

k

F
ro

b
en

oi
u
s

n
or

m

(a)

0 5 10 15 20
0

1

2

3

4

5

6
x 10

9

k

N
u
m

b
er

of
P
oi

n
ts

(b)

0 5 10 15 20
60

70

80

90

100

k

M
em

or
y

R
ed

u
ct

io
n

(c)

0 5 10 15 20
0

2

4

6

8
x 10

−9

k

F
ro

b
N

or
m

.M
em

R
ed

u
ct

io
n

(d)

0 5 10 15 20
0

1

2

3

4
x 10

−9

k

F
ro

b
N

or
m

2.
M

em
R

ed
u
ct

io
n

(e)

0 5 10 15 20
0

1

2

3

4
x 10

−9

k

F
ro

b
N

or
m

3.
M

em
R

ed
u
ct

io
n

(f)

Figure 4.1: Performance Metrics

Random projection hashing for 1000 points each has 64 dimensions. First raw
shows the Frobenoius norm, number of points and the memory reduction achieved
for the approximated Gram matrix using different values of k (hashing bits).
The second raw shows FrobNorm.MemReduction, FrobNorm2.MemReduction and
FrobNorm3.MemReduction.

shown in the second raw of Figures. We use this metric to choose the optimal value of k;

which is the one with the maximum value of FrobNorm.MemReduction. Moreover, assign-

ing more wight to Frobenoius norm, by using FrobNormc.MemReduction, shifts the optimal

value of k to the left, i.e., smaller value for which Frobenoius norm or accuracy is higher.

4.1.2 High Level - Application Level Metrics

Clustering Error

The previous two metrics are low level, as they work directly on the Gram matrix. We

consider another metric that is high level or application level, which is the clustering er-

ror. It results after applying the clustering algorithm on the approximated Gram matrix.

CHAPTER 4. EXPERIMENTAL EVALUATION 39

This metric can be represented in many ways. One common way is by using the average

distance between each point to its assigned exemplar. To get benefit of that, we fix the

number of exemplars, since a smaller average distance for the same number of exemplars

indicates higher clustering accuracy. For the affinity propagation, the number of exemplars

is controlled by changing a parameter; the self similarity value s(i, i); where small values of

self similarities reduce small number of exemplars and vice versa. For k-means clustering,

number of exemplars is a pre-defined parameter to the algorithm. We use the clustering

error in one of our experiments. It gives us the same information we can get using the low

level metrics.

4.2 Data set

We use The USCensus1990 data set [19], it is a discretized version of the USCensus1990raw

data set. The USCensus1990raw data set contains a one percent sample of the Public Use

Microdata Samples person records (PUMS) drawn from the full 1990 census sample.

There are 68 categorical attributes. Some of the attributes are listed below. Many of

the less useful attributes in the original data set have been dropped, the few continuous

variables have been discretized and the few discrete variables that have a large number of

possible values have been collapsed to have fewer possible values.

More specifically the USCensus1990 data set was obtained from the USCensus1990raw data

set by the following sequence of operations:

• Randomization: The order of the cases in the original USCensus1990raw data set were

randomly permuted.

• Selection of attributes: Some of the 68 attributes included in the data set are given in

Table 4.1. In the USCensus1990 data set a single letter prefix have been added to the

original name. The letter ’i’ is added to indicate that the original attribute values are

used and ’d’ to indicate that original attribute values for each case have been mapped

to new values. The mapping is described in Table 4.2.

CHAPTER 4. EXPERIMENTAL EVALUATION 40

Old Variable New Variable

Age dAge
Ancstry1 dAncstry1
Ancstry2 dAncstry2
Avail iAvail
Citizen iCitizen
Class iClass
Depart dDepart
Disabl1 iDisabl1
Disabl2 iDisabl2
English iEnglish
Feb55 iFeb55
Fertil iFertil

Hispanic dHispanic
Hour89 dHour89
Hours dHours
Immigr iImmigr
Income1 dIncome1
Income2 dIncome2
Income3 dIncome3
Industry dIndustry
Lang1 iLang1
Marital iMarital
Occup dOccup
POB dPOB
Sex iSex

Table 4.1: Some of the selected 68 attributes in the USCensus1990 data set.

• Mapping: In this step all of the old values for variables with prefix ’d’ are mapped to

new values. The mappings for the variables dAncstry1, dAncstry2, dHispanic, dIndus-

try, dOccup, dPOB were designed to correspond to a natural coarsening of the original

values based on the information of the coding. The remaining variables are continuous

valued variables and the mapping for these variables was chosen to make variables that

were fairly uniformly distributed across the states (quantiles). The precise mappings

are specified in T-SQL procedures. These procedures can be used directly in SQLServer

to map the original values or translated to some other language.

CHAPTER 4. EXPERIMENTAL EVALUATION 41

Variable Procedure

dAge discAge
dAncstry1 discAncstry1
dAncstry2 discAncstry2
dHispanic discHispanic
dHour89 discHour89
dHours discHours

dIncome1 discIncome1
dIncome2 discIncome2to8
dIncome3 discIncome2to8
dIncome4 discIncome2to8
dIncome5 discIncome2to8
dIncome6 discIncome2to8
dIncome7 discIncome2to8
dIncome8 discIncome2to8
dIndustry discIndustry
dOccup discOccup
dPOB discPOB

dPoverty discPoverty
dPwgt1 discPwgt1

dRearning discRearning
dRpincome discRpincome
dTravtime discTravtime
dWeek89 discWeek89
dYrsserv discYrsserv

Table 4.2: Mapping some attributes of USCensus1990 data set into new discrete variables.

CHAPTER 4. EXPERIMENTAL EVALUATION 42

4.3 Setup

We setup an MPICH cluster, where five machines are interconnected through a gigabit Eth-

ernet switch. Each machine has Intel(R) Core(TM)2 Duo CPU E6550A processor and a 2

GB of RAM. An Ubuntu Linux operating system is installed on each. A master folder is

shared among all machines using the Network File System (NFS). NFS allows us to create

a folder on one machine and have it synced on all other machines. This folder is used to

store programs and data to be used by all machines.

Our implementation uses LSHKIT which is a C++ Locality Sensitive Hashing Library

written by Dong [14], fast Hilbert curves without recursion written in C by Moore [43], and

affinity propagation clustering algorithm code written by their authors Frey and Dueck [21].

We write one file code and store it along with the data set file on the shared folder. By

parameterizing our code, each process will run on a separate data that is assigned to it by

the code. If the number of processes is larger than the number of available nodes, each node

will run more than one process. The number of processes is fixed in advance before the run

time.

4.4 Results

In our first set of experiments, we use 4000 items from US census 1990 data set. We com-

pare three methods: random projection LSH denoted by DKMA-RP in the figures, spectral

hashing (DKMA-SH) and Hilbert curve. To unify the comparison, we compare the results

using the same size of the approximated Gram matrix. To do so, we set the Hilbert curve

window width as n/2k, where n is data set size and k is the number of hash function bits in

LSH. The approximated Gram matrix size using k for LSH is n2/2k, where 2k is the number

of buckets, assuming all buckets have the same size. At the same time, the approximated

Gram matrix size using Hilbert curve is n× winWidth = n× (n/2k) = n2/2k.

CHAPTER 4. EXPERIMENTAL EVALUATION 43

4.4.1 Results for Accuracy

Figure 4.2 shows the results using the 4000 data points. In Figures 4.2(a) and 4.2(b)

the Frobenius norm is obtained using different values of k. As k increases, the accuracy

decreases. Using Hilbert curve or DKMA-SH, and for k < 6, we maintain a reasonable

accuracy that is more than 90% of the Frobenius norm of the full Gram matrix. If we

use Johnson-Lindenstrauss lemma, we find that log1/p 4000 < 6, and hence p < 0.25 the

low probability for two far points to collide. Moreover, from the figures, Hilbert curve and

DKMA-SH out perform DKMA-RP.

In Figures 4.2(c) and 4.2(d), we show the clustering error using the affinity propagation

on the approximated Gram matrix for k = 5. The clustering error is represented by the

average distance between each point to its exemplar. We compare this value against the

number of exemplars, small value at the same number of exemplars means higher accuracy.

The Figures show close performance for both Hilbert curve and DKMA-SH, and both out

perform DKMA-RP.

4.4.2 Results for Memory Consumption

We have shown previously that our proposed DKMA algorithm reduces the quadratic com-

plexity for computing the Gram matrix, down to sub-quadratic. In Figure 4.3, the approx-

imated Gram matrix size is drawn in log scale, it is the same for all methods at the same

value of k, given that WH−curve = n/2kLSH . At k = 5, we use a space for the approximated

Gram matrix that is 3.57% of the full Gram matrix size, and at k = 6 we use only 1.78%,

both k = 5 and k = 6 give a Frobenius norm more than 90% of the full Gram matrix using

spectral hashing or Hilbert curve.

The advantage of using LSH over Hilbert curve is the distributed property of LSH. Each

process handles a bucket independently, and in this case, our method using LSH is scalable.

If we have enough nodes, such that, each node will handle one bucket at most, and if we

ignore the communication and the synchronization overheads, we will get a speedup up to

2k, where k is the number of hash bits, and 2k is the total number of buckets.

CHAPTER 4. EXPERIMENTAL EVALUATION 44

3 4 5 6 7 8 9
50

100

150

200

250

k

F
ro

b
en

iu
s

n
or

m

DKMA-SH

Hilbert Curve

Orginal Matrix

(a)

3 4 5 6 7 8 9
0

50

100

150

200

250

k

F
ro

b
en

iu
s

n
or

m

DKMA-RP

Hilbert Curve

Orginal Matrix

(b)

100 120 140 160 180

10
4

10
5

Number of Exemplars

C
lu

st
er

in
g

E
rr

or
(L

og
S
ca

le
)

DKMA-SH

Hilbert Curve

(c)

100 120 140 160 180

10
4

10
5

Number of Exemplars

C
lu

st
er

in
g

E
rr

or
(L

og
S
ca

le
)

DKMA-RP

Hilbert Curve

(d)

Figure 4.2: Results for accuracy on DKMA Algorithm, it achieves high accuracy using
spectral hashing and Hilbert curve.

Results for accuracy using 4000 items from the USCensus data set. We apply different
techniques; spectral hashing, random projection hashing and Hilbert space filling curve.
Figure (a) and (b) show the Frobenius norm using different values of k, where number
of buckets is 2k for LSH and window width is n/2k for Hilbert curve (k is number of
hash bits and n is the data set size). Figure (c) and (d) show the clustering error using
k = 5, this is represented by the average distance between each point to its assigned
exemplar, this metric is drawn against number of exemplars obtained by changing the
self similarity values s(i, i) in the affinity propagation.

CHAPTER 4. EXPERIMENTAL EVALUATION 45

3 4 5 6 7 8 9
10

4

10
5

10
6

10
7

10
8

k

G
ra

m
M

at
ri

x
S
iz

e
(L

og
S
ca

le
)

DKMA-SH

Hilbert Curve

Original Matrix

(a)

3 4 5 6 7 8 9
10

4

10
5

10
6

10
7

10
8

k

G
ra

m
M

at
ri

x
S
iz

e
(L

og
S
ca

le
)

DKMA-RP

Hilbert Curve

Original Matrix

(b)

Figure 4.3: Results for memory consumption.
The approximated Gram matrix size is a small fraction of the original matrix.

4.4.3 Results for FrobNorm.MemReduction Product

Figure 4.4 shows the FrobNorm.MemReduction product. This metric gives the optimal

value of k, which is 6 in this case. No need to compute the Frobenius norm for the full Gram

matrix here. From Figure 4.2(a), the maximum memory reduction with a high accuracy

happens at k = 6.

4.4.4 Results for Large-Scale Data

In Figure 4.5, the results of processing one million data items from US census data 1990,

this is done using MPI on cluster as been explained before. In the naive way, 1 million ×

1 million = 1 trillion of space and computations are required for the Gram matrix. Hilbert

curve fails to process, as it needs the whole approximated Gram matrix stored in place for

the clustering processing. In LSH, we have independent sub-problems to be processed, which

are the buckets. Since the naive way and the method using Hilbert curve are not scaled to

this size, we show only the results for our method using locality sensitive hashing. From

the figure, spectral hashing out performs random projection, and both give us significant

reduction im memory requirements..

CHAPTER 4. EXPERIMENTAL EVALUATION 46

3 4 5 6 7 8 9
50

100

150

200

250

k

F
ro

b
N

or
m

.M
em

R
ed

u
ct

io
n

DKAM-SH

Hilbert Curve

(a)

3 4 5 6 7 8 9
0

50

100

150

200

250

k

F
ro

b
N

or
m

.M
em

R
ed

u
ct

io
n

DKMA-RP

Hilbert Curve

(b)

Figure 4.4: Results for FrobNorm.MemReduction product on DKMA algorithm, it gives
us the optimal value of k which is 6 in this case.

FrobNorm.MemReduction product, which is the Frobenius norm multiplied by the
memory reduction normalized, this metric takes in account both Frobenius norm and
matrix size, so it is Gram size independent, and can be used to find the optimal value
of k.

CHAPTER 4. EXPERIMENTAL EVALUATION 47

4 5 6 7 8
0

1

2

3

4
x 10

4

k

F
ro

b
en

iu
s

n
or

m

DKMA-SH

DKMA-RP

(a)

4 5 6 7 8
10

9

10
10

10
11

10
12

k

G
ra

m
M

at
ri

x
S
iz

e
(L

og
S
ca

le
)

DKMA-RP

DKMA-SH

Original Matrix

(b)

4 5 6 7 8
0

1

2

3

4
x 10

4

k

F
N

.M
em

or
y
R

ed
u
ct

io
n

Random Projection

Spectral Hashing

(c)

Figure 4.5: Results for large-scale data set on DKMA algorithm, it scales well and it achieves
substantial memory saving and high accuracy.

One million items from the USCensus data are processed, by applying DKMA-SH and
DKMA-RP. Hilbert curve failed, as it cannot handle such size. Figure (a) shows the
Frobenius norm using different values of k. Figure (b) shows the approximated Gram
matrix size obtained which is the same for both techniques at the same value of k. Figure
(c) is the FrobNorm.MemReduction product.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Kernel-based machine learning algorithms require O(n2) to compute and store the Gram

matrix, where n is the number of input points. The Gram matrix is the similarity matrix

that uses a kernel function to compute the similarity between each pair of points. This

complexity is infeasible and unscalable when dealing with massive data sets. Some pre-

vious works pay attention to the computation and/or space complexity without working

on the scalability problem itself. We proposed a method to approximate the Gram matrix

which reduces this quadratic complexity down to sub-quadratic. Our proposed method is

distributed as well that solves the scalability problem.

Based on the fact that the kernel functions are radial basis functions, that its value de-

pends on the Euclidean distance between the input points, approximation can be done by

finding the close points and then computing the kernel function between them. Finding the

close points in the space can be done using space filling curves and locality sensitive hashing.

Our proposed method uses LSH, which enables to scale to massive data sets. We succeeded

in scaling millions of points using spectral hashing with an accuracy very close to the full

Gram matrix. Spectral hashing out performs random projection hashing and have a close

performance to the method using Hilbert space filling curve.

We have implemented our method on a cluster using the Message Passing Interface (MPI)

48

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 49

framework. Our implementation has minimum synchronization and communication over-

heads among processes, because we divide the data into buckets which are processed in-

dependently. Moreover, our implementation is independent of the size of the hardware

resources. Hence, our algorithm can get as much speedup as the available hardware re-

sources. This speedup will be limited to the total number of buckets, which is 2k, where k

is the total number of hash functions. Our accuracy is dependent on the value of k, as k

increases accuracy decreases, but we showed that we can fix k at a maximum value of log n,

where n is the data set size, and in the same time, we maintain an accuracy that is more

than 90%.

5.2 Future Work

We have explored and succeeded in processing million of data items, we used data from the

US census of 1990 data set, this data set is relatively a low dimensional (< 100). One of the

next steps is to explore the high dimensional challenge. In particular, the bio-informatics

data or the text and image documents, where we may have thousands of dimensions. More-

over, exploring extremely large scale data sets is one of the next steps as well, this scale

could range from billions to trillions of data items.

Random projection works well on high-dimensional data, but spectral hashing may have

limitation on such high-dimensional and very-large scale data sets. This can be solved by

using a hierarchical spectral hashing, where the main data sets are segmented into smaller

data sets and so on, each time we have to hash using the dimensions that have the most

variance, which can be done using the principle component analysis as a pre-processing step

before the spectral hashing step.

Another future work can be on improving the fault tolerance of the proposed algorithm.

As well as a comparison between two implementation, MPI and MapReduce.

Bibliography

[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.

[2] K. Andreev and H. Räcke. Balanced graph partitioning. In Proc. of the sixteenth

annual ACM symposium on Parallelism in algorithms and architectures, SPAA ’04,

pages 120–124, New York, NY, USA, 2004. ACM.

[3] N. O. Andrews and E. A. Fox. Recent developments in document clustering. 2007.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: ordering points to

identify the clustering structure. SIGMOD Rec., 28:49–60, June 1999.

[5] M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian-based manifold

methods. Journal of Computer and System Sciences, 74(8):1289 – 1308, 2008.

[6] A. Broder. On the resemblance and containment of documents. In Compression and

Complexity of Sequences 1997. Proceedings, pages 21 –29, June 1997.

[7] C. Carpineto, S. Osiński, G. Romano, and D. Weiss. A survey of web clustering engines.

ACM Comput. Surv., 41:17:1–17:38, July 2009.

[8] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Proc. of

the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, New

York, NY, USA, 2002. ACM.

[9] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297, Sept.

1995.

[10] S. Dasgupta and A. Gupta. An elementary proof of a theorem of johnson and linden-

strauss. Random Structures and Algorithms, 22(1):60–65, 2003.

50

BIBLIOGRAPHY 51

[11] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing

scheme based on p-stable distributions. In Proc. of the twentieth annual symposium on

Computational geometry, pages 253–262, New York, NY, USA, 2004. ACM.

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.

Commun. ACM, 51:107–113, Jan. 2008.

[13] D. Decoste and B. Schölkopf. Training invariant support vector machines. Mach.

Learn., 46(1-3):161–190, Mar. 2002.

[14] W. Dong. Lshkit: A c++ locality sensitive hashing library. http://lshkit.

sourceforge.net/, 2009.

[15] P. Drineas and M. W. Mahoney. On the nystrom method for approximating a gram ma-

trix for improved kernel-based learning. J. Mach. Learn. Res., 6:2153–2175, December

2005.

[16] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition). Wiley-

Interscience, 2000.

[17] M. Ester, H.-p. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. Computer, 1996(6):226231.

[18] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the nystrom

method. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2):214

–225, feb. 2004.

[19] A. Frank and A. Asuncion. UCI machine learning repository. http://archive.ics.

uci.edu/ml, 2010.

[20] P. Frankl and H. Maehara. The johnson-lindenstrauss lemma and the sphericity of

some graphs. J. Comb. Theory Ser. A, 44:355–362, June 1987.

[21] B. Frey and D. Dueck. Affinity propagation. http://www.psi.toronto.edu/index.

php?q=affinity%20propagation, 2007.

[22] B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science,

315:972–976, 2007.

BIBLIOGRAPHY 52

[23] F. Gao and M. Hefeeda. Distributed approximate spectral clustering for large-scale

datasets. Master’s thesis, Simon Fraser University, December 2011.

[24] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing.

In Proc. of the 25th International Conference on Very Large Data Bases, pages 518–529,

San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[25] G. H. Golub and C. F. V. Loan. Matrix Computations. JHU Press, 1996.

[26] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microprocessors.

Solid-State Circuits, IEEE Journal of, 31(9):1277 –1284, sep 1996.

[27] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with

the Message-Passing Interface. MIT Press, 1999.

[28] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of the Message-

Passing Interface. MIT Press, 1999.

[29] J. A. Hartigan and M. A. Wong. A K-means clustering algorithm. Applied Statistics,

28:100–108, 1979.

[30] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer, New York, 2009.

[31] J. He, W. Liu, and S.-F. Chang. Scalable similarity search with optimized kernel

hashing. In Proc. of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’10, pages 1129–1138, New York, NY, USA, 2010.

ACM.

[32] M. Hussein and W. Abd-Almageed. Efficient band approximation of gram matrices for

large scale kernel methods on gpus. In Proc. of the Conference on High Performance

Computing Networking, Storage and Analysis, pages 1–10, New York, NY, USA, 2009.

ACM.

[33] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the

curse of dimensionality. In Proc. of the thirtieth annual ACM symposium on Theory of

computing, pages 604–613, New York, NY, USA, 1998. ACM.

BIBLIOGRAPHY 53

[34] L. Jing, M. Ng, and J. Huang. An entropy weighting k-means algorithm for subspace

clustering of high-dimensional sparse data. Knowledge and Data Engineering, IEEE

Transactions on, 19(8):1026 –1041, aug. 2007.

[35] W. Johnson and J. Lindenstauss. Extensions of lipschitz mappings into a hilbert space.

Contemporary Mathematics, 26:189–206, 1984.

[36] H.-P. Kriegel, P. Krger, J. Sander, and A. Zimek. Density-based clustering. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(3):231–240, 2011.

[37] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on

subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans.

Knowl. Discov. Data, 3:1:1–1:58, March 2009.

[38] N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian process methods:

The informative vector machine. In Advances in Neural Information Processing Systems

15, pages 609–616. MIT Press, 2003.

[39] Z. Li, X. Xie, L. Zhang, and W.-Y. Ma. Searching one billion web images by content:

Challenges and opportunities. In MCAM’07, pages 33–36, 2007.

[40] Q. Lv, M. Charikar, and K. Li. Image similarity search with compact data structures.

In Proc. of the thirteenth ACM international conference on Information and knowledge

management, pages 208–217, New York, NY, USA, 2004. ACM.

[41] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis:

A survey. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 1:24–45, January 2004.

[42] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Mullers. Fisher discriminant

analysis with kernels. In Neural Networks for Signal Processing IX, 1999. Proceedings

of the 1999 IEEE Signal Processing Society Workshop, pages 41 –48, aug 1999.

[43] D. Moore. Fast hilbert curve generation, sorting, and range queries.

http://web.archive.org/web/20041028171141/http://www.caam.rice.edu/

~dougm/twiddle/Hilbert/.

[44] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduction to

kernel-based learning algorithms. Neural Networks, IEEE Transactions on, 12(2):181

–201, Mar. 2001.

BIBLIOGRAPHY 54

[45] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a

review. SIGKDD Explor. Newsl., 6:90–105, June 2004.

[46] J. C. Platt. Fastmap, metricmap, and landmark mds are all nystrom algorithms. In

Proc. of 10th International Workshop on Artificial Intelligence and Statistics, pages

261–268, 2005.

[47] D. A. Spielman. Spectral graph theory and its applications. Foundations of Computer

Science, IEEE Annual Symposium on, 0:29–38, 2007.

[48] G. W. Stewart. On the early history of the singular value decomposition. SIAM Review,

35(4):pp. 551–566, 1993.

[49] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for scalable image

retrieval. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference

on, pages 3424 –3431, june 2010.

[50] Z. Wang, W. Dong, W. Josephson, Q. Lv, M. Charikar, and K. Li. Sizing sketches:

a rank-based analysis for similarity search. SIGMETRICS Perform. Eval. Rev.,

35(1):157–168, 2007.

[51] Y. Weiss, A. B. Torralba, and R. Fergus. Spectral hashing. In Neural Information

Processing Systems, pages 1753–1760, 2008.

[52] C. Williams and M. Seeger. Using the nystrm method to speed up kernel machines.

In Advances in Neural Information Processing Systems 13, pages 682–688. MIT Press,

2001.

[53] G. Yihong and X. Wei. Machine Learning for Multimedia Content Analysis. Springer,

2007.

[54] A. Zien, G. Rtsch, S. Mika, B. Schlkopf, T. Lengauer, and K.-R. Mller. Engineering sup-

port vector machine kernels that recognize translation initiation sites. Bioinformatics,

16(9):799–807, 2000.

